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Motivation
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Recent Motivating Example

… about 2.15 million customers 
whose personal and vehicle 
information were left exposed to 
the internet after a “cloud 
misconfiguration” …
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https://techcrunch.com/2023/05/12/toyota-japan-exposed-millions-locations-videos/



Background: Configuration Hardening

Problem 1: Consumer software is not configured securely by default
• Function and usability more critical than security
• Conflicting interests, e.g., telemetry
Solution: We must configure them securely!
Problem 2: We want to configure them securely, but we do not know all the settings
Solution: Implementation of public security-configuration guides, e.g., from 

• Center for Internet Security 
• Defense Information Systems Agency
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Automated Hardening Process at Siemens
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Unsolved Problem
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Unsolved
Problem

Both approaches are time-consuming and, 
therefore, expensive

Threat analysis needs security experts

Alice normally doesn't know how many 
rules she must exclude and how the rules 
work together

Alice will only implement rules where she is 
100% sure that the rules will not break any 
function
... or generally refrain from hardening 
running systems if it is not forced to do so
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Solution
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Proposed Solution
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Generate a 
Decision Tree
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Find the 
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Code

github/tum-i4/Better-Safe-Than-Sorry
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https://github.com/tum-i4/Better-Safe-Than-Sorry


Evaluation
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Generation 
Time

Algorithm \ Strength 2 3 4 5
IPOG 0.7 374 179149 -
IPOG-D 0.2 16 8451 1184478
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Distribution 
of the 

Breaking 
Rules Sets
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Results

Correctness
• Overall, the approach finds an optimal solution for 77% of our examples
• In the realistic examples, the approach finds an optimal solution in almost 100%

Time exposure
• Time for generation of covering arrays depends on strength ⇒ Under 1s for 

strength 2 and 14 days for strength 5
• Time required for generation is only justifiable for covering arrays up to a strength 

of 4
• Time required to execute the tests at strength 4 over 12h ⇒ Possible, but more 

suitable for integration tests
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Threats to Validity

Tests
• We need automated tests ⇒ especially with complex systems or graphical user interfaces, 

tests are often still carried out manually
• We need good tests. If the tests succeed, but productive systems fail, we must revert all rules
• We need fast tests because we must run the tests once for each covering array ⇒ complex 

systems in particular need many and complex tests that take time

Setup
• We need systems that we can set up, install and test automatically ⇒ difficult or even 

impossible, especially with complex and heterogeneous systems

Missing data about configuration issues
• Since few organizations harden the configuration of their systems, we have no empirical 

information on problematic combinations and instead must use data from other domains
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Conclusion
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Conclusion

More tests!

• We need more tests and 
automated tests to be able 
to implement hardening 
measures on running 
systems without side effects!

A/B testing?

• If we don't have these 
automated tests, the 
covering arrays could also 
be tested as part of A/B 
testing: one covering array 
at a time is applied to a 
subset.

• As soon as a problem 
occurs, the rules are directly 
reset, and the covering 
array is marked as breaking. 
When all arrays have been 
tested, we can determine 
the unproblematic subset

Hardening right from the 
beginning!

• The hardening of running 
systems is and remains 
time-consuming. Therefore, 
the systems should be 
hardened as soon as 
possible so that problems 
can be analyzed and solved 
directly
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