\documentclass[10pt]{article} \usepackage{fullpage} \usepackage{microtype} % microtypography \usepackage{array} \usepackage{amsmath,amssymb,amsfonts} \usepackage{amsthm} %% Header \usepackage{fancyhdr} \fancyhf{} \fancyhead[C]{COMP 136 - 2020s - HW5} \fancyfoot[C]{\thepage} % page number \renewcommand\headrulewidth{0pt} \pagestyle{fancy} %% Hyperlinks always blue, no weird boxes \usepackage[hyphens]{url} \usepackage[colorlinks=true,allcolors=black,pdfborder={0 0 0}]{hyperref} %%% Doc layout \usepackage{parskip} \usepackage{times} %%% Write out problem statements in blue, solutions in black \usepackage{color} \newcommand{\officialdirections}[1]{{\color{blue} #1}} %%% Avoid automatic section numbers (we'll provide our own) \setcounter{secnumdepth}{0} \begin{document} ~~\\ %% add vert space \Large{\bf Student Name: TODO} \Large{\bf Collaboration Statement:} Total hours spent: TODO hours I consulted the following resources: \begin{itemize} \item TODO \end{itemize} \tableofcontents \newpage \officialdirections{ \subsection*{1a: Problem Statement} Give an expression for the Jacobian $S'(x) = \frac{d}{dx} S(x)$, as a function of $x, \mu, \sigma$, for the specific target-to-source function $S(x) = \frac{1}{\sigma}(x - \mu)$ defined above. } \subsection{1a: Solution} TODO \newpage \officialdirections{ \subsection*{1b: Problem Statement} Show that the pdf of $x = T(u) = \sigma u + \mu$ is given by: \begin{align} p(x) = \frac{1}{(2\pi)^{\frac{1}{2}}} \frac{1}{\sigma} e^{-\frac{1}{2} \frac{1}{\sigma^2} (x-\mu)^2} \end{align} } \subsection{1b: Solution} TODO \newpage \officialdirections{ \subsection*{2a: Problem Statement} First, give a compact expression for the Jacobian matrix $J_S(x)$ as a function of $x, \mu, L$, for the specific target-to-source function $S(x) = L^{-1} (x - \mu)$ defined above. } \subsection{2a: Solution} TODO \newpage \officialdirections{ \subsection*{2b: Problem Statement} Define $\Sigma = L L^T$. Show the following: \begin{align} ( L^{-1} (x - \mu))^T ( L^{-1} (x - \mu)) = (x-\mu)^T \Sigma^{-1} (x-mu) \end{align} } \subsection{2b: Solution} TODO \newpage \officialdirections{ \subsection*{2c: Problem Statement} Define $\Sigma = L L^T$. Show the following: \begin{align} | \det (L^{-1}) | = \frac{1}{(\text{det} \Sigma)^{\frac{1}{2}}} \end{align} } \subsection{2c: Solution} TODO \newpage \officialdirections{ \subsection*{2d: Problem Statement} Show that the pdf of $x = T(u) = L u + \mu$ is given by: \begin{align} p(x) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{\text{det}(\Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)} \end{align} where we define $\Sigma = L L^T$. } \subsection{2d: Solution} TODO \newpage \officialdirections{ \subsection*{3a: Problem Statement} Show the following for any $x > 0, y > 0$: \begin{align} \frac { \min \left( 1, \frac{x}{y} \right) } { \min \left( 1, \frac{y}{x} \right) } = \frac{x}{y} \end{align} } \subsection{3a: Solution} TODO \newpage \officialdirections{ \subsection*{3b: Problem Statement} If $\mathcal{T}$ is the Metropolis-Hastings transition probability distribution, show that it means the detailed balance condition with respect to $p^*$ for any $a,b$ such that $a \neq b$: \begin{align} p^*( a) \mathcal{T}( b | a) = p^*(b) \mathcal{T}( a | b) \end{align} } \subsection{3b: Solution} TODO \end{document}