
Technical review of Marlowe
Final report

High Assurance Software Group
March the 24th, 2023

Contents

1 Executive summaRy and scope 2
1.1 Disclaimer . 2
1.2 Executive summary . 2
1.3 Scope . 2

2 Findings 8
2.1 Main concerns . 8
2.2 Marlowe specification . 12
2.3 Lemmas and proofs . 17
2.4 Isabelle implementation . 26
2.5 marlowe-cardano specification . 28
2.6 Haskell implementation . 30
2.7 Haskell tests . 33

3 Testing RepoRt 35
3.1 Happy traces . 35
3.2 Uncovered vulnerabilities . 35
3.3 Additional attack attempts . 36

A Tweag’s Modifications 38

B A pRoof of lemma insert_valid 40

1

Chapter 1

Executive summary and scope

1.1 Disclaimer
This report is presented without warranty or guaranty of any type. It contains the concerns that have
so far become apparent to Tweag after a partial inspection of the engineering work. Corrections, such
as the cancellation of incorrectly reported issues, may arise. Therefore Tweag advises against making
any business decision or other decision based on this report.

Tweag does not recommend for or against the use of any work or supplier referenced in this report.
This report focuses on the technical implementation provided by the project’s contractors and subcon-
tractors, based on their information, and is not meant to assess the concept, mathematical validity, or
business validity of IOG’s product. This report does not assess the implementation regarding financial
viability nor suitability for any purpose.

1.2 Executive summary
This document contains the findings discovered by Tweag while reviewing Marlowe. There are some
issues affecting the safety of the Marlowe validators and the contracts expressed in Marlowe:

• Negative deposits handling (2.1.1), potentially allowing one to steal funds from contracts lacking
enough validation.

• Double satisfaction vulnerability for payouts (2.1.2), allowing one to satisfy a Marlowe contract
along with some other third-party contract with a single payout.

• The Isabelle proofs do not distinguish between different currencies when proving money preser-
vation (2.1.4), potentially allowing deposits in one currency with payouts in another one.

There are also several other high and medium-severity findings described in Section 2.1 which either
weaken the Isabelle proofs or their applicability to theHaskell implementation, ormake the specification
unclear.

1.3 Scope
The review is focused on theMarlowe language itself and its implementation for the Cardano blockchain.
The team did not analyze the safety of any particular contract written in the Marlowe language. Any
issues with the usability of the language, or any potential sources of erroneous or malicious behavior
(falling outside of IOG’s specification) of any current or future contracts are outside of the scope of
the review. It is the responsibility of a user of Marlowe to avoid interacting with contracts that are
vulnerable to abuse by an adversarial party.

2

The team has reviewed the Isabelle files, specification files, and Plutus validators provided by IOG1.
More precisely, Tables 1.1, 1.2, and 1.3 list the files inspected alongside their sha256 sums. Additionally,
the team has reviewed the testing strategy and the properties in the files listed in Table 1.4. Chapter 2
lists the findings resulting from the review, and Chapter 3 describes the tests that were implemented
during the review.

Some of IOG’s code had to be changed to accomodate for the differences between plutus-apps
versions required by IOG’s product and the team’s tools respectively. The corresponding patches are
listed in Appendix A. The sha256 sums in Table 1.3 are computed without these modifications, using
the contents of the files as received from IOG. The line numbers in the report refer to the patched files,
though.

sha256sum File Name

dcdd4f...6068c1 Core/TransactionBound.thy

708e74...a0bcd6 Core/Semantics.thy

8c52f0...5a0f53 Core/CloseSafe.thy

4abeb6...ef1164 Core/SemanticsTypes.thy

dd573b...a2279a Core/TimeRange.thy

0f21eb...c1e587 Core/SingleInputTransactions.thy

cdc127...d2cb0c Core/ListTools.thy

c3e8aa...74547a Core/OptBoundTimeInterval.thy

06d820...54f0b0 Core/BlockchainTypes.thy

529fd2...b3d1da Core/Timeout.thy

4ddc58...657b02 Core/PositiveAccounts.thy

c7e56c...9a20da Core/ValidState.thy

ad04a3...2d60f3 Core/SemanticsGuarantees.thy

bd2a1b...594198 Core/QuiescentResult.thy

8fabfe...7427d8 Core/MoneyPreservation.thy

3239d4...d82338 Util/ByteString.thy

a18ffe...e01818 Util/MList.thy

Table 1.1: Isabelle files analyzed, and their sha256sum

sha256sum File Name

9cee0f...b310a0 specification-v3-rc1.pdf

df8446...370dde marlowe-cardano-specification.md

Table 1.2: Specification files analyzed, and their sha256sum

1https://github.com/input-output-hk/marlowe/commit/c8c67ad6892ec68842461d2e66b02ca87f93f70c
https://github.com/input-output-hk/marlowe-cardano/commit/523f3d56f22bf992ddb0b0c8a52bb7a5a188f9e9

3

https://github.com/input-output-hk/marlowe/commit/c8c67ad6892ec68842461d2e66b02ca87f93f70c
https://github.com/input-output-hk/marlowe-cardano/commit/523f3d56f22bf992ddb0b0c8a52bb7a5a188f9e9

sha256sum File Name

26a96f...dbf6bf Marlowe/Scripts.hs

3bcab9...cae538 Marlowe/Core/V1/Semantics.hs

8abfd3...9c7574 Marlowe/Core/V1/Semantics/Types.hs

Table 1.3: Haskell files analyzed, and their sha256sum

sha256sum File Name

d9d55c...2c6ba2 test-report.md

e663a2...a565eb Spec/Marlowe/Plutus/Value.hs

28a476...16f3da Spec/Marlowe/Plutus/Arbitrary.hs

fdca9a...37e121 Spec/Marlowe/Plutus/Specification.hs

7ec64a...2eda23 Spec/Marlowe/Plutus/AssocMap.hs

820967...dfd3a0 Spec/Marlowe/Plutus/ScriptContext.hs

e7eaf2...451ee1 Spec/Marlowe/Plutus/Prelude.hs

252a34...e9d0ad Spec/Marlowe/Semantics/Arbitrary.hs

87ffa5...01b5d5 Spec/Marlowe/Semantics/Compute.hs

3c775d...137df1 Spec/Marlowe/Semantics/Functions.hs

Table 1.4: Test-related files analyzed, and their sha256sum

Severity Section Summary

■ High 2.1.1 Negative deposits allow stealing funds
■ High 2.1.2 Contracts vulnerable to double satisfaction attacks
■ High 2.1.3 Missing constructor in equality instance
■ High 2.1.4 Inaccurate formulation of Money preservation
■ High 2.1.6 Missing description of Merkleization
■ High 2.1.7 Positive balances are not checked for the output state
■ High 2.1.8 Non-validated Marlowe states
■ High 2.1.9 Total balance of ending state uncomputed
■ High 2.1.10 Unchecked ending balance
■ High 2.1.12 Different insertion functions used in Isabelle and Haskell code
■ Medium 2.1.5 Insufficient documentation of Money preservation
■ Medium 2.1.11 Partial functions used outside their domain
■ Medium 2.1.13 Missing specification tests
■ Medium 2.3.1 Unnecessarily large proofs
… … …

Table 1.5: Table of findings

4

Severity Section Summary

■ Medium 2.4.1 Variable shadowing in applyAllLoop

■ Medium 2.5.1 Lack of guidelines for creating cooperating contracts
■ Medium 2.6.1 Name shadowing in applyAllInputs

■ Medium 2.6.2 Non-isomorphic types in playTraceAux

■ Medium 2.7.1 More precise failure checks
■ Medium 2.7.2 Missing tests
■ Low 2.2.1 Lack of explanation regarding changing choices
■ Low 2.2.2 Undefined reference
■ Low 2.2.3 Lack of explanation for necessity of Environment type
■ Low 2.2.4 Unclear meaning of execution environment
■ Low 2.2.5 Unexplained interval data types
■ Low 2.2.6 Incomplete explanation for TransactionOutput
■ Low 2.2.7 Code snippets switch languages
■ Low 2.2.8 Repeated definition of IntervalResult
■ Low 2.2.9 Poorly named variable newAccount
■ Low 2.2.10 Poorly named variable acc in specification
■ Low 2.2.11 Inaccurate specification of giveMoney
■ Low 2.2.12 Redundant evaluation in addMoneyToAccount

■ Low 2.2.13 Redundant statement regarding addition
■ Low 2.2.14 Missing implementation for negation case of evalValue
■ Low 2.2.15 Missing parentheses in div specification
■ Low 2.2.16 Unclear division explanation
■ Low 2.2.17 Discrepancy with evalValue

■ Low 2.2.18 Missing evalValue lemmas in specification
■ Low 2.2.19 Typo in Use Value case of evalValue
■ Low 2.2.20 Unexplained parameters of playTrace
■ Low 2.2.21 Type parameter discrepancy in playTrace

■ Low 2.2.22 Money preservation on failing transactions not specified
■ Low 2.2.23 Complicated definition of allAccountsPositive
■ Low 2.2.24 Discrepancy with Isabelle code for allAccountsPositive
■ Low 2.2.25 Misleading or incorrect formula for contract not holding funds
■ Low 2.2.26 Different format for lemma statement
■ Low 2.2.27 Function isClosedAndEmpty is unexplained
■ Low 2.2.28 Top-down definitions
■ Low 2.2.29 No mention of Isabelle lemmas in specification
■ Low 2.3.2 Long lines in lemmas
… … …

Table 1.5: Table of findings
5

Severity Section Summary

■ Low 2.3.3 Confusing auxiliary lemmas
■ Low 2.3.4 Undescriptive variable names
■ Low 2.3.5 Involved proof of insert_valid
■ Low 2.3.6 Repeated verbose expression
■ Low 2.3.7 Inconsistent variable name valTrans
■ Low 2.3.8 Unused binding interAccs

■ Low 2.3.9 Undescriptive variable name acc
■ Low 2.3.10 Misleading indentation
■ Low 2.3.11 Missing theorem regarding playTrace

■ Low 2.3.12 Unconcise goal in reduceContractStepPayIsQuiescent

■ Low 2.3.13 Misleading lemma names
■ Low 2.3.14 Misleading variable name reduced
■ Low 2.3.15 Undescriptive name beforeApplyAllLoopIsUseless
■ Low 2.3.16 Unused and undocumented lemmas
■ Low 2.3.17 Redundant reduceContractStep lemmas
■ Low 2.3.18 Redundant transferMoneyBetweenAccounts_preserves
■ Low 2.3.19 Duplicated lemmas
■ Low 2.3.20 Redundant computeTransaction lemmas
■ Low 2.3.21 Complicated formulation of updateMoneyInAccount_money2_aux
■ Low 2.3.22 Complicated proofs that can be simplified
■ Low 2.3.23 Inconsistent style when applying constructor
■ Low 2.3.24 Unsimplified boolean formulas
■ Low 2.3.25 Typo with “independet” in multiple lemmas
■ Low 2.3.26 Poorly named acc lemmas
■ Low 2.3.27 Verbose lemma statement playTraceAuxIterative_base_case
■ Low 2.3.28 playTrace_only_accepts_maxTransactionsInitialState not written as theorem
■ Low 2.3.29 Inconsistent style with assumptions
■ Low 2.3.30 Function validTimeInterval unnecessarily unfolded in lemma
■ Low 2.3.31 Overly specific auxiliary lemma
■ Low 2.3.32 playTrace_preserves_valid_state not written as theorem
■ Low 2.3.33 Unnecessary assumptions
■ Low 2.4.2 Undescriptive name moneyInPayment
■ Low 2.4.3 Typo in section name
■ Low 2.4.4 Typo in comment
■ Low 2.4.5 Unclear need for multiple formulations for positive accounts
■ Low 2.4.6 Variable name discrepancy in reductionLoop

… … …

Table 1.5: Table of findings
6

Severity Section Summary

■ Low 2.4.7 Typo in constructor
■ Low 2.4.8 Unclear function name calculateNonAmbiguousInterval
■ Low 2.4.9 Non-modularized file SingleInputTransactions.thy
■ Low 2.4.10 Misleading function names
■ Low 2.4.11 Unused parameter in maxTransactionCaseList

■ Low 2.4.12 Duplicated isValidInterval function
■ Low 2.5.2 No reference to creating a minting policy
■ Low 2.5.3 Argument for Contract in txInfoData not specified
■ Low 2.5.4 Merkleization section not detailed enough
■ Low 2.5.5 Unnecessary constraint
■ Low 2.5.6 Asymmetry between role and wallet payouts
■ Low 2.5.7 Incorrect description of rolePayoutValidator
■ Low 2.5.8 Unspecified initial state
■ Low 2.5.9 Unspecified behavior when multiple cases can apply
■ Low 2.6.3 Variable names differ from Isabelle code
■ Low 2.6.4 Naming of functions and variables
■ Low 2.6.5 Unused functions
■ Low 2.6.6 Comments
■ Low 2.6.7 Record updates in playTraceAux

■ Low 2.6.8 Potential simplifications
■ Low 2.6.9 computeTransaction differs from the Isabelle implementation
■ Low 2.6.10 Constraint implementations differ from description
■ Low 2.6.11 Missing argument of computeTransaction
■ Low 2.6.12 Missing smallMarloweValidator

■ Low 2.6.13 Incorrect constraint reference
■ Low 2.6.14 MarloweParams differs from the specification
■ Low 2.6.15 Timeout boundary differs from the specification

Table 1.5: Table of findings

7

Chapter 2

Findings

During the inspection of the code, the team has noticed various issues, outlined in Table 1.5 and pre-
sented in detail in this chapter. Section 2.1 lists the main concerns which could endanger users.

We use the following severities to classify issues:

High Exposes users to harm or can expose them to harm if disregarded when changing the code.

Medium Can expose users to harm if disregarded when making changes, but likely need to compound
with other high severity concerns to be exploitable.

Low Inconsistencies or omissions that make the review and development work harder.

2.1 Main concerns

2.1.1 ■ Negative deposits allow stealing funds
Severity: High

File marlowe-cardano-specification.md, Constraint 6 The income from deposits is computed by
adding up the deposit inputs, regardless of whether they are negative, while the semantics considers
them as zero deposits. Combined with the absence of a balance check on the ending Marlowe state, this
allows the ending balance to differ from the value paid to the Marlowe validator.

This disagreement can be exploited to steal money from a flawed Marlowe contract that allows a
negative deposit. The issue is demonstrated in Section 3.2.1.

2.1.2 ■ Contracts vulnerable to double satisfaction attacks
Severity: High

File marlowe-cardano-specification.md, Constraint 15 No datum is required for outputs fulfilling
payments to addresses generated by the evaluation of a Marlowe contract. This implies that these out-
puts are vulnerable to double satisfaction in transactions involving other contracts that pay to the same
wallets. An example is discussed in Section 3.2.2.

One way to strengthen the implementation is for the Marlowe validator to demand that outputs
paid to addresses contain a datum that identifies the contract instance, like the TxOutRef of the validator
UTxO being spent. Then cooperation with other contracts is possible without double satisfaction if the
validators of the other contracts demand a different datum for their outputs.

2.1.3 ■ Missing constructor in equality instance
Severity: High

File Semantics.hs, Class instance Eq ReduceWarning, line 845 Theconstructor ReduceAssertionFailed
is not mentioned and compares False against itself. This might cause validators to fail checking the pres-
ence of this particular warning.

8

2.1.4 ■ Inaccurate formulation of Money preservation
Severity: High

File specification-v3-rc1.pdf, Section 3.1 Money preservation, page 29 As the property stands,
it is permitted to make deposits in one currency and return payments in a different currency. As long
as the sums of the amounts match, the equality is satisfied. Yet it is unlikely that the participants of the
contract would agree that money has been preserved.

Money preservation is a property statedwith an equality. The left hand side is the sum of the deposits
done by a list of transactions. The right hand side of the equality is the sum of all the payments done
in the same list of transactions. Each sum, in turn, is represented as a single integer which aggregates
the amounts of the various payments and deposits, irrespective of what currencies correspond to these
amounts.

2.1.5 ■ Insufficient documentation of Money preservation
Severity: Medium

File specification-v3-rc1.pdf, Section 3.1 Money preservation, page 29 Money preservation is
formulated in terms of functions that are not discussed in the specification. It is necessary to explain
the meaning of these functions in sufficient detail so readers can understand the property.

2.1.6 ■ Missing description of Merkleization
Severity: High

File specification-v3-rc1.pdf, Merkleization There is no property about merkleization, but mer-
kleization is implemented in the Cardano integration.

Some relevant properties could be:

a) The merkleized contract produces the same payments as the analogous regular contract.

b) If a merkleized case input is applied successfully, it implies that the contract hash in the input
corresponds to the continuation of the contract.

c) Merkleizing and unmerkleizing a contract gives back the original contract.

2.1.7 ■ Positive balances are not checked for the output state
Severity: High

File marlowe-cardano-specification.md, Constraint 13 Positive balances are only checked for the
input, not for the output Marlowe state. If the semantics are flawed, a transaction can produce an
unspendable output that does not satisfy this constraint.

If such a transaction is accepted, no further evaluation will be possible since all subsequent transac-
tions will be rejected due to the very same Constraint 13. This is an hypothetical attack vector, where
a malicious actor could send a transaction to block a contract.

2.1.8 ■ Non-validated Marlowe states
Severity: High

File marlowe-cardano-specification.md, Missing constraint Thevalidator is not specified to check

9

that the Marlowe states in the input and output datums are valid. This condition is necessary for the
lemmas about the Marlowe semantics to be applicable. The Marlowe state could become invalid if there
is a flaw in the implementation of the semantics.

It also could be possible for theMarlowe state to be invalid if someone pays an output to theMarlowe
validator with an invalid Marlowe state. Though this problem could be addressed with off-chain checks
that prevent sending transactions that spend outputs with invalid Marlowe states. If off-chain checks
are used, a note in the specification about how this is handled would be helpful.

An example showing betrayed user expectations is discussed in Section 3.2.3.
For a valid Marlowe state, the association lists for bound values, accounts, and choices have keys

sorted and without duplicates.

2.1.9 ■ Total balance of ending state uncomputed
Severity: High

File marlowe-cardano-specification.md, Constraint 6 The constraint says

The beginning balance plus the deposits equals the ending balance plus the payments.

However, the Marlowe validator never computes the total balance of the accounts in the ending
Marlowe state. Instead, the ending balance is assumed to be whatever value is paid by the transaction
to the Marlowe validator. The natural language should describe precisely what is being checked.

2.1.10 ■ Unchecked ending balance
Severity: High

File marlowe-cardano-specification.md, Constraint 5 The balance of the starting Marlowe state is
checked to match the value in the input. However, the validator does not check that the ending balance
matches the value in the output paid to the Marlowe validator. Similarly to Issue 2.1.7, if there are flaws
in the semantics that cause the ending balance to differ from the actual value paid to the validator, this
constraint would prevent any transaction from spending the output.

The specification should at least discuss why the check is absent together with the other similar
checks that are not implemented (checking that ending accounts have positive balances, checking that
the ending Marlowe state is valid).

2.1.11 ■ Partial functions used outside their domain
Severity: Medium

File MoneyPreservation.thy, various functions moneyInRefundOneResult, moneyInApplyResult, mo-
neyInApplyAllResult, moneyInTransactionOutput, and moneyInPlayTraceResult have strange mean-
ings when the result is an error. Arguably, on error there is no money to retrieve, so the return type
should be (Token × int) option instead.

Some lemmas rely on this behavior to have equalities hold even in cases of errors, but the cost is
that the meaning is so surprising that the reader may be confused by it. It would be more reliable to
have explicit and weaker lemmas that assert equalities only when there are no errors.

10

2.1.12 ■ Different insertion functions used in Isabelle and Haskell code
Severity: High

File Semantics.hs, Several functions Where MList.insert is used in the Isabelle semantics, As-
socMap.insert is used in the Cardano implementation. However, the functions are not equivalent as
demonstrated by the following examples:

AssocMap.insert 'a' 1 [('b', 0)] == [('b', 0), ('a', 1)]
-- whereas
MList.insert 'a' 1 [('b', 0)] == [('a', 1), ('b', 0)]

AssocMap.insert 'b' 1 [('a', 0), (‘b’, 0), (‘b’, 0)] == [('a', 0), ('b', 1), (‘b’, 1)]
-- whereas
MList.insert 'b' 1 [(‘a’, 0), ('b', 0), ('b', 0)] == [('a', 0), ('b', 1), ('b', 0)]

This renders the Isabelle lemmas inapplicable for the Cardano integration. The lemmas need to
demand some properties of an insert function without fully spelling it out, or the Cardano integration
needs to use MList.insert instead of AssocMap.insert.

Similarly, functions AssocMap.delete and MList.delete differ in behavior when the input map is
not sorted:

AssocMap.delete 'a' [(‘b’, 0), (‘a’, 0)] == [('b', 0)]
-- whereas
MList.delete 'a' [(‘b’, 0), ('a', 0)] == [('b', 0), ('a', 0)]

Functions AssocMap.lookup and MList.lookup also differ in behavior when the input map is not
sorted:

AssocMap.lookup 'a' [(‘b’, 0), (‘a’, 0)] == Just 0
-- whereas
MList.lookup 'a' [(‘b’, 0), ('a', 0)] == Nothing

The following usage places were found:

• Line 395, evalValue depends on moneyInAccount which depends on AssocMap.lookup.

• Line 413, evalValue depends on AssocMap.lookup.

• Line 428, evalObservation depends on AssocMap.member.

• Line 456, function updateMoneyInAccount relies on AssocMap.delete and AssocMap.insert.

• Line 482, function reduceContractStep relies on AssocMap.insert.

• Line 567, function applyAction relies on AssocMap.insert.

2.1.13 ■ Missing specification tests
Severity: Medium

File Spec/Marlowe/Semantics/Compute.hs, There are no tests for the properties in Section 3 of
specification-v3-rc1.pdf. Besides checking that there are no translation mistakes, these properties
would also help contrasting the assumptions in the Isabelle and the Haskell sides, like the meaning of
validity of an association list, which is focused in the previous issue.

11

https://github.com/input-output-hk/plutus/blob/v1.0.0/plutus-tx/src/PlutusTx/AssocMap.hs#L147-L148
https://github.com/input-output-hk/plutus/blob/v1.0.0/plutus-tx/src/PlutusTx/AssocMap.hs#L147-L148

2.2 Marlowe specification

2.2.1 ■ Lack of explanation regarding changing choices
Severity: Low

File specification-v3-rc1.pdf, Section 2.1.4 Choices, page 10 Choices can only be changed when
evaluating When statements. This is something only evident after looking at the implementation of
computeTransaction. It needs to be discussed when first introducing choices and the When contract.

2.2.2 ■ Undefined reference
Severity: Low

File specification-v3-rc1.pdf, Section 2.1.7 Contracts, page 13 There is an undefined reference.

2.2.3 ■ Lack of explanation for necessity of Environment type
Severity: Low

File specification-v3-rc1.pdf, Section 2.1.8 State and Environment, page 14 An Environment
type is introduced, but it is unclear why it is needed as it is defined as a synonym for time intervals.

2.2.4 ■ Unclear meaning of execution environment
Severity: Low

File specification-v3-rc1.pdf, Section 2.1.8 State and Environment, page 14 The meaning of
the execution environment of the transaction is unclear. This is due to the concept of transaction being
assumed by the specification and never formally introduced.

The specification reads

The execution environment of a Marlowe contract simply consists of the (inclusive) time
interval within which the transaction is occurring.

One has to infer that evaluating a Marlowe contract is undefined if it does not happen within a
transaction, as otherwise the description of the execution environment would not make sense. It would
be necessary to establishmore explicitly the relationship between the contract evaluation and the notion
of transaction.

2.2.5 ■ Unexplained interval data types
Severity: Low

File specification-v3-rc1.pdf, Section 2.1.8 State and Environment, page 14 The meaning of
the data types IntervalError and IntervalResult needs to be explained.

2.2.6 ■ Incomplete explanation for TransactionOutput
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.1 Compute Transaction, page 15 The meaning of the

12

data type TransactionOutput needs to be explained. More generally, the meaning of the return types
of most functions has to be explained. Currently, the meaning can only be inferred from looking at how
the types are used, which makes it harder to identify if they are used as intended.

The purpose of these types needs to be made explicit so it can be checked if the code is doing what
is intended.

2.2.7 ■ Code snippets switch languages
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.1 Compute Transaction, page 15 The specification
changes from using Isabelle to using Haskell henceforth. Making the reader aware of the criteria for
the language change would help maintaining the document.

2.2.8 ■ Repeated definition of IntervalResult
Severity: Low

File specification-v3-rc1.pdf, Sections 2.1.8 State and Environment, 2.2.2 Fix Interval, pages
14, 16 The IntervalResult type is defined twice in the specification. One should be removed.

2.2.9 ■ Poorly named variable newAccount

Severity: Low

File specification-v3-rc1.pdf, Section 2.2.6 Reduce Contract Step, page 19 In the implementa-
tion of the function reduceContractStep, the variable newAccount should be named newAccounts.

2.2.10 ■ Poorly named variable acc in specification
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.8 Apply Cases, page 22 On the last equation of apply-
Cases, acc should be named input.

2.2.11 ■ Inaccurate specification of giveMoney
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.9 Utilities, page 22 It says

The giveMoney function transfers funds internally between accounts.

which is not accurate. It should say instead

The giveMoney function deposits funds to an internal account.

This function is confusing in that it takes the account identifier of the paying account which is not
used for anything other than filling a field in the returned value.

13

2.2.12 ■ Redundant evaluation in addMoneyToAccount

Severity: Low

File specification-v3-rc1.pdf, Section 2.2.9 Utilities, page 22 addMoneyToAccount is redun-
dantly evaluating money <= 0when invoking updateMoneyInAccount. The else branch could be replaced
instead with insert (accId, token) money accountsV.

2.2.13 ■ Redundant statement regarding addition
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, page 24 It says that addition is as-
sociative and commutative. This is true but it is already implied by the equation preceding the statement.
Maybe change to

Note that addition is associative and commutative.

or remove the redundant statement.

2.2.14 ■ Missing implementation for negation case of evalValue
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, page 24 Negation for evalValue
does not show the implementation, just one lemma about NegValue, which is inconsistent with how
other operations are presented.

2.2.15 ■ Missing parentheses in div specification
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, page 25 On page 25 formula

c ̸= 0 ⇒ c ∗ a div (c ∗ b) = a div b

needs additional parentheses around the term c ∗ a, otherwise it can be parsed as

c ̸= 0 ⇒ c ∗ (a div (c ∗ b)) = a div b

which does not hold (Counter-example: c = 2, a = 3, b = 2). The lemma divMultiply in the file
Semantics.thy does use extra parentheses around c ∗ a.

2.2.16 ■ Unclear division explanation
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, page 25 It says

Division is a special case because we only evaluate to natural numbers.

The meaning of this statement needs to be further explained, since the arguments of DivValue could
evaluate to negative numbers.

14

2.2.17 ■ Discrepancy with evalValue

Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, pages 23–26 The order of some
cases for evalValue is different in the specification text and in the actual Isabelle code, and several cases
(for example, NegValue) are missing from the specification entirely.

Moreover, the definition of evalValue is juxtaposed with some lemmas about its behavior (for ex-
ample, AddValue being associative and commutative), making it harder to match the specification text
with the Isabelle code.

2.2.18 ■ Missing evalValue lemmas in specification
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, pages 23–26 Not all lemmas about
evalValue are listed in the specification. The absent lemmas include evalDoubleNegValue, evalMul-
Value, evalSubValue, and all division lemmas.

2.2.19 ■ Typo in Use Value case of evalValue
Severity: Low

File specification-v3-rc1.pdf, Section 2.2.10 Evaluate Value, page 26 TheUse Value case men-
tions TimeIntervalEnd instead of UseValue.

2.2.20 ■ Unexplained parameters of playTrace
Severity: Low

File specification-v3-rc1.pdf, Section 3 Marlowe Guarantees, page 28 Theparameters of the func-
tion playTrace need to be explained.

2.2.21 ■ Type parameter discrepancy in playTrace

Severity: Low

File specification-v3-rc1.pdf, Section 3 Marlowe Guarantees, page 28 Thefirst parameter of play-
Trace in the specification is int, while it is POSIXTime in the code. Even though the latter is an alias for
the former, it is beneficial to use the POSIXTime name both for consistency and readability.

2.2.22 ■ Money preservation on failing transactions not specified
Severity: Low

File specification-v3-rc1.pdf, Section 3.1 Money preservation, page 29 Money preservation is
expressed with an equality. This equality, however, only ensures money preservation for those lists of
transactions that produce no error. In other words, there is no guarantee that money will be preserved
for those lists of transactions that fail.

This is not a concern in practice because the lists of transactions that fail to evaluate are not accepted
in the blockchain. However, this should be made explicit in the explanation of the property.

15

2.2.23 ■ Complicated definition of allAccountsPositive
Severity: Low

File specification-v3-rc1.pdf, Section 3.3 Possitive Accounts, page 30 The definition of
allAccountsPositive is complicated and can be refactored as all ((_, money) -> money > 0).

2.2.24 ■ Discrepancy with Isabelle code for allAccountsPositive
Severity: Low

File specification-v3-rc1.pdf, Sections 3.3 Positive Accounts, page 30 The allAccountsPositive
function is defined differently in the specification and in the Isabelle code, although both definitions
show the same behavior. These definitions need to be consolidated.

2.2.25 ■ Misleading or incorrect formula for contract not holding funds
Severity: Low

File specification-v3-rc1.pdf, Section 3.6.3 Contract Does Not Hold Funds After it Closes, page
32 The statement in natural language looks unconnected from the proposed formula. Otherwise, it is
unclear how not holding funds forever is a consequence of producing no warnings.

2.2.26 ■ Different format for lemma statement
Severity: Low

File specification-v3-rc1.pdf, Sections 3.6.2 All Contracts Have a Maximum Time, page 32 The
lemma is stated using the proof derivation tree format as opposed to the rest of the specification and
the Isabelle code.

2.2.27 ■ Function isClosedAndEmpty is unexplained
Severity: Low

File specification-v3-rc1.pdf, Section 3.6.2 All Contracts Have a Maximum Time, page 32 The
function isClosedAndEmpty needs to be explained.

2.2.28 ■ Top-down definitions
Severity: Low

File specification-v3-rc1.pdf, Section 2 In Section 2, the order of definitions is reversed, and the
reader is thus faced with functions which call other functions that have not been introduced yet, despite
the claim in Section 1.3 that the definitions will be presented bottom-up.

2.2.29 ■ No mention of Isabelle lemmas in specification
Severity: Low

File specification-v3-rc1.pdf, Multiple sections Generally, readability can be improved by men-
tioning the Isabelle lemma names alongside their statements. This way, it would be much easier to
search for the actual Isabelle code and proofs matching the informal specification text, and compare the
two.

16

2.3 Lemmas and proofs

2.3.1 ■ Unnecessarily large proofs
Severity: Medium

Several Isabelle files, several lemmas Some Isabelle proofs are written with long apply-scripts,
where Isar would document the proof better. Proofs could also be split using more auxiliary lemmas.

As the proofs stand, it is hard to figure out why a proof step fails, after changes elsewhere required
a proof to be updated. Since the newly-failing proof step was designed with specific goals in mind,
and changes in the code may lead to it facing a different set of goals, the maintainer might need to
reconstruct the whole structure of the proof from an older version to infer state that Isabelle produces
at each step.

What Isar brings is making the intention of the author explicit at every step of the proof. This helps
the maintainer of the proofs and fixes the concerns mentioned above.

IOG will likely have to update the proofs. We conjecture that it will happen at least every time they
target a new platform. In the case of Cardano, they need to extend the semantics to explain Merklei-
zation. Another action that would make long proofs easier to understand is to split them using more
auxiliary lemmas, thus feeding the information to the reader in smaller chunks.

Some examples of large proofs:

• in MoneyPreservation.thy, lemmas reduceContractStep_preserves_money and
reductionLoop_preserves_money

• in SingleInputTransactions.thy, lemmas applyAllInputsPrefix_aux,
computeTransactionIterative, and computeTransactionStepEquivalence_error

2.3.2 ■ Long lines in lemmas
Severity: Low

Several Isabelle files, several lemmas Lines are sometimes long which makes it difficult to under-
stand the lemmas. Lemmas need to be formulated expressing one hypothesis per line and the conclusion
on a separate line. Complex hypotheses need to be indented using several lines to expose their structure.

Besides the effort of scrolling the text horizontally, the hypotheses are hard to separate visually, and
so is the conclusion. Furthermore, when a hypothesis is a nested implication it is difficult to see where
it ends without further indentation.

Some examples of lemmas with long lines or non-trivial hypothesis follow.

• in CloseSafe.thy, lemmas closeIsSafe_reduceContractUntilQuiescent, and closeIsSafe_re-
ductionLoop

• in MoneyPreservation.thy, lemmas reductionLoop_preserves_money_Payment_not_ReduceNoWarn-
ing, reductionLoop_preserves_money_Payment and reduceContractStep_preserves_money_acc-
_to_party

• in SingleInputTransactions.thy, lemma applyAllLoop_longer_doesnt_grow

• in TimeRange.thy, lemmas reduceStep_ifCaseLtCt and reduceLoop_ifCaseLtCt

• in ValidState.thy, lemma reductionLoop_preserves_valid_state_aux

17

2.3.3 ■ Confusing auxiliary lemmas
Severity: Low

Several Isabelle files, several lemmas Some Isabelle proofs resort to declaring auxiliary lemmas
with names suffixed with _aux. Sometimes these lemmas are not expressed succinctly, and look more
like a punctual copy of the state of some particular proof that is later developed. For the sake of maintain-
ing the proofs, it would be necessary to structure them in a way that presents the information piecewise
to the reader. More generally, even auxiliary lemmas should have a well-defined meaning.

We found this problem at least in the following:

• in QuiescentResult.thy, lemmas reduceContractStepPayIsQuiescent, reductionLoopIsQuies-
cent_aux, and applyAllInputsLoopIsQuiescent_loop

• in PositiveAccounts.thy, lemma positiveMoneyInAccountOrNoAccountImpliesAllPositive_aux2

• in SingleInputTransactions.thy, lemma applyAllInputsPrefix_aux

2.3.4 ■ Undescriptive variable names
Severity: Low

Several Isabelle files, several lemmas Many Isabelle proof statements and proofs use uninformative
variable names. The most common example occurs with variables named x11, x12, etc. These inhibit the
reader from easily understanding the lemma statements, and often require looking back at constructors
to understand what these variables represent.

Some examples of lemmas with these uninformative variable names follow:

• in QuiescentResult.thy, lemma reductionLoopIsQuiescent_aux

• in SingleInputTransactions.thy, lemmas beforeApplyAllLoopIsUseless and
applyAllInputsPrefix_aux

• in ValidState.thy, lemma reductionLoop_preserves_valid_state_aux

• in TimeRange.thy, lemmas resultOfReduceIsCompatibleToo, resultOfReductionLoopIsCompat-
ibleToo, resultOfReduceUntilQuiescentIsCompatibleToo, reduceLoop_ifCaseLtCt, and
reduceContractUntilQuiescent_ifCaseLtCt

2.3.5 ■ Involved proof of insert_valid
Severity: Low

File MList.thy, theorem insert_valid, line 66 The proof of insert_valid sprouts three other lem-
mas of difficult characterization: insert_valid_aux, insert_valid_aux2, and insert_valid_aux3. These
lemmas make assumptions with implications that get in the way of understanding them in isolation.

An alternative to make the proof pieces more reusable is to use instead the following set of lemmas,
which also offers insight on how function insert interacts with predicates sorted and distinct:

lemma insert_set:
"set (map fst (insert a b xs)) = set (map fst xs) ∪ { a }"

lemma insert_sorted:
"List.sorted (map fst c) =⇒ List.sorted (map fst (insert a b c))"

18

lemma insert_distinct :
"List.distinct (map fst c)
=⇒
List.sorted (map fst c)
=⇒
List.distinct (map fst (MList.insert a b c))"

which then can be combined in the proof of insert_valid as follows:

theorem insert_valid2 : "valid_map c =⇒ valid_map (MList.insert a b c)"
using insert_sorted[of c a b] insert_distinct[of c a b] by fastforce

The proofs of the lemmas can be found in Appendix B.

2.3.6 ■ Repeated verbose expression
Severity: Low

File MoneyPreservation.thy, lemma removeMoneyFromAccount_preservation, line 202 The expres-
sion

giveMoney
accId
(Party p)
tok
paidMoney
(updateMoneyInAccount accId tok (balance - paidMoney) accs)

is large and used in other lemmas as well. It would need to be moved to a separate function to save the
effort of reading it repeteadly.

2.3.7 ■ Inconsistent variable name valTrans

Severity: Low

File MoneyPreservation.thy, lemma transferMoneyBetweenAccounts_preserves_aux, line 257 The
lemma uses a variable valTrans where other proofs use the name paidMoney. To convey the meaning
of the variable faster, the same name should be used consistently in all places.

2.3.8 ■ Unused binding interAccs

Severity: Low

File MoneyPreservation.thy, lemma transferMoneyBetweenAccounts_preserves_aux, line 263 The
binding interAccs was probably intended to be used on this line. It should either be used or removed
from the premise.

2.3.9 ■ Undescriptive variable name acc

Severity: Low

File MoneyPreservation.thy, lemma transferMoneyBetweenAccounts_preserves, line 295 This lemma
has a variable acc that is used together with tok2. It would be more descriptive to call it accId2.

19

2.3.10 ■ Misleading indentation
Severity: Low

File MoneyPreservation.thy, lemmas reductionLoop_preserves_money_NoPayment_not_ReduceNoWarn-
ing, reductionLoop_preserves_money_NoPayment, lines 430, 439 The indentation is misleading: the
premises on these lines are indented as if they are a part of the previous functional premise.

2.3.11 ■ Missing theorem regarding playTrace

Severity: Low

File PositiveAccounts.thy, playTrace preserves valid and positive state There is no theorem
that playTrace keeps the state valid and positive when given a state which is valid and positive. This triv-
ially follows from playTraceAux_preserves_validAndPositive_state but no such theorem is present.

2.3.12 ■ Unconcise goal in reduceContractStepPayIsQuiescent

Severity: Low

File QuiescentResult.thy, lemma reduceContractStepPayIsQuiescent, line 8 This lemma does not
express its goal concisely, as it makes no mention of reduceContractStep in the formulation. Chang-
ing the first assumption to reduceContractStep env sta (Pay x21 x22 tok x23 x24) makes more explicit
in which contexts this lemma can be useful. Modifying this assumption requires an additional apply
simp to be added to the proof (before line 30) for the lemma to go through. Further, an additional
apply simp will need to be added in lemmas reduceContractStepIsQuiescent (before line 44) and
timedOutReduce_only_quiescent_in_close (Timeout.thy, before line 128) as well.

2.3.13 ■ Misleading lemma names
Severity: Low

File PositiveAccounts.thy, lemma reduceOne_gtZero, line 80 This lemma should be renamed as
refundOne_gtZero.
File QuiescentResult.thy, lemma reduceOneIsSomeIfNotEmptyAndPositive, line 32 This lemma
should be renamed as refundOneIsSomeIfNotEmptyAndPositive.
File TransactionBound.thy, lemma computeTransaction_decreases_maxTransaction_aux, line 240
This lemma should be renamed as applyAllInputs_decreases_maxTransactions or applyAllInputs-
_reduced_decreases_maxTransactions.

2.3.14 ■ Misleading variable name reduced

Severity: Low

File QuiescentResult.thy, lemmas reductionLoop_reduce_monotonic, reduceContractUntilQuies-
cent_ifDifferentReduced, lines 138, 153 The boolean variable name reduce would be better named
reduced as it is signifying that the contract has been reduced.

2.3.15 ■ Undescriptive name beforeApplyAllLoopIsUseless

Severity: Low

20

File SingleInputTransactions.thy, lemma beforeApplyAllLoopIsUseless, line 270 This lemma
seems to say that reduceContractUntilQuiescent has no effect when composed with applyAllLoop,
because applyAllLoop evaluates reduceContractUntilQuiescent, and reduceContractUntilQuiescent
is idempotent.

A more descriptive name for this lemma could be reduceContractUntilQuiescent_hasNoEffect-
_before_applyAllLoop

2.3.16 ■ Unused and undocumented lemmas
Severity: Low

Several Isabelle files, several lemmas Some lemmas are never used, and they would need comments
motivating their presence:

a. In file MoneyPreservation.thy, line 257, lemma transferMoneyBetweenAccounts_preserves_aux.

b. In file QuiescentResult.thy

b.1. Line 5, lemma reduceOne_onlyIfNonEmptyState
b.2. Line 153, lemma reduceContractUntilQuiescent_ifDifferentReduced

c. In file PositiveAccounts.thy, line 66, lemma positiveMoneyInAccountOrNoAccount_sublist_gtZero.
Furthermore, it is identical to positiveMoneyInAccountOrNoAccount_gtZero_preservation, but
with an additional assumption money > 0.

d. In file ValidState.thy

d.1. Line 9, lemma valid_state_valid_choices
d.2. Line 13, lemma valid_state_valid_valueBounds

e. In file SingleInputTransactions.thy, line 1214, lemma traceListToSingleInput_isSingleInput.
It is mentioned in a commented out line in StaticAnalysis.thy. Furthermore, the lemma can be
expressed more concisely as

Linterval = inte, inputs = inp_h # inp_tM # t = traceListToSingleInput t2 =⇒ inp_t = []

2.3.17 ■ Redundant reduceContractStep lemmas
Severity: Low

File MoneyPreservation.thy, lemma reduceContractStep_preserves_money_acc_to_acc_aux, line 310
This lemma is weaker than transferMoneyBetweenAccounts_preserves. If we replace its usage at line
351 with transferMoneyBetweenAccounts_preserves, the proof goes through.

2.3.18 ■ Redundant transferMoneyBetweenAccounts_preserves
Severity: Low

File MoneyPreservation.thy, lemma reduceContractStep_preserves_money_acc_to_acc, line 332
This lemma is weaker than transferMoneyBetweenAccounts_preserves. We can replace its usage site
in line 376

21

using
reduceContractStep_preserves_money_acc_to_acc
validAndPositive_state.simps
by blast

with

using transferMoneyBetweenAccounts_preserves validAndPositive_state.simps by auto

2.3.19 ■ Duplicated lemmas
Severity: Low

File PositiveAccounts.thy, theorems computeTransaction_gtZero, accountsArePositive, lines 257,
369 These theorems are identical (modulo variable names), and one of them should be removed.
File PositiveAccounts.thy, ValidState.thy, lemma valid_state_valid_accounts, lines 381, 5 This
lemma is defined twice, once in each of these files. One of them should be removed.

2.3.20 ■ Redundant computeTransaction lemmas
Severity: Low

File ValidState.thy, lemmas computeTransaction_preserves_valid_state_aux,
computeTransaction_preserve_valid_state, lines 160, 176 If computeTransaction_preserves_valid-
_state_aux is rewritten to have the same formulation as computeTransaction_preserves_valid_state,
then the lemma (with the exact same proof) is still accepted, and these lemmas become duplicates of
each other. Thus, no auxiliary lemma is needed.

2.3.21 ■ Complicated formulation of updateMoneyInAccount_money2_aux
Severity: Low

File MoneyPreservation.thy, lemma updateMoneyInAccount_money2_aux, line 159 updateMoneyIn-
Account_money2_aux could be expressed simpler by removing the hypothesis moneyToPay >= 0, leaving

valid_map (((thisAccId, tok), money) # tail) =⇒
allAccountsPositive (((thisAccId, tok), money) # tail) =⇒
moneyInAccount thisAccId tok (((thisAccId, tok), money) # tail) > 0"

The proof of updateMoneyInAccount_money2 can then in turn be trivially adjusted so it still works, by
changing the step cases

cases "moneyInAccount accId tok ((thisAccIdTok, money) # tail) + moneyToPay ≤ 0"

to

cases "moneyInAccount accId tok ((thisAccIdTok, money) # tail) ≤ 0"

2.3.22 ■ Complicated proofs that can be simplified
Severity: Low

File MoneyPreservation.thy, lemma moneyInInput_is_positive, line 53 The proof could be more
general with apply (cases x; simp) instead of using metis.

22

File MoneyPreservation.thy, lemma reductionLoop_preserves_money_NoPayment_not_ReduceNoWarning,
line 434 This lemma can be proved directly with metis reductionLoop_preserves_money_NoPayment,
and reversing the order in which the lemmas are defined.
File TimeRange.thy, lemma inIntervalIdempotentToIntersectInterval, line 5 The lemma can use
a shorter proof: apply (cases min2;cases max2;auto) done.
File TimeRange.thy, lemma inIntervalIdempotency1, inIntervalIdempotency2, lines 20, 36 These
lemmas use the smt tactic and metis where a simpler Isar proof would work, for example:

lemma inIntervalIdempotency1 :
assumes "inInterval (x, y) (intersectInterval b c)"
shows "inInterval (x, y) b"

proof (cases b)
case [simp]:(Pair b1 b2)
thus ?thesis proof (cases c)
case (Pair c1 c2)
thus ?thesis using assms by (cases c1; cases c2; cases b1;cases b2; simp)

qed
qed

File SemanticsGuarantees.thy, Various lemmas/instantiations Multiple lemmas and linorder in-
stantiations in this file repeat auxiliary facts within the proof that are not necessary. For example, in
the linorder instantiation for Party, lines 51–53 state

have "(x < y) = (x ≤ y ∧ ¬ y ≤ (x :: Token))"
by (meson less_Tok.simps less_Token_def less_eq_Token_def linearToken)

thus "(x < y) = (x ≤ y ∧ ¬ y ≤ x)" by simp

This can be rewritten to avoid repeating the fact as

show "(x < y) = (x ≤ y ∧ ¬ y ≤ (x :: Token))"
by (meson less_Tok.simps less_Token_def less_eq_Token_def linearToken)

This pattern appears many times in this file. For example, in the Party instantation alone, it is present
on lines 51 – 53, 56 – 57, 77 – 80, and 83 – 84.

2.3.23 ■ Inconsistent style when applying constructor
Severity: Low

File SingleInputTransactions.thy, lemmas beforeApplyAllLoopIsUseless, fixIntervalOnlySummary,
lines 275, 398 The lines mentioned in these lemmas display the resulting constructor before the func-
tion application, which differs from the general style in the rest of the codebase.

2.3.24 ■ Unsimplified boolean formulas
Severity: Low

File SingleInputTransactions.thy, lemma computeTransactionIterative_aux2, lines 708, 710 In
multiple places, this lemma formulation includes top-level negation in front of nontrivial conjunctions
and disjunctions. These negations should be distributed. Otherwise, the reader is taxed with the chore
to mentally distribute the negation to understand the lemma.

23

2.3.25 ■ Typo with “independet” in multiple lemmas
Severity: Low

File SingleInputTransactions.thy, lemmas applyAllLoop_independet_of_acc_error1, applyAll-
Loop_independet_of_acc_error2, lines 977, 987 In both of these lemmas, there is a typo with the
word “independet”.

2.3.26 ■ Poorly named acc lemmas
Severity: Low

File SingleInputTransactions.thy, lemmas applyAllLoop_independet_of_acc_error1, applyAll-
Loop_independet_of_acc_error2, lines 977, 987 It is unclearwhat acc refers to in these lemma names,
as the lemmas are about the independence of warnings and payments, not accounts.

2.3.27 ■ Verbose lemma statement playTraceAuxIterative_base_case
Severity: Low

File SingleInputTransactions.thy, lemma playTraceAuxIterative_base_case, line 1063 The state-
ment of this lemma is very verbose. A more natural (and slightly stronger) formulation could be

playTraceAux txOut [Linterval = inte, inputs = [h]M, Linterval = inte, inputs = tM]
= playTraceAux txOut [Linterval = inte, inputs = h # tM]

2.3.28 ■ playTrace_only_accepts_maxTransactionsInitialStatenotwrittenas
theorem

Severity: Low

File TransactionBound.thy, lemma playTrace_only_accepts_maxTransactionsInitialState, line 316
This lemma seems like the main result of this file. Assuming it is an important result, we recommend
writing it as a theorem rather than a lemma.

2.3.29 ■ Inconsistent style with assumptions
Severity: Low

File Timeout.thy, lemmas timedOutReduceContractUntilQuiescent_closes_contract, timedOutReduce-
ContractStep_empties_accounts, lines 201/204, 211/214 These lemmas use the hypothesisminTime sta ≤
iniTime and build a state sta LminTime := iniTimeM) while other lemmas simply say minTime sta =

iniTime. Readability would be improved by presenting these lemmas in the same style as the others, or
documenting the need for these distinct presentations via code comments.

2.3.30 ■ Function validTimeInterval unnecessarily unfolded in lemma
Severity: Low

File TimeRange.thy, lemma reduceStep_ifCaseLtCt_aux, line 234 For consistency, a ≤ b should be
replaced by validTimeInterval.

24

2.3.31 ■ Overly specific auxiliary lemma
Severity: Low

File ValidState.thy, lemma reductionLoop_preserves_valid_state_aux, line 73 This lemma on
its own is very specific, and is only used in reductionLoop_preserves_valid_state. If possible, we
recommend this lemma to be generalized or broken down into smaller lemmas, in order to present the
arguments to the reader in smaller pieces.

2.3.32 ■ playTrace_preserves_valid_state not written as theorem

Severity: Low

File ValidState.thy, lemma playTrace_preserves_valid_state, line 194 This lemma seems like
the main result of this file. Assuming it is an important result, we recommend writing it as a theorem
instead.

2.3.33 ■ Unnecessary assumptions
Severity: Low

File PositiveAccounts.thy, lemmas addMoneyToAccountPositive_match, addMoneyToAccountPosi-
tive_noMatch, lines 12, 23 The assumptions

∀x tok. positiveMoneyInAccountOrNoAccount x tok accs

in addMoneyToAccountPositive_match and

money > 0

in addMoneyToAccountPositive_noMatch are unnecessary.
File PositiveAccounts.thy, lemma reduceContractStep_gtZero_Refund, line 93 The lemma has an
assumption that is mostly redundant.

Reduced
ReduceNoWarning
(ReduceWithPayment (Payment party (Party party) tok2 money))
(stateLaccounts := newAccountM) Close
=

Reduced wa eff newState newCont

A stronger lemma would be valid, which results from eliminating the assumption and changing the
conclusion to positiveMoneyInAccountOrNoAccount y tok3 newAccount.
File QuiescentResult.thy, lemma reduceContractStepPayIsQuiescent, line 17 The assumption
cont = Pay x21 x22 tok x23 x24 is unnecessary.
File Timeout.thy, lemma timedOutReduce_only_quiescent_in_close_When, line 43 The assumption
minTime sta ≤ iniTime is unnecessary.
File Timeout.thy, lemma timedOutReduce_only_quiescent_in_close, line 122 The assumption
minTime sta ≤ iniTime is unnecessary. However, removing it will require the later proof timedOut-
ReduceContractLoop_closes_contract to be adjusted.
File Timeout.thy, lemma timedOutReduceContractLoop_closes_contract, lines 170, 173 The as-
sumptions minTime sta ≤ iniTime and minTimesta = iniTime are both present. The former is redun-
dant.

25

File TimeRange.thy, lemma reduceStep_ifCaseLtCt_aux, line 234 The assumption
env = LtimeInterval = (a, b)M is unnecessary.
File ValidState.thy, lemma reductionStep_preserves_valid_state_Refund, line 29 The assump-
tion

newState = Laccounts = newAccounts, choices = newChoices,

boundValues = newBoundValues,minTime = newMinTimeM
is unnecessary.

2.4 Isabelle implementation

2.4.1 ■ Variable shadowing in applyAllLoop

Severity: Medium

File Semantics.thy, function applyAllLoop, line 575 The cont variable introduced by the pattern
match shadows another cont variable, coming from the pattern match of an outer case expression,
making the function harder to follow while also making it more error-prone to future changes.

2.4.2 ■ Undescriptive name moneyInPayment

Severity: Low

File MoneyPreservation.thy, function moneyInPayment, line 5 The name of the function can be more
precise. Perhaps moneyInPaymentToParty or moneyInExternalPayment would work.

2.4.3 ■ Typo in section name
Severity: Low

File OptBoundTimeInterval.thy, line 37 Typo in section name: “Interval intesection”.

2.4.4 ■ Typo in comment
Severity: Low

File OptBoundTimeInterval.thy, line 42 Typo in comment: “endpoits”.

2.4.5 ■ Unclear need for multiple formulations for positive accounts
Severity: Low

File PositiveAccounts.thy, Throughout It is unclear what the use is for multiple formulations (and
lemmas about) positive accounts. The first formulation (with the theorems playTraceAux_gtZero and
playTrace_gtZero) is not used in any other modules but the alternative formulation is used instead. If
both formulations are relevant, then it should be explained why.

26

2.4.6 ■ Variable name discrepancy in reductionLoop

Severity: Low

File Semantics.thy, function reductionLoop When comparing this function against specification-
-v3-rc1.pdf, different names are used for a let-bound variable. It is a in the pdf and newPayments in the
file Semantics.thy. There are similar issues in the function reduceContractStep in the equation for the
If case, and in the function giveMoney.

2.4.7 ■ Typo in constructor
Severity: Low

File Semantics.thy, function applyCases, line 505 Apparent typo in the error message constructor:
the party mentioned should be party2.

2.4.8 ■ Unclear function name calculateNonAmbiguousInterval

Severity: Low

File Semantics.thy, function calculateNonAmbiguousInterval, line 725 The meaning of the func-
tion is not obvious. It needs a comment to explain it.

2.4.9 ■ Non-modularized file SingleInputTransactions.thy

Severity: Low

File SingleInputTransactions.thy, Splitting File This file is very long, and it covers more than
just single-input transactions. For instance, about 530 lines at the beginning are rather dedicated to
idempotence of certain operations. Then, the lemmas around lines 530 – 700 focus on “well-foundedness”
of the recursion on contract steps. Then there is also a clear block of lemmas about “distributivity” of
semantics over transaction lists.

Splitting the module, grouping the related lemmas, would help understanding the relationships be-
tween the groups.

2.4.10 ■ Misleading function names
Severity: Low

File SingleInputTransactions.thy, function inputsToTransactions, line 9 This function name is
not very descriptive of its meaning. It takes a transaction (both a time interval and a list of inputs)
and returns a list of transactions at the same interval containing a single input each. A name like
splitTransactionIntoSingleInputTransactions would convey better what the input and the output
are.

Moreover, the code would be cleaner if the function takes a single argument of type Transaction,
instead of asking the caller to rip apart its fields.
File SingleInputTransactions.thy, function traceListToSingleInput, line 18 This function name
is not descriptive of what it does. Perhaps a more telling name could be splitTransactionsIntoSin-
gleInputTransactions.
File SingleInputTransactions.thy, function isSingleInput, line 1222 This function should be re-
named or repurposed. If renamed, allAreSingleInputmore accurately reflects the meaning of the func-

27

tion. If repurposed, it should check that a single transaction has a single input, and all isSingleInput
can be used to express the current behavior.

2.4.11 ■ Unused parameter in maxTransactionCaseList

Severity: Low

File TransactionBound.thy, function maxTransactionCaseList, line 16 This function has a parame-
ter of type State that is completely unused and can be removed.

2.4.12 ■ Duplicated isValidInterval function
Severity: Low

File TimeRange.thy, function isValidInterval, line 231 This function duplicates validTimeInterval
from OptBoundTimeInterval.thy, and the latter has certain additional properties proven about it specif-
ically, so it makes sense to use the latter in both cases.

2.5 marlowe-cardano specification

2.5.1 ■ Lack of guidelines for creating cooperating contracts
Severity: Medium

File marlowe-cardano-specification.md, Section Life Cycle of a Marlowe Contract Given that
transactions are expected to work with Marlowe and non-Marlowe contracts simultaneously, it would
be helpful to offer some guidelines for other contracts to avoid double satisfaction. Some degree of
cooperation between the contracts that can appear in the same transaction is unavoidable.

One measure could be to ask every cooperating contract to refrain from paying to the payout valida-
tor. In this way, double satisfaction can not affect the payments of the Marlowe contract, if the Marlowe
contract only pays to roles rather than addresses.

Another alternative would be to demand other contracts’ outputs to use datums that are different
from the roles used by the Marlowe contract for payments.

2.5.2 ■ No reference to creating a minting policy
Severity: Low

File marlowe-cardano-specification.md, Section Monetary Policy for Role Tokens The minting
policy is not specified, but a reference needs to be offered to explain how to create one.

2.5.3 ■ Argument for Contract in txInfoData not specified
Severity: Low

File marlowe-cardano-specification.md, Section Types The argument by which the Contract in the
txInfoData list corresponds to the given hash needs to be made explicit.

28

2.5.4 ■ Merkleization section not detailed enough
Severity: Low

File marlowe-cardano-specification.md, Section Merkleization This section is too terse. It needs
to explain what Merkleization is, and to motivate why it is needed.

When explaining how it works, it needs to make explicit that only the Case type is modified, and
that in the semantics, only the Input type is modified. It needs to explain why the Input type needs to
carry a hash and a contract, and why the evaluation of the contract is changed as described.

2.5.5 ■ Unnecessary constraint
Severity: Low

File marlowe-cardano-specification.md, Constraint 12. Merkleized continuations This constraint
is unnecessary to have in the Marlowe validator, since the construction of the arguments for evaluation
of the Marlowe contract would fail. However, it would be useful to have it appear in the specification
for users to be aware of it when crafting transactions. A note to motivate the presence of the constraint
could be helpful.

2.5.6 ■ Asymmetry between role and wallet payouts
Severity: Low

File marlowe-cardano-specification.md, Constraint 15, The marlowe validator allows multiple
outputs to be paid to a wallet, but it demands that a single output exists when paying to a role instead.
Themotivation to use different approaches needs to be documented. This is implemented in Scripts.hs
at line 371, in function payoutConstraints.

2.5.7 ■ Incorrect description of rolePayoutValidator
Severity: Low

File marlowe-cardano-specification.md, Section Plutus Validator for Marlowe Payouts The de-
scription of the Marlowe payout validator in the specification states that it is parameterized by the
currency symbol. However, this is not correct as the validator is unparameterized; rather, the datum
type of the validator includes the currency symbol (as well as token name). The description should be
modified to reflect this.

2.5.8 ■ Unspecified initial state
Severity: Low

File marlowe-cardano-specification.md, Section Life Cycle of a Marlowe Contract The specifi-
cation should saywhat the initial state of aMarlowe contract should be. In particular, creating a contract
requires giving the minimum Ada to some account in the Marlowe state. Otherwise, Constraint 5 will
reject the transactions that try to spend the output.

2.5.9 ■ Unspecified behavior when multiple cases can apply
Severity: Low

29

File Semantics.hs, Function applyCases, line 597 If multiple cases in a case list can apply, the first
one is taken. This behavior should be better communicated in the specification.

2.6 Haskell implementation

2.6.1 ■ Name shadowing in applyAllInputs

Severity: Medium

File Semantics.hs, Function applyAllInputs, line 658 The binding cont from the Applied construc-
tor shadows the cont variable coming from the pattern match in an enclosing case expression. This
makes the code error-prone to subsequent changes and refactorings.

2.6.2 ■ Non-isomorphic types in playTraceAux

Severity: Medium

File Semantics.hs, Function playTraceAux, line 710 The function in the Isabelle code takes a Transac-
tionOutputRecordwhile the Haskell version takes a TransactionOutput. Thismeans TransactionError
cannot be an input to playTraceAux in Isabelle, possibly invalidating proofs about its properties.

2.6.3 ■ Variable names differ from Isabelle code
Severity: Low

File Semantics.hs, Several functions Different variable names in Isabelle and Haskell make compar-
ison harder. It is less of an issue when only one variable has been renamed in a function, but multiple
variable renames require carefully mapping between the names to avoid confusion. For example, the
code of reduceContractStep in line 482 (Pay case) is hard to compare.

Other name changes include:

• Line 456, function updateMoneyInAccount uses variable moneywhere the Isabelle code uses amount
and omits naming the last parameter.

• Line 473, function giveMoneyToPay uses variables amount and accounts instead of money and
accountsV as in the Isabelle code.

• Line 541, function reductionLoop uses variable con instead of ncontract.

• Line 300, the data type TransactionInput corresponds to the type Transaction in the Isabelle
code.

• Line 313, the data type TransactionOutput is isomorphic but not identical to the homonymous
data type in the Isabelle code.

• Line 439, function refundOne uses a variable balance where the Isabelle code uses money.

• Line 463, function addMoneyToAccount uses variable accountswhere the Isabelle code uses accountsV.

30

2.6.4 ■ Naming of functions and variables
Severity: Low

File Several files, several functions
Several functions or variables could have more descriptive or precise names, for example:

• Scripts.hs:193: validateBalances could be called allBalancesArePositive.

• Scripts.hs:206: validateInputs could be called allInputsAreAuthorized.

• Scripts.hs:324: checkScriptOutputAny could be called noOutputPaysToOwnAddress, as it checks
that no outputs pay to the script address.

• Semantics.hs:439: refundOne is named somewhat confusingly, and understanding the name re-
quires the context of reduceContractStep where the function is called. Perhaps a better name
would be dropWhileNonPositiveAndUncons.

• Semantics.hs:597: the binding tailCase should rather be named tailCases.

2.6.5 ■ Unused functions
Severity: Low

File Several files, several functions
Several functions are unused and perhaps should be removed:

• Semantics.hs:741: contractLifespanUpperBound does not seem to be used anywhere, including
tests.

• Semantics.hs:680: isClose is not used in the rest of the codebase (besides checking its behavior
via testing). It should either be removed, or comments justifying its existence should be included.

In addition to that, the functions validateBalances and totalBalance (defined at Semantics.hs:755
and :762) are only used in Scripts.hs and never reused, so they should probably bemoved to Scripts.hs.

2.6.6 ■ Comments
Severity: Low

File Semantics.hs, Function refundOne, line 439 The comment describing the function is overly
concise, as it does not mention the function removing all non-positive accounts before the first positive
one, and effectively uncons-ing the list.
File Semantics.hs, Function addMoneyToAccount, line 461 There is a typo in the comment: accoun
is written instead of account.

2.6.7 ■ Record updates in playTraceAux

Severity: Low

File Semantics.hs, Function playTraceAux, line 710 The function could have followed the Isabelle
code more closely if it used a record update instead of creating a new TransactionOutput record from
scratch.

31

2.6.8 ■ Potential simplifications
Severity: Low

File Semantics.hs, Function totalBalance, line 755 The function uses foldMap f . AssocMap.toList.
Here, AssocMap.toList is redundant.
File Types.hs, Class instance Eq Contract, line 873 The equality of cases for the When constructor
would be simplified by using cases1 == cases2. If there is a reason for the more verbose equality
condition, it should be outlined in a comment.

2.6.9 ■ computeTransaction differs from the Isabelle implementation
Severity: Low

Helper function evalValue, evalObservation, lines 391 (Semantics.hs), 34 (Semantics.thy) evalValue
and evalObservation differ from the Isabelle implementation in the introduction of auxiliary variables
to abbreviate the recursive calls. The comparison would be simpler if both definitions were consolidated.
Helper function evalValue, lines 395 (Semantics.hs), 35 (Semantics.thy) The Isabelle implemen-
tation should use the helper function moneyInAccount instead of inlining its definition, so as to maintain
consistency with the Haskell implementation.
Helper function applyCases, lines 596 (Semantics.hs), 498 (Semantics.thy) The structure of func-
tion applyCases differs between the Haskell and Isabelle files. Specifically, the Haskell implementation
has an additional function applyAction where the Isabelle implementation does not. A comment moti-
vating the discrepancy would be needed. This is likely due to the lack of Merkleization in the Isabelle
implementation.
Helper function convertReduceWarnings, lines 617 (Semantics.hs), 537 (Semantics.thy) TheHaskell
function is implemented using foldr, while the Isabelle function uses explicit recursion, making a one-
to-one comparison less obvious. If there is a reason for this discrepancy, such as foldr yielding some
optimizations, this should be outlined in a comment.

2.6.10 ■ Constraint implementations differ from description
Severity: Low

File marlowe-cardano-specification.md, Section Plutus Validator for Marlowe Semantics Some
constraints mentioned in the specification are written in a different structure than the corresponding
constraint in Scripts.hs. While such a discrepancymay be useful to minimize verbosity, a unified struc-
ture when possible would alleviate a side-by-side comparison. Examples of these differing structures
include Constraint 6 and Constraint 14.

2.6.11 ■ Missing argument of computeTransaction
Severity: Low

File marlowe-cardano-specification.md, Section Relationship between Marlowe Validator and Semantics
The specification mentions the output datum as the (fifth) argument for the computeTransaction func-
tion, while it is not an argument to it.

2.6.12 ■ Missing smallMarloweValidator

Severity: Low

32

File marlowe-cardano-specification.md, Various sections Thespecificationmentions smallMarlowe-
Validator in a few places, but it is never mentioned in the source code.

2.6.13 ■ Incorrect constraint reference
Severity: Low

File Scripts.hs, Function mkRolePayoutValidator, line 150 This line should refer to Constraint 17
rather than Constraint 16.

2.6.14 ■ MarloweParams differs from the specification
Severity: Low

File Semantics.hs, type MarloweParams, line 355 The specification defines MarloweParams to contain
just the payout validator hash, while the definition in the Haskell code contains just the roles currency
symbol.

2.6.15 ■ Timeout boundary differs from the specification
Severity: Low

File Semantics.hs, type reduceContractStep, line 518 The specification mentions

If a valid Transaction is computed with a TimeInterval with a start time bigger than the
Timeout t, the contingency continuation c is evaluated.

where “bigger” implies strict inequality, while the codemakes non-strict comparison. This difference
needs to be acknowledged and further explained in the specification.

2.7 Haskell tests

2.7.1 ■ More precise failure checks
Severity: Medium

File Spec/Marlowe/Plutus/Specification.hs, Various tests The tests use the functions checkSe-
manticsTransaction and checkPayoutTransaction to verify that various error conditions cause trans-
actions to be rejected. These functions test that a transaction passes or fails, but when it fails, the
functions do not consider the error cause. Checking the exact cause is necessary to ensure the transac-
tion is rejected because of the intended reason and not because of some other error condition arising in
a particular test case by coincidence.

The absence of this information makes it easier to accidentally produce a test that is not testing what
is intended.

2.7.2 ■ Missing tests
Severity: Medium

File Spec/Marlowe/Semantics/Compute.hs, The following properties could additionally be tested for
computeTransaction:

33

• payment subtracts from an account,

• deposit adds to an account,

• INotify input produces the expected continuation,

• IChoice input produces the expected continuation,

• the hash of a successfully applied merkleized input matches the hash of the merkleized case.

Some of these are tested in Spec/Marlowe/Semantics/Functions.hs already for auxiliary functions.
File Spec/Marlowe/Semantics/Functions.hs, Missing merkleization tests The properties in this
module do not seem to be tested with merkleized contracts or inputs except for checkGetContinuation.
More merkleization tests should be added.
File Spec/Marlowe/Semantics/Compute.hs, function checkFixInterval, lines 100-102 The test check-
FixInterval is never instantiated with an invalid interval that is in the past, meaning the function
fixInterval is never tested for that case.

34

Chapter 3

Testing report

In this chapter we describe the tests implemented during the review. These tests are implemented with
cooked-validators, a test framework developed by Tweag to find vulnerabilities in smart contracts, and
can be found in the source code repository located at https://github.com/tweag/audit-2023-marlowe.

cooked-validators allows constructing tests which simulate the execution of sequences of transac-
tions, also known as traces. There are three categories of tests in our test suite:

Happy traces Each test produces a single trace that evaluates as expected.

Uncovered vulnerabilities Each test produces a single trace showing some unexpected and often
exploitable behavior noticed during the review.

Additional attack attempts Each test produces multiple traces that abuse the UTxOs paid to or from
the Marlowe validator to discover a successful transaction that should not have been accepted.

3.1 Happy traces
For these tests, we copied example contracts from the marlowe-cardano repository, namely the trivial
contract, the swap contract, and the escrow contract. We tested all possible paths through these con-
tracts, including confirming the expected behavior upon reaching timeouts. Additionally, for the swap
contract, we tested traces where roles are used instead of addresses, and we tested that transactions are
rejected if the role tokens are missing.

3.2 Uncovered vulnerabilities

3.2.1 Negative deposits
This trace exhibits Issue 2.1.1. The flawed contract reads as follows:
When

[Case
(Deposit
(party bob)
(party alice)
(token silverCoinAsset)
(Constant (-1))

)
continuationContract

]
timeout
Close

This allows a deposit of −1 silver coins from Bob to Alice. Then, the contract is started by paying a
silver coin to the Marlowe validator, in addition to the minimum Ada required. Finally, Alice is able to
leverage the negative deposit in the contract to steal the silver coin that is in the Marlowe script when
the first input is executed. See the test traceNegative for more information.

35

https://github.com/tweag/audit-2023-marlowe

3.2.2 Double satisfaction
This test exhibits Issue 2.1.2. To exhibit this vulnerability, the swap contract is instantiated to swap 5
silver coins from Alice with 2 golden coins from Bob.

However, in the same transaction, Carol pays 2 golden coins to a separate script, which only accepts
transactions that send 2 golden coins to Alice. The intended behavior would pay 4 golden coins to Alice:
2 from Bob using the Marlowe script, and 2 from Carol with the separate script.

But when we pay from both scripts in a single transaction, both validators succeed even if only 2
golden coins are sent to Alice. In this fashion, Bob can steal the remaining two golden coins that should
have gone to Alice. See the test traceDoubleSat for more information.

3.2.3 Duplicate account keys
This test exhibits Issue 2.1.8. This test starts with a Marlowe state with duplicate account keys. The
Marlowe state is invalid, yet the Marlowe validator allows spending the output.

The contract makes a payment with the result of evaluating AvailableMoney. Users of Marlowe
would expect the account to be left with 0 value after the payment. However, the final Marlowe state
still reports a positive value.

There is no exploit identified with this unexpected behavior, yet it is plausible that an adversary
could use it to confuse other users in a more complex scenario. See the test traceExploitDupEntries
for more information.

3.3 Additional attack attempts
These attacks did not uncover additional vulnerabilities.

The attack mechanism in cooked-validators is to define a modification of a single transaction,
known as a Tweak. Then, multiple traces can be generated from a single trace, each time applying the
tweak to a different transaction in the source trace.

In general, tweaks are supposed to perform modifications that should be rejected by the validators
being tested. If any trace is produced where a modified transaction does not cause the trace to be
rejected, then cooked-validators can flag the trace as exposing a vulnerability.

Each kind of attack is characterized by the particular tweak being used.

3.3.1 Datum hijacking
The datum hijacking attack involves redirecting the datum when spending an output from a script to an
unintended address. For Marlowe, if this attack succeeds, the contract could not be executed as intended,
as the continuation would no longer be the Marlowe script.

We used cooked-validators to automatically run the datum hijacking attack on all the happy traces,
attempting to hijack the datum in all relevant transactions. However, none of these tests succeeded,
meaning we did not find any instance of a Marlowe contract vulnerable to datum hijacking. These tests
have names prefixed with traceDatumHijack.

36

3.3.2 Datum tampering
Rather than redirecting the datum as above, another potential attack is altering a field or fields of the
datum when it is being paid to the Marlowe script. This is known as a datum tampering attack. We
attempted to tamper the datum in the trivial contract in two different ways:

• By modifying the continuation contract to Close.

• By modifying the accounts in the state of the datum to be empty.

In both cases, the modified transaction failed as expected, so there is no evidence that datum tam-
pering is possible for Marlowe contracts. These tests have names prefixed with traceTamperDatum.

3.3.3 Adding extraneous tokens
Another attack involves adding an extra token to either the value paid to the Marlowe validator or as
an additional input during a transaction. If accepted, this would give an attacker a method to bring
transactions close to protocol limits, to the point that we may be unable to spend produced UTxOs.
These tests, whose names are prefixed with traceExtraneousToken and traceExtraRedeemerToken, all
fail as expected.

37

Appendix A

Tweag's Modifications

One of the modifications is to support Aeson 1.5.x, which is a hard dependency of the team’s tools:

diff --git a/marlowe/src/Language/Marlowe/Core/V1/Semantics/Types.hs b/marlowe/src/Language/Marlowe/Core/V1/Semantics/Types.hs
index a333b8f..a78f7df 100644
--- a/marlowe/src/Language/Marlowe/Core/V1/Semantics/Types.hs
+++ b/marlowe/src/Language/Marlowe/Core/V1/Semantics/Types.hs
@@ -84,12 +84,12 @@ import Control.Applicative ((<*>), (<|>))
import Control.Newtype.Generics (Newtype)
import qualified Data.Aeson as A
import qualified Data.Aeson as JSON
-import qualified Data.Aeson.KeyMap as KeyMap
import Data.Aeson.Types hiding (Error, Value)
import qualified Data.Aeson.Types as JSON
import Data.ByteString.Base16.Aeson (EncodeBase16(EncodeBase16))
import qualified Data.ByteString.Base16.Aeson as Base16.Aeson
import qualified Data.Foldable as F
+import qualified Data.HashMap.Strict as HashMap
import Data.Scientific (floatingOrInteger, scientific)
import Data.String (IsString(..))
import Data.Text (pack)
@@ -367,8 +367,8 @@ instance ToJSON Input where

let
obj = case toJSON content of
Object obj -> obj

- _ -> KeyMap.empty
- in Object $ obj `KeyMap.union` KeyMap.fromList
+ _ -> HashMap.empty
+ in Object $ obj Haskell.<> HashMap.fromList

[("merkleized_continuation", toJSON continuation)
, ("continuation_hash", toJSON $ EncodeBase16 $ fromBuiltin hash)
]

Listing 1: Patch for Language.Marlowe.Core.V1.Semantics.Types

The other modification is to use the Plutus V1 analogs of the features from Plutus V2, since the
team’s tools for Plutus V2 are not stable enough yet:

38

diff --git a/marlowe/src/Language/Marlowe/Scripts.hs b/marlowe/src/Language/Marlowe/Scripts.hs
index 6027202..faec1fd 100644
--- a/marlowe/src/Language/Marlowe/Scripts.hs
+++ b/marlowe/src/Language/Marlowe/Scripts.hs
@@ -61,12 +61,11 @@ import GHC.Generics (Generic)
import Language.Marlowe.Core.V1.Semantics as Semantics
import Language.Marlowe.Core.V1.Semantics.Types as Semantics
import Language.Marlowe.Pretty (Pretty(..))
-import qualified Plutus.Script.Utils.Typed as Scripts
-import Plutus.Script.Utils.V2.Typed.Scripts (mkTypedValidator, mkUntypedValidator)
-import qualified Plutus.Script.Utils.V2.Typed.Scripts as Scripts
+import qualified Ledger.Typed.Scripts as Scripts
+import Plutus.Script.Utils.V1.Typed.Scripts (mkTypedValidator, mkUntypedValidator)
import qualified Plutus.V1.Ledger.Address as Address (scriptHashAddress)
import qualified Plutus.V1.Ledger.Value as Val
-import Plutus.V2.Ledger.Api
+import Plutus.V1.Ledger.Api

(Credential(..)
, CurrencySymbol
, Datum(Datum)

@@ -85,9 +84,9 @@ import Plutus.V2.Ledger.Api
, ValidatorHash
, mkValidatorScript
)

-import qualified Plutus.V2.Ledger.Api as Ledger (Address(Address))
-import Plutus.V2.Ledger.Contexts (findDatum, findDatumHash, txSignedBy, valueSpent)
-import Plutus.V2.Ledger.Tx (OutputDatum(OutputDatumHash), TxOut(TxOut, txOutAddress, txOutDatum, txOutValue))
+import qualified Plutus.V1.Ledger.Api as Ledger (Address(Address))
+import Plutus.V1.Ledger.Contexts (findDatum, findDatumHash, txSignedBy, valueSpent)
+import Plutus.V1.Ledger.Tx (TxOut(TxOut, txOutAddress, txOutDatumHash, txOutValue))
import PlutusTx (makeIsDataIndexed, makeLift)
import qualified PlutusTx
import qualified PlutusTx.AssocMap as AssocMap
@@ -310,13 +309,13 @@ mkMarloweValidator

-- Check that address, value, and datum match the specified.
checkScriptOutput :: Ledger.Address -> Maybe DatumHash -> Val.Value -> TxOut -> Bool

- checkScriptOutput addr hsh value TxOut{txOutAddress, txOutValue, txOutDatum=OutputDatumHash svh} =
+ checkScriptOutput addr hsh value TxOut{txOutAddress, txOutValue, txOutDatumHash=Just svh} =

txOutValue == value && hsh == Just svh && txOutAddress == addr
checkScriptOutput _ _ _ _ = False

-- Check that address and datum match the specified, and that value is at least that required.
checkScriptOutputRelaxed :: Ledger.Address -> Maybe DatumHash -> Val.Value -> TxOut -> Bool

- checkScriptOutputRelaxed addr hsh value TxOut{txOutAddress, txOutValue, txOutDatum=OutputDatumHash svh} =
+ checkScriptOutputRelaxed addr hsh value TxOut{txOutAddress, txOutValue, txOutDatumHash=Just svh} =

txOutValue `Val.geq` value && hsh == Just svh && txOutAddress == addr
checkScriptOutputRelaxed _ _ _ _ = False

Listing 2: Patch for Language.Marlowe.Scripts

39

Appendix B

A proof of lemma insert_valid

This proof was checked in MList.thy.

lemma insert_set:
"set (map fst (insert a b xs)) = set (map fst xs) ∪ { a }"

proof (induct xs)
case Nil
thus ?case by simp

next
case (Cons y ys)
thus ?case proof (cases y)
case [simp]:(Pair y1 y2)
thus ?thesis using Cons by auto

qed
qed

lemma insert_sorted:
"List.sorted (map fst c) =⇒ List.sorted (map fst (insert a b c))"

proof (induct c)
case Nil
show ?case by simp

next
case (Cons c1 rest)
show ?case proof (cases c1)
case [simp]:(Pair x y)
thus ?thesis proof (cases "a<x")
assume "a<x"
thus ?thesis using Cons.prems by auto

next
assume "¬ a<x"
thus ?thesis proof (cases "a>x")

assume ax:"a>x"
have h1: "sorted (map fst (insert a b rest))" using Cons by auto
from Cons.prems have "∀y ∈ set (map fst rest). x≤y" by simp
then have "sorted (map fst (c1 # insert a b rest))" using h1 ax insert_set[of a b rest] by auto
thus ?thesis using ax by auto

next
assume "¬ a>x"
thus ?thesis using Cons.prems by auto

qed
qed

qed
qed

lemma insert_distinct :
"List.distinct (map fst c)
=⇒
List.sorted (map fst c)
=⇒
List.distinct (map fst (MList.insert a b c))"

proof (induct c)
case Nil

40

show ?case by simp
next
case (Cons c1 rest)
show ?case proof (cases c1)
case [simp]:(Pair x y)
thus ?thesis proof (cases "a<x")
assume "a<x"
thus ?thesis using Cons.prems by auto

next
assume nax:"¬ a<x"
thus ?thesis proof (cases "a>x")

assume ax:"a>x"
have "distinct (map fst (insert a b rest))" using Cons by auto
then have "distinct (map fst (c1 # insert a b rest))" using ax Cons.prems insert_set[of a b rest] by auto
thus ?thesis using ax by auto

next
assume "¬ a>x"
thus ?thesis using Cons.prems by auto

qed
qed

qed
qed

theorem insert_valid2 : "valid_map c =⇒ valid_map (MList.insert a b c)"
using insert_sorted[of c a b] insert_distinct[of c a b] by fastforce

41

	Executive summary and scope
	Disclaimer
	Executive summary
	Scope

	Findings
	Main concerns
	Marlowe specification
	Lemmas and proofs
	Isabelle implementation
	marlowe-cardano specification
	Haskell implementation
	Haskell tests

	Testing report
	Happy traces
	Uncovered vulnerabilities
	Additional attack attempts

	Tweag's Modifications
	A proof of lemma insert_valid

