\documentclass[10pt]{article} \usepackage{fullpage} \usepackage{microtype} % microtypography \usepackage{array} \usepackage{amsmath,amssymb,amsfonts} \usepackage{amsthm} %% Header \usepackage{fancyhdr} \fancyhf{} \fancyhead[C]{COMP 136 - 2020s - HW4} \fancyfoot[C]{\thepage} % page number \renewcommand\headrulewidth{0pt} \pagestyle{fancy} %% Hyperlinks always blue, no weird boxes \usepackage[hyphens]{url} \usepackage[colorlinks=true,allcolors=black,pdfborder={0 0 0}]{hyperref} %%% Doc layout \usepackage{parskip} \usepackage{times} %%% Write out problem statements in blue, solutions in black \usepackage{color} \newcommand{\officialdirections}[1]{{\color{blue} #1}} %%% Avoid automatic section numbers (we'll provide our own) \setcounter{secnumdepth}{0} \begin{document} ~~\\ %% add vert space \Large{\bf Student Name: TODO} \Large{\bf Collaboration Statement:} Total hours spent: TODO hours I consulted the following resources: \begin{itemize} \item TODO \end{itemize} \tableofcontents \newpage \officialdirections{ \subsection*{1a: Problem Statement} Prove the following property under a Hidden Markov Model. \begin{align} p(z_{t+1} | x_{t}, z_{t}) = p(z_{t+1} | z_{t} ) \end{align} } \subsection{1a: Solution} TODO \newpage \officialdirections{ \subsection*{1b: Problem Statement} Prove the following property under a Hidden Markov Model. \begin{align} p(x_{t+1} | x_{1:t}, z_{1:t}) = p(x_{t+1} | z_t) \end{align} } \subsection{1b: Solution} TODO \newpage \officialdirections{ \subsection*{2a: Problem Statement} Write out an expression for the expected complete log likelihood: \begin{align} \mathbb{E}_{q(z_{1:T} |s)} \left[ \log p(z_{1:T}, x_{1:T} | \theta) \right] \end{align} Use the HMM probabilistic model $p(z_{1:T}, x_{1:T} | \theta)$ and the approximate posterior $q(z_{1:T} | s)$ defined above. Your answer should be a function of the data $x$, the local sequence parameters $s$ and $r(s)$, as well as the HMM parameters $\pi, A, \phi$. } \subsection{2a: Solution} TODO \newpage \officialdirections{ \subsection*{2b: Problem Statement} Using your objective function from 2a above, show that for the M-step optimal update to the Bernoulli parameters $\phi_{kd}$, the optimal update is given by: \begin{align} \phi_{kd} = \frac{ \sum_{t=1}^T r_{tk} x_{td} }{ \sum_{t=1}^T r_{tk} } \end{align} } \subsection{2b: Solution} TODO \officialdirections{ \subsection*{2c: Problem Statement} Provide a short verbal summary of the update for $\phi_{kd}$. How should we interpret the numerator? The denominator? } \subsection{2c: Solution} TODO \officialdirections{ \subsection*{3a: Problem Statement} Consider a Markov model with $K=3$ states, and the following initial probability vector and transition probability matrix: \begin{align} \pi &= \left[ {\begin{array}{ccc} 0.25 & 0.50 & 0.25 \\ \end{array} } \right] \\ A &= \left[ {\begin{array}{ccc} 0.97 & 0.01 & 0.02 \\ 0.10 & 0.80 & 0.10 \\ 0.05 & 0.04 & 0.91 \\ \end{array} } \right] \end{align} What is the stationary distribution of the Markov chain? In other words, if we sample a sequence $z_1, z_2, \ldots z_T$, for large $T \gg 0$, what is the marginal probability $p(z_T)$? } \end{document}