{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from scipy.optimize import minimize\n", "from scipy.io import loadmat\n", "from numpy.linalg import det, inv\n", "from math import sqrt, pi\n", "import scipy.io\n", "import matplotlib.pyplot as plt\n", "import pickle\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "X,y,Xtest,ytest = np.load(open('../data/sample.pickle','rb'),encoding='latin1') " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4XMXVh9+5e7eqWNVywbLce8EWxsYVF6rpoUMwJRBIAgmEEhJCSAg1+SCBJPTumA4GF8Ax4IJ7xb1XucjqbdvdO98fK8te7cpqqz7v8/A86JaZs/Lq3LlnzvkdIaVEoVAoFC0frakNUCgUCkV0UA5doVAoWgnKoSsUCkUrQTl0hUKhaCUoh65QKBStBOXQFQqFopWgHLpCoVC0EpRDVygUilaCcugKhULRStAbc7KUlBSZkZHRmFMqFApFi2f16tU5UsrU6q5rVIeekZHBqlWrGnNKhUKhaPEIIfbV5DoVclEoFIpWgnLoCoVC0UpQDl2hUChaCcqhKxQKRStBOXQFZX4/hmk2tRkKhaKeNGqWi6J5sfpwFg/Pn8fu/DwsmsbFvfvypwmTcFmtTW2aQqGoA8qht1H2FOTz088+xm0YAAQCAb7cvpXs0lLeuvSKJrZOoVDUBRVyaaO8sXY1vkAg5Jg3EGB51kH2FuQ3kVUKhaI+KIfeRtmem0MgQj9Zm0XjQGFhE1ikUCjqiwq5tFFO79CR9UePRFyl90pObiKr6k7ANPl4yybe3/gjppRc3m8A1w4cjM1iaWrTmh1SesG3AjDBNgIhnE1tkiJKKIfeRpk2dBgzNm7AHwhwfJ3u0HXO79mbDrFxTWpbXfjFnC9ZtH9vxZ7Azrxcvtq5nemXX4UmRBNb13yQ3h+QBb866YgJ7f6OcExqMpsU0UOFXNooHWLj+Ozq65jYrQcuq5X2MTH88oyRPD353LBri7weSn2+JrCyZqw/cjjEmQO4DYMN2UdZvL9GEhhtAmkWIAvuAlly0n9lyILfIAPZTW2eIgqoFXobpntiEq9edGmV57fmHOP+eV+xPTcHgBGdT+NvU84nLTa2sUysESsPZUXMoy/z+1medYBxXTMa36jmiOfrKk6Y4JkNMTc3qjmK6KNW6IqIFHjcXP3xB2w6lo3fNPGbJssOHuCqj98n0MyKkJKdroixcoeu0z4mpgksaqbIEpBGhBN+pFnc6OYooo9y6IqIfLplM/5KG6YBKclzu5tdGOPcnr3QRPhXWROCi3r3bQKLmim20UCkTWIHwj62sa1RNADKoSsisic/H08gfDVnmAEOFhc1gUVV47JamX75lXSOi8dlteKyWkl1xfDmJZeT5HQ1tXnNBmHtC85LgZOyWoQLHJPAOrTJ7FJEj2pj6EKIN4CpQLaUcmClc78FngVSpZQ5DWOioik4vWNHPtu2mTK/P+S4JjT6p1TbOKXRGdg+jYXTbmN7Xi6madInJVVlt0RAxD8GjknIsk8BE+G8BOwTEep31SqoyaboW8CLwDsnHxRCdAGmAPujb5aiqbmgV2/+sXwpvkBxxYaj3WJhcFoHhnbo2MTWRUYIQZ/klKY2o1kjhAD7eIR9fFOb0uhI6QMkQtib2pQGo9qQi5RyIZAX4dRzwANAeLmhosXj0K18dvV1XNV/IEkOJ2kxMfxsWCZvXXK5Ws0pWhQykI2Z9zPk0SHIo0Mxc69DGs1rHyha1CltUQhxMZAlpVyv/rhbB1lFReR73PRKSsauB78WSU4Xj0+cwuMTpzSxdQpF3ZDSQOZdA4HDQPkmv38NMvcqSJ2P0JpXCm59qbVDF0K4gN8D59Tw+tuB2wHS09NrO52igckpK+PO2TPZmH0Uq2ZBInlk3NlcNWBQU5umUNQf70Iw86lw5gCYIL3B3HvX1U1lWYNQlyyXHkA3YL0QYi9wGrBGCNEh0sVSyleklJlSyszU1Oa3mdbWuf3Lz1h/9AjeQIASv49Sv5/HFnzLiqyDTW2aQlF/AvtB+iOcKEMaexrdnIam1it0KeUGoP3xn8udeqbKcqk9OWVlmNKkfUzTvPbtzs9ja25OWJWlxzB4Y91qRnQ+rUnsakykbyWy7EOQJQjHBeA4HyFUAXWrQe8DQgdZSbpCuBDW/k1jUwNSk7TFGcAEIEUIcRB4VEr5ekMb1prZW5DPPV/NZlt5SX1GuwSeO+9C+tUjHTCnrIw31q5i8f59dIyL47ZhmZzR6dQOOaesDKum4al0XAJHilt/5aBZ8m8oeRnwABLpXQLujyHxDYRQKo2tAttIsHQDYwdw3KnroCWB47ymtKxBqNahSymvreZ8RtSsaQN4DYOrPnqfPI8bs1yPfHteLtd+8gELp/2MeHvtU6qOlZZywX/fodjrxWcG2Hgsm0X79/GXCZO4ov/AKu/rn9oef4QyfrvFwviMbrW2oyUhA9lQ8m9O/JEDuMG/Hrz/A0e4SJmi5SGEgKR3kSXPgftLIACOcxBx9yOEranNizqqUrSRmb9nF27DX+HMj+MvbwFXF15atYIirwefeWLjx2MY/Hnhd2F65ycTa7Px6zPPwqmfeK5bNQsJDgfThgyrky0tBt9yIELvVFmG9Pyv0c1pbUjpxyx+HvPomZhHBmLm3Yw0djaJLUKLRYt/BC1tBVraarR2TyK0pCaxpaFRwcJG5lBxcUQn6zYMsorq1ino+317Iq60TRmMk/c9RSjn9uFn0Ds5hdfXriKnrIwJGd342bBMEp2tu+mBlAFCMx+Oo4HWrrHNaRKkf3PwwaYlgP0chBY9ITNZeD94voXjAT3fkmCqYMochCVi/oQiCiiH3sgMTuuAVbOEOeAYq7XOFZgpLhd7IvQBNcwAiY7qHfOEjG5MaOUhluNIKYOv36WvA5GyH2wI55WNbVajIqVZ7nD/BxiAFcRfIPFNhG1I/ccPHALPfMB78lGQXmTp24j4B+s9hyIyKuTSyJzRqTMD09JwWE48S20WC+ntEpjYrUedxrx92Bk49dDwgVXTGNaxU7PTLm9yvN9C6duEO3MB2CH+EYS1TxMY1oh4Zgf3CXAT/D2UgSxBFtyJlFGQRjZ2QsT4tB/8P9Z/fEWVqBV6PfjhwD7e/XEdhR4PF/TszZUDBuLQI8RlT0IIwduXXMGra1by0eZNBKTJpX368fPMM9G1uj1fJ3Xvwd0jRvKPFUvRNQ3DNBnYPo0Xz7+oTuO1ZmTZewQdWWWskPQeWhRWqM0dWfYRyAi/A1kGxkawDq7fBJaM8DRBAHSwKjnjhkQ59Dryr5XL+PfK5RVtz9YfPcKHmzfy8ZXXVpTOV4Vd1/nliFH8csSoqNlzR+YIrh88lG25x0h1xZDeLiFqY7cqzCqkf4UN0WZkiaraKBcQhRW60NOR9pHgXUZI2EXYEK5p9R5fUTUq5FIH8txlvLhiWUgPS49hsDs/n5nbtjSZXbE2G8M7dlbO/FQ4zgeqSA1thYUmkRCVNdErsIK16jTXWs2R8AI4Lyf4uxagD0QkvYPQu0RlfEVklEOvA6sOZWGN0PLMbfj5ZlfTpGYpaoZwXQt6OiccmgVwQPxfWmVeckScl4FteLC5BQB2EE5EwvNRq5IVwoHW7jFE2o+ItE1oKZ8i6hvKUVSLCrnUgQSHEynDX881IUhxtY4OOXnuMrbkHKNjbBzdE1tPzq7QYiD5E3DPRHq/By0N4bq29W+EnoQQOiS+Hkwl9C1FaMnguAhhib6WfFCNVbmZxkL9putAZqfOxNntlPn9IVFXm8XCDYNbdisvKSVPLl7AOz+uw24JplcOTG3PqxddRjuHo6nNiwpCOMB1NaKVKe3VhmCji9EI++imNkURRVTIpQ5oQvDeZVfSOT7YwzLOZsOp6/xp/EQGtk9ravPqxadbNzN9w3p8gQDFPh8ew2D90SPc983cpjZNoVBUg1qh15HuiUksuOk2fsw+SonPy+kdOuGynjplsSXw2ppVIZu9AH7TZPGBfRR6PK1mla6oHhk4hnR/DmY2wjYS7BOUaFkzRzn0eiCEYEha6ypjLvRU1l4MoglBsc+rHHobQfpWIPNvBxkAvEj3R6D3hqR3W3VPzpaOCrkoQhjftRt6hLaCcTY7neLim8AiRWMjpYks+HWw0Oh4HrksA/9WZNl/m9Q2xalRDl0Rwt1njiLe4cBWnpapCYFD13li0hQ01T+2bWBsL3fmlfGAe2ajm6OoOSrkogihY1wcX10/jXfWr2HpwQOkt0vg1tOH0z+1ffU3K1oHQocIabnBcy1/n6g1oxy6IowUl4t7R41pajMUjYSUbmTRs+D5NKjBYjszKKlrVtZ7cSKcbTfVsyWgHLqi2bH5WDZZRUX0b9+ezlGK22/cdoh3PlnGwcP5DOzTiZ9eMZLTOiZGZeyWjsy/A3xrqYiX+5aUV5HGgwiUN1nWwD4hWGWqaLYoh65oNuS73Uyb+Qk78/KwaAJ/IMBFvfvy1ORz6xW/X7h8B4/9YzZebzAd8+CRAr5ftoNXnrqejNOSo2V+i0T6t4FvHeHa5QbE3Iyw9oJADtgyEdZ+TWWmooaoTVEFAKaU/Hvlcoa98i96/PPvnD/9bZYdPNCoNvx23ly25hzDbfgp8fnwBgLM3rGNd39cV+cxpZT832vzK5w5gGlK3B4f/3l3YTTMbtkYOwnq2VTGC8Y2hON8RMyNypm3EKpdoQsh3gCmAtlSyoHlx54FLiLYYXcXcLOUsqAhDVXUnZ15uczY+CPZpSVMzOjBBb16Y7NYeGv9Wl5dvZJ8j5sEh4MCjwdveXu8bbk53PLFp8y44upGybUv8npZvH9fWCcnt2Hw9vo13DTk9DqNW1DkprA4XPtbStiwNatOY7Yq9O5EltO1QzVOXBr7wb8GtBSwjVJFR82AmoRc3gJeBN456dg84HdSSkMI8TTwO0D1lWpkDhQWUuLz0is5pcrmGHN3bOO+eV/hDwQISMl3e/fw+rpV9ElK4YvtWwmUZzMcLS0Nu9drGLywfCmvXdzwcVOP4a8yrFLii9QsoWa4nDaqCta4tQB3zPqcq/oPYmK37uVCUkGksbO8StKNcEwB25kh51sLwtoPaR0M/nUE12cAIqhd7rw24j1SSmTRI8EURmEpvz4Wkt5D6F0b1F5pliBL/wPuOcFsHOeViJhpbUcpsxqqdehSyoVCiIxKx7456cdlwE+ia5biVBwuLubns2eyIy8XixBYNI2nJp7Deb16h1znNQwenP8NnpNK+cv8frbn5LD52LFq55HA9tycaJsfwu78PN5dv479hQU4dL3iDeE4uhBMzOhe5/HtNp1zxvVn3qIteH0nfg9Sg+wOfvbt3sUP+/dzad9+PD5xCgBm6XQofppgezYT6fkY7FOg3bOt06knvoIsfgrcnwM+sJ0BcY8g3R8jS98EWQh6X0T87xG2TPB8Ae4vAS8V6nTSjcy/C5E6u8HslNIXbDQd2E/Fw6fkRaRvOSLp9QabtyURjU3RW4APqjophLgduB0gPT09CtO1baSU3PjZR+wrLKhYXQPcO28uGYmJ9E1JrTi26Vh2RJlfo6oc40oIoE9KzSVVt+Xm8Nj381l5KAun1co1AwZx36gxVXZwWrRvL3fMnokRCGBIWVHMZCEYBLBbLMTZ7fxmZP0UAX9z2yTcHh+LVuxEWAQen0FJF3CXR5LKDD+fbt3MTUOG0TMBKH6KkE1C6Q724PQtgVaoTig0F6Ldn6Hdn5FSIoTALHoKymZQ0a7P2ITMuxWSZ5RXi1YOY5kQOIA09iL0jIYx1PMNBA5x4k0CwAP+VUj/BoR1UMPM24Kol0MXQvyeYNvw6VVdI6V8BXgFIDMzs630+Gow1h89wpHSkhBnDuAPBHj3x3X8tXyVCbD28CFK/ZE629cMu67zqxq2yTtUXMRPPpxBqT/4x1bi8/HehvXsKyzg5amXhl1vSsn9874KeXvwBQLomkavpGRSXTGcedppXDtwMAmOSN11avE5bDqP3XsR+YVlPDt/AR/s24S0hK60TSlZfGAfPV0HiLhJKMuQnq9qLDcrpQH+tcGWbrbTW0xIQAiBNEugbDqhmS8AHmTJi1VUkRIMv0TqVRolpG81EGFuaQabTyuHXneHLoS4ieBm6SQZaRmoaBByykojxpoDUnKo+ES/zEKPh78tXVzr8eNtdkr8Pvomp/DIuLMZXMMN0XfWr8VXKVziMQwW7tvH/sKCsLZ4B4sKKfZVdhhgmCbFXi+zr/tprW2vjsR2LtLTk7Ee1sNs1TWNeLsdsIIQhLcX1aCGolTStwqZ/wuCIRsAAQnPIezj6vkJGonA4fJq0cr/PhKMbeD8CZTsJdzh24ICXg2FpQvgACoJyAkdtI4NN28Lok4OXQhxHsFN0PFSVvW4VjQEQ9I6hjkjAIeuM75rt4qf5+/ZhUXTIMK1cTYbZT5fSG6DAG4eOow/jDu7TnZtyD6K3wyfy2bR2JWfF+bQXVZb2FvGcWJtDbeavaRPP/65YmnEc+d07wnWDCJ4c8BW3ovz1EizBJl/W9gqVub/ElLnIyypVdxZeZxSpPtD8HwLlmSE66cI27Aa3VtvLB2DeehhCNB7IVw/RXpmQ+Bg+efUAR2R8GyDZroI16XI0hcq/fNowQ1Z+9gGm7clUW0euhBiBrAU6COEOCiEuJVg1kscME8IsU4I8VID26koJzUmhmlDhuHUT2hq2CwW2sfEcGX/Ew1+/aYZMX4OcHGfvgzt2AmHrhNrtWLTNG4aMozfj51QZ7v6p7bHGiHTxhcI0D0hvIVdisvF0LSOWCq9bTh1vc4pijWhY1wcL5w3lRirlVibjVibjQS7gzcuvpw4ux2hxQQbHAsniBiCvUftEPtLRE0aKHu+jvw8QILnyxrZKM1SZO7lUPwc+JeDZy4ybxpm6YxafNK6I7RYcF1NeCNpOyL2l8HfUfKniPhHwXExxNyCSJnV4G8gQktCJL0DlgyCzadt5c2n/4tQGjMAiMaMlmRmZspVq1Y12nytFSklc3du5611ayj0ejk7oxu9k1NJcbkYeVoXbBYL2aUljH/rtbCsEaeu885lP2F4x87sysvlUEkx/VLa17sXalZxEee993ZFDB2Cm5qju3StSHuUUvL51i288+Na3IbBxK7dmL93N1nFRWgiWBl6eb8B/OXsyQ2u7Og1DFYeykLXNIZ37BTW9FuaJeD9DqQH7GMRlg7ln8EE39JgQY7eHWyjEeLEg0yWvoEs/jsnwi0nEXMHWtx91dpmlrwOJf8gLLSAE9F+KUJr+L61UgaQpS9B6VvlWS69EXGPIOxnNvjc1dsmwTwKWBGWtlHpK4RYLaXMrPY65dCbniKvhzk7tpPndjPytC6c3qFjjdPj3lm/licXL8CqBR2Srmm8ecnlDOnQkbfWreGZJYvwBwKYUuLQdS7vN4A/T5jUIOl3W45l8+j337L6cBYO3crVAwby4OhxFVkuv/vfN3yxfStuI+js7BYL6fHt+OvEKeR63Axqn9asNdelWYTMuw4CWUF9E2ENNplOnoHQgrow0r8FmXs14XFeJyLxVYRtRLXzmLnXBAt2KiNiEQn/aXSnejzzRdF01NShKy2XJmbVoSymzfwEKcEXMLBZdMZ17cqL518UjIGfgk3ZR3nqh4V4A4GQlfi0mZ+w/LY7mTZ0GGPSu/LFti14jQDn9ezF6R07Ndhn6Zfang+vvCaiA9hbkM/n2zaH2OkNBMgqLuZAURGX9esfFRuklGzYdoisw/n06JpK7+7R6/Eqi58EYw8Vq2/pg8B+ZOFjiMTngfJCHecF4J5LRWqfcILtLKSlH5R9DGZuUNHQOiSyo9SqEg0LgNaudjZLH7L4OXB/EMxAsQ5DxP8RYe0T+fpADni/CT6w7Gcj9HTlzFsQyqE3IQHT5M7ZX1B2Umqh2/CzcN8+Zm7bwuX9Bpzy/g82bYi4QWqYJm+sXc2wjp04vUPHRpfCjeQA1hw+FHGTtszws3D/3qg49KJiN3c/+iFZRwuC+lJIBvTqxDMPX4bdHoUYq2cO4aEUA7zzQh5iIv5JsJ+NLPsYCCCclyG1zpAzrnxfwwdYgzntCS+EbSQK101I7xJCc7010DqBHtkRV4Us+A14F1KRkeJficy7BlLmICyhmSGmezYUPkRwi9yE4r8hY3+OFvuLWs2paDqUOFcTsjH7KB4jPNbqNvx8tHljtfcXe72YEUJmpX4//1y+lNu+/IwRr73E0gP7o2JvfUh1xSAiFOFbNY1OcXFRmePZl+exNysXt8eP2+vH4zXYsC2L1z9cEpXxg/01IxGqPyOEQDjORUt6FS3pDXBcCIW/AllKMI/aANzg/SFiByBhHwlx9wD2YAaHcIGlazBkU4vVsjQOhDrzihM+ZOnboYfM/HJn7iUYLvIF/7/kZaR/U43nVDQtyqE3U2qytXFuz964rJFXnp6AQYnPR6HXw21ffk6Bp+EKPmrCWV3SibPbwjY7dU3jmgGD6z2+YQRYtGInhhHqXH3+ALPnV/9wrBH2swkvOtLKN0ZP4WiNLeXOvDLuYPPlCGgxtyDaL0EkvIBImo5I+Qqhn1Y7ewO7q+gw5IfKTtr7PZFVF31I96zazatoMpRDb0IGtk+LWBbv1HWuHFB9ityU7j0Y1qFTlU79BJI5O7bX0croYNE0Zlx+NT2TknDoOi6rlWSnk/9ceAld2lUfFzZNSUmpl0DAjHg+YMqIbysAPn+knOraI+L/EFQWFMezTFygJSHaPVbNnbK8SUQV56qaT4tD2EcjrAPqFse2dKtiXj1cSVGaIKqypao3E0Vzo9nH0Lfn5vDmujXsK8hn5Gnp3Dh4KInO+pWCNxcsmsa/L7iYW774FFNKvIaB02pl1GldmJjRnZ15uXSOi8dZhcO2aBpvXHI53+zawZwd29lfWBDUb6l0nS8QoMBTOQWu8emakMBX109jX0EBZYaf3knJ1W78Asyev4H/vLeQklIvNpvOdZdk8tMrRqFpJ5yc3abTt0cHtuw8HPJ2o2mCs4b3iIr9wpIGqfPAMwfp34LQe4PjwmrTCKVIJGIaI4CtZtIKNUVKH/hWlLeSGxGM03t/ICTsImyImJtCb7SPh6JID0sbwnFBVG1UNBzNOm1xwd493DXnC3zl0q92i4VYm51Z195IWmxsA1rauBR43Mzavo18j5vMjp35cvtWPtu6GV3TMKXktmFn8OszR1W7Sltz+BA3fvZxRVrgcZy6zn8bSde8NhwoLOT55UtYenA/qa4Yfp45gvN7hpaOf7d0G4+/MDekQYXDrnPDZSOYduVZIdfu3n+MO3//Pn7DwOcL4LDruJw2XnvmRtonRydOXxdk2Qxk0V8JFZUqx/UztPj7ozOPbyUy/04qYvrSgLg/QmA7uD8sz3IZArH3oUVIfTTLPoCixwmuyE3ABq5r0eJ/FxX7FHWnxeehm1Jy1hsvk11Jp1vXNK7sPzBEhKo18cSiBby3YV2IaJVT1/n92AlcN2jIKe+VUvKrubP4fu8eysqduku3MrF7d/553tQGtbu2ZBUVceF/36HE76sIlTh1nbvPHMUdw0/kat9wz5vsPZgbdr/LaWPu27/EYgld4ecXljFr/gb2HMihX8+OXHD2ABwOK9/u2c38PbtIcDi4asAguieGV682FLLsfWTRk4QrFFrKi41+Xf85zDLksdERYvUORMqXoMUh8+8H/1JAgCUd0e4phC30OyWN/UjPXJBehGMywhqddFJF/WjxeeiHS4op8kYWb/p2z+4msKjhCZgm0ys5cwh27Xlp1YpqHboQgn+eP5U5O7bx8eZNCAE/6TeQ83s1oGBSHfn3quWUneTMIfg5/7l8KT8dfHpFmOloTlHE+30+A4/XT4wrVDArsZ2LGy8/sfo0TJNpMz9h7ZHDlPn96ELwzo/reHLSOVzSp5HaqtknA3+NcMIavXCG99sqThjIsk/B97/yHPry71ZgFzL/Jkj5qqIKFgjmncfeER2bFI1Os3XosVYbphn57SGoitf68AYCEfPKAXLdNctS0YRgau++TO3dt1Zz5+SV8PGcNWzafpgeXVNISojhs6/WkZNfQqe0BO66cRzjR0bvwbAi62BEXXaL0NhTkE//1PYAdOuSwuYdh8Oui42x43JWL+I1a/s21h4+XPHGYkiJYRg8PP8bpnTvWYMN5fojLCnI+L9A0SNU5HgjyvVhovQ7laVVpFUawWyXQBYVzrziHgNZ9gEi7p7o2KBocpqtQ2/ncDCqSzpLDoT2mXTqOrcMbSTVuUbGqet0jIvjYFH4qnRwWvQqHiuz/1Aetz80Ha/PwO8PsG7zgZCNxawjBfz5H3N4zGJhzBnR2WDsHB/Prvy8sON+M0CqK6bi5ztvHMdvH/8kpNuQw65z5w3japT58cX2LRXO/GQsmsbKrIOMz+gW4a7oo7kuRdrPCjZpIAD2iQi9S/QmsJ1FxIwZ4QJLOkRsxOcrbxKtaC0067TF/zvnfAa0T8Op68TZbNgsFq7sP5CrBrROIXshBI+On4jjpFRGTQicus7D9VBCrI4X3/qe0jIvfn9whRdpW8XrM3h5+sKozXnn8BE4K6Vs2iwWxnbNIDXmhEM/fUAX/vaHK+jfqyMup41uXZL5w68u4MJJNfsOVLkCl4T8nhsDYWmPiLkBEXNTdJ05BMdzTSNUIdEJtpHgvKQKOVzA2BoUHGvhSN8KzLybMY9Nxiy4H2nsbWqTmoRmuyl6MttzczhcXEz/1PYhf+ytlVWHsnhxxTJ2F+QxMDWNu88cFdJaLtpMvu55PN7qc7XtNp35M+q/gXecz7du5s8LvsMbCBCQJpO79eDpyecSE0U99MX793HHrM9xV9qXSHI6WXbrz6tsrt1Skd5lwWIl6UM4p4J9MkJYMHNvAP+K8BuEE5Hw7xp3YmqOBCULfscJQTQt+LmSP0LoPZvStKjR4jdFT6Z3cgq9k2ve27Klk9mpM29dekWjzedy2mrk0Dul1U4Yqjou7dufqb37klVURKLTQbzdEdXxAcakd2XakGG8sW41AggEJELCPT1HoEUMQ7RshH1kUDqgMvZx4F9FZZkCpBvpW9FiHbqUJhQ/Tqi6pRlsGVj8HCLxX01lWpPQupYnijpx2blDsdtO/Wy323TuuD76DQx0TaNrQkKDOPPj3D96LD9LHEzcdpOtIS2ZAAAgAElEQVS4TQGSFwV457UfePT/vqyyCUhN8PoMfli1i2+XbKOouGmlFaoj2Ckp0u/YgdCit1iSgWxk6ZuYxc8HW/E1dATAzAGzJJIl4FvdsHM3Q1rECl3RsNx4+Znsy8pj4fIdWK0WDMOkY/t4iku95BWUVmS5RGtDtLE5kl3IrC/WY/WbHI+ouz1+lq3Zw5qNBxg+KL3WY67fcpAHnvi0Yr/BMAL8atoELjuv4bot1Qv7OSAeD983FRo4o1OjID3fIQvuIfgW4EeWvQm28ZDwfEgTkKiixVGlfIKl7bzVH0c5dAW6buFPv5nKkWNF7DmQw2kdEunSqSpN7iDFXi9CiAbt/xktVqzfFyITcBy318+iFTtq7dC9Xj8P/PVTSt2hlZ8vvr2Awf1Oo0fXhtvvqCtCi4Gkd4LNq2U+IEDEIBL+WdGcoz5I6UUW3ktI6EO6wbsAvPPAcW6954iEEE6k8yJwzyJUVdKJiPl5g8zZnFEOXVFBh9R4OqSeumPQ3oJ87vtmLhuyjwIwNK0jfz/n/BoJbEULn99gwbId7NybTZdOSUwa3Qeno+oHi8NhjZjiqFu0GuWyV2bZ2j0R14R+I8Dsbzdy9811a7Td0AjrAEj9DowdQAD0PtFbOftWETk10o10f4ZoIIcOIOL/FNSw8Xxdri5pQswvgpvCbYxqHboQ4g1gKpAtpRxYfiwJ+ADIAPYCV0kp8xvOTEVzwO3385OPZlDg8VRUeK45coiffDSDhdNui6gcGW0Kisq4/cHp5BeV4fb4cTisvPTeQl5+8no6d0iIeM+YzB48G+G4xaJx3oRTNxGJhNvjjxgbNk1JaVl4dXNzQggB0SpmCh35FOcadqtOCDsi4e9I8w8QOAZ6F4RoHQJ+taUmv+m3gPMqHXsImC+l7AXML/9Z0cqZs3M7br8/pFzflJKCMjdf79rRKDb8+50FHM0txu0JFgt5PH6KSjw8/Z+vq7zH5bTx1EOX4XLaKv6z2XTuvW0S6Z1qr+mSOaRrRBlfp8PKhChW07YobJlEdOrCiXA2TsaW0BIR1t5t1plDDVboUsqFQoiMSocvASaU///bwPfAg1G0S9EMOVBYiNtvhP3d+qXJwo27ubgRtFEWLNsR5kxNU7J+80F8fgObNfJXevigdL58/U5W/rgfwwgwfHA6cTF1y6xJSYzllqtH8+aHS/D5A0gpcTqsDB+UzpmnN07laXNDCBsk/AtZUK4DIw3AAo6pYJ/YpLa1Jer6jpwmpTwMIKU8LIRoX9WFQojbgdsB0tNrn02gaD50sMYgAiArfWtEQLJvUzY0wkJMRNjcDJ4QEVvcnYzdbo1aps4Nl41g2MAuzJq/AbfHz8Sz+jA6s0fEzde2grCPhNSFQXkDWRTs5GStnaaQon40eNBTSvkK8AoEK0Ubej5FwzGkXXusPvBpEo47roDE4gZnQeM4silj+jFr/gb8xgkhKosmGDGkK1ZrpBZqJ/D7A2iaCJPcrSv9e3Wkf6+O1V/YhhBaO3Bd2dRmtFnq6tCPCiE6lq/OOwLZ0TRK0XzIc5cxY8OPrM8+Qu/EZDrt0jmW6MfdvlzD/CgkZ2mcfWntutHXlZ/fMJaN27I4eKQAvxHApluIj3Py4F1VZ1Hs2JvNsy99w9adR7FYBBNH9+Xe2yaFSe8qFC2dGmm5lMfQZ52U5fIskCulfEoI8RCQJKV8oLpx6qrlomga9hcWcOkH03H7/XgDAWwWC5oUJK010YpMTFPisFtJTY7ltadvaDQHaZqS1Rv2sWDZDlb+uJdjuSWkJsdxy1Vnce740IYMOXklXHf3G5SdlDNu1S306ZHGS09c1yj2KhT1JWpaLkKIGQQ3QFOEEAeBR4GngA+FELcC+wH1jtUKeXzR9xR5vRVZLce12uMnpDDZ25mjx4oZNawb500YgMPe8Lrix9E0gc2qM/f7TRWyullHCnj8hbls23WEu285sQn32dfrQsIzEMwX37k3m+27j9K7e8PJEisUjU1NslyureLUpCjbomhEVm/Yz/tfriKvoJTRw3vwkwuHER8bmvWxeP++kBTF42wvyOXzu27AZjl1zLoheWn6ohCNdAi24Ptw9hrOGJLBqOHdAdi9L6dCFvhkNE3jwOF85dAVrQolztUG+Wj2Gh588lOWrt7Ntl1Hee+z5dx839sUlXhCrqusV34cixBYatBcoiHZcyCnynP/eONEO7Z+vTpEFB4LBEy6p7c9rQ9F60Y59DZGmdvHy9MXhsjl+vwB8gvL+GTOmpBrrx4wGHulVbjNYmFq775YaqEjvr+wgLWHD+H2h3cOqiud2lctNXDwSEFFJefFUwZjt+sh6YQ2m87pA7vQrYty6IrWhXLobYwde7Mjpu35/AGWrA5tvn3PmaMY3aUrDl0n1mrDqesMap/Gn8bXrFAkt6yMKz+awXnT3+ammZ+Q+ep/eGvdmupvrAG3XlO1fndCvLNCuyUh3sWrT93AmMwe2O067eIcXHXhMJ544JKo2KFQNCeUOFcbIzHehWFEbjmWlBDaDcqu67x28WXszMtle24OGQmJFc2ba8LPZ89k/dEjGCf1hH12ySJ6JCUxNj2jTvZLKdm84wger5+xI3qwaMWuUJttFq6/dETIsc4dEnjiwUvrNJ9C0ZJQDr2Nkd45iYzTktm5N5uAeWLD02HXufqi4RHv6ZmUTM+k5FrNc7CokI3ZR0OcOYDbMHhtzao6OfT8wjJ+89hHZB0tQAiB3x+gW5dkDmcXIqVE0zSuuTiTay6uNrtLoWiVKIfeBnn64ct48MnP2HsgF13XCARM7rxxHMMGRk+aIdftxmqx4A2EZ5gcKy2t05iPvzCXvQdzMU7ScjmcXci0K89iyti+JLZzVanlogApPeDfBlpS1JtUK5oH6tvfBklJjOX1Z25k/6E8Covc9MxIPaWeeF3ok5wcMeXRplkYn1F7AavSMi+rN+wLceYAHq/BF/PWc8NlI6q4UwFglk6HkmcAC0g/0joQkfgvhFZ7tUlF80VtirZh0jslMahv56g7cwCHbuWh0eNCUh9tFgsJDge3nV77kIjXZ0RsUgFUSOkqIiO9S6D4mWAHIVkCeMG/Hpl/V1ObpogyaoWuaDBuGDyU7olJvLZmFUdLS5iQ0Y1bhg4n2eWq9ViJ7VykJcdx8EhByHEhBIP7dY6Wya0SWfoGULmJtQH+TUjjgAq/tCJqpOUSLZSWi6I+/Lg1i/v+8jE+v0EgcOJ7ay/PK3/ygUurVVxsi5g5l4CxJfyEiEUkvomwDWl8oxS1oqZaLirkomgxDO7bmXefm0ZqUlzIca/PYO3GA/x35oomsqyZYx8LRNLaCTRQOzpFU6EcuqJFYbdbOZpTFHbc6zP4Yt6PTWBR80fE3AJaAqFO3Qmxv23T7dpaIyqGrmhR/O2VeVQVJfRFEOFSEMxkSfkyGEv3LgCtPSLmFoS96mpbRctEOXRFi6Go2B0mT3Ay487s2YjWtCyEloSI+y3E/bapTVE0IMqhKxqVnXuP8dWCTXi9BuNH9mL4oPQq0xErk5NfglW3RJTDtWiC206h76JQtAWUQ1c0Gh/OWs3L0xfhNwKYpmTu95sYd2ZPHrn7gho59U5pCZhmZB2aCaN6k9guJuI5haKtoDZFFY1Cbn4pL723EK/PwCzXkPF4/SxavpPVG/bXaAyH3cpNV4wM6Y4kBLgc1lOqLx7HNCUr1u3l+dfn88YHP5BVKaddoWjpqBW6olFYsW5PULa3UrjE7fXz3dLtZA7uWqNxbrj8TNLat+PdT5aRV1DGoL6dueP6MaR3OnUJeyBg8rtnPmftxgO4PX50i8b0z1fy8C/PY9LovnX+XABGwGT+4q3M/2ErToeNS6YMZtig6OniKBQ1RTl0RaNgs+lECqpomsBhr/nXUAjBOWP7cc7YfrWa//tl2yucOQSdsBEwefJfX3HW8O51lj8IBEzu/fNHFZK+AD+s2sm1l5zBrVermL6icalXyEUI8RshxCYhxEYhxAwhhKP6uxRtkVHDukdMN7TqFs6bMKBOY/r8BvN/2MpbHy1lwbLtGEbVaYv/W7w1ouaLRdNYt+lgneYHWLxyJ1t2nnDmEBQMm/7ZCo7lFtd5XIWiLtR5hS6E6AzcDfSXUrqFEB8C1wBvRck2RSvC5bTx1wcu4eFnZqIJkARXtz+7dgy9MmreNOM4OXkl3P7QdIpLPXg8fhwOK0kJMbz85HUkxIdqxWQdKcDrjSzgJaFecgGLV+6K/KCwaKzZeIBzx/ev89gKRW2pb8hFB5xCCD/gAg7V3yRFa2XE0Ay+eP1Olqzejc9nMOL0DFISY+s01rMvzyMnv6Rig9Xt8XPkWBEvvPkdj9xzIQBHc4r43dOfs+9gXpXjWDTB0P6n1ckGgLhYB5omKuw4jhCCGJe9zuMqFHWhzg5dSpklhPgbsJ+glNs3UspvomaZolXictqYPKZ+m5CmKVm2ZneYEw0ETL5fvoNHCLaq+81jH3HwSEHYdVbdgq5rCCF46neXoet1X6FPnTSImd+sx+szQo5bLBojhtZso7cl4Q14WZKzlJ2lu+nk6MjY1DHEW+Oqv1HRKNQn5JIIXAJ0AwqAj4QQN0gp36t03e3A7QDp6WrnX9E4bNl5hGN5JWHOXNMEfXukcfn5pzPmjB711oLvnp7CfbdP5u+v/A9d15ASbFYLf/v9Fa2ue1Khv5BHN/6FskAZXtOLVVj58vBsHu73IOkuJcHbHKjPN24ysEdKeQxACPEpcBYQ4tCllK8Ar0BQPrce8ynaMFJK8grKsNt0YmPsjBrenaWrd4f0RdUtGhNGBtUD8wrK0CIUK5mmxOW0MaWWWTKn4oKzBzJhZG/Wbz6Iw2FlUN/O6JbWV+Lx4YFPKPQXYhIs7vJLP/6An9d2v8mfB/6xia1TQP0c+n5gpBDCRTDkMglQYueKqLN+y0GeePErjuUWI6Vk2MB07rxxPDv2ZFNU4sHj9eO0BzdFfzVtAgD9e3XAHyHrxW7XGTms9i3wqsPltDFqePeoj9ucWJu/rsKZn8yBsgO4A26cFqXc2NTUJ4a+XAjxMbAGMIC1lK/EFS2DjdsPMWPmSg5nF5I5qCtXX5RJcmLdyudNU7J6wz527D1G5w4JjB7evV6x6eMczi7kvr98EpIWuHrDfv7yzznMeOFWFq/axf5DeXTrksLozB4VK+OkhBiumjqcj+esrbjXZrWQnBDDhRMH1duutoiuWSBCZqgQAotQjUWaA/UK8kkpHwUejZItikZk3qItPPWfr/H5DKSEPftzmPPdRt78209JTa7dJleZ28cvHnmfg4fz8fkDwbCIy85LT15H+1qOVZnPvl6HEQj1IkbA5NDRAnbsPcbEs/pUee8d14+lX88OfDR7DUUlHiaM7M2VU4fhcka/h2pbYFzKWL468g1+eeLhasHCwPgB2DT1O20OtK5dG0WNMAImz702H6/3RGaG3zApLvXw9sfL+O0dU2o13qszFrP3YG6FCmKZ24fH6+fJf33Fc3+8sl62HsjKxzDCX/OFEBw5VsiA3h2rvFcIwfiRvRk/UnXliQYXd76IXaW72VmyCwEIBIm2RG7rfnNTm6YoRzn0NsihIwUR48uBgGT5uj21Hu+bhZvDJG1NU7Jm4wG8Xj92e6T2ZzVjSP/TWLF+b1haoGGY9OmeVudxo4GUki07j7BszW5cTjuTRvep9dtNS8KmWXmw72/ZU7qXA2UHSLWn0ieuN5pofRvALRXl0NsgcbEOjEBkGdrKVZY1oXJqYAVSUt+0pqmTBvH+FysxAiaBcpvtNp2xI3pyWsfEeo5ed6SUPPGvr/huyXa8Pj+6buHVGYt55O4LmDCqdb8RdIvJoFtMRlOboYiAerS2QRLbuRg+MB1dD/3nd9h1rr3kjFqPd/ZZfcLGEkIwoE+nEKnb42zcdoj/e/V//O3leazbdABZVU85IDbGzuvP/pQLJw4kKcFFp7R23H7dGB65+4Ja2xlNlq3Zw/dLtuPx+pES/P4AXp/B4y/Moczta1LbFG0Xcao/pmiTmZkpV61SmY3NgeJSDw8/M5PN2w+j6xp+w+TGy0dw85VnVXmP2+PjWF4JqUmxIQU5RcVubn9oOrkFpbjLdVUcNp2XnrgubBX90nsL+XjOmooQit1m5YKzB3DvzyY3zAdtIP703Cz+t3hr2PEYp41H7rmAMWdEbocnpWTnvmMEDJNe3doHJYUVimoQQqyWUmZWd50KubRR4mIcvPDY1Rw6WkBOfindu6QQGxNZe8Q0JS+9t5BP5q6t0C35yQXDuOP6sWiaID7OybvP38zCFTvYWZ62OGl0n7AqzP1ZeXw0e01IPNzj9TPn241cOGlQk8fEa4OmVd1hqaruS9t3H+Whpz+nuMSDQGC1Wnjs3qk11oJXKKpDLQ/aOJ3SEhjct3OVzhxg+ucr+PSrtXh9Bm6PH6/P4JO5a5gxc2XFNVarhUmj+3LH9WOZOmlQxJL6Jat3R2wh5/MH+GHVruh8oEZiyph+WCPk2ZtSkhmhuYXH6+eeP31Idk4xbo+fMo+PwmI3Dz31OTn5JY1hsqINoBy6olre/2IVHm9olonHa/DfL1ZWcUdk7DYdTQv/ymkWgcPWcC+L+YWl7M/Kq3IjuLaUlnl58e3vI2YKPXTXuRGzehav3EUgwsPMNE2+XrA5KnYpFCrkoqiWohJ35OPFkY9XxYRRvXjx7e/DjmuaxsR6toGLRGGxmz/93yzWbTmIbtGwWi3cf8cUzh5VdTFSTZjxxUoOHM6PeO67JdsitrQrKCqLmE/v8wfIzS+tlz0KxXHUCl1RLd26pEQ83j09tVbjJLaL4Y/3XIDdpuNyWHE6rNhsOg/8/Bw6pMZHvGffwVy+X7qd3fuP1druB5/4jLWbDuD3B3B7/BQVe3j8n3PZuvNIrcc6mfmLt1WZqrlo5a6wnHyAof27RIytOx1WMgcrFVJFdFArdEW1/PqWidz/xKcVm5lCgM2qc88tZ9d6rPEjezNzUFeWrd2DKSUjh2YQHxcu6uT1GTz8zEzWbTqAbtEwAiYDenfk6d9dViPJ2/1ZeezYmx0WZvH5A7z/5Sr+9Juptbb9OLZThIeklBiBQFgXpJ4ZqYw7syeLVuyq0JZx2HR6d0vjzKHRFwtrLPaV7md53gqklIxIPqNZ56eb0uR/R+cz98g3lBgl9IrtyTXpV7Uq6V/l0BXVMmxQOi/8+Wre+GAJew7k0K1LCrdcfRb9e1Vddn8qYmPs1Ta5eOW/i1i78QA+v4G3/NjGbYd44c3veODOc6udIyevBF3X8FZKCZdSciS7sE52H+eyc4fwf6/Nj7hK75mRWuUD55G7L2Teoi18MW89fsPkvAn9uWjS4Babuvh51hfMPjwHvxl80P8v+1vOSZvMlV2uaGLLIvP+/g/57tgCfGbwS7GpaDOPb36SPw/4Ix2cHZrYuuigHHobQUpJTl4JLqetTq3R+vfqyN/+0Hh/qLPnb8TnD92I9fkDfLVgM/f//JwqUwOP0zMjNWLow2a1kDmkfmmCF00ezNI1e8Iyc5x2Kw+d4mGjaYJzx/dvFX1Gj3iOMuvQnBChLp/p45uj8xiVfCanuere1q8hKDXK+Db7+xB7Afymj1mH53Bb91uayLLoohx6G2DJ6l0889I8iko8SFNyVmZ3Hv7FeVHreblz7zFe/+AHtu48Qqe0dky78izOqKfT9PoiN3X2GwGkDIZ9TkV8nJNrLzmDD748kaFjsWjExtj5yQXD6mWbxaLx9O8uY+O2LD6ctYac/BKGDejCpecNrXOP1JbG2vx1RBJ2MMwAawrWNTuHnu3JRtd0/IHQ75WJZHdJ7fWLmivKobdytu8+yiN/+zKkmGfJ6t38/tmZPP/oVVEZ/64/zMBbLsN7LK+Eh576jN/94rx69Q4dNjCdFev3UrmQeVCfzqcs6jmZ264ZTbcuKXzw5SoKityMGt6Nn14xsk56NZEY2KczA/t0jspYLQ2LsCAI/3fQhIYump9bSbYn4QtElmRw6XXrAdAcaZnBO0WN+e/MlfgqhR78/gAbth4i60hBvcf/z7sL8XiNEMfr9Rm88OZ3p9RoqY57bp1IjMuOrXxz0Wq1EOO0cd/tNZcIEEIweUxfXn36Bj76z8+497bJbWYF3dBkJg2PeFwgOCOp2gr1RifeGk+v2B4Rz+0r21cRV2/pNL9HqSKqZB0piOhYdV0jO7eYzh0S6jX+ll2RUwCLSjwUlXhoFyGDpSakd0pixgu38NnX69m68wi9Mtpz2XlDSUlqPIcspWTTjsOsWLuHGJedSaP7Nur8zZkkWyI3d/spb+55p7x3q8CUJjd0vZZUe+Q016Ym1hpZ2tiCxpaibQxJaPmdrJRDb+UM7X8aO/dm469U1OL3B+ieXv8/vOSEGEpKvWHHNU3gqkF64alIbBfDLVdVLRbWkEgpefyfc1mwfAdenx+rbuGV/y7msXunVim81dYYnXIWg9oNZG3BeqSUDE0YQoKtXVObVSWRQkRA+U5A6+hfr0IurZyrL87E6bCFxJ0ddp0rzj+9zqvnk7npJyNx2EPXBXabzsVTBoflYrckfli1mwXLd1TI4/rK5XEfe352SH/Ttk68NZ7xqWOZ0H5cs3bmAGNSzsKuhScCSCT94qNfqdwU1MuhCyEShBAfCyG2CiG2CCFGRcswRXRISYzl9WdvZMqYfiQluMg4LZlf3zqJu346PirjnzOuP7dePRrnSZWf508YwC+iNH5T8c3CTREdtxCCtRsPNIFFivoyJGEwZyQNx6bZgmqXwopNs3FXzztaTU/U+oZc/gF8JaX8iRDCBkQnfUARVTq2b8cj9zRcQ4hrLzmDKy44nWO5JSS2c7WKJsynzHOvWZJNi8Eb8LLg2EJW5a8hTo9jctrEVrNiPRkhBD/rfiuT209iQ9FGnJqTEcmZtLM27zeL2lBnhy6EiAfGAdMApJQ+oHVsFStqjc2q13uDtTlx3oQB/LBqd8RV+rCBrUd7xRvw8tjmxznmzanI9PixcAOXd76U8ztWX5FbEw65D7G/vAdp95hu1RaFNTTdYjPoFpvRpDY0FPVZoXcHjgFvCiGGAKuBe6SUSjquDWEYAT79ah2z5m8gEDA5Z1w/rr4oM2LruZbEyNO7cd74/sz9fhOBgFnRYu/x316MvQGlfhubRTk/hDhzCFZ8fnLwM8aljiVGr9lL9yH3IbYX7yDeGs/gdoPQNR3DNHhx53/YWLgJi7AgkXRwpPFA3/uI1VW2UENQ5xZ0QohMYBkwWkq5XAjxD6BISvlIpetuB24HSE9PH75v3756mqxoLkgpuf+vn7J204GKwiWbTad7l2RefvL6FqtRcjK79h1j+bq9xDhtTBjVOyobyc2JZ7b+nU1F4XrsTouTu3rcweBqUvlMafL6njdZkbsSEGhCw6pZebjfA6zIWxUmD2ARFoYmDObuXr+M9kdp1TRGC7qDwEEp5fLynz8GHqp8kZTyFeAVCPYUrcd8imbG5h1HWLf5YEgVqs9nsC8rj6VrdreK9L4eXVPp0bV2MsEtiXhrHAIRVsZvSpOYGlRQLs1dxsq8VfiOO20JHtPD89tfxBPwhGmnBGSAdQU/4jN9rWYjsjlR5yWUlPIIcEAIcbxbwCRAtV5pQ2zafohAIFwAy+3x8+OWrCawSFFbJrefiFULDY8JBPHWeLrHVC/r+23293gjVFnm+/PxmuH1CccxTKPKc4q6U9934l8B04UQPwJDgSfqb5KipZCcGIPVGv6SZ7fptE+JXJWnaF70jOvJNV2uwqbZcFqc2DU7qfZU7u9zb402L/1m5Jx8DUHvuF5oEVxMJ0dHXDWMzStqR712d6SU64DmJ9ygaBTGnNGT516bj9tDiJaLxaIxZWy/pjNMUSsmpZ3NWSkj2V2yB5fuIsPVtcaZKKOSR3LIfTgstGLVbNyUcSOPbXocj+nBZ/rQhY4uLNza7eaG+BgK6rEpWhcyMzPlqlWrGm2+5o5pmgghmjyNqz7sPZjLH579gsPlTSOSEmJ47N6pdW5+oWhZ+EwfT2x+mkOew3hNL7rQ0YTGr3v9igHt+lNqlLHo2GJ2lOyks7MTE9qPJ8mW2NRmtzhquimqHHoTsGb+Bv519+vs35JFTDsXl91zITc8cgUWS/RK5X1eP1+/+R3fzViM3WXnop+fw6iLMxvs4XEku5CAKemU1q5FP6BaG4fch9lRspN2ejwD2w1A16KfcmmYBmsL1rGxcDOJ1gTGpo6hxChm5qFZHCzLomtMFy7udBFdmplGektCOfRmytYVO/jtxD/hLTuxkWR32bjgtsnc9XztX0UjrfIDRoB7x/+RXev34S0Lbkw5Yuycf+ukOs1RG6SUbNt1lPzCMvr16hA17XFF7TClyWu732BF3iqEEGho2C12Hu77QIO3W9tatI2/b38ev+lHIoNl9pqVB/v+lp5VSNgqTk1NHXrLTxRuYbz754/xuUOzArxlPma/Mo/SorIaj7P7x33cM/r3nGe7hqmxN/CPu17FU+68f/h8Bbs37K9w5gCeUi+zX5nH4T1Ho/NBInA0p4jr73mTXz36AX96fhaX3/4yb3zwQ4PNp6iaH3KWsCp/NX7px2f68JgeivxF/GPHiw0+97v7puMzfRWpkBKJz/Qxfd/7DT53W0c59EZm/+aDYV14ACxWnZyDuTUaI/tADr8e+wibl25HmhKf28c3b33Hny5/FoAVc9fiKfGE3adZNH5c0HCZpQ8++RkHD+fj9vgpLfPh8wf478xVLF65q/qbFVHl2+wFYemEEkmOL5cjnoZ7qJvS5KA7csrqvrK9DTavIkjrqWFu5mxbuZN3//wR+UcjdwkyjQDta6hPPvPFr/BX0hjxefxsXLSF/VuzSGzfDt1qwajUqUjTNOKTGyadcP+hPA4cysc0Q59WHq+fj2avZswZ0XnV9vkN3v9iFbPnb8AISKaM6bYLevsAACAASURBVMuNV5wZtf6orQV/FR14BKLKVMNoIBA4LU7cAXfYuRhL62n11lxRK/RGYN13G7nv7EdZMWcNXnf4H5rdZeeSX52PM7ZmZeW71u/F8IUXZuhWCwe3H+K8Wydi0cM3WHW7Tua5Q2r/AWpASam3ylL/oghvC3VBSskDf/2Utz9eRtbRQo7mFPHBrNXc+fsZGEZ4gVNbZmTyCKwiXE/Hrtnp7OzEMW8Omwo3k+fLj+q8QgimtJ8UVgVq02yc2+EcPAEPK/NWsSx3OaWGkn2KNmqF3gj8+9dvhmyCnkxiWjuu/O3FXPGbqTUer09mD35csDlsle73GUgpmfniXAaM6cumxVvRdA0kxCbG8PiXv8NqaxjRrJ4ZkcvjbVYL48/sFZU5Nm0/zMbth0OkBvxGgMPZhSxauZOzR/U5xd1tiylpk1met5KjnuyQdMLbut/MP3e8yMbCzRUCWiOSMrm1+81YhIWVeauYfWguhUYhfeP60tnZiW+zv6fAX0AHRweu7XIVgxIGnnLuS0+7mOJAMYuP/VA+R4AJqePo4jqNu9feW9E5KCAD3JRxA2NTxzTGr6RNoLJcGhgpJefqV0fs66lZNL72f1DrMXMO5XHbgN9QVlRWEY+3Oax06JbG0b3Z+Lx+pClxxNgZcFYfbv7rtfQe3qPB0wm/XrCZZ17+Br8/gGlK7DadlKRYXn/mRmJjqg+JSClPaeOHs1bzn/cW4veHr8avmjqcu28+u172tzYM02BV/mo2FW0hyZrIuNSxzDo8m0XHfggpBLJpNi7seD5WYWXmoS8ilvKffO3xHPPqKDVKyfHmkmpPQQK/XndfWDNmq7Dy10GPkeZIq/PnbAs0hjiXogYIIYhNjKE4ryTsXFxi3WKKKZ2S+OfSJ/j3PW+w/vvN2GNsnH3tGL5+41v83hOrV0+pl01LtlFW5G6U3PBzx/cno0syH89Zw7HcEkYN685FkwdV2/Bi/eaDPPf6fHbtO0aMy86VFwxj2pWjwkI4aanxWHUtzKHbbTqd0lpPk4Jo8f/t3Xd4k1X7wPHvyZPVtKW0QBlllSFDpoAgCMiS8TJUfoC+iOirgnuBvg5ERQFxT1yI4kJUVBB4wTJEREC27CEoFEpboAPaZp/fHymFkLR0pE3ans91edmmSZ47pblznvOcc996nZ4u1TrTpVpnwHPB8uJkDp7NQcuTV2Bz230S7sXsbjvfJs4vVEIP14fnFfhak/qb356ebunm91PruT5uWGFfllIAldDLwPCHBzN3+g9eywhNFhMjJg4t9nPWbx7Hi8vOVypeOnslyz9b7ZXQAWzZNtb+sIH2vcumo3mzRjV56r6Bhb7/gcMpTHjhO6y5cZ/NsjF34UbSMrOZOK6f1327XtGIMJORHKvT64xHr+m4NsRLDTjdTtIcaUToIwjTAluC97Q9jcVJS9iTuZdqxhgG1R7ot+OQW7pxSv9FsXJc1kJvOkrKOVHkGO1uO1K6fW534cLmyr+Il1I06qJoGbjpiesZclc/TGFGwiLNmMKMDL2nf4kS+sWMYUaEzncEJHQ6TBZzwI4TaHPmr/eaEwew2pwsWbnT52KqwaAxc+pNNGtcE4New2jQaFi3Gm9PGUWVEK5TviplNfdvfYindkzm/i0PMevQJwFbaXLKdppJO55hVfJqjuUc58+Mnby2/01+S/Vd/6/X6akb5n+3ZuOIRrgKWQEx1nzpcsJu6WZnxi5+SVnNP1n/0DqqNflN7i47kcDMgx9wxnGmUMdX8qdG6GVAp9Mx/pWx3PLsSFKOniK2XrVCr2gprC6DOyDdvm8ZvVFP3zE9AnqsQPrrn1S/6/L1eo3k1EyqRHh/GMXVqsqsGTeTlpGFyyWpHhPanW+2pW3nqyNfe01lrD/laSFwR6OS79pdeHwROa4c3Jwf/drddr48Mpcu1Tr7jLpvjR/DS3tfweF24saNhoZRZ2BswzF8e3Q+OzN2+UzJXMioMzK87vUFxnTansb0PTPIdJzJi6tZ5GUMqHUty5IT8naQnuPGzabTmzmSfYRprZ9HJ9Q4s7jUb64MhUWE0aBF3SInc7vNwd4/DnBkb/41xi2RYTwz/1HM4SbCIs2ERZgxmAyMe+lm4kO4B2aTBjX8zu87nS5qxVbJ93HRUeEhn8zBk3Avnpd2SAfrT23wu1b7nHR7Ol/+8zVP7XiG1/a9yd7MfX7vtytzl1cyP8cl3aTYUnxubxLRmCmtnqVnjR40iWhC35q9mdr6eeLC6nBX4ztpV7UteqHHpDNi0VnoEtM5r11cdWM1xsXfTruqBS99/fCvjzhpO5VXZdHutrMzYxfrT21gQM1+fsvqunCRZk9nV4ZqqVASFX6EnnggiXULNqLTdHQf3pnY+uWr+8zKuWt4866PQHhqtNRuVJPnFz5OrYaxPvfteG1bvkn6iD+WbMVuc9CxfzuiY0P7YuGtI65i3ZZDeXPoAGaTnn/1bk1keOhOFRXWKftpv7frhOCs86zf+fTT9jSe3vksOa4cXNJFYk4ie87s5ZYGo32W+EUZqpJqO+nzHC7pIkLvfxNZLXNNbo0f43O7WTNzX9O7yXJmk+XMopopBk1oec937uuCZDmzOXD2oM+HjESSaj/JsuQEIvQRfj+EnNLJcWsSrSl4WaSSvwo9Qv9y6nzGt53A7Elz+fjJr7it+YMsmbW8zONIOpzMV9O/55On57Jnw4FCP+7gtsO8duf7ZJ/JITszB1u2nSO7E/nvtc/7XQYJnrOAniO70m9Mz5BP5uBp8fbGMyNp3rgmOp0gKjKMMTd0rjBLEJtENPa7ukMTGtEG/2Vkfzq+iBynJ5mfY3fb+erI1z6dfv5Ve6DPJh690NMqqiVVDMXbFRyutxBrruGVwAuTzIHcmPNfUWVz28lwZPrd9KQXGnXCVNnlkqiwI/TDO48wd9r32K3e84HvPjCbKwddQfU6MWUSx7I5q3jrnlm4nS5cTjfzX19Mn5u789B74y65lHDhzGU4Lorf7ZaknUhnz4YDtOxyWWmGXmZaNavDrJd8R4wVwfC617EjY6dXsSqjzsjIev+X76qSnRm7cOG71t4l3ZywJlPXEpd32xXR7bghbhjfH1uAhg6ndNIsshnjG91ZOi/oEqoYIqlpiuWY9Xi+93FKJyZhRIcub6SuFxrVTNW4vMqll0Mq+auwCf3X79bh8LM9XgjBugUbGXJ3/1KPIfP0Gd66exZ26/k5VFu2jZVfrqHXqG6061XwqeXJY6d9aqMACJ0gPbehhBLa6oTV4dnLJzE/8UcOnv2LGGM0Q+sMpn10u3wfE2WIIsWW6nO7W7qINPheNxhYewC9Y3tx3JpElCEq6A0kxjW+g+l7XsIhHV5nGefohZ4+NfuQYkthW/p2dELHlTEd+Xf9G9UF0RKqsAm9IGW1OXbTsu1oBh1cVMrElm3jl3lr/Sb0rIws1i/agtPhpPXVzflz9S6fsgFOu5MWFWR0XhnUCavD/U3vKfT9B9UeyHt/feB1MVUv9LSo0oIog/9pNJNmIj68YUlDDYiG4Q14ue10Vqb8wsJji3zONnRCR79avYkxls1ZcmVS4oQuhNCATcAxKWXhC5KUsh7Du/Dtywt9imFJKek6rGzaoGqazu/8KQh0fgpZrV+0mRdufB2dTiClxOV0ER5l8ZTIzZ16MYebuOHhweViflwpniui23F93DB+OLYATWg43U4ui2zCXY3HBTu0QqtiqMJ1cUNpE9Wa1/e/lffhJITg7sbjVDIvJYEYoT8I7AHyX2MWBPGtGzDq8ev4+sUfcTlcCJ1ApxPc9dpYqsdVK5MYOg5oh9PhO+1jMBvoe7P32vCz6Vm8MOo1nw+grMwcBo/vx87f9hIZHcF19w/kqiGqL3dFN6j2APrE9uJYznGiDFFUM5XPBNgoIp4327/KoazDON1OmkQ0LpU2eIpHiX6zQoi6wL+AqcAjAYkogMY8PYKeI7ry+4KNaHqN7sM7+13uV1qEEOiNep8Ls+ZwE80vqkC4buEmv6N2t9OF2WJi5sYZRTr2X9v/5se3lpBy9CQd+7dj0J19CVft4MoVk2aiUUR8sMMoMZ3QqdZzZaSkH5VvAI8BpdM1IQDqN4+jfvO4S9+xFKz4cg1up+96W4fVwbaVO7mib5vzt9kcfi+Aul3Sbw31gqz+dh0v3/pO3nPuWruPBe8sZebmGVSJCdl/KiWEZDmzsLqsxBhjVNPvcqTYl5SFEIOBFCnl5kvcb5wQYpMQYlNqqu+V+4rs711H8vp8XsjldHF0n/eyrk4D2yPdvsnfZDHS/YbOhT6m0+HkjfEfYMux531A2HLsnEpKY/5ri4r4CpTK5qzjLK/ue4MHtj7C4zue4uFtE/kzfUeww1IKqSRrhLoBQ4UQfwNfA72FEF9cfCcp5YdSyo5Syo41apSvXZol1bR9I8wRvrsdNb1Gw8vred1Wo241xk65EVOYEZ2mQwjP1Mw1o7pxeTffynn5ObLnGC6X71Ixp93JwveW5bshSVEAXt3/Brsyd+OUTuxuB2mOdN4+OJPE7PzLTiiho9hTLlLKJ4AnAIQQ1wATpZQ3ByiuoMo5m8OCd5ayat5azOFmht3Tn143XV3kU8+eo7ryydNfY8+x43blbqAw6olrWps2PX03UIycOJQO/dqw/ItfcdgcdB/ehTY9WhbpuOFRFlx+GkAAZGVks27hJroO61Sk16FUDonZiSTmHPNZO+50O0lIXs5t8WODFJlSWOpy80XsNgcPdptE4v7jebXFD23/mx1r9vDge0VbNhYWbubdP6Yz8+FP2bB4C5peR68br2bcy2PyTdKN2zakcduGxY6/ZoMa1GpUkyO7E31+Jt2SJbOWq4Su+HXKnoaG7xZ/N26Srb6FvpTQE5CELqX8BfglEM8VbCu+/JV/difmjajB0/ln2ZxfGPnoMGo3KlqrrOpx1Zj8zYRAh1mgsc+O5IUbX/dbTvfiFTeKck4DSz2/pXMNwuC3YYYSetQ+24t899oir2R+jtvpYufavUGIqOi6DO6A2eLbw9McbqLP6O5BiEgpD6oaq9KzRg+vYl8aGmFaGH1iK0axtIpOTblc5MRh/6eWLqebqOqBXfLndrtJT8kgomo4RnP+fTcT9x/HmmUjvnV9NP2lq94ZzUYe/+IBpt30Bi6XG6fdiTnCTIsuTVVCVwo0psG/qW+px8/JCWQ7s2lbtS3XxQ0hwk8NmYrilO0UK1NWk2w9QbPIZlxdo2vA2wSWFVGWqx46duwoN23aVGbHK47BEaN9aqecs/DM54QFqEZ3wuer+WDCHHLOWkEI+t/Wi7tfG4vBeL6s6PG/TjB52AxO/J2CTtOhN+h57NP76DK4g8/znUpKY+VXa0hLTqd979Z0uLYtqUdPkfDZatJT0uk08Ao6DWiHTqdOyhTlnP1nDvDKvtdxSSdO6cKoMxKuhTOl1WSqGEJn87sQYrOU8pJbxFVCv8iUka/y2/z1PgW84lvX58PtrxbrOd1uNxknzxAeZcFoMrBx2TaeG/6Kd9PoMCN9x/TgoffHA+ByuRjT6F5OHjvtNRdushh5f+sr1G16vm70lhU7mDxsBtLtxm51YI4w07xTE6YvfQq9QZ2EKYo/Ukoe+/NJn85OGjp6xvZgbMPQKelc2ISuhmsXueuVW4iqXgWj2TNSNhj1WKqE8d/P7i/W8y3/YjUja9/J6IZ3c33Mrcx86BO+eP5br2QOns0/CZ+tJuespy3Z9l92k5We7XNh0+lwsfjDhLzvXU4XU298HVu2Le+Cp/Wslb1/HGDp7FXFillRKoMMRyan/XSUcuFmS9rWIERUcmr4dpHY+jWYvfdNls5eyd4NB2jYqj7/GteXmFpFrzG9celW3rjrQ68pnCWzlue7ZFGn6UhPzSQsIoz05HSvRrrnuBwuUo+eyvv+wJZDOOy+KxOsWTaWf76aweP7FTluRclPqu0kh7MOU9VQlaYRTcp1WQCDzrdr0jlGne+igvJAJXQ/IqMjGDFhaImf5/Mp3/nMx9uy7QidQAjhs2tTp+moHuepqteyazO/G4TM4SY6DTjfHEHTa/jJ+56fGQrXNkxRLsUt3Xxy+DPWnVqPJjQkkmhjNI83n0h0kBtqFFe43kKzyMvYk7nXq8epUWcst6t6KvWUS/aZHBZ9kMB7D3/C8i9+9eosFAjJf/tfMWMw6jGGGbhwcGO2mBg7ZVTeRdFaDWMZ8J/emMPPjxSMZgO14mPpdWO3vNsat2tIeJRvFUVzuIlBd/QN0CtRKrtfU9ew/vQGHNKB1W3F5raRYk3h3YPvBzu0Ehnf+A5qm2th0pkw68wYhIF2VdvSr1afYIdWLJV2hJ54IIkHuz6J3erAmmXDHGHm06e/5p0/plO1RmCaR1zWsTEbFm/2ucBqMBl4aflk5jwzj70bDlKtTjSjJ/0fPUdc5XW/+96+nVZXt2DhzKVkn8mh16huDLtvgNcSR51Ox3M/PsZjfafgdnuWKOo0HV2HXUmvm7qhKIGwPHmlVwcl8OwgPZz1N+n2DKoay2fDlShDFFNbT+Hg2b84aT9FvKUBtcJqBTusYqu0Cf3VO2Zy5nRW3rSH9awVh83BR//9gkdn3xuQY9z6/I1sW7nTq+KiKXckflmHxkxd9GSBjxdC0OvGbl4jcn8at23IwNt7s+DdZTjtTqrFxdBndHe1RFEJGKvb6vd2ndBhc1uBwCR0t3Tz0/HF/Jy8nGxnNg3C63Nz/ZtoEtkkIM/vjxCCppFNaErpHaOsVMp3vN1qZ/fv+33msF0OF2t/+CNgx2nctiGvr3mejte2JTImgoat6vHo7Hu4/v5BATsGwMyHP+Gn93/GYXMgJZxMPM2UEa+w6/d9AT2OUnl1jO6AXvhek7FoFmqYPFVUHW4HDnfJSkt88c9cFiUt4azzbN4ZwIx9r3I027c2keKrUo7Qz12U9Mdf16CSaNI+nulLJxX78Qe3HubX+evRNB09R3b1KbublZnN0o9X+tRosWXbefm2dxkxYQg9RlxFZHTF3emnlL7BdQax8fQmMp1nsLvtaGhoOo07G/2HNHsaHx/+lD2ZntIYLao05/b4W6lmKlqrxyxnFr+mrvGpJ+NwO/jp+CLuaXJXwF5PRVUpR+gGo4EO17ZB03u/fINJH1Jb4z9+4kse6j6JeS/+wFfTvue+Kx9n3ssLvO5z6nhavqtZjh1I4r1H5vDv+nexffWusghZqaAi9BFMbT2FG+uNoEP0FfSr1YcXWj1Hs8jLmLJ7Wt5KETdu9mTuZcruqdiLOFo/aTvp9yxAIjmSfTRQL6VCq5QJHWDCrLuJrV+DsEgzBpOBsAgz8W0a8J+pNwU7NMDTE/SHt5Zgy/Z0HnK73Nhy7Hz2zDxOXLB6JrZ+db9t7s6xZduwZtl47v9eweX0XyddUQrDrJnpU7M3DzS9l5vqj6KmOZbNaVuwunK8lv25cWN1WdmctqVIz1/dVB2n9P0bFQjqhtUtcfyVQaVN6DG1ovlk35s8Nfdh7nhxNM8vfJx31k8nLCI0ivKs/WEDDrvT78/WLTxfPsFsMTF8whBMfqorXsjlcLFn/f6AxCal5Oc5vzC+3URGx9/N2/d/TFpyekCeWylfkq0p2Ny+y32tucsaiyJcH87V1bt6VXsEzwagoXGDSxRnZVEp59DP0TSNzoOuCHYYfmkGvd95fiEE+oumWG59bhQxNaOY99ICn9ovFypM2R671c7udfvRGzRaXHUZmuZ7Cvzew5/yv49XYM3yrN5Z8mECv32/gY92vKqaUFcy9Sz1MOlMPqtgTDoT9SxFH1Xf0vBmqhiqkJC8gmxXNvUt9bg5twKkcmmqOFeIStx/nPHtHvXZ7GQ0G/j80Lv5liJYOfc3Xh/3fl6yPSciOpxvT8wqsFjX7ws3MmPM2yA8yd9kNvDcgv/Ssstlefc5fSKNm+PvxWHznh81hhkZPWk4/37ihqK+VKUcc0kXk3Y8Q7ItJa91nSY0Yk01mNp6CpqfOfHCklKW69ICgaSKc5VzdS+rw50vjcZoNmCyGDFZTBjNBh76YHyBdWV6jryKjv3bYQ43IYTAGGbEHG7i6W8mFJjMU46kMu2mN8g+k0N2Zg45Z3JIT83kyYFTyck6P/o6uPXvvMJlF7Ln2Nm2QnWHr2w0oTGp5RN0r341Fs2CRbPQvfrVPN3yyRIlc6BCJPN0ezoLjv3Ex4c+Ze3J30u8rPNSKvWUSyhKOXqSlV+tISsjm04D2vPp/rdZ/9Om3N2fnYiuWbXAx2uaxuRvJ7B73X62rthBZEwE14zqSlT1gms7J3y2Gpe/Tk1uN+t/2py3ual6XIzfi6s6TUetIrbnUyqGcH04t8Xfwm3xt5TZMR1uB2tPruOP0xuxaBZ617yGllValNnxC+PAmYO8vO81XNKFUzrZcPoPfjq+mMktn8Ki9y3XEQgqoYeQ337YwPSb30K63DjsTn58+390GtCeSfMeLtKuTyEEl3dtxuVdmxX6MRmnzuD0cxHW7XRz5vTZvO8btWlAveZxHP7zH5wXFA8zmPRc/0BgN0wpij9Ot5Npe2aQmHMsrxzB9ow/GVx7EMPihgQ5Og8pJe//9SE29/mpT5vbRqrtJIuT/seIesNL5bjFnnIRQtQTQqwSQuwRQuwSQjwYyMAqG2u2jRm3vI09x563usWaZWPjsq2s/XFjqR+/U/92hEX4dmOSQPs+rbxum7bkSVr3aInBZMBkMRFdqypPz3uE+Fb1Sz1ORdlweiPHco571Zaxu+38dHwxmY7MIEZ23kn7STKdZ3xuPzdSLy0lGaE7gQlSyi1CiEhgsxAiQUq5O0CxVSp/rt7td5eq9ayNFV/8SvcbOpfq8Ttc25bLuzZj59q9eRdUzeEm+t3Sk3rN4rzuW7VGFC8lTCY9NYPszBxqxcequjFKmdmSttVr5HuOJjT2ndlPp5hLXjssdXqhxy397w8xiPzrsJf4uMV9oJQyCUjK/fqMEGIPEAeohF4MF+9avdDFyxRLg06n44VFT7By7m+s+OJXDCYDA+/ow1VD8n9zVK0RFbDKlIpSWJH6SHTovDYznWPRSmduuqiijdHUs9Tl76x/vBrVGHVGesVeU2rHDcgcuhCiIdAe2ODnZ+OAcQD166tT8vy07tHS71V9c7iJ/reVTbF9Ta/Rb0xP+o3pWSbHU5Ti6BXbk7Wn1mJ3eyd0k2akRZXmQYrK171N7mbanhfJdubupJXQOqoVfWqW3vu5xOvQhRARwGpgqpTy+4LuG6rr0KWU7F63n+2/7KJKtUh6jgxOMattq3by9NAXAYHL6ULoBANu68V9b99eIZZwKUqg/Jq6hs//+QoNT/ekMC2Mic0eom4xNjOVJpd0sStjN6ftaTSOaFSszVZQ+HXoJUroQggDsAhYJqV87VL3D8WE7nK5eH7Eq2xO+BO71YHBZEDoBNMWP0nr7mW/DCorI4vffviDrIxsOlzblgYtQusPVFFChdVl5cDZg4TpzDSKaIROVNzrOKWe0IVnyDgHOC2lfKgwjwnFhJ7w+Wreuucjn52VUTWqMO/4h363vld0KUdS2fTzn1gizXQe3IGwcN/VL4qilJ3CJvSSzKF3A8YAO4QQ23Jve1JKuaQEz1nmln2yyieZg6emyf5Nh2jRuWkQorq0k8dO8fNnqzmdlE6Hfm24clD7gHz4fPbcN8yb8SM6TYfQ6QDJCz89QZseLUsetKIopaokq1x+A8r9xG5Z1rIJlE0/b+fZG17G7XLhsDn5+dNVNG7XkBkJkzGair8kaseaPXzz8kKfZhmTh83gkY/uYs38DRhMevrf2ou211xe0pehKEqAVdxJp0IacFtvzOG+pWeNZiOXdWwUhIgK5nK6mPbvN7Bl23DYPBuQcs5aObDlEEs/Xlmi5146eyX2HN+zFWuWjRfHvMUv89ay/PPVTBo8nY+f/LJEx1IUJfAqfULvPfpqrujbBnO4CZ1OYLKYMEeYeea7iaU6fy6lZOVXa3jw6kmMazeBr6bNJ+dsziUfd3DrYa8t9+fYsu0kfL66RDHZrHa/JXZdTlfeh4eUnl2t37+xmKRDySU6nqIogVXpa7lomsaz3z/Krt/35S1bvGZU11Jftvj2fbNI+Gx13vz9sf1JrJy7lpkbX8RoNub7OL1Rn+80kcFUsn/OXqO6sWHRZr/XFC4mhGDTsm0Mubt/iY6pKErgVPqEDp7k1Kpbc1p1K5tNCUmHk1n2ySqvuWq71UHy3yms+not/W/Nf+NBozYNqBITgfWsd0MBc7iJweP6lSiuq4Z2pEO/NmxO2IE1y4qm95yhuN1un6YZOk1HWGRodHdSFMWj0k+5BMPu3/fnJcsLWbNsbFq2zc8jzhNC8NyPjxEZE0FYpBljmAFTmJHuw7twTW6J2+LS6XQ8M/9Rnv1+IkPu6c+IiUOYuvgJvxdapZR0HdapRMdTFCWw1Ag9CKJrVQU/Oz/1Bo0a9apf8vFN2sXzdeIHrPtpMxmpmbTp2ZKGlwemRZcQgg792tKhX9u82x76cDyvj/vAq6bMcz88hkWN0BUlpKiEHgRtr2lJRFUL1iyr11SGZtAYPL5w0yZGs5GeI64qrRC99B3dg6uGdGTbyp3oDRrt+7QucJ5fUZTgUAm9iLb/sot5Ly/g5NFTtO/bmpGPDqNa7fxbwvmjaRqvrnqOydfNIOlQMjqdDoPJwGNz7qNO41qlFHnJhFex0O26K4MdhqIoBVBNoovgf7NX8O4Ds7Flewrr640alkgLH2x/hep1Yor1nIkHkrBmWYlvVd/vvLqiKIpqEh1gDruD9x+Zk5fMAZx2F1kZ2cydVmCRyQLVbVqbJu3iVTJXFKXEVEIvpMT9SX7Xf7ucLjb9vD0IESmKonhTCb2QoqpH4rT77tAEijyHriiKUhpUQi+kmFrRtL2mJXqj93Vkk8XEyEeHBSkqRVGU81RCL4Kn5j5M6+4tMJoNWKqEEizH6wAABMJJREFUYbKYuHXKKLoM7hDs0BRFUdSyxaKIqBrOSwmTSTl6krQT6dRvWVc1f1AUJWSohF4MsfWqE1uIHZ2KoihlSU25KIqiVBAqoSuKolQQKqEriqJUECqhK4qiVBAqoSuKolQQZVqcSwiRCvxTzIdXB04GMJzSpGItHSrWwCsvcULljrWBlLLGpe5Upgm9JIQQmwpTbSwUqFhLh4o18MpLnKBiLQw15aIoilJBqISuKIpSQZSnhP5hsAMoAhVr6VCxBl55iRNUrJdUbubQFUVRlIKVpxG6oiiKUoBykdCFEAOEEPuEEAeFEI8HO578CCHqCSFWCSH2CCF2CSEeDHZMBRFCaEKIrUKIRcGOpSBCiKpCiO+EEHtzf7dXBTum/AghHs79t98phJgrhAiZcpxCiNlCiBQhxM4LbosRQiQIIQ7k/j8kurXkE+vLuX8DfwohfhBCVA1mjOf4i/WCn00UQkghRJlU8wv5hC6E0IB3gYFAS+AmIUTL4EaVLycwQUrZAugC3BvCsQI8COwJdhCF8CawVErZHGhLiMYshIgDHgA6SilbARpwY3Cj8vIpMOCi2x4HVkgpmwIrcr8PBZ/iG2sC0EpK2QbYDzxR1kHl41N8Y0UIUQ/oBxwpq0BCPqEDVwIHpZSHpJR24GsgJFsESSmTpJRbcr8+gyfxxAU3Kv+EEHWBfwGzgh1LQYQQVYAewMcAUkq7lDI9uFEVSA+ECSH0gAU4HuR48kgpfwVOX3TzMGBO7tdzgOvKNKh8+ItVSvmzlNKZ++16oG6ZB+ZHPr9XgNeBx4Ayu1BZHhJ6HHD0gu8TCdEkeSEhREOgPbAhuJHk6w08f2zuYAdyCY2AVOCT3OmhWUKI8GAH5Y+U8hjwCp4RWRKQIaX8ObhRXVJNKWUSeAYkQGyQ4yms/wD/C3YQ+RFCDAWOSSnLtIN8eUjows9tIb00RwgRAcwHHpJSZgY7nosJIQYDKVLKzcGOpRD0wBXAe1LK9kAWoTMt4CV3/nkYEA/UAcKFEDcHN6qKRwjxFJ7pzS+DHYs/QggL8BQwuayPXR4SeiJQ74Lv6xJCp7EXE0IY8CTzL6WU3wc7nnx0A4YKIf7GM4XVWwjxRXBDylcikCilPHem8x2eBB+K+gKHpZSpUkoH8D3QNcgxXUqyEKI2QO7/U4IcT4GEEGOBwcBoGbprrhvj+VDfnvseqwtsEULUKu0Dl4eEvhFoKoSIF0IY8VxkWhjkmPwSQgg8c717pJSvBTue/Egpn5BS1pVSNsTz+1wppQzJkaSU8gRwVAjRLPemPsDuIIZUkCNAFyGEJfdvoQ8hegH3AguBsblfjwUWBDGWAgkhBgD/BYZKKbODHU9+pJQ7pJSxUsqGue+xROCK3L/lUhXyCT33Ish9wDI8b45vpJS7ghtVvroBY/CMeLfl/jco2EFVAPcDXwoh/gTaAdOCHI9fuWcR3wFbgB143l8hs7tRCDEXWAc0E0IkCiFuB14E+gkhDuBZkfFiMGM8J59Y3wEigYTc99b7QQ0yVz6xBieW0D1rURRFUYoi5EfoiqIoSuGohK4oilJBqISuKIpSQaiEriiKUkGohK4oilJBqISuKIpSQaiEriiKUkGohK4oilJB/D974NicdgIkHQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(X[:,0:1],X[:,1:2],c=y)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def ldaLearn(X,y):\n", " # Inputs\n", " # X - a N x d matrix with each row corresponding to a training example\n", " # y - a N x 1 column vector indicating the labels for each training example\n", " #\n", " # Outputs\n", " # means - A k x d matrix containing learnt means for each of the k classes\n", " # covmat - A single d x d learnt covariance matrix \n", " \n", " labels = np.unique(y)\n", " means = np.zeros([labels.shape[0],X.shape[1]])\n", "\n", " for i in range(labels.shape[0]):\n", " m = np.mean(X[np.where(y == labels[i])[0],],axis=0)\n", " means[i,] = m\n", " \n", " covmat = np.cov(X.transpose())\n", " return means,covmat" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m,c = ldaLearn(X,y)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 10.85927241 1.22704893]\n", " [ 1.22704893 14.32283255]]\n" ] } ], "source": [ "print(c)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "def qdaLearn(X,y):\n", " # Inputs\n", " # X - a N x d matrix with each row corresponding to a training example\n", " # y - a N x 1 column vector indicating the labels for each training example\n", " #\n", " # Outputs\n", " # means - A k x d matrix containing learnt means for each of the k classes\n", " # covmats - A list of k d x d learnt covariance matrices for each of the k classes\n", " \n", " covmats = []\n", " labels = np.unique(y)\n", " means = np.zeros([labels.shape[0],X.shape[1]])\n", "\n", " for i in range(labels.shape[0]):\n", " m = np.mean(X[np.where(y == labels[i])[0],],axis=0)\n", " means[i,] = m\n", " covmats.append(np.cov(np.transpose(X[np.where(y == labels[i])[0],])))\n", " return means,covmats" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def ldaTest(means,covmat,Xtest,ytest):\n", " # Inputs\n", " # means, covmat - parameters of the LDA model\n", " # Xtest - a N x d matrix with each row corresponding to a test example\n", " # ytest - a N x 1 column vector indicating the labels for each test example\n", " # Outputs\n", " # acc - A scalar accuracy value\n", " # ypred - N x 1 column vector indicating the predicted labels\n", " \n", " res = np.zeros((Xtest.shape[0],means.shape[0]))\n", " f = 1/np.sqrt((2*pi)**means.shape[1]*det(covmat))\n", " for j in range(means.shape[0]):\n", " res[:,j] = f * np.exp(-0.5*np.array([np.dot(np.dot((Xtest[i,:] - means[j,:]),inv(covmat)),np.transpose(Xtest[i,:] - means[j,:])) for i in range(Xtest.shape[0])]))\n", "\n", " ypred = np.argmax(res,axis=1) + 1\n", " res = (ypred == ytest.ravel())\n", " acc = len(np.where(res)[0])\n", " return float(acc)/len(ytest),ypred" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "def qdaTest(means,covmats,Xtest,ytest):\n", " # Inputs\n", " # means, covmats - parameters of the QDA model\n", " # Xtest - a N x d matrix with each row corresponding to a test example\n", " # ytest - a N x 1 column vector indicating the labels for each test example\n", " # Outputs\n", " # acc - A scalar accuracy value\n", " # ypred - N x 1 column vector indicating the predicted labels\n", " \n", " res = np.zeros((Xtest.shape[0],means.shape[0]))\n", " for j in range(means.shape[0]):\n", " f = 1/np.sqrt((2*pi)**means.shape[1]*det(covmats[j]))\n", " res[:,j] = f * np.exp(-0.5*np.array([np.dot(np.dot((Xtest[i,:] - means[j,:]),inv(covmats[j])),np.transpose(Xtest[i,:] - means[j,:])) for i in range(Xtest.shape[0])]))\n", " ypred = np.argmax(res,axis=1) + 1\n", " res = (ypred == ytest.ravel())\n", " acc = len(np.where(res)[0])\n", " return float(acc)/len(ytest),ypred" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LDA Accuracy = 0.97\n", "QDA Accuracy = 0.96\n" ] } ], "source": [ "# Main script\n", "\n", "# load the sample data \n", "X,y,Xtest,ytest = pickle.load(open('../data/sample.pickle','rb'),encoding='latin1') \n", "# LDA\n", "means,covmat = ldaLearn(X,y)\n", "ldaacc,ldares = ldaTest(means,covmat,Xtest,ytest)\n", "\n", "print('LDA Accuracy = '+str(ldaacc))\n", "# QDA\n", "means,covmats = qdaLearn(X,y)\n", "qdaacc,qdares = qdaTest(means,covmats,Xtest,ytest)\n", "print('QDA Accuracy = '+str(qdaacc))\n", "#print means\n", "#print covmat\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'QDA')" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAF1CAYAAAD1FxxAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8XGd96P/Pc5aZ0WbLlmTLsmzLlvclcRbHSZw9BMJWCGULFEKhhRbuLV0uhbYU+LWlF3pZbqEXuKyhFLgsAcKeQCD75sR2Ysn7bu37rpmzPb8/ZiSPNDPSaLFHGn3fr9e8Ep+Zc84zif3V18/5Pt9Haa0RQgghhBBCxBm5HoAQQgghhBBziSTIQgghhBBCJJEEWQghhBBCiCSSIAshhBBCCJFEEmQhhBBCCCGSSIIshBBCCCFEEkmQhRBCCCGESCIJspgXlFJnlFIvGXfsFqVUoJQaSLwalFLfV0rtSnO+UkqdUkodunSjFkIIIcR8JAmymO+atNbFQAlwLXAEeEwpdfu4z90ELAPWpUughRBCzC6l1DuUUgeVUkNKqRal1BeUUosT731MKeUqpfoTr2NKqf9QSq1Ic521icmQL1z6byEWKkmQRV7QcQ1a648AXwU+Oe4j9wD3A79M/LsQQoiLRCn1N8Tj8AeAxcQnMGqAB5VSduJj39NalwBLgbuASuD5NEny24Fu4M1KqfAlGL4QkiCLvPQj4EqlVBGAUqoQeD3w7cTrzUqpUA7HJ4QQeUsptQj4/4D/rrX+tdba1VqfAd4IrAXekvz5xPv1wJuAduBvxl3y7cCHARd49UUevhCAJMgiPzUBCihN/Pp1QAx4EPg5YAGvzM3QhBAi710PRIhPVozSWg8AvwJemu4krbVP/EnfjSPHlFI3AtXA/wO+TzxZFuKikwRZ5KOVgAZ6Er++B/i+1trTWseIB20psxBCiIujHOjQWntp3msGKiY4t4l4ycWIe4Bfaa27ge8AL1dKLZu1kQqRgSTIIh/dBezTWg8qpaqB24A/SiwSaSFebvEKpVR5TkcphBD5qQMoV0pZad5bQbyMIpOVQBeAUqoAeAPx0ji01k8B5xhXoiHExSAJsphPbKVUZORFvFQCGG3jtlIp9VHgT4C/T7z1NuAYsAnYmXhtBBqAuy/p6IUQYmF4inhZ2+uSDybWhbwceCTdSUopg3iN8WOJQ3cBi4AvJE1wrETKLMQlIAmymE9+CQwnvT4GVCmlBoABYC+wA7hFa/1g4px7gC9orVuSX8CXkDILIYSYdVrrXuKL9D6vlLpTKWUrpWqAHxCfXf528ucT728Bvku8k8VnEm/dA3ydeFwfmeDYA+xUSu24BF9FLGBKa53rMQghhBAizyil3gX8FbAeCBOfOX6L1rpJKfUx4B+IzzQr4rXHvwE+rrVuVEqtBM4CV2itD4677i+BQ1rr/3HJvoxYcCRBFkIIIcRFpZR6J/FZ5T1a63O5Ho8Qk8m6xEIptUop9Xul1GGlVL1S6v2J40uVUr9RSh1P/HPJxRuuEEKIbEjMFnOJ1vrrxNeGXJ/rsQiRjaxnkBM726zQWu9TSpUAzwOvBd4BdGmtP6GU+hCwRGv9wYs1YCGEEJOTmC2EENOX9Qyy1rpZa70v8e/9wGHiq0lfA3wz8bFvEg/AQgghckhithBCTN+0apATq1EfBbYD57TWpUnvdWut5ZGdEELMERKzhRBiatI18Z6QUqoYuA/4S611n1Iq2/PeDbwbIFJYeNXqteumemshsjbkuxhmQMQYoMgqzvVwRB7Zv/94h9Z6op3A5hSJ2WK+GYnftuETMVxCRiTXQxLz3HTi9pQSZKWUTTzQfltrPbLHeqtSaoXWujlR89aW7lyt9ZeBLwNs2r5Df/FHP5nKrYWYkgNdTUQWx9hU/Bi7y/fkejgij5QUvuxsrseQLYnZYj4aid/VJd1sKmxlZcHGXA9JzHPTidtT6WKhgK8Bh7XWn0l666dc2HDhHuD+qQ5CCCHE7JKYLYQQ0zeVGeQ9xLftPaiUOpA49vfAJ4DvJxqCnyO+b7oQQojckpgt5qUWr4Uq3U2RbgTmTTWTyDNZJ8ha68eJ73aTzu2zMxwhhBCzQWK2mI9+3baPqqXd7ChppLqoQsorRM5kXWIhhBBCCHGxSHIs5pIpd7EQQgghhJhNB7qaAFi3aAnVhY4kxyLnZAZZCCGEEDlXUybtuMXcIQmyEEIIIYQQSSRBFkIIIYQQIokkyEIIIYQQQiSRBFkIIYQQQogkkiALIYQQQgiRRBJkIYQQQgghkkiCLIQQQgghRBJJkIUQQgghhEgiCbIQQgghcqrFa8HRpyjSdbkeihCAJMhCCCGEyKFft+2jamk3O0oaqS6qkG2mxZxg5XoAQgghhFiYDnQ1Ydnn2VHSK8mxmFMkQRZCCCHEJXegq4kWr4UbalZRXRiS5FjMKVJiIYQQQoicqClbkushCJGWJMhCCCGEEEIkkQRZCCGEEEKIJJIgi7wzUtdWavyK6qKKXA9HCCGEEPOMJMgir4wkxzsrnuaqirWy6EMIIYQQUyYJssgbkhwLIYQQYjZIgizySk3ZEpYXFktyLIQQQohpkwRZCCGEEEKIJJIgCyGEEEIIkUQSZCGEEEIIIZJIgiyEEEIIIUQSSZCFEEIIIYRIIgmyEEIIIXKmSNfleghCpJAEWQghhBCX1PgdT6U1p5hrJEEWQgghxCUjmzqJ+UASZCGEEEJcEiPJcdXSbtnUScxpVq4HIIQQQoiFo6ZsCdUlUF3o5HooQmQkM8hCCCGEEEIkkQRZCCGEEEKIJJIgCyGEEEIIkUQSZCGEEEIIIZJIgiyEEEIIIUQSSZCFEEIIIYRIIgmyEEIIIYQQSSRBFkIIIYQQIokkyEIIIYQQQiSRBFkIIYQQQogkkiALIYQQQgiRRBJkIYQQQgghkkiCLIQQQgghRBJJkIUQQgghhEgiCbIQQgghhBBJJEEWQgghhBAiiSTIQgghhBBCJJEEWQghhBBCiCSSIIu84uhTuR6CEEKISRTpulwPQYgJSYIs8sKBriY61F52lDRSXVSR6+EIIYQY50BXEy1eC6XGr6guqmBlwcZcD0mIjCRBFvPeSNDdXtooQVcIIeagkTi9s+JprqpYK3FazHmSIIt5TYKuEELMbSNxumppN8sLiyVOi3lBEmQx79WULZGgK4QQc1hN2RJ2lDSyu3xProciRFYkQRZCCCGEECJJ1gmyUurrSqk2pVRd0rGPKaUalVIHEq9XXJxhinxxpreH7x5+kf+qP8CRzna01rkekhB5S+K2mKmu4SHuP36Yew/u45mmBrwgyPWQhLgkrCl89l7gP4D/HHf8s1rrT83aiETe+sXJo/zi5DHcwEcDTzad55rKau7ZvhOlVK6HNz16GMt5HhW0Epir8e2doOxcj0qIEfcicVtM0+HOdj6/72mCQOPpgL0tjfzq9DH+bvdNhK2ppA9ziPYxvYMY3im0WoIX2gVGca5HJeagrH+Ha60fVUrVXLyhiHzWOTzEz08exU2afXB8n2dbGthTvZoNS8pyOLrpUX4rkcHPgHZROGjC6OjPiRZ/QAKumBMkbovpCrTmKy88h+P7o8divk/r4AC/PXuSV9ZuyuHopknHCA98FiNoRxFDY2PHfk6s6C8IrDW5Hp2YY2ajBvm/KaVeTDzKWzIL1xN56GB7K4rUWWLH9znQ2pyDEc1caPjboIdQOAAoYijdgx29P8cjE2JSErfFhJoH+on5XspxNwh4trkhByOaOSv2EEbQgiIGgMJFESM0/A2Qcj8xzkwT5C8CtcBOoBn4dKYPKqXerZR6Tin1XE931wxvK+Yb2zBIV0VhKIVtmpd+QDOlHQz/DIqxQVXhY7kHcjQoIbKSVdyWmL2w2aZJkCFntI15GLMBy92LIjXpV0EvSnfmYERiLptREZHWunXk35VSXwF+PsFnvwx8GWDT9h3yV7V5Kup5/PTEYZ5qOk+g4erlVdy1cSvFodCE5+1cvoJvH3ox5bipFNeuqL5Yw72IJqiZVtIcRsxd2cZtidn5QWvNw+dP88DpEwy6DutLy3jD5m1UFS+a8LxlhUVUFBbSPNA/ZhogZJjcsnrtxR30RTNRYj8/k35x8czoJ7lSakXSL+8CZHP1PKa15lPPPs7vzp2m33EYdB0ebzzLvz79yKQrm4vsEO/ZuYuQaRIxLcKmiW0YvHnzDiqLSy7RN5hFyiawNqHH/RHSWHj2NTkalBCTk7i9sPzwWD0/OFpPx/AQw57HwY5W/vWpR2kbGpz03PddsZtF4TAR0yJkxGP2lZVVXL9y9SUY+ezz7OvRjF1ErVFoowJtSKWRGCvrGWSl1HeBW4BypVQD8FHgFqXUTkADZ4D3XIQxijniaFcHzYP9Y5JhX2t6YzH2tTZxzSQzwZcvq+TTt97JwfZWvCBgR8VySkLhiz3si8YpeCvhgc+C7gdc4n8MfFTQjQq60MbSHI9QLHQStxe2Idfhd2dPjVkcDfG1H788eYx37LhiwvOXFxXzbze/jPrONnpjUdaXlrFiPk5oJHjhmzH9IxjeCeIxG0CjMTC8UwTWulwOT8wxU+licXeaw1+bxbGIOe5cX2/ameKY73G2r2fSBBmgwLKz+tx8oI1SoiUfITzwGYzgfKIeWWN6L2AOnGC4+B/BKMr1MMUCJnF7YWsdGsQyjJQEOUBzurc7q2uYhsFlFZUXY3iXnjKJFf459vCPsdxHUMQ7dJhBA8bg54kVvZ/AqsntGMWcIcWSImsVhUVpF2eETZPlhQuzrZkK2jGCJhQXfgApNOgYlvNkDkcmhFjolkYKUpJjiK+gWF60MGM2BFjuU6PJ8QUudvSnORmRmJskQRZZ21GxnELbHrM8TQGWYXDNipW5GlZOGX4T6RZ3KFwM//SlH5AQQiQsDkfYuawS2xj7o942TF6xbkOORpVbSvdDuk4WgBE0XvLxiLlLEmSRNcsw+NC1N7G5rAJDKQylWFu6hL+79mYi1sLcPS4wy4HUGRqNhTZWpJ4ghBCX0Lt2XMV1VauxDQNTKcoLCnnvFddQs3hhLkrTqohMXYgCo/zSDkbMafN0r0iRK0sjBfzNrj3EfA+tITJftxudJdpYRWCuwPAbxj2yM/HCN+ZsXEIIAfF+xm/fvpO3bL0Mx/cosGxUuqb0C4Wy8UI3YzmPjG7yBKCxccOvyOHAxFwjM8hiWsKmteCTYwCUIlb0PnzrcjQmGoPAqCZa/H60UZrr0QkhBBB/AlhohxZ2cpzgRl6NG74NTTges9VinIK3Etjbcj00MYdIhiPETKlCnKJ3gvYAH9T8bV0nhBB5Txl4kVfhhV8BxIAIabd6FQuaJMhCzBZlIX+khBBinlAGUJDrUYg5SkosxKzqjg5zuLOdruGhST8baE3M89BadrEVQohcGPZcjnS209jfN+lndSJmBxKzxQIg010io0MdbTx45gQ90SjbKpbxspoNLAqnLx/wgoCvH9zH/tYmLMPACwIuX1bJn1x2Nda4FkOB1vzsxBF+c+YkTuCzOBTmTZt3cPUCbRUnhBCzoWmgn1+eOsb5vl5Wliziles2srJkUcbPP3D6OD85fgTLUPhas6ywiPdfdR1LIqmzqs81N/K9o3X0xqKEDJOX1NTyB+s3Y0hpgshTMoMs0vrd2VP8x75nqOtoo2Ggj4fOnOJjT/yOvlgs7efvP3GY/a1NuEHAsOfhBgEvtLXwo2P1KZ/98bFDPHD6BFE/PhPRHYvy9YP7qGtvvdhfKze0jwo6QA/neiRCiDx1urebf3nqYZ5taqBxoI+9zQ18/OlHON7dmfbzhzrauP/4EdzAZ9jzcHyfpoF+Pvf80ymfre9o4+sH99EdHSbQmqjv8eCZE/z42KGL/bVyQ2tU0AXB5LPqIn9JgixSOL7PfcfqcYILbcs8HTDkujxw5njacx45dyZlxyY3CHj0/Nlxx3weOndqzLUBnMDn/hNHZukbzB1m7HEK+j5IpP9fKej7O+yhb4J2cz0sIUSe+e6hF3F8n4B4+YMmHsu/c+jFtJ//zdmTKXE40JrWwQFaBvrHHL//xOHUmO37PHT2FK4/fke6+c3wThLp/yiR/n+moP8jhAc+jQqy25Zb5BdJkEWKpoE+VJpG6p4OqGtvS3tO1E/dmWjkeHKN8aDjZKw5bh8anMZo5y7DrSMU/RGKKAoHhYflHsAe/k6uhyaEyDNn+nrSHj/f35u2Zrg/w9NAw1AMuM6YYxPF5v5xn53PVNBDePALGLoLhYvCw/DPEh7436BTN4QS+U0SZJGiJBTGzxAMSsORtMfXZdiVae3i0jF9N4tD4ZSa5BHVE9TKzUd27IExjeghvgW15e6XcgshxKwqzLCbacS00tYJX55mC2qIzyKvWrR4zLHqksUpn4N4Mr0olD9tLU3nSWDsjLgiQOkBDD/901ORvyRBXsBaBwe472g99x7cz77WptFZhrKCQtYuXoI5LqiGDJOXrl2f9lpv2XoZYdMcPcdQirBp8tatl4/5nGUYvHr9ZkKmmXLtuzZuna2vNidkfixnoIKBSzoWIcT8N+A4PHD6ON84uI/fnz1F1LtQrnX7mnWEjPFx1eC21WvTXuv2NetYHI6MSZJDhsmbNm0nbI5dv3/Xhi1prm3y6tpNGSc85iMVdKBI9zRUS5nFAiRdLBao55ob+drBfQQ6wNeavS0NrFlUyl/v2oNlGLz3it18Yf8znO7txjQMtNb84cZtbCtflvZ6qxeV8rE9t/HgmROc7e1h9aLFvHTtBpYVFqV89qU16ymybH5+8hi9sSjVJYt4w+bt1JYuvdhf+5IKzFqUtw/F+MebBtrIr+8qhLi4mgb6+cTTj+IGPm4QsLe5kZ+fPMqHr7+FJZECXlm7ie5olCebzmEbBm4QsGtFNa/ZsCXt9QrtEB+5/lYePneKF9pbKQ1HeElNLRuWlKV8dl3pUv5q1/X84EgdDf19LA6HeVXtJvZUr7nYX/uSCqwNaPdAypM/0ARmTS6GJHJIEuQFyPF9vlG3Dzdp0UXM9znT28PTTee5oXoNxaEQb9q8g2eaGwh0wO2r11FRVDzhdSsKi1JmjDPZU71mxsH1QFcTLV4LVXpu/s3ejbwCc6AOjTOaJGtCOJHXgDInOVsIIS74Zt0+hpJmjJ3Ax3N8vn+kjvfs3IWhFK+q3UhpJExvLMY1lSvZVFYx4TULbZtX1G7iFbWbJr3/hiVl/P11N8/4e8xlvn0VOvYgBN2jM8kaG9/ajjYrczw6calJgrwAnerpSluT5gQ+zzQ3sGflav7r0As81XgeN/AxlcEj58/wrh1XzalexS1eC1VLu9lR0kh10cQ/CHJBm8uJFv8tdvSXGP5JtFGKG34Zgb0j10MTQswjbuBzuid1EV4AvNjeAsDTTef5Zt1+tNYEWvNk43luXlXDm7dIvMmaChEt/gB29EFMdx8oGy90I17oxlyPTOSAJMgLkG2YZNoIKWSY1He28WQiOYZ49wo0fP3gPrZVLKMgw2KQS+nXbfvGJMcrCzbO/KLawXSfw/BOoo1leKHrwJjZwkFtLscp+uOZj00IsWAZKJSClGot4us6Bl2He+v24yW12gwCn0cbznBVZVXasom8oAMM7zCm+wKoCF7oOrS5YmbXVIW4Ba/FLXjt7IxRzFuSIC9Aa0uXELbMlNZsIdNkw5Iy/s++Z1J6GkN84d2hjjauqsztLPKBrqbZT46DASID/wul+1E4aCzs2IPEiv6CwMqvOjshxPxiGgaXL1vBC23N+EmzG7ZhcOXyKv75yYfHJMcjHN/nmabz+Zkg64DQ0JcxvWOJmG1gOY/hRF6PH96T69GJPJA/y09F1gyl+Isrr6PItomYFmHTxDIMrqtaxU9PHE6bHF8wd7YVnbXkGLBjv0DpntHFGQoPRYzQ8Ldm5fpCCDETb9+2k8qiEsKmSSjxqlm8hGOdHXQOD6U9R0Hanvb5wPQOjibHkGjHhkso+kPQ6f97CDEVMoOcJ071dPHj44dp6O+lorCI16zfwqal5Rxoa+Zsbw/LiorYVVlNxIr/L1+zuJRP3Xonde1tDLoOm5eWs7elMd0TvFEBOmMXi/nOdF9AkbojlAraIegHoyQHoxJC5Kuu4SF+fPww9R1tFFg2L6mp5abqNZzs6aK+o41C2+aaFdUsiRQAUBwK8bE9t3K8u5PWoQGqSxbjBwGffe7JjHHbNkyurVp16b7UJWQ6z6fpNgFgYnrH8O2dl3xMIr9IgpwHjnd38tm9T45uBdrvOPzH809TGLKJeh4x3ydsmtx39BAfuvYmKhPdKGzD5IrlF+q1uqPRjLPHplL86WVXjSbY85LWqKABFfQSmKvH1RdP8L3UPP7OQog5p9+J8U9PPsyQ6xAAfU6M7x8+yIOnj9PrxHB8H0sZ/OT4Ed6z82p2LovHaaUUG5eWs3FpOQD7WpsyzhAr4LY1a6ldMr9bSqqgE+U3oY2KMZ0ktAqhUWnaaMY7TwgxU1JikQd+cKRuNDke4eqA3liMmB8/HvN9Bl2Hbxx8PuN1Ni0tI2ymth8zlOL9V13HFcurZnfgl1LQR3jgE0QGPkt46F4K+j+CPXwfI6sVvdCelKCqMQjMdaAKcjFiIUSe+t3ZU0Q9j+TpCFcHtA8P4fgXFke7gc9XXnhu9Nh4axcviS+iHsdUijvXbuD1m7ZfjOFfGtonNPh1Iv3/THjom0QGPkl44N9Bx7fI9kPXQdpEWBFYs1N6JxY2SZDzQEN/X1af08CZ3h6iXrqdgmDnshVUFhWP3VnJNLli2Qq2zvPSivDQ1zCCZhQOiigKD8t5AtN9DgAvfDu+tRGNjSaEJow2luIU3pPjkQsh8s3Rro60iW06hlIc6+pI+96SSAG3rFo7ZmdSSxksTWwcMp9ZsQcxvYOJ9SBRFC6Gfxp7+HsABFYtbvgONNaFmE2EWNGfgZIZZDFz8uw4DywOh2nPsEgjnUxLNkzD4G9338hDZ07ydHMDljK4eVUNN66qmZVx5ooKejD8syjG/kBSOFix3+OHdoGycIr+HOU3YPjn0EYZgbkBlPwdUggxu5YXFXOip4sgU7/NJFrHSysyedPm7axdXMpvz55i2HO5ankVL127fn6XwwG28ygKd8wxhYfl7sPVbwVl4kVejh+6DsM7AiqMb20DFcrRiEW+md9/ggQAr6zdxHcOvTimzMIAUGpMADZQbFhSRniCwBk2rax3Vpo3dJRMD0sUw2M/albjm9WXYFBCiIXqjppanmlqwNHJMVuh0SkVtUrBpkTNcTpKKXZXrWJ3vi3G0+kW4EF8exQfiM+aa6MUP3TtpRqVWEAkQc4De1auZtB1+NnJowRBPLzetGoNx7u7aBnsxwsCbMOkwLL44x1X5ni0l542lsVnFcYFXI2Jb01vlynlN2DHfovy2wis9Xjh29BG6WwMVwiR56qKF/G+K3fzzbr99DsxtIZt5RUUh8I829yAJl5aoYD3XbEby1h4T7J8ayOmV5eyCE8bK6Y1S6yCHqzY7zC8E2hzGW74drSZZ3+pELNKEuQ8oJTiZWs3cPuaWvqcGCV2CNs00VpzpKuDc309lBcUcfmyygUZaFEGTsFbCA3dC3gognitsSrCDb80++voAMOrx3Kew/QOAD4KMJxGLOcpoiUfRBuZZ3qEEGLEtvJlfPLml9IbixK2rNEdSl9as576zjYKLZsrl6+g0F6YJQNu5HWYAyfQuCg8NCZg4RTcPaXrKP8clrMXy3mceMwO0MF5TPcFYoXvIrDn8UJGcVFJgpxHLCO+OGOEUootZRVsXlo+OiOxUPn2ZUSL/wdW7GGMoAvf2oQXviH7DhU6Rnjgf2MEbUBsTB23wkcTxY7+DKcwdVtpwzuJ6TyNwsOzrySwtkltsxACpRSlkbExaGXJIlaWLCLQekHHbG1WMFzyj1jOI5jeGQJzBV74luwnIbTGjn4Py3kWRjcTIfFPDbiEhr9L1PqXeB1LEuW3YzmPoYJufHsLvn211DYvQJIg5zE/CPjpiSM8dPYUUd9jRVExb9l6OVvKKnI9tJzQZhVu4Vuy/rzyW7CchzH8NjQBRtCUdjMRiAdc0zuactyK/hw79jvAQRHfkMS3tscT6QX8w08Ikd7TTee579ghuqPDlIRCvLp2M7euXjvhQr28ZSzCi7ya9H2X0ggGsJxHMb0TaBXC9I6mLPRLpvQQSvei1YXyOMOtJzz0VUZmm02vHh37LdHiD0jLzwVGEuQ89t3DB3my8dzo4r3mwQE+//zT/O3uG6hZvCTHo5vbDO8I4cH/y+gjOSbfZFurwjG/VkFHvE45KbwrHEyvDsM/PnGvzkQ5h+nuBxXCt68lsGqm+3WEEPPA8y1N/GfdgTGbPv3waD2B1rykpjbHo5vbVNBNZOCToKOJkoxsaLSKJP0yIDz8rTFJtcKBoAsr9ju8yCsnHoN/Hst5EqWj+PbO+BoXeVo4b8n/uTw15Lo80Xg2ZQMRJ/C57+ihHI1qntCa0NC3UbijreEmTY4xcUO3jzlmuocznOlgugcnuFhAaOhrhIe+ge0+i+U8QXjw37Giv5nS1xBCzC8/Pn4obcy+/8Rhggy7nIo4K/pz0EOjExKKieO2hkQCeyFBVkEr6NQZ53h7uf0T3z/2eyIDn8FyHsdy9xIa+ibhoS9Blv2uxdwjM8h5qis6hKkMXFL/cB7uauc3Z05yR2JGoq69lfuOHaJ1cICygkLu2riFK+fzrnkzpHQvSvdP8SwbP3T9mCNahUn/d1Bz7KzFOIZ3BNM7NDqLMVIvZ8d+gRe6BozFUxybEGI+6MzQz37Y8/jCgWd57xW7MZSieaCf7x+p41h3BxHL4vbVtdy5bsOCrlm2vPqUXveTcQpeN/aACkGGa2jCmS8UDGBHfzKmBE/hYHgnML2D+PblUxqXmBtkBjlPlRcU4k/wN9cfHaundXCAuvZWvrD/Wc739+IEPs2D/Xz1hed5uun8pPcItKZlcICuKWxSMh/EE9v0D+gyPbbTKpxSU+zbOzKcYeDb12S8vxV7LEPdnIHpHc54nhBifltWWJzxvfqONp5pOk/X8BAff/oRDna0EvN9emMxfn7yKN+sm3iGc0TX8BAtgwNZbVJCNFSzAAAgAElEQVQyn2jS1wdn/pYm47eq1kYZgbEcPW7uWRPCC9+c+UruC5BmfYrCiZfJiXlJZpDzVMSyuW31On579iR+mkAYaM2+1maebjqf9pHeD4/Wc+0EjecPd7bz1RefZ9hz0VpTVVzCe6/YTVlBYcZz5g1VgG9twfQOj5kRiG9naqZuLoJBYFQS7v9fiU4VV8WDqSogVvQewoNf5sLDPh8n8ia0mXmhpOmfzPCOB2qCWQwhxLz2h5u28oX9z+KlKadwg4DHGs5yrq8X10+N2c80N3DXhq2URtI/neoYGuSLB56laaAfpRQFls2fXnYVm/Nk0bYXvhk7+tN4zXCCxkSrYtB9Y/opa0CrxYSHvonS3fjWBrzwS9HGEpyiPyU88DnQA4lP+3j2Lnx7V8Z7xxPkVJpJZp7FnCYzyHnsDzdtY1v5sgk+oWkdGkj7Tm8smjZIQ/wx4Of3PU1vLIrj+7hBwLm+Xv7tmcfyZlbCKXgbgbk6kRRH0Fh49i5iRf898ev4zEM8+NmY/inM4CxG0Igd+xXhgc+C9gisTQwv+p84hW/HKXwrw4s+jh+eYNenoB+IZXozvpWqECIvXVZRyV0btmasndXAyd6utJMetmHQPJi+NCzQmn979vF4ch0EOL5PbyzK5/Y9nbGsY77xQjfh2VejsRIxOkRgriZa9JdoVYYm3qYtHrstlO7D9A9jBC1YzhNE+v8VFXShjTKiJR8lVvRnOAV3Ey35R9zCuyfsOmQEDRn/n/nWZbP/ZcUlITPIecxQiru3XMbhzodwxyW7hlJcsbyKR8+fpX14MOXcQjuEmSEgPHL+DP6462lg0HU52tWRH23kjCJixX+D8pviQdOsHt0pb7jko1jOMyjdjlbl2LFfjlv17GIEbZjuAfzQ1YkuFFkGSZX5j6RWi6QXpxB57o6aWn516hgD7tidP0OmyQ0rV3Oip4szPd0plbJeEFCR4Qnekc52hlw3pdzADwIePX+GuzZunb0vkCvKwC18C17wCpTfgDbK0OYKAKIl/4Dp7sPwT6Epw3YeRBG9cCoBmijW8C9xi/4IlEFgbZjCzTPFZYPAXjv97yRySmaQ81xFYRGv3bAF2zAwlMJUCtsw+IPazVQWFfOaDZsJGeaYc0KmyatqN2Xsu9k5PJR2BkOj6YkOpzlj/tJmFYG9few20kYJXuQluAV3o40i0q2VVjjY0Z+CTt83OSNVQGBuQI/7o6mx8UK3TuMbCCHmE0Mp3nvFNYRNk1Bi59OQabJ5aTnXVq3iZTXrscyxMds2DLaULaO8sCjtNXtiUXSaalxf67yZQR6hjdJ4zE4kxwAoGz+0G7fgbvzQ5aRbiKfQWN5eCHqnfE8vdMPoDPXoODAIzA2g8qDscIGSGeQF4GVrN7Bz2Qr2tTahgSuXV1FZFF8Mcm3VKhzf58fHDzPoOkQsi1et28RL1qzLeL0tZRUcaGsmNq4Ozteao90dHO3q5PJllVy+rDLvV1VrtYhMzYSU7sGK/XrS3pnjxQrfTmTw3yHoSRwJ8K0teOHbZjZYIcS8sHFpOZ+8+WXsbWlgwHHYtLScDUvKUEpRWVzCX119Pd+qP0DL4ACGUlxbtYo3b9mR8XrrSpemLX8LGSZuEPD1g8+zbvFSrq1aRcTK77RAqyIydaoAn/DQ14gV//WUrumFb8Xwz2B69YzMO2qjlFjhPTMaq8it/P6TIEYtLyrm5evSb0xx06oabqxeg+P72KY5aVJ7zYpqfn36OB3DQ6N1ypYy8IOAJxvPE2jN3pYGakuX8v6rrsM0DM719XC8u5NFoQg7l1Vij5sBma8Ca0ti5iCWkiYrAmzn8SknyBiLiBZ/GMM/iQq6CMxVY2dDhBB5rzgU4tbV6ScqNiwp459uuJ2Y72EpA9OY+GFwZVExV1WuZF9rE05iYsNUCjfweaGtGU9rnm9p4hcnj/Lh629hcThCV3SYg20tKKW4YvkKSkJ5stjMKMa3tmJ6L6aJ2WD451BBz9inhpNRJk7Rn6D8Fgz/HNpYSmDWym6p85wkyAIApRThLGcOQqbJ3197Mw+cPs5zLY3YhknzQH98xW5iliLm+5zs6eLZ5gYOtLVwsL2VAI2lDP7LUHzgmhuoLsmDfr7KJFb0PiKDn0j/vnbSH5/0uorAWj/9cYlZ0zh8LNdDECKtsJn9j/B37riSDaVLefj8aRzfZ9jz6HNieEkx2w0C7jtWz+qSUu47Vh9PIJXiu4df5B3br2R3VfXF+SKXmFP4dgr6/h5IF58N0NE0xyenzUp8s3JGYxNzh9Qgi2kptG3u2riVj990B3+4aRu2lTojHPN9Hjh9goMdrTiBjxcERH2PQdfl/+x7ZjSZnq6GwfYZnT8p7WK4dfEWPjpzbbW2qtFG6g+O+LfzKej7EPbw9yBIXQwp5rbG4WM0DLZzdGj56EuI+chQiptXr+Wje27jH6+/JWURIMS7Xexvbea+Y/XxbheJjhduEHBv3T76Ypk67MwROohvzuHuQwVdmT+nInihG9Gke5LpEhn4FKHBL6H85os2VDH3yQyymDHbMDJ2Y++ODo8+0kvW68RoHhygqrhkWvcMqXVA47TOzYbhHUv0Lx7h4xTcjR9Kv8GHU3A34cHPAR4Kf/Q/h8IDPYDlPInpHSFa/A8TdqoQc8fIzPGg2k55OA9W+QuRYCgjY1uyQOu0i7AViv1tzdy8qmZa9zzT2U11yXYah4+xsiB9ud9MqKCL8ODnUMFIqzsfL3QdbuSNaUsd3PAdmO4+0AMo3KSYrYEopleHOXCcaPGHJuxbL/KXzCCLGduwpAwrTQ1cyDApstO3v1Ew4U5/mdSfauFcazdnOrunfG7W9DDhwS+hiCa9XELD30X56WetA7MSz94ZPz3xoyc5JCt8VNCH6R64eOMWU9Y4fCzjC+Do0HJJjkXeCZkm28qXpbTytA2D6uJFaZ/uaUhp75ktu+fipxqhwa+ggi4UscTLw3KewXSfS3+CKsIL3RTfTCRtzAZwsWIPXuSRi7lKEmQxZZ3DQ5zo7mTIjff+NQ2D9199HYWWTcS0CJsmtmFwR00tt65Zi22kPsaKWBYrixdN6b71p1oAqA2XzfxLTMB0D5K+M0WA6e5NPaw14cH/wHKfjyfCGabTFTFM5ynIk81U5rvkJDjTS5JjkQ8GHIcT3Z10J7XhfMf2K1lWWJxoJxd/rV9Sxhs3b08bs0Fz+bKp19eOxG2nM8ypvoszsaGCToygBTWuO4XCwYo9nPYcK/YL7NivMIiiUjaXHjk/wHJfBD3HS0vERSHPekXWhj2XL+7fy/HuDizDwAsC7ly3gT+o3czaxUv49K13crCjlWHXZUtZBUsLCnF9n+dammjo7yXm+6P9mN9z+a5ptYAL9cQDYFOjy0P2YuAJdpfvmf6X0hoVNANevI5YGSgdI30bIB+VphbZ8M9g+I3xcoqETN/M9E9gR+/DLXj99McsZkxmiMVCoLXmB0fr+P2506Mxe1v5Mt59+S4WhcP80w23cbSrg47hIVaVLGbN4njnhltW1/DwuTO4gY9CYRqK127YQlmGjUgyqT/VwvmGLmqLS+kYHMAtbmeZ2QUVzKjMQgVdqKCPwFwBKpxIYNPP96l0O5NqBzv2uzHbUmc2RHjgs8SK/xaUzCkuJJIgi6x97cXnOdbVjqf16M58D5w+QWVhCburqrFNkyuXV405xzZNPrj7Rg62t3Kks53SSIRrq1axOByZ9H4jMw8jRpLjHasr4Rw8VgcPAdNNkpXfSHjwyyjdDyhQFrGCd+Bbm7HTzgKH8O3UXqPxBDvLe+JjOY/jhl8GxvTqr0V2Jus+IcmxyHcPnz+dSHSD0Zhd39HGtw+9wB/vuBKlFJvT7Hz6xs07uGbFKp5vacRUil0rqllZMvkTv/ExeyQ5Ho3ZZ+AJAE5PL0nWQ4QHv4LhnwFMwMcNvwIvfHt8bce4mV6NhWdfkXKZ+AK+7CZoFBojaMfwDhHY26c2XjGvSYIssjLoOtS1t422BBrh+D7/Wb+fAM3uFdVpZ4UNpUY3DslW/akWLq+88PnDR5qARHKc+OfJQz0cPTmymcYUk2TtEhn8HOjBC2FSxwgPfYVoyT/ihW7Dch4GHBSgCeFb2+I7I42/lFFBumCr0x4FsDCCJgJjU/bjFVMykhwre1fa94/0nruUwxEiJx48fQInGLtI2g0Cnmw8R3mkkNtraim07bTn1iwupWZx9r2AR5Ljkbh9+EjTheQYxiTJdcUFLC+Mr+eYSpIcHvwGhn8KhQ/ES/zs2K/Q5nJiBW8jPPQ1wE9sHR1CG4vTbrAU73Gc+pTwwkK98WKY/llJkBcYSZBFVoZcN578pplYjfk+/1V/gOeaG/lvV+7OuEX16Oc9j4fPn+a5liYKLZvb1qwbkzzXn2oh1BNwuKdpzHkjgXbEa7du5ieH4OjJ81SHTzKVJNn06kH7aQJhgOk8g1vwB/j2FkznaRQevn0VvrU97WrowFyPNsogaE0E7pGFegaaIE1Nso9WS7Iap5i65PIJyJwIy+yxyHeDiXUi42ngF6eO8njTOT5y/S0ZF1OPfl5r9rY08sj5M3hBwLUrqrlxVc3o4uzkUorkuD0+Zo9/+nd7VXv2CXLQh+EfH42xI+J1xg8RK/4rosUfwnIeRwVd+NaWeNchlea7qQhe6Dos5+lxZRYm8VKN8f/dwgTGxV37IuYeSZBFVsoKCgmZZspsxIiY73Okq51j3Z1sWlqe8TqO7/Pxpx+hfWhw9JHf8Z5O7lhTy10bt44mx5AaXNMZSZIfOgRsrSfbJDneCij1uyg8lO4FILA2EFipM8apJylikTcSit6PEZwFNIG5Djd0O+Hhb5AcbDUmgVmDNpdNfl2RkZRPCDG5jUvLeKGtJW3BmKc1fbEoD509xR+s3zzhde6t289zLY3EEi07z/b28PvTp3nDqq0YSo0tpZjEdEvklB4knsB6ad7rA0Cby3EL/nDSawF4oZdA0IPlHQZctFGBE76LcPQ7aO2NTmzoRPmdn6ZUQ+Q3SZBFVgyluHvLDr764vOZWh4T830Od7ZPmCA/1XiOjuGh0eQY4knzA2dOsJJiuloGsg60IyZMkoMB7NgD8c0+VAQ3dBN+6Hp8az3pHixqwgTWxD8sxp7gEB78EoZ/mvjMg0lgriFW9OegwsTUn8bbw+l4b07f2oZT+EfZX1+kkPIJIbLz+o3bONjemravMcTLLQ60NU+YIDcN9PNscyNu0uSIpwM6nSEIweVllYR6ginF7JESuXPpkmTtY8UexXIfBx1/eudG7piglM3Et7ZkfW+0xo7+BMt5hJEZY61KiRW+F21WEDUrCQ3fi+E3AorAWIFTeE98MaBYUCRBFllTSmEZxpjkNpltGBRP8qjuxfbWtBuHGMDBhmZuKl01pUA7YiRJ3ttQQGlBXbwZfWQ1kYFPonRf/LGchlD0R3j+GdzCP8Kzr8ByD4w+YtPYBOaKeClFluzojxM1cRdmNQz/DHb0J7gFbyKwtxK1/gmle9EqAmryxYkiMymfECJ7tmmiEqsoMlkUmjjxO9bVkfZ4LPB57ORpIu16BjH7CM3tMVpLG0c3EAkNfRXTOzoal5XzO0zvRaLFH8SJvJ5Q9HuAm/hWJqgCvPBLs76v6b2I5TyWiNmJuK0dwkNfIlr8YbS5LN6xIhiIv2cUT/m7ifwgCbLI2oHW5ozJMcQT6GtWpG65nKw0HMFILKFIFgSatYVTmzker7a4FMfXtPmbACdeX6YHx9SsKRws9zm84OW4BX9EYG3Bch4H7eKHduGFbgCVrgdoepbzzJjkOH6PeIN6t+BNiQMKrbJf7CLSG5scSxIsxGSOdLZjGgovfWUcIdPkJWtqJ7xGcSiEqVRKVa6lDNYtXcKOqtmL2cpvwPSOkHw3hQdBN6Z7AD98LTGzHCv2W4ygG9/ajBu+HYzse+pbsUdS2rspNATdqKAFba6IH5TEeMGTBFlkrTgUyjgXETZM3nvFbhaFJ56NuGXNWp5oPEeQ9MhPoSkybe6sXT+r4zW8Yxn6XBqY7gECcy2+vRM/lP5RfXZS6+Hi0i+OERPLprYYJDkWIhuFtp2YQU6lgFfXbmJ7xfIJr3F5RWXaoG8qzY3lq2dhlBfE27elUsQwvHq0sZTAqMQp+rPp30RHM90dpWMTzLWLhUYSZJG1G1fV8HjDuZSFegWWxaduuZOwNflvp772Yd5Q2cNP2yOJ7aYVywsG+eL1T9Lbcz1esHjWxquNcnRivnosFzv6M+K//TVOwZviq52nITA3YPjHxnSq0InjYmrGzxBnIsmxENnZXr48betNSxl8cPcNrC1dOuk1jp1t50/WL+KH58/R54RQKp4cf3r3o1ToDQzEprBmYxLxJ22pm3FoFJa7D8utAzy80A24kddNa+MO374CI9ZM6pw4BObET0DFwiIJssjaqpLFvGXrZXzn0IsYRrzlW8g0+curr8sqOa4/1YKpHD5y3Y/4sPKo7y6n2HbYsKgbrS2a9Y843/3HMxpjR8eF3Zrs8mrWYEHSLPKFdckX6s9Cw98laq5Am6umfD+n4I1EBj6FxkPhorEBC6fgjTP6HguNlE8IMfts0+Svdl3P555/CtcPUAp8rXnb1p1ZJccjvY3vXvt93n/5SQ71lOEGJtuWdGAbAQOxL1DX+Llpj29ksd4Lps0y8yiUr6FWRUA749pj6sSv47O/lvMk2qjAC9885Xt64Zuw3Gch6EThoBOLq52Ct8Y3GxEiQX43iCm5oXoNV1dWcby7i7Bpsn5JWVZbRo8E2uXeeZQyCZsxrixvHX1fKY/SwudmlCCn7tbUhVX2Sqr83ydaBAWQti+xhxV7FLfwrVO+pzaXM1zyESzncQz/PIG5Kl7HLLvkpZDyCSEuvbWLl/CpW+7kRE8Xru+zYUlZxgmN8TvhQXwH04qS0ygF25Z0jnmvKHSKibZEysbIYr3fsB2owyp/LauD32P4I/2UvZSrx3sf/25aCTIqTLT4bzHd5zDd+vhmIqEbLtQeC5GQdYKslPo68CqgTWu9PXFsKfA9oAY4A7xRa909+8MUc0nEstkxSd1aspGgG+oJqFm3DqXS1+26/uQzGpMZv1sTNHJV+duojpRhuCcIRX/IyCzECIUe7X08LUYJXuTlMxl23su2NZskx7NL4rYAMA1jwvabkLoTHlzYwdTXRRj0p5zj6wgzSY5H1BaX0tTazxMFS4EuvIrXsrJwOUr3ERn4FGl71uuh6d9Q2fih6/BD103/GiLvTaWA517gznHHPgQ8pLXeQLyd4YdmaVwiTyQnxwAxbzmDsfUEeuzfzfwgTHPvXbNyzx2rK7mxaBXn6iqp61lJw1AH2ijHt7eRblGdJkRg7ZiVe4tUyeUTR3rPpX2BJMcXyb1I3BaTSI7Th480jb4gHk9b+l6FH4xdgO0HYVp7Xzkr9x+J2b1n1vJEw1Kebz9NY6wVbVSn7QCkUfjZbOIkxAxkPYOstX5UKVUz7vBrgFsS//5N4GHgg7MwLpEHxifHIy3cjrV+mE2V/0Rh6BRaWyjlc77rHnqHr5y1e2farckN34Ede2hM72NtLMUL7Z61ey9EUj4xN0ncFpPJFKeTNXbfTdjsoLz4YQJtYyiXrsHraeh+26yNI7VE7jRUwKqCNxMe+jLxUgsd732MjRt5zazdW4h0ZlqDvFxr3QygtW5WSmXcP1cp9W7g3QDLqqpmeFsx100UdL1gMfVNnyZsNWObPQw5awn07G+gkT5JfiWBuQY79gjoIXx7J174JlATb3AiMpPyiXknq7gtMXvhmCg5jjM51fGXnOt6BxG7iZi3AtdfMuvjSJ8kr6W6+G+wY79F+a0E1jq88O1oY+YleUJM5JIt0tNafxn4MsCm7Tuk1WAey2ZGAiDmrSDmXdyFESOrpI+e7KE6fJKRmeSYnf1ueaOCXuzYbzC9w2i1GDd8O4G9bdbHjB4C7c+LhX6ys13+kpid/+pPtWSRHF/gBaUMxC7upkfj15EsL2xnZcEenMJ3TP1i2k1sW/0sGgM/dD1e6PopbQaV3X1iKD2MVoum1XpOzE0zTZBblVIrErMQK4C22RiUmL+yTY4vpZFtqB86BGytZyRJnpKgj4KB/wl6OLEzXyvG0BncyKvxwrfOyjhV0EVo6F4M/ywA2lhOrPDt6Dnam1Nas81bErfFlJPjSylTidyU6IDw4Ocx/POjPY+N6I8xvEM4Re+ZnYFqB3v4/2G5+wAFKoITeQN+aPbKBUXuzDRB/ilwD/CJxD/vn/GIxLySqS0QzK2gO9Mk2Y79Nik5jlM42NGf4YX2zLxEQ/uEBz6D0n0XNjYJmogM/DvDJR8Do2hm158mqS3OSxK3F7i5nByPmGmSbHiHMPzGcdtWO5jeUQzvLIG1ZsZjDA19C9OrS/TVB7RLaPhbxIzFBNbEW3iLuS/rZwFKqe8CTwGblFINSql3EQ+wdyiljgN3JH4tFphQTzDmBXMz6L5262Zqh1axt+FqWocGJk3+kpnekTHJ8QUGht8847GZ3iGUHh6z61+8eZKH5e6d8fWnI3mGONMLJDmeyyRui/HqT7VwvqELmJtxOtmO1ZVU6RLO1VXyUNNinul4IutzTe8Eiliad3wM/+TMBxf0Y3oH0+zI52LFHpj59UXOTaWLxd0Z3rp9lsYi5pn5MAsxXm1xKY6vafM3kbzD3mTirYaa0rzjoWehVlgFXaTt9YmLCtpnfP3pkiR4fpO4LZKNJMe1xaXzJmaPbCQyfh3JZLRRisZOk8Ba8VrhGYr3zrcY3zpUAUbQMePri9yTnfTEtMzH5Hgm3MjtGIMnRtvDAWhMAnPtrKymDszVpHugowkTmGtnfP10pHxCiPw2vgRuviXHI6ZTIufZV2NHfzbmmAZQJr592YzHpI0KSHrid+EeBr65bsbXF7knCbKYsvk4CzFTgbUJJ/I6QtEfJ474BOY6YoXvmp3rmzUEZg2Gf3p0xkNjoo3F+PbOWblHOtKaTYj8lG5nvFBPMG9j9pSTZKOYWNH7CA19DaWHAdDGImKFfzo7bT1VONFX/zdJffUVEMKLjN+bR8xHkiCLKcmH5LijYwC3uJ1lZhdUwMqCjVmd54dvYDi0GxW0gipGG7PY7kgpYkV/jhX7LZbzJBDg21fiRl4Oavb/mDYOH5PWbELkqTE74/VcKA2brzF7xEiSvLehgNKCOp7pmDhJDqx1REv+BRW0AAbaWAZq5ltjj/DCd6KNcuzYgyjdj2+ux428Gm1MvK23mB8kQRYTupSP6Dp7BvnFI/WcON9OOGSz54q13HTVegxj9gJapt2ask2SUfbFa7umbLzIy/EiL5/xpaR8QoiFKTk5vtgJcdRxefCJI+w/3IDWcNmmKu68YQuFkYu38dJITfJv2M4dG+poHD42cfxWCm1epH77SuGHduGH0j+JE/ObJMgio/GP6A4fabpoyXHfQJTP/dcjRB0XrSEa8/jNk0dp6xzgjXdeMeaznudz6FQrfQPDrKlayqrKqe3oNOMkeZ6Q8gkhFpZLmRwHWvOl7z1Ba2c/vh+vxd178Cwnz3Xw1/fcimleWFOhtebk+Q5aOvooKy1iU83yGU18JCfJUJeX8VvkniTIIq3kUopD3Y20dw7Q0tbHusqlDFY4FBXEZwhcz+fwqVYGh2Osqy5nedn0Ojo8sf8Ujuejk/brcj2fA0caeNmezSwuKQCgrbOfL37vcTwvwA8CDEOxrrqce15zzZiAPJl0uzVBfgRZKZ8QYuEZnxx3dA9Qd6IZNGzfsILyJcVAPLE9ea6D9u4BlpeVsK66DDWNsoMTZ9vp6B4YTY4B/EDTNzDMoZMt7NgY35486rj83+8/QXvXAH6gMQ1FcWGY9919IyVFkWl/35Ek+UDptSwvrMuL2C3mFkmQRYqRQFtbXMq26uV866fPcvxcO67rc+hoM794tJ53vu5aIiGbL33vcXxfE+gAFFy5ZRWvf+nOKQfcM41dYwLtCMs0aO3sH02Qv/WzvQwOJ7Vn8+Hk+Q6eeuEMN1w5tZXD4xvR317VPi+D7PhyCimfEGJhGb+D6aPPneDXTxxGB/EZhwefOsLLrt/Mru1r+OL3Hqezd5AgkawuW1rCe964h0jYntI9m9p68dLE7Jjr09jWO5og//qxw7R0XJhl9n3o6RvmBw8c4J2vu3ba31mIi002DRdjjJ+F2H+kgWPn2nFcH018Vtdxff7z/mf5yn1PEnU8XN/HDzS+r3n+0HlePJauX/DElpeVYKRJqv1As2RxIQBdvUN09Q6mfMb1fJ49eGbK94R4knxj0appNaKfCxqHj6HsXaMvSY6FWFjGJ8dVi0r49ROHE0/ZNH6g8byAB544wrd/8Rytnf14XkAQaFwvoLGtl5/+vm7K9y0rLcK2zJTjIdukrLRw9Nf7jzSkTH4EWnPsbFvaBFuIuUISZDEqXf3ac3XncN3UDSwc12dwKHWjjSDQ/P7Z7HeoG3HjVbVY1tjfjpZpsKZqCRUjjwaDgJH95dLdd7rma5LcOHyMhsF2jvSeG32BJMdCLBTjk+MdqyupO96MTpN3BkHA8bPpNx3ad/j8lO+9pbaScMga87RQKbAtk8s3rUy6b4bYrOO1yTPV3jMw5Z1RhciGJMgCSA20k5korPX0DU/5/hVLi3nn666lYkkxhqEwTYMdG6t4+2uuGf1MWWkRxYWpq6Mt0+CKLTPrLDGypenRkxGOdnbM+SR5JDkeVNspD28d8xJC5L90yfFEJspFpzPBYJkG77v7RtZVl2EYCsNQrKlayvvuvpGQfaF6c/v6FSkL8pSCmpVL085AT0VtcSlua5i6npU0DOZux1GRn6QGWUwYaHdtX835lm6ccbPIlqHwUyeWASgsmF6Ln3XV5Xzgnbf//+zdd3xc13ng/d+5dxp6rwTYQBAEeyfVLFHd6s2WLVvuJY4T22m7Sd53d5NsNsmbvE5fr7l1IBQAACAASURBVOO4d8m2uiWqUKIoSuy9E4Ugeu/AlNv2jyFADGYGwAAzmAFwvvrgY2sw984Zijjz4JznPA9ur4ZdVbCNmzyFEHziga38568OYFommm7isKvkZadyy5ayab3mWNPp1hRLE62IjA2OJUma/8aX3ITQc/ba8iJef/9C0HMVRWCECYSnc0gPICs9mS9/9CZ8mr/d8tjAeMT9t66htrGTIbcPn2bgsKvYbCpP3D3zBkjjz5HEe86W5hcZIC9wk61CbFxVwtnqFi7XtaPpBjZVRQh4+sHt/ODFQ0G5ZQK4cePMWiMnTXBYZHFRNn/6hTs5fqGRvgE3y0pyWLW8AFWJzmZIogTJY1eIQxIFMjiWpAUm1A7f+Dk7JzOFD39oNa/tO+/f6bP8K7YfvmU1h89cpa1rIOgeKxbPrLFFqMB4RGqykz/+7B2cqWqmqa2X/Ow0NqxahMsR2aHAcGSQLMVKXAJkt08L+G14zfK53d1nrprKFp2iCJ5+cBv1LT3UNHSSnORg/cpikl0OHrl9HS++cwZd919vUxXyslPZsW5pTMedkuyMyopxOCNBct1gHhU5kR9emanx6ROSJC1s52pbp5xKAXDL5jLWlBVypqoF8Kc55GSmsKwkh28/sx9dNzAtUITA6bDx2J0bYjp+u01lc2UpmytLY3L/dYsLqTnfS/2YILkkJW9OViWSEkdcAmShXw/KagZ7ARkkz4ZQW3RDncOc8PVQnJlOoXeYPGdy0HOE8OeWLSnODnh8x/qlFOdncODkFQaHvawtL2ZTZcmEeWWGaXKxto3mjn5yMpNZt6IYu31meWhzkUyfkCRpKsYHxwO6j8PdzQwaPtam5bE8JTNkikR2Rgq3bl0R8FhJQSZ/9Jnb+eBELS2dAywuyuLGjctITXaGfX3Lsmho7aXqajsup50NFYsmfH68jNRFvlTjjyl2LioA5s/BPRnsz744Bcgmji4vAK4+jQa6ARkkx9L4rngAPzx2lP1DTf68iCHBr5ou8FTJGu4qmHqKRGlhFqX3Bnay6+4bpn/QQ0FuWkC6hNur8a1fvEdP//BoLtore8/x1Y/fQk5mysze4BwyEhyH63Q3JOplcCxJUlBwfL6/k29WH8ICdNPgJaWKTRkF/O7yLSHLZIaSlZ7M/bcGpm4NuX10dA+QlZ48WnMe/MHxL187ztmqFnTDQFUVXt13nk89tI2KZQVRe5/RMrL7V392AGigNi2V5elZrMpYHO+hzViT+4gMkmdZXALkJJedyvJrP1xVcKW9XwbJs8DRa3Kh11+juEt3s3+oCR2L0UQ14OeN59icVUiOIyn8jcJwezV+8tJh6pq7sSkKumGya3s5d95QgRCC1/dfoLN3EMPwv5ZPM9B0g2dfP8FXnrw5Wm8zajp6B2nL85cPitbEFJhbHLrTnQyOJUka28103eJCdNPkX2qO4DWvn472mgYn+to43NPMzuxFE9wtNNOyeGXvWQ6eqsOm+ufsimUFPHXfFux2lXPVrZyrbkHT/a85kk7301eO8j++cm/QQepEUJaaCYPQ0uGlJL0U6BktgTm3+VfEZZA8e+J+SK+yvCAgSG5o7I7LOEpLsudtcB4qf+3F5sthS7Ud7WnhnoLIutIB/PLVY1xp6sIwLHT8r/fu0WrystPYuGoRJy81jQbHIywLrjZ349P0CQ96zLay1Eya2wZ4PykbuAJ5U9/imqwep0yfkCRpIuODY4DqoR7MELXavKbBvs6GaQXIB05c4dDpq+iGOdq041JdGy+8fZqP3LOJY+frgyoYjaht7GLl0vyIXzOWztS3UjPYiy/PIi8zlY25RUBRvIcVFZ3e8zEpZScD7vASIiIZCZLxxm8M+49dAebfCna4wx3WhJWMIzfk9nH5akdQAOzTDN49WsXGVYvCtPhITKMno+vAXxF5akHyZOkTF/tk+oQkSeGFCo4nN735fN+x6tHV4RG6bnLiQiOP3rmBcI2ZwF8ZI5GMDY4dOV4eqZhf82yuczWdXrg0TNRSRiztSFR3SOebhAiQgespF/FSNf+C5Ikm2m1ZxbzYUoURYkViS2bk79/t8aGGqY080nFv46pFHDx1FcO8XqpICFhanJ1Qq8cjxgbJZ1OTKEjumHAiGQmO/e2eZfqEJEmRGTkrEmrOXpGSFTLP2KmofCh3egGT26OFfNy0LDTdYOuaUqqutgetIgtg2aKcab1mLM3X4HiEP0g+H8WUkQIqkttkkBxG4kUlcVJZXsCVo/1xS/GIdlA+2SrEoqQ0Hi2u4PnmS5iWhRACAXy8ZA25ISpZTCY7IwWbqgRNpIoQlC/JA+Cemyqpaeikp89/SM9uV3E6bHz03s3Teo+zYaR8kK7Zgb6wE8nY4FgGwZIkRWps2c1Qc7ZNUfha2Vb+sfowlmWhWSYORWVjRgHbs4qn9ZrLSnK4UNsW9HhmWhIuh43VZYWsKy/m9OVmDMNEVQUg+OSD2xIy/xhgaU7W5E+aw6L5+dLpPc+lYRkkhyMD5DHu21rOq0er6GgPnjBiyZPvr/QQrSB5qlt0DxWVsz2riKM9LQgh2JZVRL4zuJpETUMnR8/WoxsmG1ctorKsMGglQ1EEj965gWd3nxjdslMVf43Nu25YBYDLaecbT+/iUl0bLR39ZKUns7a8aMbtRmdDoa2QMwM9lKT4wuYYy+BYkqSpCtcZb6I5e016Hv+8/i4OdjcxpGusTc+jLESZt/buAQ6eqqOn383KpXlsWV0ausvdh9ZQ29iFphuYpoUQYFNVHrtzw+g9n/zwZm7avJyqOn+Zt/Uri0lJwDJvUuRGVqTHBsmRms9BtQyQx7lva/msvt6FqraoVvGINH+t0JXKA0XB77lv0M2wW+PY+XoOnKwbDXov1LayalkBn3hga9CkvKFiEZlpSbx7pJru/mFWLM7lQ1tWkJ7qGn2OoggqlxdSGYc0Fh2dK+ISbaKZDCuLldZanLgmv3AMf/pEaDI4liRpKsbO02NNZc5Oszm4Kz+4FKfbo9E7MExb1wC/ev0khmFiWhaX69p572gNv//JW4O6lObnpPEHn9rFu0equNrSQ352KrdtK6c4PyPgeSUFmZQUBI51NlhYNImr1ItqHJaLldZa0gk9jprBXoi8+NKCNzZIjtR8X3mWAXKcja/iMV1rlhdOmL82VUNuHz99+QhXm7tRhMA37gCHTzO4eKWN2sYuykqD25MuKc7mUw9vn9ZrR4OuGwy6faQmO7Gp19tPe3DzvPojhhlCFxo2y8ZR3uNh45NkkzelezvEcnKd8T0RbVkWDe46LgycwbB0ylMrKUupQBHRabUtSXNZqFXZRBT5IbzwTNPixbdPc+RsPYoigtLcNN2gd8DNe8dquPvGVUHXZ2ckXzuQFx+mZTEw6MHltON0XA9JTEzeVJ6nUdSho6EIlZMcZJd5P2VWZcA9Xjh/cTT/GCJPEYy1Ll8HZ/pOMKj3U5K0hMq0dTjVyBZnYmk6izsLIT1DBsgJYGyQ7Eg1J79gHF+mMmn+2lT96IVDNLT2YJjhT0X7NIPzNa0hA+R4sSyLNw9cZN/RGizLf/hv1/Zybt+xEiEEh5V3GaQfU/j/fHWhg6WzV/ktj5mfie/gI3Cg+10uDJxBt/yHa1o8TVweOM99hY+F7KYlSQtJqFXZRFTpTQKvl0tdV6nYtGRG93rr4CWOnvOnwBG6Ihu6YXLmcnPIADmezlxu5vk9p/H4NLBgbXkRT9y9EYfdRp247A+OhX+uM6+9ub3Kqyw2yrDj8N+jvpVmMUBxjp2lOVnXSrsljiuDVbzd+RqGZWBh0ept5mz/CR5f9DRJ6txd8p5uesZcCqRlgJwgRkvddUVe666ptp9Fy/2roDMJjrt6h2hq750wOAZ/brHLmVh/dfYeqeKdQ9UBFTLePlSF02nn5k3LuSIujQbHowR00Y4XT8SpFvHQp/VyfuAUhnX9U1C3NFq9zTS461icPPUOiJI03+zedx5Xu4bDG8d6oVM0UrXpQlUbl07MLEjef7wGTZ98YWXs6mwiuNrczS9ePTZafxngbFULPs3gM4/soEqcHw2OxxIIWkQDi60yztS38t5QA8UViRkcm5bJu11volv66GOGpeM2hjnZe4Qbcj4Ux9HN3NggeSql5+ZaWbnE+olZ4KZd6u5aYO3LmdnBiYEhD6qioDHxZKsogs2VpTN6rWjSdIPX918MKqKv6QbvHLrMzZuWoxA+BWGi742sTqB7WEp8T0c3uesRIeqS6pZG/XCtDJCleWeqKRMNjd242jWWZaTHv2RoBCrLC2YUJFuWhcerT/o8h13lpk2RN3+KpfHBMfhXui/XtdM/6EFNV/3lnUNsjI3M2TWDvWxeW4orw5twwTFAn9YTsKAxwsTk6nD1nA+QIdLSc3MrJUMGyPPAyCTr6PJv2Y2IdMItzE1HN0MHx6oisNlUTNPi8bs3kJMZXO0iXvYfrw3ZYQpgYMi/mrTSWscZjmCI65OVsARF1uLRrbrxEm11wqk4QwbICgrOObxVJ0mhhDvIFspcDI5HzCRIFkJQlJtOS2d/iO+Bw27DMEy2rlnMxlWRd9qLlfqWHrr7hkN+T1EEfYNuKtLWc1VUoxO4iizwz9tzgUNxYIVZcHIqib9rOVVTzWGeaykZMkCeJ8Z/MExnwnU57dy5s4I9By8HlGpzOe08uGstDpuNFYtzcY07CR1vx883hP1eXpY/kN9i3kSr0kgnbViYKKi4SGKXeX/I60a6MhWvSozgGGBx8vKQAbIQChWpsoKGNL+MrApPJWVirgbHI2YSJD90+zq+/9xBdN0YXXBVVYUHbl1LarKDxUXZZKYn1i/Qpy81hf2eYZjkZaXitDJZbW3kHCeA66vG9xpPoJL4pUEBUmxp5DkKaPO2BHSvtQkb6zISt/5/rMy1lAwZIM9T051wb9+xkoKcNPYdrWZw2EfFsnx2bS8nLSVxf9ud6Gza7TsqALBh5yHzE7TRRKdoI40MSq3wqRcjLUtXJkhwDGBX7NxX+Di7214Y3bazsLgt9x7S7Yl/MEmSpmokn3iuB76RmO6cXVaay+9+7Gb2HLxMa2c/RXnp3LGzIqhU21xRsSx/dBHmBvMOVrOZRnEFB06WWuUBh/PmgrvyH+TVtufo03pREBiWwZr0jZSlVMR7aHExl1IyZIA8j013wl2zoog1KxIjKJyKrWuX8Pr+80EHVTJSXWxeXTL67wJBISUUWiXjbxHS4oIsILEO/BS4inh68Zdp9TRhYlLoLMamJNaKviRFamyu8VzNJ46G6c7Ziwoy41peM1IbK0s4cOp6ff0RqiJ44u5NAY9lkEWGFXj+Y2SHz5dn0aq38khu4u6gJdtSeLz4k3T5Ohg2BslzFpKkJl4putk03ZSM2Q6SZYA8z830EMhccOPGZVysbaW+pQddN7HZFFRF4XOP7ZyXpc8UoVCclDiHJCVpJkZWi0e4mPspEzOxEObskoJMbt1Wxt4j1aNlObHgI/dsInWSLn1jg2NHjpdHKhI3OB4hhCDXmQ/kx3soc0okpeRiETzLAHkBGJlw5yubqvDFJ26krqmbuuZu0lOcrFtZHLK16lTMla07SZrrztW20tXWx82ZhQs2IA5lIQTJd99YyaZVpZyvbcWmKqwrLw7ouhrOXAuOpZmZSqe/WK0wywB5gagsL+DCPJ5shRAsK8lhWUnOjO4zl7buJGmuGV+27eSxKzI4DmMhBMl52ancmr0i4usWF2Thykis9DcpdiZKyYhlGobsT7uAVJYXcOnE1cmfuECN37pbmhPfuseSNJ+MlG1z9Jo4ek06jrfJ4HgSI382ct6WpNBGgueRFeYm9+WQX9MhV5AXoPm8IjET44PjRKleIUlz3bna1tHVYq6VbVvIecaRmO8pcpI0U1NJw5gOGSAvMAth2246Xjh/UQbHkhQlMpUiuuZ7itxUnalvHU1/i3dnUymxTLUyRiRkisUCJLftAsngWJKiZ3wqhaPXZJFIlsHxDC30FLmRzqZynpZmiwyQFygZJPtNJTg2LZMObxtd3g6sMC2tJUm6Hhy72jUcXd7Rr/u2lsd7aPPCQg2SR4Lj4oqpdzbt9XXT5mnBsPRZGKE0H8kUiwVsoadbjJRzGzkRHWrSbXY38Gb7KxiWjgU4FRf3FDxEnlOuhknSWGODYxkQx9ZCm7NrBnvZvLY07Dw91oDez+7WF+jXexHX1gBvzrmdlWmyIpEUGRkgL3Bjg+SxFsrkW1qSjYYZ8ntuY5jX2l5At643MdANjVdaf80nS7+EXXawkxawkYB4LBkcx95CX9iYiGVZ/LblN/TrvVhc3+17r+stshw5cmFDiohMsZCoLC8I+AKZegFQNXABK0TwbFkmdcPVcRiRJCWGsavFld6k0S8ZHM8OOU+H1ulrY8gYDAiOAQzL4Gz/iTiNSpqr5AqyFGShrVCEOxE9bA5hWEbQ44Zl4DaGZ2NoE2p2N3C2/yQe082y5BWsSlsnV7WlmJOpFIlhoc3TU+E2hhGIoMctLIb0wTiMKFCv1sPpvmP0+DopcBazLmMzKbbUeA9LCkOuIEshzfcVipGmIMf1y2EPfRS7SrGJ4IBTEQpFrpLZGGZYp/uO8Vrb81wZrqLF08ihnv083/xzNFOb/GJJipDbp3GutjUgOF6WkR7vYS14832ejlS+swiT4EUNVdhYkrw8DiO6rtXTxG+afsrFgTO0eps503+CZ5t+RK/WE9dxSeHJAFkKa75OviPBcUdhJ9vKSsMe+ihNWkq+swCbuL7RYhN2Fictj2sum9fwcLhnP/qY09mGpTOg93Fp4FzcxiXNX0JntGTbSHAsy7Ylhvk6T0+HS01iY8b2gDlbFSopaiqr0tbGcWSwr/NNdEsbTf8wMfCZXg52vRvXcUnhyRQLaULzbRtvbDvpvMzUCU9ECyG4r/BxLvaf4fLQeQQKlWnrWJk6+WnoPq2Xw937afbU41SSWJ+xhcq0dVwZruJozwGG9AGyHXnsyL6FQldxRO+h3duKgooxbqVEt3TqhqtZm7ExovtJ0mSEbuLokh3wEtV8m6fHGqk2NFVbs24gz1nAmb7jeE0Py5JXsCZjE3bFMeF1PtPLsZ6DVA9dBGBl6mo2Z+6kV+viYPd7dHrbSLalsCljR8QVMTRTC7tS3OxpiOhe0uyRAbI0qfk2+ZaWZKNlmrgyvJM+VxUqazI2siaCoHNQH+C55p+hmT4sLDymhwPde6kdvEybr3l05bfV28RvW3/NA4VPUBBBkOxUnUGHUEYkqclTvo8kTVWSyy6D4gQ33+bpESMLGpF0z1uSvDyilArTMnmx+Rl6tZ7RFI0z/ce5OlTDgNE/Omf7NB/vdb2Fx3SzPmPLlO+vCAUFJWhRA5g0cJfiR6ZYSFMit/Gm7lTfUXRTCwhidUunyVsfkBYx8vihnv0R3T/PUUiSmhx0GMUmbKxJl6vHkrRQzbd5era6nNYPX2FA7wvIXzYsg169J+ScfbTnQMgD3OGoQqUsdRWqUAMetwkba9M3zWzwUszIAFmaMrmCNDWtnibMMLWVQ+n2dUR0fyEE9xc+TpotA5uw4xAOVGFjR9aHIk7XkCRpfpkvQfJsBccAHb42NCv4gHO4nToLi+EIq2LcnHM7Ra4SVGHzz9moLE9ZyYaMrdMasxR7MsVCikhleQEX5vAWXs1gL74kC4funfJ2XSQsy8Iwp76yAJBqi6wagM/0cb7/FLqlYRM2ipNKuTH7NlkuSJIkYO6nW0yly2k0aUbodDuBCBkkW1i4IkhnsyyLywPn6Nf6sAmVbHseO7JvosC1aNpjlmJPriBLEassL5iTqxOxXpHwGG6ebfohPXpXyO+nKukBp6vBv8W2NfOGKb+GaZm81PIMZ/tPMmwM4THdXB2qYXfbC1hW6NUOSZIWnrm+41dakh3z1zAtk7faf8uZgdBNRGzCjjpuzlaFjcrUtRHVnP+g6x0O9uyjX+/Fa3pp9TbxWtsLCVGbWQpPriBLU+J1+zjy26Ocf/8iyelJFG9dCcydltSzsV33TsfuCWta5rsKcRvDtHtbsTBxKE52ZN/CkuQyqgYvcGHgDKZlUJ66mlVpa4Py1QAa3HX0a72BuXIY9Gk9NLjrWJy8LOrvS5Kkucc0LbSmDr71b6/gSrKz4cOb2XjvJlRb8LyyUJ3rP8mVoaqw389x5OJUkmjzNuEzfShCYXXaBnZk30KLp5HTfccY1AcpTVrCuozNIQ9Ju41hLgycCTigZ2GhmRqn+45zQ86HYvLepJmTAbI0KZ/Hx3987bv0tPeie/0HFmpP1rH6Lv+BsEQPkmdju85n+mh0T7yqXjt8GQUVRQh25X6Y5SkrEULwdvtrXBmuRr+WA9fl66Bm6BIPFn4EIQIP4nV6Q+fKaZZGp69dBsiSJAHw/Ddf5Nz7F9A8/vmi+VITZ986zdP/+BkURW4egz9Anui8SKu3GRCoQmVt+ia2Z9+MKlQuDpzl/a63Rw/wdfs6uTh4lo8s+lRQkNzt60QVatChPhOTNm9T1N+TFD3yp0Sa1PE3TtLb3jcaHANoXo1zb5zAO+SZE+kWsd6uM8addA7HxEC3dPZ1vYWJSZevg9rhqtHgGPynpDu8bTS4rwRdn2bLwB6iu59d2EmLMJdZkqT5qbW2jXP7rwfHAJpHo/FcPVeO1cRxZIkl1GJDMAvD0jk3cIp+rRfD0vmga29AdQsTA6/h4WTvkaCr02zpGCGCcIEgwx79czBS9MgAWZrUpYOX0bzBE4lqU0n2+fzPOXE14GuhcSlJuNSkKT/fsizava20uBshRO6wbmk0uuuDHl+WUh6UEycQqMLGsuQVkQ9ckqR558rpOkwzOCjzuX1UH6mOw4gSU5GrZMrPNS2TuuEaenzdob+PSX2IRY10eyaFzmJUAlNbVKFGVEtZmn0yQJYmlZqdGrTVD/4gLyk9icrygoAvSMwSQ616ZB2ZItGn9eA1PBFcYaGg4FKTUETwj6GKSrKaEvS4XbHzSPHHyHcUolz7J89ZwCPFH8MWwaERSZLmr6S0JFQ1ONfY5rCRmiWr3YC/znFTiEUIv+DPO4G/4YdLTQo4AzJWqDkb4O6Ch1iaUoaCiopKqprG3fkPkePIm+bopdkgc5ClSe14cBvn3rsQsIoshCA1M4WSiuAyNYlUYmiktXRHaifbckpjVi7o/MCpkLlsCgpCiKD8M5tiJ99ZSLYjFyH2ML6SkBCC8tTKkK+VYc/i0UVPjQbkTtUVnTchSdK8sPqmVbzyv18LelwogvV3J3YzoZE5e6Qc5yO5kbV1nqoGd12Y1Dh/C6bx+3pCCJYnryTVlka+o4g2b3PAnG8TtrArwg7FwZ35D6CZGrql4VKSQi46SYklKivIQog6IcQZIcRJIcTRaNxTShwlFYu4/yv3YnfZcSY7sbvs5CzK5tN/88mwP+SJsJI8OtHmWWwri11wDDCgD4Ssl6mgkO8sRhU2VFTs1xp73FvwCEII7IqdBwqfIEVNxS7s2IUDp+LinoKHJ61r7FRdMjiWpk3O2/OXw+XgM3/7SVKzUnAkOXAmOXAkO7n583eTlpMW7+GFNXbOHqk4FCtufShMIxCLQkcxqlCxCRs2YUMVKjdl306a3X/O466CB8lzFqIKG/ZrjZq2ZN4waXtru2L3d0GVwfGcEM0V5F2WZXVG8X5SAtly7ybW3baW5upmXCkuCpbmT/pDHs+V5PET7cbcspi+XknSEhrddUFtSS1hsSvvHjTTR7OnAZeSxJLksoAamnnOAj5R+kW6fB2YGOQ6CkKmXUhSDMh5e54qqVjEn/zsD2muasY0TBatLObylc6E2NkLZ3xwHMtFjQJXccjw2CbsrMnYyJ2uEq4O12ABS5PLSLZdT59IUpN4pPhj9Gm9uI0hsh15OBRHzMYqxYdMsZCmzOGys3RtZBNrPILk8cHxIxWx2aIba2VKJWf6jjGoD4zWu7QJGxWpa0arS2Q7cgHo8XVzuu8oPVoXBc5i1mVsJtWWRq4zP+bjlCRp4VAUEZAGl0jpb+OdqW+ltCQbLdOcle55WfYcliaXcXW4ZnRhQ0Ulw57J0pQVqEKlMn09AG7DzZGe92lyN5BmS2d9xhbynAVk2DPJsGfGdJxS/EQrQLaAN4QQFvAflmV9Z/wThBBfAr4EUJgf27/4UmKZzUl5toPjLl8H+zvfps3bjIJKtiMPzfThUB2sTd/EipRVAc9vdjfyWttzGJaBhUWHt42LA2d4dNEnyJQlf6TZNeG8Lefs+SmRg+TZ4DHc7O96mytD1ZiYZDtywPI371iRuop16ZsDmjQN6YP8pumn+EwvBgbt3hbqhqv9texTy+P4TqRYi9Y+7k2WZW0GPgx8VQgR1BrGsqzvWJa11bKsrZkZMhBYaGYjJ3k289cABvUBXmx+hlZvExYWBjrdvg7S7Rk8WvwU5amVQWko73W9iW7po7lvJiY+y8fB7n0xHaskhTDhvC3n7PkrEc6IxINpmbzY8gxXhqquVaKw6PF14THdPFr8FJszdwS1kD7Rewiv6RndGbSw0C2d97rewrTCNxmR5r6oBMiWZTVf+9924HlgezTuK82O1to2Dr50mDP7zoWsdxwtszEpl5Zkz0r+GsCZvhNBp6ANDJo8DfSFaDntM330ab0h79XsbojJGCUpHDlvz139XQMcefUYx3afYKh3aFr3WIhBcqP7KkP6QED1CQsLn+mjduhyyGvq3VdCVijSLZ0BvS9mY5Xib8YpFkKIFECxLGvg2v+/G/irGY9MijnTtPj13z/HxQOXsSwLRVVQbSqf/f+epmh5YcT3syyLD54/xP5fvc9wv5uCZfnc9+V7WLru+jbebG3vxTo4BujytYecOFUUerWeoC5JqlBRUEZXIsaSBzyk2STn7bnr0MtH2P2dNxCKAgJe+dZrPPKNB9lw+7qI71VZXsCeF47wyv96lsGOPtJy0rj1c7ez5YFtIsfiNgAAIABJREFUMRh5/PVq3RghVn11S6PbF/qsqlNxMUB/0OOWZeJQnFEfo5Q4orGCXADsF0KcAg4Dv7Usa3cU7ivF2Km3T3PxgL9Lnu7T8bl9uAfc/Pwvn8EK0d1tMm/96B32/OgdBnuGMA2TlupWfvz//pymy80BzxtZuZjrch35KAQX4zcwybQHt7ZWhUpZakVAfhv4D/OtTd8cs3FKUghy3p6Dupq72f2fb6JrBppXQ/P45+4X/vllBroHI75fzfFa9v/gTfpbezANk772Pl7751c4+OsPYjD6+Muy56CGqBBkE/bRQ9Tjrc/Ygk0Epl0oKBS5SkhSk2MyTikxzDhAtiyr1rKsDde+1liW9b+iMTBp6nweH8deP8Gr336dY7tP4PP4pnTd0VePh0ypGOobpv1qR4Rj0Djw/MGg+2k+jbd/ujfo+ZXlBTHZ2qvxdkX9nuGszdgUFOyq2ChJWhz2ZPPNOXdQ7CpFRUVBRSDIdeSzOi3y1R9Jmi45b8eXaZhcOnSZV//jDfY9+z4DXQNTuu7Mu+cwjeAVUCHgwgcXIx7HGz/Yg+4NTBPTPBp7v78nZKvqua4kaQkptjSUMaGPQOBQHJSlrAx5zYqUVaxN33itB55/zk5SU7gx57ZZGrUUL7LM2xzX19HHf3z9e3iGvWgeDYfLzls/eoff+dfPk5GXMeG1hh66XaYQAkML/b1wBrr6EaFq91rQdqU95DWV5QVciFKqxZn6Vt4baqC4xB7zw3ngP+xxceDstZ5LfjZhZ2VqJWm2DPZ1vEm+q5CylFUBhz7sip0NGVtpdjdgXfun09fBb5p/xmPFT8nGH5I0z+mawQ//7Ce0VLfi8/hQ7Sp7f7aPT/zFk5RtmrjRhKEbIXf3TNMKO59PpLMx9IKCz+3DO+glKT0p4nsmspqhSximPpoaJ1BYnLyMEtdiPujaS6o9nVWpawNqHgshWJu+kYsDZ/GZXiwsPMYwzzf/goeLniTHKdtFz1eyG8Ec98q3XmOwdwjN41+59Xk0hvqGePnfg9uMjrfhjvXYncG/I9kcNgqXR5YGkZaTFnbFIW9x6K2rEZdOXA34itRocFxhn5XDeQDvdr7Byb4j+CzvmEctqgYvcrT3ABcGz/B+116eafwhw8b1QzSWZfF2x24MDKxrk7RuaQzqA5zsOxLzcUuSFF/Hdh+nuapldKfPuJYu8ezfPhdydXis1TeuwmYPTusSQrBqZ+gV0IlkF4VeTLA77ThT5ld+bdXABd7tfIMB43o+sSIUOr3tHOrZz4XBMxzvOcgvGr9PqycwLfBA9z68pmc0sDYw0CwfezvfmNX3IM0uGSDPcZcPV2OZgSsKlmlRdbR60jzibR/eTNGKIhxJ/gNiNruK3WXnyT97HEWN7K+Gw+Vg+wPbsDsDc7XsThu7PnFr2OsqywuCviIJkkdKu9kLZqdyBfjrYtYMXQqqYKFbOprlG31ctzSGjUEOdb83+px+vRef6Qm6p4nBqb6jvNT8DI3u+piOv8vbwYX+0zQM18kyRZI0y07uOR0ytU3XdFpqWie8tqiskB0P+udZIUAoYnSOzSqMfOfsrs/cHrRIYnfZ+dCnbov4MyDRHep5L6jTqWHpDBkD6Jb/v4eBgW5p7Ol4NeDzs2H4Ssi21J2+Np5p+CEX+k9P69zOVA3pA1wcOEvN4CU0M3aVpqRAMsVijlNUJeSqg6KISVtB2xw2Pv/3n+bykSpqT9aRmp3Kyq1lXDpcxbHXT7J4dQkb71iPM3lqKwn3fOFOktJcvP+bA3gGPeSV5nLfV+5h8erSiN9XJFUuSkuyIdUzK8ExQJ/Wg4otZDWK8Sws6oZrRv/dJuxhJ1ILixZvE6+3vcCtuXezInVVyOdNl2EZvNH2Ms0efwAuEDjVJB4uepJUW1pUX0uSpNBUW/AKMACWhWKbPCi95wt3sfZDazj73nkUVaHyhgra6tr59d8/T1ZRFlvv3UxGXvqUxrJyezmP/8mjvP7dN+lp7cWZ6uL2z9/JjiduiOQtJTzTMhkypn6I0W0M06/3jZ4lUYUNrNBne3r1bj7o3kuHt40P5d0VlfGOdbznEMf7DiJQrqX0Wdxb8AjFSZF/rkqRkQHyHLf2ltWcefcshn49SFZtCmtumVoHOUVVWLWzglU7K2ipaeW7f/xDDM1A1wwufHCRd3+5n6/86xdIy5k8gFIUwW0fv4XbPn4LpmmhKBMH6OEkeqendHsmBvrkTxxhwautz9HkrkcVKnbFgWG6wz5dt3Q+6N5LWUrFpL/kROJM33GaPPUBK9+6rrOn/VUeLn4yaq8jSVJ4Wz+8mebqltG0uBFJaUkULptaatuilcUsWlmMe8DNt7/+PQa6B9A8Gqpd5f3fHODTf/0JlqxdPKV7rbm5kjU3V2KaFpdq/OdFojnvJAJFKCQpybjN4Sk937JMjvZ8QN1wDaZlkGpLx2t6rzUXCaZbOpeHzrM5a2dUFxvaPC2c6DuEYRkw5rV3t73IpxZ/Gdu4piZSdM2vPZQF6L7fuYeckhwcSQ5Uu4ojyUF2cQ73feXeiO/13D++iHfYh37tgJ7m1RjqHeKNH7wd8b2mGxyPSOQi9qm2NBYnLUMd9/ul/7f7wPetoGBYOo3uq5iYaJaGz/ShomIX4Sc3n+HFEyIVYyYuDJwOSguxsGj3tuA2wgfskiRFz/pd66i8oQK7047NYcOR5CAp1cUn/uJjEQem7z7zPn0dfaPBtqEZaB6NX//98xFv+SuKSOh5d6a2Zt2ATQTO2croqmwgRSjUDlWhWxom5rWGINZoFYtQFFQ6vG1RHfOlgbPXguNgsU7Fk+QK8pyXlJbEV7/1O9SerKWjvpO8xbks37g8bIDa297Hnh+9Q9WxGlwpTm54ZCfb7t+C5vHRXhdc2s00TC4dvBTrtxHSZCvJo62lkywcqbM7tjvy7+Ng93tcGDiDYenkOPLYnnUTH3S9y7AxhImJQOBSknCbwwEfViYGNmFjZ/atHOs9EHCIb4QQIurNQ8JNtEIIzDDfkyQpuhRF8JH/+hittW3UnblKSmYKq3auDDq/McLn0dj3zH5OvHUKTIt1u9ax66lbcCY7OffeuZAVhwZ7h+ht6yOrMHS5yYnEcwevxtuFQ/eylOhXIqpMW48FHOs5gNscJllNYWvmjdS7r9DorsPCHzArwr+oMXa12MJCFSpr0jfR6W2jyRMcnFpYpNqi+0Gko4fMfQYraLFDij4ZIM8DiiJYsbmMFZvLJnzeYO8Q/+f3voN70INlWgz1DvH6d9+k/Wo7934xfO6U6ojfX5Nwk/VocJxn4cjx8kjF1FJKokUVNm7K2cWN2bdhYaFcK3FXmrSMJk89/VofOY5cTvcdo3a4Kuh6gcCu2NmZ/SH2db4ZcHhEFTZWpa4NqrE8U8tTVnKu/2RQ979UNZ2UKE/skiRNrHB5waTVgizL4gd/+mNaa9vQff454uCLh6g+Vs1X/v1LYYNqy7JCViiaqtkOkseX6YzFeRIhBGvSN7AmfQOGZYzOr5Xp6+jydtDmbSHFlsqQPsiB7r1B1+uWjtsY4ubcO/hN008C5myBIN2WQa4juk2wylIquDJUPXqIcISJyaKkqaXQSNMnUywWkIMvHsbn9gVUvdC8GsdfP4FnyEv51rKgk8s2h40t926a7aEGGL/tNz44no26x+EIIUaD45F/L0lawur09RS4islx5ocMdC0sMu3ZlKdWsjXrRmzCjk3YUYXKytRKduaEr/wxXVsyd5JqSx/tCjWS5nF7fuTpOJIkxV7tySu013WMBsfgT6Poae3l8uEqtt2/NShIFoqgeEURqVkz+6V3ttIt4lGmc/ycnOPMY3X6epYkLyfbkcP4VDnwdzzNdeSTac/i7vyHSFZTsAkbKipFrkXcX/R41HO3FyctozRpyeicLRCowsaN2btwqfOrRnUikivIC0jdmauj+cVjqXYbb3zvLRovN2OZFoqqjJ60XrJ2Mbd97JbZHmqQsSsa5DgpLcmmIbV51ibU6apMW8epvqMB6Q0KKjmOfPKc/g+gDRlbWZu+kUF9kCQ1OeqpFSOcqouPLPoUtUOXafY0kmHPpCJtDclqyuQXS5I065qrW9C14K10n9vHiTdP0dHQgaEbCCFQ7SqKqpCSkcyTf/54VF4/1ivJI4sdm9eW4srwJsRcXuAsJtOeRbevc0xDEX9gujLVv1NZmryUT5Z+iQG9H7tij1nLaSEEd+U/SKP7KleGq3EIByvTVodtiy1FlwyQF5CcRTk0nG/AHFc32efxcWbf9Vw2y7SwKTY++ZcfY9n6pXEYaWgjk3VTbQd5m/3BZSJMqBNJUpN5pOjj7O/aQ4unEUUolKdUcsO4NqWqsIVtTx1NNsXGyrTVrEyb3ZQUSZIil5mfic1hw+cOLDGm2lQuH64K6J5nmSZ3fu4Odjy0fcaHpMeKdZBcWpKNRuLUYxdC8EDRR/ig6x2qBy9hYVLsKuWW3DsCOp0KIUi3T9ytNlrjKU1eSmny0pi/lhRIBsizwDQtrpy6QvvVDvJKc1m+Kfwhuli66bGdnNl7FnNMkXrF5q+jHHDQw/Ifzqs/35BQATL4J+srR/tpaOyG6JYJjpksRzYPFn1k9KDefCuhJEnzUVtdO1dO15GcnsyqnRU4XLNfUmvVDRU4vr0bzaNdP+grCNlW2tBNzr9/kRse2RH1cSR66c1ocypOduXdy2259wByzl6oZIAcY+5BD9/7kx/S09qLoRuoNpWM3HS+8M3PkJwem22ZcPKX5PHU//goL/zTywz1DmGaFlkFmfR3DQTV5NR9OvXnG2d1fFO1LCOdC8ytsmTDxhCWZZIiG3JIUkIzTYvnv/ki5/afx7L8teJf/vdX+ezfPk1x+ezuWNkdNr74zc/yq79/npbqVizLIi0njYGufkwjuLpB25XolhkbayRIXii8phef4SHFlha2tJs0v8lDejH22ndep7OhC5/bh6EZ+Nw+ulq6eeVbr8VlPCs2l/HEf30Um92GzaEyECI4Bv8WXt7ivDiMcOoKbYWc7GyJ9zAm1K/18lzTz/hZ/Xf5ReP3eabxB1GvlSlJUvScffcc596/gObV0X06PrcPz6CHn/3lL4PS02ZDdnE2H/9vHyWzIAPVpuIZdIcMjgEy8mO/5T/faabGm22v8OOr3+bZph/xk/pvUzVwMd7DkuJABsgxdvbd80HbYaZucn7/hZj2bg/H5/Hx0//+CzzDXnxuDV+I4Bj83fh2Prh1lkc3vxiWwYstz9Dpa8fEwLAMerUeXm75FR7ZmEOSEtKR146FXDTwDHpprWmNw4jgl3/9K7pbetC8Gt7h0C2P7U47tz992+wObB7a0/EqV901mBjolo7H9LCv6w2a3Ym5oyrFjkyxiDHTDH34IForETXHa3njB3vobOgiszCTOz+9i8obKsI+/9KhKkLG5cJ/UlcogtzSHB75xoNkFsT+0Fgi6dV6ONz9Hi2eRlxqMhsztrIydc2088/qh6+gmb6gQu8mJlWDF1iXsTkaw5YkKYpC5fcC/txfY+YNdTobu9j93Te5cqoOV4qTnQ/v4KbHdgaV2BzR19HvT68I8ZkhhEBRBa7UJO75/B0Tzv3zkdfwcKz3IDVDlxAIVqauYXPm9mm3YB7Wh2gcrsMY11Jat3RO9h2mOKkkGsOW5ggZIMdYxfZyLhy4FDC5CUVQvqVsxon/VUer+cX/fBbN6y8D1F7Xzq/+7jke+caDrN+1NuQ13mFvyIkWC7bev5m7P3cnrhTnjMY1F/VrfTzX9DN0S8PCwmN62N/1Nv1aP9uyb5zWPQf1fkwr+Bckw9IZ0Pundc+G4TrO9B/HbQyzJLmMdembAk5WS5I0MxvvWE9rTRuaN3AVWbWpFJcXz+jefR39fPvr38U37MWy/OXa3vnpu3Q1dfHINx4MeY3X7UVRBYTY7MsqyuJ3/vULOJOds3bwO1EO6hmWwQstv6Rf6xvtene67ygtngYeKnpyWp+vw8YQilBDdh2d7pzd7evkZN8Run2d5DkK2Zi5lQx7/Gr3S1MnUyxi7P6v3EtqVgr2ayeg7S47yenJPPh798343q9/763R4HiE5tV4/Xtvhb1m+cZlIVM7HC47lTdULMjgGOBk7+HR4HiEbumc6j+Kz/RO6575ziKECP4Rswk7Ba7IP2hP9R7hjfaXaHDX0elr52TfYX7d/FO80xyfJEnBNt+9iZKKYhwufz1ym13F7rTz0T97DDXMKu9UffD8QXSvHrCLp3k1Tu05w0D3YMhrchflYAvRMU+1q6y5eRVJqa5ZC45nq3nIVNQNVTOkDwS0hDYw6PR10OptmtY9M+xZWCFKzgkERc5FEd+vxdPE880/p3rwIl2+Di4NnuXXTT+l09s+rfFJs0uuIMdYem463/je73N23zlaalopWJrP+l1rRydfzatx7r0L9LT1UFRWyMpt5WG32sbrbOwK+Xh/V/9oxYzxsouy2Pnwdg69fGQ0z87usrN0/VLKJmlVPZ+1eptD9rxXUOjTekebekQi31lIgbOIVm8zxrW2pCoqabZ0liZH9mftM70c6T0weh/wr6C4jSHO9Z9kc2b0SztJ0kJks6t85u8+RfXRaqpP1JKamcrGO9eTnuOvQGOaFjXHa2i81ExGXjprblmNM2lqzX0aLjSGTOGwOVQ66jtIyw7ufqeoCo/94UM88ze/Qdd0LNPfRjolM4WbP3LTzN7sNCRKybd2byuaFbysblomHd52ilyRp0PYFTubM3dyvPfgmFbSAruws2kac+z+zj0BLaktLHRL44PuvTxU9NGI7yfNLhkgzwKHy87muzcGPd7d3M13/vAHaB4Nn8eHI8lBZkEmX/zmZ6e0kpuek0ZPa2/Q40mpSRMG2fd8/k5WbF7OsddPoHt11u1ay5qbKuNSmzlRpNsy6dGCf+EwLYMUdXotW4UQfLjwUU73HePiwFlMy2RF6io2ZW4P2X56Ih3eNlQUxn+0GpZB/XCtDJAlKYoURbByezkrt5cHPK55Nb7/X35M+9UOfB4fdped3d95g8///5+hYGn+pPfNW5xH0+VmTCNwlVLXDLIKw5/5qNixkt/51y9w6OXD9Lb1sXzTcrbeuwlncnx2/BKh5Fu6PRObsAUEoACqUEibQTnNTZnbSbdncrL3MMPGMMWuErZl3UiaPT2i+5iWSbfWGfJ77Z7Err4k+ckAOY5+880XGe4bHk158Ll9dDV18fZP3uG+37l30utvf/pWXvrXVwNy5RRVYdNdGybNvyrbtJyyTctn9gbmkU2Z22jyXA2YbFWhUpq0jGTb9Fsxq0JlU+Z2NmVun9H4ktTk0ban4003gJckKTLv/eoDWq+0ofv884Tm0dCExrN/+xt+/z++Mun1Nz9xg79Z05gAWSiCgiV5ZORPfCg6f0keD/7e/TN7A/PIitRVHOnZHzBnCwQOxcni5Jl9tpWlrKQsZeWM7iEQIQN4AIeyMFMZ5xqZgxwn3mEvjRebgvKBDc3g9Dtnp3SPjXds4N4v3z2a3wz+DniHXznCG9/fE9XxzncFrmJuz7uPZDUFVaioqJSlVHB73ofjPTQAsh25pNsygwrW24RNVsOQpFlyas/p0eB4lAXdzT30d05+iCuvNJdP/fVTZORfX420TIv2+g6+/19+FHxvKSyn4uShoifJceShXPunwFnMw0VPRrxDFwtCCCrT1qOKwHVIm7CxNmNTnEYlRUKuIMfLRCu8EZy+XbmljFfHb9f5DA6+eIh1t62haHnhdEe44CxLWcHS5DLcxjB2xYF9mqWCYuW+wsfY3fYCPVo3CgoWFjdm30ahK/LDI5IkTcNEU/MU5+3FaxZjaIHJUppXp7mqhSOvHeeGh2e22zSb4p2HnO3I5YlFT+Mx3AhEwlX02ZF9C8PGEHXD1aj4q2OUp1SyMWNbvIcmTYEMkOPEmeSgtLKE+vMNAWXXFJvCqghqWV48dDlkOoWuGZx//6IMkCMkhJhRSkUspdhSeXzRJ+nVevAYbnIdedOu9ylJUuQ23rmBfb/cH7TSm5GfPnqIbzJtdW0hGzRpXo1Tb52aMwFyohzWA3CpSXF9/XBUoXJn/v0M60P0631k2DNJUpPjPSxpimSKRRw9/scPk5KRjGPMCWjLsDj55kl+/Q/Phy9YP4aiKiEDZH8Befmfdz7KtGdR6CqWwbEkzbKbH7+BohWFo1WIRvS19/Htr303bKm2sRRFCdtFVQlReSiRJVLZt0SWbEuh0FUsg+M5RkZQcZRVmMUf/ujrlG1cNhrMWpaFca0V9Z6f7J30HpU3rAo52QpF4HDZ+dXfPcer336dtjpZd1GSJGkm7E47X/zmZ7ntE7cELEDomkFLTQs/+4tfTnqP/CV5pGQEB0p2l52l65bwwj+/zHPffJHq4zVhA+lEMhIkS9J8IwPkOLM7bFw5czWo7I/m1Tn88tFJr0/LTuXhr92PzWHD7rRjc9hQ7Spp2Wm8/eO9nN57loMvHeY/vv5dTu45Hau3MacM6YMc7n6f11pf4FjPAdzGcLyHJEnSHCGEoO5MfdCcbRoW7Vfb6WoKXZ9+7PVP/fcncaW6cCQ5UK81IknPSePgi4c59voJTrx5ip//1bO8+C+vxPKtzBmaqXGu7yS7W19gf+ceenwT/xlLUjTIHOQE4B0O3QnN5/ZhWdakJds23rmBss1lXDxwCdM00Tw+3v7pvtHyb5ZpoXl1XvrX37L6plVB24MLSZevgxebn8GwDEwMmtxXOd1/nMeKn5LtPyVJmpLBMKkUiqoy1DdMzqKcCa8vKivkT376B1w8cInB3kEycjP49T88H5DbrHk0Tr9zlq0f3kxJxcI9iOs1vTzf9DOGjEF0S0cguDR4jjvy7mNpyop4D0+ax+QKcgIoWRl68isuL5pyP/m07FS23b+FHQ9uo+p4bUBt5BGKqtBwvnFGYx1roHuQfc++z8v//ipn9p2bUs50vL3X+Raa5RttT2pg4DO9vN/1TpxHJknSXLFy+wps9uB8YdMwKZziwWiHy876XWu58dGd9HX0BRzWHqH5NC4dqprxeEf4PBrHXj/BS//2Ww6+eBj3oCdq946VM33HGTQGRusJ+7vR6eztfB3TCl0bXpKiQa4gJ4D7f/devnetBqZlWiiKQHXYeOCr06vB60wKXYTcsqyAmskzcfVcPT/+f36GaZjomsHJt06z75f7+eI/fjZhV6hNy6TNG7qDUZO7YZZHI0nSXHXDozs5/sYphvuG0K+VbLM77dz9+TtwTGOOtbvsKKoStMigqiqOpOjM2QPdg3z7a/+Je9CD5tGwO+28/dN3+dI/fY7ckolXvCdTWV7AhRhVs7gydBnDCl58MS2Tbl8nuc7JOxhK0nTIFeQEsGhlMb/7719i010bKCorZOOdG/jKv31x2ttq2+/fEjIQdiY7KFkVeX/68SzL4tm/fQ6fRxv9cPB5fHQ2dvH+cwdnfP9YEQhUQp8Stynyd0VJkqYmOS2Jr/6fL3PzR2+iuLyIih3lfPIvP8bOh6ZXom31TZVYhD5sve7WtTMdLgC7v/smgz1DaNdKzGleDc+gmxf+6aWo3B9iU83CHqbrnImFQ0nMxRhpfpBRQYLILcnh0T94KCr3WrGljBsf3cH7vz6IYlMQAlS7jU/9z0+gKFNvQhJOV1M37gF30OO6T+f0O2fZ9dSHZvwasSCEYEVqJdWDFzC4viKhorIqNTofQpIkLQzJaUnc8fRt3PH0bTO+V0pGMh/78yd45m9+c606hr+a0SN/8CCZ+Rkzvj/ApQOXgg4WWhbUX2hE9+nYHDMLB2JVF3lt+ia6OjvQretpgwJBpj2LdPvE7bklaSZkgDyPtF/toO1qO7mLcrjz07ez/YFtXDldR3JaEss3LkONUo1N1aaGLT9kS/A6njfl3Ea/3kuHtxWBgolJsauEbVk3xXtokiQtMAPdg1w9V09yWhLlW1fwX3/5R1Qfq8EyLVZsWY4rJXqd4RRb6A1jIQQiCgsnEJsguSxlJe3eFs4PnEJBBSyS1BTuKXg4KveXpHBkgDwPaD6dX/zVM1w5fRXVpmAaFkVlhXzqr59iw651UX+9rMJMcoqzab/aztg42e60s/W+zVF/vWiyKw4eKvooXb4O+rQesuw5ZDlmln8nSZIUqT0/3sv+X73vX3AAnMlOPvt3T7Pm5sqYvN7GO9Zz+LfHAtpcK6pCxfbyqC2ewPUgOVqEENyYcxsbMrbQ5m0hWU2hwFk85QPskjRdMgd5Hnj7J3u5cvoquk/HO+xD82o0VTXz22/tjtlrfvy/fYSUzFScSY7RGszlW8vYet+WmL1mNOU48lieslIGx5Ikzbqqo9W8/5sD6JqB1+3D5/Yx0D3AT/7bz2PWHOSOT99OUVkhDpe/Xr4jyUF2URYPf/2BmLxetKXY0liespJC1yIZHEuzQq4gzwPHdp8IqJ8JYGgGp989yyN/+FBU8o7Hy1mUwx//5OtcPlLNQNcApatLKJpieSNJkqSF7NArR4NLcVow1DtMc3ULi8qLo/6aziQHX/qnz1F/voG2K+1kF2exfOPymHw+SNJ8IAPkeSBUzWMAUzevrUbEZgJUbSqVN1TE5N6SJEnzlSdM/WGhCHzDvpi9rhCCJWsWs2TN4pi9xohoH9aTpNkmUyzmgbLNy0NuOZVULEJV5X9iSZKkRLLmltXYncGlOC3TomTV3O+aV1leEO8hSNKMyehpHrjvy/fgSnWNlumx2VWcyU4e+tr9cR6ZJEmSNN7WezeRW5IzWq9eKAK7w8aDv39fyMB5LqosL4hJXWRJmi0yxWIeyC7K4uvf/SpHXztG46VmCpcVsP3+LaTlpMV7aJIkSdI4dqedL/3T5zjz7jkuHrhEanYK2+7bSuHy+bXyGssOe5IUazJAnidSMpK59WO3xHsYkiRJ0hTYHDY23bWBTXdtiPdQJEkKQaZYSJIkSZIkSdJpKIpUAAAM60lEQVQYMkCWJEmSJEmSpDFkgCxJkiRJUszIw3rSXCQDZEmSJEmSYmKk5JsMkqW5RgbIkiRJkiTFjAySpblIVrGQQmq90sbu77xB/flGXKkubnx0Bzc+doNsSypJkpSAhvqGef17b3J+/0WEEKy7bQ13f+4OXCmueA8NuFbyraot3sOQpCmTAbIUpLu5m//8wx/gc/tbnmpejbd/8i69bb088NX74jw6SZIkaSxdM/jON75Hb0cfpm4CcPz1k9Sfa+B3v/VlubAhSdMgUyykIPuefR/dpwU8pnk1ju0+wXD/cJxGJUmSJIVy4cBFBnuHRoNjAEM36GnrpeZ4TRxHJklzl1xBnoc0r8a59y7QWtdOwZI81tyyGodr6u1Lmy43YxpW0OOqw0ZnYxeLVydHc7iSJEkLmmla1J6spfZkHSmZyWzYtY7UrNQpX99a0zq64zeW7tNpvdJG+dYV0RyuJC0IMkCeJ0zD5MRbpzj44mHar3YghMDQDRwuO2/+YA9f/pfPk5GXMaV75S/Jo62uHcsMDJINn05WQWYshi9JkrTg1JyoZd+z79NwoRFDMzANE5vDxp4f7eWTf/kxlm9cNqX75Jbk4nDZ8XkCd/5sDhs5xTmxGLokzXsyxWKe+NXfPcdvv7Wb1to2TMPE0A0AfB6Nwd4hXvq3V6d8r1s+chM2e+DvTjaHjVU3riItJy2q45YkSVqIDr96jJ/9xTPUnriC5tEwDX96hO7T0bwaz/zNrzEMc5K7+K25ZTV2lwMxJtdYKILktCQqdpTHZPySNN/JAHkeaKlp5dLhKjSvFvL7lmlRdbQaywpOmwilcHkBT//Vx8ktzUEoApvTxpZ7N/H4Hz0czWFLkiQtSJpP5/X/fDPsnA3+g3ct1S1Tup/DZefL//x5lq1fgqIIFEWwYnMZX/ynz6Ha1GgNW5IWFJliMQ9cPVc/afArRGSnmJdtWMrX//OraF4N1aaiqPJ3KUmSpGjobOhkKjOyiKD6RFZhJp/9u0+hawZCkLCB8aUTV6nYtCTew5CkScmoZx5IzUydMIBVVIXVN66KOEgGsDvtMjiWJEmKopTMlNE0uHCcyU6KyooivrfNriZscCwbhkhziYx85oGKnSvDToh2l52swkwe+OqHZ3lUsdXV1kd9W0+8hyFJkhSx9Jw0lqxdgmoL/gi2OWw4k5089d8/Oi/rF8sgWZorohIgCyHuFUJcEkJUCyH+NBr3lKbO7rDx+X/4NNlFWdidduxOO65UF9sf2MrH/vwJvvad3yUlMyXew4yayvICFolkaqvbOFLTwMnOqeXpSZJ0nZy34+vJP3+cJeuWXAuIHdgcNipvWsXDX3+A//LzP6CkYlG8hxgzI0GyJCWyGecgCyFU4H8DdwGNwBEhxEuWZZ2f6b2lqStYms83vv97dDZ2YWgG+Uvz5+Xqw4j7tpbDUTh5qYsjNACwMTfy7UhJWojkvB1/SWlJfPZvn6avo5/B3kHyF+dhd069Xr0kSbEVjUN624Fqy7JqAYQQvwQeBuREO8uEEOSV5sZ7GLNmJEiubfPIIFmSIiPn7QSRkZdORl56vIchSdI4/7e9uwmx6yzjAP5/bEyK/Uhqq5k0NpqGsUQMRCkiKFJBRN1UF4IupOCiLlpQcFN0oSBuBD82IihKi/iBoK2lFNQWQTdKqxTbGqWthiQ2TpJpqnbTpM3rYm7CaZuvztw7Z+ac3w+G3Hty58zz5s378OfcO+edxkcstieTdLLk0OQYzNxHbpzP9QuXZvOLboYPr4K+DXAe0wjIZ3sf/xX3HKuqW6vq4ap6+Nn/+OUqgB5dsG/r2cCYTSMgH0pyXef5m5I8/fIXtda+21q7sbV245bNV03hxwKwTBfs23o2MGbTCMgPJZmvqp1VtTHJJ5LcO4XzAjAb+jZrwsFDz/RdApzVigNya+2FJLcn+VWSfUl+1lp7fKXnBWA29G36tnt+azYuPt93GXBOU9lqurV2f5L7p3EuAGZP32YtuPTIyRxYOJ63bn5d36XAS9hJDwBYdTYMYS0TkAEAoENABgCADgEZAAA6BGQAoBc7N1+ZjUcrDz11MI8cO9x3OXCGgAwA9GbX5VtycmFT9i8eF5JZMwRkAKAXp++HfG27IicWhWTWjqncBxkAYLl2Xb4lJza9Jic3nEpiAxH65woyAAB0CMgAANAhIAMAvTt46Jm+S4AzBGQAoDenf1EvSQ4sHO+5GlgiIAMAvbv0yMm+S4AzBGQAoFe757f2XQK8hIAMAAAdAjIAAHQIyAAA0CEgAwBAh4AMAAAdAjIAAHQIyAAA0CEgAwBAh4AMAAAdAjIAsCYcO/Zc9i8e77sMEJABgP7t3Hxlrm1X5Oizz+WRY4f7LoeR29B3AQAASXLpkZM5WZuyf8vSVeS912zruSLGSkAGAHq3e35r8kSy/bI3ZN/i8eyPkEx/BGQAYE3ZtenqnNxwKsnzfZfCSPkMMgAAdAjIAADQISADAECHgAwAAB0CMgAAdAjIAADQISADAECHgAwAAB0CMgAAdAjIAADQISADAECHgAwAAB0b+i4AAOC0PTvmcs9f/5YTz7dsfOH5JMnea7b1XBVj4woyALCm7Lp8SzYerZxY3JT9i8fzyLHDfZfEyAjIAMCasmfH3CtCMqwmARkAWHO6IXluw5yryKwqARkAWJP27JjruwRGSkAGAIAOARkAADoEZAAA6BCQAQCgQ0AGAIAOARkA6N2+Jxb6LgHOEJABgF6dDsc3vOPNPVcCSwRkAKA3wjFrkYDMIBw79pytSAHWqQuF4wMLx7N/8bjd9Fg1AjLr3s7NV2bTv0/lqQNHc8/f/9p3OQBM0entpk8sbnIhhFUjILPu7Z7fmvdumcuWf14pJAMMzJ4dcy8JyXo8q2FFAbmqvlxV/6qqRyZfH5lWYfBqdEPy0Wef8zYcnIO+zXrUDclzG+b0eGZuGleQv9la2zv5un8K54Nl2T2/Ndvrddn84tV9lwJrnb7NurNnx1zfJTAiPmIBAAAd0wjIt1fVX6rqB1V11RTOB8Bs6dsA51GttfO/oOqBJGd7X+OLSf6Q5FiSluQrSba11j59jvPcmuTWydO3J3lsmTWvV9dk6d9qTIx5+MY23iS5obV2Rd9FnM80+raePcr/28Y8DmMc86vu2xcMyBd9oqq3JLmvtfb2i3jtw621G6fyg9cJYx6HsY15bONNhjXmi+3bQxrzxTLmcTDmcVjOmFd6F4ttnacfy/iuMACsK/o2wIVtWOH3f62q9mbprbr9ST6z4ooAmCV9G+ACVhSQW2ufWua3fnclP3edMuZxGNuYxzbeZJ2PeZl9e12PeZmMeRyMeRxe9Zin9hlkAAAYAvdBBgCAjt4C8li2O62qD1XV36vqyaq6o+96VkNV7a+qRyfz+nDf9czC5P6xR6rqsc6x11fVb6rqicmfg7q/7DnGPOh1XFXXVdVvq2pfVT1eVZ+dHB/0XJ/N0Oe6S9/Wt4dAz15Zz+77CvKgtzutqkuSfDvJh5O8Lcknq+pt/Va1at4/mdeh3krmziQfetmxO5I82FqbT/Lg5PmQ3JlXjjkZ9jp+IcnnW2u7k7w7yW2TNTz0uT6XIc91En1b3x7UWr4zevaye3bfAXno3pXkydbaP1prJ5L8NMnNPdfEFLTWfpfkmZcdvjnJXZPHdyX56KoWNWPnGPOgtdYOt9b+PHn8vyT7kmzPwOd65PTtgRpb39azV9az+w7IQ9/udHuSg53nhybHhq4l+XVV/WmyG9dYbG2tHU6WFmmSN/Zcz2oZ+jpOcmZTjXck+WPM9ZDnWt/Wt4duDOt4xT17pgG5qh6oqsfO8nVzku8k2ZVkb5LDSb4+y1p6Umc5NobbhryntfbOLL1FeVtVva/vgpiZMazjVNXlSX6e5HOttf/2Xc+s6NlJ9G19e9hGsY6n0bNXulHIebXWPnAxr6uq7yW5b5a19ORQkus6z9+U5Omealk1rbWnJ38eqaq7s/SW5e/6rWpVLFTVttba4cluZUf6LmjWWmsLpx8PdR1X1Wuz1Gh/1Fr7xeTwIOdaz06ib+vbA6ZnX/w893kXizFsd/pQkvmq2llVG5N8Ism9Pdc0U1V1WVVdcfpxkg9mmHN7NvcmuWXy+JYkv+yxllUx9HVcVZXk+0n2tda+0fkrcz2wue7Qt/XtwRr6Op5mz+5to5Cq+mGWLvGf2e709OdDhmRyC5VvJbkkyQ9aa1/tuaSZqqrrk9w9ebohyY+HOOaq+kmSm5Jck2QhyZeS3JPkZ0l2JDmQ5OOttcH8gsQ5xnxTBryOq+q9SX6f5NEkpyaHv5Clz7QNdq7PZiw9O9G3o28PYi3r2Svr2XbSAwCAjr7vYgEAAGuKgAwAAB0CMgAAdAjIAADQISADAECHgAwAAB0CMgAAdAjIAADQ8X+C7zGHpv7GbAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plotting boundaries\n", "x1 = np.linspace(-5,20,100)\n", "x2 = np.linspace(-5,20,100)\n", "xx1,xx2 = np.meshgrid(x1,x2)\n", "xx = np.zeros((x1.shape[0]*x2.shape[0],2))\n", "xx[:,0] = xx1.ravel()\n", "xx[:,1] = xx2.ravel()\n", "\n", "fig = plt.figure(figsize=[12,6])\n", "plt.subplot(1, 2, 1)\n", "\n", "zacc,zldares = ldaTest(means,covmat,xx,np.zeros((xx.shape[0],1)))\n", "plt.contourf(x1,x2,zldares.reshape((x1.shape[0],x2.shape[0])),alpha=0.3)\n", "plt.scatter(Xtest[:,0:1],Xtest[:,1:],c=ytest)\n", "plt.title('LDA')\n", "plt.subplot(1, 2, 2)\n", "\n", "zacc,zqdares = qdaTest(means,covmats,xx,np.zeros((xx.shape[0],1)))\n", "plt.contourf(x1,x2,zqdares.reshape((x1.shape[0],x2.shape[0])),alpha=0.3)\n", "plt.scatter(Xtest[:,0:1],Xtest[:,1:2],c=ytest)\n", "plt.title('QDA')" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }