&2 COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

DSFBA: Data Structures and
Subsetting

Thibault Vatter

Department of Statistics, Columbia University 09/28/2021

H clVCOLUMBlA UNIVERSITY
Outline

Data structures

Thibault Vatter DSFBA /28/2021 1/52

Warm-u &2 COLUMBIA UNIVERSITY

m Type the following into your console:

Create a vector in R
x <- c(5, 29, 13, 87)
b4

#> [1] 5 29 13 87

m Two important ideas:

Commenting (we will come back to this)

Assignment
® The <- symbol means assign x the value c(5, 29, 13, 87).
® Could use = instead of <- but this is discouraged.
® All assignments take the same form: object_name <- value.
® c() means “concatenate".
® Type x into the console to print its assignment.

DSFBA

Warm_up cont’d & COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Type the following into your console:

Create a vector in R
x <- c(5, 29, 13, 87)
X

#> [1] 5 29 13 87

m Note: the [1] tells us that 5 is the first element of the vector.

Create a vector in R

x <- 1:50

X

#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#> [22] 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#> [43] 43 44 45 46 47 48 49 50

Thibault Vatter DSFBA 09/28,/2021 3 /52

Data structures &2 COLUMBIA UNIVERSITY

Homogeneous Heterogeneous

1d Atomic vector List
2d Matrix Data frame
nd Array

m Almost all other objects are built upon these foundations.

m R has no 0-dimensional, or scalar types.

m Best way to understand what data structures any object is
composed of is str() (short for structure).

x <- c(5, 29, 13, 87)
str(x)
num [1:4] 5 29 13 87

DSFBA

@ COLUMBIA UNIVERSITY
Vector CoLuMBIA UNIVE

m Two flavors:
atomic vectors,
lists.
m Three common properties:
Type, typeof (), what it is.
Length, 1ength(), how many elements it contains.
Attributes, attributes (), additional arbitrary metadata.
m Main difference: elements of an atomic vector must be the
same type, whereas those of a list can have different types.

DSFBA

H clVCOLUMBlA UNIVERSITY
Outline

Atomic vectors

Thibault Vatter DSFBA

6/

Atomic vectors S Comm ey
Vector
Atomic
Numeric

/X

Logical Integer Double Character

m Four primary types of atomic vectors: logical, integer, double,
and character (which contains strings).

m Integer and double vectors are known as numeric vectors.

m There are two rare types: complex and raw (won't be discussed
further).

DSFBA

@ COLUMBIA UNIVERSITY
Scalars

Special syntax to create an individual value, AKA a scalar:

m Logicals:
In full (TRUE or FALSE),
Abbreviated (T or F).
m Doubles:
Decimal (0.1234), scientific (1.23e4), or hexadecimal
(0xcafe) form.
Special values unique to doubles: Inf, -Inf, and NaN (not a
number).
m Integers:
Similar to doubles but
® must be followed by L (1234L, 1e4L, or Oxcafel),
® and can not contain fractional values.
m Strings:
Surrounded by " ("hi") or ' ('bye').
Special characters escaped with \; see 7Quotes for details.

DSFBA

Making longer vectors with c() & CotumpiA UNIVERSITY

To create longer vectors from shorter ones, use c():

1lgl_var <- c(TRUE, FALSE)
int_var <- c(1L, 6L, 10L)
dbl_var <- c(1, 2.5, 4.5)
chr_var <- c("these are", "some strings")

Depicting vectors as connected rectangles:

[dbl_var]—» 1.0 2.5 4.5
[int_var]—» 1 6 10
[1g1_var]—> TRUE | FALSE

[chr_var]—» "these are"” |"some strings"”

DSFBA

Making longer vectors cont’d & Corompia UNIvERsITY

IN THE CITY OF NEW YORK

m With atomic vectors, c() returns atomic vectors (i.e., flattens):

c(c(l, 2), c(3, 4))
#> [1] 12 3 4

m Determine the type and length of a vector with typeof () and
length().
m Test if a vector is of a given type with is.*():

is.logical(), is.integer(), is.double(), and
is.character().

typeof (1gl_var) typeof (int_var)

#> [1] "logical" #> [1] "integer"
length(lgl_var) typeof (dbl_var)

#> [1] 2 #> [1] "double"
c(is.logical(lgl_var), is.integer(lgl_var)) typeof (chr_var)

#> [1] TRUE FALSE #> [1] "character"

DSFBA

1 &2 COLUMBIA UNIVERSITY
Coercion

m When combining different types, coercion in a fixed order

(character — double — integer — logical):
str(c("a", 1))
#> chr [1:2] "a" "1"

m Deliberately coerce using as.*():
as.logical(), as.integer(), as.double(), or
as.character().

m Failed coercion of strings — warning and missing value.

as.integer(c("1", "1.5", "a"))
#> Warning: NAs introduced by coercion
#> [1] 1 1 NA

m Coercion often happens automatically:
Most mathematical functions (+, log, etc.) coerce to numeric.
Useful for logical vectors because TRUE/FALSE become 1/0.

x <- c(FALSE, FALSE, TRUE)
as.numeric(x)

#> [1] 0 0 1

c(sum(x), mean(x))

#> [1] 1.000 0.333

DSFBA

Missing or unknown ValueS &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Represented with NA (short for not applicable/available).
m Missing values tend to be infectious:

NA > 5
#> [1] NA
10 * NA
#> [1] NA
INA

#> [1] NA

m Exception: when some identity holds for all possible inputs. . .
NA " 0O
#> [1] 1
NA | TRUE
#> [1] TRUE
NA & FALSE
#> [1] FALSE

DSFBA

Missing or unknown values cont’d & CoLuMBIA UNIVERSITY

m Propagation of missingness leads to a common mistake:

x <- c(NA, 5, NA, 10)
x == NA
#> [1] NA NA NA NA

m Instead, use is.na():

is.na(x)
#> [1] TRUE FALSE TRUE FALSE

Thibault Vatter DSFBA 09/28,/2021 13 / 52

H clVCOLUMBlA UNIVERSITY
Outline

Attributes

Thibault Vatter DSFBA 09/28,/2021 14 / 52

&2 COLUMBIA UNIVERSITY

Attributes

How about matrices, arrays, factors, or date-times?

m Built on top of atomic vectors by adding attributes.
m For instance, you can add names to a vector:

When creating it
x <= c(ilg 28 3)

By assigning a character vector to names()
x <- 1:3
names(x) <- c("a", "b", "c")

Inline, with setNames()
x <- setNames(1:3, c("a", "b", "c"))

m In the next few slides:
The dim attribute to make matrices and arrays.
The class attribute to create “S3” vectors, including factors,

dates, and date-times.

DSFBA

DimenSionS &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m The dim attribute allow a vector allows it to behave like a
2-dimensional matrix or a multi-dimensional array.

m Most important feature: multidimensional subsetting, which
we'll see later.

m Create matrices and arrays with m Or use the
matrix(): assignment form of
Two scalar arguments dim():
specify row and column sizes # Modify an object in
a <- matrix(1:6, 2, 3) Y j, .
place by setting dim()
a c <- 1:6
#> [,1] [,2] [,3]

dim(c) <- c(3, 2)
c

#> [,1] [,2]
[1,] 1 4
#> [2,] 2 5
[3,] 3 6

#> [1,] 1 & 5
#[2,] 2 4 6

DSFBA

Vectors and matrices &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Vector Matrix

names () rownames (), colnames ()
length() nrow(), ncol()

cO rbind (), cbind ()

— tO

is.null(dim(x)) is.matrix()

m A vector without a dim is often thought of as 1-dimensional,
but actually has NULL dimensions.
m You can have matrices with a single row or single column:
May print similarly, but behave differently.
Differences not important, but useful to know they exist.
Use str() to reveal the differences.

str(1:3) # 1d wector

#> dnt [1:3] 1 2 3

str(matrix(1:3, 1)) # column wvector
#> int [1:3, 1] 1 2 3

str(matrix(1:3, 1)) # row wector

4nt [1, 1:3] 1 2 3

DSFBA

H clVCOLUMBlA UNIVERSITY
Outline

S3 objects

Thibault Vatter DSFBA 09/28/2021

S3 objects

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m The class attribute:
Turns a vector into an S3
object which behaves
differently, e.g.
® (Categorical data, where
values come from a fixed
set of levels: factor
vectors.
® Dates, i.e. times at a daily
resolution: Date vectors.
Every S3 object
® s built on top of a base
type,
® stores additional
information in other
attributes.

Vector

Atom|c

Numenc

Logical Integer Double Character

factor POSIXct Date

DSFBA

Factors &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m A vector that can contain only predefined values.
m Used to store categorical data.

m Built on top of an integer vector with two attributes:
a class (defines a behavior different from integer vectors),
and levels (defines the set of allowed values).

x <- factor(c("a", "b", "b", "a"))
X

#> [1] a b b a

#> Levels: a b 1 2 2 1 h
typeof (x)

#> [1] "integer"
attributes(x)
#> $levels

#> [1] "a" "b" levels|| "a" | "b"
#>

#> $class
#> [1] "factor”

class|| "factor”

DSFBA

Factors cont'd o e

m Useful when you know the set of possible values but they're not
all present in a given dataset.

m When tabulating a factor you'll get counts of all categories,
even unobserved ones:

sex_chr <- rep("f", 3) sex_fct <- factor(sex_chr, c("f", "m"))
table (sex_chr) table(sex_fct)

#> sex_chr #> sex_fct

f # fm

#> 3 #> 3 0

m Ordered factors:
Behave like regular factors, but the order of the levels is
meaningful (e.g., low, medium, high)
grade <- Ordered(c("b", an’ ||all’ IICII)’ C(“C“, IIbll, llaﬂ))
grade

#> [1] b b a c
#> Levels: ¢ < b < a

DSFBA

b .
Dates 2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Built on top of double vectors.
m A class Date and no other attributes.

today <- Sys.Date()

typeof (today)

#> [1] "double"
attributes(today)
#> $class

#> [1] "Date"

m Value of the double = the number of days since 1970-01-011:

date <- as.Date("1970-02-01")
unclass(date)
#> [1] 31

Known as the Unix Epoch.

DSFBA

H clVCOLUMBlA UNIVERSITY
Outline

W Lists

Thibault Vatter DSFBA 09/28,/2021 23 / 52

. " ‘
LlStS 2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Each element can be any type.

11 <- 1list(is.list(11)

1:3, #> [1] TRUE

D@ str(11)

c(TRUE, FALSE, TRUE), #> List of 4

c(2.3, 5.9) #> § : dint [1:3] 1 2 3
) #> $: chr "a"
typeot (11) #> $: logs [1:3] TRUE FALSE TRUE
#> [1] "list" #> ¢ : num [1:2] 2.3 5.9

| 1 | 2 | 3 || ngn || TRUE | FALSE | TRUE ||2.3|5.9|

m c() combines several lists into one:
14 <- list(list(1, 2), c(3, 4))

15 <- c(list(1, 2), c(3, 4)) GFE(e) str(16)
#> List of 2 #> List of 4
#> $:List of 2 # $: num 1
#> ..$: num 1 #> $: num 2
..$: num 2 # % : num 3
#> $: num [1:2] 3 4 #> $: num 4

DSFBA

H clVCOLUMBlA UNIVERSITY
Outline

n Data frames and tibbles

Thibault Vatter DSFBA 09/28,/2021 25 / 52

Data frames and tibbles &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m The most important S3 vectors built on top of lists:
if you do data analysis in R, you'll use them!

m A data frame is a named list of vectors with attributes for
(column) names, row.names, and its class, data.frame.

df1 <~ data.frame(attributes(dfl) Vector

1:3 #> $names

S 39 et 1 11

letters[1:3] #> [1] "z" "y T
) #>

#> i

typeof (df1) " ?;:]La?;ata oo List
#> [1] "list" o ‘ / \
is.data.frame(df1) £ Srow. names
5 : ;
#> [1] TRUE # [1] 12 3 data.frame tibble

m Similar to a list, but the length of each component is equal. . .
m “Rectangular structure”:
Share properties of both matrices and lists.
Has rownames () /colnames () /names () (= column names).
Has nrow() /ncol() /length() (= number of columns).

DSFBA

Data frames and tibbles cont’d 2 CoLumsiA UNIVERSITY

m Data frames:
One of the biggest and most important ideas in R, but ...
20 years have passed since their creation,
which lead to the creation of the tibble, a modern version.
m Main differences: tibbles are lazier (do less) & safer
(complain more).
m Technically:
Similar to data.frame but the class includes tbl_df.
Allows tibbles to behave differently.

library(tibble) attributes(df2)
df2 <- tibble(188, #> $names
letters[1:3]) #> [1] "z" "y"
typeof (df2) #>
#> [1] "list" #> $row.names
is.data.frame(df2) #> [1] 1 2 3
#> [1] TRUE #>
is_tibble(df2) #> $class
#> [1] TRUE #> [1] "tbl_df" "tbl" "data. frame"

is_tibble(df1)

DSFBA

Creating a data.frame or a tibble

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Supply name-vector pairs to data.frame() or tibble().

df <- data.frame(df2 <- tibble(
1:3, 1:3,
C(Hall’ Ilbll’ IICH) C(Hall’ Il'bll’ IICH)
))
str(df)
#> 'data. frame': 3 obs. of 2 wariables:

#> $x: int 123
#> $ y'. ChT llall Hb” ”C”

str(df2)

#> tibble [3 z 2] (S3: tbl_df/tbl/data.frame)
#> $x: int [1:3] 1 23

$ y: chr [1:3] "a" "b" "c"

m Next few slides: some of the differences between the two.

Non-syntactic names.

Recycling shorter inputs.

Variables created during construction.
Printing.

DSFBA

Non_syntactic names @COLUMB]’A UNI)VFRS]TY

m Strict rules about what constitutes a valid name.
Syntactic names consist of letters?, digits, . and _ but can't
begin with _ or a digit.
Additionally, can't use any of the reserved words like TRUE,
NULL, if, and function (see the complete list in ?Reserved).
m A name that doesn’t follow these rules is non-syntactic.

_abc <- 1
#> Error: unexpected input in

non

if <- 10
#> Error: unezpected assignment in "if <-"

2what constitutes a letter is determined by your current locale, avoid this by
sticking to ASCII characters (i.e. A-Z) as much as possible.

DSFBA

Non-syntactic names cont’d S CoLummn U IyERsITY

m To override these rules and use any name:
T -1
#> [1] 1
T <= 10
#> [1] 10

m Don't deliberately create but understand such names:
You'll come across them, e.g whith data created outside of R.

m In data frames and tibbles:

names (data.frame(" 1~ = 1))
#> [1] "X1"

names (data.frame(" 1" = 1, FALSE))
[1] "1

names (tibble(" 1~ = 1))
#> [1] II1 n

DSFBA

Recycling shorter inputs &2 Covumin UnIvERsITY

m Both data.frame() and tibble() recycle shorter inputs, but
> data frames automatically recycle columns that are an integer
multiple of the longest column,
> tibbles will only recycle vectors of length one.

data.frame(x = 1:4, y = 1:2) tibble(x = 1:4, vy = 1)
Ty #> # A tibble: 4 z 2
#> 11 1 #> z Y
#> 2 2 2 #> <int> <dbl>
#> 3 3 1 #> 1 1 1
4 4 2 # 2 2 1

#> 3 3 1

4 4 1

tibble(x = 1:4, y = 1:2)

#> Error: Tibble columns must have compatible sizes.

#> * Size 4: Ezisting data.

#> * Size 2: Column "y .

#> 4 Only values of size one are recycled.

data.frame(x = 1:4, y = 1:3)

#> Error in data.frame(x = 1:4, y = 1:3): arguments imply differing number of ro

Thibault Vatter DSFBA 09/28/2021 31/52

Variables created during construction @ o vy

m tibble () allows you to refer to variables created during
construction:

tibble(
x = 1:3,
yo=x *x 2

)
#> # A tibble: 3 ¢ 2

#> T Y
#> <int> <dbl>
#> 1 1 2
#> 2 2 4
#> 3 3 6

(Inputs are evaluated left-to-right.)

Thibault Vatter DSFBA 09/28,/2021 32 /52

Printing

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

iris

#> Sepal.Length Sepal.Width Petal.Length Petal.Width
0.2

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 21

Thibault Vatter

©WOIHaN WL R

W R N R R KRR KRR RR
SOV IION WL RS

5.1

Sy o1 o oo e i e S o b o
AR IREAEJIDWHOONONSIOH™ OO0

&o

WhWhhhdhhhhhhdhdo
N OO ONOOON QIR OAAN OO DO O

DSFBA

o

L O e e L T U T O O SO U SO O U O O O O O Y
LOYIDN WA RN OGO N A O WA

S e e R R i R ol el ol o
D WWWRNDRRDDRDL WD DD

Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

09/28/2021

33 /52

Printing cont’d

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

dplyr::starwars

#> # A tibble: 87 x 14

#> name

#> <chr>

#> 1 Luke Sky~
#> 2 C-3P0

#> 3 R2-D2

#> 4 Darth Va~
#> 5 Leia Org~
#> 6 Owen Lars
#> 7 Beru Whi~
#> 8 R5-D4

#> 9 Biggs Da~
#> 10 Obi-Wan ~

height
<int>
172
167
96
202
150
178
165
97
183
182

mass
<dbl>
77
75
32
136
49
120
75
32
84
77

hair_color skin_color eye_color birth_year

<chr>
blond
<NA>
<NA>
none
broun
brown
brown
<NA>
black

<chr>
fair
gold
white,
white
light
, grey light
light
white,
light

auburn, wh~ fair
#> # ... with 77 more rows, and 7 more variables: sex <chr>,

#> # gender <chr>, homeworld <chr>, species <chr>, films <list>,
#> # vehicles <list>, starships <list>

bl~

red

<chr> <dbl>
blue 19
yellow 112
red 33
yellow 41.9
brouwn 19
blue 52
blue 47
red NA
broun 24
blue-gray 57

m Only the first 10 rows + columns that fit on screen.
m Each column labelled with abbreviated type.

m Wide columns truncated.
m In RStudio, color highlights important information.

Thibault Vatter

DSFBA

09/28/2021 34 /52

H clVCOLUMBlA UNIVERSITY
Outline

Subsetting

Thibault Vatter DSFBA 09/28/2021

SUbsetting &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m R's subsetting operators are fast and powerful.
Allows to succinctly perform complex operations in a way that
few other languages can match.
Easy to learn but hard to master because of a number of
interrelated concepts:
Six ways to subset atomic vectors.
Three subsetting operators, [[, [, and $.
The operators interact differently with different vector types.
Subsetting can be combined with assignment.
m Subsetting is a natural complement to str():
str () shows the pieces of any object (its structure).
Subsetting pulls out the pieces that you're interested in.
m Outline:
Selecting multiple elements with [.
Selecting a single element with [[and $.
Subsetting and assignment.

DSFBA

[for atomic vectors &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m We'll look at the following vector:
x <- c(2.1, 4.2, 3.3, 5.4)

m Note that the number after the decimal point represents the
original position in the vector.
m Next few slides, subset an atomic vector with:
Positive integers.
Negative integers.
Logical vectors.
Character vectors.

DSFBA

[for atomic vectors cont’d & CoLuMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Positive integers return elements at the specified positions:
x[c(3, 1]
#> [1] 3.3 2.1
order (x)
#> [1] 1324
x [order (x)]
#> [1] 2.1 3.3 4.2 5.4

x[c(1, 1)1 # Duplicate indices will duplicate values
#> [1] 2.1 2.1

x[c(2.1, 2.9)] # Real numbers are silently truncated to integers
#> [1] 4.2 4.2
m Negative integers exclude elements at the specified positions:
x[-c(3, 1]
#> [1] 4.2 5.4
m Can't mix positive and negative integers in a single subset:

x[c(-1, 2)]
#> Error in x[c(-1, 2)]: only 0's may be mized with negative subscripts

DSFBA

[for atomic vectors cont'd &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Logical vectors select elements where the corresponding
logical value is TRUE (probably the most useful):

x[c(TRUE, TRUE, FALSE, FALSE)]
#> [1] 2.1 4.2

x[x > 3]

#> [1] 4.2 3.3 5.4

m In x[y], what happens if x and y are different lengths?
Recycling rule: the shorter recycled to the length of the longer.
Convenient and easy to understand when x OR y is length one,
but avoid for other lengths because of inconsistencies in base R.

x[c(TRUE, FALSE)] x[c(TRUE, FALSE)]
[1] 2.1 3.3 # [1] 2.1 3.3

m A missing value in the index always yields a missing value in
the output:
x[c(TRUE, TRUE, NA, FALSE)]
#> [1] 2.1 4.2 NA

DSFBA

[for atomic vectors cont’d 8 CoLumBIA UNIVERSITY

m If the vector is named, you can also use character vectors to
return elements with matching names:

(y <- setNames(x, letters[1:4]))
#> a b @ d

#> 2.1 4.2 3.3 5.4

yle('a", "c", "a")]

#> d c a

#> 5.4 3.3 2.1

Like integer indices, you can rTepeat indices
y[c(nau’ ||an’ llall)]

a a a

#> 2.1 2.12.1

When subsetting with [, names are always matched ezactly
z <- c(abc = 1, def = 2)

z[c(uan, ||dll)]

#> <NA> <NA>

NA NA

Thibault Vatter DSFBA 09/28/2021 40 / 52

1 &2 COLUMBIA UNIVERSITY
[for lists

m Exactly as for atomic vectors.
m Using [always returns a list; [[and $ (see in a few slides),
lets you pull out elements of a list.

Thibault Vatter DSFBA 09/28/2021 41 /52

[for matrices &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Subset matrices in three ways:
With multiple vectors.
With a single vector.
With a matrix.
m The most common way:
Supply a 1D index for each dimension, separated by a comma.
Notice the use of blank subsetting!

a <- matrix(1:9, 3) al[c(TRUE, FALSE, TRUE), c("B", "A")]
colnames(a) <- c("A", "B", "C") #> B A

al1:2, 1] #> [1,] 4 1

#> A BC #> [2,] 6 3

#> [1,] 147 af0, -2]

#> [2,] 258 #> AcC

m By default, [simplifies to the lowest possible dimensionality:

al1,] al1, 1]
#> A B C #> A
#0147 #> 1

DSFBA

[for matrices cont'd &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Can subset with a vector as if they were 1D.
Note that matrices in R are stored in column-major order!

vals <- outer(1:4, 1:4, "paste",)
vals
#> [,17 [,2] [,3] [,4]

B [lpd U,A0 05,80 1,80 Og, AT
B L] AT U0 TES G AT
B [Bp] Mpdn 19,80 15,80 G 40
[4,] "4,17 142" 15" 4
vals[c(4, 15)]

T (B A0 TR0

m Can also subset with an integer matrix.
Each row in the matrix specifies the location of one value.
Each column corresponds to a dimension.
The result is a vector of values.

select <- matrix(2, TRUE, c(vals[select]
1, 1, #> [1] "1,1" "2,4"
2, 4

)

DSFBA

[for data frames and tibbles & Cotumpin UNIvERsITY

m Characteristics of both lists and matrices.

m When subsetting with a single index:
Behave like lists and index the columns.
E.g. df[1:2] selects the first two columns.

m When subsetting with two indices:
Behave like matrices.
E.g. df[1:3,] selects the first three rows (and all columns).

df <- data.frame(1:3, 3:1, letters[1:3])

df [df$x == 2,]
#> Ty z
#2220
df[c(1, 3),]
#> Ty 2

#> 11 3 a

331 c

DSFBA

[for data frames and tibbles cont’d @ cotumea universiry

m Two ways to select columns from a data frame:

Like a list # Like a matriz
daf[c("x", "z")] afl, c("x", "z")]
#> T 2 #> T 2z

#> 1 1 a #> 11 a

#> 220 #> 220

#> 3 3 ¢ #> 3 3 ¢

m Important difference if you select a single column:
Matrix subsetting simplifies by default.
List subsetting does not.
str(af[, "x"1) str(df["x"]1)

#> 4nt [1:3] 1 2 3 #> 'data. frame': 3 obs. of 1 wariable:
#> $z:int 123

m Subsetting a tibble with [always returns a tibble:
df <- tibble(x = 1:3, y = 3:1, z = letters[1:3])

str(af[, "x"1) str(af["x"])
#> tibble [3 z 1] (S3: tbl_df/tbl/data.f #> tibble [3 = 1] (S3: tbl_df/tbl/data. fr
#> $ x: ant [1:3] 1 2 3 #> $ z: ant [1:3] 1 2 3

DSFBA

Selecting a single element from a list @ o v

The other two subsetting operators:

m [[is used for extracting single items.
m x$y is a useful shorthand for x[["y"]].

Thibault Vatter DSFBA 09/28/2021 46 / 52

[[&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m [[is most important when working with lists because
subsetting a list with [always returns a smaller list.

If list z is a train carrying objects, then z[[5]] is the
object in car 5; ©[4:6] is a train of cars 4-6.

— ©RLangTip, https://twitter.com/RLangT ip/status/
268375867468681216

m Use this metaphor to make a simple list:
x <- list(1:3, "a", 4:6)

3" [mon

= JLCL]

DSFBA

https://twitter.com/RLangTip/status/268375867468681216
https://twitter.com/RLangTip/status/268375867468681216

[[cont'd

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m When extracting a single
element, you have two
options:

Create a smaller train, i.e.,
fewer carriages, with [.
Extract the contents of a
particular carriage with [[.

m When extracting multiple (or
even zero!) elements, you
have to make a smaller train.

x[c(1,1D]

il

x[[11]

Igl

x[1:2]

x[-2]

x[e]

EEEX

DSFBA

$ &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

m Shorthand operator:
x$y is roughly equivalent to x[["y"1].
Often used to access variables in a data frame.
E.g., mtcars$cyl or diamonds$carat.
m One common mistake with $:
var <- "cyl"
mtcars$var # Doesn't work - mtcars$var translated to mtcars[["var"]]
#> NULL
mtcars[[var]] # Instead use [[
#> [1] 664 68684 4,6688888844448888444868/

m Important difference between $ and [[: (left-to-right) partial
matching!
x <= list(1)
x$a
[1] 1

x[["a"]]
#> NULL

DSFBA

Data frames and tibbles again & Corompia UNIvERsITY

IN THE CITY OF NEW YORK

m Data frames have two undesirable subsetting behaviors.
When you subset columns with df [, vars]:
® Returns a vector if vars selects one variable.
® Otherwise, returns a data frame.
® Frequent unless you use drop = FALSE.
When extracting a single column with df$x:
® |f there is no column x, selects any variable that starts with x.
® |f no variable starts with x, returns NULL.
® Easy to select the wrong variable/a variable that doesn't exist.
m Tibbles tweak these behaviors:
[always returns a tibble.
$ doesn’t do partial matching and warns if it can't find a
variable (makes tibbles surly).

dfl <- data.frame("a") df2 <- tibble("a")
str(df1$x) str(df2$x)

#> chr "a" #> Warning: Unknown or uninitialised column: "z .

#> NULL

DSFBA

Subsetting and assignment —> oL STy

m Subsetting operators can be combined with assignment.
Modifies selected values of an input vector
Called subassignment.

m The basic form is x[i] <- value:

x <- 1:5

x[c(1, 2)] <- c(101, 102)
b4

#> [1] 101 102 3 4 5

m Recommendation:
Make sure that length(value) is the same as length(x[i]),
and that i is unique.
Otherwise, you'll end-up in recycling hell.

DSFBA

Subsetting and assignment cont’d & Corompia UNIvERsITY

IN THE CITY OF NEW YORK

m Subsetting lists with NULL
x[[i]] <- NULL removes a component.
To add a literal NULL, use x[i] <- 1list(NULL).

x <- list(1, 2) y <= list(1, 2)
x[["b"]] <- NULL y["b"] <- 1list(NULL)
str(x) str(y)

#> List of 1 #> List of 2

% a: num 1 # % a: num 1

#> § b: NULL
m Subsetting with nothing can be useful with assignment
Preserves the structure of the original object.
Compare the following two expressions.

mtcars[] <- lapply(mtcars, as.integer) mtcars <- lapply(mtcars, as.integer)

is.data.frame(mtcars) is.data.frame(mtcars)
#> [1] TRUE #> [1] FALSE

DSFBA

	Data structures
	Atomic vectors
	Attributes
	S3 objects
	Lists
	Data frames and tibbles
	Subsetting

