
UberGROM Interface 
The UberGROM Interface is a GROM-compatible device built on the Atmel Mega-AVR series of 

microcontroller. It is self-contained and can attach to the TI-99/4A GROM bus with no additional 

hardware (although filter capacitors are recommended on the power supply lines). Although the code 

can be adapted to any size of AVR, the current build is shipped with the Atmel ATMEGA128 for its large 

flash memory size and rich peripheral interface. 

The TI-99/4A has three types of memory built-in: CPU Memory, which is directly addressable by the 

CPU, VDP memory, only addressable through the VDP, and GROM memory, only addressable through 

the GROM memory base. Most homebrew cartridges are created using CPU memory, due to the 

difficulty in reproducing TI’s proprietary GROM interface, and the inaccessibility of VDP memory from 

outside the system. This chip is intended to resolve this difficulty and allow GROM to be added easily to 

any cartridge. 

The TI system provides direct connection for 64k of GROM space, divided into blocks of 8k each (most 

official GROMs used only 6k of this 8k space). The first three blocks are allocated to the operating 

system (GROM 0) and TI BASIC (GROM 1 and 2). The remaining 48k of space is intended for use by 

cartridges. 

The system also provides the concept of paging to the GROM space. Rather than an explicit paging 

action being required, the CPU simply interfaces through a different set of addresses (a different GROM 

‘base’). The console scans 16 of these bases when building the selection list, and the memory map 

includes space for up to 256 bases. At 64k each, this represents a potential memory space of 16MB! 

There are a few caveats to this, however. The three console GROMs are wired so that they always 

respond to any base, thus, only 48k is available in each base. In addition, there’s no single 

microcontroller yet available that can provide this much memory, so multiple chips and additional 

circuitry is required to go to this entire range. 

A second caveat is speed. While a ROM access to the cartridge base happens in 4 cycles (and that slow 

only due to the multiplexer), a GROM access can delay for as much as 30 times longer. This delay is 

unrelated to the performance of the microcontroller, as all console GROMs add their time to the delay, 

even if they are not required to respond to the access. 

This microcontroller attempts to provide a medium between flexibility of these spaces, memory usage, 

and peripheral interface. It provides re-writable GROM memory, GRAM, EEPROM, GPIO, Analog-to-

Digital converters, and a TTL serial port (USART). 

SPECIFICATIONS: 
Core: Atmel AVR ATMEGA1284 8-bit RISC @ 8MHz (internal clock) 

GROM: 120k (in 8k banks, supports 16 access bases) 

RAM: 15k (8k and 7k bank) 



EEPROM: 4k          

GPIO: 4 pins 

ADC: 4  

UART: 1 

EEPROM Write Time: 3.4ms 

EEPROM Erase Endurance: 100,000 cycles 

Flash Erase Time: 72ms (entire 8k block) 

Flash Write Time: 4.5ms (256 byte page) 

Flash Erase Endurance: 10,000 cycles 

Clock accuracy: +/- 2.5% @ 25C 

Current Draw: approx. 8.5mA @ 25C 

See the ATMega1284P Datasheet for more specifics. 

The system can be used as a simple GROM device, or it can be used as a peripheral interface to external 

devices. Full source is available so that you can adapt it to your own usage. It’s limited only by your own 

design! 

This device is designed to work on the concept of memory-mapping. For each of the available GROM 

slots in the TI system, a configuration register specifies whether memory or peripheral is accessed at 

that address. All access to the device is done via GROM. 

Terminology 
GROM – Graphics Read Only Memory – TI’s proprietary parallel, auto-incrementing memory device. 

Alternately, the memory range that would contain a single GROM on the TI. This device emulates many 

GROMs in one unit. 

Base – The group of addresses that selects a bank of GROMs. Base 0 is at >9800 for ‘read data’, with 

offsets of 2 for ‘read address’, 1024 for ‘write data’, and 1026 for ‘write address’. Subsequent bases are 

offset by 4 from the first, so, Base 1 is at >9804, Base 2 is at >9808, etc. This device supports 16 bases. 

Slot – A term specific to this device to indicate the programmable memory address into which any 

peripheral may be configured. 

The TI-99/4A GROM Interface 
GROM is a parallel, auto-incrementing memory device. No matter how many GROMs are physically 

attached to a base, all GROMs see all GROM accesses and all of them respond in some manner. This 

section covers only the software interface. For information on the hardware interface, it is 

recommended to consult additional sources, such as Thierry Nouspikel’s excellent reference at 

http://www.nouspikel.com/ti99/titechpages.htm 

Four addresses are dedicated in the 9900’s address space for communicating with GROM. This is called 

the GROM ‘base’. 



>9800 – read data 

>9802 – read address 

>9C00 – write data 

>9C02 – write address 

Normal operation of the GROM starts by writing an address. This is done by sending the two bytes of the 

desired address to the write address base (with simple MOVB opcodes), sending the least significant 

byte first. Once the address has been sent, the data can be read by reading from the Read Data base 

(again, with MOVB). The GROM automatically increments its internal address every time a byte is read, 

so that subsequent bytes can be read without having to set the address again. When reading, only the 

GROM that actually contains the data will present it, but all GROMs participate in the cycle. 

The auto-increment of the GROM address has one caveat, when it comes to thinking of the address 

space. Although there are 16 bits of address space, each GROM tracks only 13 bits of address internally 

(for 8k of space). The other 3 bits are latched as a ‘device select’. This means that when an address 

reaches that 8k boundary, it wraps around to the beginning of that GROM again, rather than going into 

the next boundary. This is a bit counter intuitive, but it makes sense when you remember that is it 

normally a bank of 8k (or 6k!) chips all responding to the same bus. This internal address management 

allows the chips to be used without any external hardware for chip selection, but makes it difficult to 

automatically count from one chip to the next. The only way to change which 8k block is active is to 

write a new GROM address. It is important to be aware of this behavior with the peripherals, which may 

wrap around back to GROM addresses if your code does not follow the described rules. 

There is an advanced configuration option to disable this behavior and allow the address to increment 

within the space of the device (>6000->FFFF). 

GROMs are notoriously slow devices, but unlike the VDP, the software need not be aware of delays 

when accessing them, as they will block the CPU for as long as is needed to complete the operation. 

Although this microcontroller is much faster than the real GROMs for most operations (flash writing 

excluded), the delay still extends to the slowest GROM in the system. 

Read Address is used to read the current address in the GROMs back, and again, the LSB is sent first. 

Reading the address corrupts it, and so a new address must be written before you may read again. Due 

to the GROM internally prefetching data, the retrieved address will be one higher than expected. Note 

that reading address on peripheral blocks may not return the expected address. This should only be 

used on banks emulating GROMs or GRAMs (or real GROMs, of course). 

Note that this device does not return addresses, therefore, there must always be at least one real GROM 

in the system. 

Write Data is not used on normal GROMs, but may be used with GRAM and with this microcontroller in 

the same manner. The effect of prefetch on the address may be safely ignored when writing, but as the 

standard operation for this was never defined by TI, it is not recommended to mix reads and writes 

without resetting the address in-between. 



To access a different GROM base, just add 4 to the desired address for each base. For instance, the 

above addresses access base 0, base 1 would use >9804 for Read data, base 2 would use >9808, and so 

forth. Remember that the console GROMs (>0000 - >5FFF) respond regardless of the base number. 

A note on device interfacing 
The TI console includes limited support for multiple GROM bases, and a ‘Review Module Library’ option. 

However, it determines whether to activate this by comparing the first 31 bytes of cartridge space, 

starting at >6000. There is a bug in this loop, in that if multiple bases ARE detected, but no valid 

cartridge header is detected, the console will go into an infinite loop while building the module list. In 

order to make it less likely to cause this behavior by accident, all peripheral spaces on this device start at 

a >0020 offset, and the first 32 bytes. Thus, only GROM, RAM or EEPROM can actually be at >6000. 

If you want to avoid the console detecting multiple GROM bases, and thus prevent “REVIEW MODULE 

LIBRARY” from appearing on the cartridge menu, simply select the same memory at GROM address 

>6000 in both bases 9800 and 9804 – this is all that the console checks. This costs you one slot, but 

there are plenty of spare slots even if you wish to map all peripherals. 

EEPROM/Configuration space 
EEPROM stands for ‘electrically erasable programmable read-only memory’. The EEPROM in this device 

is a non-volatile memory that can be read and written a single byte at a time, using standard GROM 

accesses, although writes may be notably slower. The first few bytes of the EEPROM contain paging and 

configuration registers, the rest can be used by your own application. This data is non-volatile and does 

not require power or a battery to retain. (Although, as EEPROM data can fail over repeated use, it is 

recommended that a checksum or other system always be used to validate the stored data.) 

It should be noted that the EEPROM is rated for a limited number of writes to a particular byte, 

specifically 100,000. This is adequate for tasks such as saving configuration data, high scores for games, , 

occasional changing of the cartridge by a user, etc, but not for continuous access tasks, such as bank 

switching during execution. As such, the configuration block here is intended to be set once by the 

cartridge creator, or by a user loading a new cartridge into their device, but not continuously during 

runtime. (Bank-switching with a cost of 3.4ms per switch would be unreasonably slow anyway). Rather 

than switching devices in and out, simply use the multiple GROM base feature to map all devices into 

unique addresses, and they will all be available to your application simultaneously. 

The configuration EEPROM is available in top 2k of the last GROM base (even if GROM bases are not 

being used), starting at GROM address >F800, regardless of configuration. (Base 15 is accessed starting 

with CPU address >983C). This mapping is fixed and cannot be moved, as it is the only way to access the 

banking configuration. This means that GROM space in base 15 is limited to 38K. (However, if banking is 

not used, the entire 40k space of bank 0 is still available). As the EEPROM is larger than 2k (see 

specifications), then it must be mapped into another base to access the rest of the data. 

The configuration EEPROM defines the following registers, which start at >F800 in base 15 in GROM 

space (always), or at >0000 in the GROM base that EEPROM is mapped to. 



0000 – Configuration flags. The following bits are defined. Unused bits should be set to 0 

01 – Enable GROM bases when set. When disabled, the GROM will respond to all bases, the 

same way that the console GROMs do. In this mode, only 16 bytes are used for mapping. When 

set, the GROM will respond to the first 16 GROM bases independently, and 256 bytes are used 

for mapping. Note that regardless of this setting, the fixed EEPROM space is available on base 15 

at >F800 

02 – Disable Recovery program when set. On first powerup, the chip will use the powerup vector 

at >E000 to test the keyboard, and if space is being held, it will load a simple test GROM at 

>6000 instead of whatever is configured. This behavior is probably not desired for a production 

cartridge, but should not affect any other. Set this bit to prevent it. Note that if you set this bit, 

you will need an external way (such as a ROM or boot menu) to load the loader program to 

change anything on the cartridge, as the internal loader will not be accessible. 

04 – Allow rollover. TI manufactured GROMs maintain an address counter within an 8k grom. 

That is, when they reach the end of their slot, they wrap back to the beginning. (So, for instance, 

>7FFE, >7FFF, >6000, >6001, etc). Many GROM emulation devices did not have this behavior, 

they maintained a single 16-bit address counter (thus allowing 0x7FFE, 0x7FFF, 0x8000, 0x8001, 

etc). By default, this device emulates the original behavior. If you set this bit, then roll-over into 

the next slot will be permitted. In order to prevent conflict with the console GROMs, roll-over 

from 0x5FFF->0x6000, and from 0xFFFF->0x0000 will not occur in either case. Note: Because this 

device does not provide address read-back (this functionality is provided still by the console 

GROMs), if you roll over from one GROM slot to the next the system GROM address will be 

incorrect if read back. Therefore, ensure that this will not be a problem for your application 

before using this bit. For instance, it may be a problem for GPL applications which read back 

frequently, but less so for data copy loops and the like. (Example: If you allow the GROM read to 

increment from >7FFF to >8000, data will continue to come from the correct place, but reading 

the GROM address will return >6000 instead of >8000, because the console GROMs do not 

support this operation.) 

0001 – Inverse bits to register 0000. If this value is not the same as a bitwise invert of register 0000, then 

the value in 0000 is considered invalid and not used. (0x00 is assumed). 

0002 – Map configuration for GROM slot >0000. Note: this slot is reserved for the TI operating system, 

and any override placed here, in any base, is ignored.  (For future expansion) 

0003 – Map configuration for GROM slot >2000. Note: This slot is reserved for the console TI BASIC, and 

any override here, in any base, is ignored.  (For future expansion) 

0004 – Map configuration for GROM slot >4000. Note: This slot is reserved for the console TI BASIC, and 

any override here, in any base, is ignored.  (For future expansion) 



0005 – Map configuration for GROM slot >6000. 

0006 – Map configuration for GROM slot >8000. 

0007 – Map configuration for GROM slot >A000. 

0008 – Map configuration for GROM slot >C000. 

0009 – Map configuration for GROM slot >E000. 

000A – Inverse bits to register 0002. If this value is not the same as a bitwise invert of register 0001, 

then the value in 0001 is considered invalid and not used. 

000B – Inverse bits to register 0003. 

000C – inverse bits to register 0004. 

000D – inverse bits to register 0005. 

000E – inverse bits to register 0006. 

000F – inverse bits to register 0007. 

0010 – inverse bits to register 0008. 

0011 – inverse bits to register 0009. 

 

0012-0101 – Map configuration for GROM slots >0000->E000 in cases where multiple GROM bases are 

enabled. 16 bytes are used for each slot in the same manner as defined above for the first base. Note 

that when multiple GROM bases are enabled, the TI console GROM requires at least ONE valid cartridge 

GROM to be available, otherwise the title selection menu will hang. If multiple GROM bases are not 

enabled, this memory is free for user data. 

0102-max – Free for user data. Note that the hardware write-protect pin will protect the configuration 

space from 0000-0101, but leave this user space available for updating. (Added 6/2/2015) 

The following table lists the position in the table for each combination of base (down) and slot (across) 

to load in the EEPROM. All address offsets are in hexadecimal, and the inverted byte offset is gained by 

adding ‘8’ to the listed value. 



 

 

Map Configuration 

The map configuration consists of two nibbles. The first nibble indicates the device type to be mapped 

in, devices are described below. The second nibble indicates which page of the device, if it has multiple 

pages. For instance, a map of >12 indicates GROM page 2 should be mapped. The number of pages 

available is the device memory size divided by 8k, rounded up. 

 Device ID Type  Access  Pagable? 

 0  RAM  Read/Write Yes 

 1  GROM  Read Only Yes 

 2  EEPROM Read/Write No 

 3  GPIO  Peripheral No 

 4  ADC  Peripheral Yes 

 5  UART  Peripheral No 

 6  Flash  Peripheral No 

 7  Timer  Peripheral No 

Non-pagable devices should set a page of 0 for compatibility. 

Device Type 0 – RAM 
This microcontroller provides a block of ordinary RAM memory which may be read or written through 

the standard GROM interface (as if GRAM). No locking or erasing is required, and the data is available 

upon paging. The data is volatile, however, and will be lost if the console is turned off or the cartridge is 

removed from it. 



It is even possible to load GROM programs to the RAM block and have the interpreter execute them, if 

desired. However, because this RAM is on the GROM bus, the TI CPU cannot execute 9900 assembly 

code from it. 

Each RAM page is 8k in size – in this controller the second page is only 7k in size. 

Device Type 1 – GROM 
This is the standard GROM data, and will generally consist of many available pages of read-only memory. 

This memory is stored in the microcontroller’s flash and is non-volatile, it does not require power to 

retain. It is not trivially re-writable, you must page in the Flash device and explicitly erase and re-write 

blocks of data. In this mode (type 1), however, it will behave like standard GROM. Writes to the GROM 

data will be ignored. 

Note: There is one limitation on the placement of data in GROM. A Powerup link placed at >E000 in the 

first GROM base will not execute unless the recovery code is disabled in the configuration space. See the 

Recovery code section. 

Device Type 2 – EEPROM 
See the section above about EEPROM/Configuration data for full details. This page can be mapped into a 

block for convenience or to access more than 2k of EEPROM, if available. Otherwise, it is always 

available at GROM address >F800 in bases 15 (even if GROM bases are not enabled in configuration). 

The EEPROM space will be read-only until an unlock sequence is written to it. To unlock it, simply write 

to >FFFF on base 15 three times, with the following bytes. Note that any other GROM write access to 

EEPROM space will break this sequence (but by limiting it to EEPROM space it should still work from 

GPL): Write 0x55, then write 0xAA, then write 0x5A. 

You can lock the EEPROM again by writing any other value to >FFFF on base 15. This is recommended 

after a modification to prevent resets and glitches from accidentally modifying EEPROM data.  

Be careful if accessing user EEPROM in the default mapping on base 15, since only offsets 0x0000-

0x07FE are available – offset 0x07FF overlaps the lock control address. This does not apply when 

EEPROM is mapped anywhere else. 

Device Type 3 – GPIO 
GPIO stands for General Purpose Input/Output. This microcontroller supports 4 GPIO pins. Each pin is a 

5-volt pin which may be configured for input or output. When input, it may also be configured to 

activate an internal pull-up resistor, to reduce external parts count.  

The device registers start at >0020 in whichever page they are mapped into. In addition, the access 

space deliberately repeats over a range to allow repeated access to the I/O pins without needing to 

change the GROM address between each one. (Even though this is a device access, the GROM address 

must still auto-increment). 

The least significant bit indicates GPIO0 in all cases. 



0020 – Configuration bits for Input or Output. Each bit, starting with the LSB, is set to 0 for input, or 1 for 

output. On reset, all GPIO are set to input with no pull-up – your software must configure it.  

0021-1FFF – GPIO pin access. When reading, returns the current input state of each pin, with the LSB set 

to GPIO0. This is true whether the pin is in input or output mode. When writing a pin set for output, the 

pin will output 5v if a 1 bit is set, or 0v if a 0 bit is set. When writing a pin set for input, the pull-up 

resistor is enabled if a 1 bit is set, or disabled if a 0 bit is set.  

The large range is used to allow multiple accesses without resetting the GROM address, but note that to 

read or write continuously, you must reset the GROM address before it leaves this range. 

Device Type 4 – ADC 
ADC stands for Analog to Digital Conversion. The microcontroller supports multiple analog input pins 

with a sense range from 0 to 5v, with 8-bit resolution (depending on the system configuration.) The ADC 

‘page’ mapped indicates which of the 4 ADCs will be accessed. 

The ADCs are mapped starting at an offset of >0020. The entire memory space (>0020 - >1FFF) repeats 

to allow them to be read continuously without needing to reset the GROM address. The page number 

specified indicates the ADC that you wish to access. 

Reading the ADC address triggers the conversion immediately, which will convert in approximately 

104uS. A value of 0 indicates a value near 0v, while 255 indicates a value near 5v. 

Note: the first conversion after power up will take approximately 200uS. 

Tip: By placing the ADCs in different GROM base bases, but at the same GROM address, you could read 

all ADCs without having to update the GROM address just by changing which CPU address you access 

GROM through. 

Device Type 5 – UART 
UART stands for Universal Asynchronous Receiver/Transmitter, and this is a serial communication 

device. The UART in this microcontroller can handle high speed bidirectional traffic, and is equipped 

with two 255 byte buffers, one each for receive and transmit. Despite this, higher speeds may have 

limited value on the TI due to its ability to actually service the buffers without losing data. 

The UART is mapped starting at an offset of >0020. Also, the read and write bases are allocated a block 

of repeating memory to allow them to be accessed continuously without needing to reset the GROM 

address. 

0020 – Status/Configuration flags: 

01 – (read only) When set, there is data available to be read. If the buffer fills and more 

characters arrive, the additional characters are dropped (and set the Data Overrun bit). 

02 – (read only) when set, there is room in the output buffer for at least one byte of data. 



04 – (Read Only) Tx Buffer Empty – Indicates that the transmit buffer is completely empty (ie: all 
data is sent) 
 
10 – (read only) Frame error - This bit is set if the USART had a Frame Error. I.E. when the first 
stop bit of the next character in the receive buffer is zero. There is no way to tell which 
character in the buffer this applied to, and due to the behavior of the hardware, in some cases it 
may not clear until a valid character is received. This bit may be of limited value. 
 
20 – (read only) Data Overrun – this bit is set if the receive buffer is full and a new character is 
received. At very high bit rates characters may be lost without moving to the buffer, in which 
case this bit is not set, but this case should be very rare. 
 
40 – (Read only) Parity Error – this bit is set if a received character had a parity error when it was 
received.  For the same reasons as Frame Error, this bit may be of limited use. 
 

0021 – Line setting flags: 

 01-02 – Number of bits. 11=8,10=7,01=6,00=5 

 04-08 – Parity generation. 00=none,01=none,10=even,11=odd 

 10 – Stop bits. 0=1 stop bit, 1=2 stop bits 

 20 – 2X mode (doubles the baud rate at the expense of less accurate clock tolerance). 

0022-0023 – Speed setting. This is a Little-Endian, 12-bit value loaded into the AVR’s UBRR register to set 

the baud rate of the serial device. To calculate this value, use: UBBR = (8,000,000/(16*BAUD))-1. The 

valid range is from 0 (representing about 500,000bps) to 4095 (representing about 122bps). Rates are 

doubled (but clock recovery accuracy halved) if the 2X bit is enabled. You must write these bytes in 

order – LSB then MSB. The change won’t take effect until the MSB is written. 

0024 – number of bytes in the RX buffer. This can be used to optimize reads from the buffer – even if 

new bytes are added, this much data is guaranteed to be present. 

0025 – number of bytes in the TX buffer. This can be used to optimize writes to the buffer – this much 

space is guaranteed to be present. 

0100-0FFF – Write byte (goes to buffer before transmission). If the TX buffer is full, the byte is silently 

dropped – you should check the buffer before writing. Note this GROM range is smaller than for reading. 

1000-1FFF – Read byte (from buffer if buffering is on). Note that this will clear error bits in the 

status/configuration register. If no character is available in the buffer, the returned byte is not 

guaranteed – you should check the buffer before reading. 



Device Type 6 – Flash Controller 
The flash controller provides write access to the GROM memory space. The grom slot is the same as for 

the GROM device type. In this mode, you can erase the page and rewrite data 256 bytes at a time. This 

mode can be disabled with the external Write Protect hardware pin. 

The flash controller is mapped starting at an offset of >0000. 

The process is fairly simple: 

1) Check the result code for write protect (abort if set) 

2) Set the page select register and slot select register 

3) Write the erase command to the command register (will delay until finished) 

4) Check the result code for errors 

5) Write the new page data to the write buffer 

6) Write the program command to the command register (will delay until finished) 

7) Check the result code for errors 

8) Repeat until all pages are written 

0000-00ff – Write buffer (one page worth – write only). You MUST write this page sequentially, and 

always write an even number of bytes, for correct results. This buffer is write-only. 

0100 – Page select in GROM slot (0-31) 

0101-0102 – Write command register. Write the command in 0201 and the inverse in 0202 (write only): 

 31/CE = Erase block – causes the page (256 bytes) to be erased to 0xff 

 D2/2D = Write buffer – writes the contents of the write buffer to the current page 

0103 – Result Code (read-only) 

 0 = Idle 

 1 = Busy 

 2 = Write Protected 

 3 = Command Error 

0x0104 – GROM slot (0-15) 

Device Type 7 – Timer 
The timer is a free-running, real-time tick counter that can be used to time events independent of the 

console operating speed, and with a higher resolution than the VDP interrupt (and with a quicker 

readback than the 9901 timer). The timer runs at 7812.5Hz (+/- 2.5%), and is 16-bits in size. 

The timer is mapped starting at an offset of >0020. Also, the read-back registers are allocated a block of 

repeating memory to allow them to be accessed continuously without needing to reset the GROM 

address. 



Because the timer is 16-bits in size, two reads are required to read the data. Every even numbered 

address is the LSB, and every odd numbered address is the MSB. The timer values are updated when the 

LSB is read, thus, the MSB will always be associated with the LSB. Because of this, you cannot simply 

read the MSB, the value will never change. 

0020-1FFF – Timer value, 16-bit little-endian (LSB,MSB), repeating (read only). 

Recovery Program 
The device includes a small recovery program to facilitate re-loading the chip even if suitable software is 

not otherwise installed. A PowerUp link is always inserted on the FIRST powerup only, at the >E000 

GROM base. (That is, it will not be re-executed when FCTN-= or even a TI Hardware Reset is executed, 

the system must be power cycled to re-trigger it). If the user holds space during the power-on, the 

GROM at >6000 on base 0 is replaced with the recovery program, which contains a copy of Easy Bug, 

and the LOAD PROGRAM IMAGE function from Editor/Assembler. This allows troubleshooting and the 

ability to load any piece of software into the system for the purpose of configuring the chip. 

If this functionality is not desired, for instance, either you need a real power up routine in the GROM at 

>E000, or you are distributing a cartridge and do not want users to be able to activate this mode, simply 

set bit value >02 in the configuration bits. Once you do this, it will be impossible to reactivate this 

recovery program without updating this configuration bit again – since the GROM chip usually occupies 

the cartridge base, this means you may need an alternate way to load software (such as a ROM beside 

the GROM, or boot software like the startup MENU program.) 

The recovery program contains program software copyright by Texas Instruments, and distributed under 

license.  TI makes no warranty with respect to the programs and is under no obligation to provide any 

support or assistance with respect to the programs. TI is under no obligation to provide upgrades to the 

programs. No liability is accepted on the part of Texas Instruments or the author with respect to use, 

copying or distribution of the programs. This software has been modified from its original form. 

 


