{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1D array" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([10, 2, 4, 50])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.array([10, 2, 4, 50])\n", "a" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([50, 10, 2, 4, 50, 10])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.pad(a, pad_width=1, mode=\"wrap\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2D array" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[10, 2, 4, 50],\n", " [ 5, 4, 1, -3]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.array([[10, 2, 4, 50], [5, 4, 1, -3]])\n", "a" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-3, 5, 4, 1, -3, 5],\n", " [50, 10, 2, 4, 50, 10],\n", " [-3, 5, 4, 1, -3, 5],\n", " [50, 10, 2, 4, 50, 10]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.pad(a, pad_width=1, mode=\"wrap\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## vector field" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((1, 1), (0, 0), (0, 0), (0, 0))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.ones((3, 2, 2, 3))\n", "\n", "import discretisedfield as df\n", "\n", "padding_sequence = df.util.assemble_index((0, 0), 4, {0: (1, 1)})\n", "padding_sequence" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[0., 0., 0.],\n", " [0., 0., 0.]],\n", "\n", " [[0., 0., 0.],\n", " [0., 0., 0.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[0., 0., 0.],\n", " [0., 0., 0.]],\n", "\n", " [[0., 0., 0.],\n", " [0., 0., 0.]]]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.pad(a, pad_width=((1, 1), (0, 0), (0, 0), (0, 0)), mode=\"constant\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":1: FutureWarning: in the future negative indices will not be ignored by `numpy.delete`.\n", " np.delete(a, (0, -1), axis=0)\n" ] }, { "data": { "text/plain": [ "array([[[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.],\n", " [1., 1., 1.]],\n", "\n", " [[1., 1., 1.],\n", " [1., 1., 1.]]]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.delete(a, (0, -1), axis=0)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[10, 2, 4, 50],\n", " [ 5, 4, 1, -3]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.array([[10, 2, 4, 50], [5, 4, 1, -3]])\n", "a" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[2, 4],\n", " [4, 1]])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.delete(a, (0, a.shape[1] - 1), axis=1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1., 1., 1., 1.])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.array([1, 2, 3, 4])\n", "np.gradient(a)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 0])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pa = np.pad(a, (1, 1))\n", "pa" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 1. , 1. , 1. , -1.5, -4. ])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.gradient(pa)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[[[1., 1., 1.]]],\n", "\n", "\n", " [[[1., 1., 1.]]]])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a = np.ones((2, 1, 1, 3))\n", "a" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(4, 1, 1, 3)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.pad(a, ((1, 1), (0, 0), (0, 0), (0, 0))).shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }