{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Custom directory name\n", "\n", "When we drive a system, a directory with the same name as the system is created at the same level as the notebook and all simulation files are saved in it. Sometimes we want to change the path of that directory in order to keep our files organised. We can do that by passing `dirname` argument to the `drive` method.\n", "\n", "As a simple example, let us simulate a one-dimensional array of spins." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import discretisedfield as df\n", "import micromagneticmodel as mm\n", "\n", "import oommfc as mc\n", "\n", "region = df.Region(p1=(-30e-9, 0, 0), p2=(30e-9, 3e-9, 3e-9))\n", "cell = (3e-9, 3e-9, 3e-9)\n", "mesh = df.Mesh(region=region, cell=cell)\n", "\n", "system = mm.System(name=\"my_simulation\")\n", "system.energy = mm.Zeeman(H=(0, 0, 1e6))\n", "system.m = df.Field(mesh, dim=3, value=(1, 0, 0), norm=1e6)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can pass `dirname` to the `drive` method to instruct Ubermag where to place `my_simulation` directory. Let us say we want to place it in `my_project`:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running OOMMF (ExeOOMMFRunner)[2022/02/18 18:12]... (0.5 s)\n" ] } ], "source": [ "md = mc.MinDriver()\n", "md.drive(system, dirname=\"./my_project\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we inspect the files, we can see that our simulation results are saved in `my_project/my_simulation/drive-0`:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "\n", "dirname = os.path.join(\"my_project\", \"my_simulation\", \"drive-0\")\n", "os.path.isdir(dirname)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All properties of the system can be accessed as usual - changing the directory happens in the background:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArAAAAC9CAYAAABLRU5BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA99ElEQVR4nO3deVxU9f4/8NcM67CrgFtKgLtluJRLGgR6vRmiGZqRetNUcPlqdc00s1wry+VqLv3yenPJbuVyw9KKmxnd79eraWkGA4KCC5EIoiDMvvz+QCaGmWFmmHNwoNfz8TgP5ZzDeZ85zJx5n8/5nM9bYjQajSAiIiIiaiakd3sHiIiIiIicwQSWiIiIiJoVJrBERERE1KwwgSUiIiKiZoUJLBERERE1K0xgiYiIiKhZYQJLRERE1MLI5XIkJycjJiYGY8aMwdmzZxtcf9WqVVizZo3ZvOPHjyMxMRExMTFISUlBYWGhiHvsHCawRERERC2IWq1GWloaxo0bh1OnTmHy5MmYNWsWqqurLda9efMmFi1ahD179pjNLysrw9y5c/Hiiy/ihx9+wJAhQzB37ly4S/kAJrBERERELciJEycglUqRkpICLy8vJCcnIzQ0FJmZmRbrpqSkwMPDAyNHjjSbn5GRgZ49eyI+Ph7e3t6YNWsWrl+/jl9++aWpXkaDmMASERERtSCFhYWIjo42mxcZGYmCggKLdXfu3InVq1fDz8/PbH5BQYHZNjw8PNCpUyer27gbPO/2DhARERGRJcO1bnbXkbbLs5inUCggk8nM5vn6+kKlUlms27ZtW6vbVSqVCAgIMJsnk8mgVCrt7lNTYAJLRERE5Ia0Rp3ddXyszJPJZBbJqkqlsmhlbYi1bSiVSqe2ISZ2ISAiIiJyQwYY7U7WREVFWYwYUFhYiC5dujgcu/429Ho9rly54tQ2xMQEloiIiMgNaY16u5M1gwcPhkajwZ49e6DVarF//36UlZVh6NChDsceMWIEsrKykJGRAY1Gg23btqFdu3bo1auXUC/PJUxgiYiIiNxQY1tgvb29sX37dhw+fBgPPfQQPvzwQ2zbtg1+fn6YPn063nvvPbuxw8LCsHXrVmzevBkDBw7E8ePH8e6770IikQj9MhtFYnSXAb2IiIiIyKS0uKPddcI6/NoEe+J++BAXERERkRvSs43RJiawRERERG5Ia6OLADGBJSIiInJLeuavNjGBJSIiInJDWrjHA1PuiAksERERkRvSGpnA2sIEloiIiMgN6dkCaxMTWCIiIiI3pDVyuH5bmMASERERuSE9603ZxASWiIiIyA2xBdY2JrBEREREbkjPBNYmJrBEREREbkgLj7u9C26LCSwRERGRG9IamcDawgSWiIiIyA3xIS7bmMASERERuSGtkWmaLTwyRERERG5Iz0pcNjGBJSIiInJDbIG1jUeGiIiIyA2xD6xtTGCJiIiI3BBHIbCNCSwRERGRG2ICaxsTWCIiIiI3xEpctjGBJSIiInJDbIG1jQksERERkRviQ1y2MYElIiIickNsgbWNCSwRERGRGzKwD6xNTGCJiIiI3BBbYG1jAktERETkhpjA2sYEloiIiMgNcRgt25jAEhEREbkhtsDaxgSWiIiIyA0ZjJK7vQtuiwksERERkRtiC6xtTGCJiIiI3BBbYG1j72AiIiIiN6Q1etidbJHL5UhOTkZMTAzGjBmDs2fPWl1v586dGDZsGPr164cFCxZAoVCYlqWmpqJPnz7o27evaXIXTGCJiIiI3JDO4GF3skatViMtLQ3jxo3DqVOnMHnyZMyaNQvV1dVm6x07dgw7duzA7t27kZmZiYqKCrz99tum5XK5HHv37sWZM2dMk7tgAktERETkhgyQ2J2sOXHiBKRSKVJSUuDl5YXk5GSEhoYiMzPTbL309HQkJycjMjISgYGBmD9/PtLT06HX63Hjxg2Ul5ejW7duTfFSncYEloiIiMgNaQ0edidrCgsLER0dbTYvMjISBQUFZvMKCgrQpUsXs3UUCgVKSkogl8vh7++P1NRUDBo0CBMnTmQLLBERERE1zGCU2J2sUSgUkMlkZvN8fX2hUqnM5imVSvj6+pp+rv0dpVIJtVqNmJgYLFmyBN9//z2SkpIwY8YMlJaWNvr1bN68GUql0mJ+VVUV3nzzTae2xQSWiIiIyA3pjFK7kzUymcwiWVWpVPDz8zOb5+vrC7Vabfq5Nrn09/fH8OHD8f7776Nr167w9vZGSkoK2rdvj5MnTzr1GsrLy1FcXIzi4mJs2bIFBQUFpp9rpxMnTuCf//ynU9vlMFpEREREbsjQyFKyUVFR+PDDD83mFRYWIjEx0WxedHS0WbeCwsJCBAUFITw8HF999RUMBgNGjRplWq5Wq+Hj4+PUvnz//fdYtGgRJJKa1uLk5GSr640YMcKp7TKBJSIiInJDtlpY7Rk8eDA0Gg327NmDiRMnIj09HWVlZRg6dKjZeklJSXj99dcxcuRItG/fHps2bUJiYiKkUikUCgXWrVuHbt26ISIiArt27YJKpcLDDz/s1L6MHTsWnTt3hsFgwKRJk7B161YEBweblkskEvj7+5v1xXUEE1giIiIiN6QzNC6B9fb2xvbt27Fs2TKsX78eERER2LZtG/z8/DB9+nQMGDAAaWlpiI+PR1FREVJTU1FZWYnY2FgsXLgQADBu3DiUlpZi+vTpuHXrFnr16oXt27dbdENwRL9+/QAAR48eRYcOHUytsa6QGI1Go8tbISIiIiJBjf7P/9hd5/Nh7zbBngjDYDDg8OHDOHv2LLRaLeqnoCtXrnR4W2yBJSIiInJDje1C4K5Wr16Nf/7zn+jevTsCAgLMljnbKssEloiIiMgN2Romq7n64osv8NZbbyEpKcnlbTGBJSIiInJDje0D6650Oh369u0ryLZa1pEhIiIiaiEaW8jAXSUkJODIkSOCbIstsERERERuSN/C+sC2a9cOW7Zswbfffot7770X3t7eZsv5EBcRERFRM6dvYV0Izpw5gwceeAAAUFxcbLaMD3ERERERtQDNrYuAPXv27BFsW0xgiYiIiNxQS2uBBWoe5MrIyEBBQQEmTZqEvLw8dOnSBa1bt3ZqO0xgiYiIiNxQSys1df36dfzlL39BSUkJVCoVxowZgw8++ADnzp3Drl27nCon2/JSeyIiIqIWQG+U2p2ak7feegtdu3bFiRMn4OPjAwB45513cN9992HNmjVObat5vXIiIiKiP4iWNozWyZMnMXv2bLPRBwICAvDXv/4VZ8+edWpb7EJARERE5IYMhuaVoNqjUqng5eVlMV+j0cDoZH8JtsASERERuSG9QWp3ak4efvhhbN++3SxZvX37NtavX4+BAwc6tS2J0dmUl4iIiIhE1+uzZXbXkY+1v467uHbtGiZPngylUony8nJ07doVRUVFaNWqFT744AN06tTJ4W2xCwERERGRGzI0sxZWe9q1a4dDhw7hiy++QE5ODry8vNClSxckJSWZHupylNMJ7O3btyGRSBAQEODsrxIRERGRg1riLXKZTIbx48e7vB27CWxVVRX27duHb7/9Fj///DO0Wi0AwNfXFw888ACGDx+OsWPHMqElIiIiEpCxhT3EVVpaik2bNuHs2bPQaDQWy7/++muHt2UzgTUYDHj//fexfft2dOjQAXFxcRg/fjxat24NvV6PmzdvQi6XY9++fdi4cSOmTZuGGTNmwNOTvRKIiIiIXGVsZsNk2fPqq69CLpdj1KhRCAwMdGlbNrPNCRMmoFevXvj0008RHR1tdZ2xY8cCAHJzc7Fr1y5MmDABBw8edGmHiIiIiKjlDaN14sQJfPDBB+jXr5/L27KZwL711lsOl/Tq0aMH3nzzTeTn57u8Q0RERETU8roQBAYGIjg4WJBt2Xy8zZl6tLW6du3q0s4QERER0R1GB6ZmJCUlBZs2bYJSqXR5Ww51WNVqtThw4ADy8/OtdrpduXKlyzvSWJEb1zm1vtFoRNHy1ejw1/nwcLH/hT26mzdxbct76LhkESQSca+iqs/+DMUvWQib/IyocQCgPP1zeIaEICh2mOixftu0Ba3HjIZPRGdR4xh1Olxdtgr3vPYKpHVK3IlBXfQrbuw7gA4vzBM1DgBU/u9xaK+Xos24MaLHKt37MWQ9uiOgf1/RY/36xtsInzkNXqGhosbRVytQvGYt7ln2KiRScYezUeaeR+V//hdtZzwnahwAuPX1vwGJBCF/Gi56rJL3dyAodhhk3buJGsdoMKBo2Sp0eHkBPPz9RI2lLSvD9e3/QMfFC0WNAwBVP/4E1fk8hKZMFD3WjYOfwattOIIeHiJ6rOL1G9FmQjJ87ukoahyDRoOiFW+g07JXIXHyGZ3C+X8Vaa8c19JaYH/66SecPHkSDz74IMLCwsxKygICPcRV16JFi5CRkYGePXtajNPlTGJ2+vRprFmzBgUFBWjVqhWmT5+OiRMtP5Spqan473//Cw8PD9O8M2fOOBynIZqiX6G/dQsKeQ4CBz4kyDZtUWTLoSu7AW3JdXi3ayt6LGVOLox6PSR1jptYsZoigdVXV0NdeAmKbLnoCawq/yIMVVVQ5V+AX+9eosZSZmVDc+Uq9Ldvi34RpcyWQ3u9FMYnkkS9iDIaDFDKcwC9XvQEVltaBu3161Bm58BL5PegMicX+spKqK9che+9EaLGUmTLocrLh0GjEf0iSpEtBwDRE1iDRgNVfj4827QRPYFVX74CfWUllLm5COjvev+6hiiy5NCWXIe2rEz0iyhllhzK/HwYDQZRL6KMRiOU2XLoyspET2B1lZXQXLkKZbZc9ARWlZdfc26/cBGyHt1FjSWGlvYQV0xMDGJiYgTZlkMJ7HfffYf169djxIgRjQ5UUVGB2bNnY+nSpXj88ceRk5ODqVOnonPnzhgyxPzDIpfLsXfvXtx///2NjmeL8s6JW5ktFz2BVWb9HkvMBLYmeciFQaGEuvASfLtYf+hOCNrSUuiul0J3oxwGlQpSX1/RYinluYDRCEWWHK1G/Vm0OACgyM6u+TdLLnoCq8iW17yu7BwEDhLvPWhQq6HMvwDodNCWlMC7XTvRYqkvX4GhurpJLqJqky9Ftlz0iyhFnfOFmAms8c773KjVQZWXD7/7eosWS1dRkzwANYmEZ1CQaLFUefkwanVQZmfDOG6MqBdRpnN7llz0BLY2liJLjuC4R0SLY9TrocjJhVGlgvryFfhG3itaLO21EuhulENXUQmDWg2pk4PKO0MpzwFQ8/kKGdn4vMIRdc8XzTGBRQtLYOfOnSvYthy6nAsMDERkZKRLgYqLixEbG4vRo0dDKpWid+/eGDhwIH766Sez9W7cuIHy8nJ06ybO1brpCyk3D4Y7Y9qKwZQ81IkpFvWlyzBUVzdJLMWdpBx6PZS558WNdSep1BYXQ3fzpmhxjEbj7+8LuRxiVlfWVVRAc7WoJpbIfyvl+XxAp6v5f5bIse5s36BUQlVQKG6sO+8L1YWLMAjQj8oWo14PZU4ugDrve5Fof7sG/Z33uNif4drkof7/xVB73HTlN6G9dk3cWLWJyp2LKLEYlEqoLhYAEP8zrCoohFGlapJYpvedruYiStRYd94XmitXoauoFC2O0WCAMjvHFFPMc7toWlgfWAD497//jfHjxyMmJgYDBgzAxIkTkZGR4fR2HEpgZ86ciTVr1qC4uNjpALV69uyJd955x/RzRUUFTp8+jR49epitJ5fL4e/vj9TUVAwaNAgTJ04UrPtA3eTBqNFAfaFAkO1aozyfB9w5iaoLL0F/J8EUQ90vPLG/aOueRMX8ojXqdFDm5jVJLO1vv0F/8xYAQF9RCU3Rr6LFMksezp8X9SJKKW+av1XN9rN/jytiLL1CCdXFOwmywSDqRZTqYoEpedD+9ht05eWixar791Fm58BoMDRJLDHPFzV3huq+B8VLlrU3yqH9rSZBNqpUol5EKXPOA3f+PqqLBaJeRNW98BT9wia7af5WBq0Wqrzfz+1iXkRpin6FvrImQdbfvGl6jzQrBon9qRn58ssvMW/ePNxzzz146aWXMH/+fLRt2xYvvPCC00msQwls7969ce7cOSQkJKB379647777zCZn3b59G2lpaejduzfi4+PNlqnVasTExGDJkiX4/vvvkZSUhBkzZqC0tNTpOPXV/6DU/dIVmrLuCcBoNLXkiBPr9xOPrrQU2uuuHytr9Arz1jWlPFe0L9q6LQ9AveMpsPonazETsLqxjBotVBcuihLHaDCYxVJfugx9lTgXUdobN6C9VmL6WcwvP1Xu78mD2LHqv+fEjfX7e05fWQnNr41vLGiIQWOePKjyxLsTVZM83Db9LObnqm6iLHYsRd1YIl9E1Y2l/e0atDfEuYjSV1VDfemy6WelXC7euT3/Aoya399zYibm9bct9kWAGIwG+1NzsnXrVjz//PPYsGEDnnnmGUyePBkbN27E/Pnz8d577zm1LYcS2FdeeQX33nsvXn31VaxatQorV640m5xx9epVTJw4EcHBwdi8eTOk9TqlDx8+HO+//z66du0Kb29vpKSkoH379jh58qRTcayp39qgyBbnloLRYICifrIsUktH/eQBEO9DqszNNUseDNXmJz0h1T9eyvwLMKjVosSqf3tdrONn0GihOp9nNk+sL1rN1SIYbv+ePIh5EVU/0RPzIqr+30aZI05rZd1uJbZiC0V/+zbUl6+Yx8oS5+JadcE8eTBqtFDd6eoktPrHq+YiqkqcWE30GTbq9TV985sglrbkOnSlZWbz6ifqQlHKc4A634X6ytvQFBWJE6ve8RLzIqp+LLG7YYjCKLE/NSOXL1/Gn/9s+UzLyJEjcfGicw06DiWwV69exZo1a/DMM8/giSeesJgclZ2djQkTJmDo0KHYunUrfK08APTVV1/hyJEjZvPUarXF6AfOqml5MO/Xo795C9rffnNpu9Zorlw1Tx5QM0SO8U5/RCFZ69so1ofU2nbFOHnXPg1rRqer6dMpMP3t21BfMU8eNFeLoKuoEDyWKj8fxnonarH6ZVn7u4h1x6GpYtX0STVPlg3VClEuorTXS6ErM08eVPkXYKhzV0AoijsPK9Yl2mf4bp4vjEZRbhcbVCqLOxm60jJoS64LHkt96TIMCoXZPKVcnD63Vj9XIjWENFUs452HV83miXQRpbtVYdEdTH35CvT1vpvdncRgf2pO2rdvj7y8PIv5ubm5aNWqlVPbcrgLweXLrn1JlJWVYfr06Zg6dSoWL15s0fJaS6FQYPXq1bhw4QK0Wi3+/ve/Q6VS4eGHH3YpvrXkARDntqC1k4FY/bKsxVIVFEJf7yTrqroPtNQlxpeftuQ6dDduNEksRb2Wh99jNc37Qn/rFrTFwl9EWTtWyhzhL6KsJQ+AOF9+6kuXYFBY9jcUo7VSaS0B1+uhFOHhFmutapqiX6G7JexFlNFoNL/9fYciO0fwiyjdrVtW+5KLcb5Vns83PW9gHkuE84WVbRoU4lxEWT23X7go+EVUzfMGlt0gxLjY0PxaDP2tW5axRDhfWP2+MBprLhibkxbWApucnIzXX38d+/btw4ULF3DhwgV8+umnWL58uVMNooCDw2iNGzcOr7zyCiZMmIDOnTvDs95gwKNHj7a7jf3796O8vBzbtm3Dtm3bTPOnTJmCm3eevl2xYgXGjRuH0tJSTJ8+Hbdu3UKvXr2wfft2+Pm5NjC1rS9UZZYcISMSXNq2RSwbJ05FlhyybsJVKzOoVKanYc0XGKDMOS/oeJzqQuvJg/ZaCbQ3bsCrTRvBYtlKVBXyHMHHQrQZKzsbgUMGCRanplXZ+heCIlsO744dBIulu3nLah9Ko1oN1cUCQcfjVOaet5o8qAsvQa9QwMPFz21dNj/D2XIgKVGwOA3GypLDv49ww/vVf1jRLFa2HIEPDxYsVk3yYJkU62/VvF+EHI/T1jmw9k6UswPKN8TqxcadfQiOjxMsDmA70VJky+EbHSVYHH21AurCS1YW6KE8nwf/B/oIFkt1sQBGK92zai6ibsEzJESwWLbP7XK0No4TdJg1m+/BbDkCBz4oWBzRNbMWVnumTZuGkpISLF++HHq9HkajEV5eXpg6dSrmzJnj1LYcOossXboUAMwSz1oSicShBDYtLQ1paWkO7VRqaipSU1MdWtcRRqPRZt8h9ZUrgg4or7t502aLmjJbLuiA8raSB6CmVUfIBLah1gxlllzQAeVtxTLcvg3N1SLBiho0lDwIPaC85tdi6G10S1BkywUdUL6hv5UiO0fQBNZmi5oIF1G2LgCEHlDeZvIA4S+iVBcuWk0eamIJm8A2dAdDKc8RNIG19bcS+iLK2vMGtWpGf1EIVpWrtoCGNUJfRNV/3qB+LCET2IbPF3JBixrYiqW/VSHoRVRtAQ1rlOfzBL+IEpULN0fkcjlee+01XLhwAREREVi+fLnVIgI7d+7Ejh07UF1djfj4eKxYscLUaPjFF19gw4YNuHHjBgYOHIjVq1cj1IVzrYeHB1599VU8//zzKCgogK+vLyIiIhrVTdShs3Bubq7NKSdHvCdzhaIp+hV6W2PNGY02T4CN0dDJQHfjhqD9shpMKgUeC9HeSU4otdW3miKWKv8ijFZKIwOoGVBewH5ZygZuc9dW5RIsVkPvCwEfXDRV32rEfjiroeShJpZwn2FljmWf1FqGqiqo7xQBEEJD7+fai6imiCVkN4yGkoeaWMK9L9SXr8Bga3QNg6EmERRIQ8ev9iJKKA3dUq+9iBKC1ecN6u6HgJ/h2upbTRGrtoCGNUa1WrTRX8QgMUjsTtao1WqkpaVh3LhxOHXqFCZPnoxZs2ahut6QnseOHcOOHTuwe/duZGZmoqKiAm+//TaAmtzv9ddfx/r163HixAmEhoZi8eLFLr+mqqoqHDlyBIcOHcK+ffvw5ZdfQtWIrjHiFvd2E/Y+GIJ++dk5OQv1Ia2tvmVLbVUuIdRW37JFdbFAsH5ZDSUPgLBffvYeNBI2VgPbsvJgQ2PVLaBhTc1FVInN5c6orb5li5AXUfYuXIS8sLG3LcE+w3aSh9qqXEKoW33LGs2Vq9BVCjOgfEPJAyBssRB7/TSF7Ftp7+8u1PmitvqWLYaqaotRKxqrtvqWLco84UZ/sfe3asrPcLMaTquRhQxOnDgBqVSKlJQUeHl5ITk5GaGhocjMzDRbLz09HcnJyYiMjERgYCDmz5+P9PR06PV6fP7550hISMADDzwAX19fLFiwAP/5z39Q5sLFWl5eHkaOHIm33noLP//8M3788UcsX74cjz/+OH791bkx2B1KYC9evIhp06ahb9++FmPANmYc2KZm9wvpzi0FV9lLHhzZF0fVrb4ldiy7J2YBq3LZiyVUVS5rwyTVJ9QXbd0CGjZjCfS3UuX9Xn3LZiyBvmjtbUfIqly2+jnWEqoql62HFesS6nOlvXYNuvKG38tCxXLkgRyhHtqx9xnW3Si3GPpPrFhCVeWqW33LFsE+w/XGwBYzlt33l064O1H2/lZCVeWqW32roX1pLlW5JEb7kzWFhYWIjjYvKx8ZGYmCAvP3cUFBAbp06WK2jkKhQElJicWyVq1aITg4GIWFjT+vr1y5EjExMfj++++xb98+HDx4EN999x26dOni9LCsDnUCee2111BRUYEXXngBgQL1FW0qjiQPRrUaqvyLkPV0rU5y3epbttRW5fLw93cpliNfbIosOVqPsd8/2R5HTpaKbDn8Yx5wKY6tp2GtxQoa6tqoFHWrb9lSW5XLp9M9LsVyKHm4U5VL6uXlUiyH3hfZcgQPj7e7nv3t2L/trMyWQ9a1i931GmJWfcuWOwPK+/eNcSlW3epbtmiLa6pyebZu7VIsR1rsaqtyudrn1tHzReCggS7FqV99q6H98W7fzqVYuvJyu8Mg1o7+4up7sG71LVtqq3JJZTLXYjnwvlBky9EqcZRLcQAHz+1Zcvjd19ulOPWrb9ncH3kOAge79h6sW33LltqqXN4d2rsUq0k0stKWQqGArN570dfX1+JWvVKpNBvStPZ3lEqlxbLa5UoXGgt++eUXHDhwAAEBAaZ5wcHB+Otf/4qnnnrKqW05dFY8d+4c1q5diylTprg0Duzd4GirghDjVjrUFUGgAeUdOfEIMaB8/epbNvdHgKpcjrQ8AMJ0+XD0lr0QLR2OxBKiKlf96lu2CFGVy1oBDWuE6BpRv/qWmLEcfW8JE8v+e0uIqlz1q2/ZIsSA8vWrb9kizOfKsW0IEsuRAgICVeVyJJYQVbnqV9+yRYiqXPWrb9kixB0HR7fRbLoRNLILgUwms0hWVSqVxYhOvr6+UNfpJlKbnPr7+9tMeF0ZFapDhw5WW3BLS0sRHh7u1LYcSmDDwsKaTXN7fY72S3J1LMSGnoZt7D7Z4mjyALj+IW3oadi6DNWu98ty9ItGiKpcjt5Gd/X4Wau+ZYurX7SaoiKLAhpWCXAR5WiiJ8RFlMOJiotVuRzpVmKK5eLfSl9V5fDnxdUHrOpX37JFiAHlHT1+QlxEOXoR4epn2Fr1LbFiWau+ZYurVbnqV9+ypaYql3N9Ey1iOXhchLiIcvh7pJkksI0tZBAVFWWRKBYWFpp1CQCA6Ohos24FhYWFCAoKQnh4OKKjo822UV5ejoqKCouuCc6YPXs2li1bhr179yIvLw8FBQU4dOgQXn31VYwdOxY//fSTabLHoQQ2LS0Nb7zxBgoLC2EQqT6yGGqrb0l8fRE8cgRCRpmXL/N/sD9aJ4+DR0iw6ZZCY9VW3/Jo1QptnhoPv3q3MluNfhzBIxIg8fFxuSpXbfLl3bkTwmc+B88w8yEtwqY9C/8HBwASicsf0trf9+tzP9rOMR8GTeLtjXb/Mxu+d8a2daVvpSl58PRE4LChaDNxvNlyn+gohE2ZBK+24S5X5aqtviX190er0Y8j6NFYs+WBjwxDqzGJkAYEuFyVq7aAhmd4GEInp8C33vBBbcY/iaDYYZB4ebrcL6v2wsi3SzTazkmD1M/89lHbWTPhF1Mz/I6rdxwU2XJAIoH/gH4InzHNbJlHq1ZomzYDPhERLseqrb4l8fZGcEI8Wo1NMlvu1+d+tJk4AZ5tWrtclau2+pZHcBBaPzkWAYMeMlsePHIEQh4bCalM5vJFVG3y4NWhA8KmPQvvesMHhU5+BgGDBwFSqeuf4TvvC1mvnmj//P9YLG/3/P9A1qtHzbpCnC+kUgQMHoTQyc+YLfO+pyPCpj0Lrw4dXK7KZVCpoMq/AKlMhpDHRiJ45Aiz5QGDHkLrJ8fCIzjI5apctdW3PNu0QZunJ8Cv3jjArcYmISjhUUi8vV2uylWbAPvcG4G2aTPgUa8yUfiMafAf0A+QSFxuCKmN5RfTB21nzTRbJvWToe2cNPh2iTZbtzFqq29JvDwRFPsI2kxINlvu270bQielwDMszOWLqNrqW9KAALQak4jAR8yHdwx6NBatRj8Oqb9/86nK1cgW2MGDB0Oj0WDPnj3QarXYv38/ysrKMHToULP1kpKS8MknnyA/Px9VVVXYtGkTEhMTIZVKkZiYiIyMDJw+fRpqtRrr16/HI4884nTFrLoWLFiAsrIyrFy5EklJSRg1ahQWLlyI3377DRs3bkRKSgpSUlLwzDPP2N2WQ31gP/jgA1y9ehWjRo2CRCKxqKKVlZXVuFciMk1REYLi4xAUOwwefn6o/M//mS2XeHoiaOgQBA56CLdP/ADNr8WN7hOjuXYNbZ4aj4AH+0Pi6WnR4V/q74fghEcRFPcIKr/7HpriYvh0btx4pvqqKoTPfA6ynj0gkUhQ/q9DZsu9wkIR9sxEhPwpARVHj8GgUkFqpWyvPUaDARIvb3R46UV4d+xgtbqXb3QU2s1OhepiAap//qVRrweo6c8m69kTwQmPwjMk2OIpXIlUCv9+MfCL6QPF2XPQ3Wj8U5DqK1fRKnEUAocOgdTHB7e+yjBbLvXxRvCjcQgcMhi3j/8XmitX4Xl/cKNi6cpuIHRyCvz7xkAilaL6tPlVpUdwEAIfHoyg+EdR+e130JWWwSs8rFGxjGoN2s5Js9nfz7tDe4Q/OwWa4t9Q+f1/YNTrIfHwcDqOQaOBZ0gIOi56CV5tw6EtNW9hlUgAWY/u8O3eDarzeS51jdD8dg2Bgwcj6NFYeAT4o+r0j+YreHggcNBDCHiwP6pO/wjttRL4RkU2LlbRr3cS14GQennhxv6DZsulMhmC4x5B0CNDUfn9/0J95Wqj+1bqblUgbNqz8LuvFyRSKSr+/Y3Zcs/WrRD6VDJCRsTj1jffNnqs6toLovYvzoNP585WW6h9OndC25nTob58BVUnT8FoNDZqrGr97dvw7tQJ4dP+As/WraGqPwqKRAL/PvfB775eUGTJob3W+AYD9dUihPxpOIIeGQqpTIaK7743D+XpiaBhQxEwaCCqTpyEuujXmovfRtBeK0GbpycgYEB/SDw8LMaO9gjwR3DcIwh+NA6VxzKh+e1ao8czNVQr0DZtBny7d4NEIkH9P4NXeBjCJqUgZMRwVBz7rtFjVRv1ekhlvuiw8K/w7tDeaiIn69oFsq5doMy/4NKFja60DP4P9EFQQhw8g4Is7ihIpFIEDOgH/34xqD5z1uEWaGvUV67WJK5DBkPq44Obh780Wy718UFwwqMIHDoEt//3ONRXrsKvd69Gx2sKtobJssfb2xvbt2/HsmXLsH79ekRERGDbtm3w8/PD9OnTMWDAAKSlpSE+Ph5FRUVITU1FZWUlYmNjsXDhQgBAz549sXLlSixZsgSlpaUYMGAA3nzzTZdez9GjR136/bocSmBnzpxpfyU35BsV6dCXWW0i6wpHH37w8PdHq8cfcymWo7/vFRaG0IkTGh1HIpUitF5LqC2+0VEuVaLxatMGbZ4c69A++feLaXQcADUnLAdOWlIfHwQ/GudSrCAHCzx4Bgeh9RNJ9ldsgKO/792hvUvvC6m3N0Kftv/7EokEsh7dIevR+Icjfe7p6FAyIPHwQODAh+yu1xBHiy5IZTKE1Gvxc5ajhSs8W7dGaL0WK2dIJBK0mfCkQ+v6RHR2qUiIR2AgQp+yv68SqRT+fe4D+jR+BJva5MoeqZcXgoYNtbteQxwtJuER4I9Wo117sMrR3/dqG+7aud3Dw+Hfd/RY2+IVHubQuUkilSKgf79GxwFQ875yQG0i2xzY6iLgiB49euDjjz+2mP/3v//d7OcpU6ZgypQpVrcxatQojBrl+gODtTp2FK5gikMJrLs/qEVERETU4jTPx49sunr1KjZs2ID8/HxorBRq+frrrx3els0EdvLkyXj55ZcdHuf1zJkzWLduHT788EOHgxMRERGRda60wLqjl19+GSUlJXjssccshuhyls0Edv78+ViwYAFCQ0Px2GOPITY2FvfcYz4e5oULF3Dy5EkcPHgQlZWVWL16tUs7Q0RERER3tLAWWLlcjr1796J3b9fGFgYaSGAHDBiAQ4cO4cCBA9i1axdWrVoFX19fhISEQK/X49atW9BqtYiMjMSkSZOQnJwMbzudyeVyOV577TVcuHABERERWL58OWJiYizW27lzJ3bs2IHq6mrEx8djxYoVLo07RkRERNTc2Kq01VxFRES4VAihrgb7wHp7e+Ppp5/G008/jcLCQvz888+4ceMGJBIJwsLC0KdPH0TcGSrHHrVajbS0NKSlpWH8+PFIT0/HrFmz8M0338C/TlWqY8eOYceOHdi9ezdCQ0Px4osv4u2338ayZctceqFEREREzUoLS2CXLl2KlStXYurUqbjnnnssRrXq18/xB/kceogLqKmPGxnZuOFpAODEiROQSqVISUkBACQnJ2PXrl3IzMw0e8ItPT0dycnJpljz58/H5MmTsXTpUng0YsgfIiIiouaopfWBLSwsxMWLF7Fo0SKLZRKJBDk5jo8P7XAC66rCwkKL6g2RkZFmFSAAoKCgACNGjDBbR6FQoKSkBB06dGiSfSUiIiK661pYC+ymTZuQnJyMSZMmQSaT2f+FBkiMTVQjduvWrZDL5di8ebNp3sKFCxEeHo4FCxaY5o0YMQKLFi1CQkICAMBgMKBnz544cuSIS+XLiIiIiJqTnks32F0nZ+ULTbAnwujbty8+//xzi0EBGsOhUrJCkMlkUKlUZvNUKpXFw1m+vr5Q1ynRWNvZt24/WSIiIqKWTmKwPzUn8fHx+Oabb+yv6ACXuhAYDAZcu3bNoVv7UVFRFmPEFhYWIjEx0WxedHS0WbeCwsJCBAUFITy8cWUAiYiIiJqlFtaFoEOHDli3bh0yMjIQEREBT0/zNHTlypUOb8uhFtjhw4fjX//6l8X88vJy061+ewYPHgyNRoM9e/ZAq9Vi//79KCsrw9Ch5mX+kpKS8MknnyA/Px9VVVXYtGkTEhMTLZ5UIyIiImrJWloL7NmzZxETEwMPDw8UFRXh0qVLpuny5ctObcuhFtiioiIsXboUeXl5WLhwISQSiWmZo11ovb29sX37dixbtgzr169HREQEtm3bBj8/P0yfPh0DBgxAWloa4uPjUVRUhNTUVFRWViI2NhYLFy506kURERERNXstrAV2z549gm3LoYe4evTogffeew9Lly5Fjx49sGHDBgQEBKCsrAzDhg1zatgDIiIiIrLvvpfsP8SV9U7zeYgLAIqLi7F3717k5+fD09MTXbt2xYQJE9CxY0entuPwffn7778f+/fvx40bNzB+/Hhcvnz5rt3W12g0WLZsGQYNGoT+/ftj1qxZKCkpMS0/fvw4EhMTERMTg5SUFBQWFt6V/Wzutm7diri4OAwYMACTJ09GXl6eaRmPsbBWrVqFNWvWmM3jMRaOXC5HcnIyYmJiMGbMGJw9e/Zu71KLcu7cObPuYBUVFZgzZw769++PuLg47Nu37y7uXfN2+vRpjB8/Hv3798fw4cPx8ccfA+AxFtKRI0fw2GOPoW/fvnj88cdNDxm5wzGWGO1PzUlOTg5Gjx6NI0eOQCaTwcPDA+np6UhKSkJubq5T23IoA63tMtC2bVt89NFH6NKlC8aPH48ff/zR+b0XwJYtW3Dx4kV89dVX+O9//4uQkBBTx9+ysjLMnTsXL774In744QcMGTIEc+fOdbirA9U4ePAg0tPTsWfPHpw4cQKDBw9GamoqDAYDj7GAbt68iUWLFlncVuExFk5tFcBx48bh1KlTmDx5MmbNmoXq6uq7vWvNntFoxP79+zFt2jRotVrT/KVLl8LPzw/Hjx/Hpk2bsHbtWl40NEJFRQVmz56NKVOm4NSpU9i4cSPWr1+P48eP8xgLpLCwEK+88gpWr16NM2fOYMmSJXj++edRXl7uHsfY4MDUjKxZswaPPPIIMjIysHHjRrz77rv497//jbi4OKxdu9apbTmUwNb90vT19cW7776Lp59+Gi+8cHearefNm4ft27cjJCQE1dXVqK6uRqtWrQAAGRkZ6NmzJ+Lj4+Ht7Y1Zs2bh+vXr+OWXX+7KvjZXN2/eRFpaGjp16gRPT09MmTIFxcXFuHbtGo+xgFJSUuDh4YGRI0eazecxFk7dKoBeXl5ITk5GaGgoMjMz7/auNXvvvfcedu/ejbS0NNO86upqfPPNN5g3bx58fHzQp08fJCYm4rPPPrt7O9pMFRcXIzY2FqNHj4ZUKkXv3r0xcOBA/PTTTzzGAomMjMT//d//oV+/ftDpdCgrK4O/vz+8vb3d4hi3tBbYs2fPYvbs2fDy8jLN8/LyQmpqKn766SentuXQQ1xz5861GK/1hRdeQFRUFPbv3+9UQEfpdDooFAqL+VKpFAEBAfDw8MDmzZuxefNmhIeHY+/evQBqKnnVLXjg4eGBTp06oaCgAH369BFlX5urho7xc889Zzbv22+/RUhICNq1a8dj7AR77+OdO3eibdu2FmX1eIyF42gVQHLek08+ibS0NPzwww+meZcvX4anpyc6depkmhcZGYmMjIy7sYvNWs+ePfHOO++Yfq6oqMDp06fRvXt3HmMB+fv74+rVqxg5ciQMBgOWLVuGK1euuMUxbm4Jqj1BQUFW735VVVVZDKllj8MJrDVjxozBmDFjnAroqB9++AFTp061mN+xY0d8++23AIAZM2Zg+vTpWLt2LZ577jkcPnwYSqUSAQEBZr8jk8lMBRHod44c49r1Xn/9daxYsQJSqZTH2An2jnHbtm2t/h6PsXAUCoVFyUJfX1+LwirkPGvjcysUCvj6+prN4/F23e3bt5GWlmZqhd29e7fZch5j17Rv3x4///wzTp8+jdmzZ+O5555zj/dxM+siYE9cXBxWrFiBv/3tb+jcuTMA4NKlS1i9ejViY2Od2pZLhQzENGTIEJw/f77BdXx8fADUlKT9+OOPkZeXZ7Xil1KptGhBJseO8WeffYbly5dj6dKlGD16NADrVdV4jK1z5Bhbw2MsHEerAJIwZDKZWTVFgMfbVVevXjV16frb3/6Gixcv8hgLrLb1b/DgwfjTn/6ErKwstzjGLa0F9sUXX8TUqVMxcuRIhISEAKjpshgTE4PFixc7ta1mWR1g8eLF+Oijj0w/6/V6GAwGBAUFISoqyuxpbb1ejytXrqBLly53Y1ebtS1btuDNN9/E1q1bMW7cONN8HmPx8RgLp/6xBGq6FfBYiiMiIgJarRbFxcWmeTzejZednY0JEyZg6NCh2Lp1K3x9fXmMBZSZmYlnn33WbJ5Wq0Xnzp3d4hi3tEIGISEhOHDgAN577z0899xzmDNnDj744AN8/PHHaN26tVPbapYJbJ8+ffCPf/wDRUVFUCqVWL16Nfr3749OnTphxIgRyMrKQkZGBjQaDbZt24Z27dqhV69ed3u3m5UDBw5g165d+OijjzB48GCzZTzG4uMxFo6jVQBJGAEBAUhISMC6deugVCpx7tw5fPHFF6Y7OOS4srIyTJ8+HVOnTsXixYtNQ1fyGAunV69eyMrKwmeffQaDwYDMzExkZmbiqaeeco9jbHRgamYOHDiAqqoqTJ8+HZMmTcLevXutVnu1p1kmsBMnTsTYsWPx9NNP49FHH4VSqcTGjRsBAGFhYdi6dSs2b96MgQMH4vjx43j33XfNqoeRfe+//z6qq6uRnJyMvn37mqaLFy/yGDcBHmPh1FYBPHz4MB566CF8+OGHpiqAJI6VK1dCp9MhNjYW8+bNw0svvYQHHnjgbu9Ws7N//36Ul5dj27ZtZufhDRs28BgLJCwszDSaxoABA7Bx40Zs2bIF0dHRbnGMW1oL7I4dO/DGG29Ap9OZ5kVHR2PFihWmh/Ed5VAlLiIiIiJqWv1n2q/E9eP7zacSV0JCAhYvXozhw4ebzf/666+xbt06p0Z5cNuHuIiIiIj+0FpYE+ONGzfQtWtXi/k9e/bEtWvXnNpWs+xCQERERNTSSQxGu1Nz0q1bNxw6dMhi/uHDhxEVFeXUttgCS0REROSGWtowWnPmzMGsWbNw6tQpU1GerKwsnDp1Cu+++65T22ICS0REROSGmttDWvbExsZi7969+PDDD5GZmQlPT09ERUVh3759To+ywwSWiIiIyB21sBZYAKbRNFzFPrBEREREbqilDaNVV79+/XD16tVG/z4TWCJqUU6fPo1JkyaJtv38/Hw8+eSTZuMYEhGJoaU9xFWXq6O4MoElohZDrVZjyZIlWLhwoWgxunbtip49e2L79u2ixSAiAmoe4rI3NVeuFuZhAktELcbBgwfRpk0b09OtYpk6dSq2b9+O27dvixqHiP7YJHr7U2Ps3LkTw4YNQ79+/bBgwQIoFAqr61VUVGDOnDno378/4uLisG/fPtOy8vJydO/e3axK3GuvvdZg3NzcXNP/2QJLRC3Sl19+ie7duyMzMxNAzclu6tSpeOKJJ6DRaKz+zs6dO/HYY4+Zfj548CD+/Oc/45NPPkF8fDzuu+8+pKSk4OLFi6Z1unfvjn379mHixIm4//77MWrUKJw9exYfffQRYmNj0a9fP7z44otmMaOjo9GxY0d8+umnIr16IiLUPMRlb3LSsWPHsGPHDuzevRuZmZmoqKjA22+/bXXdpUuXws/PD8ePH8emTZuwdu1anD17FgCQk5ODrl274syZM6ZpxYoVDcYeO3YsnnjiCezZswdHjx5Fp06dnH8BdzCBJSK39NhjjyExMRHLli1DdXU19uzZgzNnzmDt2rXw9va2WL+goACXLl1CXFyc2fyioiJ8/vnn2LRpEz799FNUVFRg5cqVZuusX78eM2fORHp6OgICAjBz5kwcPXoU27dvx5tvvomMjAzs37/f7HdiY2Px7bffCv66iYhqidEHNj09HcnJyYiMjERgYCDmz5+P9PR06PXmzbnV1dX45ptvMG/ePPj4+KBPnz5ITEzEZ599BgCQy+Xo0aOHU7EzMjKQkJCADz/8EI888gjmzJmDb775plHPFDCBJSK39dprr0Gn02HJkiVYt24dFi9ejOjoaKvrnjt3DjKZDPfcc4/ZfK1Wi+XLl+O+++5Dr169MGHCBFMLQq0JEyYgPj4eUVFRGDNmDCoqKrBs2TJ069YNI0eORM+ePZGfn2/2O127dsXPP/8s6OslIqqrsX1gdTodKisrLaaqqioUFBSgS5cupnUjIyOhUChQUlJito3Lly/D09PTrJU0MjISBQUFAGpaYK9cuYI///nPGDp0KF555RVUVlY2+Ho6d+6MuXPn4uuvv8aePXvQtm1brFy5EsOGDcPq1avNuhjYw3FgichtBQcHY8WKFUhLS8PQoUPx1FNP2Vy3rKwMwcHBFg8GSCQSREREmH4ODAyEVqs1W6dz586m/8tkMkilUrNE2NfX16LbQuvWraHValFRUYHg4OBGvT4iooY0dpisH374AVOnTrWY37FjR3h4eMDX19c0TyaTAQCUSqXZugqFwmw9oOZcqFKpAAABAQEYOHAgpk+fDq1Wi5dffhmvv/46NmzY4NA+9u3bF2q1GkBNd69Dhw7h448/xv3334/Vq1cjMjKywd9nAktEbi07OxseHh7IyclBeXk5WrdubXU9iURicQsMAKRSKTw9zU919R8eqL9cIpHYfULWYDCYtk9EJIbGDpM1ZMgQnD9/3uqy0aNHmxJH4PfE1d/f32w9mUxmth4AqFQq+Pn5AYBFf9cXXngBzzzzDAwGQ4PnxdzcXKSnp+Pw4cMoLy9HbGws1q5di7i4ONy+fRtLlizBvHnz8Pnnnzf4GnnmJSK3lZWVhW3btmHt2rUIDQ1t8AnXsLAw3Lp1y+UnWx1VXl4OmUyGwMDAJolHRH9AIjzEFR0dbeoGAACFhYUICgpCeHi42XoRERHQarUoLi42W7dLly4wGAxYt24dioqKTMvUajW8vLwaTF4TExPxxBNP4Pjx45g2bRq+//57bNmyBcOHD4enpydatWqFMWPG4Nq1a3ZfBxNYInJLGo0GL7/8MuLj4zFq1CisWrUKR48eNT1AUF+fPn2g1Wot+qqKRS6Xiz5cFxH9sUn0RruTs5KSkvDJJ58gPz8fVVVV2LRpExITEy0Sz4CAACQkJGDdunVQKpU4d+4cvvjiC4wePRpSqRRnz57F+vXroVAoUFpaivXr1+OJJ55oMPaQIUNw8OBBpKen49lnn7V6R23gwIH48ssv7b4OJrBE5JY2bNiA0tJSU6trnz59MGXKFKxevdrq1fm9996LqKgonDx5skn27+TJk0hISGiSWET0ByVCC2x8fDxmzJiB1NRUxMXFITAw0FT8pbi4GH379jW1uq5cuRI6nQ6xsbGYN28eXnrpJTzwwAMAgLVr10KtViMuLg6JiYno1q0bXnrppQZjv/LKK+jZs2eD64SEhCA0NNTu65AYm+p+GxGRyPbu3YsDBw7g4MGDosbJzc3FM888g2PHjiEoKEjUWET0xxX35zV21/nuq5ebYE/cD1tgiajFGD9+PCoqKvDjjz+KGmfXrl2YOnUqk1ciElVLLiXrKiawRNRieHt744033sC6detEi5GXl4fc3FzMnDlTtBhERIA4hQxaCnYhICIiInJDCfFv2l3n6LeLm2BP3A/HgSUiIiJyR2xitIkJLBEREZEb+iN3EbCHCSwRERGRO2IvT5uYwBIRERG5ocYUKvijYAJLRERE5I6Yv9rEBJaIiIjIDUkMhru9C26LCSwRERGRG2IXAtuYwBIRERG5Iz7EZRMTWCIiIiJ3xBZYm5jAEhEREbkhCVtgbWICS0REROSO+BCXTUxgiYiIiNwRW2BtYgJLRERE5IY4CoFtTGCJiIiI3JGeXQhsYQJLRERE5I7YhcAmJrBERERE7ogPcdnEBJaIiIjIHRnYAmsLE1giIiIid2TQ3+09cFtMYImIiIjcEVtgbWICS0REROSO2AfWJiawRERERO5Izy4EtjCBJSIiInJHHEbLJiawRERERO6IhQxsYgJLRERE5IaMRiawtjCBJSIiInJHbIG1iQksERERkTviKAQ2MYElIiIickNGjkJgk/Ru7wARERERWaE32J8aYefOnRg2bBj69euHBQsWQKFQNLj+zZs3kZCQgLy8PNM8o9GIdevWYdCgQXjwwQexatUq6Jsw4WYCS0REROSOjAb7k5OOHTuGHTt2YPfu3cjMzERFRQXefvttm+ufPn0aKSkpKCoqMpu/d+9efPfddzh06BCOHDmCn376Cf/4xz+c3p/GYgJLRERE5IaMer3dyVnp6elITk5GZGQkAgMDMX/+fKSnp1ttPT19+jTmz5+P1NRUq9v5y1/+gvDwcISFhSE1NRX/+te/GvU6G4MJLBEREZEbMhqMdidrdDodKisrLaaqqioUFBSgS5cupnUjIyOhUChQUlJisZ2uXbvi6NGjGDt2rMUya9spLCyEsYmKL/AhLiIiIiI39G/9J436vR9++AFTp061mN+xY0d4eHjA19fXNE8mkwEAlEqlxfrBwcE2YyiVSovtGAwGaDQa+Pj4NGq/ncEEloiIiKgFGTJkCM6fP2912ejRo6FWq00/1yau/v7+TsXw9fW12I6np2eTJK8AuxAQERER/WFER0ejoKDA9HNhYSGCgoIQHh7u9HYKCwvNthMVFSXYftrDBJaIiIjoDyIpKQmffPIJ8vPzUVVVhU2bNiExMRFSqXMpYVJSEnbs2IFr166hrKwM/+///T+MGTNGpL22xC4ERERERH8Q8fHxKCoqQmpqKiorKxEbG4uFCxcCAIqLi/H444/j8OHD6NChQ4PbSUlJQVlZGZKTk6HVajF69Gir/W7FIjE21eNiREREREQCYBcCIiIiImpWmMASERERUbPCBJaIiIiImhUmsERERETUrDCBJSIiIqJmhQksERERETUrTGCJiIiIqFlhAktEREREzQoTWCIiIiJqVv4//t124o9UxUIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "system.m.plane(\"y\").mpl(figsize=(12, 3))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "nbval-ignore-output" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
max_mxHxmEdelta_Ebracket_countline_min_countconjugate_cycle_countcycle_countcycle_sub_countenergy_calc_countE_zeemaniterationstage_iterationstagemxmymz
01.503365e-10-6.785840e-19-1.350143e-2113.00.09.09.00.014.0-6.785840e-1913.013.00.01.503365e-160.01.0
\n", "
" ], "text/plain": [ " max_mxHxm E delta_E bracket_count line_min_count \\\n", "0 1.503365e-10 -6.785840e-19 -1.350143e-21 13.0 0.0 \n", "\n", " conjugate_cycle_count cycle_count cycle_sub_count energy_calc_count \\\n", "0 9.0 9.0 0.0 14.0 \n", "\n", " E_zeeman iteration stage_iteration stage mx my mz \n", "0 -6.785840e-19 13.0 13.0 0.0 1.503365e-16 0.0 1.0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "system.table.data" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }