
Better Safe Than Sorry!
Automated Identification of Functionality-
Breaking Security-Configuration Rules

Patrick Stöckle
patrick.stoeckle@siemens.com

Siemens Technology &
Technical University of Munich (TUM)

Michael Sammereier
michael.sammereier@tum.de

TUM

Bernd Grobauer
bernd.grobauer@siemens.com

Siemens Technology

Alexander Pretschner
alexander.pretschner@tum.de

TUM

4th ACM/IEEE International Conference on Automation of Software Test (AST 2023)
15.05.2023
Melbourne, AUS 🇦🇺

Motivation

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 2

Recent Motivating Example

… about 2.15 million customers
whose personal and vehicle
information were left exposed to
the internet after a “cloud
misconfiguration” …

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 3

https://techcrunch.com/2023/05/12/toyota-japan-exposed-millions-locations-videos/

Background: Configuration Hardening

Problem 1: Consumer software is not configured securely by default
• Function and usability more critical than security
• Conflicting interests, e.g., telemetry
Solution: We must configure them securely!
Problem 2: We want to configure them securely, but we do not know all the settings
Solution: Implementation of public security-configuration guides, e.g., from

• Center for Internet Security
• Defense Information Systems Agency

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 4

Automated Hardening Process at Siemens

Tailoring
and

Authoring

Setup
Error
fixing

Testing as part of CI

Consistency
checks

C
he

ck
Im

pl
.

Application

Target
System

Automated Impl.

Automated Check

D
oc

um
en

ta
tio

n

Automated Impl.

Automated Check

Test
System

Input

1

2

3

3

3 4

4

4

5

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 5

Unsolved Problem

Step 1:
Check

is
responsible

for

Alice

provides

Server

F1

F2

F3

Alice

Rule 1
Compliant

Rule 2
non-compliant

Rule 3
non-compliant

checksRule 1

Rule 2

Rule 3

Scenario

Server

reads

Alice

Rule 2

Rule 3

apply

Threat A

F1

Step 2a:
Threat Modeling

Step 2b:
Apply All

Rule 2

do not apply

Rule 3

1. apply ...

Alice

1. ... on
Rule 2

Rule 3
2. provides

2. does not provide

Server

F1

F2

F3

breaks

blocks

3. identify as conflicting

Alice executes either Step 2a or 2b.
⊕

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 6

Unsolved Problem

Step 1:
Check

is
responsible

for

Alice

provides

Server

F1

F2

F3

Alice

Rule 1
Compliant

Rule 2
non-compliant

Rule 3
non-compliant

checksRule 1

Rule 2

Rule 3

Scenario

Server

reads

Alice

Rule 2

Rule 3

apply

Threat A

F1

Step 2a:
Threat Modeling

Step 2b:
Apply All

Rule 2

do not apply

Rule 3

1. apply ...

Alice

1. ... on
Rule 2

Rule 3
2. provides

2. does not provide

Server

F1

F2

F3

breaks

blocks

3. identify as conflicting

Alice executes either Step 2a or 2b.
⊕

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 7

Unsolved
Problem

Both approaches are time-consuming and,
therefore, expensive

Threat analysis needs security experts

Alice normally doesn't know how many
rules she must exclude and how the rules
work together

Alice will only implement rules where she is
100% sure that the rules will not break any
function
... or generally refrain from hardening
running systems if it is not forced to do so

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 8

Solution

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 9

Proposed Solution

Input:
Guide

Output:
Safe Subset

1. Generate
Covering Arrays

Rule1

Rule 2

Rule 3

Rule1

Combinatorial
Testing Tools

Rule 2

Rule1 Rule 3

Rule2 Rule 3

test

VM1

apply

apply

apply

test

VM2

test

VM3

F1 F2 F3

F1 F2 F3

F1 F2 F3

apply

Rule1
exclude

Rule 2

F1

applyexclude

Rule3

F1,F2,F3F1,F2,F3

generate

2. Apply Covering
Arrays on VMs

3. Tests Functions
on Hardened VMs

4. Generate a
Decision Tree

5. Find the Shortest
Path in the Tree

Rule 1

Rule 3

input

Create subset from
shortest path

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 10

Generate
Covering
Arrays

Input:
Guide

Rule1

Rule 2

Rule 3

Rule1

Combinatorial
Testing Tools

Rule 2

Rule1 Rule 3

Rule2 Rule 3

Input

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 11

Apply
Covering
Arrays on
VMs Rule1 Rule 2

Rule1 Rule 3

Rule2 Rule 3

VM1

VM2

VM3

apply

apply

apply

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 12

Test
Functions on
Hardened
VMs test

VM1
test

VM2
test

VM3

F1 F2 F3

F1 F2 F3

F1 F2 F3
Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 13

Generate a
Decision Tree

F1 F2 F3

F1 F2 F3

F1 F2 F3

apply

Rule1
exclude

Rule 2

F1
apply

Rule3

F1,F2,F3F1,F2,F3

generate

exclude

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 14

Find the
Shortest Path
in the Tree

Output:
Safe Subset

apply

Rule1
exclude

Rule 2

F1
apply

Rule3

F1,F2,F3F1,F2,F3

Rule 1

Rule 3

Create subset from
shortest path

exclude

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 15

Code

github/tum-i4/Better-Safe-Than-Sorry

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 16

https://github.com/tum-i4/Better-Safe-Than-Sorry

Evaluation

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 17

Generation
Time

Algorithm \ Strength 2 3 4 5
IPOG 0.7 374 179149 -
IPOG-D 0.2 16 8451 1184478

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 18

Distribution
of the

Breaking
Rules Sets

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 20

Results

Correctness
• Overall, the approach finds an optimal solution for 77% of our examples
• In the realistic examples, the approach finds an optimal solution in almost 100%

Time exposure
• Time for generation of covering arrays depends on strength ⇒ Under 1s for

strength 2 and 14 days for strength 5
• Time required for generation is only justifiable for covering arrays up to a strength

of 4
• Time required to execute the tests at strength 4 over 12h ⇒ Possible, but more

suitable for integration tests

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 21

Threats to Validity

Tests
• We need automated tests ⇒ especially with complex systems or graphical user interfaces,

tests are often still carried out manually
• We need good tests. If the tests succeed, but productive systems fail, we must revert all rules
• We need fast tests because we must run the tests once for each covering array ⇒ complex

systems in particular need many and complex tests that take time

Setup
• We need systems that we can set up, install and test automatically ⇒ difficult or even

impossible, especially with complex and heterogeneous systems

Missing data about configuration issues
• Since few organizations harden the configuration of their systems, we have no empirical

information on problematic combinations and instead must use data from other domains

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 22

Conclusion

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 23

Conclusion

More tests!

• We need more tests and
automated tests to be able
to implement hardening
measures on running
systems without side effects!

A/B testing?

• If we don't have these
automated tests, the
covering arrays could also
be tested as part of A/B
testing: one covering array
at a time is applied to a
subset.

• As soon as a problem
occurs, the rules are directly
reset, and the covering
array is marked as breaking.
When all arrays have been
tested, we can determine
the unproblematic subset

Hardening right from the
beginning!

• The hardening of running
systems is and remains
time-consuming. Therefore,
the systems should be
hardened as soon as
possible so that problems
can be analyzed and solved
directly

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 24

Contact
Patrick Stöckle
Research Scientist
T CST SEA-DE
Siemens Technology

patrick.stoeckle@siemens.com

Twitter @p_stoeckle
LinkedIn patrick-stoeckle
GitHub pstoeckle

Unrestricted | © Siemens 2023 | Patrick Stöckle | T CST SEA-DE | 2023-05-15Page 25

mailto:patrick.stoeckle@siemens.com
https://twitter.com/p_stoeckle
https://www.linkedin.com/in/patrick-stoeckle/
https://github.com/pstoeckle

