{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial 14: Periodic boundary conditions\n", "\n", "> Interactive online tutorial:\n", "> [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/ubermag/oommfc/master?filepath=docs%2Fipynb%2Findex.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial, we compute and relax a skyrmion in an interfacial-DMI material thin film using periodic boundary conditions." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import discretisedfield as df\n", "import micromagneticmodel as mm\n", "import oommfc as oc\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define mesh in cuboid through corner points `p1` and `p2`, and discretisation cell size `cell`. To define periodic boundary conditions, we pass an additional argument `pbc`. This argument can be any iterable (list, tuple, string, set) containing strings `'x'`, `'y'`, and/or `'z'`. Let us assume we want the periodic boundary conditions in $x$ and $y$ directions." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "region = df.Region(p1=(-50e-9, -50e-9, 0), p2=(50e-9, 50e-9, 10e-9))\n", "mesh = df.Mesh(region=region, cell=(5e-9, 5e-9, 5e-9), pbc=\"xy\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can define the system object:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "system = mm.System(name=\"skyrmion\")\n", "\n", "system.energy = (\n", " mm.Exchange(A=1.6e-11)\n", " + mm.DMI(D=4e-3, crystalclass=\"Cnv\")\n", " + mm.UniaxialAnisotropy(K=0.51e6, u=(0, 0, 1))\n", " + mm.Zeeman(H=(0, 0, 0.2e5))\n", ")\n", "\n", "Ms = 1.1e6\n", "\n", "\n", "def m_init(pos):\n", " x, y, z = pos\n", " if (x**2 + y**2) ** 0.5 < 10e-9:\n", " return (0, 0, -1)\n", " else:\n", " return (0, 0, 1)\n", "\n", "\n", "# create system with above geometry and initial magnetisation\n", "system.m = df.Field(mesh, dim=3, value=m_init, norm=Ms)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally we can minimise the energy and plot the magnetisation." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2020/03/06 15:22: Running OOMMF (skyrmion.mif) ... (1.0 s)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEYCAYAAABV8iGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3hb1fn4P0ey5CXvvRLHiePsxNkQIAvIKCWUMMtsKSmjrB+ljH4ZLaWMAi1Qymooe1MgZYWVQAjZzt5O7HjvKcva5/fHlRM71rjKsB3nfp5Hj61z3zt0dXXec951hJQSDQ0NDY2TD11vX4CGhoaGRu+gKQANDQ2NkxRNAWhoaGicpGgKQENDQ+MkRVMAGhoaGicpIb19AceCxHiDzM4K7e3L0NDQUMGGLW11Usokb9vmzoqVdfXOYI61VEo595hd3ElGv1AA2VmhrF06qrcvQ0NDQwX6tDUHfG2rq3ey7qvRqo+lS12deEwu6iSlXygADQ2N/oIEt7u3L+KkQVMAGhoafQstObXH0BSAhoZG30JTAD1Gv44CCqbMRbAlMY63vNt94l778bzvwdyXIzn+8ZQ/ka/9eF/LoR3B7dapfmkcHf32DpZX2lm/uU21/IrVrTQ0qo8++OTLxqCuJxj55hYn369qUS2/cauFkjKbavklSxuD+oEGc+0Oh5vPv21SLV9YZGP7botq+a+/b6a9Xb2N+OMvjt/3VFltZ+1G9c/YyrWt1Dc4jsu1BCvf0upk2Ur1z9imbRYOlKp/xv73VdMRKQGJQEqd6pfG0SH6QzG4iWNNUosC0tA4MdCnrdkgpZzobduEMSa56n9jVR8rNPsnn8fSCIymQjU0NPoQx3YGIIR4WQhRI4TY1qktXgjxtRBir+dvnKddCCGeFkIUCiG2CCHGd9rnKo/8XiHEVZ3aJwghtnr2eVoIIY70HL2BpgA0NDT6DpJjbQJ6BTg8Uewu4FspZS7wrec9wDwg1/NaBDwHSmcO3A9MASYD93d06B6ZazvtN/dIztFbaApAQ0OjzyABKYXqV8DjSfkD0HBY8wLgVc//rwLndWp/TSqsBmKFEGnAHOBrKWWDlLIR+BqY69kWLaVcLRVb+muHHSuYc/QKWhiohoZGH0IE69xNFEKs7/T+RSnliwH2SZFSVnr+rwJSPP9nAKWd5Mo8bf7ay7y0H8k5KukFNAWgoaHRp3CrGNl3ou5onMBSSimEOK6RMD1xjiNFMwFpaGj0KXogDLS6w+zi+VvjaS8HsjrJZXra/LVnemk/knP0CpoC0NDQ6DNIeWx9AD5YAnRE8lwFfNKp/UpPpM5UoNljxlkKnC2EiPM4f88Glnq2tQghpnqif6487FjBnKNX0ExAGhoafYij6ti7H02It4EZKL6CMpRonkeA94QQ1wAHgIs84p8D84FCwAL8CkBK2SCEeBBY55H7s5Syw7F8A0qkUTjwhedFsOfoLTQFoKGh0ac4lhm+UspLfWya7UVWAjf6OM7LwMte2tcD3bJQpZT1wZ6jN+i3JiCLxUVtnfq0+8pqO3a7+hIDxUGkxQcr73C4qaiyq5avq3fQZnGplt+8XX35AqvVzRsf1KmW37C5jSefVz+j/efiKp59uUq1/C3/V8zSZepKTUgp+f0DB6isVncv3W7Jy2/XqC5h0GZxUVhkVSULyjNms/WdZ6y8MrhnzNym/hkLpmxEZyRaLaCepN/eQZtdYg6iU2w1u3A41Tvqg6kbFKy8wyFpaVV/7W0WN1ar+o4lPlb9xC8sTMfw3HDV8qOGhTMyT738rNOimTjOpFr+tClRnDopSpWsEIIzTokmLcWoSl6nE4wdEYknmTOwvBDEROlVyQKY29zYHX3jGXM6CeoZs7QH94w1NDmPrCCcFLiDeGkcHVotIA0NjR7FXy2gcSNj5dfvnq76WMmjP9VqAR0Fmg9AQ0OjTyH7r2Giz9Hrd1oIoRdCbBRCfOp5P0gIscZTLOldIYS6+buGhsYJz7EuBaHhn15XAMAtwM5O7x8F/i6lHAI0Atf0ylVpaGj0Auo7f00BHD29qgCEEJnAz4B/e94LYBbwgUekcxElDQ2NkwBNAfQcve0D+AfwB6AjrCMBaJJSdoQzdC6u1AUhxCKUcqoMyNCsRL3CiR5AoDLaR6MH8WQCa/QMvTYDEEKcA9RIKTccyf5SyhellBOllBOTEgzH+Oo0NDR6C20G0HP05gxgGnCuEGI+EAZEA0+h1McO8cwCerVQkoaGRs8i0eL7e5JemwFIKe+WUmZKKbOBS4DvpJSXAcuACzxinYsoaZwASClxOiUOh7qkoT372qmtV5+xHYy8w+HGGURyn0bfQJsB9By97QPwxp3AO0KIvwAbgcW9fD0nBFJK1Rms1bUODCGC+Dj/X7/V6mbLTgsf/K+BOTNjmH16jF/5L5c18cYH9RwotXHevDhuv97/QkfLVrbwyZeNmCJ1nDopivmzY/3K/+edWpatbGHS2EhOmxJF/uhIv/LX31lMwRYLZ8+I4eIF8QHlX3y9hooqO5ctTGRwdig6nf/7WVJmIyE+hMgIddnAwXxHJy0SrcRDD9In7rSUcrmU8hzP//ullJOllEOklBdKKY+oqEh1rYNtuyyq5ddtMtPcoj6V/psfmoO6nmDkW1qdrN1oVi3/r/9UsW1XuyrZbbss5J26ibqGwKNoIeBPj5fxxHOVpCYH9rPkDQ7ni++a+Gm9memnBi7X0G5188ziah5+upLUpMDHdzglb35Yz11/LQ2ovAAmjjOxeYeFpcubyBscFlDeaBQ8+GQ5i9+qUeUfXrGmlclztlGv4l4CfPhZA9+uUP8cHM9nzNzmYvWGVtXyO/e0B1U76Lsfm4+oFISWB9Cz9AkFcDxIiAshZ0CoavkRQ8OJMqmv6zI53/9o8mjko0z6oOrv/PrSZLLS1UVCjRoWwZLX8oiLCdyBhobq+HDxUObMjGFIduAOdNCAUF55KofkxBDGBxhtA8yfHcu82TGcOtHE+DGB5S87P4HYGD13XJ/GwMzA3+2cGTFEmXS892IuESpG6XmDw7h1USoP/zFL1Uh9xNBwPn0zj4R4dUEIZ0yNZtZp0apk4fg+Y5EROkYNi1Atn50VSooKJd3BxLHqayodjrImgLqXxtGh1QLSCIjD4cZg8DJW8PHsrFzbyrTJ6gq27dnXzpad7VxwTrwq+af/XcVvfpmkqkMPeC2HdVAOh5uQEKGZaY4z/moBjR6eID9+ZY7qYw2Z+rZWC+go6Is+AI0+htfO3w9qO3+AoYPDGTpY/Wzn5t+kHrdrCfZzahwfNNNOz6EpAA0NjT6FpgB6Dk0BaGho9Bmklgnco2gKoL8TrI/HqX7RD4dTvZMdwOk6vhnbIXr1+QQAhpAgAsxCgjQPaX6EI8Z9jNySQog84N1OTTnAfUAscC1Q62m/R0r5uWefu1EKULqAm6WUSz3tc1ESVfXAv6WUj3jaBwHvoJSx2QBcIaW0CyFCgdeACUA9cLGUsvjYfLJjh2b01OhV/vNuBe4gfvEl5Va+WdEQWFDjhOVYhYFKKXdLKcdJKcehdMQW4CPP5r93bOvU+Y9ASUodCcwF/uUpV68HngXmASOASz2y4Lt68TVAo6f97x65PoemADSOGS6X5O6Hi4LaZ8WaJppb1edfFBZZ2FWofk1jKSV/+Etw16TRmxy3ctCzgX1SygN+ZBYA70gpbVLKIqAQmOx5FXpylOwoI/4FAaoXL/C8x7N9tuiD4WWaAtDwiZSS516rUS2v1wu27rIElQAUH2ugoUm96aa+yUF8rHpTUkmFjdYgFjN3uSTPv67+M2scW44gESxRCLG+02uRj0NfArzd6f3vhBBbhBAvCyHiPG0ZQGknmY5qxL7a/VUvPriPZ3uzR75PoSmAfkJ7uzrb/cq1rTQ0OqmpU5MJLFi+qpXqWvUddM6AMPYfsKqWj4sNCWox84YmZ1AKYE1BK1Py1YeCfruyhYYmdddTU+dg+26L6s+r9js6qQkiCcwzzqjrqArseb14+CE9qwqeC7zvaXoOGAyMAyqBJ3rmw/U9NAXQB3G7JVU16tLunU7J7+4u4u2P61TJN7e6uPDavdx6r7+Z8CEuPS+etz6ux+mUuFyBR/ZTxkexeqP6EgPBzgAaGh3Ex6qPXVizsZWp4wMrAJvNjZSS1z+s5/Lz1Q3Uzrl8N9feXoRRZf7AvY+W8sy/q1TPkCqr7UdUTuFExy11ql8qmQcUSCmrAaSU1VJKl5TSDbyEYuIBpfJwVqf9OqoR+2qvx1O9+LD2LsfybI/xyPcp+q0CKKuwBVVPZ/lPLUGNRD/8VL0j0uWSQdWAeeH1Gl57T12H/saHdbzxQR37igJHtJRX2vn9AyUs/6mVNou60ej0KVG8u6SBmRfuUiU/NT+KNQXqFUBCsAqgyUF8nPoZwJ797QzNCZxotm13Oxdfv5/KagcpieqOX1HtYE1BG4vuKFI1ut+608Ljz1Xy0zp1z+VdfyllxWr19/Kr5U2qZVtanUHVDirY0kZxqfqoqY+/aDhi5XUcfACX0sn8I4ToXKXwF8A2z/9LgEuEEKGe6J5cYC2wDsj1rFduRDEnLZHKB/RVvXiJ5z2e7d/JPqjN+20YaGZ6KJnp6sMUZ5yqvkYLwEKVpQtAsY0HqqTZmeuvSsFmU9dBX31xEvNmxbJqfeCOIiPNyMr/jWDRHUWqFIDV6uaym/ezbrOFrHQjer3/H5zN5iYyUs/WXW388ZFi7rwxk+go34+YyyWJMunZf0BdITtQFEBkhC5gZc2CrWa+X610cDX1SqfuTz4zzciHnzcCcO/j5Tx6T2bAkhAul+Sum9J44PcZqrKIL78gkQvOSSA8XN2468XHBxEaqn6MdvYM/9VUOxMdFcKZZ6h/JtXUaurMefPU/z46o/gAjmhXrwghIoGzgN92an5MCDHOc7rijm1Syu1CiPeAHYATuFFK6fIc53fAUpQw0JellNs9x/JVvXgx8LoQohBoQFEafQ6tFlB/x8v3K6Vk7cY2pow3dZc/LA/AbndzxS1FlFXaWfnx8C7bDs8DsNvdzLlsG6s2tDJiaAQFX+Z3PfRheQBP/7uEJV/XIXSC0yfHct9tg3x+DJdLcuM9u1mzsRmjUcfzj+aRP7Kr0u6cB9BqdpKavwaXC357eSpP/Xlwt2N2zgNwuyURuQXcd2sad/8urXvn7yUPYE2B2fs9BC0PwA/+agGNyEuSb/5rgepjjT9zsVYL6CjotyYgDd8IIXx3XIdhNOp465853HG9/xo8H31RR2mljXf+NYyMNCNnTAk8o5oyIYatu8ysWt/M2BH+r0evF6QmG9lb1E5FtY2xw/3LR5lCmDDaxOlTonn83kF8s6KJTdt9m150OsGbz+Rwz03pqovBqb2HGkEQvBNY4yjQFIBGQPR6wXlz4vzKhIQIli5vJCXJyPvPD2fOdP/yADkDwhk7wkRaipGfzQ7seP3VxWkYDYLhQyLQ6VSYXM5P5q1/DsNg0PHOkloSA5RtXjg/8DVrHH+09QB6Dk0BaHhl9z71oZwA06fGsHyVYnMfP9rEvFmBbcAJcQZMEXr+9dc8QlSUWhiYGc47z43CFKnOdbXo8jSSEgy43ZKKKhuZaep9QpZ2FyXlR7QWkcZRoimAnqPfOoH7LU71kUoANrv6RT8AWszKKPjJl7Zy/vw4xo/2PSqua+rqdGxsLmPHvmyMRu+1+pvN3aNxWiz7SU49lc171F1fXKKLdts3bN6T121bjMm7M3nX3gayMjIoLO3qB0iM9R018593izBFhHDhz9MBiDY1qrtAD6FG9avRARCi/RRB8cpq2RI9hzYD0PDKtZfl8NKb+4PaJ390MgVbj28WbWNTO/Gx6tcPAFi5roJTJ6erlne5JEu+qmDB3IzAwhrHHG0G0HNoCuAkweFwc8/D+1XHZg/MVML+DpSpr7szbXI6K9dWBHVdep0Op0v9mK+h0UJCfHCzmg1bqpkwJlm1/NLlVZx5eorqBC9Lu4v7Hi8O6po0fKMpgJ5DUwAnOGo7dINBR1iYjk+Wqk9GvPayHP79lvpCasNz49lVGFylzrjYcJqa1ecB1DdaiI9TrwAsFgd6nSAsVL2J5fUPirn8/IGq5R/5ZwmTx6kvN9EfQq+PG1oUUI+iKYA+SFOzky07AtuQ3W7JpTcU0Wp20dwSuODZH24YwHOvVaiuvjl+dBz7DphpalFXlkKnEyTEhVNbr97+nRAXTn2Devn6BgsJcepNQGs3VTM5X/0ykus3NzA0J4qYaHXZwNt2t1FUYuWcM/1HMdntbtrb3ezZb+WW+0r9ynawYnXLSacsJAK3W/1L4+jQFEAP0N7uVl2Wor3dzczzd/LyW4Ft6Tqd4Pork7jm98X8/Oq9AcsRhIXquOvGLP70RLGqawG46sJsXn9fXd0ggFMnpfHTukpVsi6Xm/i4COobg5kBtBMfF4FLpdnop7XlnDpJvf3/pTf385vLclTJut2Sex4u4uF7Astv3N7Ob+86wPV3HQiYU9HB3Q+VcvmN+1Qrge9/6h8KQzMB9Rz9VgGUV9qPay2g/36m3tSxdZdFde2gDz6tx+Fw8+FnDaoWSjFb3KwpaGPlujYKtgUeSc+cFofZ4mbtphb27A8sf9YZKSz7qQab3fsM47Ov97N+c/XB96dOSuender8AHc9uJSEuAgaGtXPABoaLYSF6vnz49+pkt9f0kLOwEMlD975aJdPM1VxaRshekFWun8TU5vFRVmljcXvVDFvZpyq8NLVG8y8+d8GLO1u6hoCP2el5TbWFJgpKbOxcm3g59hmc/Py27VU1airq9QTtYCCWeinMzKIl8bR0W8VQEaakcn56jM1Z5waTXycejvx+T9TX+tkcr6JR+8doEr2iguT2Pr9GL54e5iqej35I8O57PwEYqL1rClQ57B96M5sbv/TPuZdvrVLe2FR95G4Tif4xbwMPvqivNs2gNEjkvj488KD7xPjw2losqr+8cfGhFEfhAKob7RgtbpITQlscy+rbCUjNfJgZq+Ukq++L2FwtveaOS+8vo9FV3QvGeF0uikuPZQXUVZpY/7lW/ng01oWXa5udrG6oI2BmUYuPS+eIdnq8hGK1o1jxZKRnDYl8GcNDdXx6jODSUsxqjr2kdQCys5Sn0dx3rx4dLojG6FrM4Ceo98qgBMZIQSjhkUQZfIeT9+Z9FQjf70rgwNrRjNtcmCF53JJ/vTkATZsMVNZbafVfGg0+tTiMtZu7O4kvuCcLD78rAwpZTcTw4CMKOqbrFgsh0aeI4bGs2NPYGdzYnwEQggagjAB2R0u6hraSFehAFaurWDa5EOhnNt21TM8Nx7DYUlnUkoamuyUVrQzdkR35fDKu8V8t/JQHkBVjZ3C4nZ+XNvM4nfUmbt+e0USe1aM4uZrUlR9r1kZwRUz7C8E4wDuB9auXkdTAP2EKJOeKfmBKzbq9YJn/jKE154aRmqykaraQw7e+/9fNn97bne3uv/hYXqmjk/g2VcKeeH17rkBZ08fyFffH/ITTJuUwUoVZqD01GisNkdQJiCAyupW0lMD1xpas6GKKRMO2ds/+XIf587tPsL/05M7ePKF3Vx9cXa3bXUNNr76oYqrLjx0nKpaO6OHRfLtu2NZdJm6GcCMU6IICdFGrGrQZgA9h6YA+jlOZ/dhkhCCC85JYtNXE0joVFs/Md7A3JlpvPVRV6fvlp1NfPFdJX/5x05q67vbgc+eMZClyw/tkz86iU1bawNeW1pqFPUN7bRb1flepJQIBBVVLaSl+p8BOJxuLO0OYqKUUbTN5qK4tIW8wd0zm7ftaubfbxXx8jtF1NZ3LYHx6D93ccf1w7qUwp42KYaVn+QzdYJ3JeTtnmuoR5sB9ByaAujHuN2SC3+7nboG747B6KiQbssrXnXhQD7+soLG5kMzgzHDY7nxV0MIC9URHt7dfBEZYSA+NozSCmVNAoNBj9Gop6qmjX3FvsstpKdEU1ndovrzWNodREYYqK41k5rk29y1bVcdBVuqGTMy6WDb8p9KmTkt06t8eJielKRQfv/bPJISwg62b9rehM3hZtK4rv6ezLRQn6P5TdvN3HJfoddtGurQZgA9h1aApLcJsrZPu1V9whHAoiumcvVtW3nmodPR6wPr+427U5k1I4JbHtjDry6bfbA9NimXe/8wgsrqBpatz/XIHlIG4bGTePCZEk47LZctW7awdbeVuZd+woIFCxg8WDGfVNZ2HV1brYlsWLsTq1Xw/AeB7d3NzRbK6qJoaW7k3x93j9RJS1Kcmj/+WMjatWvJzMykrs1KdnY2H320irlz5/LaZ4dyCPLzFAWRmtbCeefm0Ww3sWy9ss3tljz6jw+57tfzWbbeRH5eVcDra2y2cct9u3n6L6fTbg1u9b/wMPUrfwH9unaQNrDvObQZQD9nZF48s0/P5Ol/b1G9z4hhWZjbrJSUdTXj5GSnMG3KcK/7ZGVlUVpaipSSwYMHY7fbcTqdpKSk+DyP0RhKXV017e1trF75HfV1vnMfivfvYcvGNZhbm7FY/Ec7paSk4HQ60el0ZGVlYTab0el0hId7TyCbf/YE4uO6zihWrt7JqBEDiYtVF0nmcrn5v0dW84cbxxMXGxZ4Bw2vSNSP/rUZwNGjKYATEJdLcst9ezC3qZs9LPzZYJpb7Xy7Ql0GKsClC0/n7Q9WqE4sEkKQlZVFSUkJkZGRXHTRRSQnJ2My+e5AO2r6NzbUUVFRQnxCkk/Z5NQMDhTvpay0iIhI/51yamoqaWlpnHvuuej1erZv387IkSNVfQ4AS7uNZT9uZd6Z41Xv8+x/tjLj1AxGD1e3oPyBsnb+9GRwxfZOCo5xFJAQolgIsVUIsUkIsd7TFi+E+FoIsdfzN87TLoQQTwshCoUQW4QQ4zsd5yqP/F4hxFWd2id4jl/o2Vf4O0dfQ1MAJyB6veCCnyVz5S07VCuBe26ewJv/3UNRiTqbe2JCNLmD01m9XmWdZmDUqFFs364slRobG8vFF18ccJ/o6FjiE5IYkjvC70pcERGRZGRmk5k1iKQk/5m0JpOJCy64AKPRiJSSoqIiBg3yvdzk4Xz06WrOnTeZkJDA4ZoA3/1YRm29lQt/PkSV/IGydn575y6uvigtsPBJyHFwAs+UUo7rtHTkXcC3Uspc4FvPe4B5KAvB5wKLgOdA6cyB+4EpwGTg/k4d+nPAtZ32mxvgHH0KTQH0AI1NTrbtChzqaG5zcd1dBzC3uVixptXv6Pv0KbHcdu0A1UrAaNTz0F1TeeDxtbRZ1GWLnjN3Il8v24TVpk4+NjYWi8WCzaZECvkyuXTGFBXD6DGTGDzEu2mpMyNGjScjYyCmKP8hoEKIg+euqqoiJSUFvV5dZ15R1UBNbTPjRqtTGAfKWnnjg938363qlqXt6PxfeHQYAzN9359Ws4uN2yyUlNu5+d4SVTOxHwM8MycKPVALaAHwquf/V4HzOrW/JhVWA7FCiDRgDvC1lLJBStkIfA3M9WyLllKulsqNf+2wY3k7R5+i3yoAu91NqzlwgbQOmpqd3eLf/RFMGv1t9x3gjj+VBJQzReq58Jw4zvv1Pq68pZiV6/zbuoNVAmkpkVx/1SgeeHytqo7CaAhh3pnjWfL52oCyHeTl5bFnj/pZQ1RUDPqQECJNgZ3bKakZWG3tREWpz2DdunUro0aNUiUrpeTtD1Zw6cLTVclb2p3c99gaHrxrCqGhgRWM2s4f4OV36rjh7gP86rYibvp1csB1ii0WF5fdUMg/F1f7letAShnUM9xqdmGzqS/bXe8j8iwQSokHofql8pBfCSE2CCEWedpSpJQdGXxVQIejKgPobCct87T5ay/z0u7vHH2KfqsAmltclFWoq2IJUFxqo82iTmHY7W7Kq+yq4r3LK+0YDAK73c2GzYFLNYzIDcdqc1NSbueJFwJHnhyuBD7+0n/8/dQJqeQNjuW193cHPDbAxPwhlJTVUl3rO5yzM3l5eezere7YAKaoaMytQXRErS2YTIGTwACcTidNTU0kJfn2LXSmYPN+MtMTSE0JbK6VUvKnx9ey6IqRZKT690l89EVNUJ2/0yn5x79rWLvJQkaakczUwOUdPvysgeG54ZSU2wIWBQSorXfS3OJSPWOorLbT2Kw+Ym3HnvYjrwUUnAkoUQixvtNr0WGHO01KOR7FvHOjEOKMrueSx72sUE+c40jpt7FkSYkGkhLVlfQFGDcqcBZtB0ajjqsuUtepZKQZeekJddUlAaJMOv58RzprCtpYs7GNiio76QE6gNOnKOULZl5YQGOzk5+fldglcelwrvnlCG5/YCXrNlUzaZz/gYkQ4qBD+Nbrfx7w+o1GI5GRkTQ2NhIXF7gjNZmiqa4sCyjXgbXdQli4uvUACgsLGTJEnV3e7nDy2Vfr+cPNv1Al//oHu8nJjmbaJP92/NIKK7++fScTRkex+InhATt/gB/XmTllQiS3XZvM1PEm1FivrrgwiSsuVPdMAiQnGlh4jvp6VkMHB7cK2+lT1SnpbgSf4FXXybbf/XBSlnv+1gghPkKx4VcLIdKklJUeM05H+Fk5kNVp90xPWzkw47D25Z72TC/y+DlHn6LfzgBOVEyRemZNi+bum9L4+OUhATt/UEajP6xpZOdeC1U1dr5f7X/9WiEEf/7DFJ5ZvJXqOsU38cq7O7HavI/wMtITSIiPYsu2YlWfYeTIkWzbtk2VrCkqGrNZfTIYENAc0sHOnTsZPjywbwHg8682MHv6GMLCvN/v8ioz//tKWRxnw+YaCrbUcu1lgSOL3v+0GodDUrC1lY3b1FWnnXFKFG89m8PN16QwOT8So/Hk+pkeqzBQIUSkECKq43/gbGAbsAToiOS5CvjE8/8S4EpPNNBUoNljxlkKnC2EiPM4f88Glnq2tQghpnqif6487FjeztGn6LUnSwiRJYRYJoTYIYTYLoS4xdN+QoRP9SWEENxzUzarP53IosvTuePBwoA+AVOkgftvn8Qf/7oam82F0+nm4ac3+JRfeO4pfPL5WpzO7mayffv2dXmflZVFWVmZKvNCSIgBp8pkOJfLeTB0NBCtra3o9foujmi3283+/d1DL+sbWtm9t5xTJw/zeiyn0yJguycAACAASURBVMV9jyl+kJq6dv7x0mYevHNKwGqXB8raeeGNCh78Qw5bvp3CeXPVj9BPViTglupfAUgBfhRCbAbWAp9JKb8EHgHOEkLsBc70vAf4HNgPFAIvATcASCkbgAeBdZ7Xnz1teGT+7dlnH/CFp93XOfoUvWkCcgK3SykLPFp6gxDia+BqlPCpR4QQd6GET93Zi9d5QiCEYFSeiSfvH8qKNU1cecsOXntqhN99BmfHcN68HBZc/Rl5g+PISjexcvVOpk3tPmqOCA/ljFNHsPTbjfxsTtcZ944dO4iPjz9o8hFCMGDAAEpKShg4cKDP89dUVxx0/kopA47s28xmIk3R1NVWExoaSlS097LOHdd0eOz/nj17aGlpISenq0nunQ9XcPH5p/k8/9sfrODCcwbzt+c2EhG+nSceOI0ok/+ZWYfN/6u3xqky+2gcQqVzN/BxpNwPjPXSXg/M9tIugRt9HOtl4GUv7euBblEGvs7R1+i1GYCUslJKWeD5vxXYieJBPyHCp/oynR3D/kI+W8123vlkL8WlrWzdVc8ti8byw6odVFR5XzDl9FNHsnlbMU3NXZ3ZkydPZu3arpFCo0aNCmgGam5uoK62CmNoGHZ74MVGzOZmTFHRlBwoxOH0/bm8xf5LKdm8eTNjx3btD3btKSMszEj2AO+Lxq/fWIjT5WJyfgrllW3s3d/MGx/s9rsiWVmlWbXDV6M7WjG4nqNPOIGFENlAPrAGleFTHm//IoABGeoWwegRgnwqbXZ1Ds2KahtPPF/G9VfnYjQG9goOys7g8gsSueLm9Vxz1QJCQ73foysuy2bkyF18/d1qPv0hkbRB03n4qa845YxzCAnp7kSPz5jMI898z9iJ09lSbCck1ATEUFnaSvOyOs97gFAqKtr44IdmdCFKnZ9iy2F1+M2JyNYSpIyhtKAVEeH/XrhrW8EQg6wvZ5c+AVHa9XjZEUqtIWtrFWZXIh+vPhQF1tZ4AKs7hc82SMCKo72J3cUmflq+kknT5vDe190VUJu5hY3rCjjljHN4Y0kdeUMHcvbsUxg6ZADLNngfpdY3NPP62z/w/CMz0BtMlKmIymxotPLSG7t46s9DVJeMDtWrX50LAJV+k76A1rH3HL3uXRJCmIAPgVullF28gf7Cp6SUL0opJ0opJyYlqI/2OVFJTwnljKkxXH/X91TVqKufPzk/hbNmTWHxq59gs3kPidXrdUyaMIK7bv8V4WGhRERGkTtsPFsLVniVj09Iwe12s+Lb/2JtPbQYSmxGPk0VG7vImhJzMdf5qYwZFo+0NiCMMUhbYEewtDcjjDEgXQid77FLS/VOopK7mrGaKzYTm35o9N9cvZ0fvv2Q1IxsQkO7j9LdLheb1i1j3MQZ6PV6cnMHcNN1l5CXO9CnqUjp/D/jikt/RmaauhpCW3bUccu9K1h0eZq2XgBAEA5grRbQ0dOrCkAIYUDp/N+UUv7X01ztCZuiL4dP9QYL5iTyx1sn8ocHf2J1QeAcAYDcIQMCKgFQln7sKH2Qmj4QY2gYJcXd4/mrKoopLyuksaEGl/PQKDQ8JgN7Wz0ux6HVvUyJQzDX7aWpfCMuh7XbsURIGNJphdBosDUi27yvriWlG2muAFsL0hCJxPsMyNpahbluLw5rE6GRh2rytLdUYgiPRW/o5BB22misr2bvro20NHc3eW3b/BPZQ0Zi8iSdGQJU3+zc+SfEq0tUe29JIS++vp1n/noGY0eoX760PyPRTEA9SW9GAQlgMbBTSvlkp00nRPhUMEgp/SbnSCm59ve7KdgauCRwzoBonnt0Ou8vKWTxWztURdqoVQKdGT56KmUHdtPa0jWkNDU9m1lzLiE+MRW3s2unHpM+jubKLZ7P5KauaAXtrZXUFa88aAbqhsuGu+gL3BU/4W70nkEshA5X+Y/Ipr24d78NRu85G0LoqNr1Bfa2ehrLDkU0NZUXEJeR3/W0DiuZA4cya+4lRMd0jYevKNuHlJKMLHU5BMF2/jabi3sfXU1VrYWnHzqD2OjApbCXfFXHfY8X+5VRkwB2IuCWQvVL4+jozRnANOAKYJanUt8mIcR8TpDwKbWp7pu2tbFlRzu33HvAp4wQggfvHMSzr1Twh7/sw9zmPyM5MsLA4/dPQ6cT3P7ASswqavsEqwR0Oh35k2axaf1ynIc5XKOi4zhj9kJMCV07yIi4gbQ3l+N22RFCR1zWJEKMJkKMET7NJiIyFWFScml0cXm+ryde2SaiBqCL9J58pTcqo+hQUxIxaWMAsLXVoQ8JJSS0a6mJhOxTmXTK2d3MP23mFvbv3caocdN8Xktngu38yyrNXH/ncmadlsnN14wJGEpaVmHj8pt2sn6Lmbt/l+VTzm53s/A3eyktt7H/QPfZlvdrP7JyDccbbQbQc/RmFNCPUkohpRzjqdQ3Tkr5uZSyXko5W0qZK6U8s1O8bVDUNzjYu1/dDwFg3SYzDoe6EdT23RbmXrJLVemI2nonv/jVHha/VcsHn/r+KKlJRhY/kceZp8ex8NrtfPpNPW0WF2986N2LKITgV5cM5+IFudxw5/fsPxC4nEKwSiA8wsTQ4ePZ4sUfIITAEB7brS06dRTNVUr0jyE0iswxC4mM950JLcLiIXYwIioLInxnJYvYXET0IGRIpLKPF/SGcKKSh5E2/Bx0esUv1FS2gdjMCd1kjeHdQ0hdLhcb1y0jf9IMVcXjgu38f1xbyR8fXs0Dd0z2uToZwItvVuBySZ79Tzk33LOXu383gD//PpvwMN/X9MDj5Sxd1swl1xXSbg38HO8/YOWMBTtUlz+prXNQWKT+97SmwHxkhemOcTloDf/0uhP4eGGK1JMQpz7IaWhOmOoMU7tdcvsN6dTWB05gio8LISREkJZi4N5Hyqiu9T/qOnt6PB8tHsnajS3M+eUW7nhwH9V1vjvrKeNTeOzeU3noqQ0sXR644FywSiAlbSChoeGUFO0KKAuK3b+tvgjpVu6N3hBBYs503zuExSPsLegGn+v3/gtDBLqc+QhbI/hQAEIIknPPQuiUjtLR3oREYgxXl0u4ffNKBg0ZRaQpcGceTOfvdkuef3Ub//uqiOcfm8GADN+F71atb+a2+/cx/4qthIbq+PjlkYzM81+mZE2BmVferSM91YDTCWqCIppbXPzxtgzqG9Ql4UWZ9KSlqA+2GJBhVP176ozmA+hZ+q0CCA3VER+EAoiJDlEdhZE/OpJLzksgOyuw7XbCmEj2/DSWso357PxxDClJgX9EEeF6fjY7gcKidppbXfzfI0V+5VOTI3ju0emsKajmb/8qwOlURoC+YtWDVQLDR0+hrGSvV2fp4QihIyo5j5aaXZ3a/HTsYQlKJJAu8H0ROgO47Qi977DfzudqLC8gLkPdoi7lpfsAQUbW4ICyajr/jnvfarZz230/YjIZeOSPpxAe5vuZdDolt9xXiJRK8bW5M+MDmogApow3UbE5n9KCfNZ8MZJkFTWw8kdH8svzExmQGfgZBggL0xEZoa6kNkBaypGHZmtRQD1Hv1UAJzpDB4fz7Xtj+d+ro5g5LRZrgFK8RoOe+/7fJHIHxXLjPd9TVNLCky9s8ikfjBJQ/AEz2bzh+27+AG9EJw+jtWY3UqowqYWEg1NdWKuULhDqOiGnzYzLbiHU5D3BqzNt5maKC7cxauypAWXVdP5SSh54fB279zVyw13fc9VFeVy+MC/giLiq1s7vr8viyzdH88FLI4iL6RNpOj2ODOKlcXScnE/YCUBcjIG4GEPA6f/hnDcvh6GDY7nkt0tptzkZPNRMdLT3EMPcIQMAWPzqJ36TxaCTP2DDD4yf4j/DXehCiEwYhLmukKikof5lPZ2itDUDAhHqvYqktNSC2wGh6kIsmyo2EXtY5I83FLv/cvInzUQXwO6v1uyzZ+8B3v9fIZu21/Ly32eTlKAuGzgzLZSLzg2ssPo7mmmn59BmAP2M197fxdqN1ej1yhoEy35Y71fe20zAl/MuJW0goeERHCjaGfA6YlJH0VK1Dau5BrvFu+lISomr6AtkWyWu7a+AzncHLB1mXHveQzbsxl25xqecpakUW1s99rY6wqLTA17ntk0ryckdRaSPNQY67kUwNv+vvl0NQHu7i9Ubqg5WEdVQh+YD6Dk0BdCH+X5VE1//4L+08+GMHp7AtyvKeP6xGXz3wXnkDc0OuE9nJdDcVM+B/Tt8yg4fNYXykkJamuuxt/u+tvbmclxOK2Wb3+uSMNYZIQS69FOVuXxkKsLge7YjorJAZ4CQMESKb7u+3dJA6aa3ETo9NrP3HEKX04bTbqG8tBAhBOmZvu3+e3YW0NxUp7rzdzidzJ45mVWfLuT268bx8ZdFjB+jvgqoyyVZ/HYlxaXqI276E0rHrvkAegrNBHSscQaXjNNi9h2hMmSQiSdf3MNLb9Vz760jGJgZycbd/hdEx5DKol8N4fEXvmZ4XibNrhGUrw28EhkkYIjM4rsv30EXkcQ+2a2I4kHcSWexfMUXuKyNkHMueHPK2vTgcIB0U95iAUcTuNq7ywEk54OzHae53Pv2DiLTIX4oLov3jr2wPRwsVpBu2mx22toBu5eVzNqqoGYDpcZIIoYs4NtC7zMP6XLQunUdO7auYdaci9hUGAIEvpcuVwL3PbEKgyGE6665mJpmPTUBonRjo1pZt6mBx/61i7kz04iOSqHF7Ht8lmSoCHgdXTCod+D2NtrAvufQFEAfJspk4P7/N5K9Ra3c//h2hg2JYmx+NmGh/qM8TKZwbrnu53z+1XrWrfmKcRNnYDT6j/Zwu1w0Nigdq9tSg8tShz4i0auso3EvrrYqkC6wNUFEMjTuBVMGGDwF3UKjYdB8qPgJRICJZvQAcKsIR0wZD35qAAGKkzhxLCSO6VoAzVKtDC8jU8HWANZ63M42XK1lhMR4L1ntqN8B0gm6EKorDxAdkxDQkWtubWLT+uVceeEEJuaryyRuaDRz870bCTPqeO6RCSTGq4vM6a9opp2eQzMB9SI/rTezbGVNwISZ3EFR/Ofvk8gfFcdjT/2XVWt3BdxHpxOcM3cSg4eOYc2Kz2hs8F+WUqfXM2HKbExjF2FMmUB78ddIl/foIGPyOMJz5kFoHNg8ZqDweKg5bEEZnQEyzvDtuHW7oMpTRjpQx95ZpnK1b5mYQZA0tmvn73ZB7SYI88y2rI0QmUH4kAU+O3+3rRlb9SbCBswkauxvGTp8QsDOv7ykkM3rvyd/0ixVnb/D4WTJF2t54ZWl/OaXg3js3rEBO3+7w817/yulpDzIaqAnCBJwu4Xql8bRoSmAI8DlCn6I4q3Dzh0UyvotDVy4aBXvLinB7icTWQjBnBmp3HXbQqprm3nsqY84UOp/AXiAhMQ0Jp82j907NrBvz+bAisMQTljW6YRlnU77vs+9KgEhBIa4ITDoHDB5yhOEJSghna1lhwv7ngHo9OC0Bjfkc1j8h4J621a/DWKHgt7TuSaNgwGzCTF5LynhtjXTXvQVkUPPw5g8FqH3P+NyuVxs3vA99fWVnHLGOT4dyp3ZtLWIR/7+X+JiTdx16/mMGe57cRuA5hYHz7y8l0uuW4Wl3UlifFeFeSRZt1LKI164/XiiOYF7Dk0BeAjmB/TRFw28+WFdQLm7Hy7juddraGxysnZTG2/8t77L9qQEA3dcP4zXnp6M1ermkutW8czivTS1+I7LNxpCOO9nU/jNlWfyvy/X8Z83v8Vs9mFb9xAaGs6UafNwuVysX/UVDhWLr4REZWJMm+hTCQBK527oVMM/aSw0bFfCNdViiACn/+vvgrVBUTZqsTUr+0Rndzqnb2dzR+cfPuhsdCpCTs2tzaz64VOSUrIYk396wFDSqupG/v7sEnbuLuX3N53H6aeM8DuzKCm3cN/ftnHdXRsYkm3i/RdP5eqLBhERfug8Ukr+8FAZdrubA2U2Hnq6gudf919EV0rJnQ+Wsv+A+pnEEZV2OAK0PAD1CCEGqWnzRb9VAOWVdtYUqFuEG+Avfy8PWKahg1ffreOqm/bx6nv+R+D33ZZObLSeX/++mFvuK+HXtxex5KvuTsmI8BCuuiibD146ldwcEzfcXcC9j22jpPxQglRtfdeokIT4aH537XymTszjH899yjfLN+N2+59BDB0+npzcMaxe8dlBe78/VCmBzugMkDAKajcHlu0gLEGxz/tw7HahrRLa6xRzkxqkhOr1kDJJ1YIowXb+5aWFbF6v5BCkZ/qudwRgtdp5+8MVvPn+D1yy8DQuveAMwsO7Os87f8ebtjdx490b+OvTO1kwJ523/zWVebPS0Ou7f46Hnq7kyRermX/lXu79WzmTx0Vy7S99Rx5JKbn9/hKeeK5S1UAGYMPmNv7zTuAZZwcff9HQ67WA/Kw7/oAQovywIpQd+9wthCgUQuwWQszp1D7X01boWaq2o32QEGKNp/1dIYTR0x7qeV/o2Z4d/M1QxYde2j5Qu3O/dQJnpBnJSFOfjv7HWzNUpd3b7W7OmBrF5RckMjzXf4JPeJiOSxck8Is5cUyYvwOXC35zRzHfDcxjVF73fXU6wdyZacydmUbBlkb++vROdDq49rIcbrt/E++9cEq3fYbnZXL3/1vIt99v4eEnP2ThglMYluu70FhCkmIS2rh2GcmpmQwaMtrvCDQkSjlW+77PCR88328ZBkBxBDfvB3MZ2Fsg3s+6xG2V0LALHGZIGKE4k/3RtO+QEkibAkbfNXWo3aSYpCJTwRi41n4wnb/L5WLbppUIITjljHP8jvqllPy0Zhff/rCFc+ZM4tKFp3uVK9jSyOMv7Obqi7J57f0DDMiI4I4bhpGd5T8R8MPPG3noGWUdhfjYEF57yr8iAqXkxEUL4hk7KgK7XV0nPWFsJPmj1a1eB3DePJVK2gvHcKLha91xgL9LKR/vLCyEGAFcAowE0oFvhBAdmYzPAmcBZcA6IcQSKeUO4FHPsd4RQjwPXAM85/nbKKUcIoS4xCN38bH6YEKIYZ7rjBFCnN9pUzQQpvY4/VYBBIuazh/AaNRxx42BE4w609bu5t3nBpOZaiAmWq+qSNb4MXE8P2YCB8rauOeRrewqbOWa29dx03XDMRi6fm16vY6zZ43jlMl5vPfRSr77fiuXLDyN+DjvHWRoaDhTTpvH3l0FrF+lRAkZ/EQJHa4EpNuBzpcZxWkFgwlKv1P8A/4UQEQqhCcqCiBcRQZsRLKiAGKy/Xf+AE2FimkpbariBPaSZCZdNkCHdFpUd/5t5mY2rltOTu4ov/kDAMUlNbzz4QpFSd+2sNv31kFDo5lbH11Lda2NnAGRPPNQPnEx6gYvC+fH8Yu546lrcFJWacdud2M0+p/YGww6pk6IYuqEAPfwMNT+Ro4GybGL7/csLVvp+b9VCNGx7rgvFgDvSCltQJEQohCY7NlW6FlkHiHEO8ACz/FmAb/0yLwKPICiABZ4/gdlRP5PIYSQx86OlgecA8QCP+/U3gpcq/YgmgLoARLiQoKqTNqZlKQwIsJDmD41ifBwPZu3FfuMMIkyhXPNFWdSdKCaF1/5iuF5mbh0o9EJgdncTFT0oZwDxSQ0gbraClav+IzR+acRG++7E+6sBCRuwrKmA15+qHqD8hIhgW37QkDyeHC0+azw2YXwZMWWHxOgYJuUyrlDwhSzlA8ntKNxHy5zBW5ro6rOv7x0H0WF28ifNNOro7eluYHomHhstnYWv74Cm83BoqvP9qmIO1i9bjdjR8TSbnVhNOqIjQ5uiVOdTpCcaFBVBO5EIMgeMlEI0Tnd/UUp5YuHCx227vg04HdCiCuB9SizhEYU5dA5xKyMQwqj9LD2KUAC0CSldHqRz+jYR0rpFEI0e+TV2dwCIKX8BPhECHGKlHLVkR5HUwB9nLBQPS/9beLB98vWBw4vHDQwhTtvPZ+f1u7inY+XkJScSVVFMdPPXIjQde0ME5PSmTxtHhvXfUdy6gAk43C1lHgNj9SFxSHdDlzmchwNeyDWywIuQq/4AaIHQYPvjOJDB9VDxul+y0AcJDRGURiBZlBuO8QPV/IB/ETwOBv34GwuxpA4ChHi3bzhbD6APiqDLQU/AHDKGed4XSvAZm1n5fJPyB2WT1VFMTf8appfU1xn5p89gZkTA0cOnSwEOUauk1JO9Cdw+LrjQojngAdRdM2DwBPAr4/sanudQiHEPUA2nfpzKaWqz6MpgH6KEIJpU4azvzaNbz5/E7vNSuGezeQO614gLTQsnCmnzWfPzgLaDyzBaS4navSvESGHmRKlJCRuCEg3zsZC7wqgA0Ok4nxVg5rOX/lQ6qqB6kMhxW+fAC47ztZyQmIGoTelA90d6E5zJe1FX6CLSCZh9Ei/paK3FPyAtb2NspK9TJ+9kGEB/EMavjmWwUbe1h2XUlZ32v4S8KnnbTnQedm1TE8bPtrrgVghRIhnFtBZvuNYZUKIECDGI3+s+QRYAXwDqFvdpxOaAlBDEE+kwxlcFmddk//478PZuDu4lP7Nhc1EJI4gzGnlQHkdlnAnOh+OXJsuG2fbJnDZaS1dqZRoOBzTQOXlaFOygANl+XZGBv18BocriPBTlx2GLMSpN+IErNY2upV5KF0BTisuexs1jgwayrx/Vnt7I00WSXTqKGRIKBv3tzF0d3CLvI8eEtxzEBsVXF9iCAni3hzBQi7HjGMY3+9r3XEhRJrHPwDwC2Cb5/8lwFtCiCdRnMC5wFoUW2euJ7yyHMVR/EsppRRCLAMuAN6h6xrmHWubr/Js/+4Y2v87EyGlvPNId9YUQB9l2646RuYFLj0QiPCYdMJj1Dmt9cYISDtViZt3tIF0++7gDZFKlM+Jit7ovYZRB442CIlQZjGhcQdXGfOGMTyO1GHzfW4/EhxON/uKmxg25MijaU5EOlYEO0Z0rDu+VQjRsTjGPcClQohxntMVA78FkFJuF0K8B+xAiSC6UUpl1CKE+B2wFNADL0spt3uOdyfwjhDiL8BGFIWD5+/rHkdyA4rSOB58KoSYL6X8/Eh21hRAH8ThdPP1DyU88dwGpk5M49w5g0lLVr8uwMaNGzEajQwfPjyo84YYI5UwTpO/QImTBEMkpB9aIEYfEtzMzmazsWnTJpKSksjJCRya2cHufY188kUhuwobOXvGwJNOAYASCXRMjiPlj3iNVMBnZymlfAh4yEv7597280QGTfbSbgUuDOZ6j5BbgHuEEHbAjvJ5pZRSlVNJUwC9wMp1LYwYGuFzxSdDiI7bFo3H5XKzekMl/3ihgDaLg3mzsnE4EjAY/Ed7jBo1iq1bt/Luu+9iNQ4mKnkEOn0QX3VrGZjSVK++1W9x2Tx1gwJUYO28i6OdpopNfFxaw7hx48jOzg64j8Vi4Y0PdrL8p1IGDYhhwdzB3HHjxICzv7JKG3UNDsaNDM7c1NdRs5CchoKUMrhY3sPQFMAR8NO6VqZOMAUdFy2lRAjB/hIrz75SQWubi9zBZqZNSmfUsAT0+q7mFr1ex7TJGUybnEFzq40vvyvmo48+Ijo6mtGjR5Oenu61kzAYDIwfP56xY8fy+pItVO74hIi4gcSkjkanZiTrtkPJN5CUHzg5qzPNRRCVpdj6dUZ1tmSXTfElhCcHlne2K/IhEf7NNwePbVcKyDnblXOondlICS3F0LRHuQcqcNhaaSrfiKO9idj0sVw0f4bfDtzlclFUVMT27dtxu91cf3k6/3pkNkajb6VrtTnZsLmalWsrKKuoID01lEsXJHkuWQZtLrRYXOzeZyV/dHCrzh1vtBo/6vH4OS4DBkkpHxRCZAFpUsq1avbXFICHymq7qoWs2ywuHv1nJVLCq0/nEBfb/Ra63ZKLrtvFwMxQpo6PYkp+NFnpRr75sYnCIivXXZHKFQuTcTjc/HdpNN+vKuPZ/2wiOiqUUyamMW1SOqmHmXxiokK5eEEetpDp1NfXs23bNlasWEF2djYjR44kKqr7QECv1xOdMpyo5GG01e+nctfnhJlSiEkfR4jRT1ZnTI5Se7+mQMnqTR6vdLg+EqoOYoyC6nXKzCFuKIT6cWxKCY17oKVIkR94lm/ZDoQOylcoCiBuqKJs/GEuV5LMbE3KZ/B3LdKtfDZ7q1I+IiwBss4MGKFktzTSWL4Bt9NGbMZ4wqOVAnO+OuPa2lq2bt1KTU0NOTk5zJ49G5PJxNkzqrxclmT/gWZWrq1g3aYq3G6YMDaZBfOGMH96HEIIHA43N9+7jz/enEVSgoHd+9pZXdDKmo0tRJtCeOz/vJeF2bOvnYsWFTJvVqxqBaD2N3K0aP1/UPwLJYRtFkpIqxkla1lVCF6/VQDllXbKKu1MGa9uenz9nUU8dHcWI/P8p7s3NrlYtd5MfaOTKfO3890Hw8lM7/qj0OkE7z0/jD37lR/jw/8spbTCRqvZxZqNrWzZ2cY/HsghNFTHhLEpTBibAkBDk5XV6yt5ZvEmqmvbGJoTx7TJ6UwYm0JYqPJV7d+/n5ycHKZPn47b7aa4uJjly5fjcDgYNmwYubm53UxEQghMiYOJTMihvbmUmr3fYAiLITZjPIYwHzPIkDDFBt5WBWXLIG4YtNdC7BDfHbvRY3Zsq1Bs6P4UgBBKB24uU0o2qEFnVJRFSAREeq/k2YW2CuWaYwb7P0drsaLcXFZoq1ZCSAMkhVnNNTSVFSCEjtjM8YRGel87AaC9vZ2dO3eyd+9e4uPjGTVqFDNnzkQIgcvlori4mI7s/eZWG6vXV7JyXQUVVW3kDIxh2uR0Lvh5LhHhh75XIRqorXdw6Y27+HFtC0WeFcTycsKZMj6Ke24aQFa698565dpWfnb5blrNbnRC8OCdmYSE+J89LFnayA+rWnj8Ae/lsw/no88bOG9eXNCzEq3KZ9BMkVKOF0JsBJBSNnbUI1JDv1UAwdYC+ug/Q1U9rFJKfnZWLHNmxHDWGdEkxHu3x+t0gmFDIhg2JIKrL1I6+Ctu3s3WXW0cKLPyRYW5xAAAIABJREFU/epmzp7edTWw+Ngw5p85iPlnDkJKye59jfy0toI3/7sLnRBMGpfKN98UMmTIEGbOnIlOpyMnJ4ecnBysVis7d+7ko48+IiYmhtGjR5OW1rWTFEIQETuAiNgBWFurqCtagU5vIC5zAsaIeCxNpSAju0b+RKZCeBLUrFdG7NYGGHCWd3ONdCojZ5cNzBVKGQh/99QQoSgZc5lvma4fQMkEjhsaeP0Alw2s9cq1G6OUDl7vJaLJ5VBG/E4rpE6GrFndr9llw9paTagpGWtLOU3lG9EbTSRkn4IhzLuicLvd7N+//6CJZ/jw4SxcuJCQkEPXbbfb+eSTT5BS8mxENFt21BEZbmDqxDR+e8UYMtL8D14++qIOu92NXg+zT4vl1t+oM3FNmxzFpm9Hs3R5M+s3tXmKtvl/9s+dE8fPz1YfqvqL+X2iFtDJgEMIocczcRJCJOEtqcUHoqdKvB5PJo41ybVLRx2/EwSTB2D1rhDcbsn6LWbGjYjsUqulsDRAWQMPlnYHn39bzAN/U7K+R4wYwfz589HpundqdXV1bNu2jaqqKtpEJlHJwwgJNdFQsoa4rMldFJ2trZ6m8g1ItxOHtQVbaEr3+H/pgoqVyujY1Q7ppysLr/gLA3W0KbOIzo7k450H0PlcLk+ZY70fn4cxWun8G3Yp1xo7RFkroDNSQul3RIYakW4XxshEYjPylYgpD26Xg+bKLcRlTsDWVk9rzU6i9XUMGjSIESNGeDXPtbe38/7771NVVUVISAgv/m0W+WOSMYSoy6sYkrXv4P+tZieFxVbyR/lWGIawvpMHoE9bs8FX9m5WZpq87aarVR/r9rse8XmskwEhxGUoRebGo9QiugD4Pynl+2r277czgL6GTieYPO7IHfYR4QZio0OZPn06qampJCcne+38ARITE5kxYwZut5s3P99DXdGPSLeTtoYi3G4nidnTDsqGRiaQMvRsWmt3U717KZhrlAJtne3rQq+s7AWKrVzN8o1+au73CP46/s4kjobkCb47vbrN0FZOm0XHgPxLMUZ0XYtAul1U7focm7kWS1MJhrBYolOGc/HZs/3OKMPCwvjFL35BdXU11dXVREYaVHf+hxNlCvHb+Z9onPhD0p5DSvmmEGIDMBtlGneelHKn2v39KgAhxCnA5cDpQBrQjpI19xnwhpQywFLXGseSM88YQEWr+pBEnU5HZHw2kfHZ1BWtBPbTVLaBEGMksemHjXQRJOZMp85i8z/jETp1ETgnCv4UhXQplU1Tp5IYEYrTbumiAKSU1BR+i6XxAAAxqdMxJeYCvp3AHQghiIqKIioqiiFDhjAyr7sT+GSlHxglepq9QAue/lwIMUBKWaJmR58KQAjxBVCBktr8EFCD4qkaCsxEqUT3pJRyydFdu8bxRkpJRNyAg6Ygb6UgopKUsud19d0XrDlpEXrFLATEJnS3fwshSM49i8RBp+G0tSGPt4nrJOAYZwL3e4QQNwH3A9UotYAEym0co2Z/fzOAK6SUh5cuNQMFntcTQgjfoQ8nKU5XcCV5m83BFQ2rrLUGFupEscVjVjB6ojcCLezlCmJ5xr7W4QV7PUF81mKLP6emCXQeE4xnEbdgv6dgn4NgnzMDQfgAehMtCihYbgHypJRHVGjOpwI4vPMXQkTTtdxogxcFoaGhoXFUaP1/UJQCR2yKD+gEFkL8FvgTYOXQdyMB9QVONDQ0NFTidvdiNdITj/3AciHEZ4Cto7Fz9VN/qIkC+j0wShvta2hoHG80H0DQlHheRs8rKNQogH0ctGxqACxb2cL40RHERAcXRWu3/3/2zjs8jupq47+7fVfaVe/VlmS5yE3uGIMxzQZMryEBAqG3QMhHCQmQhARIQkggQAiEAKH30IuNbQzuvVtykW31rl2ttPV+f8zKWllbZg246vWzj7Uz987cmZ05595T3uNnyzYnZUPjIkaJ7K5u5/lXV5CVYSU700Z2pvJ/arL6otwtzY1otVqkTEJ8V1I3KZW4fhXF1enYCdaCg8spHwy/V6kjHI02AhQaiGi1hlVA+j20NDej1xuw2tQlT3k8PuobHdTU26mp66C2zk5tg5377pjRjyMqGH6/n9UbHYwdYY0563bnbhetbd5DjwvoYA/gMIKU8gHYW/UMKaUjlv5qJNjdwLdCiCX0XWLcEsuJDjT8fonXK6MWyO7Be5+0cMbJSVFT4rdXdfP2hy1ccl0lv78rl59enIZW27fPf9+upcPhIyVRT3KSjuREPcmJelraPVxyvVJ7omSwBaNBg8tTRUqSmeQkCynJFlKSLCQlmrnk3FF0dXloaOpk3aZ6Pv+qgsZmJ1W1gk5HB0nJaSSnpBEfbyPeaiPemoDBYNwrBJxOB7U1u/HvaQf8SKFFmJIQ5nSEOQWMiYhANq30diObNyB6+HJ8LqhdooRAmlOUer275ioF1uMywt8cVzs0b1IEaUqZOiXgtge4+VXG7bs7QGtSF4rq90LdUoUMzpIRvo+U0LYN7FVKTkB3s5LxLH3KNaMIdVm/Ek3WpN5uPjd0tyC7m/E76sDjQOAHoWOnL5GCwuKgU0i6upw47B04HO047B00NtTidHZiscSxfQNkpseTnWkjK8NKyaBUjEYtm7Y20NzaRUurk6YWJy2tTlraurCY7Ng7vWyucJKTaeSd50bS6fTT0uahpdVDS5uXljYPw0riOGlaXwd2p9PHI0/U8uena3nonjxysw2kpUR2KtsdPr5dZufUE9QptK4uP2bz/uU1DKwA1EMIUQa8BCQHvjcBlwXVK4gINQrgn8BcYB0xpBgfbNQ3eqhv9DCmLPrsRkrJC683kZ1pYOLYyLPc6joPmyu7aGz28uBjNWRnGjjtxL4vRfkoG9W13bS0eqnY0UVLW0fgxfTi8Uoamz34/PDJf8fQ6iijpU15wZtbu2hodLBxS8PeF93rU265QGCzGknsttLd7WRXVSVanQ693kBLSxMORwdulxJ5otXqiLfasNkSEGkFCEMCUvrwV7wLKSCdDeBqVQSc0IExEdmwAtFRBWmjlazYnGkKkVp3MzRvUBhCqxdA6iiFiiGUcHe1K3QQjmqFB0jNrNvbrSSXqVUA3kB0jRoF0LpVIYKTPvA6Q/fx+xTSu46dynd7lUJnkVIG+kBkjqsN36454O1G+rqhuw3wg8aANCYhvJ1g34Wm9BKEpxPpbsdkamNbxSbWrl6K36/8hmazhXhrAkaTmeamemqqq8jNG0S8NQGTyU51XQfVdUp2tdGg650YJFlIT4tn6JB0UpLMJCWYaWlawsXXr8ftkaSm6PnNn3aQnBiYbCQpE46y0jiKCvuvGp97pZEnnq+nu1uyfG0nM2ckRlUAn37VxsIl6hXAgsUdnHx8QsyMuQNRQDHjGeB2KeVXAEKI6cC/gGMideqBGgWgl1Levt/DO0jIyjCoZi4UQvDuf4aoajttkpXpx9i4+apMzjg5sd/sH2B4SRzDS/orHr9fcvpla7jj2hR+dG4mSQl61mzVk52pJzszcv0GKSV2h4snX/dSW7MLjUaLADKz8rAl9H0pPR4PnY4OHI4O2NOG374LuprB51QEfXo5msGzEUIoM9uWzYrttasJ2iohZYQi4A1W5eML1JmwpCvcOuFgToHCmaCJIUTREuF4IdvHQE+dMlwpDu93hyeZFxpIKlHI35wNykohmP/f71UUidsOfg+apCFgSUcILdLvwb/9I2RAecjdXyGNCQiDjcSkVHLzBxMXZ+1XRL6+rpqa6iqEEOh0ekqHjuTGS3RYzHrVZpxTjk9h1ecTef71Whqa3Dz5x6Gqb8stP8vkqh+l8cq7zeh1gpLBpqh9LpidwgWzU6K264FaRREKRwI9zQFEXI/wB5BSzhNCqLbpqVEAnwghrgE+oK8JqCWmYR5BuPe2/a+Y9fFLo/erzKMQApvVhM2mZ9iIseQXFKHXh1Zwer2exKQUEpNS0LQoy3B/41rQ6BBJpYiEwXvHIDR6pCEBbelFYMnE11nT/4BJ6pTjQad/CAUhIq8uhFBWK8bE0Nep0UHmRLSWDKR9D2j0e30qQqNHU3AKsq0Cf+tWNBnliABLaXZO+MVyRmYOGZk5OJ2dNNRXY0tIIs7iCts+HApyzdz/i8H4fLELzDiLlqsvjUGZHiBIBnwAMWK7EOLXKGYgUJgbtqvtrEYBXBL4/+6gbT94GKgQYibwN5QanM9KKR/6Ic93IBDzcjjkMTQUFcdW6hFApJahSQudHKix5X/XYR3xEBodIqGw/3a9BZE2Gk3aaGSMpawsljgKB6lUrhEQahV6OOP7XAAciXJkH1yJEqb/TuD714FtqhBVAUgpQ1eU+AERoDf9B3AysAdYJoT4n5Ry44Eey5ECEa64+wC+Nwzc4+8H35cCOBrkiJSyFbhFCJEA+KWU9lj6q4pjFEIcAxTSNxP4xVhOFCMmApWBgssIIV4DzgKOmB9uAAMYQBh8fyuAI16OCCEmAP8GrIHv7cCVUsoVavqryQR+CSgCVqOQDYHyE/2QCiAHJcW5B3uAScENAn6JawDyc44gdsoBDOAoR4zyP1UIsTzo+zNSymcCf0eVI0cAngNukFJ+DSCEOBZ4nu+BDK4H44Hh8hBzzQd+5GdAKQhzkIczgAEM4PtA7GGgTUdzQRjA1yP8AaSUC4UQKgp2KFCjANYDmUDtfgxuf1ENBAeR5wa2DWAAAziCIQH/9zedOxrkyHwhxD+BV1Fu30Uo3EDlAFLKlZE6q1EAqcBGIcRS+oaBnrnfQ46OZUCJEGIQyg92MfCjH/B8hw38fj9trc0kp8QWP+9v3gTudiUM1NS3FrHsagaDFXEkFXr5ASA9neD3IYy9ORtSSnDW4W/Zgia5dG8YqKrjSUlLcyMpqYdeOObBxPdobDga5MjowP/37bN9LIpCmBGpsxoFcH/sY/pukFJ6hRA3AZ+hhG/9W21q84HAi282cdxkK4V5KrNXA/B6/dx2fwUXzs7g2IkJ+50PsOibOYCkuGQEgwaXYjD2H0cP9YB02JGudmRnDbJpHdQuVsIWc6fvPb90teLf/ArCmqeUg7QV9s30bd+pJFOZ05R4+XDjlvLQ4QDaF5HG5vcp1A/OBiUxLTjZzO+Ftkq81Quhsw7tiCt6D+n34N/2P6RdMTNLnQXptiMMCbhc1j7UHMHodNjZVrmRyoqNZOcUkJIa8R0NC4/Hz4dfNrFucye/uS32YL2Vazupa/T0y2Q/2Pi+5P+hLke+D0gpT/gu/SNVBBNSwfxobb7LAMJBSvkx8PH+9u+we2nv8JGXE11ISyn57V+q+fH5qRQVRs6K3F7VzYdftHLVbds5/aRE/u/GLI6Z0JdAzOv109LuDXCyBHhZAn/P+7aV51+vZViJhf8+PmJvH5fbS2tbF80tTpoDtBAKPYSTltYuPF4fAsGuOg1uVzcORwc1liqs1gS8Pi8Ou8Iv09lpx+/3I4TAZLYgHQlgTEAkDEI2bUCkjYa4DPy1ixWh5w9k+UofsrsFEgb3CkopFe4dj10pnA6QUKQUjQ8lTNsqwL4b9BaFEC4+O+q9x9Op/K82iczVrlBVqKGOaK2ArgbwOCFtlJLluy/8Pqj+GroaA+MYHyhob1GuUaNT/u5qBq0e/+65SjudGWFKhpQyhNaMdOyB+Cxwd+Bv38ayxe24AtQcOp2OuHgb8fE2rNYEfD4vu3ftoNNhp7mxnrlf/I/KdUoOgcmoIznJTEqSJUADYSYlWfk7KdGMLkAM9/n8Zm64Zwt1DW6mjE/gied37+WcSk7U7aWDSLTp+uWfvPVhC4/9s45FKxzcfUsWE8bERaWCWLLSwfLVDm68Ul1J0g1bnIwoVU9eGIzvU6J8VzlyqEMIkQhcRv8oTVVcbZFWAF8JId4G3g+uLymEMADHApcDXwH/iXnUBwBKmr262WjPLC0+LjprZk2dhwC1CzlZBoaESKP/3WM7qW1w9XshLRYtQgMpSToyUg3c9Ydt2J1KLViDXtvnpU9NtlBUkIzX56Or20tjcyc1tR3UNHUipSQ5JQ2tTkdd3R7irQkkJaeSlz+YuHgrGo2WtrZmmpsa2L61FVorkD6XIpCFBiF9SlJTRjlCa0R6u/Dvnocmfwa+riaF+qFuqfImGqwKxQNCKaAejgcIlNVDa4UiMEMJ21DwOBTSObXwuQN1iVUoAGsu2HcpXEDGMLNcjVbhPWpYqQh5UJSdp1NRNJkTwZaPNmU4/ppv0Q6aBYD0OBUF2t2M1FvAYMVftwyhNSLMKeTlDyY1PZO4OCterweHowOHvQO7vR2Hox2LJR6f14PX58VgNFJaHEd2ppWUJAsmkw4ktHZ0U9tgZ30PN1RrF77Aw2ezOBiUb8Lu8CL9kuJCMx0OHzv3dLFyvZfWNmXCMW1SIldc2FcRjxpmJilJedYdnX7a2n1RFYA1ThOTYDboNUgp92OVO5ALHCM+Bhazn1xtItwEXghhQskouxQYBLQBZkADfA48KaVctX9j/n4xfnS8XPpZ2Q93gn3u0cvvNFFWamH0iP4znK7O8LOeljYPL7xZw8zpKWRnmrDFa1lb0Z/DZXd1O4898w06rYbMdCtZGVZyMm1kZVr5ZHEqOl10zpiqnZX4fT4WNaSAKQkRgZ+n5xkQQuB1VAeuVyqCtuf6nfV9OXKgl5gtGE3rFP4dTWxU2T8YPE5w7Iak0v77dEHKO2DLJ9iG7/cpCgLQxeeoEmjS2w3dLUxIayYhIYn0jMirIL/fj8ft4pSJTdTU26mtU+igG5s7kRIe/s2pIemgRxZvpqXNw/ZdXSxe0c6NV+RFzAg2x/VndP9kbhtmk4bpx+zDQ/UDm/G0WUtWhIvcyczMlJdffrnqYz3yyCNhj3U0QAixUkpZvr/9I5WE7AaeBJ4UQuhRnMFdUsqjvmr4pefuXynk5EQ9t11dELVdXk4Cf3ngtJD79CvUOWp7qIgXO6Jnp/YTakKg1JYO+r6v8A8HtTTQBwp6CySqoFsQoq/wh73Cv7dJ9OsSOhPEZ1MyRN390mg0GE1mhg1JZ9gQ9c5gjUaQmmwgNdnAxDEJqvsFY9aMQ8v234NDLOL8UMdLQoirgQ/ZD642VdM0KaWHAxsGOoDDFYeS8O/BoTimAYTFgPyPCW7gT8Cv2I+SvYfIOn0AAxjAABQMyP+Y8AugeH9L9g4ogAEMYACHFAZMQDGhku9QslcNF9DNwH8DrHMDiAKd1hNT+4T4rpjaZ6XFZu8ttHQjpcTv7UajM0W1Y1d2mdUf3BfbtSJ90dt8F8Ra+1ir/loLLZEDLKT04/e60AaqiGWlRS+yEoyE+Nhca7E+Z4cVBuR/LOgEVgshvmI/SvaqWQFkoNCorkRhnfvsUOMFGkBkCCFo3L6AzqZKtIY4knLLScjqyxXVba9TZl5dTsX5GS5s8miC9AXKXPrp6uhCqzNgsPRWxZJS0rR9Pp3N2/G6O0kddCyJOWMP4oAPf0gJ/gHxEgveC3z2C2rqAdwbqDhzCvBT4AkhxBvAc1LKbft74gHEjuVr6qmqcpGRkYHJpG6G6XU5sDduxutyIKUPgyUZW8aIfu3czhYaKr5UvqSXDygAADRKWKu9imqhIXf0hX32CiFIzp+Is203QqvD2VqF0OqxppYA0X8fKSUOh4P6+nq27fRSVDhwz2HACRwLpJQvBHKzekLdtgSCdlRBbRSQFELUAXWAF0gC3hJCfCGl/L9YB300wu+XdDp9WOP33+3icvt4/fXXASgtLWX27NloNP3DPL1eLxUVFWzatImmNg3W9KEk5pRTt/lTMoacgggKb/T7PHTUrcfRvB2d0YbXkATJ+ygI6YOGVcps2OuE5KGQWBJ5sD3VsQ5WkRTpAzTRI4Dql4GzEXRmiMuA5OG9+4SA7GNgRxtGvYHmHQuxZZYRn1q8t/iLVm8hu+xsWncvJ3XQsTiaK6nb8hkf2eMoKysjPz8/pNmtq6uL119/nYaGBnQ6HTdcctZ3utwOuxeb9chw6Q0oAPUIFIF/AdiJErudJ4S4XEq5QE1/NT6AW1FSjZuAZ4FfSik9QnkDKoCjSgHsrnbx3ietnHpCAiWDo9vUe6DRCC65cQsddi/HTUrg7JkpjB9tjdjH7faxYm093yyrYXNFK6nJZuLi4khLS2PmzJl9hL+Ukrq6OtatW0dbWxslJSXMmjWLT1b1ji9z6My9gsvn6aa9dg1d7dXYMkeQM/Ic7PWbaNCk9xeaQqsUeu+sBkOCQhcRCtIPXU3QWaNk1eapoCnxexUOHjW0EaBQTcTnRhfs3m6o+VY5bnyOMu5QfZKHQ+v70N2kFIffFxo95E4n2SQxJ2TTXree6nXvYk0vxZY+FKHRoTdaSSs6HiE02NKHYUsfxrEjXKxfv55FixaRk5NDWVkZSUm9JHxms5mzzz6bN954A4PBwEOPL8Pl8jGmLI1jJmQzojQlagnRj+e08Nn8VhYsaef0Gcn8/s5CFTdQgd8vWbG2k/nf2rn16gz0+kOnmpkccALEgr8Ap0gptwAIIYagMIOOU9NZzZQhGThXSlkVvFFK6RdCnBHjYA8Yaurc1NZ7GDdaHcfMz+/dyTU/SWd4FP6SOIuW3z9Ww89/s4sRpWY+frmU3OzQyVler2TD1k6WrLSzeJWdugY367coDvsbrujPGimlZOfuDr5ZWsPSVXV4vH7KR6Zz2omDuP3acWg0gpvv3015eTlarTKLt9vtbNy4kR07dpCRkUF5eTmpqcGJar3ZukJo8Lo7aatehbuziYTs0STlTdyrxGyZI2ho3scZ6emE+uUKJYS1IEAFEcbZ6umElo3gagsQykURKn6vQjkhNOoVQPMG5fjREs70cUo2cluFMq60MRCK7VQfp/AE+TwK6V1nrdI2OHPamEBcsmKeScopJzFrFB0Nm6le/z5xyYNIyCpDs8+xExISmDp1KlJK9uzZw+LFi+ns7GTIkCGUlpZiNBpJTEzk0ksvZdu2bfz57nQ8Hh+r1jfy5de7ePy5VSTajBwzIZtjJmSTntr/ucxMN/DhnBaqa90k2jq4+d5tTCq3MnmslaLC8JOTb5baOe+qChqbvRwzPp6fXxM9ae3TuW1s2NLFL65Xx3b60ZetnHZiYsxUEJKBFUCM0PcIfwAp5dZA4q4qqPEB7EszGrxvk9oTHWhkZehJT1V9H7jo7BSGDYkeFeL1SUqLTCQlenj5yaKQwt/vl1x8w2ZcLsmIUguTxlp58M5C1mxw8PbHzTz++yJMRkU42h1uFq+s5dulNeyucVCYZ2PqxGz+eNqxxFn6j3/ChAl4vV42b97Mxo0b0el0jBgxggkTJoQ0B/XA09VGa/VKfG4niTljSSmcGvnllH5o3arQKKSPB1OSQqugj6AghUZRDsZEiMsJ3w6Ut7xlE7ha1Ufj+Dzg94B9j6KQbIWR28fnQLdJMQdFUkbJw5Rj60zgqIbdcxUzmDU3ZHOh0ZGQWYYtYziOpkpqN36IyZZNYvbovVFAe9sKQV5eHnl5ebjdbrZu3coHH3yA2WzeayIaNWoUUIder2Xi2EwmjlUEclNLF4uW1/Lo0ytpauliaEkSx07MoXykkjFcPjKeb98bzSU3buG1J0uxO3wsWW3n8edr2FbVzcihFv54d3+W0KkTrTz76CAuv2U7BXlGtCqCp06YaovKFxSMU47fP7ZbYCAKKDYsF0I8C/w38P1SYHmE9n0QlgvocMKB5gJ65Z0mzjg5CZu1/5vj6VZeEp9P9uNmcXT6iLNoWLW+k0/ntbJ4ZQd+aWNyeSbHTMwhPye8SUhKyfrNzTzyz1paW1spLi5m2LBhmM2RheerX+yhbc8KJJLEnHJM8ZHpBiqb26C7FRqWQ3xeYMYfRni6O/p+b96gCGXpV2bW+/YLFQba3aKYixKLo5t1PJ1KW6PCcNoP+65MvE4QenC3g9sOCfsIQ8M+HDg98HugcY3SP3086C0Up4R30EopcbZW0V67BoM5mcScsVx4QmS6kLa2NjZs2MCuXbvIzc3l1zdnRvz9/X7J5soWvllaw8p1DSTZujh+cgIzT0giL0shxjMY+t7v4GdQb+rvF9yxy8XW7V2cOn2fazuIXEDpGZnywosuVX2sfzz+6NHOBWQEbkQh6AT4GoWnzRW+V1D/AQWgAjHcox4FEAn/ermWIUUWppRb2VUf2Zna2Ozkg8+3883SGoaWJKOxTCItLXoxmOrqapYtW0Zdu47EnHEYLElR+0BAATStU2ifI832ob8CiIZDLQ8gnALoQXezoqASSyIqgGB0tVfTVr2Kotx4Jk2a1MfuHwpSSnbv3k132zKaW7s5ZXoBp0wvCLn6C0ZG0hbmL27H64WzZ6ZEbAuhFUBYHEwFkJ4hL4hBATz5xF+PdgUQB3RLqbxcQggtYJRSqkoOOzLCBg4zXH1pZDuqz+dnzte7+ejLHeh0gtknD+YnFwxHr9Pw4kfRhf/SpUux2+3MmDGDL9fvR5Wv1JGx9zkSYUpRPjHAnJCDOSGHsUXtLFy4kOHDh1NUVBS2vRCC/Px8LrveQKfTwxfzq7jjgQUkJ5o4e1YRE8aEts9b43WccVJsYztccATMSQ8k5gAnAY7AdzMKW/MxajoPKIBDEEII2jtc3H/HZJISY8soBZg4cWLQtxCUzZHg7VJMQO52hUL5YIVxHmx4nEotAVMSGNWtnoKRkZHB7NmzY+oTZ9Fz9qxizp5VzK5qO+s2NsZ83iMBAwogJpiklD3CHymlQwihuhLPgAI4BKHRCC44UwWFsQq4OptxO5vwe134vC4Ss0f3i1jpgbO1Cio/VEw1CcWRhb+Uh3YJyGiQ/sjj15mVCCJXK+gsuK3nYTCHVgTurjY6myrR6E1odUZM1izUJIJFQn6ONaJP4EjFQDmYmNEphCjvKf4uhBgHqOaXGVAAahCDkNPrVPle9iI1MTYOmLGlsRWDX7tFz9xP5+N2dTO4ZCSjC3SEKxzoNpybAAAgAElEQVRUr/VTZ07B72wkPn8amn0crVJKfI4aPK1b8Tnq8OefEpsC8MXGexQzYuD2wdOJZudH6JJK0CeXoDGl9Ita8eROpWv7J2hNSZSke7ElhL5v0h/PgqrtNDbVkZSczsSR5zK2NDZ/R6zPQazPWcz+kYOIA+WXFEL8CZiNQqm8DfiplLJNCFEIbAJ6wisXSymvC/QZh1IF0YxSjevWQKJsMvA6SmnGncCFUspWoTxUfwNOQyFtuyJIWF8O3Bs4x++llC/sx2X8HHhTCFGDkgiWCVyktvNRur4/OrB7TxOrln1FWnouZouV4aOmhGzn9/vZsGYR1bu3EVd6Aca84/oJfwB/VyPdVXPwNKxBF58VWfhLn1IeUg3UvvA9q45o8LmhfXvktvo4hNaIu3YJ3bsXIL39fWa6xCJMudMwD57F+tXfUrUjdNSz0GgYO2EGGq2WeFsSq5fPp629U901DaAfen5mNZ/viC+AMinlKGArcHfQvm1SyjGBz3VB258CrgZKAp+Zge13AXOklCUodvm7AttnBbW9JtCfgMK4D5gETATuE0LEbGuUUi4DhgLXA9cBw6SUK9T2H1gBHOLodvn481PKRMRs0mKMNzJiaH7EPo7Obt56/1vsji7GjDseo9FCS3Mden1/00+X08GqZV+Rm1/CiEFTmFOpw5gRmtBMaI0InRmNKRldUgnucAPorAkkeOlCZ9cGQ0qFZiJcoflgeDqVOP3kEOUdg6HRQc1CaKtUavqG4TXSJZcoNZLRhCyZKYTAkDEGgMnTTmfz+qWsXDKHUeOOQ6fr296WkMykqbPIzC6ktbmeJ5/9hFFlhcw8cSw6XeTZ9zdLNrF8WSVd3T7SU0xc+5PB+x9Df7jj+xHs6k4l5edBXxcD50dqL4TIAmxSysWB7y8CZwOfAGcB0wNNXwDmAXcGtr8YINBcLIRIDBxnOvBFT+UuIcQXKMrk1f24Dg+wPtZ+MLACOCDwePz7vawVAmrqu3ji+UpeeW8XeTnh48v9fj9z5q/lr0/+jwnlxdx8zelY4mxodTrSMvonNdXXVrF88ReUjZlK/qD+tYn7HNvVTteOzzEPOgXz4Jlow2XuepzKzN/dAXoVJpnWrdC+TeEZioauBmhaC531kdsJDWhNSh3jtkqltm8I6JOGYC46DUPWeLq2fYz0hVVpaDQaho+aTE5+MYsWfEhHe/+Ke5nZhQAkpWRw123nYY0388dH32bt+p0Rh5uVkcw/nq/kyf9sw+uLua73Xvh8Ep/v8Legx7gCSBVCLA/6XLOfp70SRZD3YJAQYpUQYr4QYlpgWw6wJ6jNnsA2gAwpZU/VxDoUFuWePrtD9Am3/YBiYAUQI9xuP19+3cGQwSYK84zodNFnaq3tPiaesQmdFnKzDDzxYAFlpZGFY1uHm5ferGLeokbOPCWbed828sJjE2l0hHbwb62s4c33v2HcmCLuuf38kIXEe+D3+9m0fgmu7i6mHHdGv9lsv/ZBwj+UaagP9BYlSzd1DPjDC1QAOuuUnANQhLspSqy9s0H5v3Yx5J8IhvjwbeMyQWsEc1q/2r490AT6a/QKXUjXto8xF52GCOMkB8jIKsCWkMKqZXPJzR8SVnFqNILjp45gwthi3vlgEXO/Xscl508jI63/NQ4uzODR+8fw1AvbcLv9XHDNIs4/I5dzZuVgNERePbz3WSuPPFlHdZ2bghwjc9+IsjoKoLvbT+XObuobPZw4bf9qCv8QUKggYlJiTZHyAIQQX6LYxffFr6SU7wfa/AqF5PLlwL5aIF9K2Ryw+b8nhOhPoRsGAZ/AYaGJj9gVQHWtmyUrHdEbBvDw4zXUN0ZPljEYNPzlyRpKj1nDrx/eHbX9lm3d/O25eowGwY7dbmadkBBR+O+qdvLrR9Zz4z0rGVJk5c1npnD5hYW89vRkyob2f1Fb2xw8/e9PWfDtBm6+5nRmnlgeUfh3dTlY/PVHWK1JlE+c8f0KfwiEkNoVfp30KNz4lgzFRJM8FDQq8hVMyWDNU4S/PgrHU/ZUJYu3dbPiE4gCnTVX1UoAwGyJZ/K0M7DbW1m5dC5eb/jnxmIx8uOLpnPB2cfw0mvzeOPdb+h29W9/7mm5/OX+0dx+bSkvPT4Jr1fyoxuW8PfnKmjrCD+e2Sclkp9jYE+tB7fHz+PP10d9jj0eP+deuZXRJ6zjs69UrLyAFWs6+e9b6qsOvvdJy36vemUMn6jHkvIkKWVZiE+P8L8COAO4tKfOiZTSJaVsDvy9AsVBPASoBoKX0rmBbQD1AdNOj6koMFuhGsgL0Sfc9pgghJgjhDhtn23PqO1/xK4AcrIM5GSpT4K69epMTCZ1+vD8M1MYPyaeP9yTF7Hdbffvwtnl57LzUzjl+AQ+mdvOnTeGTgJbtb6VZ/67HYCrLx1M+ci+/qBRw/rOHL1eH598uZL1m3Zx0TnHMrgwg2ior93F1k0rGD3ueGwJyVHbxyz8pV+hkMiaqnyPFnkihJJpmzAYjFGyckGhpejYqWToRpr995xbAKmjoXEVZE6KenhdgPtHzUpAo9EwYtQU6murWLTgQ8aMn47VFt6Hl5OVwi9uOosVq7fxyN/e4eQTxjB5/JA+tv6e39hs0vLj8wr40Tn5fLmgnhvvWcmgvDiuvnQwBbl9FZ9WK3jxsUF0OHy8+sRg5i22c8tvdjF9ipXrLwtN+6HXa3jn30M498qtnD87+nMAMG50HCOirFqDcfYsdccNhQPlAxBCzERhMz4+OHNWCJEGtEgpfUKIwSgO3O1SyhYhRIcQYjKwBIUl+fFAt/8BlwMPBf5/P2j7TUKI11Acvu1SylohxGfAH4Icv6fQ1wmtFoOAO4UQE6SUDwS2qc6MHqCC2A902L1Y47WhHXWeXnuzlHJvm+5uP0aj6NPH75e8+r6WF97aGfYF3xdfLS9h9bodfPDJMqZPK+PYycMiOgzf+MKF3+9n8/qldHd1hnRgBmNOpTInUCP8OzpbFKHfky/Qsln5PzmMPyFUGOieryHnWPXhpG67YtcPtboIFwZa863CNWQJCMTAmG1xoYWU174Hd+3yPkrgxGJv2CEpjvS55BaUkl+omGAuPNkY/hI8Xj78dDkV22q4+LxpFOSlccL4yBFTK9e18q+XeycIpx7X9152d/v7TGCCnz0A9P2VscvlR0pUT3y+L0SigkhNy5BnnHWJ6mO98Nzf9psKQghRCRiB5sCmxVLK64QQ5wG/BTwoMdP3SSk/CPQZT28Y6CfAzQGTTwrwBpAPVKGEgbYEwkCfQHHwOlFCTZcHjnUlcE/g3A9KKZ/fj2tYiRJF9HeUFcWPga+klOVq+h+xK4AfEmoLbwS/gKFeso/mtLN5m54nHiwnKSH6amXHLgd/ffJ/ZKQlcsfNZ2M2R+/T3dXJyqVzyckrZvioyVHbSynxtu/AVbMYS9HpYYW/v7sNar5RzDLJwxTnr2M35J0Y9Ry9B/Epgj+WiBd9vKIEYkF6OVQvUExHQgt1S0BrQuZNRej6J2z1rAQ6t7yNufBktJbIxG49JqFN6xazaulcRpUfhyJXQsOg13Hu7Mk0t3Tw6ltfExdnYkxJZsRnoHxkEk89NI6qPZ08+8oOCnMslBb1jn3f50tNFJHReGhagA/UlFRKWRxm+9vA22H2LQf6zTYDJqN+D3/ArHRjmGP9G6XM7neBkFJ6gRsC5qyFKAW7VGFAARxEzD45kcnjo/Pgdzq9/P25Ciq227n43FlkZapbXq/dsJNlixYzetxx2BIi88b4fT62bFyOvWIzuO2Yi88MK/xd9atw7V4AyF6GzfZtis09OHtYSmjZoBRwCRWKKTSKD6CnbTSh1dMmK4I5p6NKOa41yDynMykrAEetQvGsj4fGVdjbtmAZfDq6hIJ+h9FZc9FZc+jc+F+EOY0doozCwcPDClaNRsOI0cdQV1PFtws+4LgxJ5OTFfmepyTbuOma09m4ZTdX3zGXM0/J5tJzC/qxyAajIDeO3/1fGWlJNRGPfdhioCBArHi65w8p5X+EEOsIo3BC4dCcAgwAUGbj736yhx/fvIRxo5J47tEJqoS/3+/nzfe+4dslm5ly3BlRhT+ARqvFEmcDtx1hsKLblzo5CIbUMjSWtAD3f2CykTpS4c3pgc8N1fOhYWXYMEyEUIq0dDUptv1oaN6gVPrShp9d43PBnq+U3AIZFFKZMLiX39+UBDozuvgctLbwORWGzAkAyK4mUlIzVc2qM7MLGD/5ZF56bR7fLFZXLmN4aR6vPTUZr09y8fWLWLqqOXqnIxQ98v8AJYId9pBS/nOf7yuklFeq7T+wAvi+oYtNp9riW8Pu+/DLZhqanHz84tDAcr2NsaV1EY/X0NTFrx9ZzKnT8zln1mje/kJLYmL0qmjNLe2sWbKZ8okn4uzsYFhJeCqDlUu/YuSESexs0mBJCu3U7qjbQIu7DS+Qa7NgsiWy09lfeUmfC9/OzxCmZLQ5x/Y/UE87KfFt/wjhdaIpOjukMC60+GlzGWkCjK56UnSdWBL7O+q9Vj2+1Eysvu3oWc3g4nDsp3pWdAwlKTmdmu2LOe2KszEaI5vdvF4fXd2CM26fwt//tYZ339/KPbeOw2SM/KolJ7bz858l8uNz4/jtX7dRmOuieFAEp2uMz9nhhAG5fuBw5D5FRwDOOCmFX16fF5Ot9rlXNzJ+VBqfzKnimNlv88En0WtDN7e089KrH3H5pbMpGDyM0uHhfWpVOzZhNJnJyCrAktTfdNIDa8YwdMZ40ktOCksqJ6XEv2sOuDuQ9t2Rwy87a8HrRHZUIRtWhW2m1ZvJKD0VvSkhpPAH0BniMMalMmTYOBrqdtHWGp51c+z4ExhcMopTTpzMcy+8j8sVOURUo9Hw+FOvcepF71NVbacgJ57X36+M2CcYqcl6/v67ksjC/wiH36/+M4DvhgEFcITh7pvHMevEQlasbaSt3cXJMyKHP/YI/59ccjopyYrNXxOmRmBHewvVuyoZVhY9pNLRWEF8ShG2jOGYrOFDVDV5MxC2QjSDZkV07kq/F03+iYiMcYiU4WHbWdOGYE0rRWi0uJ39s3WDIYRg7IQZrFv5NR53aHK1nntRUpzPyTMmRVUCGo3g5BmTqKl3snVbGz8+fyiXXxg5y3oAfTFgAjpwGFAAhzCklDS3etiwpZNul7rpzvrNzdz94CIeuncKp07PJzMjfARLKOEfDl6vhzUr5jN24gkRaw/3jLujfgO2zMihuUKIQBSORJNYjDCH91VobPmI5KHgag8ZubMvEnPG0Vq9Mmo7o8nMsFGTWb18XtTEJbVKoHzMMMaPSefmq0Zx493zqW9SVZyJljYPW7c76bB7Dxgj5qEGJcFL/b8BfDcM+AAOUXw2r4VLbthEt8vPtEkJfPpy9Cpdb3+4jTkL9/D3B48jKcHIlHGZLNkYum0swh9g7YoFDBk2DrM5SgIW4GzZgTkhF402enlM6XOpywIGhbDNr660oTEuBb/Xjafbjt4UmVc/NS2b5sZadlSuZ3BJ5PtcUqw4jZ974X2uuvyskD4BrVbDUw8djzXewNDiJO64/xtu+dkoJoyJnKyn0wpmXrqOugY3WRkGPvnvSIYMVl3b48jAwMz+gOKIXgH8ULOo6lo3W7d10d4RPjmoByvWdnLulRXMvmwLsy/boopuQkpJp9NHeqoenU7w2ANFESNQ3G4f9/1pCbtr7Dz+4DSSEpQoGWt8aMEaq/Cv2r4JkzmOjKzILKQ9Y2+vXUtC9qiobQElE9iUrOq3klKC0CL90e87QFLOWNpUrAIAhgwrp6F+N60tDVHbqlkJ9Nz7osIEnnp4Oq++W8F/Xt8U8TptVh0P36NEX2VnGGhT8XwBLFnpYNaPtnDmZVu55LpKGpqiP2MNTR62VHbR0qruHLHiu7x7AyagA4cjVgFU17pZtlo9J/ucr9vp7lZnZtmyrYvp52zC7ohe9CPRpmXl2k4+/rKdYydYyUiLPCuu2tPNJTdsYmOFky9fH81tV+cyrCR8FE9NXSfX3TmP46fk8PNrxkTkAYLYhX9HezPVuysZWjYxaluA7o5qDHGpaANmGun30V67Nmx72d0CpiT8e+ZFPK70efBXL1TCTl2hi6dIKWmrWb33u8mWhae7HZ8nuglG8QecwPpVC8P6A4Kh1hwEEB+n5y/3T8Xnk/zf776l0xleQJ9/RhpXXZLJO8+O4LlX67jt/kra7ZGF9MSxccTHafjoyzYamjzoIuQR9GBzRReTZq3H41UnRXdXu1izQf379L/PWg8JLqABRMYRqwBysgxMHBvdXNGDE6clqE6Jn3FsAp+/MZTc7Ajx6AGs3uDkD/fkMuNYG78MwwMECkHXY//aw8/vq+SBOwq599YCcrOM/Oa28JE2i5bXcfcfFvGb2ycw49j+dM/7Ilbhr9j9F4S1+/tDRO20Va8iMWdsYL+X2k0fRbTFy64W6KxDNq5BdocPiZXt25ENKwCpKI0Q8PtcNG1fQNPOb/YKn8TsMbTVrFE1dqPRzPBRU1T5AyA2JSCE4KofDee804u44a757NjVEbbdYw8Uk5Zi4J8PD+GsU1K58NqNvPtJY9gxCSF45k+DKC0y8Yvrs9hUEb3y2nFTbCz8YETUCUkP8nKMjB4RPZy4B2fNTN7/mgYDGuCAYcAHsJ8oG6rONnve6cn4fJITptrQaEK/EFJKfnTTJmafnMI7z47o8+KEygqVUvLsyxup2NHGUw9Px2KO/jPGKvwB1qxYQOnw/nZ/j8fNxrWLaHdbScrrDRntdjSgNcSjM8QhpZ/6rZ/jbN2JENqwwks668GhZLXK1q2IMFm+slUpiiObNythpUn9ayZ7XcoMtW3PSjQaHcn5kzAn5tFavQK/14VG16uwGyq/oqIrleIhoxFByi0lLYvmplq2V6yjaEh0M5Yan0AwJo/LpCDXyq8eWsyl5w7hxGn9Q1WDf/PpxyQyeZyNR57cxbLVdv5w9+CQx01K1PHFG0NjIkBU+wwfaAyYdg4cDsoKQAjxJyHEZiHEWiHEu0KIxKB9dwshKoUQW4QQpx6M8X3f0GoFWRnhX0whBK88MYzLzo+ebero9HD7fQsxGrQ8fO8xP5jwr9q+CbMlnvTMvnb/xvo9zPnkVbZXrEOj63tNbXtWkJRbHrgmDZlDZ2Ky5RCfWozf2x32XJqiMxCpoyAM9YSUfkTCIIQ1H03JOYrfIAR8HieJueOISx5Ecv6kwDgECZkjaa9b16et0GhZv/ob5n/5NvaOviuPkqFjaWzYQ2tLlMIzPe1jWAkAZGXE8fTD0/l6SS2P/nM1vihFYExGDb+5rZAH7iiM2C4W4X+oIpbJ/4Ce+O44WCagkLU4hRDDgYuBESjseU8KcRhVs/4O0Ouj/xSbKjq54a75XHpeKZddOFTVEnt/hH9HWzPVeyoZNmJCv33JKZkkp2RgMJrQBIVjup0tCKFBb+o9h7O1irjkQjJKT+3TtgfS50FojeB1IeKz0YRhERVCgyZ1JJiSERotyNC+F3NCLqmFUxEaHV5Xby2IuJQinK1V+H29tnStzojBaCIzu5D4+L73pdcf8A1uFf4AiF0JGAxa7r9jIgW5Vm7+1dc0tUR33Kp5Ro4EDDiBDxwOyhMlpfw8wGAHSi3OHgP2WcBrgYIMO4BKFKrTox419S7u/uMO/nzfVMaPDs3zvi/21DpUCf/auiZefOVD2trteD1u1qxcQPmEGX1MIz1wuZz4fF5mzLwYg6U3br+1eiWJueP6tLU3bMaaptAjh1RWrlaFTdTdgTBErwcgjAlIVzugQcr+s+aec1jTh2Jv3NxnuzV9OPaG3pjYuOQiTjrtUhrrd+MPIUmMRjPDR/f6AzZv3cl7H8yjoyN8kaFgJRDJ0RuM804v4safjuTqX27Bq9Ihe0QjBuE/oAC+Ow4FH8CVwOuBv3NQFEIPwtbJDNT+vAYgP+cQWvrG6PgyGtQlCQ3Kg49eHITLHTm7tQdVe7q4/0+befqh6eRm2YH+WbZ2h5t7H1rCZ/N2kZxo5NwTR/HFl2u59idTKBsemnTu7/9cwu3XHU9eTgqrtiiLs46ODuY2eDn75F5HdFdXF5/Wwzkn9Cai1Tb2NQNt39YEaYnU1VUzduxwzJbIppDdu6w4O9vpMNgYMqiVhIS+rLdZacoqw+8fwhtvrOacKVP3KgWfbxRvvPEGZ08eH3BoD2ZsqY/BqWNoblnPmTNDzTMK+eDTRvTajZx7UgIznl7Cgm+W8ZPzS7n92tARVydN1DBu2GDufvBLXvzbcOLjor9iuRlw5kmD0GiiO2/3QhwKr+73D4kMqZAH8MPgB1sBCCG+FEKsD/E5K6jNvrU4VUNK+YyUcryUcnxairpIhsMd4ZzI+6JqTxfX3rmZfz48lNys8JFQ1ngDp59cgMWso2xoCu9+vIPUFBtlw0NHHq3fWEWCLa5fYfply5YxYUJfc9GmTZsYNmxYxHFqtTpSUjPocnZiMkd3SMZbE3DY28nKycfnCx8aqdFoyMzMpLa2du82rVbLkCFD2LSpL0PnMZOGsnHLblpaQ9NQnH7KeDZt2UNzaxfJiUbMJh3nn1EcMdx24tgMbrs6n8tu3YijU12cvdrf9mjAwArgwOEHUwD7U4uT76lO5tGKbpeP/7xRw7k/W8c/Hx5KQW5kQrHWtm5eenMLH7x0OuNHp/HFgt2cOzt00Riv18e7Hy3h/LOm9NtntVrJyem7UKusrKS4OGS9jb0oKCwmIVFZaajxZ8TH23A4OsjNG0RyclrEtmVlZaxb19fxO2rUKNzuvvZ5IQQXnXssr729MORxNBrBzy47mT89uZprfjKC5x87kYeeWIHXG3m1Mm1SIrddnc/x561k7sIWfL4BaaUWAwrgwOFgRQH11OI8M7gWJ0r9zIuFEEYhxCCUWpxLD8YYDydIKXnkySoGTfqWm361lVuuyosq/H0+P/f8cTF33TyOnMx4mttc/O7OSWF5fr6ct4ZjJw8jztLfmTtxYl/zSWNjI0lJSeh00c0UPp8vKrdQD/R6PV6vuhl1amoq7e3teDy9tni9Xs/Ysf1LSQ4qyMBo1LOlIvRcwxpv5vZrx6DRCIYPSWbWCQU89kz/3IJ9MW1SIsdNTuTMn65lyLRFvPdpeNbRAfTiQEUBCSHuF0JUCyFWBz6nBe0LGY0ohJgZ2FYphLgraPsgIcSSwPbXhRCGwHZj4HtlYH9htHMcSByssIInACvwReDGPw0gpdyAUldzI/ApcKOUYUI+jmC0tnn5bF47DzxaQ01d9IgSIQTnzEpDpxNY47RcdGZ0J/Hfn13LScflMaJUmYHfffM40lJCK432Dicr1mzj+Knq6i6vX7+esjJ1bTs77cTFR+bq2V+UlJRQWamOivmCs4/hrfe/xR+GY3hMWSqXXaBEKZ09azDOLg+fzdsV9bhXXaxUfEtO1HHSNHWV+havdPCXp+tYuNRBV9fRx3l8gFcAf5VSjgl8Pobw0YiBiMR/ALOA4cAlgbYADweOVQy0AlcFtl8FtAa2/zXQ7pCJeDxYUUDFUsq8oBt/XdC+B6WURVLKUinlJ/t7DqfTR1OzukgMgLoGN263upfN7fazYk2nqqiN2no3Tz5fxx33V7FqXfRU+ood3YybtYnTflLJZ/M6yMqI7t+o2tPFzfduYe6b5dx+bT4mY+TnaM7Xu2m3uznv9KKoxwZ4492FXHDWVFV2ap/PR319PZmZmaqO7bB3EG9VF54KYDAacbnC5xQEY9iwYf1s/uFgs1qYUF7M3AXrojcG7rplHG/8r5LtVe0R240ojeOeWwp59L4hqn0CI4aYefDxOo4/bwszL62gvSP6HOi9T1q458FdPPdKgyql0dbuZd0mp2q6huYWD51O9XOxXXvUhc/ui1iE/w9oAgoXjTgRqJRSbpdSuoHXgLMChd9nAG8F+r8AnB10rBcCf78FnBhof0hEPB6xgcUut6RDBVdPD9o7fKp5UfR6wcIlHeh00QViRpqeV95p5ssF7YwaHt3RqdcJBucbSbBpuf3ajKi28WCHb8kgC3dcF5mwbceuDl5+Zyv33DIuYrsebNtZh8/nZ0hx9NrFADt27GDQoEGqaQAc9nbi46OHgPYgPt6Gwx6aRmFfmEwm9Ho9dru6IvInHj+axcu24nBEj8Yx6LU8eNdk7v/zMhwRQj6FENx9U8Fen4AaJWCN13Ltj1PJy9aTka5DjYVsyngr/3i+ntXrnZjN0TuYjBoWLrGr/506/TGtRhqb95/S+gAngt0USEj9txCiZ4mWA+wOatMTjRhuewrQFhTaHhy9uLdPYH97oH24Yx1QHLEKIClRx+CC6LzxPSgtNhNnUbcCE0Jw6zXheX2CodEIXnmqmD/dF7nYN4Cj08d1d+3imUcK+MtvcjlnZohC6kEIFv49Nv9IL3Sn08P9f17Kg3dNxmCIfq1+v+SNdxZy0bnhSzXuiw0bNjBixAjV7R2ODnQ6HW5X9BljR3srljgrDkfkWXcwRowYwYYNG1S11Wo1nHvmZN58/1tV7TPTLdz405H85uElEYVdz28SixK4+afpPPnHAm66Ip2rf1kVVZhmpOn524OFPPa70BFc+8Jk0nD9FZHpqYNRkGckNYZou3Gj4/abCyjGFUCqEGJ50Oea4GNFiUZ8CigCxgC1wF/2a8CHMY7MYOJDDPm5RvJzoxPHxcdp+filYjQaweCCyO1DCf9IkFJy/5+Xcv3lZWRlqCP1Wrh4IyOHF5CUqI5Uz+l04vf7iY9X2vv9/qgOXoe9gy1ta7HntlM6NDL3zvp1KwD6xf+HQs+5CwsLWbJkCZMmTVIlkIaX5jF3/lqqdjdSkBc50ghgUnkGG7a08O9XN3HVj8JXKuvBtEmKUr/s1o0R8wSyMw1kZyr5LcdOjFc19isuij7ewwExLhyapJRha5hKKU9ScxAhxL+ADwNfI0UjhtreDCQKIXSBWX5w+0jARhAAAB/YSURBVJ5j7RFC6ICEQPtDIuLxiF0BHK5QZ2eX/OKBCtXCH+DFN7dQWpTI5HHqbPPOLhfzF25g5knlqtqDEvs/fLgiBF0uFx988EHUPnZ7G3t276Bya+RZusfjpmpHBTu2baalOXI0TVdXFx9//DFSSjQaDVlZWdTU1Ki+jkvOn8Zrb3+t2oTx04uHsqmilcUr61S171kJ/Orh7araH205AgcwCih4GX8OsD7wd7hoxGVASSDix4DixP1fIIz9K+D8QP/LgfeDjnV54O/zgbmB9odExOOAAjgModUKXn96pGrhv2x1PWs2NKmaofbg3Q8WM3vWBHQ69YEJlZWVFBUV4fP5eO+999iyZQvd3eEdtlJKXK5u4uNtCCFoaQkv2Hft3IbVlkBiUiqtEdoB1NfXs3HjRubNmwcoOQHr16+P2CcYKck2hhRns3jZFlXthRA88MuJPPn8euoa1GV2T5uUyKP3lage09ECyQF1Aj8ihFgnhFgLnADcBuGjEQOz+5uAz4BNwBuBtgB3ArcLISpRbPzPBbY/B6QEtt8O3BXpHN/5imLEgAI4TBHNn9CD+iYnjz+3jt/eqc4EAlBd20xDUztjRg7qs729w8mGzaFDHxsaGkhOTkan07Fy5UqampqU89eHZ9T0eNykpmaSkJjMrDMuIjExfE3gQUWlHHvcqWRm5RIXxWncc86Kigq2b98eMicgGMtXVeLx9LXJn37qeL6Yt4Zul7pIsjiLnvt/OZFfPbQYt1vde6z2NzyqcACjgKSUP5FSjpRSjpJSnimlrA3aFzIaUUr5sZRySGDfg0Hbt0spJwYiHC+QUroC27sD34sD+7dHO8eBxIAP4GBDRbJUMMwmdREtoDhxf//oGp5+aDBDi2qjdwAS4jv46W3L+PsDIyjMq9i7fd2mdu64dymXnpPPCeMVh+3I4l4n9Z/+sZw7ryukbGgdl52ex52/38mZpxZhMrQxbrTiz2h39F2xVGxvRu+KY9vOFq6/IHq+Q3uHjr//y47N5Oeac7v7mUYS4pVKYdlWwQkTp+B0erjsQgtQh9GbgTVuOaed1KvUUhOV9v95aSnzv17Avx+dQHpqb+CA7M5izapPufOmodjiwxer6UF+FrRfkcjTLyzg8d+rCxLYixifgyMZ/oEM3wOGgRXAEQyNRvDUQyUMLQ4dfiqlpNvVN7Tvi/n1DC22UpjX6yheu6mNi65bRHVtF13d/We3Hq+fzZUtjChVZvB+v6S5pZupE7IZNzp8pEltfQfZmVakSmuuNd5Ie4eLtJQ4mlrC51ScdFw+p80oZNnqXpv8zBmFfDxnR8j2Xd1elq9p5cJrF9HY3GuyOnV6JpsqO6ja0/dc+96zYJx1aiq3Xxu9OtsAwuMQyAM4ajCgAI5wZGeEjibauLWTU3+0lu1VvTHv3S4/T720jZuv7GubHjUskTtvHMp5p+WENCMtXFLNtMm9+zZVtDCsJDSbaDBq6uykpsRh0KvzM2g0AokkK8NKTV3kXACLRY/PL+l2KaadBKsRi1lHbUN/xZFgM3DitHT++sAY0lJ6VwBCCH516zB+/7e+yWRvf9TI1Xdsob4p9Kol3D0fQHQcYB/AUY8BBXCEQEqpijbC55P85s87mTx7FQuXdpCZ3kul/ffn9nD5+YXEWfqaI/x+yfufVfPX347l9mv7l2L88PPtnHFSb6nCb5bWMHVi9MSxmroO4ix6kpNiK02Yk2mjpi66KWzcqAxWrG3Y+/3MU4v44LP+kTeP/34sf7hrJM++3H9fySArOZlmvljQawLKSDPw8rsNjD15Bf99W13VMDW/zQAUHOBEsKMaAwrgEEV3t5/u7uiZlz6f5M0PWznmzM08+2pT1PZareCaS7PIzjBgNmlISugV9sOHxHHWzP6C+/P5dZwwNR2DXtOPZqKlrRuvT5IaxCO0al0D5SOj8xHVNTgQQpCSpC6aCUCr0ZCeGhd1BQAwdWI23y7tDf+cMj6LRctr+oV3moxaCnLj8PlhV3X/KJ5fXDsEg7535ZOZbsAWr6Wo0MS5p6X2ax8K19+9i7OvrOTrJXZV4aV2hw//UWoMH1gBHDgcsQqgvtHD+s3qQvIAVqzppK1dHdMkwJyv1Wejrt/s5Kn/qJspfjG/nctuqmTo1DWqasu8+FYz195ZxdLVTiaXq0vYev71Ov549yBe+cewPiadM05KCWniefGtKi47vzDkseYs2MUZJ/c6Vh2dbvR6japMY5/fT0eHK6YVQHKSGbPZQG199BVAaVESW7b1zty1Wg2jhqeycWvoojrXXDqYZ1/pvwqwxus5fkqvwzsn08D//lPG9CmJzP2mTdW4J42N44Mv2rns1p0sXBq+qlgPqva4yC9fxa337mTNhugcUi6Xn4cfr6GuQd1Kw+7wsXRV9HH0YHNFV0yrmK++ad8/KogDGAU0gCNYAaQk6Ricr94WO6TIRIJNfcz7+NHqsmkBMtP0JCepi/IoHmTkf5+1ctwUK0Zj9J/nuElWysssFOQamDgmuiDdXOlk49ZOzp6ZyqnTo9vpV6xtobgwngRbaBqA884oYcaxvQmNS1fVMalcXbLZz6+ZSnObk5QYFEBKkgWv18cVF0fnMhJCkJFmoS7I7n/TVWP3Oqv3RfmoJCp2OGjriCzokhL0TBxr4+6b83n839U4OqOHfU4qj2PKuDiKCoyUj4x+vSNKzSRYtSxYZKcwL/pzbDRqsNm0pKeqo2uIj9MwtFg9VUp+joG0FPWRSuUjvwMVRAyfAXw3HLEKQKcTWFRy+4BCwBXLA5tgU/8ypKboueis8DHuwRiUb2LVnJH85ILoaf1+v+SGe6p49s8FfPZKCYkJkcfk90vu+sN2Hv7VYNXX+q+Xd/CzHw0Ou1+jEX2qYyn2f3WcVnk5CbS0xq4AWtu6yMtRxyB6zPgsvl3WawbS6yI/8pedX8BLb1WpOrbFrOUX1+byu8eit580No63nini7psz+cVv90RtL4Tgrluy+fbDEaqftesvz1CdNSyEwGZV/wxbLNqYitLH8n4EY8AJfGBxxCqAwxmD8k2cfHx0AafRCN7+VxGFeUZKBkWfzb30dj0nHJNIfo66mV/Vnk60GsjPUS+gq/bYKchVz+/f1OIkOQYfQHKSmaZW9aa9KROyWbRcXQ4EwCnHZ/LVNw24PeqYL085PpnGZjer1kc2p8THaclM13PisTb+/Gt1YaI/uSBNFbPnkYYBBXDgcPQ9XUcY4uPUrXI8Hj8ffdnCjVeoZ5x95r/b/7+9Mw+Tqrzy8Ht6o2kWu5t9i4CACLiAG4ZoVEjEJYFEiRpHSXRknNFJnJgYjJlMxknUxJloNBo1m6hkkFEjuBLcojHS7MgOzSLQNCC9Qjf0Vmf+uLdNAbV8t5eqouu8z3OfrvruqXvPrb71nfttv8PN/+CWMwBgx65qBg3oFqglVV5xKNAYQI+CPMor3JOnF+bnUnWgjqYmtwo9M1OYcskAXnrDXZfr3ruG8thT7vau/7N0xbqAEocFgDQhOzuD5x4/xSmHAUBFVT3bd9VwxujYktThfLBkNxPOdssb0ExDY5PzOgCAwoI8ygK0AABGn9yTtRvLnO2nfWkgc+fvdB7E7NsrhycfOHZ6rNEyrAWQOCwApBFBnsyf/r/tTJ82ONDxFy1zHwBuKYUFnSkPGAAmnNOfvy52VwPN65zFOWML+cuH7jl8WzrgaRyJKjSF3DejdZgAyfFGQM2YTpnBUvP1yvYqynPPaOTyiU1kZESvOPO7/f2pur4+RGZGNWNP2RnVvrHpyBkqqkr3LjXkZi7n5JPcZlVt3FJDTlYVp484VqkzKzOycNuJfUPMfv5jhg06cppsdlb07+Z7/9SZLR9X0qvAnxocZ/D4GMR+Wi3FHuwTh7UAjIh86Qv5gXTo/7asmvPO9FQ6d++tY+mq+PP0qw40Ut8Q4vpvrXPqbimvbOCy61dR55i7ecG7FdTVhcjOzqBrXiYVAdZ59O6ZzXlnuq2rMNoSQdV9M1qHBQDDiTUbYw+8bt56iEs+X8DhuhDX/PMGXloQv8999546Vq8/yLpNNXywJP7Cutkv7mHvJ/Vs3urWBfTQb0u4/cdbUVUum1jIuk2xPxfvGo3EYGMAicMCQJqy9xM3nXtV5f5flfKvP4w91/3m6/oxdkwXbvvhFhavPMj7RfGlGha8W8YJ3bMYMiiXuS/HXikdCimvvV1GLz8v7ZoNsadd1teHWLT8AH94bi9PPLOH66/szYSzo+cRUFUumraBlxe6rewF9+/QcCfIDCCr/1uPBYAOQFOTsmJ1fLmAZtv7H9nNzXdsi2urqsy8dxd3/7yEXaXxK7ua2hDTLu/JmJPz6N4tM+4K2elf68+Pbh/KP369v1N2rFefPp0Lxucz59djGDE09tTRFWtruGJSIePHdWPYkM5xu5gqq5oor2ziyhnFPPui24yhz39lHc+/EllWIhJLV7pLL6QzIXXfjNbRYQPArt11gbRO3v1bNeUV7n3ELwT44Tc1Ke984K4d9Ny8MmftoD+/W8m4Sav544vxheB276nnkms2cPd98VeiAtTVKZdPymfY4E40NGrcSrRrl0xOG9WF00d34eWnRpMXZxFTYX42kuH9zYozyJqRIWRkCIX52RTmZ5OTE9v+7NO78szDJ9OtayaTzs+PO0tn1556Rg7LZdyYPEYM7eQo2Bbi6hnFzPjuNg4dij8ucec9O5h8zQZnjao779kR6B5+8z33e6z6QGMg++Uf1bB9p/uEgpdeL2+ZFhDWBZRIOmwAGNi/E+eMdR/Eu/Cz3Z31egCuvCK+jk4zmZnCBeNjpzEMZ+LnunPBeW6raU8Z3pluXTMZemL81b19e2dz47W9GNQ/h+zs+ANoubkZCDDtigIWv3IKjY3xf3FFyw8wfqznu8sgcnlFA4UFbvo14AWL8sr4rZHmcw/om8PO3fErrv59clj22ij69s5h+OBcp2mdeZ0zOHFgDrfd2Ifc3Pj2Qwfn0rd3NgP75cS1BbjqS4WcOtJ9kdxFE9zvse7dsph0gZucBsC407o4aRI1M/XSwpTXAhKR50Rkpb9tF5GVfvlgETkUtu/xsM+c6ecRLhaRh8W/SBEpFJGFIrLZ/1vgl4tvVywiH4nIuLBjTfftN4vI9FZeTouwuWoJIkj+1549sunZw61SHDSgE+/NG+XUH52RIXTqlMHbL4ykosotb+0zL5Tx3Vv6OouMFa2o5tqp8aWgmymvbGDMSPdA7QUA95bauWO7s2h5NYP6x9ZW6uEH/6u/XMBzL5dzy/Xxr2HOE8MoK28kFFKnyu4/vzeQAY6VPxDoAQY6Ro5hTWDXjqpe3fxaRP4HCG8SbVHVMyJ87NfAzUAR8BowGXgdL9n7W6p6v4jM9N9/H7gUGO5v5/qfP1dECoH/AM7Ci2XLRGS+qsbPPdqGdNgWQDqRkSH06+NWsVx5eSFDT8zlzNPiz7tXVbrkZTBiqLtq5NpNtYwe4f7UWl7ZSGG++3NIj4IsyivcB1/Hj+tG0XL3PMpTLylgR4mb7PGZp3XhixeewBlj3NYwBKn805lEdwH5T/FfA/43jl0/oLuqLlKvf+tpYKq/ewowy38966jyp9VjEZDvH+cSYKGqlvuV/kK8YJJQLAAYURERHvzxZ5ztGxuV3E4ZgZ5EyysbKMwP1gVU5tAF1MzJJ3Vm+y73vuvOuRncO9Ny+iYTRZw3oKeILA3bZrTglOcDe1V1c1jZEBFZISJ/EZHz/bIBQPgA2i6/DKCPqjarDu4B+oR9ZmeEz0QrTyjWBWS0GVlZwpzHRgb6TL/eOUdkJYvHgH6d2BclF28kMjKEuY8H88lIHkrgLqD9qnpWtJ0i8iYQSZ/kblWd57++liOf/kuBz6hqmYicCbwkIqNdHVJVFZHjYojaAoDRpgRZPQxwz/fc1UYBRo/oyugRwfrGg/pkJJe21PhR1Umx9otIFvBV4NMMQ6paB9T5r5eJyBZgBFAChDcPB/plAHtFpJ+qlvpdPM3JqEuAQRE+UwJceFT5u0GurS2wANDRCToTI4AyZ3ZWsIVQ2aTYwikxWeZUJMGPzpOADar6adeOiPQCylW1SUSG4g3gblXVchGpFpHxeIPANwCP+B+bD0wH7vf/zgsrv01E5uANAlf5QWIBcG/zbCHgi8Bd7XqlEbAAYBhGypDIWUA+13Ds4O8FwD0i0gCEgFtUtXnhz78ATwGd8Wb/vO6X3w/MFZGbgI/xBpXBmyl0GVAM1ALfBPCDyX8BS3y7e8LOkTAsABiGkVIkUuRNVb8RoewF4IUo9kuBMRHKy4CJEcoVuDXKsX4P/D6Yx22LzQIy2pxdu90HafeXNfDhUvdpmq++WUkowCNiEF+M1CAUYDNahwWADkKDYw5bgJ0ldVRVuy2mUlVm/mQHTU1ule5H62q57LqNzjIAP3qghJ8/6pazt7FRue2u7fxhTnzZC/CCy8VXrafCceHYR+tqmTXXPQnM9p111NS6LaiDYP+jdKV5FpBpASWGDhsASkrr21UL6MVXg3XXBdEOqqpu5K333XVaHnqilNXr3aSM12yo5dxL17Jvf/xrVVXuvGcHDzxa6qQDU1XdyLSbN7N24yGKt8W3X7W2lt88u49XFlY6Hf/lhRXsKKnnh/fvdApgC9+rZsv2OqZ/a6tTq2HdpkPcdPtWZr/gFmA+XHqAC6euo6zcbXB79otlgfR32vMeS4QWUJCWWjgWABJHhx0DGNAvJ9DKyws/666jAvDVy921gCCYdtAJ3bOYeL67Tsu3Z/SlocHt1zBmZB7PPnYSXfLix/7qA00MHZzLRRO6s2nLYU4aHHtF8KtvVtKnZzaVVU0seKeS4UNjp4dcs7GWKZMLyMwU3i86EFdrZu2GQ1w0oRunDO/M8tW1cbVvFrxbSY+CLDIyoGj5Qc47K7a+0o5ddVw6MZ/cThk0NWncBW0jh3XmqUdOokeh20K2r3+lR1wRu3Da8x5riRZQEKZeGsz3ZlqwDsBoBdJSxb5U4qzTu+riBceMyxhtSH196NjKK8K980lZA5kZQu2hEAP7xw/Afy06QP++2U5idgDvFx1ggKP9zpI6RISC/Ey65EWY8nnUFNmI12i0OZn9ipZFW7yV3bWPFo75uvOx9hU9FPVYRnyS2gIQkTuA/wZ6qep+X5Pjl3jTpmqBb6jq8mT6aHi4VozNCVsKC+IY+nzuXDfV02bOD2A/aIC7eiW4X6PRjljXTkJJWgAQkUF4ix92hBVHVM5LvHeGYSQD6wJKLMl85HkQuJMjF/5FU84zDCMNUKBe3TejdSSlBSAiU4ASVV11lI56NIW8Y+YJ+qp/MwA+M8BkdpNCCxN+GEY0FHDIO2S0Ee0WAGKp8AE/wOv+aTGq+iTwJHiDwK05lmEYqUMT9mCRKNotAERT4RORU4EhQPPT/0BguYicQ3TlPMMw0gBrASSWhI8BqOpqVe2tqoNVdTBeN884Vd2Dp5x3g59Hczy+cl6ifTQMI0kEyAbWAWawJ51UWwgWUTnPMIx0wmr2RJH0ic9+S2C//1pV9VZVPUlVT/WV91pEQ0OIgzXuOi1V1Y3OejdAINmIoPahkFJZ5W5/sKaJ+np3nZnDh4Np0rgknG9GVVm3sdbZfs++erZsP+xsX7T8II0B+gjWBvAFgl1rY6MG0vepPpBa95irHhRATW2weyyo70egATajVSQ9ALQXFVVN7HRM7g2w9eNgwl4frQ9WsQSxr6kNsfVjd92VktJ6yh0FzwA+WOKuvnn4cIin5rgLpH249CC/edbd/vFZ+5y1dwDue7iEVxZWONmqKnfft5PSvW73QSikPPnMXmchu5raJlaudf+/bttRx4GDqXGPHTocYvNW98BbUlpPWYBKfc2GWufv8VgsAiQKk4Iwko6qIo5TSoPYGqlJLCkIyeujjLja/WCrHjEpiFaQamMARhoSpEK3yr+jY6O7icQCgGEYKYblTUgUHXYMwDCM4xQNuW+tQESmichaEQmJyFlH7btLRIpFZKOIXBJWPtkvKxaRmWHlQ0SkyC9/TkRy/PJO/vtif//glp6jPbAAYBhG6qAK2ui+tY41wFeB98ILRWQUXrL40cBk4DERyRSRTOBRPNHKUcC1vi3Az4AHVXUYUAHc5JffBFT45Q/6di09R5tjAcAwjBRCE9YCUNX1qroxwq4pwBxVrVPVbXjrks7xt2JV3aqq9cAcYIovY38x8Lz/+VnA1LBjzfJfPw9M9O0DnaNVFxoDCwCGYaQWwZYC9xSRpWHbjDbwIJooZbTyHkCl6qdNkubyI47l76/y7YOeo12wQWDDMFKMQE/2+2NNA40lSqmq84J61tGwAGAYRgqhre7aOeJoUUQp4xBLlDJSeRle7pIs/yk/3L75WLtEJAs4wbcPeo52wbqADMNILRI0BhCD+cA1/gyeIXgZChcDS4Dh/oyfHLxB3PnqraZ9B7jK//x0YF7Ysab7r68C3vbtA52jvS60wwaAsvIGire5L3Vft7E2kHbQ4hUHA/kTxL62tok1G9yX9W/9+DD7y9w1bBavOBhomX7RcnffGxuVZatqnO1L99azs8Rd9mLlmppAmjRBfA9qX17RGEhOYf2mQ4GkIFLpHtu24zCf7He/x5asDHaPHUkowNZyROQrIrILOA94VUQWAKjqWmAusA54A7hVVZv8p/vbgAXAemCubwvwfeA7IlKM18f/O7/8d0APv/w7wMxWnKPN6bBdQF3yMgOtGu3ZI5tOOe72A/oGy0LWv0+2s21OTsanydVdKDghK7DvQb6bgf3crzUzE/oFuNauXTIDVRR9emWTldU+vge1z+ucQZCfUM/C4P+nILTnPZbfPZjv/fsEu8c+JYE6z6r6J+BPUfb9FPhphPLX8FSLjy7fijeD5+jyw8C0tjhHe2BaQIZhJJSYWkC5hcqJX3A/2Ka5pgXUCjpsC8AwjOOU9uvbN47CAoBhGCmEyTwnEgsAhmGkEAqhVks8GI5YADAMI3VQTA46gXSIQWAR+QT4uB1P0RNwT1uVWpjvycF8j86Jqtor0g4RecM/vyv7VXVy27iVfnSIANDeiMjS43WmgfmeHMx343igwy4EMwzDMGJjAcAwDCNNsQDgxpPJdqAVmO/JwXw3Uh4bAzAMw0hTrAVgGIaRplgAMAzDSFMsAMRBRO4QERWRnv57EZGHRaRYRD4SkXHJ9vFoROQBEdng+/cnEckP23eX7/tGEbkkmX5GQ0Qm+/4Vi8jMZPsTCxEZJCLviMg6EVkrIt/2ywtFZKGIbPb/FiTb12j4ychXiMgr/vshIlLkf//P+br0RgfEAkAMRGQQ8EVgR1jxpXjJG4YDM4BfJ8G1eCwExqjqacAm4C4AERmFl2BiNDAZeExEMpPmZQR8fx7F+55HAdf6fqcqjcAdqjoKGA/c6vs7E3hLVYcDb/nvU5Vv42nPN/Mz4EFVHQZUADclxSuj3bEAEJsHgTs5Up1qCvC0eizCSwXXLyneRUFV/xyWoHoRXlo58Hyfo6p1qroNKCaChnmSOQcoVtWtqloPzMHzOyVR1VJVXe6/PoBXkQ7A83mWbzYLmJocD2MjIgOBy4Hf+u8FuBh43jdJWd+N1mMBIAoiMgUoUdVVR+0aAOwMe7/LL0tVbgRe918fD74fDz5GREQGA2OBIqCPqpb6u/YAfZLkVjwewnvIadZg7gFUhj1AHDffvxGctBaDE5E3gb4Rdt0N/ACv+yclieW7qs7zbe7G66KYnUjf0hER6Qq8ANyuqtXh2bBUVUUk5eZbi8gVwD5VXSYiFybbHyPxpHUAUNVJkcpF5FRgCLDK/yEPBJaLyDlACTAozHygX5ZQovnejIh8A7gCmKh/X+yREr7H4Xjw8QhEJBuv8p+tqi/6xXtFpJ+qlvpdhPuS52FUJgBfFpHLgFygO/BLvG7NLL8VkPLfv9FyrAsoAqq6WlV7q+pgVR2M1wwep6p7gPnADf5soPFAVVhTPyUQkcl4zfovq2p45u/5wDUi0klEhuANZC9Oho8xWAIM92ei5OANWs9Psk9R8fvMfwesV9VfhO2aD0z3X08H5iXat3io6l2qOtC/x68B3lbV64B3gKt8s5T03Wgb0roF0EJeAy7DG0CtBb6ZXHci8iugE7DQb8EsUtVbVHWtiMwF1uF1Dd2qqk1J9PMYVLVRRG4DFgCZwO9VdW2S3YrFBOB6YLWIrPTLfgDcD8wVkZvwpMq/liT/WsL3gTki8hNgBV6AMzogJgVhGIaRplgXkGEYRppiAcAwDCNNsQBgGIaRplgAMAzDSFMsABiGYaQpFgCMpCMinUXkL20hTCcivUTkjbbwyzA6OhYAjFTgRuDFtliToKqfAKUiMqH1bhlGx8YCgNFuiMjZfk6CXBHp4uvlj4lgeh3+alMRuVBE3hWR5/2cBrP91baIyHYRuU9EVorIUhEZJyILRGSLiNwSdryX/GMahhEDWwlstBuqukRE5gM/AToDz6rqmnAbX+5hqKpuDysei5ezYDfwAd5q27/6+3ao6hki8iDwlL8vF1gDPO7bLPXPaRhGDCwAGO3NPXj6PoeBb0XY3xOoPKpssaruAvDlFQbz9wDQrAu0Gujqa/AfEJE6EclX1Uo84bX+bXoVhtEBsS4go73pAXQFuuE9qR/NoQjldWGvmzjyQaV5X+gou1CYXa5/XMMwYmABwGhvngD+HS8nwc+O3qmqFUCmiEQKDi1lBF6XkGEYMbAAYLQbInID0KCqf8RTxzxbRC6OYPpn4HNteOqLgFfb8HiG0SExNVAj6YjIOODfVPX6Njree8AUv3VhGEYUrAVgJB0/qfo7bbUQDPiFVf6GER9rARiGYaQp1gIwDMNIUywAGIZhpCkWAAzDMNIUCwCGYRhpigUAwzCMNOX/AUUa/BCHE4bGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# minimize the energy\n", "md = oc.MinDriver()\n", "md.drive(system)\n", "\n", "# Plot relaxed configuration: vectors in z-plane\n", "system.m.plane(\"z\").mpl()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEYCAYAAABBS301AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df7SdVX3n8fen+UU0QAhJY5qESZTIWog1QArMWLssWAjUMdqlFOpA1IyRJbR26oyCdgYHtcV2KdWqtFGyBH8FBrVk2WCMiHZ1pgHCjxJ+SLlggKQBzE/UkEByv/PHsy95cj3n3rNPzo/n3PN5rfWse85+9rOffe89+Wbf/ewfigjMzKx3/Vq3K2BmZofHgdzMrMc5kJuZ9TgHcjOzHudAbmbW48Z3uwKtMH3ahJg3d1K3q2FmDbj7/l9ui4gZtc4tPnNqbNu+P6estRGxuGWV61FjIpDPmzuJO9ee1O1qmFkDxs2644l657Zt389d339tw2X92ivWT29JpXrcmAjkZjZWBAwOdrsSPceB3MyqxZMUszmQm1m1OJBncyA3s+oIGBz0YLpcDuRmVhmBiHAgz+VAbmaVMuhAns0/MTOrkKJF3ugxamnSSknPSnqglDZN0jpJj6avx6R0SfqcpAFJ90s6pXTN0pT/UUlLS+mnStqYrvmcJDV7j8PhQG5m1RG0NJADXwGGTxi6HLgtIhYAt6X3AOcCC9KxHLgWiqAMXAmcDpwGXDkUmFOe95auW9zMPQ6XA7mZVUYAEWr4GLW8iH8CdgxLXgJcn15fD7y1lH5DFNYDUyXNAs4B1kXEjojYCawDFqdzR0XE+ig2drhhWFk59zgs7iM3swrJftg5XdKG0vsVEbFilGtmRsTW9PppYGZ6PRt4qpRvc0obKX1zjfRm7rGVw+BAbmaVMthAS7tkW0QsavZeERGS2jpwvRP3cNeKmVVKi/vIa3lmqDsjfX02pW8B5pbyzUlpI6XPqZHezD0OiwO5mVVGRGv7yOtYDQyNPFkK3FJKvziNLDkD2J26R9YCZ0s6Jj3kPBtYm849J+mMNFrl4mFl5dzjsLhrxcwq5LAC9K+WJn0TeCNFX/pmitEnVwM3SVoGPAGcn7KvAc4DBoA9wLsBImKHpI8Dd6V8V0XE0APU91OMjJkM3JoOcu9xuBzIzaxSWjmzMyIurHPqrBp5A7i0TjkrgZU10jcAv7KGdkRsz73H4XAgN7PKCLzWSjMcyM2sOkK5o1YMB3Izq5hW9pH3CwdyM6uU8GC6bF3/iUkaJ+leSd9N7+dLuiMtKnOjpIndrqOZdUarp+j3i64HcuADwMOl958CromI44GdwLKu1MrMuqDxIO5AflBXA7mkOcDvA19O7wWcCdycspQXmzGzPuBAnq/bfeR/A3wIODK9PxbYFRH70/vyIjSHkLScYhlIjpvt3peu6PW9FeVAUDnhh53N6FqLXNKbgWcj4u5mro+IFRGxKCIWzTh2QotrZ2bd4hZ5vm62yF8PvEXSecARwFHAZynW5x2fWuUtWVDGzHpD4HHkzehaizwiroiIORExD7gA+GFEvBO4HXh7ylZebMbM+oBb5PmqMGpluA8DfyZpgKLP/Lou18fMOiWKKfqNHlbo9sNOACLiR8CP0uvHKfbFM7M+MzSO3PJUIpCbmQ3p9cFQ3eBAbmYVIgK3yHM5kJtZpbhrJZ8DuZlVigN5PgdyM6uM8MzOpjiQj3W5T472Dzac9cX9k/KKPtDeGbjjx72YlX/C+H0ZhWcOdfP0/6YNtuhhp6QTgBtLSa8E/hcwFXgv8LOU/pGIWJOuuYJiob4DwJ9ExNqUvphiwuI44MsRcXVKnw+sohgqfTdwUUS8IGkScANwKrAd+MOI2NSa7+xXeSCmmVVKqyYERcQjEbEwIhZSBNQ9wHfS6WuGzpWC+IkUkxNfAywGvpiW2R4HfAE4FzgRuDDlhfqrtS4Ddqb0a1K+tnEgN7MKadsytmcBj0XEEyPkWQKsioh9EfFTip3uT0vHQEQ8HhEvULTAl4yyWuuS9J50/qyUvy0cyM2sMprYWGK6pA2lY3mdoi8Avll6f5mk+yWtlHRMSpsNPFXKM7T6ar30kVZrfemadH53yt8WDuRmVh0x9MCzsQPYNrQKajpWDC8y7TL2FuD/pKRrgVcBC4GtwKc78821jx92mlmlDEbL25fnAvdExDMAQ18BJH0J+G56uwWYW7quvPpqrfTt1F+tdaiszZLGA0en/G3hFrmZVUob+sgvpNStImlW6dzbgAfS69XABZImpdEoC4A7gbuABWk/4YkU3TSrIyKov1rr6vSedP6HKX9buEVuZpVR9JG3rjxJLwd+D3hfKfmvJC1Mt9s0dC4iHpR0E/AQsB+4NCIOpHIuA9ZSDD9cGREPprI+DKyS9AngXg6u1nod8NW0iusOiuDfNg7kZlYhrV1nPCJ+ybCHjBFx0Qj5Pwl8skb6GmBNjfSaq7VGxF7gHU1UuSkO5GZWHdHaFnm/cCA3s0rxFP18DuRmVikO5PkcyHvN/v2j5ynZ98LLsvI/94tjRs+UbNs1Navs3b+YnJU/19FTns/KP33qrobzHjVlZ1bZkybuycrPeP9ThOLpY+Or/dgQf3rMrFLcIs/nQG5mleJAns+B3Myqw6NWmuJAbmaVEYjBQbfIczmQm1mluGslnwO5mVWKe1byOZCbWaW4RZ7PgdzMKiP8sLMpDuRmVilukedzIDezSnGLPJ8DuZlVilvk+RzIuy1z7ZTn9x6ZlX/zM7NHz1Ry7yOvyMg7LqvsrT/bm5U/16wZR2flP/mEGRl5n84qe87MLaNnKpl8xM+z8o/ltVncIM83dj8NZtZzosUbS/QL79lpZtURB0euNHKMRtImSRsl3SdpQ0qbJmmdpEfT12NSuiR9TtKApPslnVIqZ2nK/6ikpaX0U1P5A+lajXSPdnEgN7NKaWUgT343IhZGxKL0/nLgtohYANyW3gOcS7Hh8gJgOXAtFEEZuBI4nWJbtytLgfla4L2l6xaPco+2cCA3s0oZHFTDR5OWANen19cDby2l3xCF9cBUSbOAc4B1EbEjInYC64DF6dxREbE+IgK4YVhZte7RFg7kZlYZQeonb/BosMjvS7pb0vKUNjMitqbXTwMz0+vZwFOlazentJHSN9dIH+kebeGHnWZWKZnjyKcP9X0nKyJiRen9b0fEFkm/DqyT9JND7xUhqa0DZTpxDwdyM6uO/Cn620p9379aXMSW9PVZSd+h6ON+RtKsiNiaukeeTdm3AHNLl89JaVuANw5L/1FKn1MjPyPcoy3ctWJmlRKhho+RSHq5pCOHXgNnAw8Aq4GhkSdLgVvS69XAxWn0yhnA7tQ9shY4W9Ix6SHn2cDadO45SWek0SoXDyur1j3aomstcklzKR4OzKTox1oREZ9NT4hvBOYBm4Dz0wMGMxvjAhhsXSfETOA7aUTgeOAbEfE9SXcBN0laBjwBnJ/yrwHOAwaAPcC7ASJih6SPA3elfFdFxI70+v3AV4DJwK3pALi6zj3aoptdK/uBD0bEPel/zbslrQPeRTFs52pJl1MM2/lwF+tpZh3U4EPM0cuJeBx4XY307cBZNdIDuLROWSuBlTXSNwAnNXqPdula10pEbI2Ie9LrnwMPUzzx7eiwHTOrljaMIx/zKvGwU9I84GTgDhoctpOGEi0HOG72xPZXslGZn659L7wsK3/u2ik/uHPO6JlKbrvzlw3n3bg5rx2waU972w3zXpa3lsujTw42nHf77ryf45tOy8rOcbOezMo/ady+vBuod6a9O0Dn6/rDTklTgG8BfxoRz5XPpT91av5aI2JFRCyKiEUzjp3QgZqaWdtlPOj0miwHdTWQS5pAEcS/HhHfTsnPpOE6dGLYjplVR+CulWZ0LZCn4TrXAQ9HxGdKpzo6bMfMqmUw1PBhhW72kb8euAjYKOm+lPYROjxsx8yqxS3tfF0L5BHxz1B3nFHHhu2YWYW4y6QplRi1YmYGB/vILY8DuZlVikej5HMgN7NKcYM8nwO5mVWKu1byOZCbWaU4kOdzIDezyigm+riPPJcDeavtb3z9DoDnfpG3ufa9j7wiK3/O2ikAtw00/pF47pc7Rs9UduD5vPyZBp6fnJX/2b3TMnLn/RyPPTrv9zT1yJ9n5Z8x4d+z8jNhXF7+LnKDPJ8DuZlVirtW8jmQm1llBDA46K6VXA7kZlYpbpHncyA3s0pxHM/X9fXIzcxekrGE7Wgtd0lzJd0u6SFJD0r6QEr/mKQtku5Lx3mla66QNCDpEUnnlNIXp7SBtAXlUPp8SXek9BslTUzpk9L7gXR+Xmt/UIdyIDezSmnheuRD+wKfCJwBXCrpxHTumohYmI41AOncBcBrgMXAFyWNkzQO+AJwLnAicGGpnE+lso4HdgLLUvoyYGdKvyblaxsHcjOrjKB1OwSNsC9wPUuAVRGxLyJ+CgwAp6VjICIej4gXgFXAkrSnwpnAzen68h7D5b2HbwbOSvnbwoHczColMg5guqQNpWN5rTKH7QsMcJmk+yWtlDQ0mWM28FTpss0prV76scCuiNg/LP2QstL53Sl/WziQm1mlZHatbBvauzcdK4aXV2Nf4GuBVwELga3Apzv33bWHA7mZVUor9+ystS9wRDwTEQciYhD4EkXXCcAWYG7p8jkprV76dmCqpPHD0g8pK50/OuVvCw8/bETGwNYX90/KKnrbrqlZ+e99JG+q9cbNef9XZ027f+G5rLKJA3n5cx14MSt7Tu03bs77PS3I/D299vi88qcemRcTJozP+Nm0ryt3dC3cIajevsCSZkXE1vT2bcAD6fVq4BuSPgP8BrAAuJNiJ7MFkuZTBOgLgD+KiJB0O/B2in7z8h7DQ3sP/0s6/8OI9o2QdyA3s8po8Q5B9fYFvlDSwnS7TcD7ACLiQUk3AQ9RjHi5NKJofUi6DFgLjANWRsSDqbwPA6skfQK4l+I/DtLXr0oaAHZQBP+2cSA3s0qJulv5ZpZTf1/gNSNc80ngkzXS19S6LiIe52DXTDl9L/COnPoeDgdyM6uUyFtA1HAgN7OK8Vor+RzIzaxSHMfzOZCbWWU0OqzQDuVAbmaV4kCez4HczCrFgTyfA7mZVYrjeL4RA7mk/wj8F+ANwCzgeYpZUP8IfC0idre9hmbWV9wiz1d3/rakW4H/SjGbaTFFID8R+HPgCOAWSW/pRCXNrD8Mzexs1Vor/WKkFvlFEbFtWNovgHvS8WlJ09tWsx61/8CErPy7fzE5K//Wn+3Nyr9pT+a6aAeebzxvu9dOyZVbn4zvddOeaVlF5/6ecj8HuZ+zCeStQ9M1DtBNqRvIhwdxSUeV80fEjhqB3szssDiO5xv1Yaek9wH/G9jLwZ9xAK9sY73MrE8NDnZx9cUe1ciolf8OnOTWt5m1W4tXP+wbjQTyx4A97a6ImRm4a6UZjQTyK4D/J+kOYN9QYkT8SdtqZWZ9yy3yfI0E8r8HfghsBLzApJm1j0etNKWRQD4hIv6s7TUxMwPauCPamNXIIONbJS2XNEvStKGj7TUzs74TmYcVGgnkF5L6yYG707GhnZUCkLRY0iOSBiRd3u77mVk1tHJmZ7/EkVG7ViJificqUiZpHPAF4PeAzcBdklZHxEOdrouZdVarelb6KY40tPqhpP8EzOPQmZ03tKlOUGxmOpA2NkXSKmAJxe7WZjaWta7PpG/iSCMzO78KvAq4DxhazCKAdgby2cBTpfebgdOH1Ws5sBzguNkT21gVM+ukzDg+XVK5q3dFRKxIr0eNI2NFIy3yRcCJUbFHyemXtQJg0eumVKpuZtak/OGH2yJiUZtq0zMaCeQPAK8Atra5LmVbgLml93NSmpmNYQEMtq5Z1jdxpJFAPh14SNKdHDqzs51rkd8FLJA0n+IHfwHwR228n5lVRAv/+O+bONJIIP9YuysxXETsl3QZxaYW44CVEfFgp+thZp3XqjjeT3GkbiCXpCj8eLQ87ahYRKwB1rSjbDOrrlZGlH6JIyNNCLpd0h9LOq6cKGmipDMlXQ8sbW/1zKy/eG5nM0bqWlkMvAf4Zupj2gVMpgj+3wf+JiLubX8VzaxfeC/O5oy01dte4IvAFyVNoHjo+XxE7OpU5cys/1RspHNPaGhmZ0S8SGeHH5pZn3Icz9dQIDcz6xTH8XwO5GZWKe5aydfIWit/DHwtInZ2oD49b/y4F7PyHz3l+az8s2YcnZV/3sv2ZuUfeH5y45kP5H2vxIHR8xwOjcvLP67x73Xey/I2x5o144is/EdPyXv0lPs56ymO49kaWY98JsXyjzeltX3V7kqZWX+KgMGIhg8rjBrII+LPgQXAdcC7gEcl/YWkV7W5bmbWh1q5sUS/aKRFTpq9+XQ69gPHADdL+qs21s3M+pADeb5G+sg/AFwMbAO+DPyPiHhR0q8BjwIfam8VzayfhDvJszUyamUa8AcR8UQ5MSIGJb25PdUys34UuKXdjEb27LxyhHMPt7Y6Ztb3HMizeRy5mVWK43g+B3Izq44ITwhqggO5mVWK43g+B3IzqxQH8nwO5GZWGd4uojkO5I3IWJVgwvh9o2cqmT41b42Nk0+YkZX/0Sfz1gh5du+0hvM+l1UycCBvXZlsGWunABz18sa/19fO2Z9V9skn5K0rk/s5yP2cZa9D00Wd6iOX9NfAfwZeAB4D3h0RuyTNAx4GHklZ10fEJemaU4GvUGyyswb4QESEpGnAjcA8YBNwfkTsTEuafBY4D9gDvCsi7kllLQX+PN3jExFxfbPfS0MzO83MOqWDMzvXASdFxG8C/wZcUTr3WEQsTMclpfRrgfdSLFuygGInNYDLgdsiYgFwW3oPcG4p7/J0PSnwXwmcDpwGXCnpmGa/EQdyM6uOjCB+uIE8Ir4fEUN/aq0H5oyUX9Is4KiIWJ+WLbkBeGs6vQQYalFfPyz9hrSR/XpgairnHGBdROxIK8uu4+B/CtkcyM2sUjID+XRJG0rH8iZv+x7g1tL7+ZLulfRjSW9IabOBzaU8m1MawMyIGNpF7WmKVWOHrnmqxjX10pviPnIzq4xiin5WU3tbRCyqd1LSD4BX1Dj10Yi4JeX5KMVigF9P57YCx0XE9tQn/g+SXtNohVKfeUef2TqQm1mltDICRsSbRjov6V3Am4GzUncJEbEP2Jde3y3pMeDVwBYO7X6Zk9IAnpE0KyK2pq6TZ1P6FmBujWu2AG8clv6jzG/vJe5aMbNK6VQfuaTFFKu3viUi9pTSZ0jFMB9Jr6R4UPl46jp5TtIZaTTKxcAt6bLVwNL0eumw9ItVOAPYncpZC5wt6Zj0kPPslNYUt8jNrFI6OCHo88AkYF3a+GxomOHvAFdJehEYBC6JiB3pmvdzcPjhrRzsV78auEnSMuAJ4PyUvoZi6OEAxfDDdwNExA5JHwfuSvmuKt0jmwO5mVVKp+J4RBxfJ/1bwLfqnNsAnFQjfTtwVo30AC6tU9ZKYGVGletyIDez6vCC5E1xIDezynAcb44DeauNz3t+fNSUnVn5Tz7h6az823ePOMehhl82nHPj5qlZJW/a0/iU+GbMe1necgQ50+7POu3lWWWffMLm0TOV5H4Ocj9nvcRxPJ8DuZlVymDe/8eGA7mZVYy7VvI5kJtZZRTL2DqS53IgN7PqaM2qhn3HgdzMKsWBPJ8DuZlViuN4PgdyM6sWR/JsDuRmVinuWsnXlVkFkv5a0k8k3S/pO5Kmls5dIWlA0iOSzulG/cysOyLzsEK3pofV3CtP0onABcBrKLY9+uLQcpJm1h86uGfnmNGVQD7CXnlLgFURsS8ifkqx9ONp3aijmXVBB/fsHEuq0Ef+HuDG9Ho2RWAfUncfu7Q333KA42ZPbGf98hTrGjds0sQ9o2cqmTNzy+iZSt6U+d/gsUfX2hWrtgWP5P2xtPVne/Mqk2nWjCOy8p98woGMvHlrp+T+nnI/B6gK/3RbLwgGHaGzte3T0OReeQ2LiBXACoBFr5vi37zZGOE4nq9tgbyZvfKov7+dmfUJB/J83Rq1UnOvPIr97S6QNEnSfIq98u7sRh3NrDs6NWpF0sckbZF0XzrOK52rOXpO0uKUNiDp8lL6fEl3pPQbJU1M6ZPS+4F0ft5o92hGt0atfB44kmKvvPsk/R1ARDwI3AQ8BHwPuDQiGu/INLOe1+GHnddExMJ0rIH6o+fSCLovAOcCJwIXprwAn0plHQ/sBJal9GXAzpR+TcrX8hF6XXliUm+vvHTuk8AnO1gdM6uIioxGeWn0HPBTSeXRcwMR8TiApFXAEkkPA2cCf5TyXA98DLg2lfWxlH4z8HkVOz3Xu8e/NFPhsbvNiJn1pA5PCLosTUxcKemYlDYbeKqUZ2j0XL30Y4FdpSHV5dF2L12Tzu9O+euV1RQHcjOrlMyulemSNpSO5eWyJP1A0gM1jiUULeZXAQuBrcCnO/29tsrYHIxqZj0rs2tlW0Qsql/WyKPnhkj6EvDd9Hak0XO10rcDUyWNT63ucv6hsjZLGg8cnfK3dISeW+RmVikdHLUyq/T2bcAD6XW90XN3AQvSCJWJFA8rV6fh07cDb0/XLwVuKZW1NL1+O/DDlL+lI/TcIjezygg6+rDzryQtTLfdBLwPitFzkoZGz+2nNHpO0mXAWmAcsDKNtAP4MLBK0ieAe4HrUvp1wFfTw8wdFMF/xHs0w4HczKqjg6NWIuKiEc7VHD2XhiiuqZH+ODXWhYqIvcA7cu7RDAfybhuf9yuYfMTPs/IfN+vJrPxTj2y8/NceP3X0TCW7fzE5K3+uo6fsyso/fWrj+Y+asjOr7Oy1UzI/B2PZYPeHH/Ycf3rMrFIqMI685ziQm1lldLiPfMxwIDezSnEcz+dAbmaV4hZ5PgdyM6uOaqy10nMcyM2sUhzH8zmQm1ll+GFncxzIzaxSHMjzOZCbWaU4judzIDezSnGLPJ8DuZlVRgQcGOx2LXqPA3mvyVyTY9K4fVn5Z0z494bzTj1ye1bZ+w9MyMqfa/y4F7PyTxif8bMZn7nis/xPq1lukOfzp83MKkREqNuV6DkO5GZWKe4jz+dAbmaV0cJNlfuKA7mZVYrXI8/nQG5mleKulXzefNnMKqWDmy/fKOm+dGySdF9Knyfp+dK5vytdc6qkjZIGJH1OklL6NEnrJD2avh6T0pXyDUi6X9IppbKWpvyPSlo6vH45HMjNrDIiiq6VRo/Du1f8YUQsjIiFwLeAb5dOPzZ0LiIuKaVfC7yXYtf7BcDilH45cFtELABuS+8Bzi3lXZ6uR9I04ErgdIq9Pq8cCv7NcCA3s0qJaPxohdSqPh/45ij5ZgFHRcT6iAjgBuCt6fQS4Pr0+vph6TdEYT0wNZVzDrAuInZExE5gHQf/U8jmQG5mlRKo4QOYLmlD6VjexC3fADwTEY+W0uZLulfSjyW9IaXNBjaX8mxOaQAzI2Jrev00MLN0zVM1rqmX3hQ/7DSzygiyu0y2RcSieicl/QB4RY1TH42IW9LrCzm0Nb4VOC4itks6FfgHSa9ptEIREZI6+sjWgdzMKqWVa61ExJtGOi9pPPAHwKmla/YB+9LruyU9Brwa2ALMKV0+J6UBPCNpVkRsTV0nz6b0LcDcGtdsAd44LP1HOd9bmQP5WKfM6c4TxjWedXzm2ibk5W87Nf69Wud0ePThm4CfRMRLXSaSZgA7IuKApFdSPKh8PCJ2SHpO0hnAHcDFwN+my1YDS4Gr09dbSumXSVpF8WBzdwr2a4G/KD3gPBu4otlvwoHczCojWjAaJdMF/OpDzt8BrpL0IjAIXBIRO9K59wNfASYDt6YDigB+k6RlwBMUD08B1gDnAQPAHuDdAOk/hY8Dd6V8V5Xukc2B3MwqpZOLZkXEu2qkfYtiOGKt/BuAk2qkbwfOqpEewKV1yloJrMyrcW0O5GZWKV6OPJ8DuZlVRhOjVgwHcjOrGAfyfA7kZlYZbpE3x4HczCplEO8QlKurU/QlfVBSSJqe3tddKczM+kAHF80aS7rWIpc0l2IQ/JOl5PJKYadTrBR2eudrZ2bd4K6V5nSzRX4N8CEOnchVb6UwM+sDAbwQjR9W6EqLXNISYEtE/KsOnUJeb0WwrQyTVjlbDnDc7Intq6zVlzv932wUAex3gM7WtkA+0qpjwEcoulWaFhErgBUAi143xb96szHigB92ZmtbIK+36pik1wLzgaHW+BzgHkmnUX+lMDPrA26RN6fjfeQRsTEifj0i5kXEPIruk1Mi4mmKlcIuTqNXziCtFNbpOppZl2TsDuRNmg+q2jjymiuFmVk/cYTO1fVAnlrlQ6/rrhRmZn3CcTxb1wO5mdmhHMlzOZCbWbWEF7LN5UBuZhXip5jNcCA3s4pxizxXVxfNMjP7FTHY+HEYJL1D0oOSBiUtGnbuirR43yOSzimlL05pA5IuL6XPl3RHSr9R0sSUPim9H0jn5zV7j5E4kJtZdURA7G/8ODwPAH8A/FM5UdKJFJsyvwZYDHxR0jhJ44AvUCzudyJwYcoL8Cngmog4HtgJLEvpy4CdKf2alK/Ze9TlQG5mFRIda5FHxMMR8UiNU0uAVRGxLyJ+SjGv5bR0DETE4xHxArAKWKJiivqZwM3p+uuBt5bKuj69vhk4K+XPusdo34sDuZlVS97UzumSNpSO5S2oQb3F++qlHwvsinjpT4Sh9EPKSud3p/y59xiRH3aaWcVktbS3RcSieidHWrwvIm7JrVlVOZCbWYVES8eR11u8bxQjLd5XK307xd4J41Oru5x/qKzNksYDR6f8ufcYkbtWzKxaOtRHPoLVwAVpxMl8ih3L7gTuAhakESoTKR5Wrk5Li9wOvD1dvxS4pVTW0vT67cAPU/6se4xWYbfIzaxiOjOOXNLbgL8FZgD/KOm+iDgnIh6UdBPwELAfuDQiDqRrLgPWAuOAlRHxYCruw8AqSZ8A7gWuS+nXAV+VNADsoAjMNHmP+t9LjIFZVIteNyXuXHtSt6thZg0YN+uOu+v1a+uIacG8c2qdqu2RVXXL6idukZtZtXitlWwO5GZWLQ7k2RzIzaxCAi9jm8+B3MwqJGDwsKfe9x0HcjOrjsDL2DZhTIxakfQz4Ik23k8xzKcAAASmSURBVGI6sK2N5beT694drnt9/yEiZtQ6Iel76f6N2hYRi1tTrd41JgJ5u0na0KtDnFz37nDdrZM8s9PMrMc5kJuZ9TgH8sas6HYFDoPr3h2uu3WM+8jNzHqcW+RmZj3OgdzMrMc5kI9C0gclhaTp6b0kfS7tcH2/pFO6XcfhJP21pJ+k+n1H0tTSuZo7d1dJM7uId4ukuZJul/RQ2pH9Ayl9mqR1kh5NX4/pdl3rSZv+3ivpu+l9zR3hrbocyEcgaS5wNvBkKflcikXgFwDLgWu7ULXRrANOiojfBP4NuALq79zdtVrW0Owu4l20H/hgRJwInAFcmup7OXBbRCwAbkvvq+oDwMOl9/V2hLeKciAf2TXAhzh0FZ8lwA1RWE+xxdOsrtSujoj4fmkj2PUU20VB/Z27q6SpXcS7JSK2RsQ96fXPKQLibA7dPb28q3qlSJoD/D7w5fR+pB3hraIcyOuQtATYEhH/OuxUU7tcd9F7gFvT616oey/UsSZJ84CTgTuAmRGxNZ16GpjZpWqN5m8oGitDa8eOtCO8VVRfL5o10g7bwEcoulUqqZHdwSV9lOJP/693sm79SNIU4FvAn0bEc0XDthARIaly43wlvRl4NiLulvTGbtfHmtfXgbzeDtuSXgvMB/41/YOcA9wj6TRG3v26Y0bbHVzSu4A3A2fFwckClaj7KHqhjoeQNIEiiH89Ir6dkp+RNCsitqaut2e7V8O6Xg+8RdJ5wBHAUcBnqb8jvFWUu1ZqiIiNEfHrETEvIuZR/Hl5SkQ8TbGj9cVp9MoZwO7Sn9CVIGkxxZ/Lb4mIPaVT9XburpKmdhHvltSnfB3wcER8pnSqvHt6eVf1yoiIKyJiTvqMX0Cxw/s7qb8jvFVUX7fIm7QGOI/iQeEe4N3drU5NnwcmAevSXxTrI+KSkXburoqI2N/MLuJd9HrgImCjpPtS2keAq4GbJC2jWGL5/C7Vrxn1doS3ivIUfTOzHueuFTOzHudAbmbW4xzIzcx6nAO5mVmPcyA3M+txDuTWdZImS/pxKxbwkjQj7cRu1jccyK0K3gN8uxVj2iPiZ8BWSa8//GqZ9QYHcmsbSb+V1kQ/QtLL03rdJ9XI+k7S7EFJb5T0I0k3pzXVv55mTyJpk6S/lHSfpA2STpG0VtJjki4plfcPqUyzvuCZndY2EXGXpNXAJ4DJwNci4oFynjQN/5URsamUfDLFmun/DvxfitmT/5zOPRkRCyVdA3wlnTsCeAD4u5RnQ7qnWV9wILd2u4pi/ZS9wJ/UOD8d2DUs7c6I2AyQpr3P42AgH1p3ZSMwJa0B/nNJ+yRNjYhdFAtU/UZLvwuzCnPXirXbscAU4EiKlvNwz9dI31d6fYBDGxxD5waH5Rss5TsilWvWFxzIrd3+HvifFGuif2r4yYjYCYyTVCvIN+vVFF0tZn3BgdzaRtLFwIsR8Q2K1QB/S9KZNbJ+H/jtFt76d4F/bGF5ZpXm1Q+t6ySdAvy3iLioReX9E7AktfbNxjy3yK3r0ubFt7dqQhDwGQdx6ydukZuZ9Ti3yM3MepwDuZlZj3MgNzPrcQ7kZmY9zoHczKzH/X8MGXKuwodCWgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot z-component only:\n", "system.m.z.plane(\"z\").mpl()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f92e416a943b432c8141e3f65c0959d1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 3d-plot of z-component\n", "system.m.z.k3d_voxels(norm_field=system.m.norm)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "md.delete(system)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "8ff66df849444027a09f2505c160d8e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "9ca076dd2f624d909f5ad3c00f9dba15": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": {} }, "b103e5927d7040488e3e9c641e449e37": { "model_module": "k3d", "model_module_version": "2.7.4", "model_name": "PlotModel", "state": { "_backend_version": "2.7.4", "_dom_classes": [], "_view_count": null, "antialias": 3, "auto_rendering": true, "axes": [ "x (nm)", "y (nm)", "z (nm)" ], "axes_helper": 1, "background_color": 16777215, "camera": [ 141.0506683940143, -212.2010025072024, 18.880066776443996, -0.2499999664723873, -0.2499999664723873, 4.749999940395355, 0, 0, 1 ], "camera_animation": [], "camera_auto_fit": true, "camera_fov": 60, "camera_no_pan": false, "camera_no_rotate": false, "camera_no_zoom": false, "clipping_planes": [], "colorbar_object_id": -1, "fps": 25, "fps_meter": false, "grid": [ -1, -1, -1, 1, 1, 1 ], "grid_auto_fit": true, "grid_visible": true, "height": 512, "layout": "IPY_MODEL_9ca076dd2f624d909f5ad3c00f9dba15", "lighting": 1.5, "menu_visibility": true, "mode": "view", "name": null, "object_ids": [ 140045066807504 ], "rendering_steps": 1, "screenshot": "", "screenshot_scale": 2, "snapshot": "", "time": 0, "voxel_paint_color": 0 } }, "b93f42b8060d44bb87e6ede0ba464673": { "buffers": [ { "data": "eNolw2dslWUYgOHbHyb8MDExxhhjjAqCgIDQQSmlpaUtXXSP073X6fuNs7/D3puy9yqjQNl7j7KLbMqQPQREjTuuqI3PiVdypX4MaZ0howtkfQLZMrcr2LpB/qdQKIu7Q2kPKJcVPaHqM6iRdb3A3huU1PqA8TmYgX3BEdjvNRxBr2MGdcIMfgMz5E35Fmbo25j938Ho/y5G2HsYA97HCP9Afog+8CP0iM6yC/qgruiR3dCjuqNF9UAb3BMtupfsjRbTB21IX9kPLTYIFRcsQ1DxoaihYaiEATIclTgQlRQhB6GSI1EpUXIwalg0KjVGDkGlxaLS41AZ8XIoKjMBlZUok1DZyaicFDkMlZuKykuT6Wi2DLT8TLSCLJmNVpiDVhSYi1ach1ZiQy/JRy8tQC8rRC8vksXoFSUYlYGlGFVlGNXlsgKzphKztgqzrvr/9TU47LWyDkdDPQ5lx6k1SIVTl4aGy9BxmQYuh4nb6ZBO3C4nHrdLuvF4PHi9Xrw+H75Ay8Ln92MNHy5HYI0YiTVylByNNUqOHoM1Zqwch3/sePzjJuAfP1FOwj9hMtbEKViTpsppWJOnY02ZgTV1ppyFNa0Ra/psrBlz5FysmfOwZsnG+fgaF+CbvRDfnEX45i7GN2+JXIp3/jK8C5bjXbhCrsS7aBWexavxLGnCs3SNXIt72Trcy9fjXtEsN+BauRHXqk24VrfgatqMs2kLzjVbca7dhmPddhzrd+Bo3onZvAtzwx6MjXsxNu3DaNmP3nIAffNBtC2H0LYeRtt2BLX9qDxGw47jNOw8gX1XK/bdJ6nfc0qepm7vGer2naV2/zlqD5yn5mAb1YcuyItUHb5E5ZHLVB69QsWxq1Qcv0b5ieuUtd6gtLWd0pM3KTl1i+LTtyk6c4eis3cpPHePgvP3yW97gK3tIbYLj8j74jG5F5+Qc+kp2ZefkXXlOZlXX5Bx7SXp178m7cYrUtu/IaX9W5JvfkfSre9JvP0DCXd+JP7Ln4i7+zOx934h5v6vRD/4jaiHvxP56A8iHv9J+JO/CHv6N6HP/iH4q38Jft5ByIsOQl92EPaqg/8ABrdj6Q==", "encoding": "base64", "path": [ "color_map", "compressed_buffer" ] }, { "data": "eNpjYDjhxIABsIkpODIwLHBAFWuwBwCEoAQV", "encoding": "base64", "path": [ "model_matrix", "compressed_buffer" ] }, { "data": "eNrtkbENxCAMRRUU0TABRXrGYQAWYRVmYBEmoGAC6iAowM5JOd1FJ/mKSEkXl0/f8vf/23ZqEAEQfwj0VkrrcFAcNccQYq4Dv2hN3hpjfVo/EGpyWkmptEsV3rKevV4E52LRPvddiC1aJWbGZqFsbDuDEozkbJoYlyYU+MeoXeoG5YX0TP1GZkBmdf08fdzcxwvqtYlX", "encoding": "base64", "path": [ "voxels", "compressed_buffer" ] } ], "model_module": "k3d", "model_module_version": "2.7.4", "model_name": "ObjectModel", "state": { "_view_count": null, "_view_module": null, "_view_module_version": "", "_view_name": null, "colorLegend": false, "color_map": { "dtype": "uint32", "shape": [ 256 ] }, "compression_level": 0, "id": 140045066807504, "model_matrix": { "dtype": "float32", "shape": [ 4, 4 ] }, "name": "Voxels #1", "opacity": 1, "outlines": false, "outlines_color": 0, "type": "Voxels", "visible": true, "voxels": { "dtype": "uint8", "shape": [ 2, 20, 20 ] }, "wireframe": false } }, "f92e416a943b432c8141e3f65c0959d1": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_8ff66df849444027a09f2505c160d8e7", "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b103e5927d7040488e3e9c641e449e37", "version_major": 2, "version_minor": 0 }, "text/plain": "Plot(antialias=3, axes=['x', 'y', 'z'], axes_helper=1.0, background_color=16777215, camera=[2, -3, 0.2, 0.0, 0…" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }