
DSFBA: Wrangling
Data Science for Business Analytics

Thibault Vatter
Department of Statistics, Columbia University 11/10/2021

Today and tomorrow

Most of the material (e.g., the picture above) is borrowed from

R for data science

Thibault Vatter DSFBA 11/10/2021 1 / 53

http://r4ds.had.co.nz/

Outline

1 Dates and times

2 Factors

3 Strings

Thibault Vatter DSFBA 11/10/2021 2 / 53

Outline

1 Dates and times

2 Factors

3 Strings

Thibault Vatter DSFBA 11/10/2021 3 / 53

Warm-up

Does every year have 365 days?
Does every day have 24 hours?
Does every minute have 60 seconds?

Thibault Vatter DSFBA 11/10/2021 4 / 53

Refering to an instant in time

Two types of date/time data:
I A date.

• Tibbles print this as <date>.
I A date-time is a date plus a time.

• Uniquely identifies an instant in time (typically to the nearest
second).

• Tibbles print this as <dttm>.
• Elsewhere in R, POSIXct.

Use the simplest possible data type satisfying your
needs!

Thibault Vatter DSFBA 11/10/2021 5 / 53

Creating date/times

The lubridate package:
I Makes it easier to work with dates and times in R.
I Not part of core tidyverse because only needed when working

with dates/times.
library(lubridate)
today()
#> [1] "2021-11-10"
now()
#> [1] "2021-11-10 09:07:40 EST"

Other (usual) ways to create a date/time:
I From a string.
I From individual date-time components.
I From an existing date/time object.

as_datetime(today())
#> [1] "2021-11-10 UTC"
as_date(now())
#> [1] "2021-11-10"

Thibault Vatter DSFBA 11/10/2021 6 / 53

From a string

ymd("2017-01-31")
#> [1] "2017-01-31"
mdy("January 31st, 2017")
#> [1] "2017-01-31"
dmy("31-Jan-2017")
#> [1] "2017-01-31"

ymd_hms("2017-01-31 20:11:59")
#> [1] "2017-01-31 20:11:59 UTC"
mdy_hm("01/31/2017 08:01")
#> [1] "2017-01-31 08:01:00 UTC"

Additionally:
ymd(20170131)
#> [1] "2017-01-31"
ymd(20170131, tz = "UTC")
#> [1] "2017-01-31 UTC"

Thibault Vatter DSFBA 11/10/2021 7 / 53

From individual components
flights %>%

select(year:day, hour, minute, dep_time) %>%
mutate(departure = make_datetime(year, month, day, hour, minute))

#> # A tibble: 336,776 x 7
#> year month day hour minute dep_time departure
#> <int> <int> <int> <dbl> <dbl> <int> <dttm>
#> 1 2013 1 1 5 15 517 2013-01-01 05:15:00
#> 2 2013 1 1 5 29 533 2013-01-01 05:29:00
#> 3 2013 1 1 5 40 542 2013-01-01 05:40:00
#> 4 2013 1 1 5 45 544 2013-01-01 05:45:00
#> 5 2013 1 1 6 0 554 2013-01-01 06:00:00
#> 6 2013 1 1 5 58 554 2013-01-01 05:58:00
#> 7 2013 1 1 6 0 555 2013-01-01 06:00:00
#> 8 2013 1 1 6 0 557 2013-01-01 06:00:00
#> 9 2013 1 1 6 0 557 2013-01-01 06:00:00
#> 10 2013 1 1 6 0 558 2013-01-01 06:00:00
#> # ... with 336,766 more rows

For dep_time and others such as arr_time:
flights_dt <- flights %>%

mutate(dep_time = make_datetime(
year, month, day, dep_time %/% 100, dep_time %% 100))

Thibault Vatter DSFBA 11/10/2021 8 / 53

Rounding

Rounding:
I floor_date() rounds down.
I round_date() rounds to.
I ceiling_date() rounds up.

flights_dt %>%
filter(!is.na(dep_time)) %>%
count(week = floor_date(dep_time, "week")) %>%
ggplot(aes(week, n)) +
geom_line()

3000

4000

5000

6000

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014

week

n

Thibault Vatter DSFBA 11/10/2021 9 / 53

Getting/setting the components

Getting the components:
datetime <- ymd_hms("2016-07-08 12:34:56")
map_dbl(list(year, month, mday, yday, wday), function(f) f(datetime))
#> [1] 2016 7 8 190 6

Setting the components:
year(datetime) <- 2020
datetime
#> [1] "2020-07-08 12:34:56 UTC"
month(datetime) <- 01
datetime
#> [1] "2020-01-08 12:34:56 UTC"
hour(datetime) <- hour(datetime) + 1
datetime
#> [1] "2020-01-08 13:34:56 UTC"

Alternatively:
update(datetime, year = 2019)
#> [1] "2019-01-08 13:34:56 UTC"

Thibault Vatter DSFBA 11/10/2021 10 / 53

Time spans

Goal: to do arithmetic (i.e., subtraction, addition, and division)
with dates/times.
Three classes that represent time spans:
I Durations (number of seconds).
I Periods (human units like weeks and months).
I Intervals (a starting and ending point).

Thibault Vatter DSFBA 11/10/2021 11 / 53

Durations

A duration always record a time span in seconds.
Larger units created at the standard rate.
I E.g., 60s/mn, 60mn/h, 24h/d, 7d/w, 365d/y.

dseconds(15)
#> [1] "15s"
dminutes(10)
#> [1] "600s (~10 minutes)"
dhours(c(12, 24))
#> [1] "43200s (~12 hours)" "86400s (~1 days)"
ddays(0:5)
#> [1] "0s" "86400s (~1 days)" "172800s (~2 days)"
#> [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)
#> [1] "1814400s (~3 weeks)"
dyears(1)
#> [1] "31557600s (~1 years)"

Thibault Vatter DSFBA 11/10/2021 12 / 53

Durations arithmetics

Add and multiply durations:
2 * dyears(1)
#> [1] "63115200s (~2 years)"
dyears(1) + dweeks(12) + dhours(15)
#> [1] "38869200s (~1.23 years)"

Add and subtract durations to and from dates/datetimes:
tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)

What happens here?
one_pm <- ymd_hms("2016-03-12 13:00:00", tz = "America/New_York")
one_pm
#> [1] "2016-03-12 13:00:00 EST"
one_pm + ddays(1)
#> [1] "2016-03-13 14:00:00 EDT"

Thibault Vatter DSFBA 11/10/2021 13 / 53

Periods

Work with “human” times, like days (no fixed length in secs):
one_pm
#> [1] "2016-03-12 13:00:00 EST"
one_pm + days(1)
#> [1] "2016-03-13 13:00:00 EDT"
seconds(15)
#> [1] "15S"
minutes(10)
#> [1] "10M 0S"
hours(c(12, 24))
#> [1] "12H 0M 0S" "24H 0M 0S"
days(7)
#> [1] "7d 0H 0M 0S"
months(1:3)
#> [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S"
weeks(3)
#> [1] "21d 0H 0M 0S"
years(1)
#> [1] "1y 0m 0d 0H 0M 0S"

Thibault Vatter DSFBA 11/10/2021 14 / 53

Periods arithmetics

Add and multiply periods:
10 * (months(6) + days(1))
#> [1] "60m 10d 0H 0M 0S"
days(50) + hours(25) + minutes(2)
#> [1] "50d 25H 2M 0S"

Add periods to dates/datetimes:
A leap year
ymd("2016-01-01") + dyears(1)
#> [1] "2016-12-31 06:00:00 UTC"
ymd("2016-01-01") + years(1)
#> [1] "2017-01-01"

Daylight Savings Time
one_pm + ddays(1)
#> [1] "2016-03-13 14:00:00 EDT"
one_pm + days(1)
#> [1] "2016-03-13 13:00:00 EDT"

Thibault Vatter DSFBA 11/10/2021 15 / 53

Intervals

What should the following code return?
years(1) / days(1)

A duration with a starting point:
next_year <- today() + years(1)
(today() %--% next_year) / ddays(1)
#> [1] 365

Thibault Vatter DSFBA 11/10/2021 16 / 53

Summary

Pick the simplest data structure that solves your problem:
I If you only care about physical time, use a duration.
I If you need to add human times, use a period.
I If you need to figure out how long a span is in human units, use

an interval.

Thibault Vatter DSFBA 11/10/2021 17 / 53

Time zones

Sys.timezone()
#> [1] "America/New_York"
length(OlsonNames())
#> [1] 608
head(OlsonNames())
#> [1] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa"
#> [4] "Africa/Algiers" "Africa/Asmara" "Africa/Asmera"

Thibault Vatter DSFBA 11/10/2021 18 / 53

Same instant in different time zones

Same instant, different place:
(x1 <- ymd_hms("2015-06-01 12:00:00", tz = "America/New_York"))
#> [1] "2015-06-01 12:00:00 EDT"
(x2 <- ymd_hms("2015-06-01 18:00:00", tz = "Europe/Copenhagen"))
#> [1] "2015-06-01 18:00:00 CEST"
(x3 <- ymd_hms("2015-06-02 04:00:00", tz = "Pacific/Auckland"))
#> [1] "2015-06-02 04:00:00 NZST"
x1 - x2
#> Time difference of 0 secs
x1 - x3
#> Time difference of 0 secs

Note the behavior of ‘c():
x4 <- c(x1, x2, x3)
x4
#> [1] "2015-06-01 12:00:00 EDT" "2015-06-01 12:00:00 EDT"
#> [3] "2015-06-01 12:00:00 EDT"

Thibault Vatter DSFBA 11/10/2021 19 / 53

Changing the time zone

Keep the instant in time:
x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")
x4a
#> [1] "2015-06-02 02:30:00 +1030" "2015-06-02 02:30:00 +1030"
#> [3] "2015-06-02 02:30:00 +1030"
x4a - x4
#> Time differences in secs
#> [1] 0 0 0

Change the instant in time:
x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")
x4b
#> [1] "2015-06-01 12:00:00 +1030" "2015-06-01 12:00:00 +1030"
#> [3] "2015-06-01 12:00:00 +1030"
x4b - x4
#> Time differences in hours
#> [1] -14.5 -14.5 -14.5

Thibault Vatter DSFBA 11/10/2021 20 / 53

Outline

1 Dates and times

2 Factors

3 Strings

Thibault Vatter DSFBA 11/10/2021 21 / 53

Factors

Factors are:
I Used to work with categorical variables (i.e., that have a fixed

and known set of possible values).
I Useful to display character vectors in a non-alphabetical order.

The forcats package:
I Range of helpers for working with factors.

library(forcats)

Thibault Vatter DSFBA 11/10/2021 22 / 53

Creating factors

Imagine that you have a variable that records month:
x1 <- c("Dec", "Apr", "Jan", "Mar")

Using a string to record this variable has two problems:
I Twelve possible months and nothing saving you from typos.
I It doesn’t sort in a useful way.

sort(x1)
#> [1] "Apr" "Dec" "Jan" "Mar"

Thibault Vatter DSFBA 11/10/2021 23 / 53

Creating factors II

Start by creating a list of the valid levels:
month_levels <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")

Then create a factor:
y1 <- factor(x1, levels = month_levels)
y1
#> [1] Dec Apr Jan Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
sort(y1)
#> [1] Jan Mar Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
factor(x1) ## without levels
#> [1] Dec Apr Jan Mar
#> Levels: Apr Dec Jan Mar

Thibault Vatter DSFBA 11/10/2021 24 / 53

Creating factors III

Notice:
x2 <- c("Dec", "Apr", "Jam", "Mar")
y2 <- factor(x2, levels = month_levels)
y2
#> [1] Dec Apr <NA> Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Other ordering:
factor(x1, levels = unique(x1))
#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar
factor(x1) %>%

fct_inorder()
#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar

Thibault Vatter DSFBA 11/10/2021 25 / 53

forcats::gss_cat

Sample from the General Social Survey:
gss_cat
#> # A tibble: 21,483 x 9
#> year marital age race rincome partyid relig denom tvhours
#> <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
#> 1 2000 Never m~ 26 White $8000 t~ Ind,nea~ Prote~ South~ 12
#> 2 2000 Divorced 48 White $8000 t~ Not str~ Prote~ Bapti~ NA
#> 3 2000 Widowed 67 White Not app~ Indepen~ Prote~ No de~ 2
#> 4 2000 Never m~ 39 White Not app~ Ind,nea~ Ortho~ Not a~ 4
#> 5 2000 Divorced 25 White Not app~ Not str~ None Not a~ 1
#> 6 2000 Married 25 White $20000 ~ Strong ~ Prote~ South~ NA
#> 7 2000 Never m~ 36 White $25000 ~ Not str~ Chris~ Not a~ 3
#> 8 2000 Divorced 44 White $7000 t~ Ind,nea~ Prote~ Luthe~ NA
#> 9 2000 Married 44 White $25000 ~ Not str~ Prote~ Other 0
#> 10 2000 Married 47 White $25000 ~ Strong ~ Prote~ South~ 3
#> # ... with 21,473 more rows

More info with ?gss_cat.

Thibault Vatter DSFBA 11/10/2021 26 / 53

http://gss.norc.org

See levels of a factor from a tibble

A barplot:
ggplot(gss_cat, aes(race)) +
geom_bar()

0

5000

10000

15000

Other Black White

race

co
un

t

Or a count:
gss_cat %>%
count(race)

#> # A tibble: 3 x 2
#> race n
#> <fct> <int>
#> 1 Other 1959
#> 2 Black 3129
#> 3 White 16395

Thibault Vatter DSFBA 11/10/2021 27 / 53

What’s wrong here?
relig_summary <- gss_cat %>%

group_by(relig) %>%
summarize(age = mean(age, na.rm = TRUE),

tvhours = mean(tvhours, na.rm = TRUE),
n = n())

ggplot(relig_summary, aes(tvhours, relig)) +
geom_point()

No answer
Don't know

Inter−nondenominational
Native american

Christian
Orthodox−christian

Moslem/islam
Other eastern

Hinduism
Buddhism

Other
None

Jewish
Catholic

Protestant

2 3 4

tvhours

re
lig

Thibault Vatter DSFBA 11/10/2021 28 / 53

Modifying factor order

relig_summary %>%
mutate(relig = fct_reorder(relig, tvhours)) %>%
ggplot(aes(tvhours, relig)) +
geom_point()

Other eastern
Hinduism

Buddhism
Orthodox−christian

Moslem/islam
Jewish

None
No answer

Other
Christian

Inter−nondenominational
Catholic

Protestant
Native american

Don't know

2 3 4

tvhours

re
lig

Thibault Vatter DSFBA 11/10/2021 29 / 53

Modify factor order II

gss_cat %>%
mutate(marital = marital %>% fct_infreq() %>% fct_rev()) %>%
ggplot(aes(marital)) +
geom_bar()

0

2500

5000

7500

10000

No answer Separated Widowed Divorced Never married Married

marital

co
un

t

Thibault Vatter DSFBA 11/10/2021 30 / 53

Modifying factor levels

More powerful than changing the orders of the levels is
changing their values:
I To clarify labels for publication.
I To collapse levels for high-level displays.

What’s wrong here?
gss_cat %>%

count(partyid)
#> # A tibble: 10 x 2
#> partyid n
#> <fct> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Strong republican 2314
#> 5 Not str republican 3032
#> 6 Ind,near rep 1791
#> 7 Independent 4119
#> 8 Ind,near dem 2499
#> 9 Not str democrat 3690
#> 10 Strong democrat 3490

Thibault Vatter DSFBA 11/10/2021 31 / 53

Modifying factor levels II
gss_cat %>%

mutate(partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat")) %>%

count(partyid)
#> # A tibble: 10 x 2
#> partyid n
#> <fct> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Republican, strong 2314
#> 5 Republican, weak 3032
#> 6 Independent, near rep 1791
#> 7 Independent 4119
#> 8 Independent, near dem 2499
#> 9 Democrat, weak 3690
#> 10 Democrat, strong 3490

Thibault Vatter DSFBA 11/10/2021 32 / 53

Collapsing factors
gss_cat %>%

mutate(partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat",
"Other" = "No answer",
"Other" = "Don't know",
"Other" = "Other party")) %>%

count(partyid)
#> # A tibble: 8 x 2
#> partyid n
#> <fct> <int>
#> 1 Other 548
#> 2 Republican, strong 2314
#> 3 Republican, weak 3032
#> 4 Independent, near rep 1791
#> 5 Independent 4119
#> 6 Independent, near dem 2499
#> 7 Democrat, weak 3690
#> 8 Democrat, strong 3490

Thibault Vatter DSFBA 11/10/2021 33 / 53

Collapsing factors II

gss_cat %>%
mutate(partyid = fct_collapse(partyid,
other = c("No answer", "Don't know", "Other party"),
rep = c("Strong republican", "Not str republican"),
ind = c("Ind,near rep", "Independent", "Ind,near dem"),
dem = c("Not str democrat", "Strong democrat")

)) %>%
count(partyid)

#> # A tibble: 4 x 2
#> partyid n
#> <fct> <int>
#> 1 other 548
#> 2 rep 5346
#> 3 ind 8409
#> 4 dem 7180

Thibault Vatter DSFBA 11/10/2021 34 / 53

Collapsing factor III

gss_cat %>%
mutate(relig = fct_lump(relig)) %>%
count(relig)

#> # A tibble: 2 x 2
#> relig n
#> <fct> <int>
#> 1 Protestant 10846
#> 2 Other 10637

gss_cat %>%
mutate(relig = fct_lump(relig, n = 3)) %>%
count(relig, sort = TRUE)

#> # A tibble: 4 x 2
#> relig n
#> <fct> <int>
#> 1 Protestant 10846
#> 2 Catholic 5124
#> 3 None 3523
#> 4 Other 1990

Thibault Vatter DSFBA 11/10/2021 35 / 53

Outline

1 Dates and times

2 Factors

3 Strings

Thibault Vatter DSFBA 11/10/2021 36 / 53

String basics

library(stringr) # package for string manipulation

To create strings
string1 <- "This is a string"
string2 <- 'To get a "quote" inside a string, use single quotes'

Backslash as escape character:
double_quote <- "\"" # or '"'
single_quote <- '\'' # or "'"

The printed representation is not the string itself:
x <- c("\"", "\\")
x
#> [1] "\"" "\\"
writeLines(x)
#> "
#> \

Thibault Vatter DSFBA 11/10/2021 37 / 53

More on strings

Special characters:
I Use "\n", for newline, or,"\t", for tab.
I Complete list by requesting help on " (?'"', or ?"'")

Other usefuls things:
(x <- "\u00b5") # Non-English characters
#> [1] "µ"
c("one", "two", "three") # Character vectors
#> [1] "one" "two" "three"
str_length(c("a", "R for data science", NA)) # String length
#> [1] 1 18 NA

stringr autocomplete:

Thibault Vatter DSFBA 11/10/2021 38 / 53

More on strings II

Combining strings:
str_c("x", "y")
#> [1] "xy"
str_c("x", "y", "z")
#> [1] "xyz"
str_c("x", "y", sep = ", ")
#> [1] "x, y"

Missing values:
x <- c("abc", NA)
str_c("|-", x, "-|")
#> [1] "|-abc-|" NA
str_c("|-", str_replace_na(x), "-|")
#> [1] "|-abc-|" "|-NA-|"

Recycling:
str_c("prefix-", c("a", "b", "c"), "-suffix")
#> [1] "prefix-a-suffix" "prefix-b-suffix" "prefix-c-suffix"

Collapsing a vector of strings:
str_c(c("x", "y", "z"), collapse = ", ")
#> [1] "x, y, z"

Thibault Vatter DSFBA 11/10/2021 39 / 53

Subsetting strings

x <- c("Apple", "Banana", "Pear")
str_sub(x, 1, 3)
#> [1] "App" "Ban" "Pea"
str_sub(x, -3, -1)
#> [1] "ple" "ana" "ear"
str_sub("a", 1, 5)
#> [1] "a"
str_sub(x, 1, 1) <- str_to_lower(str_sub(x, 1, 1))
x
#> [1] "apple" "banana" "pear"

See also str_to_upper() or str_to_title().

Thibault Vatter DSFBA 11/10/2021 40 / 53

Locales

Turkish has two i's: with and without a dot, and it
has a different rule for capitalising them:
str_to_upper(c("i", "ı"))
#> [1] "I" "I"
str_to_upper(c("i", "ı"), locale = "tr")
#> [1] "İ" "I"

The locale:
I An ISO 639 language code, which is a two or three letter

abbreviation
I If blank, R uses the current locale, as provided by your

operating system.

Thibault Vatter DSFBA 11/10/2021 41 / 53

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Regular expressions

Some people, when confronted with a problem, think “I
know, I’ll use regular expressions.” Now, they have two
problems. ——– Jamie Zawinski

A language that allows you to describe patterns in strings.
Allows you for instance to:
I Determine which strings match a pattern.
I Find the positions of matches.
I Extract the content of matches.
I Replace matches with new values.
I Split a string based on a match.

Read the chapter on strings from the book!

Thibault Vatter DSFBA 11/10/2021 42 / 53

http://r4ds.had.co.nz/strings.html

Basic matches

The simplest patterns match exact strings:
x <- c("apple", "banana", "pear")
str_view(x, "an")

apple

banana

pear

Next step is ., which matches any character (except a newline):
str_view(x, ".a.")

apple

banana

pear

If “.” matches any character, how to match the character “.”?

Thibault Vatter DSFBA 11/10/2021 43 / 53

Basic matches II

If “.” matches any character, how to match the character “.”?
I Need to use an “escape” (like string, a backslash \).
I So to match an ., need the regexp \..
I But \ is also an escape symbol in strings.
I So to create the regexp \., use the string "\\.".

To create the regexp, we need \\
dot <- "\\."
But the expression itself only contains one:
writeLines(dot)
#> \.
And this tells R to look for an explicit .
str_view(c("abc", "a.c", "bef"), "a\\.c")

abc

a.c

bef
Thibault Vatter DSFBA 11/10/2021 44 / 53

Basic matches III

If \ is an escape character, how do you match a literal \?
I Need to escape it, i.e. create the regexp \\.
I To create that regexp with a string, which also needs to escape

\, need to write "\\\\"
I I.e., need four backslashes to match one!

x <- "a\\b"
writeLines(x)
#> a\b
str_view(x, "\\\\")

a\b

Thibault Vatter DSFBA 11/10/2021 45 / 53

Anchors

By default, regexps match any part of a string.
Often useful to anchor the regexp:
I ˆ to match the start of the string.
I $ to match the end of the string.

x <- c("apple", "banana", "pear")

str_view(x, "ˆa")

apple

banana

pear

str_view(x, "a$")
apple

banana

pear

To remember, Evan Misshula’s mnemonic: if you begin with
power (ˆ), you end up with money ($).

Thibault Vatter DSFBA 11/10/2021 46 / 53

https://twitter.com/emisshula/status/323863393167613953

Anchors II

To force a regexp to only match a complete string, anchor it
with both ˆ and $:

x <- c("apple pie", "apple", "apple cake")

str_view(x, "apple")
apple	pie

apple

apple	cake

str_view(x, "ˆapple$")
apple	pie

apple

apple	cake

Thibault Vatter DSFBA 11/10/2021 47 / 53

Character classes and alternatives

Some special patterns match more than one character:
I Already seen . (matches any character apart from a newline).
I Two other useful tools:

• \d: matches any digit.
• \s: matches any whitespace (e.g. space, tab, newline).

I To create a regexp containing \d or \s:
• Need to escape the \ for the string.
• So type "\\d" or "\\s".

The other two tools are:
I Character classes

• [abc]: matches a, b, or c.
• [ˆabc]: matches anything except a, b, or c.

I Alternatives
• abc|d..f: matches either "abc", or "deaf".

Thibault Vatter DSFBA 11/10/2021 48 / 53

Character classes

Can be used as an alternative to backslash escapes.

str_view(c("abc",
"a.c",
"a*c",
"a c"),

"a[.]c")
abc

a.c

a*c

a	c

str_view(c("abc",
"a.c",
"a*c",
"a c"),

".[*]c")
abc

a.c

a*c

a	c

str_view(c("abc",
"a.c",
"a*c",
"a c"),

"a[]")
abc

a.c

a*c

a	c

Used to pick between one or more alternative patterns.
Works for most regex metacharacters: $. | ? * + () [{.
But some have special meaning even inside a character class.
I Must be handled with backslash escapes:] \ ˆ and -.

Thibault Vatter DSFBA 11/10/2021 49 / 53

Alternatives

Note that the precedence for | is low:
I abc|xyz: matches abc or xyz, not abcyz or abxyz.

Same as mathematical expressions: if it gets confusing, use
parentheses.

str_view(c("grey", "gray"), "gr(e|a)y")

grey

gray

Thibault Vatter DSFBA 11/10/2021 50 / 53

Repetition

To control how many times a pattern matches:
I ?: 0 or 1.
I +: 1 or more.
I *: 0 or more.

1888 is the longest year in Roman numerals
x <- "MDCCCLXXXVIII"

str_view(x, "CC?")

MDCCCLXXXVIII
str_view(x, "CC+")

MDCCCLXXXVIII
str_view(x, 'C[LX]+')

MDCCCLXXXVIII

The precedence of these operators is high:
I colou?r: matches either US or British spellings.
I Most uses will need parentheses, like bana(na)+.

Thibault Vatter DSFBA 11/10/2021 51 / 53

Repetition

To specify the number of matches precisely:
I {n}: exactly n.
I {n,}: n or more.
I {,m}: at most m.
I {n,m}: between n and m.

str_view(x, "C{2}")

MDCCCLXXXVIII
str_view(x, "C{2,}")

MDCCCLXXXVIII
str_view(x, "C{2,3}")

MDCCCLXXXVIII

Thibault Vatter DSFBA 11/10/2021 52 / 53

Grouping and backreferences

Earlier: parentheses as a way to disambiguate complex
expressions.
But parentheses also create a numbered capturing group.
A capturing group stores the part of the string matched by the
part of the regexp inside the parentheses.
Refer to the same text as previously matched by a capturing
group with backreferences, like \1, \2 etc.

str_view(fruit, "(..)\\1", match = TRUE)

banana

coconut

cucumber

jujube

papaya

salal	berry

Cool applications in chapter 14.4!

Thibault Vatter DSFBA 11/10/2021 53 / 53

https://r4ds.had.co.nz/strings.html#tools

	Dates and times
	Factors
	Strings

