"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[ONNX](http://onnx.ai/) is open format for machine learning models. It allows to save your neural network's computation graph in a framework agnostic way, which might be particulary helpful when deploying deep learning models.\n",
"\n",
"Indeed, businesses might have other requirements _(languages, hardware, ...)_ for which the training framework might not be the best suited in inference scenarios. In that context, having a representation of the actual computation graph that can be shared accross various business units and logics across an organization might be a desirable component.\n",
"\n",
"Along with the serialization format, ONNX also provides a runtime library which allows efficient and hardware specific execution of the ONNX graph. This is done through the [onnxruntime](https://microsoft.github.io/onnxruntime/) project and already includes collaborations with many hardware vendors to seamlessly deploy models on various platforms.\n",
"\n",
"Through this notebook we'll walk you through the process to convert a PyTorch or TensorFlow transformers model to the [ONNX](http://onnx.ai/) and leverage [onnxruntime](https://microsoft.github.io/onnxruntime/) to run inference tasks on models from 🤗 __transformers__"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "yNnbrSg-5e1s"
},
"source": [
"## Exporting 🤗 transformers model to ONNX\n",
"\n",
"---\n",
"\n",
"Exporting models _(either PyTorch or TensorFlow)_ is easily achieved through the conversion tool provided as part of 🤗 __transformers__ repository. \n",
"\n",
"Under the hood the process is sensibly the following: \n",
"\n",
"1. Allocate the model from transformers (**PyTorch or TensorFlow**)\n",
"2. Forward dummy inputs through the model this way **ONNX** can record the set of operations executed\n",
"3. Optionally define dynamic axes on input and output tensors\n",
"4. Save the graph along with the network parameters"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/huggingface/transformers\n",
" Cloning https://github.com/huggingface/transformers to /tmp/pip-req-build-9rvbp9p8\n",
" Running command git clone -q https://github.com/huggingface/transformers /tmp/pip-req-build-9rvbp9p8\n",
"Requirement already satisfied, skipping upgrade: numpy in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (1.18.1)\n",
"Requirement already satisfied, skipping upgrade: tokenizers==0.8.1.rc2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (0.8.1rc2)\n",
"Requirement already satisfied, skipping upgrade: packaging in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (20.4)\n",
"Requirement already satisfied, skipping upgrade: filelock in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (3.0.12)\n",
"Requirement already satisfied, skipping upgrade: requests in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (2.23.0)\n",
"Requirement already satisfied, skipping upgrade: tqdm>=4.27 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (4.46.1)\n",
"Requirement already satisfied, skipping upgrade: regex!=2019.12.17 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (2020.6.8)\n",
"Requirement already satisfied, skipping upgrade: sentencepiece!=0.1.92 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (0.1.91)\n",
"Requirement already satisfied, skipping upgrade: sacremoses in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers==3.0.2) (0.0.43)\n",
"Requirement already satisfied, skipping upgrade: pyparsing>=2.0.2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from packaging->transformers==3.0.2) (2.4.7)\n",
"Requirement already satisfied, skipping upgrade: six in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from packaging->transformers==3.0.2) (1.15.0)\n",
"Requirement already satisfied, skipping upgrade: chardet<4,>=3.0.2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers==3.0.2) (3.0.4)\n",
"Requirement already satisfied, skipping upgrade: idna<3,>=2.5 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers==3.0.2) (2.9)\n",
"Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers==3.0.2) (1.25.9)\n",
"Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers==3.0.2) (2020.6.20)\n",
"Requirement already satisfied, skipping upgrade: click in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from sacremoses->transformers==3.0.2) (7.1.2)\n",
"Requirement already satisfied, skipping upgrade: joblib in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from sacremoses->transformers==3.0.2) (0.15.1)\n",
"Building wheels for collected packages: transformers\n",
" Building wheel for transformers (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for transformers: filename=transformers-3.0.2-py3-none-any.whl size=883063 sha256=5f2caef76450921ae2e5b10abbbaab436e9c87c83486114fa08d305e4396d4cd\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-kftypcjz/wheels/42/68/45/c63edff61c292f2dfd4df4ef6522dcbecc603e7af82813c1d7\n",
"Successfully built transformers\n",
"Installing collected packages: transformers\n",
" Attempting uninstall: transformers\n",
" Found existing installation: transformers 3.0.2\n",
" Uninstalling transformers-3.0.2:\n",
" Successfully uninstalled transformers-3.0.2\n",
"Successfully installed transformers-3.0.2\n",
"Looking in links: https://download.pytorch.org/whl/torch_stable.html\n",
"Requirement already up-to-date: torch==1.6.0+cpu in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.6.0+cpu)\n",
"Requirement already up-to-date: torchvision==0.7.0+cpu in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (0.7.0+cpu)\n",
"Requirement already satisfied, skipping upgrade: numpy in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from torch==1.6.0+cpu) (1.18.1)\n",
"Requirement already satisfied, skipping upgrade: future in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from torch==1.6.0+cpu) (0.18.2)\n",
"Requirement already satisfied, skipping upgrade: pillow>=4.1.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from torchvision==0.7.0+cpu) (7.2.0)\n",
"Requirement already up-to-date: onnxruntime==1.4.0 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.4.0)\n",
"Requirement already satisfied, skipping upgrade: protobuf in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime==1.4.0) (3.12.2)\n",
"Requirement already satisfied, skipping upgrade: numpy>=1.16.6 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime==1.4.0) (1.18.1)\n",
"Requirement already satisfied, skipping upgrade: setuptools in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->onnxruntime==1.4.0) (47.1.1.post20200604)\n",
"Requirement already satisfied, skipping upgrade: six>=1.9 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->onnxruntime==1.4.0) (1.15.0)\n",
"Looking in indexes: https://test.pypi.org/simple/\n",
"Requirement already satisfied: ort-nightly in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.4.0.dev202008262)\n",
"Requirement already satisfied: protobuf in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from ort-nightly) (3.12.2)\n",
"Requirement already satisfied: numpy>=1.16.6 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from ort-nightly) (1.18.1)\n",
"Requirement already satisfied: setuptools in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->ort-nightly) (47.1.1.post20200604)\n",
"Requirement already satisfied: six>=1.9 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->ort-nightly) (1.15.0)\n",
"Requirement already up-to-date: onnxruntime-tools in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.4.2)\n",
"Requirement already satisfied, skipping upgrade: numpy in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (1.18.1)\n",
"Requirement already satisfied, skipping upgrade: coloredlogs in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (14.0)\n",
"Requirement already satisfied, skipping upgrade: py3nvml in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (0.2.6)\n",
"Requirement already satisfied, skipping upgrade: psutil in /home/mfuntowicz/.local/lib/python3.8/site-packages/psutil-5.7.0-py3.8-linux-x86_64.egg (from onnxruntime-tools) (5.7.0)\n",
"Requirement already satisfied, skipping upgrade: packaging in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (20.4)\n",
"Requirement already satisfied, skipping upgrade: py-cpuinfo in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (5.0.0)\n",
"Requirement already satisfied, skipping upgrade: onnx in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-tools) (1.7.0)\n",
"Requirement already satisfied, skipping upgrade: humanfriendly>=7.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from coloredlogs->onnxruntime-tools) (8.2)\n",
"Requirement already satisfied, skipping upgrade: xmltodict in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from py3nvml->onnxruntime-tools) (0.12.0)\n",
"Requirement already satisfied, skipping upgrade: six in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from packaging->onnxruntime-tools) (1.15.0)\n",
"Requirement already satisfied, skipping upgrade: pyparsing>=2.0.2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from packaging->onnxruntime-tools) (2.4.7)\n",
"Requirement already satisfied, skipping upgrade: typing-extensions>=3.6.2.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnx->onnxruntime-tools) (3.7.4.2)\n",
"Requirement already satisfied, skipping upgrade: protobuf in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnx->onnxruntime-tools) (3.12.2)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied, skipping upgrade: setuptools in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->onnx->onnxruntime-tools) (47.1.1.post20200604)\r\n"
]
}
],
"source": [
"import sys\n",
"!{sys.executable} -m pip install --upgrade git+https://github.com/huggingface/transformers\n",
"!{sys.executable} -m pip install --upgrade torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html\n",
"!{sys.executable} -m pip install --upgrade onnxruntime==1.4.0\n",
"!{sys.executable} -m pip install -i https://test.pypi.org/simple/ ort-nightly\n",
"!{sys.executable} -m pip install --upgrade onnxruntime-tools"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "PwAaOchY4N2-"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json from cache at /home/mfuntowicz/.cache/torch/transformers/b945b69218e98b3e2c95acf911789741307dec43c698d35fad11c1ae28bda352.9da767be51e1327499df13488672789394e2ca38b877837e52618a67d7002391\n",
"Model config BertConfig {\n",
" \"architectures\": [\n",
" \"BertForMaskedLM\"\n",
" ],\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"gradient_checkpointing\": false,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
" \"hidden_size\": 768,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 3072,\n",
" \"layer_norm_eps\": 1e-12,\n",
" \"max_position_embeddings\": 512,\n",
" \"model_type\": \"bert\",\n",
" \"num_attention_heads\": 12,\n",
" \"num_hidden_layers\": 12,\n",
" \"pad_token_id\": 0,\n",
" \"type_vocab_size\": 2,\n",
" \"vocab_size\": 28996\n",
"}\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"ONNX opset version set to: 11\n",
"Loading pipeline (model: bert-base-cased, tokenizer: bert-base-cased)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt from cache at /home/mfuntowicz/.cache/torch/transformers/5e8a2b4893d13790ed4150ca1906be5f7a03d6c4ddf62296c383f6db42814db2.e13dbb970cb325137104fb2e5f36fe865f27746c6b526f6352861b1980eb80b1\n",
"loading model card file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-modelcard.json from cache at /home/mfuntowicz/.cache/torch/transformers/72b46f187c40a666d54782e06684c2870e109350a3efe9aa5027253dec2e671d.455d944f3d1572ab55ed579849f751cf37f303e3388980a42d94f7cd57a4e331\n",
"Model card: {\n",
" \"caveats_and_recommendations\": {},\n",
" \"ethical_considerations\": {},\n",
" \"evaluation_data\": {},\n",
" \"factors\": {},\n",
" \"intended_use\": {},\n",
" \"metrics\": {},\n",
" \"model_details\": {},\n",
" \"quantitative_analyses\": {},\n",
" \"training_data\": {}\n",
"}\n",
"\n",
"loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json from cache at /home/mfuntowicz/.cache/torch/transformers/b945b69218e98b3e2c95acf911789741307dec43c698d35fad11c1ae28bda352.9da767be51e1327499df13488672789394e2ca38b877837e52618a67d7002391\n",
"Model config BertConfig {\n",
" \"architectures\": [\n",
" \"BertForMaskedLM\"\n",
" ],\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"gradient_checkpointing\": false,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
" \"hidden_size\": 768,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 3072,\n",
" \"layer_norm_eps\": 1e-12,\n",
" \"max_position_embeddings\": 512,\n",
" \"model_type\": \"bert\",\n",
" \"num_attention_heads\": 12,\n",
" \"num_hidden_layers\": 12,\n",
" \"pad_token_id\": 0,\n",
" \"type_vocab_size\": 2,\n",
" \"vocab_size\": 28996\n",
"}\n",
"\n",
"loading weights file https://cdn.huggingface.co/bert-base-cased-pytorch_model.bin from cache at /home/mfuntowicz/.cache/torch/transformers/d8f11f061e407be64c4d5d7867ee61d1465263e24085cfa26abf183fdc830569.3fadbea36527ae472139fe84cddaa65454d7429f12d543d80bfc3ad70de55ac2\n",
"All model checkpoint weights were used when initializing BertModel.\n",
"\n",
"All the weights of BertModel were initialized from the model checkpoint at bert-base-cased.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use BertModel for predictions without further training.\n",
"/home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages/transformers/modeling_bert.py:201: TracerWarning: Converting a tensor to a Python index might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" position_ids = self.position_ids[:, :seq_length]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating folder onnx\n",
"Using framework PyTorch: 1.6.0\n",
"Found input input_ids with shape: {0: 'batch', 1: 'sequence'}\n",
"Found input token_type_ids with shape: {0: 'batch', 1: 'sequence'}\n",
"Found input attention_mask with shape: {0: 'batch', 1: 'sequence'}\n",
"Found output output_0 with shape: {0: 'batch', 1: 'sequence'}\n",
"Found output output_1 with shape: {0: 'batch'}\n",
"Ensuring inputs are in correct order\n",
"position_ids is not present in the generated input list.\n",
"Generated inputs order: ['input_ids', 'attention_mask', 'token_type_ids']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages/transformers/modeling_utils.py:1570: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
" input_tensor.shape == tensor_shape for input_tensor in input_tensors\n"
]
}
],
"source": [
"!rm -rf onnx/\n",
"from pathlib import Path\n",
"from transformers.convert_graph_to_onnx import convert\n",
"\n",
"# Handles all the above steps for you\n",
"convert(framework=\"pt\", model=\"bert-base-cased\", output=Path(\"onnx/bert-base-cased.onnx\"), opset=11)\n",
"\n",
"# Tensorflow \n",
"# convert(framework=\"tf\", model=\"bert-base-cased\", output=\"onnx/bert-base-cased.onnx\", opset=11)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to leverage runtime for inference over an ONNX graph\n",
"\n",
"---\n",
"\n",
"As mentionned in the introduction, **ONNX** is a serialization format and many side projects can load the saved graph and run the actual computations from it. Here, we'll focus on the official [onnxruntime](https://microsoft.github.io/onnxruntime/). The runtime is implemented in C++ for performance reasons and provides API/Bindings for C++, C, C#, Java and Python.\n",
"\n",
"In the case of this notebook, we will use the Python API to highlight how to load a serialized **ONNX** graph and run inference workload on various backends through **onnxruntime**.\n",
"\n",
"**onnxruntime** is available on pypi:\n",
"\n",
"- onnxruntime: ONNX + MLAS (Microsoft Linear Algebra Subprograms)\n",
"- onnxruntime-gpu: ONNX + MLAS + CUDA\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: transformers in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (3.0.2)\n",
"Requirement already satisfied: onnxruntime-gpu in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.3.0)\n",
"Requirement already satisfied: onnx in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (1.7.0)\n",
"Requirement already satisfied: psutil in /home/mfuntowicz/.local/lib/python3.8/site-packages/psutil-5.7.0-py3.8-linux-x86_64.egg (5.7.0)\n",
"Requirement already satisfied: matplotlib in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (3.3.1)\n",
"Requirement already satisfied: tqdm>=4.27 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (4.46.1)\n",
"Requirement already satisfied: numpy in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (1.18.1)\n",
"Requirement already satisfied: sacremoses in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (0.0.43)\n",
"Requirement already satisfied: regex!=2019.12.17 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (2020.6.8)\n",
"Requirement already satisfied: filelock in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (3.0.12)\n",
"Requirement already satisfied: sentencepiece!=0.1.92 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (0.1.91)\n",
"Requirement already satisfied: requests in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (2.23.0)\n",
"Requirement already satisfied: packaging in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (20.4)\n",
"Requirement already satisfied: tokenizers==0.8.1.rc2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from transformers) (0.8.1rc2)\n",
"Requirement already satisfied: protobuf in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnxruntime-gpu) (3.12.2)\n",
"Requirement already satisfied: six in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnx) (1.15.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.2.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from onnx) (3.7.4.2)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (2.4.7)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (1.2.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (2.8.1)\n",
"Requirement already satisfied: cycler>=0.10 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (0.10.0)\n",
"Requirement already satisfied: pillow>=6.2.0 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (7.2.0)\n",
"Requirement already satisfied: certifi>=2020.06.20 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from matplotlib) (2020.6.20)\n",
"Requirement already satisfied: click in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from sacremoses->transformers) (7.1.2)\n",
"Requirement already satisfied: joblib in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from sacremoses->transformers) (0.15.1)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers) (1.25.9)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers) (3.0.4)\n",
"Requirement already satisfied: idna<3,>=2.5 in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from requests->transformers) (2.9)\n",
"Requirement already satisfied: setuptools in /home/mfuntowicz/miniconda3/envs/pytorch/lib/python3.8/site-packages (from protobuf->onnxruntime-gpu) (47.1.1.post20200604)\n"
]
}
],
"source": [
"!pip install transformers onnxruntime-gpu onnx psutil matplotlib"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "-gP08tHfBvgY"
},
"source": [
"## Preparing for an Inference Session\n",
"\n",
"---\n",
"\n",
"Inference is done using a specific backend definition which turns on hardware specific optimizations of the graph. \n",
"\n",
"Optimizations are basically of three kinds: \n",
"\n",
"- **Constant Folding**: Convert static variables to constants in the graph \n",
"- **Deadcode Elimination**: Remove nodes never accessed in the graph\n",
"- **Operator Fusing**: Merge multiple instruction into one (Linear -> ReLU can be fused to be LinearReLU)\n",
"\n",
"ONNX Runtime automatically applies most optimizations by setting specific `SessionOptions`.\n",
"\n",
"Note:Some of the latest optimizations that are not yet integrated into ONNX Runtime are available in [optimization script](https://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers) that tunes models for the best performance."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# # An optional step unless\n",
"# # you want to get a model with mixed precision for perf accelartion on newer GPU\n",
"# # or you are working with Tensorflow(tf.keras) models or pytorch models other than bert\n",
"\n",
"# !pip install onnxruntime-tools\n",
"# from onnxruntime_tools import optimizer\n",
"\n",
"# # Mixed precision conversion for bert-base-cased model converted from Pytorch\n",
"# optimized_model = optimizer.optimize_model(\"bert-base-cased.onnx\", model_type='bert', num_heads=12, hidden_size=768)\n",
"# optimized_model.convert_model_float32_to_float16()\n",
"# optimized_model.save_model_to_file(\"bert-base-cased.onnx\")\n",
"\n",
"# # optimizations for bert-base-cased model converted from Tensorflow(tf.keras)\n",
"# optimized_model = optimizer.optimize_model(\"bert-base-cased.onnx\", model_type='bert_keras', num_heads=12, hidden_size=768)\n",
"# optimized_model.save_model_to_file(\"bert-base-cased.onnx\")\n",
"\n",
"\n",
"# optimize transformer-based models with onnxruntime-tools\n",
"from onnxruntime_tools import optimizer\n",
"from onnxruntime_tools.transformers.onnx_model_bert import BertOptimizationOptions\n",
"\n",
"# disable embedding layer norm optimization for better model size reduction\n",
"opt_options = BertOptimizationOptions('bert')\n",
"opt_options.enable_embed_layer_norm = False\n",
"\n",
"opt_model = optimizer.optimize_model(\n",
" 'onnx/bert-base-cased.onnx',\n",
" 'bert', \n",
" num_heads=12,\n",
" hidden_size=768,\n",
" optimization_options=opt_options)\n",
"opt_model.save_model_to_file('bert.opt.onnx')\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from os import environ\n",
"from psutil import cpu_count\n",
"\n",
"# Constants from the performance optimization available in onnxruntime\n",
"# It needs to be done before importing onnxruntime\n",
"environ[\"OMP_NUM_THREADS\"] = str(cpu_count(logical=True))\n",
"environ[\"OMP_WAIT_POLICY\"] = 'ACTIVE'\n",
"\n",
"from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions, get_all_providers"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "2k-jHLfdcTFS"
},
"outputs": [],
"source": [
"from contextlib import contextmanager\n",
"from dataclasses import dataclass\n",
"from time import time\n",
"from tqdm import trange\n",
"\n",
"def create_model_for_provider(model_path: str, provider: str) -> InferenceSession: \n",
" \n",
" assert provider in get_all_providers(), f\"provider {provider} not found, {get_all_providers()}\"\n",
"\n",
" # Few properties that might have an impact on performances (provided by MS)\n",
" options = SessionOptions()\n",
" options.intra_op_num_threads = 1\n",
" options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL\n",
"\n",
" # Load the model as a graph and prepare the CPU backend \n",
" session = InferenceSession(model_path, options, providers=[provider])\n",
" session.disable_fallback()\n",
" \n",
" return session\n",
"\n",
"\n",
"@contextmanager\n",
"def track_infer_time(buffer: [int]):\n",
" start = time()\n",
" yield\n",
" end = time()\n",
"\n",
" buffer.append(end - start)\n",
"\n",
"\n",
"@dataclass\n",
"class OnnxInferenceResult:\n",
" model_inference_time: [int] \n",
" optimized_model_path: str"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "teJdG3amE-hR"
},
"source": [
"## Forwarding through our optimized ONNX model running on CPU\n",
"\n",
"---\n",
"\n",
"When the model is loaded for inference over a specific provider, for instance **CPUExecutionProvider** as above, an optimized graph can be saved. This graph will might include various optimizations, and you might be able to see some **higher-level** operations in the graph _(through [Netron](https://github.com/lutzroeder/Netron) for instance)_ such as:\n",
"- **EmbedLayerNormalization**\n",
"- **Attention**\n",
"- **FastGeLU**\n",
"\n",
"These operations are an example of the kind of optimization **onnxruntime** is doing, for instance here gathering multiple operations into bigger one _(Operator Fusing)_."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "dmC22kJfVGYe",
"outputId": "f3aba5dc-15c0-4f82-b38c-1bbae1bf112e"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"loading file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt from cache at /home/mfuntowicz/.cache/torch/transformers/5e8a2b4893d13790ed4150ca1906be5f7a03d6c4ddf62296c383f6db42814db2.e13dbb970cb325137104fb2e5f36fe865f27746c6b526f6352861b1980eb80b1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sequence output: (1, 6, 768), Pooled output: (1, 768)\n"
]
}
],
"source": [
"from transformers import BertTokenizerFast\n",
"\n",
"tokenizer = BertTokenizerFast.from_pretrained(\"bert-base-cased\")\n",
"cpu_model = create_model_for_provider(\"onnx/bert-base-cased.onnx\", \"CPUExecutionProvider\")\n",
"\n",
"# Inputs are provided through numpy array\n",
"model_inputs = tokenizer(\"My name is Bert\", return_tensors=\"pt\")\n",
"inputs_onnx = {k: v.cpu().detach().numpy() for k, v in model_inputs.items()}\n",
"\n",
"# Run the model (None = get all the outputs)\n",
"sequence, pooled = cpu_model.run(None, inputs_onnx)\n",
"\n",
"# Print information about outputs\n",
"\n",
"print(f\"Sequence output: {sequence.shape}, Pooled output: {pooled.shape}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Benchmarking PyTorch model\n",
"\n",
"_Note: PyTorch model benchmark is run on CPU_"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 51
},
"colab_type": "code",
"id": "PS_49goe197g",
"outputId": "0ef0f70c-f5a7-46a0-949a-1a93f231d193"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json from cache at /home/mfuntowicz/.cache/torch/transformers/b945b69218e98b3e2c95acf911789741307dec43c698d35fad11c1ae28bda352.9da767be51e1327499df13488672789394e2ca38b877837e52618a67d7002391\n",
"Model config BertConfig {\n",
" \"architectures\": [\n",
" \"BertForMaskedLM\"\n",
" ],\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"gradient_checkpointing\": false,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
" \"hidden_size\": 768,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 3072,\n",
" \"layer_norm_eps\": 1e-12,\n",
" \"max_position_embeddings\": 512,\n",
" \"model_type\": \"bert\",\n",
" \"num_attention_heads\": 12,\n",
" \"num_hidden_layers\": 12,\n",
" \"pad_token_id\": 0,\n",
" \"type_vocab_size\": 2,\n",
" \"vocab_size\": 28996\n",
"}\n",
"\n",
"loading weights file https://cdn.huggingface.co/bert-base-cased-pytorch_model.bin from cache at /home/mfuntowicz/.cache/torch/transformers/d8f11f061e407be64c4d5d7867ee61d1465263e24085cfa26abf183fdc830569.3fadbea36527ae472139fe84cddaa65454d7429f12d543d80bfc3ad70de55ac2\n",
"All model checkpoint weights were used when initializing BertModel.\n",
"\n",
"All the weights of BertModel were initialized from the model checkpoint at bert-base-cased.\n",
"If your task is similar to the task the model of the checkpoint was trained on, you can already use BertModel for predictions without further training.\n",
"Warming up: 100%|██████████| 10/10 [00:00<00:00, 39.30it/s]\n",
"Tracking inference time on PyTorch: 100%|██████████| 100/100 [00:02<00:00, 41.09it/s]\n"
]
}
],
"source": [
"from transformers import BertModel\n",
"\n",
"PROVIDERS = {\n",
" (\"cpu\", \"PyTorch CPU\"),\n",
"# Uncomment this line to enable GPU benchmarking\n",
"# (\"cuda:0\", \"PyTorch GPU\")\n",
"}\n",
"\n",
"results = {}\n",
"\n",
"for device, label in PROVIDERS:\n",
" \n",
" # Move inputs to the correct device\n",
" model_inputs_on_device = {\n",
" arg_name: tensor.to(device)\n",
" for arg_name, tensor in model_inputs.items()\n",
" }\n",
"\n",
" # Add PyTorch to the providers\n",
" model_pt = BertModel.from_pretrained(\"bert-base-cased\").to(device)\n",
" for _ in trange(10, desc=\"Warming up\"):\n",
" model_pt(**model_inputs_on_device)\n",
"\n",
" # Compute \n",
" time_buffer = []\n",
" for _ in trange(100, desc=f\"Tracking inference time on PyTorch\"):\n",
" with track_infer_time(time_buffer):\n",
" model_pt(**model_inputs_on_device)\n",
"\n",
" # Store the result\n",
" results[label] = OnnxInferenceResult(\n",
" time_buffer, \n",
" None\n",
" ) "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Kda1e7TkEqNR"
},
"source": [
"## Benchmarking PyTorch & ONNX on CPU\n",
"\n",
"_**Disclamer: results may vary from the actual hardware used to run the model**_"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 170
},
"colab_type": "code",
"id": "WcdFZCvImVig",
"outputId": "bfd779a1-0bc7-42db-8587-e52a485ec5e3"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Tracking inference time on CPUExecutionProvider: 100%|██████████| 100/100 [00:01<00:00, 63.62it/s]\n"
]
}
],
"source": [
"PROVIDERS = {\n",
" (\"CPUExecutionProvider\", \"ONNX CPU\"),\n",
"# Uncomment this line to enable GPU benchmarking\n",
"# (\"CUDAExecutionProvider\", \"ONNX GPU\")\n",
"}\n",
"\n",
"\n",
"for provider, label in PROVIDERS:\n",
" # Create the model with the specified provider\n",
" model = create_model_for_provider(\"onnx/bert-base-cased.onnx\", provider)\n",
"\n",
" # Keep track of the inference time\n",
" time_buffer = []\n",
"\n",
" # Warm up the model\n",
" model.run(None, inputs_onnx)\n",
"\n",
" # Compute \n",
" for _ in trange(100, desc=f\"Tracking inference time on {provider}\"):\n",
" with track_infer_time(time_buffer):\n",
" model.run(None, inputs_onnx)\n",
"\n",
" # Store the result\n",
" results[label] = OnnxInferenceResult(\n",
" time_buffer,\n",
" model.get_session_options().optimized_model_filepath\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRoAAAPeCAYAAABjjKazAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAA9hAAAPYQGoP6dpAABezklEQVR4nOzdeZjd8/3//8fJNklkEyIJQmxFbPWh1dDGFiL2rYQuUVsX1Fof+WgtpVJUpVW7fkI1GruqfuxLKtaKWtuqqBBrbEkkYZA5vz/6zfyMLDJeM2aG2+26znXlvM/7nPfznFmucfdeKtVqtRoAAAAAgALtWnoAAAAAAKDtExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAYA2ZeDAgdlnn30+8fNPP/30rLzyymnfvn2++MUvNtlcnyV33XVXKpVK7rrrrpYepYFZs2ZlmWWWybhx4z7V7R5zzDHZaKONGvWcz/r32bzvkauuuqqlR2kyF198cSqVSqZMmfKx65b+HgKAzyqhEQBaoXPOOSeVSqXRcYNFu+WWW3L00Udnk002ydixY3PKKae09Egt6pxzzsnFF1/c0mMstl/96lfp3r17RowY8alu97DDDsujjz6a66+/frHW930GAHxedWjpAQCA+Y0bNy4DBw7Mgw8+mMmTJ2fVVVdt6ZFajaeeeirt2n2y/1d6xx13pF27dvntb3+bTp06NfFkbc8555yTpZdeer49s4YMGZJ33nmnVX1G77//fn71q1/l8MMPT/v27T/Vbffr1y877bRTfvGLX2THHXf82PV9n7VN3/rWtzJixIjU1NS09CgA0GbZoxEAWplnn3029957b375y1+mT58+n/phoklSV1eXd99991Pf7uKoqalJx44dP9Fzp02bli5dujRp/JkzZ06TvVZr0a5du3Tu3PkTB93mcMMNN+S1117LHnvs0SLb32OPPTJx4sT8+9///th1m/r7rFqt5p133mmS1/osaK7fT+3bt0/nzp1TqVSa/LUX5YMPPsh77733qW4TAJpL6/nrEQBI8p+9GZdccslst9122X333RuExvfffz+9e/fOd77znfmeN3PmzHTu3DlHHXVU/bLa2tocf/zxWXXVVVNTU5MBAwbk6KOPTm1tbYPnViqVHHzwwRk3blzWWmut1NTU5KabbkqS/OIXv8jGG2+cpZZaKl26dMkGG2ywwPOyvfPOO/nhD3+YpZdeOt27d8+OO+6YF198MZVKJSeccEKDdV988cXsu+++6du3b2pqarLWWmvlf//3fxfr8/noudHmnVftnnvuyRFHHJE+ffpkiSWWyC677JLXXnutwXscO3ZsZs+enUqlkkql0uCw4d///vfZYIMN0qVLl/Tu3TsjRozI1KlTG2x7s802y9prr51JkyZlyJAh6dq1a/7nf/7nE33W1113XdZee+369z/v8/7o57Tffvtl2WWXTU1NTVZaaaV8//vfbxAlpk+fnsMOOywDBgxITU1NVl111Zx66qmpq6v72M/xySefzIQJE+o/j8022yzJgs/ROO+9P/bYY9l0003TtWvXrLrqqvXfCxMmTMhGG22ULl26ZPXVV89tt922wPfzSb/u1113XQYOHJhVVlmlwfJ99tkn3bp1y/PPP5/tt98+3bp1y3LLLZezzz47SfL4449niy22yBJLLJEVV1wxl112WYPnv//++znxxBOz2mqrpXPnzllqqaXy1a9+NbfeemuD9YYOHZok+eMf/7jIORf1ffbBBx/kpJNOyiqrrJKampoMHDgw//M//zPf98jAgQOz/fbb5+abb86GG26YLl265Pzzz1/kdh944IFss8026dmzZ7p27ZpNN90099xzT4N1nnvuufzgBz/I6quvni5dumSppZbK17/+9QWek3D69Ok5/PDDM3DgwNTU1GT55ZfPt7/97bz++usN1qurq8vPfvazLL/88uncuXO23HLLTJ48eZGzJskJJ5yQSqWSf/7zn9ljjz3So0ePLLXUUjn00EPni4iL+v30t7/9LcOHD0+PHj3SrVu3bLnllrn//vvrn/vQQw+lUqnkkksumW+Gm2++OZVKJTfccEOSBZ+jsVqt5uSTT87yyy+frl27ZvPNN8+TTz65wPe0OD+LU6ZMSaVSyS9+8YuMGTOm/nvh73//+8d+ZgDQFjh0GgBamXHjxmXXXXdNp06dstdee+Xcc8/NX//613zpS19Kx44ds8suu+Saa67J+eef32CPqeuuuy61tbX156+rq6vLjjvumIkTJ+bAAw/Mmmuumccffzxnnnlm/vWvf+W6665rsN077rgjV1xxRQ4++OAsvfTSGThwYJL/nBdvxx13zDe+8Y289957GT9+fL7+9a/nhhtuyHbbbVf//H322SdXXHFFvvWtb+UrX/lKJkyY0ODxeV599dV85StfqY8Hffr0yY033pj99tsvM2fOzGGHHfaJPrdDDjkkSy65ZI4//vhMmTIlY8aMycEHH5zLL788SXLppZfmggsuyIMPPpiLLrooSbLxxhsnSX72s5/lJz/5SfbYY4/sv//+ee2113LWWWdlyJAh+dvf/pZevXrVb+eNN97I8OHDM2LEiHzzm99M3759G/1ZT5w4Mddcc01+8IMfpHv37vn1r3+d3XbbLc8//3yWWmqpJMlLL72UL3/5y5k+fXoOPPDArLHGGnnxxRdz1VVXZc6cOenUqVPmzJmTTTfdNC+++GK++93vZoUVVsi9996bUaNG5eWXX86YMWMW+nmNGTMmhxxySLp165Zjjz02SdK3b99FfsZvvfVWtt9++4wYMSJf//rXc+6552bEiBEZN25cDjvssHzve9/L3nvvndNPPz277757pk6dmu7duycp/7rfe++9+a//+q8FPjZ37twMHz48Q4YMyWmnnZZx48bl4IMPzhJLLJFjjz023/jGN7LrrrvmvPPOy7e//e0MHjw4K620UpL/BK/Ro0dn//33z5e//OXMnDkzDz30UB5++OFstdVW9dvo2bNnVlllldxzzz05/PDDFzrnor7P9t9//1xyySXZfffdc+SRR+aBBx7I6NGj849//CPXXnttg9d56qmnstdee+W73/1uDjjggKy++uoL3eYdd9yR4cOHZ4MNNsjxxx+fdu3aZezYsdliiy1y991358tf/nKS5K9//WvuvffejBgxIssvv3ymTJmSc889N5tttln+/ve/p2vXrkn+c9Gdr33ta/nHP/6RfffdN//1X/+V119/Pddff31eeOGFLL300vXb/vnPf5527drlqKOOyowZM3LaaaflG9/4Rh544IGFzvthe+yxRwYOHJjRo0fn/vvvz69//eu89dZb+d3vfjffe/zo76cnn3wyX/va19KjR48cffTR6dixY84///xsttlm9eF7ww03zMorr5wrrrgiI0eObPCal19+eZZccskMGzZsofMdd9xxOfnkk7Pttttm2223zcMPP5ytt956vj0QG/uzOHbs2Lz77rs58MADU1NTk969ey/W5wUArV4VAGg1HnrooWqS6q233lqtVqvVurq66vLLL1899NBD69e5+eabq0mqf/rTnxo8d9ttt62uvPLK9fcvvfTSart27ap33313g/XOO++8apLqPffcU78sSbVdu3bVJ598cr6Z5syZ0+D+e++9V1177bWrW2yxRf2ySZMmVZNUDzvssAbr7rPPPtUk1eOPP75+2X777Vft379/9fXXX2+w7ogRI6o9e/acb3sfteKKK1ZHjhxZf3/s2LHVJNWhQ4dW6+rq6pcffvjh1fbt21enT59ev2zkyJHVJZZYosHrTZkypdq+ffvqz372swbLH3/88WqHDh0aLN90002rSarnnXdeg3Ub+1l36tSpOnny5Ppljz76aDVJ9ayzzqpf9u1vf7varl276l//+tf5PoN57/Okk06qLrHEEtV//etfDR4/5phjqu3bt68+//zz8z33w9Zaa63qpptuOt/yO++8s5qkeuedd8733i+77LL6Zf/85z/rv3fuv//++uXzvkfHjh1bv6zk6/7+++9XK5VK9cgjj5zvsZEjR1aTVE855ZT6ZW+99Va1S5cu1UqlUh0/fvx88374+3G99darbrfddgvd9odtvfXW1TXXXPNj11vQ99kjjzxSTVLdf//9Gyw/6qijqkmqd9xxR/2yFVdcsZqketNNN33sturq6qqrrbZaddiwYQ2+/+fMmVNdaaWVqltttVWDZR913333VZNUf/e739UvO+6446pJqtdcc80Ct1et/v/fI2uuuWa1tra2/vFf/epX1STVxx9/fJFzH3/88dUk1R133LHB8h/84AfVJNVHH320ftnCfj/tvPPO1U6dOlWfeeaZ+mUvvfRStXv37tUhQ4bULxs1alS1Y8eO1TfffLN+WW1tbbVXr17Vfffdt37ZvN8lzz77bLVarVanTZtW7dSpU3W77bZr8Nn+z//8TzVJg99Di/uz+Oyzz1aTVHv06FGdNm3aIj8jAGiLHDoNAK3IuHHj0rdv32y++eZJ/nPI4J577pnx48dn7ty5SZItttgiSy+9dP2eesl/9jS79dZbs+eee9Yvu/LKK7PmmmtmjTXWyOuvv15/22KLLZIkd955Z4Ntb7rpphk0aNB8M3Xp0qXBdmbMmJGvfe1refjhh+uXzzuM8Qc/+EGD5x5yyCEN7ler1Vx99dXZYYcdUq1WG8w1bNiwzJgxo8HrNsaBBx7Y4NxqX/va1zJ37tw899xzi3zeNddck7q6uuyxxx4N5unXr19WW221+T6nmpqa+Q5db+xnPXTo0AaHAK+77rrp0aNH/fn/6urqct1112WHHXbIhhtuON/M897nlVdema997WtZcsklG2x36NChmTt3bv7yl7983MfWKN26dWtwxefVV189vXr1ypprrtngCunz/j3v/ZR+3d98881Uq9UsueSSC11n//33r/93r169svrqq2eJJZZocE7HefN++DyLvXr1ypNPPpmnn376Y9//vM/5k/i///u/JMkRRxzRYPmRRx6ZJPnzn//cYPlKK620yD3t5nnkkUfy9NNPZ++9984bb7xR/7nOnj07W265Zf7yl7/UH7r74Z/l999/P2+88UZWXXXV9OrVq8Hnf/XVV2e99dbLLrvsMt/2Pnr+wu985zsN9qz+2te+liSLdS7LJDnooIMa3J/3O2Pe5zXPR38/zZ07N7fcckt23nnnrLzyyvXL+/fvn7333jsTJ07MzJkzkyR77rln3n///VxzzTX1691yyy2ZPn16g9+ZH3XbbbflvffeyyGHHNLgfS9o79vG/izutttu6dOnz0K3DQBtlUOnAaCVmDt3bsaPH5/NN988zz77bP3yjTbaKGeccUZuv/32bL311unQoUN22223XHbZZamtrU1NTU2uueaavP/++w3+o/npp5/OP/7xj4X+x+y0adMa3J93KOlH3XDDDTn55JPzyCOPNDiX3If/w/u5555Lu3bt5nuNj14t+7XXXsv06dNzwQUX5IILLlisuRbXCius0OD+vCj11ltvLfJ5Tz/9dKrValZbbbUFPv7RC88st9xy813ko7Gf9UdnnTfvvFlfe+21zJw5M2uvvfbHzv7YY48t9nZLLb/88vOFpp49e2bAgAHzLUvS4P00xde9Wq0ucHnnzp3n+wx69uy50Hk//D3x05/+NDvttFO+8IUvZO21184222yTb33rW1l33XUXuP1PeqGQeT8jH/2Z6NevX3r16jVfEF/Yz+NHzQukHz0s+MNmzJiRJZdcMu+8805Gjx6dsWPH5sUXX2zwec6YMaP+388880x22223xdr+J/25m+ejP3errLJK2rVrN995Iz/6ebz22muZM2fOAg8pX3PNNVNXV5epU6dmrbXWynrrrZc11lgjl19+efbbb78k/zlseumll67/nwELMu9r8tEZ+/TpM1/0buzP4uJ+fQGgrREaAaCVuOOOO/Lyyy9n/PjxGT9+/HyPjxs3LltvvXWSZMSIETn//PNz4403Zuedd84VV1yRNdZYI+utt179+nV1dVlnnXXyy1/+coHb+2gc+vDeTvPcfffd2XHHHTNkyJCcc8456d+/fzp27JixY8fOd1GNxTFvz6pvfvObCw0jCwo8i6N9+/YLXL6wOPXhmSqVSm688cYFvka3bt0a3F/Q59TYz/qTzrqg7W611VY5+uijF/j4F77whUa93sdZ2Nwf935Kv+69e/dOpVJZaLz6pHMlyZAhQ/LMM8/kj3/8Y2655ZZcdNFFOfPMM3Peeec12Esy+U88+/D5CT+JxQ2VC/o+W5B5n+3pp5+eL37xiwtcZ9738CGHHJKxY8fmsMMOy+DBg9OzZ89UKpWMGDHiYy8etDBN9b08z8I+n8X9PBZmzz33zM9+9rO8/vrr6d69e66//vrstdde6dChaf5zqLE/i6XvBwBaK6ERAFqJcePGZZlllqm/Wu6HXXPNNbn22mtz3nnnpUuXLhkyZEj69++fyy+/PF/96ldzxx131F/QY55VVlkljz76aLbccstPvBfW1Vdfnc6dO+fmm29OTU1N/fKxY8c2WG/FFVdMXV1dnn322QZ7/3z06rN9+vRJ9+7dM3fu3Pqr+La0VVZZJdVqNSuttNInDnNN8Vl/WJ8+fdKjR4888cQTH7vdWbNmfeLPsilmXRylX/cOHTpklVVWabCnb1OadyX373znO5k1a1aGDBmSE044Yb7Q+OyzzzaI+Y0x72fk6aefzpprrlm//NVXX8306dOz4oorfqLXnXcIfo8ePT72s73qqqsycuTInHHGGfXL3n333UyfPn2+1/y4772m8vTTTzfYu2/y5Mmpq6urvxjVwvTp0yddu3bNU089Nd9j//znP9OuXbsGgX/PPffMiSeemKuvvjp9+/bNzJkzG5wGYEHmfU2efvrpBodnv/baa/NF79KfRQD4rHCORgBoBd55551cc8012X777bP77rvPdzv44IPz9ttv5/rrr0+StGvXLrvvvnv+9Kc/5dJLL80HH3ww37nG9thjj7z44ou58MILF7i92bNnf+xc7du3T6VSqT8/ZJJMmTJlvqsozzuX3DnnnNNg+VlnnTXf6+222265+uqrFxgyXnvttY+dqantuuuuad++fU488cT59sKqVqt54403PvY1muKz/rB27dpl5513zp/+9Kc89NBD8z0+b8499tgj9913X26++eb51pk+fXo++OCDRW5niSWWmC8yNYem+LoPHjx4gZ9FqY9+fbt165ZVV121wWkCkv8cWvzMM8/UX0G6sbbddtskme/qw/P2gl3QFdoXxwYbbJBVVlklv/jFLzJr1qz5Hv/wZ9u+ffv5vsfPOuusBj/fyX/OH/joo4/OdyXs5JPvqbgwH/0fK/N+ZwwfPnyRz2vfvn223nrr/PGPf2xwmPWrr76ayy67LF/96lfTo0eP+uVrrrlm1llnnVx++eW5/PLL079//wwZMmSR2xg6dGg6duyYs846q8H7XtDV3Et/FgHgs8IejQDQClx//fV5++23s+OOOy7w8a985Svp06dPxo0bVx8U99xzz5x11lk5/vjjs8466zTYSypJvvWtb+WKK67I9773vdx5553ZZJNNMnfu3Pzzn//MFVdckZtvvnmBFxr5sO222y6//OUvs80222TvvffOtGnTcvbZZ2fVVVfNY489Vr/eBhtskN122y1jxozJG2+8ka985SuZMGFC/vWvfyVpuOfcz3/+89x5553ZaKONcsABB2TQoEF588038/DDD+e2227Lm2+++Yk+w09qlVVWycknn5xRo0ZlypQp2XnnndO9e/c8++yzufbaa3PggQfmqKOOWuRrNMVn/VGnnHJKbrnllmy66aY58MADs+aaa+bll1/OlVdemYkTJ6ZXr1750Y9+lOuvvz7bb7999tlnn2ywwQaZPXt2Hn/88Vx11VWZMmXKIg/13WCDDXLuuefm5JNPzqqrrppllllmkeesK1H6dd9pp51y6aWX5l//+leTHhI+aNCgbLbZZtlggw3Su3fvPPTQQ7nqqqty8MEHN1jvtttuS7VazU477fSJtrPeeutl5MiRueCCCzJ9+vRsuummefDBB3PJJZdk5513rr8AVGO1a9cuF110UYYPH5611lor3/nOd7LccsvlxRdfzJ133pkePXrkT3/6U5Jk++23z6WXXpqePXtm0KBBue+++3LbbbdlqaWWavCaP/rRj3LVVVfl61//evbdd99ssMEGefPNN3P99dfnvPPO+8R7dS7Is88+mx133DHbbLNN7rvvvvz+97/P3nvvvVjbOPnkk3Prrbfmq1/9an7wgx+kQ4cOOf/881NbW5vTTjttvvX33HPPHHfccencuXP222+/tGu36H0u+vTpk6OOOiqjR4/O9ttvn2233TZ/+9vfcuONN873c1X6swgAnxVCIwC0AuPGjUvnzp2z1VZbLfDxdu3aZbvttsu4cePyxhtvZKmllsrGG2+cAQMGZOrUqQu8cmq7du1y3XXX5cwzz8zvfve7XHvttenatWtWXnnlHHrooYsVa7bYYov89re/zc9//vMcdthhWWmllXLqqadmypQpDUJjkvzud79Lv3798oc//CHXXntthg4dmssvvzyrr756OnfuXL9e37598+CDD+anP/1prrnmmpxzzjlZaqmlstZaa+XUU09t5CfXNI455ph84QtfyJlnnpkTTzwxyX/Oq7j11lsvNP5+WFN81h+13HLL5YEHHshPfvKTjBs3LjNnzsxyyy2X4cOHp2vXrkmSrl27ZsKECTnllFNy5ZVX5ne/+1169OiRL3zhCznxxBPrL8qyMMcdd1yee+65nHbaaXn77bez6aabNltoLP2677DDDll66aVzxRVX5Mc//nGTzfXDH/4w119/fW655ZbU1tZmxRVXzMknn5wf/ehHDda78sor89WvfrXB1cIb66KLLsrKK6+ciy++ONdee2369euXUaNG5fjjjy96D5tttlnuu+++nHTSSfnNb36TWbNmpV+/ftloo43y3e9+t369X/3qV2nfvn3GjRuXd999N5tsskluu+22+a5u3a1bt9x99905/vjjc+211+aSSy7JMsssky233DLLL7980awfdfnll+e4447LMccckw4dOuTggw/O6aefvljPXWuttXL33Xdn1KhRGT16dOrq6rLRRhvl97//fYOroM+z55575sc//nHmzJmzyKtNf9jJJ5+czp0757zzzqsP5bfccst8e6CW/iwCwGdFpdrUxz8AAPw/jzzySNZff/38/ve/zze+8Y2WHoc27qSTTsrYsWPz9NNPL/QiJM3hlVdeyUorrZTx48d/4j0aaeiEE07IiSeemNdee82efgDwGeIcjQBAk3jnnXfmWzZmzJi0a9fuY8+FBovj8MMPz6xZsxZ4VfbmNGbMmKyzzjoiIwDAx3DoNADQJE477bRMmjQpm2++eTp06JAbb7wxN954Yw488MAGV3+FT6pbt26ZNm3ap77dn//855/6NgEA2iKhEQBoEhtvvHFuvfXWnHTSSZk1a1ZWWGGFnHDCCTn22GNbejQAAOBT0KLnaDz33HNz7rnnZsqUKUn+c0Ln4447LsOHD0+SvPvuuznyyCMzfvz41NbWZtiwYTnnnHPSt2/flhoZAAAAAFiAFg2Nf/rTn9K+ffusttpqqVarueSSS3L66afnb3/7W9Zaa618//vfz5///OdcfPHF6dmzZw4++OC0a9cu99xzT0uNDAAAAAAsQKu76nTv3r1z+umnZ/fdd0+fPn1y2WWXZffdd0+S/POf/8yaa66Z++67L1/5yldaeFIAAAAAYJ5Wc47GuXPn5sorr8zs2bMzePDgTJo0Ke+//36GDh1av84aa6yRFVZYoVGhsa6uLi+99FK6d++eSqXSXOMDAAAAwGdStVrN22+/nWWXXTbt2rVb6HotHhoff/zxDB48OO+++266deuWa6+9NoMGDcojjzySTp06pVevXg3W79u3b1555ZWFvl5tbW1qa2vr77/44osZNGhQc40PAAAAAJ8LU6dOzfLLL7/Qx1s8NK6++up55JFHMmPGjFx11VUZOXJkJkyY8Ilfb/To0TnxxBPnWz516tT06NGjZFQAAAAA+NyZOXNmBgwYkO7duy9yvVZ3jsahQ4dmlVVWyZ577pktt9wyb731VoO9GldcccUcdthhOfzwwxf4/I/u0Tjvg5gxY4bQCAAAAACNNHPmzPTs2fNj+9rCD6puIXV1damtrc0GG2yQjh075vbbb69/7Kmnnsrzzz+fwYMHL/T5NTU16dGjR4MbAAAAANC8WvTQ6VGjRmX48OFZYYUV8vbbb+eyyy7LXXfdlZtvvjk9e/bMfvvtlyOOOCK9e/dOjx49csghh2Tw4MGuOA0AAAAArUyLhsZp06bl29/+dl5++eX07Nkz6667bm6++eZstdVWSZIzzzwz7dq1y2677Zba2toMGzYs55xzTkuODAAAAAAsQKs7R2NTW9xjyAEAAACA+bXZczQCAAAAAG2P0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAK3c7NmzU6lUUqlUMnv27JYeBwAAABZIaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIq1aGgcPXp0vvSlL6V79+5ZZpllsvPOO+epp55qsM5mm22WSqXS4Pa9732vhSYGAAAAABakRUPjhAkTctBBB+X+++/Prbfemvfffz9bb711Zs+e3WC9Aw44IC+//HL97bTTTmuhiQEAAACABenQkhu/6aabGty/+OKLs8wyy2TSpEkZMmRI/fKuXbumX79+n/Z4AAAAAMBialXnaJwxY0aSpHfv3g2Wjxs3LksvvXTWXnvtjBo1KnPmzGmJ8QAAAACAhWjRPRo/rK6uLocddlg22WSTrL322vXL995776y44opZdtll89hjj+W///u/89RTT+Waa65Z4OvU1tamtra2/v7MmTObfXYAAAAA+LxrNaHxoIMOyhNPPJGJEyc2WH7ggQfW/3udddZJ//79s+WWW+aZZ57JKqusMt/rjB49OieeeGKzzwsAAAAA/P9axaHTBx98cG644YbceeedWX755Re57kYbbZQkmTx58gIfHzVqVGbMmFF/mzp1apPPCwAAAAA01KJ7NFar1RxyyCG59tprc9ddd2WllVb62Oc88sgjSZL+/fsv8PGamprU1NQ05ZgAAAAAwMdo0dB40EEH5bLLLssf//jHdO/ePa+88kqSpGfPnunSpUueeeaZXHbZZdl2222z1FJL5bHHHsvhhx+eIUOGZN11123J0QEAAACAD6lUq9Vqi228Ulng8rFjx2afffbJ1KlT881vfjNPPPFEZs+enQEDBmSXXXbJj3/84/To0WOxtjFz5sz07NkzM2bMWOznALQms2fPTrdu3ZIks2bNyhJLLNHCEwEAAPB5srh9rcUPnV6UAQMGZMKECZ/SNAAAAADAJ9UqLgYDAAAAALRtQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQrENLD0C5gcf8uaVHAJpR3Xvv1v97zZ/clHadOrfgNEBzmvLz7Vp6BAAA+MTs0QgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKtWhoHD16dL70pS+le/fuWWaZZbLzzjvnqaeearDOu+++m4MOOihLLbVUunXrlt122y2vvvpqC00MAAAAACxIi4bGCRMm5KCDDsr999+fW2+9Ne+//3623nrrzJ49u36dww8/PH/6059y5ZVXZsKECXnppZey6667tuDUAAAAAMBHdWjJjd90000N7l988cVZZpllMmnSpAwZMiQzZszIb3/721x22WXZYostkiRjx47Nmmuumfvvvz9f+cpXWmJsAAAAAOAjWtU5GmfMmJEk6d27d5Jk0qRJef/99zN06ND6ddZYY42ssMIKue+++1pkRgAAAABgfi26R+OH1dXV5bDDDssmm2yStddeO0nyyiuvpFOnTunVq1eDdfv27ZtXXnllga9TW1ub2tra+vszZ85stpkBAAAAgP9oNXs0HnTQQXniiScyfvz4otcZPXp0evbsWX8bMGBAE00IAAAAi2/27NmpVCqpVCoNrkUA8FnVKkLjwQcfnBtuuCF33nlnll9++frl/fr1y3vvvZfp06c3WP/VV19Nv379Fvhao0aNyowZM+pvU6dObc7RAQAAAIC0cGisVqs5+OCDc+211+aOO+7ISiut1ODxDTbYIB07dsztt99ev+ypp57K888/n8GDBy/wNWtqatKjR48GNwAAAACgebXoORoPOuigXHbZZfnjH/+Y7t271593sWfPnunSpUt69uyZ/fbbL0cccUR69+6dHj165JBDDsngwYNdcRoAAAAAWpEWDY3nnntukmSzzTZrsHzs2LHZZ599kiRnnnlm2rVrl9122y21tbUZNmxYzjnnnE95UoCW065T56z43ze09BgAAACwSC0aGqvV6seu07lz55x99tk5++yzP4WJAAAAAIBPolVcDAYAAAAAaNuERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKBYh8asPH369Fx77bW5++6789xzz2XOnDnp06dP1l9//QwbNiwbb7xxc80JAAAAALRii7VH40svvZT9998//fv3z8knn5x33nknX/ziF7Pllltm+eWXz5133pmtttoqgwYNyuWXX97cMwMAAAAArcxi7dG4/vrrZ+TIkZk0aVIGDRq0wHXeeeedXHfddRkzZkymTp2ao446qkkHBQAAAABar8UKjX//+9+z1FJLLXKdLl26ZK+99spee+2VN954o0mGAwAAAADahsU6dPrjImPp+gAAAABA29boq05fcskl+fOf/1x//+ijj06vXr2y8cYb57nnnmvS4QAAAACAtqHRofGUU05Jly5dkiT33Xdfzj777Jx22mlZeumlc/jhhzf5gAAAAABA67dY52j8sKlTp2bVVVdNklx33XXZbbfdcuCBB2aTTTbJZptt1tTzAQAAAABtQKP3aOzWrVv9xV5uueWWbLXVVkmSzp0755133mna6QAAAACANqHRezRutdVW2X///bP++uvnX//6V7bddtskyZNPPpmBAwc29XwAAAAAQBvQ6D0azz777AwePDivvfZarr766vorTE+aNCl77bVXkw8IAAAAALR+jd6jsVevXvnNb34z3/ITTzyxSQYCAAAAANqeRofGJHn33Xfz2GOPZdq0aamrq6tfXqlUssMOOzTZcAAAAABA29Do0HjTTTflW9/6Vv0FYT6sUqlk7ty5TTIYAAAAANB2NPocjYccckj22GOPvPzyy6mrq2twExkBAAAA4POp0aHx1VdfzRFHHJG+ffs2xzwAAAAAQBvU6NC4++6756677mqGUQAAAACAtqrR52j8zW9+k69//eu5++67s84666Rjx44NHv/hD3/YZMMBAAAAAG1Do0PjH/7wh9xyyy3p3Llz7rrrrlQqlfrHKpWK0AgAAAAAn0ONDo3HHntsTjzxxBxzzDFp167RR14DAAAAAJ9BjS6F7733Xvbcc0+REQAAAACo1+haOHLkyFx++eXNMQsAAAAA0EY1+tDpuXPn5rTTTsvNN9+cddddd76Lwfzyl79ssuEAAAAAgLah0aHx8ccfz/rrr58keeKJJxo89uELwwAAAAAAnx+NDo133nlnc8wBAAAAALRhrugCAAAAABRbrND4ve99Ly+88MJiveDll1+ecePGFQ0FAAAAALQti3XodJ8+fbLWWmtlk002yQ477JANN9wwyy67bDp37py33norf//73zNx4sSMHz8+yy67bC644ILmnhsAAAAAaEUWKzSedNJJOfjgg3PRRRflnHPOyd///vcGj3fv3j1Dhw7NBRdckG222aZZBgUAAAAAWq/FvhhM3759c+yxx+bYY4/NW2+9leeffz7vvPNOll566ayyyiquOA0AAAAAn2ONvup0kiy55JJZcsklm3oWAAAAAKCNctVpAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUOwThcYPPvggt912W84///y8/fbbSZKXXnops2bNatLhAAAAAIC2odFXnX7uueeyzTbb5Pnnn09tbW222mqrdO/ePaeeempqa2tz3nnnNcecAAAAAEAr1ug9Gg899NBsuOGGeeutt9KlS5f65bvssktuv/32Jh0OAAAAAGgbGr1H491335177703nTp1arB84MCBefHFF5tsMAAAAACg7Wj0Ho11dXWZO3fufMtfeOGFdO/evUmGAgAAAADalkaHxq233jpjxoypv1+pVDJr1qwcf/zx2XbbbZtyNgAAAACgjWj0odNnnHFGhg0blkGDBuXdd9/N3nvvnaeffjpLL710/vCHPzTHjAAAAABAK9fo0Lj88svn0Ucfzfjx4/PYY49l1qxZ2W+//fKNb3yjwcVhAAAAAIDPj0aHxiTp0KFDvvnNbzb1LAAAAABAG/WJQuNLL72UiRMnZtq0aamrq2vw2A9/+MMmGQwAAAAAaDsaHRovvvjifPe7302nTp2y1FJLpVKp1D9WqVSERgAAAAD4HGp0aPzJT36S4447LqNGjUq7do2+aDUAAAAA8BnU6FI4Z86cjBgxQmQEAAAAAOo1uhbut99+ufLKK5tjFgAAAACgjWr0odOjR4/O9ttvn5tuuinrrLNOOnbs2ODxX/7yl002HAAAAADQNnyi0HjzzTdn9dVXT5L5LgYDAAAAAHz+NDo0nnHGGfnf//3f7LPPPs0wDgAAAADQFjX6HI01NTXZZJNNmmMWAAAAAKCNanRoPPTQQ3PWWWc1xywAAAAAQBvV6EOnH3zwwdxxxx254YYbstZaa813MZhrrrmmyYYDAAAAANqGRofGXr16Zdddd22OWQAAAACANqrRoXHs2LHNMQcAAAAA0IY1+hyNAAAAAAAftVh7NP7Xf/1Xbr/99iy55JJZf/31U6lUFrruww8/3GTDAQAAAABtw2KFxp122ik1NTX1/15UaAQAAAAAPn8WKzQef/zx9f8+4YQTmmsWAAAAAKCNavQ5GldeeeW88cYb8y2fPn16Vl555SYZCgAAAABoWxodGqdMmZK5c+fOt7y2tjYvvPBCkwwFAAAAALQti3XodJJcf/319f+++eab07Nnz/r7c+fOze23356VVlqpaacDAIDPuIHH/LmlRwCaSd1779b/e82f3JR2nTq34DRAc5vy8+1aeoQWt9ihceedd06SVCqVjBw5ssFjHTt2zMCBA3PGGWc06XAAAAAAQNuw2KGxrq4uSbLSSivlr3/9a5ZeeulmGwoAAAAAaFsWOzTO8+yzzzbHHAAAAABAG9boi8EAAAAAAHyU0AgAAAAAFBMaAQAAAIBiQiMAAAAAUOwThcZnnnkmP/7xj7PXXntl2rRpSZIbb7wxTz75ZJMOBwAAAAC0DY0OjRMmTMg666yTBx54INdcc01mzZqVJHn00Udz/PHHN/mAAAAAAEDr1+jQeMwxx+Tkk0/Orbfemk6dOtUv32KLLXL//fc36XAAAAAAQNvQ6ND4+OOPZ5dddplv+TLLLJPXX3+9SYYCAAAAANqWRofGXr165eWXX55v+d/+9rcst9xyTTIUAAAAANC2NDo0jhgxIv/93/+dV155JZVKJXV1dbnnnnty1FFH5dvf/nZzzAgAAAAAtHKNDo2nnHJK1lhjjQwYMCCzZs3KoEGDMmTIkGy88cb58Y9/3KjX+stf/pIddtghyy67bCqVSq677roGj++zzz6pVCoNbttss01jRwYAAAAAmlmHxj6hU6dOufDCC3Pcccfl8ccfz6xZs7L++utntdVWa/TGZ8+enfXWWy/77rtvdt111wWus80222Ts2LH192tqahq9HQAAAACgeTU6NM4zYMCADBgwoGjjw4cPz/Dhwxe5Tk1NTfr161e0HQAAAACgeTX60Onddtstp5566nzLTzvttHz9619vkqE+7K677soyyyyT1VdfPd///vfzxhtvNPk2AAAAAIAyjQ6Nf/nLX7LtttvOt3z48OH5y1/+0iRDzbPNNtvkd7/7XW6//faceuqpmTBhQoYPH565c+cu9Dm1tbWZOXNmgxsAAAAA0Lwafej0rFmz0qlTp/mWd+zYscmj3ogRI+r/vc4662TdddfNKquskrvuuitbbrnlAp8zevTonHjiiU06BwAAAACwaI3eo3GdddbJ5ZdfPt/y8ePHZ9CgQU0y1MKsvPLKWXrppTN58uSFrjNq1KjMmDGj/jZ16tRmnQkAAAAA+AR7NP7kJz/JrrvummeeeSZbbLFFkuT222/PH/7wh1x55ZVNPuCHvfDCC3njjTfSv3//ha5TU1PjytQAAAAA8ClrdGjcYYcdct111+WUU07JVVddlS5dumTdddfNbbfdlk033bRRrzVr1qwGeyc+++yzeeSRR9K7d+/07t07J554Ynbbbbf069cvzzzzTI4++uisuuqqGTZsWGPHBgAAAACaUaNDY5Jst9122W677Yo3/tBDD2XzzTevv3/EEUckSUaOHJlzzz03jz32WC655JJMnz49yy67bLbeeuucdNJJ9lgEAAAAgFbmE4XGJHnvvfcybdq01NXVNVi+wgorLPZrbLbZZqlWqwt9/Oabb/6k4wEAAAAAn6JGh8ann346++67b+69994Gy6vVaiqVSubOndtkwwEAAAAAbUOjQ+M+++yTDh065IYbbkj//v1TqVSaYy4AAAAAoA1pdGh85JFHMmnSpKyxxhrNMQ8AAAAA0Aa1a+wTBg0alNdff705ZgEAAAAA2qhGh8ZTTz01Rx99dO6666688cYbmTlzZoMbAAAAAPD50+hDp4cOHZok2XLLLRssdzEYAAAAAPj8anRovPPOO5tjDgAAAACgDWt0aNx0002bYw4AAAAAoA1r9Dkak+Tuu+/ON7/5zWy88cZ58cUXkySXXnppJk6c2KTDAQAAAABtQ6ND49VXX51hw4alS5cuefjhh1NbW5skmTFjRk455ZQmHxAAAAAAaP0aHRpPPvnknHfeebnwwgvTsWPH+uWbbLJJHn744SYdDgAAAABoGxodGp966qkMGTJkvuU9e/bM9OnTm2ImAAAAAKCNaXRo7NevXyZPnjzf8okTJ2bllVdukqEAAAAAgLal0aHxgAMOyKGHHpoHHngglUolL730UsaNG5ejjjoq3//+95tjRgAAAACglevQ2Cccc8wxqaury5Zbbpk5c+ZkyJAhqampyVFHHZVDDjmkOWYEAAAAAFq5RoXGuXPn5p577slBBx2UH/3oR5k8eXJmzZqVQYMGpVu3bs01IwAAAADQyjUqNLZv3z5bb711/vGPf6RXr14ZNGhQc80FAAAAALQhjT5H49prr51///vfzTELAAAAANBGNTo0nnzyyTnqqKNyww035OWXX87MmTMb3AAAAACAz59GXwxm2223TZLsuOOOqVQq9cur1WoqlUrmzp3bdNMBAAAAAG1Co0PjnXfe2RxzAAAAAABtWKND46abbtoccwAAAAAAbVijz9GYJHfffXe++c1vZuONN86LL76YJLn00kszceLEJh0OAAAAAGgbGh0ar7766gwbNixdunTJww8/nNra2iTJjBkzcsoppzT5gAAAAABA6/eJrjp93nnn5cILL0zHjh3rl2+yySZ5+OGHm3Q4AAAAAKBtaHRofOqppzJkyJD5lvfs2TPTp09vipkAAAAAgDam0aGxX79+mTx58nzLJ06cmJVXXrlJhgIAAAAA2pZGh8YDDjgghx56aB544IFUKpW89NJLGTduXI466qh8//vfb44ZAQAAAIBWrkNjn3DMMcekrq4uW265ZebMmZMhQ4akpqYmRx11VA455JDmmBEAAAAAaOUWKzQ+9thjWXvttdOuXbtUKpUce+yx+dGPfpTJkydn1qxZGTRoULp169bcswIAAAAArdRiHTq9/vrr5/XXX0+SrLzyynnjjTfSqVOnDBo0KF/+8pdFRgAAAAD4nFus0NirV688++yzSZIpU6akrq6uWYcCAAAAANqWxTp0erfddsumm26a/v37p1KpZMMNN0z79u0XuO6///3vJh0QAAAAAGj9Fis0XnDBBdl1110zefLk/PCHP8wBBxyQ7t27N/dsAAAAAEAbsdhXnd5mm22SJJMmTcqhhx4qNAIAAAAA9RY7NM4zduzY5pgDAAAAAGjDGh0aZ8+enZ///Oe5/fbbM23atPkuDOMcjQAAAADw+dPo0Lj//vtnwoQJ+da3vlV/cRgAAAAA4POt0aHxxhtvzJ///OdssskmzTEPAAAAANAGtWvsE5Zccsn07t27OWYBAAAAANqoRofGk046Kccdd1zmzJnTHPMAAAAAAG1Qow+dPuOMM/LMM8+kb9++GThwYDp27Njg8YcffrjJhgMAAAAA2oZGh8add965GcYAAAAAANqyRofG448/vjnmAAAAAADasEafoxEAAAAA4KMWe4/GJZdcMpVK5WPXe/PNN4sGAgAAAADansUOjWPGjGnGMQAAAACAtmyxQ+PIkSObcw4AAAAAoA1zjkYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIot9lWn5zniiCMWuLxSqaRz585ZddVVs9NOO6V3797FwwEAAAAAbUOjQ+Pf/va3PPzww5k7d25WX331JMm//vWvtG/fPmussUbOOeecHHnkkZk4cWIGDRrU5AMDAAAAAK1Pow+d3mmnnTJ06NC89NJLmTRpUiZNmpQXXnghW221Vfbaa6+8+OKLGTJkSA4//PDmmBcAAAAAaIUaHRpPP/30nHTSSenRo0f9sp49e+aEE07Iaaedlq5du+a4447LpEmTmnRQAAAAAKD1anRonDFjRqZNmzbf8tdeey0zZ85MkvTq1Svvvfde+XQAAAAAQJvwiQ6d3nfffXPttdfmhRdeyAsvvJBrr702++23X3beeeckyYMPPpgvfOELTT0rAAAAANBKNfpiMOeff34OP/zwjBgxIh988MF/XqRDh4wcOTJnnnlmkmSNNdbIRRdd1LSTAgAAAACtVqNDY7du3XLhhRfmzDPPzL///e8kycorr5xu3brVr/PFL36xyQYEAAAAAFq/Rh86/fvf/z5z5sxJt27dsu6662bddddtEBkBAAAAgM+fRofGww8/PMsss0z23nvv/N///V/mzp3bHHMBAAAAAG1Io0Pjyy+/nPHjx6dSqWSPPfZI//79c9BBB+Xee+9tjvkAAAAAgDag0aGxQ4cO2X777TNu3LhMmzYtZ555ZqZMmZLNN988q6yySnPMCAAAAAC0co2+GMyHde3aNcOGDctbb72V5557Lv/4xz+aai4AAAAAoA1p9B6NSTJnzpyMGzcu2267bZZbbrmMGTMmu+yyS5588smmng8AAAAAaAMavUfjiBEjcsMNN6Rr167ZY4898pOf/CSDBw9ujtkAAAAAgDai0aGxffv2ueKKKzJs2LC0b9++wWNPPPFE1l577SYbDgAAAABoGxodGseNG9fg/ttvv50//OEPueiiizJp0qTMnTu3yYYDAAAAANqGT3SOxiT5y1/+kpEjR6Z///75xS9+kS222CL3339/U84GAAAAALQRjdqj8ZVXXsnFF1+c3/72t5k5c2b22GOP1NbW5rrrrsugQYOaa0YAAAAAoJVb7D0ad9hhh6y++up57LHHMmbMmLz00ks566yzmnM2AAAAAKCNWOw9Gm+88cb88Ic/zPe///2sttpqzTkTAAAAANDGLPYejRMnTszbb7+dDTbYIBtttFF+85vf5PXXX2/O2QAAAACANmKxQ+NXvvKVXHjhhXn55Zfz3e9+N+PHj8+yyy6burq63HrrrXn77bebc04AAAAAoBVr9FWnl1hiiey7776ZOHFiHn/88Rx55JH5+c9/nmWWWSY77rhjc8wIAAAAALRyjQ6NH7b66qvntNNOywsvvJA//OEPTTUTAAAAANDGFIXGedq3b5+dd945119/fVO8HAAAAADQxjRJaAQAAAAAPt+ERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAinVo6QEAAADgs6hdp85Z8b9vaOkxAD419mgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKtWho/Mtf/pIddtghyy67bCqVSq677roGj1er1Rx33HHp379/unTpkqFDh+bpp59umWEBAAAAgIVq0dA4e/bsrLfeejn77LMX+Phpp52WX//61znvvPPywAMPZIkllsiwYcPy7rvvfsqTAgAAAACL0qElNz58+PAMHz58gY9Vq9WMGTMmP/7xj7PTTjslSX73u9+lb9++ue666zJixIhPc1QAAAAAYBFa7Tkan3322bzyyisZOnRo/bKePXtmo402yn333bfQ59XW1mbmzJkNbgAAAABA82q1ofGVV15JkvTt27fB8r59+9Y/tiCjR49Oz549628DBgxo1jkBAAAAgFYcGj+pUaNGZcaMGfW3qVOntvRIAAAAAPCZ12pDY79+/ZIkr776aoPlr776av1jC1JTU5MePXo0uAEAAAAAzavVhsaVVlop/fr1y+23316/bObMmXnggQcyePDgFpwMAAAAAPioFr3q9KxZszJ58uT6+88++2weeeSR9O7dOyussEIOO+ywnHzyyVlttdWy0kor5Sc/+UmWXXbZ7Lzzzi03NAAAAAAwnxYNjQ899FA233zz+vtHHHFEkmTkyJG5+OKLc/TRR2f27Nk58MADM3369Hz1q1/NTTfdlM6dO7fUyAAAAADAArRoaNxss81SrVYX+nilUslPf/rT/PSnP/0UpwIAAAAAGqvVnqMRAAAAAGg7hEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAECxVh0aTzjhhFQqlQa3NdZYo6XHAgAAAAA+okNLD/Bx1lprrdx222319zt0aPUjAwAAAMDnTquvdh06dEi/fv1aegwAAAAAYBFa9aHTSfL0009n2WWXzcorr5xvfOMbef755xe5fm1tbWbOnNngBgAAAAA0r1YdGjfaaKNcfPHFuemmm3Luuefm2Wefzde+9rW8/fbbC33O6NGj07Nnz/rbgAEDPsWJAQAAAODzqVWHxuHDh+frX/961l133QwbNiz/93//l+nTp+eKK65Y6HNGjRqVGTNm1N+mTp36KU4MAAAAAJ9Prf4cjR/Wq1evfOELX8jkyZMXuk5NTU1qamo+xakAAAAAgFa9R+NHzZo1K88880z69+/f0qMAAAAAAB/SqkPjUUcdlQkTJmTKlCm59957s8suu6R9+/bZa6+9Wno0AAAAAOBDWvWh0y+88EL22muvvPHGG+nTp0+++tWv5v7770+fPn1aejQAAAAA4ENadWgcP358S48AAAAAACyGVn3oNAAAAADQNgiNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYkIjAAAAAFBMaAQAAAAAigmNAAAAAEAxoREAAAAAKCY0AgAAAADFhEYAAAAAoJjQCAAAAAAUExoBAAAAgGJCIwAAAABQTGgEAAAAAIoJjQAAAABAMaERAAAAACgmNAIAAAAAxYRGAAAAAKCY0AgAAAAAFBMaAQAAAIBiQiMAAAAAUExoBAAAAACKCY0AAAAAQDGhEQAAAAAoJjQCAAAAAMWERgAAAACgmNAIAAAAABQTGgEAAACAYm0iNJ599tkZOHBgOnfunI022igPPvhgS48EAAAAAHxIqw+Nl19+eY444ogcf/zxefjhh7Peeutl2LBhmTZtWkuPBgAAAAD8P60+NP7yl7/MAQcckO985zsZNGhQzjvvvHTt2jX/+7//29KjAQAAAAD/T4eWHmBR3nvvvUyaNCmjRo2qX9auXbsMHTo099133wKfU1tbm9ra2vr7M2bMSJLMnDmzeYdtQXW1c1p6BACgCXyW/15h4fwtBwCfDZ/lv+XmvbdqtbrI9Vp1aHz99dczd+7c9O3bt8Hyvn375p///OcCnzN69OiceOKJ8y0fMGBAs8wIANBUeo5p6QkAAPikPg9/y7399tvp2bPnQh9v1aHxkxg1alSOOOKI+vt1dXV58803s9RSS6VSqbTgZACf3MyZMzNgwIBMnTo1PXr0aOlxAABYTP6OAz4LqtVq3n777Sy77LKLXK9Vh8all1467du3z6uvvtpg+auvvpp+/fot8Dk1NTWpqalpsKxXr17NNSLAp6pHjx7+QAUAaIP8HQe0dYvak3GeVn0xmE6dOmWDDTbI7bffXr+srq4ut99+ewYPHtyCkwEAAAAAH9aq92hMkiOOOCIjR47MhhtumC9/+csZM2ZMZs+ene985zstPRoAAAAA8P+0+tC455575rXXXstxxx2XV155JV/84hdz0003zXeBGIDPspqamhx//PHznRoCAIDWzd9xwOdJpfpx16UGAAAAAPgYrfocjQAAAABA2yA0AgAAAADFhEYAAAAAoJjQCNDGXHzxxenVq1dLjwEAAAANCI3A594+++yTSqWSSqWSTp06ZdVVV81Pf/rTfPDBBx/73Isvvrj+uQu7TZkypfnfxGK6+uqrs9lmm6Vnz57p1q1b1l133fz0pz/Nm2++maTh+2nXrl2WX375fOc738m0adOSJFOmTEmlUskjjzwy32tvttlmOeywwz7FdwMAsHBTp07Nvvvum2WXXTadOnXKiiuumEMPPTRvvPFGg/U222yzVCqVjB8/vsHyMWPGZODAgfX35/2dtM022zRYb/r06alUKrnrrruSJI8++mg6deqU66+/vsF6V199dTp37pwnnnhikXP7ew1oy4RGgCTbbLNNXn755Tz99NM58sgjc8IJJ+T000//2Oftueeeefnll+tvgwcPzgEHHNBg2YABAxZ7jvfee6/kbSzSsccemz333DNf+tKXcuONN+aJJ57IGWeckUcffTSXXnpp/Xo9evTIyy+/nBdeeCEXXnhhbrzxxnzrW99qtrkAAJrav//972y44YZ5+umn84c//CGTJ0/Oeeedl9tvvz2DBw+uj3bzdO7cOT/+8Y/z/vvvL/J1O3TokNtuuy133nnnQtdZb731ctxxx+XAAw+sj5rTpk3L9773vZx44olZe+21F/pcf68BbZ3QCJCkpqYm/fr1y4orrpjvf//7GTp0aK6//vrMnj07PXr0yFVXXdVg/euuuy5LLLFEPvjgg/Tr16/+1qlTp3Tt2rX+/nvvvZddd9013bp1S48ePbLHHnvk1VdfrX+dE044IV/84hdz0UUXZaWVVkrnzp2T/Of/jH/3u99N375907lz56y99tq54YYbGsxw8803Z80110y3bt3qQ+nCPPjggznllFNyxhln5PTTT8/GG2+cgQMHZquttsrVV1+dkSNH1q9bqVTSr1+/LLvsshk+fHh++MMf5rbbbss777zTFB81AECzO+igg9KpU6fccsst2XTTTbPCCitk+PDhue222/Liiy/m2GOPbbD+XnvtlenTp+fCCy9c5OsuscQS2XfffXPMMccscr1Ro0ZlhRVWyEEHHZQk+e53v5vVVlstRx111EKf4+814LNAaARYgC5duuS9997LEksskREjRmTs2LENHh87dmx23333dO/efaGvUVdXl5122ilvvvlmJkyYkFtvvTX//ve/s+eeezZYb/Lkybn66v+vvTsLifJt4zj+G61wy60kK0sYzVLJqDTPFEMTqSOlJJWiFAMpUkNDPEjFSkOCJKwgyj08SBCiHNQioyRbEAyFbDOjIqNM1MpI34NoyNTRsqh/7/dzNHPfz73MHF1c9/KcV21trdra2jQyMqKoqChdv35dlZWV6ujoUEFBgaytrc1thoaGVFRUpIqKCjU3N+vp06cWA9eqqio5ODgoJSVlwnpLdz7a2tpqZGRkWkfJAQAA/rQ3b97IZDIpJSVFtra2Y+rc3d0VHx+vmpoajY6OmssdHR2VnZ2tvLw8DQ4OWuw/JydH7e3t4xaiv2Vtba2ysjLV1dUpLi5OJpNJpaWlY+K57xGvAfgXkGgEgG+Mjo6qsbFRJpNJ69evlyQlJSXJZDKZdwy+evVKFy9e1M6dOy321dTUpPb2dlVXV2vt2rUKDg5WeXm5rl69qlu3bpmfGx4eVnl5uVavXq2AgAA1NjaqtbVVtbW1ioiIkNFo1KZNmxQVFWVu8+nTJ508eVKBgYFas2aNdu/eraampknn0tXVJaPRqNmzZ//Q/9HV1WUex1JSFQAA4G/R1dWl0dFR+fr6Tljv6+urt2/fqre3d0x5SkqKbGxsdPToUYv9L1q0SHv37lV2drbFxJ6vr69SU1N17tw55eTkyMfHZ8p5E68B+K8j0QgAki5cuCAHBwfZ2NgoKipKsbGxysnJkSStW7dO/v7+KisrkyRVVlbK09NTISEhFvvs7OzUkiVLxtzR6OfnJ2dnZ3V2dprLPD095ebmZv7e1tYmDw8Pi8GonZ2dvLy8zN8XLlxovgB8It+u2E/l3bt3cnBwkJ2dnZYvX64FCxaoqqpq2u0BAAD+Bj8S/0hfrtLJy8tTUVGRXr9+bfHZ/fv3q7e3V2fOnJn0mYGBAdXU1MjOzk7Xrl37pfMlXgPwtyLRCACSwsLC1NbWpq6uLr1//15lZWWyt7c31yclJam0tFTSl2PTO3bskMFg+CVjfzuOpHFHfCby/Uq3wWCwGJz6+Pjo0aNHU15wLklz585VW1ub7t27p8HBQTU3N5uTno6OjpK+BLff6+vrk5OT05T9AwAA/E7e3t4yGAxjFna/1dnZKRcXlzELvV8lJCTI09NT+fn5FsdwdnZWVlaWcnNzNTQ0NOEzGRkZsrGx0Y0bN9TY2Kjy8nKLfRKvAfgXkGgEAH1J9nl7e2vp0qWaNWvWuPqEhAR1d3eruLhYHR0dYy7jnoyvr696enrU09NjLuvo6FBfX5/8/PwmbRcQEKBnz57p/v37P/djJhAXF6eBgQGVlJRMWN/X12f+bGVlJW9vbxmNxnFJT1dXV82fP1937twZU97f368HDx5MeSQIAADgd5s3b54iIiJUUlIy7uUoL1++VFVVlWJjYydcNLaystLhw4d14sQJPXnyxOI4e/bskZWVlY4dOzaurqGhQadPn1ZZWZlWrVql/Px8paamWnx5H/EagH8BiUYAmAYXFxdFR0crIyNDGzZskIeHx5RtwsPDtXLlSsXHx+vu3btqbW3Vtm3bFBoaqsDAwEnbhYaGKiQkRDExMWpoaNDjx4916dIl1dfX//T8g4ODlZmZqX379ikzM1MtLS3q7u5WU1OTNm/ebD4WPh3p6ek6dOiQqqqq9PDhQ7W2tio+Pl5ubm6Kjo7+6TkCAAD8KsePH9fHjx8VGRmp5uZm9fT0qL6+XhEREVq8eLEOHjw4aduNGzcqODhYp06dsjiGjY2NcnNzVVxcPKa8v79fiYmJysjIUFBQkCQpLS1Nfn5+Sk5OnrQ/4jUA/wISjQAwTYmJiRoeHp7yJTBfGQwG1dXVycXFRSEhIQoPD5fRaFRNTc2Ubc+fP6+goCBt3bpVfn5+yszM1OfPn2c0/8LCQlVXV+vmzZuKjIyUv7+/0tPTFRAQMK0dml9lZmbqwIEDKiwsVEBAgGJiYmRvb68rV65M69g3AADA77Zs2TLdvn1bRqNRW7ZskZeXl5KTkxUWFqaWlha5urpabF9YWKgPHz5MOc727dtlNBrHlKWmpsrJycl837f0ZQfi2bNndfnyZYtHqInXAPzXGUZ/9IZcAPg/VVFRobS0ND1//lxz5sz509MBAAAAAOCvMv4iMgDAGENDQ3rx4oUKCgq0a9cukowAAAAAAEyAo9MAMIUjR45oxYoVcnd3V1ZW1p+eDgAAAAAAfyWOTgMAAAAAAACYMXY0AgAAAAAAAJgxEo0AAAAAAAAAZoxEIwAAAAAAAIAZI9EIAAAAAAAAYMZINAIAAAAAAACYMRKNAAAAAAAAAGaMRCMAAAAAAACAGSPRCAAAAAAAAGDGSDQCAAAAAAAAmLH/AdVxUJyGIWHGAAAAAElFTkSuQmCC\n",
"text/plain": [
"