{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e7315a5c-fe9d-49aa-81d8-9b9a6e7446d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import discretisedfield as df\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "443ede93-1fb9-4f0d-b2cc-a796c2a2d50a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1.+0.j, 0.+0.j],\n",
       "       [0.+0.j, 0.+0.j]])"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "p = [1, 1, 0, 0]\n",
    "\n",
    "mu = 0.5 * np.array([[p[0] + p[1], p[2] - 1j * p[3]], [p[2] + 1j * p[3], p[0] - p[1]]])\n",
    "mu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "e3ab22cb-f422-428a-9904-8dbf8b646bfb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1.+0.j, 0.+0.j],\n",
       "       [0.+0.j, 0.+0.j]])"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.dot(mu, mu)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b39b3352-aa2d-4a83-9cc1-c88f099555fb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}