
Technical Review of Optim

High Assurance Software Team
September 2, 2022

Contents

1 Executive SummaRy and Scope 2

2 Audit 3
2.1 Methodology . 3
2.2 Summary of our findings . 4
2.3 Detailed findings . 5

2.3.1 Vulnerabilities . 5
2.3.2 Implementation Bugs . 8
2.3.3 Unclear Specification . 9
2.3.4 Code Quality . 9

2.4 Possible solutions . 9
2.4.1 Implement a two-step bond and pool posting 10
2.4.2 Ensure uniqNFT is burned when cancelling . 10
2.4.3 Match pool size and bond amount . 10
2.4.4 Prevent datum tampering . 10
2.4.5 Disallow 100% Optim fee . 11

2.5 Conclusion . 11

A Appendix 12
A.1 Discrepancy between cardano-ledger and plutus-apps 12
A.2 Patch applied on Nft.hs . 12
A.3 Off-chain findings . 13

1

Chapter 1

Executive Summary and Scope

This RepoRt is pResented without waRRanty oR guaRanty of any type. This report lists the most
salient concerns that have so far become apparent to Tweag after a partial inspection of the engineering
work. Corrections, such as the cancellation of incorrectly reported issues, may arise. Therefore Tweag
advises against making any business decision or other decision based on this report.

Tweag does not Recommend foR oR against the use of any woRK oR supplieR RefeRenced in
this RepoRt. This report focuses on the technical implementation provided by the project’s contractors
and subcontractors, based on their information, and is not meant to assess the concept, mathematical va-
lidity, or business validity of Optim’s product. This report does not assess the implementation regarding
financial viability nor suitability for any purpose.

Scope and Methodology
Tweag looks exclusively at the on-chain validation code provided by Optim. This excludes all the fron-
tend files and any problems contained therein. Tweag manually inspected the code contained in the
respective files and attempted to locate potential problems in one of these categories:

a) Unclear or wrong specifications that might allow for fringe behavior.

b) Implementation that does not abide by its specification.

c) Vulnerabilities an attacker could exploit if the code were deployed as-is, including:

• race conditions or denial-of-service attacks blocking other users from using the contract,
• incorrect dust collection and arithmetic calculations (including due to overflow or under-
flow),

• incorrect minting, burning, locking, and allocation of tokens,
• authorization issues,

d) General code quality comments and minor issues that are not exploitable.

Where applicable, Tweag will provide a recommendation for addressing the relevant issue.

2

Chapter 2

Audit

2.1 Methodology
Tweag analysed the validator scripts comprising the Optim bonds& pools protocol as of commit eb6157
… c7e1d1 of the code repository1 shared with us. The names of the files considered in this audit and
their sha256sum are listed in Table 2.1.

sha256sum File Name

1938e8 … 863b8f offchain/data/compiled-scripts/pool-token-mint-policy.plutus

e86b99 … f5e496 offchain/data/compiled-scripts/closed-validator.plutus

8a457d … fb324e offchain/data/compiled-scripts/open-pool-validator.plutus

bef7ff … a60b8d offchain/data/compiled-scripts/closed-pool-validator.plutus

8f3929 … e02263 offchain/data/compiled-scripts/nft-mint-policy.plutus (unpatched)

ea369b … 01d998 offchain/data/compiled-scripts/nft-mint-policy.plutus (patched)

a53632 … 208548 offchain/data/compiled-scripts/bond-token-mint-policy.plutus

a57aa2 … 486f7b offchain/data/compiled-scripts/open-validator.plutus

1c040d … 78834f offchain/data/compiled-scripts/bond-writer-validator.plutus

Table 2.1: Scripts analysed, and their sha256sum

Our analysis is based on the documentation provided by Optim as of commit 181e3b … 16d930 of
the spec repository2 describing different aspects of their design, as well as on Slack conversations with
Optim and MLabs. Table 2.2 and its content will be referred to as the specification of the protocol.

sha256sum File Name

273f70 … 1e4f3f spo-bond-pools.md

d34b00 … c8fb1d bonds-deps.svg

1e9903 … bcd6cf pools-deps.svg

8472bb … fbad06 liquidity-bonds.md

Table 2.2: Documentation files and their sha256sum

Important disclaimer: During this audit process, a discrepancy between cardano-ledger and the
emulator from plutus-apps, onwhich cooked-validators depends, was found, described inAppendixA.1.
Following that finding, we implemented an emergency patch, which was validated by MLabs. The patch

1https://github.com/mlabs-haskell/optim-onchain
2https://github.com/mlabs-haskell/optim-spec

3

https://github.com/mlabs-haskell/optim-onchain
https://github.com/mlabs-haskell/optim-spec

is shown in Appendix A.2. This explains why Table 2.1 provides two hashes for the same script. Notably,
the patch is by no means related to any vulnerability, nor minor finding, in Optim bonds & pools.

2.2 Summary of our findings
Most of the findings illustrated in this report come from a few underlying issues:

a) Very few checks are done when paying to the BondWriter validator. Indeed, the minting policy
of the NFTs cannot know about the BondWriter validator address since the latter is already built
from the hash of the former, resulting in a circular dependency.

b) The uniqNFT, which supposedly should always be locked by one of the product’s scripts, can in
fact be redirected to the outside world, leading to many abnormal sequences of actions.

c) Similarly, no checks are done while pools are created. In addition, a pool can match any bond that
satisfies its datum’s requirements, even if the number of pool and bond tokens do not match.

d) The ClosedPool validator allows for tampering with the datum when redeeming pool tokens.

Severity Section Summary

■ Critical 2.3.1.6 Pools can be emptied by matching a small bond
■ Critical 2.3.1.7 Pools can be emptied by matching a bond with the cancel redeemer
■ Critical 2.3.1.8 Funds can be locked after datum tampering
■ Critical 2.3.1.9 Bond tokens can be stolen after datum tampering
■ Critical 2.3.1.10 Bond tokens can be redeemed with different pool tokens
■ High 2.3.1.1 uniqNFT can be redirected when posting a bond
■ High 2.3.1.2 Open validator can contain unsound bonds
■ High 2.3.1.3 Funds can be locked with irrevocable staking rights using unsound bonds
■ High 2.3.1.4 Pool tokens target is unchecked
■ High 2.3.1.5 Pool target can be compromised using another uniqNFT
■ High 2.3.2.1 uniqNFT can be redirected when cancelling a bond
■ Medium 2.3.2.2 uniqNFT is sometimes required as fees
■ Medium 2.3.3.2 Initial margin is unchecked
■ Medium 2.3.3.3 Bond tokens and pool tokens are handled differently
■ Low 2.3.3.1 Buffer boundary is open on the right

Table 2.3: Detailed findings

These high-level findings correspond to a set of low-level findings. More precisely, Table 2.3 lists our
concerns with Optim’s current on-chain code, based on our partial exploration during a limited period
of time, therefore, Table 2.3 is not guaranteed to be exhaustive. Throughout the next section, we detail
each of our on-chain findings. Note that we also found some minor bugs in the off-chain code, which
we report in Appendix A.3.

4

2.3 Detailed findings

2.3.1 Vulnerabilities
2.3.1.1 ■ uniqNFT can be redirected when posting a bond

Severity: High

When a user posts a bond, the uniqNFT and ownNFT are minted. The transaction sends the ownNFT to
the user and the uniqNFT to the BondWriter validator. However, no check ensures that the transaction
indeed sends the uniqNFT to the validator, and a user can redirect it to any address of their choice, which
leads to some unexpected outcomes (see issues 2.3.1.2 and 2.3.1.3).

⇒ See trace postBondStealUniqNft.

Ideally, this check would be made in the NFT minting policy, which would check that the uniqNFT is
indeed sent to the BondWriter validator when posting. However, due to the circular dependency issue
mentioned in Section 2.2, this is not possible. Instead, we suggest a two-step process for posting bonds,
as outlined in Section 2.4.1.

2.3.1.2 ■ Open validator can contain unsound bonds

Severity: High

As mentioned above, a user can redirect the uniqNFT to a public key address when posting or cancelling
a bond. Additionally, we will show in issue 2.3.2.1 that a user can redirect the uniqNFT when cancelling
a bond as well. In either case, the user can then pay that uniqNFT to the Open validator alongside a
suitable datum, giving the impression that the resulting UTxO represents an actual written bond, where
anyone can add margin. For any such added margin, the user gets staking rights over those funds.

⇒ See traces postFakeOpenBond and postFakeOpenBondCancel.

We advise to implement the fixes outlined in Sections 2.4.1 and 2.4.2 to avoid this issue.

2.3.1.3 ■ Funds can be locked with irrevocable staking rights using unsound bonds

Severity: High

This issue is an extension of the previous one. Here, however, we emphasize that any margin added to
the Open validator by any user will not be redeemable after the bond is closed. The funds will then be
locked forever as there are no bond tokens present to exchange, while the attacker retains irrevocable
staking rights over any added margin.

⇒ See traces moneyLocked and moneyLockedCancel.

As before, we advise to implement the fixes outlined in Sections 2.4.1 and 2.4.2.

2.3.1.4 ■ Pool tokens target is unchecked

Severity: High

When a user creates a pool, the pool tokens (besides the ones bought by that user) are sent to the
OpenPool script. However, as there are no checks made on the expected target of the pool tokens, a

5

user can create a pool, not buy any pool tokens, and redirect an arbitrary number of them to their own
address without any cost. To a similar end, any user can actually just mint pool tokens without even
creating a pool.

⇒ See traces createPoolStealPoolTokens and mintPoolTokensWithoutPool.

The first part of this vulnerability is known to Optim; and it was presented to us as a design decision,
since it was assumed stealing pool tokens could not yield any benefit for an attacker. However, as we
show in issue 2.3.1.10, this can allow an attacker to steal bond tokens. We advise to implement the
two-step fix outlined in Section 2.4.1 to fix this issue.

2.3.1.5 ■ Pool target can be compromised using another uniqNFT

Severity: High

Redirecting the uniqNFT as in issues 2.3.1.1 and 2.3.2.1 can cause repercussions in relation to pools, by
targeting a different bond than expected. Specifically, a userA can post an enticing bond b1, so a different
user B creates a pool targeting b1. Then, A can cancel b1 while retrieving the associated uniqNFT. Next,
A can post a second, less enticing bond b2 while paying the uniqNFT of b1 as part of the initial margin.
Finally, provided all the pool tokens have been bought,A can match the targeted pool to b2, despite that
bond not being the bond thatB was targeting, since b2 contains the uniqNFT of b1. While the parameters
of b2 still must satisfy the requirements of the created pool’s datum, this can prevent buyers of the pool
tokens to get the expected rewards. Indeed, since B targeted a specific bond, they have no incentive to
provide matching parameters in the datum that would differ from the default ones.

⇒ See trace targetWrongBondWithExtraUniqNft.

As this issue specifically arises from the redirection of the uniqNFT during cancellation, we suggest
implementing the fix outlined in Section 2.4.2.

2.3.1.6 ■ Pools can be emptied by matching a small bond

Severity: Critical

An invariant in the pools is that the number of bond tokens should equal the number of pool tokens.
However, in the OpenPool validator, there is no check regarding this equality, which results in a critical
vulnerability when a bond is created with a very small number of bond tokens. Once a pool is created
and all pool tokens have been bought, an attacker can post a bond with only one bond token, and match
the pool with that bond. Thus, it becomes possible to redirect the ADA value of all the pool tokens
(minus one) to an attacker’s public key address, essentially emptying the pool. In addition, it is possible
to perform this attack with a bond written by a different peer, provided the number of bond tokens in
that bond is less than the intended pool size.

⇒ See traces redirectExtraOwnBond and redirectExtraOtherBond.

To fix this, we advise to check that the number of bond tokens is equal to the pool size, as described in
Section 2.4.3. Notably, it was mentioned during a meeting with MLabs that this issue was also found by
them and fixed in later commits than the one we analysed.

6

2.3.1.7 ■ Pools can be emptied by matching a bond with the cancel redeemer

Severity: Critical

While the previous issue allows an attacker to steal an ADA amount equivalent to all but one of the pool
tokens, it is possible to steal them all. Indeed, when matching a bond with a pool, the OpenPool validator
assumes that the input from the BondWriter validator is redeemed using the WriteBond redeemer, but
no such check is done. Any attacker can change that redeemer to CancelBond and redirect all the funds
contained in the pool to any address, since cancelling a bond does not require any output to the Open
validator.

⇒ See trace matchWithWrongRedeemer.

Fortunately, this can only be done when matching an artificial bond with 0 as its bondamount, since
any other amount would trigger a check that some bond tokens are paid to the Open validator. Thus,
we suggest to implement the fix in Section 2.4.3, which should be sufficient. However, we advise to be
very careful whenever a product consumes a UTxO from another product and to make sure that the
consumption is done using the right redeemer to trigger the adequate checks.

2.3.1.8 ■ Funds can be locked after datum tampering

Severity: Critical

When a user redeems some (but not all) pool tokens for bond tokens from the ClosedPool validator, the
user must pay back all bond tokens not withdrawn. The datum paid back to the ClosedPool validator
should be identical to the one spent, but this is not checked. As a result, an attacker can redeem some
pool tokens for bond tokens while tampering with either the bond symbol or the bond token within the
ClosedPool validator’s datum, such that no other partial redemptions are possible. Redemption of all
remaining tokens would still be possible, but this would hardly happen since pool tokens are meant to
be split into many buyers, each of which could not afford to match the whole bond.

⇒ See traces tamperBondSymbolPartialWithdrawal and tamperBondTokenPartialWithdrawal.

To address this, we advise to prevent such datum tampering as depicted in Section 2.4.4.

2.3.1.9 ■ Bond tokens can be stolen after datum tampering

Severity: Critical

The above issue can be extended to another vulnerability, where all the bond tokens from a bond can
be stolen. This is done by tampering with the bond token in the ClosedPool datum, while using an
additional bond in order to pass the validator checks, and in turn emptying all the bond tokens from the
pool.

This begins by an attacker posting and writing a bond b1 with two bond tokens. Then, the attacker
must buy two pool tokens from a pool p. Once p is fully funded, the attacker matches p to a different
bond b2 (which may or may not have been posted by the attacker) while sending the bond tokens of b1
to the ClosedPool validator. The attacker next redeems one pool token of p for a bond token of b2 from
the ClosedPool validator, while tampering with the ClosedPool datum, changing the bond token name
in the datum from b2 to b1. Finally, the attacker can redeem the other pool token for the bond token
of b1 in the ClosedPool validator, which will successfully validate because the datum has changed. In
doing so, the attacker empties all of the bond tokens of b2. At that point, the attacker can redeem those
bond tokens for ADA once b2 expires.

7

⇒ See trace poolWithOtherBondToken.

As above, the simplest fix for this attackwould be to disallow tamperingwith the datum in the ClosedPool
validator, outlined in Section 2.4.4.

2.3.1.10 ■ Bond tokens can be redeemed with different pool tokens

Severity: Critical

As mentioned in issue 2.3.1.4, an attacker can create a pool, and redirect the pool tokens to their public
key address instead of paying them to a script. After doing this, an attacker can buy exactly one pool
token from a different pool. Then, the attacker can redeem that pool token while tampering with the
ClosedPool datum, changing the pool token in the datum to the pool token of the pool the user originally
created. Finally, the attacker can use their original pool tokens, which are not matched to any bond, to
redeem the bond tokens from the honestly created pool, thereby emptying a pool for the price of one
pool token.

For this issue, it is worth noting that one can use any pool token to redeem any bond token, provided
they have at least one copy of the correct pool token in order to tamper the datum. That is, the pool
tokens do not need to be stolen as in issue 2.3.1.4 in order for a user to perform this attack.

⇒ See traces poolWithOtherFakePoolToken and poolWithOtherRealPoolToken.

We advise to implement both the two-step process for creating a pool as outlined in Section 2.4.1, as
well as the datum tampering fix outlined in Section 2.4.4 in order to solve this issue.

2.3.2 Implementation Bugs
2.3.2.1 ■ uniqNFT can be redirected when cancelling a bond

Severity: High

Not only can the uniqNFT be redirected when posting a bond as outlined in issue 2.3.1.1, but it can
also be be paid to anyone when cancelling a bond. In that case, the uniqNFT should be burned, but
the BondWriter validator makes no such check. This leads to the same unexpected results as before
(issues 2.3.1.2 and 2.3.1.3), with the addition of issue 2.3.1.5.

⇒ See trace cancelBondStealUniqNft.

We advise to implement the fix outlined in Section 2.4.2.

2.3.2.2 ■ uniqNFT is sometimes required as fees

Severity: Medium

On lines 146-150 of the Open validator, the Optim fee for a bond is calculated as a percentage of a value
containing the uniqNFT. When the percentage is strictly less than 100%, this ignores the presence of this
uniqNFT due to integer division, but this is not the case for 100% Optim fees. In that case, the uniqNFT
is required as an output both to Optim’s address and to the Closed validator. Such constraints cannot
be satisfied since there can be, by nature, only one uniqNFT. Hence, such a transaction will not validate,
resulting in all funds from the bond to be locked forever.

⇒ See trace moneyLockedOptimFee.

We advise to implement the fix depicted in Section 2.4.5.

8

2.3.3 Unclear Specification
2.3.3.1 ■ Buffer boundary is open on the right

Severity: Low

In line 156 of the BondWriter validator, buffer is checked to be in [0, duration) and it is unclear why the
right boundary is not included in the interval. In other words, why not [0, duration]? In that case, the
whole margin should be added in a single original step when the buffer actually equals the duration.

2.3.3.2 ■ Initial margin is unchecked

Severity: Medium

When adding margin to a bond that was already created, a user is only permitted to add margin exactly
corresponding to the ADA value for some number of epochs. If a user attempts to add, for example, 1.5
epochs of margin, this transaction will not validate. However, when creating a bond, a user can include
any value as prepaid margin. This includes ADA values not precisely corresponding to an epoch, or
even non-ADA values. This causes some peculiar behaviour, most notably in issue 2.3.1.5, where an
additional uniqNFT is added as prepaid margin, leading to a vulnerability.

To fix this, we advise to implement the two-step process for posting a bond a depicted in Section 2.4.1
which would allow the script to make checks over the initial value. These checks could be similar to the
onMarginAdd case in the Open validator (notably the correctAmount check on line 113), or at the very
least, could disallow non-ADA values as prepaid margin when posting a bond.

2.3.3.3 ■ Bond tokens and pool tokens are handled differently

Severity: Medium

Bond tokens and pool tokens are essentially two faces of the same coin, as they exhibit similar behaviour.
They are all minted at once, they can be bought on a secondary market and eventually will be redeemed
either for bond tokens in the case of pool tokens, or for ADA in the case of bond tokens. However, their
burning especially is handled in a different manner, since pool tokens are all burned at once while bond
tokens are burned whenever a user redeems them for ADA. This discrepancy, which is not the origin of
any vulnerability, is a red flag for us because it shows a break of consistency in the application. Such
a disparity leads to different checks depending on the nature of the tokens while a single well-defined
approach to handle those would lead to less room for error.

2.3.4 Code Quality
We have no concern about code quality.

2.4 Possible solutions
Here is a list of fixes that could help in solving the issues depicted in Table 2.3. Note that we offer no
guarantee that these would make the product foolproof nor introduce new weak points, which we are
not able to assess without a re-audit. So, the following are merely suggestions that we believe could help
improve the overall robustness of Optim bonds & pools.

9

2.4.1 Implement a two-step bond and pool posting
CaRdano blockchain and associated scripts suffer from a well-known circular dependency issue, where
a minting policy for instance would need to have a static parameter corresponding to the address of a
script, while said script would need the hash of said minting policy as a static parameter as well. This,
of course, is impossible. A possible fix would be to allow multi-purpose scripts as discussed with MLabs,
but this is a design choice that is not up to them, or us, to make.

There are, however, ways around this circular dependency issue, one of which we advise to imple-
ment when posting a bond and when creating a pool.

The idea is to turn any initial payment to a script which induces a minting of tokens into a two-
transaction process. The first transaction does not involve any checks at all, does not mint any tokens
that should be locked in the script, and creates “unchecked” UTxOs at the recipient script. The second
transaction consumes unchecked UTxOs (with an additional Check redeemer), mints the required tokens,
and pays a “checked” UTxO back to the same script, which contains the newly minted tokens as a proof
of their soundness. Since the second transaction uses a redeemer, it can make whatever checks are
needed to ensure the tokens are minted correctly and paid to the correct script.

This should solve the issue because the validator itself knows its own address and can thus ensure
that the minted tokens are given to itself and cannot be redirected to any random public key by an
attacker. Any further transaction consuming one such UTxO would have to rely on the presence of the
minted tokens to assess its correctness.

This fix should help to address issues 2.3.1.1, 2.3.1.2, 2.3.1.3, 2.3.1.4, 2.3.1.10, and 2.3.3.2.

2.4.2 Ensure uniqNFT is burned when cancelling
For this issue, it is easy to add a check that the BondWriter validator burns the uniqNFTwhen cancelling
a bond:

uniqNftBurned = -1 #== pvalueOf # infoFs.mint # uniqNft # datumFs.tokenName

Note that this is identical to a check already present in the Closed validator. Along with the above fix
with the two-step bond posting, this should fix the issues in 2.3.1.2, 2.3.1.3, 2.3.1.5, and 2.3.2.1.

2.4.3 Match pool size and bond amount
For this issue, we advise to add the pool size as a parameter to the OpenPool validator and to check that
the number of bond tokens minted is equal to the pool size. This ensures that matching a bond with a
small amount of bond tokens will fail, which disallows the critical vulnerabilities present in issues 2.3.1.6
and 2.3.1.7.

As we mentioned in issue 2.3.1.6, MLabs did find this issue in parallel to this audit, and implemented
a different fix.

2.4.4 Prevent datum tampering
In almost every relevant transaction fromOptim bonds & pools, any output datum is checked to be cor-
rect according to the input datum, provided there is one. Often, many fields in the datum are unchanged
from input to output, and the validators will ensure this. However, in the ClosedPool validator, no such
check is made, allowing a user to tamper with the ClosedPool datum when partially redeeming pool
tokens. Not explicitly checking this leads to some critical vulnerabilities as seen in issues 2.3.1.8, 2.3.1.9,
and 2.3.1.10. To fix this, we advise to rely on similar checks done in other validators; that is, compute
an expected datum from the inputs and compare it for equality with the output datum.

10

2.4.5 Disallow 100% Optim fee
We advise to disallow entirely a 100% Optim fee (a corner case that should not, in practise, happen), by
changing line 154 in the BondWriter validator as follows:

from 3_00 #<= otmFee #&&
to 3_00 #<= otmFee #&& otmFee #< 100_00 #&&

This fixes issue 2.3.2.2.

2.5 Conclusion
This report outlines the 15 concerns that we have gathered while inspecting the design and code of
Optim, pertaining to the code contained in the files listed in Table 2.1. This is not an exhaustive list of
issues but only those that we have identified during the limited time that the audit was conducted. As
stated in Chapter 1, Tweag does not recommend for nor against the use of any work referenced in this
report. Nevertheless, the existence of high and critical severity concerns is a warning sign.

11

Appendix A

Appendix

A.1 Discrepancy between cardano-ledger and plutus-apps

The discrepancy happens when relying on the presence of a 0-ADA entry in any minted value, which
is always present when using the actual ledger and absent when using the emulator from plutus-apps.
As an example, the following code:

validate _ _ scriptCtx = case Map.lookup (txInfoMint $ txInfo scriptCtx) adaSymbol of
[_] -> True
_ -> False

is equivalent to const True in the cardano-ledger and const False on the emulator. This led to an issue
report for plutus-apps (see https://github.com/input-output-hk/plutus-apps/issues/604) and the
deployment of an emergency patch for the current audit described in Appendix A.2.

A.2 Patch applied on Nft.hs

Figure A.1 depicts our patch to solve the discrepancy between cardano-ledger and plutus-apps. This
patch is done on Nft.hswhich is the source code file fromwhich nft-mint-policy.plutus is generated.

FiguRe A.1: Patch applied on Nft.hs

12

https://github.com/input-output-hk/plutus-apps/issues/604

A.3 Off-chain findings
Fees are not used in mkOpenDatum The function mkOpenDatum takes as a parameter the BondWriter
datum, which includes the Optim fee as a field. However, mkOpenDatum will always set the Optim fee in
the resulting Open datum to be BasisPoints 300 (or 3%), instead of retrieving the Optim fee from the
BondWriter datum. We advise to change line 84 of Test/Optim/Bonds/App/Bonds.hs

from openDatum'otmFee = BasisPoints 300,

to openDatum'otmFee = bondWriterDatum'otmFee,

Computation time iswrong The function fromEpochTime appearing in the file Test/Optim/Common.hs
is missing the addition to the origin of time when computing the current slot. We advise to change the
corresponding expression in fromEpochTime

from POSIXTime $ n * getPOSIXTime epochLength

to POSIXTime $ n * getPOSIXTime epochLength + epochBoundary

13

	Executive Summary and Scope
	Audit
	Methodology
	Summary of our findings
	Detailed findings
	Vulnerabilities
	Implementation Bugs
	Unclear Specification
	Code Quality

	Possible solutions
	Implement a two-step bond and pool posting
	Ensure haskelluniqNFT is burned when cancelling
	Match pool size and bond amount
	Prevent datum tampering
	Disallow 100% Optim fee

	Conclusion

	Appendix
	Discrepancy between cardano-ledger and plutus-apps
	Patch applied on Nft.hs
	Off-chain findings

