1 00:00:01,450 --> 00:00:03,450 大家好我是 Shelly Kelly 2 00:00:03,450 --> 00:00:08,725 这节来展示如何使用 Artemis 3 00:00:08,725 --> 00:00:14,350 分辨铁样品的第一壳层是氧还是硫 4 00:00:15,091 --> 00:00:17,550 这里是 Artemis 5 00:00:18,175 --> 00:00:21,625 主控制窗口 6 00:00:21,950 --> 00:00:25,625 到文件菜单 7 00:00:25,625 --> 00:00:28,950 打开项目文件 8 00:00:31,393 --> 00:00:34,375 到桌面 9 00:00:34,785 --> 00:00:40,525 打开之前的 Athena 文件 10 00:00:42,850 --> 00:00:48,300 可以看到之前的三组数据 11 00:00:48,300 --> 00:00:54,375 点击任一数据就会展示其 R 空间谱图 12 00:00:54,375 --> 00:00:59,700 利用画图窗口可以展示不同空间的数据 13 00:00:59,700 --> 00:01:01,700 选择中间的数据 14 00:01:01,700 --> 00:01:04,750 k 范围从 3 到 12 15 00:01:04,750 --> 00:01:07,825 加载选中的数据 16 00:01:08,300 --> 00:01:10,900 数据窗口中的对应信息出现 17 00:01:10,900 --> 00:01:16,500 之前在 Athena 里面的参数信息也转移到这个窗口中 18 00:01:16,500 --> 00:01:19,725 k 从 3 到 12 19 00:01:20,275 --> 00:01:26,850 拟合范围也就是反傅里叶变化的范围 20 00:01:26,850 --> 00:01:28,850 从 1 到 3 21 00:01:28,850 --> 00:01:34,875 这代表着我们会对 k 的一次方到三次方数据拟合 22 00:01:35,524 --> 00:01:40,525 下面勾选的选项是告诉 Artemis 23 00:01:40,525 --> 00:01:44,625 实验数据会被包含并且拟合后会展示 24 00:01:46,575 --> 00:01:49,852 除了数据以外 25 00:01:49,852 --> 00:01:53,693 还要加载 Feff 模拟 26 00:01:54,325 --> 00:01:58,250 到 Feff 那里点击 Add 27 00:02:00,400 --> 00:02:04,200 到课程教材文件 28 00:02:12,109 --> 00:02:17,725 打开硫化铁的 inp 文件 29 00:02:21,675 --> 00:02:25,875 这个文件很好用 30 00:02:25,875 --> 00:02:30,875 因为含氧和含硫的路径都有 31 00:02:31,675 --> 00:02:35,750 这是晶体结构数据 32 00:02:35,750 --> 00:02:39,375 样品是硫化铁 33 00:02:40,125 --> 00:02:43,425 空间群在这里 34 00:02:43,425 --> 00:02:45,600 晶体常数在这里 35 00:02:45,600 --> 00:02:50,400 要计算的簇尺寸达到了 9 36 00:02:50,400 --> 00:02:53,650 有点大了,改成 6 37 00:02:54,064 --> 00:02:58,400 最长的路径只计算到 5 Å 38 00:02:59,250 --> 00:03:03,500 下面是晶胞中原子坐标 39 00:03:03,500 --> 00:03:07,100 勾选上的铁是中心原子 40 00:03:07,100 --> 00:03:09,750 这是指定的 K 边 41 00:03:09,750 --> 00:03:11,750 点击 Run Atoms 42 00:03:12,675 --> 00:03:17,875 页面会跳转到 Feff 界面 43 00:03:18,125 --> 00:03:21,100 你可以看到 44 00:03:21,100 --> 00:03:25,525 一些文件中结构参数信息 45 00:03:25,525 --> 00:03:27,525 这里标题 46 00:03:28,225 --> 00:03:33,175 中心原子被定在 K 边 47 00:03:33,175 --> 00:03:35,175 用这里的 1 代表 48 00:03:35,175 --> 00:03:40,125 下面代表着不同的 potential (势) 49 00:03:40,125 --> 00:03:41,850 会被用作计算 50 00:03:41,850 --> 00:03:44,347 第一个是中心铁原子 51 00:03:44,347 --> 00:03:46,950 第二个是邻近铁原子 52 00:03:46,950 --> 00:03:50,025 硫原子,氧原子 53 00:03:50,025 --> 00:03:52,275 往下翻 54 00:03:53,225 --> 00:03:57,350 可以看到第一壳层是氧原子 55 00:03:57,350 --> 00:04:04,825 共计有 6 个氧原子 56 00:04:04,825 --> 00:04:07,850 要检查这个列表中的参数是否合理 57 00:04:07,850 --> 00:04:13,075 铁氧之间距离大约 2.0 Å 是合理距离 58 00:04:13,075 --> 00:04:16,575 以及后面的硫原子 59 00:04:17,325 --> 00:04:20,950 确保一切正常后 60 00:04:20,950 --> 00:04:24,575 点击 Run Feff 61 00:04:27,025 --> 00:04:31,175 跳转到下一个页面 Paths 62 00:04:31,175 --> 00:04:36,225 这些路径接下来会被用作拟合 63 00:04:36,950 --> 00:04:40,000 现在打开数据窗口 64 00:04:40,000 --> 00:04:45,275 直接把铁氧路径拖到 Path list 65 00:04:45,725 --> 00:04:50,050 这样就可以用这条路径来拟合了 66 00:04:51,200 --> 00:04:53,425 现在可以把 inp 文件最小化了 67 00:04:53,425 --> 00:04:55,975 如果还想打开 68 00:04:56,300 --> 00:04:58,300 在 Feff calculations 下方 69 00:04:58,300 --> 00:04:59,900 鼠标左键点击对应文件即可 70 00:04:59,900 --> 00:05:01,989 再点击就关掉了 71 00:05:02,375 --> 00:05:04,375 数据窗口同理可证 72 00:05:04,625 --> 00:05:06,625 点击即可展示和最小化 73 00:05:07,325 --> 00:05:10,050 有了路径之后 74 00:05:10,050 --> 00:05:13,050 需要设置一些参数 75 00:05:13,050 --> 00:05:16,364 来描述具体的信息 76 00:05:16,625 --> 00:05:24,925 我们先加上…… 77 00:05:25,084 --> 00:05:27,625 现在配位数是 6 78 00:05:28,250 --> 00:05:30,250 S02 被设为 1 79 00:05:30,250 --> 00:05:33,276 第一次尝试可以 80 00:05:33,925 --> 00:05:37,450 我们可以加入铁氧路径的 ΔE 81 00:05:37,450 --> 00:05:43,150 和用于调整参考距离的 ΔR 82 00:05:43,650 --> 00:05:49,650 我们还可以设置 σ2 为绝对值 83 00:05:50,475 --> 00:05:59,775 利用 abs(变量) 可以保证最后的数值不会为负数 84 00:05:59,775 --> 00:06:03,275 鼠标右键点击参数可以转移到猜测窗口 85 00:06:04,025 --> 00:06:08,350 这里是猜测窗口 86 00:06:08,350 --> 00:06:12,875 我们猜测 ΔE = 0 87 00:06:13,575 --> 00:06:17,650 同理设置 ΔR 88 00:06:17,650 --> 00:06:19,800 和 σ2 89 00:06:22,209 --> 00:06:25,700 重要的是这些参数需要跟参考路径足够接近 90 00:06:26,000 --> 00:06:31,200 σ2 数值大多在 0.00数字 91 00:06:31,200 --> 00:06:33,450 一开始猜个 0.003 92 00:06:34,000 --> 00:06:37,125 我个人喜欢在第一次拟合的时候 93 00:06:37,125 --> 00:06:39,375 把所有变量设为常量 94 00:06:39,375 --> 00:06:42,400 直接把路径加和在一起 95 00:06:42,400 --> 00:06:44,400 跟实验数据进行比较 96 00:06:45,153 --> 00:06:50,650 那现在就开始 97 00:06:50,650 --> 00:06:52,650 点击 Fit 98 00:06:56,050 --> 00:06:58,725 可以看到 99 00:06:59,475 --> 00:07:05,775 傅里叶变换后的强度在上,实部图像在下 100 00:07:05,775 --> 00:07:09,825 红线是 Feff 模拟 101 00:07:10,325 --> 00:07:12,575 绿线是拟合范围 102 00:07:12,950 --> 00:07:17,050 可以通过画图窗口来改变图像展示方式 103 00:07:17,700 --> 00:07:19,725 如果你想回看这组图 104 00:07:19,725 --> 00:07:24,675 回到数据窗口点击 Rmr 就好 105 00:07:24,675 --> 00:07:27,975 代表着强度和实部 106 00:07:28,206 --> 00:07:31,000 如果想看其他的 107 00:07:31,000 --> 00:07:33,600 比如只想看强度 108 00:07:33,600 --> 00:07:35,400 像这样 109 00:07:35,400 --> 00:07:39,600 设定为强度,对应数据在列表中 110 00:07:40,208 --> 00:07:42,425 如果是实部图像 111 00:07:43,150 --> 00:07:45,150 也就只有实部谱图 112 00:07:45,150 --> 00:07:48,150 也可以把拟合窗口关掉 113 00:07:48,450 --> 00:07:51,125 如果你想的话,取消勾选这个就好 114 00:07:53,200 --> 00:08:00,175 看起来路径不匹配 115 00:08:00,175 --> 00:08:04,100 是 Feff 的路径不太对 116 00:08:04,600 --> 00:08:08,975 第一个发现是铁氧路径强度太强 117 00:08:09,300 --> 00:08:11,300 其次是距离太短 118 00:08:11,300 --> 00:08:13,325 所以距离需要改动 119 00:08:13,325 --> 00:08:15,750 强度也要减小 120 00:08:16,378 --> 00:08:19,575 要这么做的话 121 00:08:19,575 --> 00:08:25,450 先减少配位数 122 00:08:25,450 --> 00:08:27,450 现在是 6 123 00:08:28,150 --> 00:08:30,900 现在改成 1 124 00:08:31,275 --> 00:08:36,025 在 N 这一行必须是数字 125 00:08:36,550 --> 00:08:38,800 如果要让它设为变量 126 00:08:38,800 --> 00:08:40,800 得把参数加在下一行 127 00:08:40,800 --> 00:08:43,925 N 和 S02 都是强度相关参数 128 00:08:44,425 --> 00:08:49,250 把这个改成 amp * NO 129 00:08:49,250 --> 00:08:54,775 也就是 S02 乘以 130 00:08:55,425 --> 00:08:59,150 对 amp 和 NO 选 set 131 00:09:02,275 --> 00:09:06,975 我们把配位数从 1 设为 3 132 00:09:06,975 --> 00:09:11,215 amp 保持为 1 133 00:09:11,215 --> 00:09:13,975 S02 通常在 0.7 - 1 134 00:09:13,975 --> 00:09:15,975 先就这样 135 00:09:17,725 --> 00:09:23,975 还要调整下距离,加个 0.2 136 00:09:23,975 --> 00:09:27,500 相比于之前长了 0.2 Å 137 00:09:27,825 --> 00:09:30,850 在跑次拟合 138 00:09:32,050 --> 00:09:35,000 峰强度看起来好不少了 139 00:09:35,775 --> 00:09:40,800 高度接近 140 00:09:41,250 --> 00:09:45,300 但看起来不是很好 141 00:09:47,650 --> 00:09:49,650 距离更接近了 142 00:09:49,650 --> 00:09:57,150 但拟合谱图的形状跟实验数据差距很大 143 00:09:57,743 --> 00:10:02,375 但更接近些了,所以试一把 144 00:10:02,900 --> 00:10:07,800 把参数变为变量 145 00:10:07,800 --> 00:10:09,800 把 amp 设为 146 00:10:12,175 --> 00:10:18,175 直接把 amp 定成 0.8 147 00:10:18,175 --> 00:10:23,500 我是从铁片拟合中知道这个数值的 148 00:10:23,500 --> 00:10:26,850 从固定铁片的已知配位数得到的 149 00:10:26,850 --> 00:10:30,400 这个数值是可以从其他拟合中借鉴的 150 00:10:30,800 --> 00:10:33,499 设成 0.8 151 00:10:33,499 --> 00:10:36,379 剩下的是变量 152 00:10:38,043 --> 00:10:40,043 点击 Fit 153 00:10:40,350 --> 00:10:46,375 看起来形状吻合了 154 00:10:46,375 --> 00:10:48,375 看下各自的最优解是多少 155 00:10:49,567 --> 00:10:52,675 这有问题 156 00:10:52,675 --> 00:10:54,675 ΔE 是 18 157 00:10:55,500 --> 00:10:58,825 有问题 158 00:10:58,825 --> 00:11:03,500 ΔR 一会儿来细讲 159 00:11:04,096 --> 00:11:06,096 ΔR 是 0.28 160 00:11:06,096 --> 00:11:08,450 跟之前的猜测接近 161 00:11:09,100 --> 00:11:11,300 σ2 是 0.005 162 00:11:11,300 --> 00:11:12,975 不差 163 00:11:12,975 --> 00:11:15,825 氧配位数是 4 164 00:11:15,825 --> 00:11:17,825 也不差 165 00:11:18,100 --> 00:11:20,600 现在来看下 ΔE 166 00:11:20,600 --> 00:11:22,325 到底发生了什么 167 00:11:22,700 --> 00:11:26,250 如果到 k 空间去 168 00:11:26,925 --> 00:11:32,175 你可以看到拟合的数据 169 00:11:32,175 --> 00:11:35,850 从 2 Å-1 开始一下子跳起来 170 00:11:36,675 --> 00:11:43,925 是为了去匹配窗函数中的数据 171 00:11:44,307 --> 00:11:48,475 如果我们把 dele 设为初始值呢 172 00:11:49,400 --> 00:11:52,150 点击 use bset ift 173 00:11:53,050 --> 00:11:56,175 使用最优解 174 00:11:56,175 --> 00:11:58,175 只把 delr 改回 0 175 00:11:58,175 --> 00:12:00,601 并且定为常量 176 00:12:02,850 --> 00:12:05,750 把 guess 改成 set 177 00:12:11,025 --> 00:12:13,825 再跑次拟合 178 00:12:13,825 --> 00:12:17,475 把整个数据往左移 179 00:12:17,500 --> 00:12:19,975 点击 Fit 180 00:12:21,325 --> 00:12:23,325 保持其他不变 181 00:12:23,350 --> 00:12:29,300 可以看到峰形状不吻合了 182 00:12:31,355 --> 00:12:35,125 到 k 空间 183 00:12:35,707 --> 00:12:38,300 把图移回 k = 0 184 00:12:38,300 --> 00:12:42,825 信号现在完全不同步了 185 00:12:42,825 --> 00:12:46,432 拟合与实验图像不再接近 186 00:12:49,625 --> 00:12:55,025 有可能是我们在 Athena 中的 E0 有问题 187 00:12:55,025 --> 00:12:58,150 需要加上 18 eV 188 00:12:58,500 --> 00:13:00,950 而不是我们之前选择的 E0 189 00:13:01,000 --> 00:13:04,325 回到 Athena 190 00:13:05,850 --> 00:13:08,375 看下这个猜测是否合理 191 00:13:09,047 --> 00:13:12,325 这是 Athena 文件 192 00:13:12,375 --> 00:13:15,150 关掉这些 193 00:13:17,725 --> 00:13:21,300 把剩下的参数都跟第二组数据改成一样的 194 00:13:22,807 --> 00:13:25,900 到 E 空间 195 00:13:26,675 --> 00:13:32,275 现在的 E0 在吸收边靠上的地方 196 00:13:32,750 --> 00:13:36,675 这里做个标记 197 00:13:37,325 --> 00:13:39,325 选 indicators 198 00:13:39,425 --> 00:13:44,225 用这个圆圆的按钮 199 00:13:45,325 --> 00:13:48,075 双击指定的地方 200 00:13:48,100 --> 00:13:49,650 点击 E 键 201 00:13:49,750 --> 00:13:53,200 棕线代表 E0 所在位置 202 00:13:54,775 --> 00:14:00,025 我们还可以再放个标记 203 00:14:00,050 --> 00:14:02,050 在加上 18 eV 之后的 E0 204 00:14:04,425 --> 00:14:07,575 也在 E 空间中 205 00:14:12,475 --> 00:14:14,475 那也就在这儿了 206 00:14:14,650 --> 00:14:17,325 我们知道 207 00:14:19,500 --> 00:14:21,500 这大约是 k = 2 的地方 208 00:14:21,500 --> 00:14:25,500 我们知道这里 k = 0 不合理 209 00:14:26,028 --> 00:14:30,175 E0 不能在吸收边这么以外的地方 210 00:14:30,892 --> 00:14:35,425 另一个解决方法是用铁硫路径 211 00:14:40,082 --> 00:14:44,900 打开 Artemis 212 00:14:57,125 --> 00:14:59,600 这个先等下 213 00:15:02,300 --> 00:15:09,175 我们为铁硫路径再加个 Feff 模拟 214 00:15:11,525 --> 00:15:17,275 我们去到桌面 215 00:15:17,550 --> 00:15:20,850 选择硫化铁文件 216 00:15:21,400 --> 00:15:25,650 打开是陨硫铁样品,硫化铁 217 00:15:25,750 --> 00:15:29,500 确保所有参数合理 218 00:15:29,525 --> 00:15:31,475 簇大小改为 6 219 00:15:31,500 --> 00:15:33,200 最长路径不超过 5 Å 220 00:15:33,200 --> 00:15:34,575 K 边 221 00:15:34,600 --> 00:15:36,600 勾选中心原子 K 222 00:15:36,625 --> 00:15:38,625 点击 Run Atoms 223 00:15:38,650 --> 00:15:43,450 往下翻确认距离 224 00:15:43,881 --> 00:15:45,881 看起来可以 225 00:15:45,975 --> 00:15:51,425 铁硫距离大约 2.3 Å 226 00:15:51,425 --> 00:15:53,050 要比铁氧长点 227 00:15:53,050 --> 00:15:55,050 符合预计 228 00:15:55,100 --> 00:15:57,375 点击 Run Feff 229 00:15:59,700 --> 00:16:04,425 路径窗口出现 230 00:16:04,625 --> 00:16:10,875 第一条铁硫路径准备就绪 231 00:16:11,175 --> 00:16:15,350 我不知道之前有没有具体介绍过这一页 232 00:16:15,375 --> 00:16:16,500 Degen 代表简并度 233 00:16:16,500 --> 00:16:18,750 指一样的路径有多少个 234 00:16:19,363 --> 00:16:23,975 第一壳层参考路径距离 2.3 Å 235 00:16:23,975 --> 00:16:25,125 也是成键距离 236 00:16:25,375 --> 00:16:31,325 散射路径类型里面用原子来代表 237 00:16:31,375 --> 00:16:36,925 从中心铁原子到硫原子再回到铁 238 00:16:37,075 --> 00:16:40,800 所有单散射路径是绿色 239 00:16:41,275 --> 00:16:46,775 排名 (Rank) 说明每条路径相对第一条路径的重要性 240 00:16:46,775 --> 00:16:50,200 说明第一条简并度为 2 的路径 241 00:16:50,200 --> 00:16:55,550 强度是其他这几条简并度为 1 的路径两倍 242 00:16:56,850 --> 00:17:01,325 说明各自路径的重要程度 243 00:17:01,350 --> 00:17:05,375 加载第一条路径 244 00:17:07,100 --> 00:17:09,100 关闭文件 245 00:17:09,100 --> 00:17:18,650 现在 Feff calculations 有两个不同文件 246 00:17:18,900 --> 00:17:23,950 这个路径在列表中后 247 00:17:24,130 --> 00:17:25,700 我们需要设置参数 248 00:17:25,700 --> 00:17:31,100 回到我们之前拟合的设置 249 00:17:31,428 --> 00:17:36,575 利用之前设置好的来设置铁硫路径 250 00:17:36,575 --> 00:17:39,675 只需要鼠标右键点击 251 00:17:39,675 --> 00:17:43,750 把参数扩展到勾选上的路径 252 00:17:44,575 --> 00:17:51,025 这样两条路径的参数会是一样的 253 00:17:51,900 --> 00:17:55,600 参数必须手动设置 254 00:17:55,600 --> 00:18:00,050 或是在 Data 选项下方设置所有简并度为 1 255 00:18:00,183 --> 00:18:03,275 或是设为 Feff 默认值 256 00:18:04,575 --> 00:18:08,500 由于氧硫差异 257 00:18:08,500 --> 00:18:10,895 我们需要改变参数 258 00:18:11,775 --> 00:18:16,850 鼠标右键参数选择 guess 259 00:18:18,219 --> 00:18:22,375 然后要踢掉铁氧路径 260 00:18:22,375 --> 00:18:25,275 取消勾选铁氧路径选项 261 00:18:26,150 --> 00:18:30,475 回到猜测窗口 262 00:18:30,475 --> 00:18:31,875 左上方 GDS 点击就有 263 00:18:32,835 --> 00:18:39,425 把这些参数设为 skip 264 00:18:39,425 --> 00:18:41,425 拟合时软件不会考虑它们了 265 00:18:42,075 --> 00:18:43,608 选 skip 266 00:18:43,608 --> 00:18:47,025 再设置这些参数 267 00:18:47,575 --> 00:18:51,275 设配位数 4 268 00:18:51,275 --> 00:18:54,575 铁硫 ΔR 为 0 269 00:18:54,900 --> 00:18:57,575 σ2 为 0.003 270 00:18:57,575 --> 00:19:02,025 跑次拟合看看差距 271 00:19:02,975 --> 00:19:09,350 红线是 Feff 路径加和结果 272 00:19:09,350 --> 00:19:11,350 蓝线是实验数据 273 00:19:11,350 --> 00:19:15,650 可以看到不仅距离吻合 274 00:19:15,650 --> 00:19:22,925 两者的形状也接近 275 00:19:26,700 --> 00:19:31,300 那现在正式拟合 276 00:19:31,300 --> 00:19:34,025 拟合结果应该不会差太远 277 00:19:34,412 --> 00:19:37,000 把参数设为 guess 278 00:19:37,000 --> 00:19:39,532 ΔE 也是变量 279 00:19:40,616 --> 00:19:43,150 试下 280 00:19:50,250 --> 00:19:57,100 现在 ΔE 是 -0.8 eV 281 00:19:57,100 --> 00:19:59,600 很好 282 00:20:00,059 --> 00:20:02,059 配位数是 6 283 00:20:02,880 --> 00:20:05,900 ΔR 是 0.06 284 00:20:05,900 --> 00:20:10,775 σ2 是 0.015 285 00:20:10,775 --> 00:20:18,875 这个值比较大但可以接受 286 00:20:18,875 --> 00:20:22,475 使用最优解 287 00:20:22,475 --> 00:20:26,500 到 k 空间 288 00:20:28,690 --> 00:20:31,200 现在是 k 空间 289 00:20:31,200 --> 00:20:39,400 可以看到 k = 0 地方更吻合了 290 00:20:39,400 --> 00:20:45,600 中间一段的数据也吻合 291 00:20:45,925 --> 00:20:48,500 可以做反傅里叶变换 292 00:20:48,500 --> 00:20:54,500 仅针对拟合范围内的数据 293 00:20:54,500 --> 00:20:58,650 整体来说结果接近 294 00:20:58,650 --> 00:21:02,800 但是丢失了在 k = 8 Å-1 左右的细节 295 00:21:02,800 --> 00:21:05,100 这是为什么呢 296 00:21:05,500 --> 00:21:10,175 是来自于这一段的信号没有拟合 297 00:21:10,175 --> 00:21:14,600 但扔在拟合的范围内 298 00:21:15,150 --> 00:21:20,596 如果把拟合范围降到 2.3 Å 299 00:21:21,100 --> 00:21:27,325 这一段丢失的细节会消失 300 00:21:27,325 --> 00:21:31,100 也会降低不确定性 301 00:21:31,850 --> 00:21:33,850 试下 302 00:21:34,675 --> 00:21:36,675 再拟合次 303 00:21:37,150 --> 00:21:39,750 现在窗口只到了 2.3 304 00:21:40,075 --> 00:21:45,675 不确定性下降 305 00:21:45,675 --> 00:21:50,251 比较不同次的拟合到历史窗口 306 00:21:50,251 --> 00:21:53,475 看第 7 次拟合 307 00:21:53,475 --> 00:21:55,350 也是最后一个 308 00:21:55,350 --> 00:21:59,375 不确定值在这儿 309 00:21:59,375 --> 00:22:01,900 ΔE 不确定值是 1.1 310 00:22:02,475 --> 00:22:07,869 配位数是 5.5 ± 0.6 311 00:22:08,575 --> 00:22:11,250 如果到第 6 次拟合 312 00:22:11,900 --> 00:22:18,525 配位数的不确定值是 0.9 313 00:22:18,525 --> 00:22:20,525 然后减少了 0.5 314 00:22:20,525 --> 00:22:26,100 reduced chi-square 降低到原来的二分之一 315 00:22:26,100 --> 00:22:27,625 一个很明显的区别 316 00:22:29,100 --> 00:22:30,900 这是 539 317 00:22:30,900 --> 00:22:35,050 因为拟合范围选择不恰当 318 00:22:35,050 --> 00:22:36,850 两倍的差距很关键 319 00:22:36,850 --> 00:22:42,425 所以现在 reduced chi-square 是 243 320 00:22:42,425 --> 00:22:44,425 是个更好的拟合 321 00:22:44,425 --> 00:22:49,600 σ2 依然很大 322 00:22:49,600 --> 00:22:55,600 现在是 0.013 一个比较大的值 323 00:22:55,950 --> 00:23:00,215 如果回到硫化铁的 Feff 文件 324 00:23:00,215 --> 00:23:05,900 可以发现铁硫距离有好几个不同的 325 00:23:05,900 --> 00:23:07,900 而不像铁氧路径 326 00:23:08,525 --> 00:23:18,025 有 2.3, 2.4, 2.5, 2.6 和 2.7 Å 327 00:23:18,025 --> 00:23:25,725 可以试着加一个距离更长的铁硫路径 328 00:23:26,350 --> 00:23:28,350 试下 329 00:23:29,200 --> 00:23:31,325 加入这条路径 330 00:23:34,125 --> 00:23:39,700 勾选,并把参数设为一样 331 00:23:40,350 --> 00:23:44,850 像这样设置勾选路径 332 00:23:47,675 --> 00:23:50,900 这个改成铁硫 1 333 00:23:51,500 --> 00:23:54,800 把 ΔR 也改成对应的 334 00:23:54,800 --> 00:23:56,525 并且都设为变量 335 00:23:56,525 --> 00:24:00,350 两条路径的 σ2 设为一样 336 00:24:00,350 --> 00:24:04,075 铁硫 2 对应设置 337 00:24:06,425 --> 00:24:09,275 回到猜测窗口 338 00:24:10,175 --> 00:24:14,075 踢掉不需要的参数 339 00:24:14,750 --> 00:24:19,900 把两条铁硫路径配位数各自设为 3 340 00:24:20,225 --> 00:24:23,750 使用最优解 341 00:24:23,848 --> 00:24:28,375 并且全部定为常数看看 342 00:24:28,375 --> 00:24:30,375 改成 set 343 00:24:33,473 --> 00:24:35,473 点击 Fit 344 00:24:36,344 --> 00:24:41,225 σ2 现在有点太大了 345 00:24:41,825 --> 00:24:43,825 先这样吧 346 00:24:43,825 --> 00:24:50,859 画个图看下 347 00:24:50,859 --> 00:24:53,125 这儿的 348 00:24:53,787 --> 00:25:01,375 现在要拟合中看各自路径的贡献 349 00:25:01,624 --> 00:25:04,775 回到数据面板 350 00:25:05,750 --> 00:25:11,250 点击右上方蓝色按键 351 00:25:11,250 --> 00:25:13,250 把路径加到画图列表 352 00:25:13,575 --> 00:25:16,050 第二条也是 353 00:25:16,050 --> 00:25:20,125 如果想让它每次拟合后自动加载路径 354 00:25:20,400 --> 00:25:23,850 勾选 Plot after fit 355 00:25:24,513 --> 00:25:29,625 图以堆叠形式呈现 356 00:25:29,975 --> 00:25:34,450 我们可以让它们之间错开 0.2 357 00:25:36,200 --> 00:25:40,400 现在可以看到 358 00:25:41,125 --> 00:25:43,125 关掉窗口 359 00:25:43,125 --> 00:25:54,400 我们应该把拟合范围扩大到 2.8 Å 360 00:25:56,271 --> 00:26:02,575 减小 σ2 数值 361 00:26:03,247 --> 00:26:05,525 回到猜测窗口 362 00:26:05,525 --> 00:26:07,400 减小一半 363 00:26:07,400 --> 00:26:09,400 鉴于有两条路径 364 00:26:10,050 --> 00:26:12,675 跑次拟合 365 00:26:15,477 --> 00:26:18,550 强度相比实验数据高了一些 366 00:26:18,550 --> 00:26:25,250 拟合后到 R 空间 367 00:26:25,975 --> 00:26:27,975 现在看起来像这样 368 00:26:30,275 --> 00:26:32,275 再试下 369 00:26:33,725 --> 00:26:35,725 改为 guess 370 00:26:37,125 --> 00:26:39,125 ΔE 371 00:26:43,075 --> 00:26:45,075 点击 Fit 372 00:26:48,525 --> 00:26:53,050 现在可以看到 373 00:26:53,050 --> 00:27:00,400 我们可以做到跟实验数据的特征信号匹配上了 374 00:27:00,400 --> 00:27:06,750 从 2.5 Å 开始拟合有些差距了 375 00:27:06,750 --> 00:27:13,025 把 Rmax 从 2.8 改成 2.5 376 00:27:13,025 --> 00:27:15,150 之所以这么做 377 00:27:15,150 --> 00:27:18,825 是因为我觉得没把握去拟合这里 378 00:27:19,175 --> 00:27:24,850 不确定值大小是受这些不吻合的地方影响 379 00:27:25,550 --> 00:27:32,725 所以 R 范围要尽量选到真正被拟合的区间 380 00:27:33,344 --> 00:27:35,850 检查各自最优解 381 00:27:36,300 --> 00:27:41,550 ΔE 数值在正常范围 382 00:27:41,640 --> 00:27:44,275 σ2现在是 0.008 383 00:27:44,275 --> 00:27:51,525 通过使用两条路径来移除了一些混乱度 384 00:27:51,950 --> 00:27:56,300 配位数是 4.2 和 2.1 385 00:27:56,300 --> 00:27:58,600 总配位数是 6 386 00:27:58,600 --> 00:28:01,250 分成 4 和 2 也是合理的 387 00:28:01,700 --> 00:28:05,425 ΔR 数值在也正常范围 388 00:28:05,425 --> 00:28:07,425 0.04 和 0.1 389 00:28:07,425 --> 00:28:10,450 使用最优解 390 00:28:13,225 --> 00:28:15,225 我不是想这么做的 391 00:28:15,600 --> 00:28:18,075 点击 Use best fit 392 00:28:18,075 --> 00:28:20,075 把它们当做初始猜测数值 393 00:28:20,375 --> 00:28:26,175 去到历史窗口 394 00:28:26,175 --> 00:28:27,625 鉴于之前跑的拟合 395 00:28:27,625 --> 00:28:29,625 看下历史记录 396 00:28:30,642 --> 00:28:35,100 现在 reduced chi-square 是 309 397 00:28:35,634 --> 00:28:40,375 之前是 424 398 00:28:40,375 --> 00:28:46,625 这个改善是通过选择恰当拟合范围带来的 399 00:28:47,666 --> 00:28:49,666 看下不确定值 400 00:28:50,100 --> 00:28:53,175 4.2 ± 0.8 401 00:28:53,559 --> 00:28:55,559 没有变太多 402 00:28:55,559 --> 00:28:59,250 4.0 ± 0.9 403 00:28:59,480 --> 00:29:04,250 你也许会说这些不确定值仍然有点大 404 00:29:04,250 --> 00:29:08,750 我很确定这是硫化铁样品 405 00:29:08,750 --> 00:29:13,400 不仅如此,配位数也应该是 6 406 00:29:13,400 --> 00:29:16,800 铁的配位数通常为 6 407 00:29:16,800 --> 00:29:20,500 虽然我不是一定想证明配位数是 6 408 00:29:20,500 --> 00:29:24,775 但想证明是 4 + 2 组合 409 00:29:25,200 --> 00:29:29,350 你可以通过数学表达式来实现 410 00:29:30,325 --> 00:29:33,938 比如 411 00:29:33,938 --> 00:29:46,000 第二壳层设为 6 减去第一壳层配位数的绝对值 412 00:29:46,825 --> 00:29:48,825 并设为define 413 00:29:49,200 --> 00:29:51,600 用这个数学表达式来“定义” 414 00:29:52,050 --> 00:29:57,025 与设为 amp = 0.8 不一样的是 415 00:29:57,025 --> 00:30:00,800 set 的数值只会在拟合一开始被考虑 416 00:30:00,800 --> 00:30:05,075 而不会随着参数改变而再次考虑 417 00:30:05,075 --> 00:30:07,075 如果定义一个变量 418 00:30:07,075 --> 00:30:10,050 像是第二条铁硫路径 419 00:30:10,050 --> 00:30:15,600 会随着第一壳层配位数改变而再次被改动 420 00:30:17,450 --> 00:30:21,900 点击 Fit 421 00:30:25,607 --> 00:30:27,607 看起来很好 422 00:30:27,975 --> 00:30:32,825 配位数的不确定值下来了 423 00:30:32,825 --> 00:30:35,575 现在是 0.3 424 00:30:35,575 --> 00:30:40,125 这里配位数是 4 ± 0.3 425 00:30:40,125 --> 00:30:44,850 可以观察下各自路径的贡献 426 00:30:44,850 --> 00:30:49,750 看到第二条路径如何跟第一条错开 427 00:30:49,750 --> 00:30:53,500 造成了这个比较宽的信号 428 00:30:53,500 --> 00:30:56,975 还可以去 k 空间里面比较 429 00:30:57,450 --> 00:31:01,675 k 空间中拟合和实验数据接近 430 00:31:01,675 --> 00:31:07,350 主要由第一条铁硫路径影响 431 00:31:07,350 --> 00:31:09,350 这里有两个不同的信号 432 00:31:09,350 --> 00:31:14,425 我本想强调从 k = 0 到 14 以上一路的信号 433 00:31:14,857 --> 00:31:20,225 但包络显示这里信号衰减很快 434 00:31:20,225 --> 00:31:23,175 在 k 值高的区域,鉴于是硫原子 435 00:31:24,498 --> 00:31:29,125 还可以去反傅里叶变换的 q 空间 436 00:31:29,125 --> 00:31:34,000 踢掉噪音 437 00:31:34,000 --> 00:31:40,900 可以更好地观察路径各自贡献 438 00:31:42,738 --> 00:31:45,525 那么 439 00:31:46,100 --> 00:31:52,200 还有个我没太讲的部分是 log 文件 440 00:31:52,200 --> 00:31:54,200 来看下 441 00:31:54,529 --> 00:31:58,000 这里很方便检查错误 442 00:31:58,000 --> 00:31:59,850 可以看到 reduced chi-square 443 00:31:59,850 --> 00:32:03,875 还有之前没介绍的历史窗口 444 00:32:03,875 --> 00:32:06,350 往下翻 log 文件 445 00:32:06,600 --> 00:32:11,925 可以看到我们使用的两条路径 446 00:32:11,925 --> 00:32:17,400 Reff 是从 Feff 计算得到的距离 447 00:32:17,400 --> 00:32:19,750 R 是优化后的距离 448 00:32:19,750 --> 00:32:26,150 优化后的值是 2.4 和 2.59 Å 449 00:32:26,425 --> 00:32:28,425 这里是 e0 450 00:32:28,425 --> 00:32:30,250 σ2 451 00:32:30,250 --> 00:32:36,350 S02 是 amp 乘以配位数后的结果 452 00:32:36,675 --> 00:32:38,675 如果出现问题 453 00:32:38,675 --> 00:32:42,850 不知道为什么变量完全乱套 454 00:32:42,850 --> 00:32:45,450 这里很适合来寻找问题根源 455 00:32:45,450 --> 00:32:47,450 尤其如果会用到数学表达式 456 00:32:47,450 --> 00:32:49,800 可以看到它们各自的数值 457 00:32:52,325 --> 00:32:57,000 最后 reduced chi-square 是 219 458 00:32:57,000 --> 00:32:59,850 是个不错的值 459 00:32:59,850 --> 00:33:03,675 独立数据点 8 460 00:33:03,925 --> 00:33:06,750 变量数量是 5 461 00:33:06,750 --> 00:33:09,500 也不错 462 00:33:09,500 --> 00:33:16,100 独立数据点计算基于 463 00:33:16,667 --> 00:33:18,825 数据范围和拟合范围 464 00:33:18,825 --> 00:33:21,125 数据范围是 3 - 12 465 00:33:21,125 --> 00:33:23,750 拟合范围 1 - 2.5 466 00:33:23,750 --> 00:33:27,225 就能给出这套数据的独立数据点 467 00:33:28,575 --> 00:33:30,925 总的来说 468 00:33:30,925 --> 00:33:38,900 这节展示了如何拟合硫样品的第一壳层 469 00:33:38,900 --> 00:33:41,539 并且证明这是硫化铁 470 00:33:42,225 --> 00:33:44,100 谢谢 471 00:33:44,100 --> 00:33:46,100 Have a good day;)