1 00:00:01,025 --> 00:00:03,200 大家好我是 Shelly Kelly 2 00:00:03,200 --> 00:00:08,800 继续我们铂样品的数据处理 3 00:00:09,950 --> 00:00:11,950 之前的 Athena 文件 4 00:00:12,300 --> 00:00:16,100 也做了第一壳层拟合 5 00:00:16,266 --> 00:00:18,900 定了 S02 值 6 00:00:19,500 --> 00:00:29,650 加载我们之前处理的文件到 Artemis 中 7 00:00:29,650 --> 00:00:32,075 打开 Athena 文件 8 00:00:32,075 --> 00:00:36,750 有一系列数据 9 00:00:36,750 --> 00:00:44,475 选择任一数据可以看到谱图预览 10 00:00:45,524 --> 00:00:47,524 加载选中数据 11 00:00:48,596 --> 00:00:55,950 现在看到的是被加载的数据窗口 12 00:00:57,172 --> 00:00:59,700 下一步需要 Feff 计算 13 00:00:59,700 --> 00:01:06,800 找铂的 cif 文件并加载 14 00:01:08,325 --> 00:01:13,400 这是基于铂金属晶体学数据 15 00:01:13,891 --> 00:01:18,350 这里是晶格常数和晶胞中的原子坐标 16 00:01:20,050 --> 00:01:22,050 中心原子为铂 17 00:01:22,050 --> 00:01:24,525 L3 边 18 00:01:24,525 --> 00:01:29,600 点击 Run Atoms 得到一系列簇计算 19 00:01:29,600 --> 00:01:32,800 有铂原子在中心 20 00:01:32,800 --> 00:01:36,850 ipot = 0 代表了中心原子 21 00:01:37,750 --> 00:01:38,975 作为吸收原子 22 00:01:38,975 --> 00:01:41,250 剩下的是散射原子 23 00:01:41,250 --> 00:01:44,550 比如第一层的 2.77 Å 24 00:01:45,310 --> 00:01:47,310 看起来可以,点击 Run Feff 25 00:01:48,574 --> 00:01:51,275 出现路径列表 26 00:01:51,750 --> 00:01:56,510 路径只计算到 5 Å 27 00:01:56,510 --> 00:02:00,800 所以需要改动输入参数 28 00:02:00,800 --> 00:02:04,275 让计算范围扩大到 6 Å 以上 29 00:02:04,625 --> 00:02:06,750 回到 Atom 页面 30 00:02:06,750 --> 00:02:12,175 改变簇尺寸到 6.5 31 00:02:12,175 --> 00:02:15,000 最长路径改为 6.5 Å 32 00:02:15,000 --> 00:02:17,600 再跑一次 33 00:02:19,430 --> 00:02:25,025 现在列表更长了,选择更多了 34 00:02:27,025 --> 00:02:31,400 现在来转移我们所需的路径 35 00:02:32,475 --> 00:02:38,225 可以通过高亮所需的路径 36 00:02:40,509 --> 00:02:42,875 选这些 37 00:02:45,960 --> 00:02:48,575 按住 Shift 键不放鼠标左键旋去 38 00:02:49,100 --> 00:02:51,525 都选上 39 00:02:51,525 --> 00:02:55,049 直接拖进去 40 00:02:55,049 --> 00:02:57,800 比较下路径和实验数据之间的差距 41 00:02:57,800 --> 00:03:08,300 我在面对一些已知晶体结构样品的数据时会这么做 42 00:03:08,625 --> 00:03:12,600 可以很直观地判断是否是真的 43 00:03:13,150 --> 00:03:15,150 来看下会怎么样 44 00:03:16,784 --> 00:03:23,900 也许这不是最好的数据模拟策略 45 00:03:24,250 --> 00:03:30,925 但可以告诉你这个 Feff 文件是否适合这个实验数据 46 00:03:32,150 --> 00:03:34,425 现在有了一长串路径 47 00:03:34,425 --> 00:03:36,400 需要设置参数 48 00:03:36,400 --> 00:03:39,550 设 S02 为 amp 49 00:03:40,600 --> 00:03:43,100 ΔE 设为 ezero 50 00:03:43,100 --> 00:03:47,675 ΔR 设为 alpha * reff 51 00:03:47,675 --> 00:03:53,475 reff 在这里特指的是 Feff 计算得到的距离 52 00:03:53,475 --> 00:03:56,250 也就是上面这里显示的距离 53 00:03:57,450 --> 00:04:00,550 比如这里是 2.77 的距离 54 00:04:00,550 --> 00:04:02,550 鉴于这是个立方晶格 55 00:04:03,212 --> 00:04:10,575 可以用 alpha 来描述晶体中的膨胀收缩效应 56 00:04:10,575 --> 00:04:12,175 很有用 57 00:04:12,550 --> 00:04:19,800 还要用 Debye 模型在 σ2 58 00:04:19,874 --> 00:04:21,874 基于 Debye 温度 59 00:04:21,874 --> 00:04:25,125 测量温度是 300 K 60 00:04:25,125 --> 00:04:30,050 Debye 温度由拟合给出 61 00:04:30,300 --> 00:04:34,075 把参数放到猜测窗口中 62 00:04:35,000 --> 00:04:37,000 鼠标右键点击参数 63 00:04:37,000 --> 00:04:39,000 设为 guess 64 00:04:40,234 --> 00:04:44,775 从控制窗口那里打开猜测窗口 65 00:04:44,775 --> 00:04:46,775 看下参数怎么设置的 66 00:04:48,000 --> 00:04:49,850 踢掉温度设置 67 00:04:49,850 --> 00:04:52,350 因为已经在表达式中设置好了 68 00:04:52,350 --> 00:04:54,000 也不会变 69 00:04:54,325 --> 00:04:56,795 改成 set 常量 70 00:04:58,375 --> 00:05:02,450 知道 S02 是 0.81 71 00:05:03,150 --> 00:05:05,150 ezero 是 0 72 00:05:05,150 --> 00:05:06,550 alpha 为 0 73 00:05:06,550 --> 00:05:09,175 点击 Fit 跑一个并不是拟合的拟合 74 00:05:09,175 --> 00:05:12,350 仅仅是加在一起 75 00:05:14,425 --> 00:05:21,300 Artemis 报错拟合范围和路径距离不一致 76 00:05:21,300 --> 00:05:24,450 所以把 Rmax 改成 6 77 00:05:25,100 --> 00:05:27,100 再来一次 78 00:05:30,775 --> 00:05:35,550 这是数据和拟合的对比 79 00:05:35,932 --> 00:05:39,250 R 的范围可以到 10 80 00:05:39,836 --> 00:05:42,675 这样更方便看 81 00:05:42,675 --> 00:05:46,050 看起来第一壳层的强度比较接近 82 00:05:46,050 --> 00:05:50,025 但是更高壳层的强度就没这么高了 83 00:05:50,550 --> 00:05:55,500 我觉得是因为我没有设置剩下来路径的参数 84 00:05:56,250 --> 00:06:00,300 第一个路径有 Debye 温度的设置 85 00:06:00,300 --> 00:06:04,000 但从第二个开始我就没有设置 86 00:06:04,725 --> 00:06:09,800 我们可以勾选上所有路径 87 00:06:10,275 --> 00:06:14,025 鼠标右键点击 S02 88 00:06:14,025 --> 00:06:18,300 复制到所有勾选的路径中去 89 00:06:18,300 --> 00:06:21,400 其他参数也是 90 00:06:22,175 --> 00:06:25,000 再跑次拟合 91 00:06:25,900 --> 00:06:29,800 看下会不会好些 92 00:06:30,125 --> 00:06:32,125 可以看到 93 00:06:32,750 --> 00:06:36,850 数据和拟合吻合得很好 94 00:06:37,250 --> 00:06:42,750 蓝线是实验,红线是拟合 95 00:06:43,050 --> 00:06:49,100 基本上拟合中的震荡跟实验步调接近 96 00:06:49,100 --> 00:06:53,925 这确实是铂片 97 00:06:54,475 --> 00:06:58,550 检查下参数 98 00:06:58,550 --> 00:07:03,525 ezero 和 alpha 是唯二变量 99 00:07:04,350 --> 00:07:06,350 改成 guess 100 00:07:07,950 --> 00:07:13,750 thetad 作为 Debye 温度也应是变量 101 00:07:14,050 --> 00:07:16,050 点击 Fit 102 00:07:16,775 --> 00:07:20,700 看下拟合会不会提升 103 00:07:20,700 --> 00:07:23,493 实际上确实很好 104 00:07:23,733 --> 00:07:26,125 很棒 105 00:07:26,600 --> 00:07:35,775 仅用了三个变量就完成了拟合 106 00:07:36,200 --> 00:07:39,950 缩小下这个窗口(也许不行) 107 00:07:40,625 --> 00:07:46,650 点击 Use best fit 使用最优解 108 00:07:46,650 --> 00:07:50,025 最优解变成了初始猜测变量 109 00:07:50,675 --> 00:07:54,850 再进一步看 110 00:07:56,271 --> 00:08:01,375 看起来第一壳层的强度有点不太对 111 00:08:01,375 --> 00:08:06,100 这里的信号又有点太强了 112 00:08:06,425 --> 00:08:10,750 这有可能是由于只有一个 Debye 温度变量导致的 113 00:08:10,750 --> 00:08:18,375 去 log 文件中查看 Debye 温度和其他参数关联性 114 00:08:18,375 --> 00:08:20,375 跟 σ2 115 00:08:21,075 --> 00:08:23,075 在这里可以看到 116 00:08:23,075 --> 00:08:27,475 第一壳层的 σ2 是 0.005 117 00:08:27,925 --> 00:08:32,925 剩下壳层 σ2 逐渐增大 118 00:08:34,143 --> 00:08:49,600 发现远距离 (> 6 Å) 的路径 σ2 值只有 0.006 119 00:08:49,600 --> 00:08:51,600 这可能太小了 120 00:08:51,600 --> 00:08:56,425 Debye 模型这种同等程度参数限制 121 00:08:56,425 --> 00:09:02,625 似乎看起来对于前两个铂原子比较有用 122 00:09:02,625 --> 00:09:08,825 或者说那些距离相近的原子 123 00:09:08,825 --> 00:09:11,500 2.77 - 5 Å 124 00:09:11,500 --> 00:09:19,250 但到了这里这个拟合限制太多数值太小 125 00:09:19,250 --> 00:09:24,550 导致理论信号比实验信号要高 126 00:09:24,550 --> 00:09:27,250 再看下图 127 00:09:27,250 --> 00:09:32,450 在 R 值高的地方信号过强 128 00:09:33,175 --> 00:09:36,600 那么应对方案 129 00:09:36,600 --> 00:09:40,125 改变 Debye 温度 130 00:09:40,125 --> 00:09:43,200 这样对于不同路径的限制程度会变得不一样 131 00:09:43,200 --> 00:09:45,400 包括距离较远的路径 132 00:09:45,850 --> 00:09:50,775 现在来寻找合适的分水岭 133 00:09:50,775 --> 00:09:52,775 来看下是不是这里 134 00:09:52,775 --> 00:09:56,750 第三层铂在 4.8 Å 135 00:09:56,750 --> 00:10:02,525 点击蓝色按键把它加到画图列表中 136 00:10:03,050 --> 00:10:07,267 看到这条被加进去后 137 00:10:08,475 --> 00:10:10,125 点击 R 键 138 00:10:10,125 --> 00:10:12,125 看到 Pt3 的位置 139 00:10:12,125 --> 00:10:24,050 这里确实是产生过强信号的地方 140 00:10:24,050 --> 00:10:31,050 把这第三层 Pt 的 Debye 温度改成 thetad3 141 00:10:31,350 --> 00:10:36,900 取消勾选所有 142 00:10:37,250 --> 00:10:42,250 所有在第三层的路径也是最远的 143 00:10:42,250 --> 00:10:45,225 都设成一样 thetad3 的 Debye 温度 144 00:10:45,925 --> 00:10:55,975 这使得内层和外层的原子在拟合中的关联性降低 145 00:10:55,975 --> 00:11:01,550 在改动原子距离上也是 146 00:11:01,550 --> 00:11:05,675 我觉得这个操作比较有用 147 00:11:06,275 --> 00:11:09,750 复制 σ2 设定到勾选路径 148 00:11:09,750 --> 00:11:13,475 第四层的路径也是一样 149 00:11:14,722 --> 00:11:17,425 第五层也是 150 00:11:17,425 --> 00:11:26,525 设为一样的 thetad4 151 00:11:26,525 --> 00:11:31,200 复制到勾选路径 152 00:11:32,850 --> 00:11:39,275 接下来就是需要猜测第三四层的参数 153 00:11:39,922 --> 00:11:43,675 回到猜测窗口 154 00:11:43,826 --> 00:11:48,625 知道 Debye 温度应该在 240 K 左右 155 00:11:49,586 --> 00:11:53,225 试下 156 00:11:58,975 --> 00:12:04,675 现在吻合得很好了 157 00:12:05,425 --> 00:12:08,350 到历史窗口 158 00:12:08,675 --> 00:12:13,250 看下第四次拟合结果 159 00:12:13,250 --> 00:12:16,200 Reduced chi-square 大约 2000 160 00:12:16,200 --> 00:12:20,450 第三次是大约 3700 161 00:12:20,450 --> 00:12:25,500 仅仅是改动了一些参数设置降低了一倍 162 00:12:25,800 --> 00:12:32,300 所以我觉得多使用两个参数可以更好地描述这套数据 163 00:12:32,300 --> 00:12:36,850 虽然 Debye 温度相差不大 164 00:12:36,850 --> 00:12:38,225 但各自独立 165 00:12:38,225 --> 00:12:41,725 不确定值大约 6 K 166 00:12:41,725 --> 00:12:44,025 温度是 230 K 167 00:12:44,025 --> 00:12:49,125 通过更多的变量来改善拟合结果 168 00:12:56,575 --> 00:13:00,700 来看下不同空间的谱图 169 00:13:01,325 --> 00:13:05,325 这是傅里叶变换强度 170 00:13:05,325 --> 00:13:07,575 打开画图窗口 171 00:13:07,732 --> 00:13:10,550 看下 k 空间 172 00:13:11,075 --> 00:13:17,425 拟合得挺好的 173 00:13:18,275 --> 00:13:22,025 kmax 还可以再大点 174 00:13:22,025 --> 00:13:23,200 k 二次方权重 175 00:13:23,650 --> 00:13:28,600 窗函数代表我们用于拟合的数据范围 176 00:13:30,789 --> 00:13:32,325 这里 177 00:13:32,325 --> 00:13:36,600 即使有一部分数据没有用于拟合 178 00:13:36,600 --> 00:13:38,675 仍然比较接近 179 00:13:38,675 --> 00:13:43,200 看到这里数据一下子开始 180 00:13:43,525 --> 00:13:46,475 这是因为我们的能量偏移值是正值 181 00:13:46,475 --> 00:13:48,475 ezero 大约是 +7 eV 182 00:13:48,475 --> 00:13:51,375 这已经接近我心中的上限了 183 00:13:51,375 --> 00:13:53,350 如果超过了这个值 184 00:13:53,350 --> 00:13:58,750 我会回到 Athena 重新调整 E0 185 00:13:59,450 --> 00:14:01,450 但现在还好 186 00:14:02,020 --> 00:14:09,225 你可以看到拟合范围以外的数据吻合得不错 187 00:14:09,225 --> 00:14:12,200 到反傅里叶变换 q 空间 188 00:14:12,625 --> 00:14:16,075 看起来很棒 189 00:14:20,004 --> 00:14:24,075 在 R 空间中现在是 k 二次方权重 190 00:14:24,075 --> 00:14:26,075 k 一次方 191 00:14:26,075 --> 00:14:28,075 k 三次方 192 00:14:28,075 --> 00:14:29,350 看起来可以 193 00:14:29,646 --> 00:14:35,425 你也许会说这个拟合看起来太臃肿了 194 00:14:35,425 --> 00:14:38,150 有太多的路径了 195 00:14:38,150 --> 00:14:45,125 我们只是走运遇到了立方晶胞样品不需要太多参数 196 00:14:45,125 --> 00:14:50,075 但如果我是拟合纳米粒子呢 197 00:14:50,075 --> 00:14:52,925 我们需要这么多路径吗 198 00:14:52,925 --> 00:14:55,825 那么为了检验这个 199 00:14:55,825 --> 00:15:04,500 我们来测试哪些路径值得加入到拟合中去 200 00:15:04,500 --> 00:15:07,575 或是不值得 201 00:15:07,575 --> 00:15:11,225 我个人喜欢这么做 202 00:15:12,059 --> 00:15:16,650 大致比较路径之间的强度 203 00:15:17,182 --> 00:15:20,650 我来操作下是怎么一回事 204 00:15:20,650 --> 00:15:25,725 第一条路径的强度是最强的 205 00:15:26,590 --> 00:15:29,400 这一条大约是(第一条的) 30% 206 00:15:29,400 --> 00:15:32,475 是对这条路径重要程度的预计 207 00:15:32,475 --> 00:15:36,775 可以把这两条路径都画出来 208 00:15:37,525 --> 00:15:41,550 加进去后用 k 二次方权重展示 209 00:15:42,078 --> 00:15:47,550 可以看到第一条高度大约在 2 210 00:15:47,550 --> 00:15:52,225 这是另一条路径的高度 211 00:15:52,225 --> 00:15:54,450 Pt-Pt4 路径 212 00:15:54,850 --> 00:16:00,000 这看起来强度很低 213 00:16:00,000 --> 00:16:02,300 顶点在 2 左右 214 00:16:02,300 --> 00:16:04,300 1 这里是 50% 215 00:16:04,800 --> 00:16:08,000 0.5 大约是 20% 216 00:16:08,000 --> 00:16:12,875 所以这个比 20% 还要低 217 00:16:12,875 --> 00:16:14,875 但也是估计 218 00:16:15,888 --> 00:16:22,675 还可以看下其他重要性更低的路径 219 00:16:23,184 --> 00:16:25,825 比如找到了这个 220 00:16:25,825 --> 00:16:28,925 只有 5 221 00:16:29,967 --> 00:16:31,967 把它加到画图列表中 222 00:16:32,850 --> 00:16:35,100 在 R 空间 223 00:16:36,087 --> 00:16:39,375 看起来没想象中那么小 224 00:16:39,750 --> 00:16:42,900 等下,确实很小 225 00:16:42,900 --> 00:16:45,390 哦这个是我们之前那条 226 00:16:46,536 --> 00:16:48,536 基本上看不到 227 00:16:48,536 --> 00:16:50,536 平线一条 228 00:16:50,790 --> 00:16:57,300 我们可以错开每条路径展示出来 229 00:16:57,300 --> 00:17:01,450 每个之间差了 0.3 230 00:17:01,850 --> 00:17:03,850 点击 R 231 00:17:04,475 --> 00:17:06,275 现在就可以看到了 232 00:17:06,275 --> 00:17:10,700 我更倾向于到实部图像中看 233 00:17:10,700 --> 00:17:15,250 可以看到每个路径的贡献 234 00:17:15,250 --> 00:17:19,425 这条几乎没有强度 235 00:17:19,425 --> 00:17:22,775 所以有把握把它剔除掉 236 00:17:23,300 --> 00:17:27,125 我喜欢这种拿掉路径的思路 237 00:17:27,125 --> 00:17:30,300 而不是添加路径 238 00:17:30,625 --> 00:17:34,250 因为如果拟合出现错误 239 00:17:34,250 --> 00:17:39,425 不知道是参数有问题还是路径数量不够 240 00:17:39,825 --> 00:17:45,150 我这么做就先知道哪些是合理的 241 00:17:45,450 --> 00:17:49,650 然后再一条一条拿掉不需要的 242 00:17:50,850 --> 00:17:53,050 回到数据面板 243 00:17:53,050 --> 00:17:57,900 我们认为这条可以不要了 244 00:17:57,900 --> 00:18:00,925 取消勾选 include path 245 00:18:00,925 --> 00:18:03,725 再看下其他路径 246 00:18:04,179 --> 00:18:06,900 这是另外一个强度 7% 的 247 00:18:08,575 --> 00:18:10,575 看下 248 00:18:11,347 --> 00:18:13,347 放到画图列表 249 00:18:13,347 --> 00:18:18,400 再次证明这条路径也不需要 250 00:18:18,643 --> 00:18:21,825 取消勾选 251 00:18:25,950 --> 00:18:31,450 来看下这条 15% 的路径 252 00:18:32,403 --> 00:18:37,725 是否有足够明显的贡献 253 00:18:38,975 --> 00:18:40,393 确实 254 00:18:40,393 --> 00:18:45,275 这条路径我们不想拿掉 255 00:18:45,275 --> 00:18:47,475 保留 256 00:18:47,810 --> 00:18:49,810 这是 一条 91% 的 257 00:18:49,810 --> 00:18:52,775 这是向前多重散射路径 258 00:18:52,775 --> 00:18:55,775 肯定要保留的 259 00:18:56,150 --> 00:18:58,500 这是 10% 的路径 260 00:18:59,275 --> 00:19:01,275 画个图 261 00:19:01,275 --> 00:19:04,825 看下 R 空间 262 00:19:05,700 --> 00:19:11,350 踢掉 263 00:19:11,800 --> 00:19:15,450 这个是 3% 的 264 00:19:15,450 --> 00:19:17,850 也踢掉 265 00:19:17,850 --> 00:19:18,925 这个是 5% 266 00:19:20,075 --> 00:19:22,075 11% 的 267 00:19:22,075 --> 00:19:24,075 我不太确定 268 00:19:24,075 --> 00:19:26,075 确认下 269 00:19:26,075 --> 00:19:30,225 确实不需要加进来 270 00:19:34,710 --> 00:19:38,750 3% 的,不需要 271 00:19:38,998 --> 00:19:41,350 这个 3% 的也不需要 272 00:19:41,350 --> 00:19:44,700 这个 28% ,保留 273 00:19:44,700 --> 00:19:46,700 这个 4% 274 00:19:46,975 --> 00:19:48,125 10% 275 00:19:48,125 --> 00:19:49,275 11% 276 00:19:49,275 --> 00:19:55,100 似乎超过 6 Å 的都不需要 277 00:19:55,700 --> 00:19:57,700 看下 278 00:19:58,550 --> 00:20:02,825 额好像还是保留下这条吧 279 00:20:02,825 --> 00:20:07,700 还想扩大下拟合范围 280 00:20:07,700 --> 00:20:11,025 把这里信号框进去 281 00:20:11,025 --> 00:20:14,975 改成 6.3 Å? 282 00:20:15,375 --> 00:20:18,755 保留这个 283 00:20:19,379 --> 00:20:21,379 看下这个 284 00:20:22,387 --> 00:20:25,350 嗯还是保留这两个 285 00:20:25,350 --> 00:20:28,150 我们移除了一部分路径 286 00:20:28,425 --> 00:20:31,850 看下前面几条 287 00:20:31,850 --> 00:20:33,475 这个 16% 288 00:20:33,475 --> 00:20:36,350 这个 3% 不太行 289 00:20:36,350 --> 00:20:40,325 清空下画图列表 290 00:20:40,325 --> 00:20:44,450 把需要的数据再加回去 291 00:20:44,450 --> 00:20:46,200 在 R 空间中 292 00:20:46,200 --> 00:20:52,625 这个正好在我保留和移除的临界线上 293 00:20:53,175 --> 00:20:56,575 先移除看下有什么影响 294 00:20:56,575 --> 00:20:58,252 这个 6 % 295 00:20:58,252 --> 00:21:00,252 看下 296 00:21:00,500 --> 00:21:03,200 也许? 297 00:21:03,750 --> 00:21:05,750 先移除掉 298 00:21:06,877 --> 00:21:11,025 这个 60% (留下) 299 00:21:11,400 --> 00:21:15,450 10% 的看下 300 00:21:17,817 --> 00:21:20,300 嗯不需要 301 00:21:21,225 --> 00:21:25,525 32% 的这个需要 留下 302 00:21:25,525 --> 00:21:27,350 20% 的(留下) 303 00:21:27,350 --> 00:21:29,350 8% 的看下 304 00:21:31,393 --> 00:21:34,250 需要留下 305 00:21:34,250 --> 00:21:37,409 对我们有用 306 00:21:38,369 --> 00:21:41,700 85%, 15% (留下) 307 00:21:42,050 --> 00:21:43,800 基本上过了一遍 308 00:21:43,800 --> 00:21:51,125 我们最终移除了 12条路径 309 00:21:51,125 --> 00:21:52,425 很好 310 00:21:52,425 --> 00:21:54,425 再跑次拟合 311 00:21:54,425 --> 00:21:56,425 看下有没有影响 312 00:21:57,555 --> 00:22:00,825 点击 Rmr 313 00:22:00,825 --> 00:22:02,625 对比下 314 00:22:02,625 --> 00:22:04,625 点击 Fit 315 00:22:07,150 --> 00:22:10,045 看起来基本没变 316 00:22:10,430 --> 00:22:13,550 到历史窗口 317 00:22:13,550 --> 00:22:17,075 之前 reduced chi-square 是 2000 左右 318 00:22:17,075 --> 00:22:22,175 现在这个到了 2800 319 00:22:22,175 --> 00:22:25,450 这差距还挺明显的 320 00:22:25,450 --> 00:22:32,775 感觉我移除的路径太多了 321 00:22:32,775 --> 00:22:39,900 大概就是那些我犹豫要不要移除的路径 322 00:22:41,650 --> 00:22:43,650 再试试 323 00:22:46,225 --> 00:22:50,250 再留意下 reduced chi-square是否接近 324 00:22:50,650 --> 00:22:54,550 有掉到 2600 325 00:22:54,875 --> 00:22:59,475 但没有回到最一开始的数值 326 00:22:59,875 --> 00:23:03,442 我到底还需要哪些路径 327 00:23:13,150 --> 00:23:19,300 把大约 10% 的加回来 328 00:23:19,300 --> 00:23:22,375 这个 10% 也加回来 329 00:23:22,375 --> 00:23:24,375 再试试 330 00:23:25,331 --> 00:23:31,175 看下 reduced chi-square 能不能下到 2000 331 00:23:33,075 --> 00:23:36,325 在历史窗口中查看 332 00:23:37,171 --> 00:23:41,325 2300 333 00:23:41,325 --> 00:23:44,100 那先就这样吧 334 00:23:44,100 --> 00:23:46,100 移除几条路径后 335 00:23:46,350 --> 00:23:50,406 reduced chi-square 值增加了大约 10% 336 00:23:53,425 --> 00:23:56,225 拟合结果很好 337 00:23:56,225 --> 00:24:01,300 最终移除了 7 条路径 338 00:24:04,000 --> 00:24:09,250 这就是如何拟合铂的数据到 6 Å 范围 339 00:24:10,011 --> 00:24:16,225 下一节是讲解如何拟合纳米粒子 340 00:24:16,225 --> 00:24:18,225 谢谢