{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Derivativos de Ações e Commodities\n",
    "##  Precificação com o Método de Diferenças Finitas\n",
    "<sub>Uirá Caiado. 29 de Junho, 2016<sub>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Resumo\n",
    "\n",
    "_Neste projeto vou implementar o método de diferenças finitas explícito para precificar diferentes derivativos. Como o preço de opções geralmente é descrito por equações diferenciais de difusão ou parabólicas, o método de diferenças finitas se mostra adequado, uma vez que é utilizado justamente para encontrar soluções numéricas para equações diferencias. Depois de implementar o modelo, vou compará-lo com os resultados obtidos pela solução analítica de cada instrumento._\n",
    "\n",
    "## 1. Introdução\n",
    "\n",
    "Nesta seção dou uma breve descrição sobre o método de diferenças finitas e declaro o problema que será abordado.\n",
    "\n",
    "### 1.1. O Método Utilizado\n",
    "\n",
    "Como colocado por Wilmott, encontrar soluções fechadas para precificação de muitos derivativos pode ser difícil, ou mesmo inviável. Como o preço destes instrumentos frequentemente são descritos por equações diferencias parciais, frequentemente utilizam-se métodos numéricos para encontrar uma solução, como [árvores binomiais](https://en.wikipedia.org/wiki/Binomial_options_pricing_model), simulação de [monte carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method) e diferenças finitas.\n",
    "\n",
    "O método de diferenças finitas encontra o valor de um derivativo calculando-o em todo domínio (factivel) de preços do instrumento base, incluíndo a passagem de tempo até seu vencimento.  Assim, são similares às árvores binomiais. Porém, ao invéz e discretizar os preços do ativo e a passagem do tempo em uma estrutura de árvore, discretiza em um grid.\n",
    "\n",
    "Diferenças finitas também são muitos boas para lidar com problemas com poucas dimensões e equações diferenciais não lineares (o preço e tempo já são duas, e o Wilmott sugere até quatro). Para muitas dimensões, a implementação começa a ficar complicada e pouco eficiente, coisa que o Monte Carlo lida melhor. Porém, se há exercício antecipado e não linearidade, o método de diferenças finitas acaba se mostrando como solução mais viável.\n",
    "\n",
    "### 1.2. O Problema\n",
    "\n",
    "Considerando um ativo-objeto cuja dinâmica do preço satisfaz a seguinte EDE:\n",
    "\n",
    "$$\\frac{\\mathrm{d} S_t}{S_t}=\\mu\\cdot \\mathrm{d}t + \\sigma\\cdot \\mathrm{d}W_{t}$$\n",
    "\n",
    "Deseja-se calcular o preço justo de um derivativo um derivativo com característica europeia cujo payoff é descrito por uma função qualquer $V_T=V(T, S_T)$, onde $T$ é o vencimento do derivativo. $S_T$ é o preço do ativo-objeto em $T$ e é possível negociar qualquer quantidade dele em qualquer instante. Não há custo de transação (corretagem, emolumento, bid-ask spread, etc) e posições vendidas a descoberto no subjacente são permitidas, não havendo custos associados.\n",
    "\n",
    "Pede-se que se implemente o algoritmo de diferenças finitas explícito e se calcule o preço justo, o Delta e o Gamma de cada instrumento abaixo. Os valores encontrados devem ser comparados com o resultado de suas expressões analítica. A simulação deve ser feita para os payoffs abaixo. $K$ é o Strike da opção.\n",
    "- $V(T, S_T)=ln(S_T)$\n",
    "- $V(T, S_T)=(ln(S_T))^2$\n",
    "- $V(T, S_T)=(S_T-K)^2$\n",
    "- $V(T, S_T)=\\mathbf{1}_{S_T > K}$\n",
    "- $V(T, S_T)=max(S_T-K, 0)$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##  2. Diferenças Finitas\n",
    "\n",
    "Abaixo, apresentarei os elementos necessários para implementar o método diferenças finitas, sendo eles: a [diferenciação](https://pt.wikipedia.org/wiki/Diferenciação_numérica) das derivadas parciais necessárias usando o Grid; a discretização da condição final para cada derivativo; e suas respectivas condições de contorno (nos limites do grid).\n",
    "\n",
    "### 2.1. Diferenciação no Grid\n",
    "\n",
    "De acordo com Wilmott, o grid utilizado pelo método de diferenças finitas tem passos de tempo e de preço (ou log do preço) geralmente homogênios. Porém, **não há** restrição para a forma do Grid, desde que os ajustes necessários sejam feitos. Como exposto por \n",
    "\n",
    "Considerando que podemos discretizar $t$ como $t=T-k\\delta t$ e do $S$ como $S = i\\delta S$, onde $i$ e $k$ são seus respectivos passos no grid, podemos escrever o valor da opção em cada ponto do grig como sendo:\n",
    "\n",
    "$$V^{k}_{i} = ( i \\delta S, T-k \\delta t )$$\n",
    "\n",
    "Seguindo notas de aula, aplicando Taylor ao preço $V(T, S_T)$ de um derivativo genérico, posso escrever a seguinte equação diferencial parabólica:\n",
    "\n",
    "$$\\frac{\\partial V}{\\partial t} + a(S, t) \\cdot \\frac{\\partial V^2}{\\partial S^2} + b(S, t) \\cdot \\frac{\\partial V}{\\partial S} + c(S, t)\\cdot V = 0 $$\n",
    "\n",
    "Sendo que $\\frac{\\partial V}{\\partial t}$ também é chamado de theta ($\\theta$), $\\frac{\\partial V}{\\partial S}$ de delta ($\\Delta$) e $\\frac{\\partial V^2}{\\partial S^2}$ de gamma ($\\Gamma$). Como demostrado por Wilmott, como a definição da primeira derivada $V$ em relação a $t$ é dado por\n",
    "\n",
    "$$\\frac{\\partial V}{\\partial t} = \\underset{h \\, \\rightarrow \\, 0}{\\lim}\\, \\frac{V(S, t + h) - V(S, t)}{h}$$\n",
    "\n",
    "Então podemos aproximar $\\theta$ como sendo $\\frac{\\partial V}{\\partial t} (S, t) \\approx \\frac{V_{i}^{k} - V_{i}^{k+1} }{\\delta t}$. Note que $i$, que é relacionado ao passo do ativo, ficou fixo. *Também estou ignorando os erros de aproximação, como ignorarei em todas as outras diferenciações*.\n",
    "\n",
    "O mesmo raciocínio pode ser utilizado para aproximar o $\\Delta$. Porém, Wilmott ainda sugere que se utilize a [diferença centrada](http://math.stackexchange.com/questions/888259/can-someone-explain-in-general-what-a-central-difference-formula-is-and-what-it), que é dada por $\\frac{\\partial V}{\\partial S} (S, t) \\approx \\frac{V_{i+1}^{k} - V_{i-1}^{k} }{2 \\delta S}$. A discretização anterior também poderia ser utilizada, mas esta oferece um erro de aproximação menor. O único problema desta abordagem é que preciso saber os valores $S + \\delta S$ e $S - \\delta S$ e nas fronteiras do Grid não terei esta informação. Por tanto, nestes casos utilizarei a discretrização utilizando apenas um dos lados.\n",
    "\n",
    "Por fim, para achar o $\\gamma$, Wilmott subtrai o delta forward do delta backward e divide o resultado por $\\delta S$, chegando na aproximação  $\\frac{\\partial V^2}{\\partial S^2} (S, t) \\approx \\frac{V_{i+1}^{k} - 2 V_{i}^{k} + V_{i-1}^{k} }{\\delta S^2}$. Como demonstrado em notas de aula, todos estes resultados podem ser checados aplicando a expansão de Taylor.\n",
    "\n",
    "### 2.2. Condição Terminal e Payoffs\n",
    "\n",
    "O valor da opção no vencimento é simplemente seu payoff. Assim, não é necessário resolver nada para $T$, apenas para $S$. Usando a notação de diferenças finitas, os payoffs desejados ficam sendo da forma:\n",
    "\n",
    "- $V_{i}^{0}=ln(i\\delta S)$\n",
    "- $V_{i}^{0}=(ln(i\\delta S))^2$\n",
    "- $V_{i}^{0}=(i\\delta S-K)^2$\n",
    "- $V_{i}^{0}=\\mathbf{1}_{i\\delta S > K}$\n",
    "- $V_{i}^{0}=max(i\\delta S-K, 0)$\n",
    "\n",
    "Como o Wilmott explica, o método de diferenças finitas começa de trás para frente, será destes valores que a iteração começará, como se estivéssemos calculando o preço de um derivativo por árvores binomiais, também de trás para frente.\n",
    "\n",
    "### 2.3. Condições de Contorno\n",
    "\n",
    "Quando estivermos percorrendo o Grid, necessitaremos definir o preço do derivativo em seus extremos, quando $S=0$ e $S=I \\delta S$, onde $I$ é o ponto mais alto do Grid. Esta condição depende do instrumento que está sendo precificado. Para **todos** dos contratos, utilizaremos a seguinte condição para quando $S=0$:\n",
    "\n",
    "$$V^{k}_{0} = (1 - r \\delta t)V^{k-1}_{0}$$\n",
    "\n",
    "Para a condição de contorno superior, utilizaremos para a **maioria dos contratos**:\n",
    "\n",
    "$$V^{k}_{I} = 2V^{k}_{I-1} - V^{k}_{I-2}$$\n",
    "\n",
    "Esta condição é adequada pois, a medida que $S \\rightarrow \\infty$, o $\\Gamma$ da maioria dos contratos tende a zero. Porém, isso não é verdade para o contrato cujo payoff é descrito por $V_{i}^{0}=(i\\delta S-K)^2$. Diferenciando novamente o [delta](https://nbviewer.jupyter.org/github/ucaiado/Replicating_Strategy/blob/master/UiraCaiadoEx01.ipynb) deste contrato, chegamos que o gamma será dado por $2 \\cdot e^{(r + \\sigma^2)(T-t)}$. Neste caso,\n",
    "partindo da equação discretizada do $\\Gamma$ e resolvendo para $V^{k}_{I}$, tenho que:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\Gamma &= \\frac{V_{I+1}^{k} - 2 V_{I}^{k} + V_{I-1}^{k} }{\\delta S^2}\\\\\n",
    "2 \\cdot e^{(r + \\sigma^2)(\\delta t)} &= \\frac{V_{I+1}^{k} - 2 V_{I}^{k} + V_{I-1}^{k} }{\\delta S^2}\\\\\n",
    "V_{I}^{k} &= 2 \\delta S^2 e^{(r + \\sigma^2)(\\delta t)} + 2V_{I-1}^{k} - V_{I-2}^{k}\\\\\n",
    "V_{I}^{k} &\\approx 2 \\delta S^2 + 2V_{I-1}^{k} - V_{I-2}^{k}\\\\\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Implementando o Modelo\n",
    "\n",
    "Nesta seção vou decsrever o método de diferenças finitas explícito e implementar os códigos necessários.\n",
    "\n",
    "### 3.1. Método Explícito\n",
    "\n",
    "Seguindo notas de aula, substituindo as diferenciações encontradas na equação parabólica mencionada anteriormente e reescrevendo os outros termos com a notação de diferenças finitas, temos que:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\frac{\\partial V}{\\partial t} + a(S, t) \\cdot \\frac{\\partial V^2}{\\partial S^2} + b(S, t) \\cdot \\frac{\\partial V}{\\partial S} + c(S, t)\\cdot V &= 0 \\\\\n",
    "\\frac{V_{i}^{k} - V_{i}^{k+1} }{\\delta t} + a_{i}^{k} \\cdot \\frac{V_{i+1}^{k} - 2 V_{i}^{k} + V_{i-1}^{k} }{\\delta S^2} + \\\\b_{i}^{k} \\cdot \\frac{V_{i+1}^{k} - V_{i-1}^{k} }{2 \\delta S} + c_{i}^{k}\\cdot V_{i}^{k} &= 0\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "Rearranjando equação acima para isolar $V_{i}^{k+1}$ e renomeando alguns termos, ficamos com:\n",
    "\n",
    "$$V_{i}^{k+1} = A_{i}^{k}V_{i-1}^{k} + \\left( 1 + B_{i}^{k} \\right)V_{i}^{k} + C_{i}^{k}V_{i+1}^{k}$$\n",
    "\n",
    "Onde:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "A_{i}^{k} &= \\nu_1 a_{i}^{k} - 0.5\\nu_2 b_{i}^{k} \\\\\n",
    "B_{i}^{k} &= -2\\nu_1 a_{i}^{k} - \\delta t c_{i}^{k} \\\\\n",
    "C_{i}^{k} &= \\nu_1 a_{i}^{k} + 0.5\\nu_2 b_{i}^{k}\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "Sendo que $\\nu_1=\\frac{\\delta t}{\\delta S ^2}$ e $\\nu_2=\\frac{\\delta t}{\\delta S}$. A equação acima está definida apenas entre $i=1, ..., I-1$. OS pontos restantes necessários para discretização vem das condições de contorno. Como nós conhecemos o valor terminal em $V_{i}^{0}$, podemos calcular o valor de $V_{i}^{1}$ e assim por diante. Como o valor do instrumento em $k+1$ só depende dos valores dele em $k$, chamamos este método de **método explícito**.\n",
    "\n",
    "### 3.2. Outros Detalhes\n",
    "\n",
    "#### a. Estabilidade\n",
    "\n",
    "Para que a solução deste método seja estável, é necessário que satisfaça $\\delta t \\, \\leqslant \\frac{\\delta S^2}{2\\sigma^2 S^2}$ e $\\delta S \\leqslant \\frac{2a}{|b|}$. Vou utilizar a primeira delas explicitamente na implementação, porém vou fazer a seguinte transformação:\n",
    "\n",
    "$$\\delta t \\, \\leqslant \\frac{\\delta S^2}{2\\sigma^2 S^2} = \\frac{1}{\\sigma^2} \\left(\\frac{\\delta S}{S}\\right)^2 = \\frac{1}{\\sigma^2 I^2}$$\n",
    "\n",
    "Onde $I = \\delta  S \\times S$.\n",
    "\n",
    "#### b. Interpolação Bilinear\n",
    "\n",
    "Devido a discretização do modelo, pode ser que seja necessário obter um valor que esteja entre os nós do Grid. Nestes casos, adotarei uma interpolação de duas dimensões (Preço e tempo) chamada [interpolação bilinear](https://en.wikipedia.org/wiki/Bilinear_interpolation). Ela consiste em realizar uma interpolação linear primeiro em uma direção e depois na outra. Considerando um quadrante específico do Grid, em que há quatro preços de opção, basicamente se divide o quadrante em quatro (onde os pontos de divisão são os valores desejados) e se utiliza a área de cada um deles como peso para os valores das opções. Assim, terminamos com a seguinte fórmula:\n",
    "\n",
    "$$\\frac{\\sum_{i=1}^{4} A_i V_i}{\\sum_{i=1}^{4} A_i}$$\n",
    "\n",
    "Onde $A$ é a área dos retângulos e $V$ o preço da opção em cada canto do quadrante principal. Cada $A_i$ é oposto ao $V_i$ correspondente (o $A_2$ é oposto ao $V_2$, por exemplo)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.3. Criando o Grid\n",
    "\n",
    "Primeiro, vou definir as classes para a criação do Grid. Como quero acessar os valores posteriormente, vou manter todos em uma estrutura, ainda que este provavelmente não seja o método mais adequado pensando em velocidade."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 415,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "       0     1     2     3     4     5     6     7     8     9\n",
      "0    0,0   0,1   0,2   0,3   0,4   0,5   0,6   0,7   0,8   0,9\n",
      "1    1,0   1,1   1,2   1,3   1,4   1,5   1,6   1,7   1,8   1,9\n",
      "2    2,0   2,1   2,2   2,3   2,4   2,5   2,6   2,7   2,8   2,9\n",
      "3    3,0   3,1   3,2   3,3   3,4   3,5   3,6   3,7   3,8   3,9\n",
      "4    4,0   4,1   4,2   4,3   4,4   4,5   4,6   4,7   4,8   4,9\n",
      "5    5,0   5,1   5,2   5,3   5,4   5,5   5,6   5,7   5,8   5,9\n",
      "6    6,0   6,1   6,2   6,3   6,4   6,5   6,6   6,7   6,8   6,9\n",
      "7    7,0   7,1   7,2   7,3   7,4   7,5   7,6   7,7   7,8   7,9\n",
      "8    8,0   8,1   8,2   8,3   8,4   8,5   8,6   8,7   8,8   8,9\n",
      "9    9,0   9,1   9,2   9,3   9,4   9,5   9,6   9,7   9,8   9,9\n",
      "10  10,0  10,1  10,2  10,3  10,4  10,5  10,6  10,7  10,8  10,9\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "x = finite_difference.Grid(f_vol=0.5,\n",
    "                           f_value=100.,\n",
    "                           f_time=1.,\n",
    "                           i_nas=10,\n",
    "                           i_nts=10)\n",
    "print x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 416,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1000 loops, best of 3: 344 µs per loop\n"
     ]
    }
   ],
   "source": [
    "%timeit x = Grid(f_vol=0.2, f_value=100., f_time=1., i_nas=100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Como comentei, não é uma estrtutura eficiente. Demorou quase 5 segundos para criar uma estrtutura de 10.000 nós. Porém acredito que isso me ajudará adiante."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.3. Testando Método\n",
    "\n",
    "Seguindo implementação do livro, também há outra opção para se encontrar $V_{i}^{k+1}$. Substituindo a notação da fórmula de precificação e assumindo que possuimos os valores para $\\Delta$, $\\Gamma$ e $V_{i}^{k}$, podemos isolar o $\\theta$, ficando com\n",
    "\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\theta + a_{i}^{k} \\cdot \\Gamma + b_{i}^{k} \\cdot \\Delta + c_{i}^{k}\\cdot V_{i}^{k} &= 0\\\\\n",
    "-a_{i}^{k} \\cdot \\Gamma - b_{i}^{k} \\cdot \\Delta - c_{i}^{k}\\cdot V_{i}^{k} &= \\theta\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "Assim, para uma opção que não paga dividendos, que o ativo base segue um movimento brawniano geométrico, e esta sendo avaliado no mundo neutro a risco, temos que o parâmetro $c=-r$, $b=rS$ e $a=0.5 \\cdot \\sigma^2 S^2$. Assim, fico com o theta sendo da forma:\n",
    "\n",
    "$$\\theta = r V_{i}^{k} - rS_{i}^{k}\\Delta - 0.5\\sigma^2 S^2\\Gamma$$\n",
    "\n",
    "Então, o preço do derivativo em $k+1$ pode ser dado por:\n",
    "\n",
    "$$V_{i}^{k+1} = V_{i}^{k} - \\delta t \\theta$$\n",
    "\n",
    "Para comparar os resultados obtidos, também serão calculados os preços e as gregas de cada opção analiticamente, seguindo as equações de preficição demostradas em [trabalho](https://nbviewer.jupyter.org/github/ucaiado/Replicating_Strategy/blob/master/UiraCaiadoEx01.ipynb) anterior. Abaixo vou imprimir os resultados obtidos para uma Call Européia para comparação com exemplos do Wilmott."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 418,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Wall time: 582 ms\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.2, # desvio padra do ativo objeto\n",
    "           \"f_time\": 1.,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.05,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"i_nts\": 10,  # passos que o tempo sera discretizado (opcional)\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time self = finite_difference.EuropianCall(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 419,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0.000</th>\n",
       "      <th>0.111</th>\n",
       "      <th>0.222</th>\n",
       "      <th>0.333</th>\n",
       "      <th>0.444</th>\n",
       "      <th>0.556</th>\n",
       "      <th>0.667</th>\n",
       "      <th>0.778</th>\n",
       "      <th>0.889</th>\n",
       "      <th>1.000</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>60.0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.001046</td>\n",
       "      <td>0.004769</td>\n",
       "      <td>0.012912</td>\n",
       "      <td>0.027040</td>\n",
       "      <td>0.048408</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>70.0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.010816</td>\n",
       "      <td>0.040306</td>\n",
       "      <td>0.092362</td>\n",
       "      <td>0.168004</td>\n",
       "      <td>0.266547</td>\n",
       "      <td>0.386414</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>80.0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.084278</td>\n",
       "      <td>0.248619</td>\n",
       "      <td>0.475041</td>\n",
       "      <td>0.746832</td>\n",
       "      <td>1.051237</td>\n",
       "      <td>1.379044</td>\n",
       "      <td>1.723707</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>90.0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.512500</td>\n",
       "      <td>1.148000</td>\n",
       "      <td>1.807437</td>\n",
       "      <td>2.461115</td>\n",
       "      <td>3.100759</td>\n",
       "      <td>3.724696</td>\n",
       "      <td>4.333380</td>\n",
       "      <td>4.927851</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>100.0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>2.500000</td>\n",
       "      <td>4.013889</td>\n",
       "      <td>5.200154</td>\n",
       "      <td>6.223712</td>\n",
       "      <td>7.149693</td>\n",
       "      <td>8.008182</td>\n",
       "      <td>8.816223</td>\n",
       "      <td>9.584443</td>\n",
       "      <td>10.320129</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>110.0</th>\n",
       "      <td>10.0</td>\n",
       "      <td>10.555556</td>\n",
       "      <td>11.571451</td>\n",
       "      <td>12.561620</td>\n",
       "      <td>13.500820</td>\n",
       "      <td>14.389205</td>\n",
       "      <td>15.235188</td>\n",
       "      <td>16.045095</td>\n",
       "      <td>16.824334</td>\n",
       "      <td>17.576942</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>120.0</th>\n",
       "      <td>20.0</td>\n",
       "      <td>20.555556</td>\n",
       "      <td>21.108025</td>\n",
       "      <td>21.790273</td>\n",
       "      <td>22.510062</td>\n",
       "      <td>23.243401</td>\n",
       "      <td>23.974649</td>\n",
       "      <td>24.698653</td>\n",
       "      <td>25.412183</td>\n",
       "      <td>26.114374</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>130.0</th>\n",
       "      <td>30.0</td>\n",
       "      <td>30.555556</td>\n",
       "      <td>31.108025</td>\n",
       "      <td>31.657425</td>\n",
       "      <td>32.248867</td>\n",
       "      <td>32.862026</td>\n",
       "      <td>33.491183</td>\n",
       "      <td>34.127231</td>\n",
       "      <td>34.766578</td>\n",
       "      <td>35.405282</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>140.0</th>\n",
       "      <td>40.0</td>\n",
       "      <td>40.555556</td>\n",
       "      <td>41.108025</td>\n",
       "      <td>41.657425</td>\n",
       "      <td>42.203772</td>\n",
       "      <td>42.764972</td>\n",
       "      <td>43.335178</td>\n",
       "      <td>43.915298</td>\n",
       "      <td>44.500544</td>\n",
       "      <td>45.090213</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       0.000      0.111      0.222      0.333      0.444      0.556  \\\n",
       "60.0     0.0   0.000000   0.000000   0.000000   0.000000   0.001046   \n",
       "70.0     0.0   0.000000   0.000000   0.000000   0.010816   0.040306   \n",
       "80.0     0.0   0.000000   0.000000   0.084278   0.248619   0.475041   \n",
       "90.0     0.0   0.000000   0.512500   1.148000   1.807437   2.461115   \n",
       "100.0    0.0   2.500000   4.013889   5.200154   6.223712   7.149693   \n",
       "110.0   10.0  10.555556  11.571451  12.561620  13.500820  14.389205   \n",
       "120.0   20.0  20.555556  21.108025  21.790273  22.510062  23.243401   \n",
       "130.0   30.0  30.555556  31.108025  31.657425  32.248867  32.862026   \n",
       "140.0   40.0  40.555556  41.108025  41.657425  42.203772  42.764972   \n",
       "\n",
       "           0.667      0.778      0.889      1.000  \n",
       "60.0    0.004769   0.012912   0.027040   0.048408  \n",
       "70.0    0.092362   0.168004   0.266547   0.386414  \n",
       "80.0    0.746832   1.051237   1.379044   1.723707  \n",
       "90.0    3.100759   3.724696   4.333380   4.927851  \n",
       "100.0   8.008182   8.816223   9.584443  10.320129  \n",
       "110.0  15.235188  16.045095  16.824334  17.576942  \n",
       "120.0  23.974649  24.698653  25.412183  26.114374  \n",
       "130.0  33.491183  34.127231  34.766578  35.405282  \n",
       "140.0  43.335178  43.915298  44.500544  45.090213  "
      ]
     },
     "execution_count": 419,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# imprime apenas a parte da matriz demonstrada no exemplo do livro, pag 1216, tabela 77.1\n",
    "df = self.df_opt_prices.copy()\n",
    "df.columns = [\"{:.3f}\".format(x) for x in df.columns]\n",
    "df.tail(15).head(9)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "O título das colunas se refere ao tempo, começando no vencimento (tempo zero) até $t$ (o dia em que a opção está sendo avaliada). As linhas se referem ao preço do ativo objeto. *Note que começa a aparecer uma diferença em relação ao livro quando o ativo está valendo $R\\$ 110.00$  ou menos. Como o método utiliza os três nós subjacentes anteriores para calcular o valor do nó posterior, o nó $(\\,90.0 \\,; 0.111)$ não deveria apresentar valor algum de fato. Porém, no exemplo do Wilmott, apresentou.*"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Precificando Instrumentos\n",
    "\n",
    "Nesta seção vou precificar alguns instrumentos e comparar com suas soluções analíticas.\n",
    "\n",
    "### 4.1. Call Européia\n",
    "\n",
    "Partindo de implementação anterior, apenas resta imeplementar o gamma analítico da equação, que é dado abaixo:\n",
    "$$\\frac{\\partial V^2}{\\partial S^2} = \\frac{\\Delta}{\\partial S} = \\frac{N'(d1)}{S \\sigma \\sqrt{t}} $$\n",
    "\n",
    "Abaixo vou comparar os resultados analíticos com o que obtive do método de diferenças finitas."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 2.24 s, sys: 23.1 ms, total: 2.26 s\n",
      "Wall time: 2.28 s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.EuropianCall(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdUFFf7wPHvLkuTJgiIXUSxgwVFjFjQ2HtJUGOKPYm+\nscUWW2IsscfeNRrzMyYqb6LGGHtiQUQBOyqgYgMbvSy78/vDl42IqKi4oM/nHM5hZ2bvPDM7c2ee\nmTt3VIqiKAghhBBCCCGEeCFqYwcghBBCCCGEEAWZJFVCCCGEEEII8RIkqRJCCCGEEEKIlyBJlRBC\nCCGEEEK8BEmqhBBCCCGEEOIlSFIlhBBCCCGEEC9BkiohRDa7d++mT58+1K9fn1q1atGpUyc2bNhA\nRkaGsUPLF5KTk3n//fepUqUKVatWpWrVqrRr1y5P5rVlyxYqVarEgwcPXriM6OhoKlWqlO3P09OT\n5s2bM3v27Nf+22bGtGvXLgDi4+MZPnw4Z86ceemye/XqxcCBA1+6nILqVe2/j297z1qvmdPn9Ne6\ndeuXWq7X6fHtUwghnkVj7ACEEPnL119/zc8//0zHjh3p0aMHhQoV4tixY8yYMYPAwEDmzZuHWv12\nX4/RaDRMmTKFlJQUTE1NMTc3p3Tp0sYO65mGDRtGvXr1DJ/j4uLYtWsXK1asQKfTMXLkSKPFdu7c\nObZv307v3r2NFsObID/sv6tWrcLGxibbcHNz8zyd76vk7OzMpk2bKFOmjLFDEUIUEJJUCSEMAgIC\n+L//+z8mT55Mt27dDMN9fHyoUKECw4YN4/fff6dDhw5GjNL4zMzMKF++vLHDyLWyZcvi4eGRZZiv\nry+XL18mICDAqElVJnkf/YvLL/tv1apVKVy4cJ7OI6+ZmZll21eEEOJp3u7LzUKILFatWkWlSpWy\nnJBlat26NZ988gkODg6GYdHR0XzxxReGZkafffYZV65cMYxfsGABXbp0ISAggHfffRdPT08++eQT\nYmNj2bhxI40bN8bLy4svv/yS1NRUAAIDA6lUqRJ///03HTp0wNPTky5dunD06NEs8YSFhdGvXz/q\n1KlDtWrVaNmyJT///LNh/JYtW/D29mblypV4e3vTuHFjUlNTSUxM5Ntvv8XPz49q1arh4+PD6NGj\nSUhIMHxXp9OxdOlSmjVrRo0aNejYsSO7d+82jH+eMrRaLcuXL6dFixZ4eHjQrl07tm3b9szfICAg\ngBYtWuDp6Un//v2f2Ozv0KFDdOvWDU9PTxo1asT8+fPR6/XPLDsnhQoVQqVSZRm2bds22rVrR/Xq\n1Xn33Xf58ccfs4wPDQ2lZ8+e1KpVC29vb7744gtu3LhhGF+pUiVWr16d5TufffYZvXr1yjb/wMBA\nPvroIwC6du3KmDFjgOdbz0lJSYwbNw5vb2/q1avH8uXLs5WflJTEd999h5+fH56ennTr1o1Dhw5l\nmWbr1q20adMGDw8PGjVqxLRp00hPT89xnfXq1Yuvv/6aadOmUadOHXx8fJg8eXKW72i1WubPn0+L\nFi2oXr06devWZfDgwdy6dcswjZ+fH7Nnz+a9997D09PTsM7+/vtvPvjgA2rVqoWHhwcdO3bkr7/+\nyjEeyP3++6x9KC89a/vIbH63bt06/Pz88PLy4sSJEwD89ddfdOnShZo1a9K4cWO+//57dDqdoRw/\nPz8WL17MyJEjqVmzJr6+vixYsCBbwr5u3TqaN29O9erVadu2LTt27DCMe1Lzv99++40uXbpQo0YN\natSogb+/P8ePH3/l60YIUTBJUiWEACAmJoaLFy/SqFGjHKcZNWoUvr6+ANy6dYtu3bpx7do1w8ll\ndHQ0PXr0ICYmxvCdyMhIVq1axahRo/j2228JCQnhgw8+YOvWrXz99dcMHjyYbdu2sW7duizzGjFi\nBM2bN2fBggU4ODjQr18/Ll68CMCNGzf48MMPsba2Zv78+SxZsoSyZcsyceJEwsPDDWUkJiayfft2\n5syZw9ixY7GwsGD48OHs3buXESNGsGbNGnr37s22bdtYvHix4XvTpk1j0aJFdO3alaVLl1KjRg2+\n+OILwwnU85QxatQolixZgr+/P0uXLqVWrVqMGDGCX375Jcf1+8cffzB69Gh8fX1ZvHgxJUuWZM6c\nOVkSniNHjtCvXz9Kly7NokWL6NOnD2vWrOHbb7996u8LD5PFjIwMMjIy0Gq13Llzh7Vr13L48GHa\nt29vmG7r1q2MGDECb29vli1bRseOHZk2bRqrVq0CICEhgf79++Pi4sKSJUuYPHkyZ8+eZdiwYVnm\n93iiltOwqlWrMmHCBACmT5/OZ5999tzrediwYezevZtRo0YxZcoUduzYwcmTJw3j9Xo9ffv2JSAg\ngIEDB7Jw4UKKFStG//79+eeffwAICgriq6++on379qxevZqBAweyceNGFi5c+NT1+fvvvxMcHMx3\n333HoEGD2LJlC2PHjjWMnzZtGhs2bGDAgAGsWbOGIUOGcOTIEaZOnZqlnDVr1tCsWTPmz5+Pn58f\nYWFh9O/fn4oVK7JkyRLmzp1r2Hbv3bv3xFhyu/8+7z70Ih7dzh79e9zzbB9Llizhyy+/ZPz48VSr\nVo2ff/6ZwYMHU6NGDRYtWsQHH3zA6tWrGT16dJbvrV69mnv37vH999/To0cPli1bxrx58wzjFy5c\nyIwZM2jbti3Lli2jfv36DB8+nJ07dz5xmXbu3MmoUaNo0qQJK1asYOrUqSQkJDBkyBC0Wu2LrCYh\nxBtGmv8JIQAMV8+LFy/+XNOvXbuW9PR0Vq9ebWjqU7duXZo1a8aaNWsYNWoU8LBThylTphia0uzf\nv5/t27ezdu1aihUrRqNGjdi1axehoaFZyn///ff5/PPPgYfNl5o1a8bq1auZNm0aFy9epFatWsya\nNQsTExMAPDw88Pb2JigoCHd3d+Dhyd3nn3/OO++8A0BaWhoZGRl88803NGjQAIA6depw4sQJjh07\nBsCDBw/46aefGDx4sOGh/Hr16hEZGcnx48fx8PB4ZhkXLlxgx44dfPPNN7z33nsA1K9fn8TERObO\nnUuXLl2e+FzL8uXLadiwIePGjQPgnXfe4ebNm+zbt88wzbx586hZsyazZ88GoEGDBtjZ2TFmzBj6\n9OlDiRIlcvzNhg4dmm2Ys7Mzn332mWFZ9Xo9c+bMoX379oY46tevj0qlYvHixfTs2ZPLly8TFxdH\nr169qFGjBgD29vYEBgbmOO+nsba2xs3NDYAKFSpQqlSp5/qtzp8/z4EDB5g7dy6tWrUCHm4HTZs2\nNZS9f/9+Tp48yapVqwzbga+vL/7+/syZM4cGDRpw8uRJLC0t+eSTTzAzM8PLywszMzM0mqcfIvV6\nPStXrszS1G3y5MkMGzaM4sWLc//+fUaNGkXnzp0B8PLyIiIiItsdy/Lly9O/f3/D5y1bttCiRQvG\njx9vGFasWDE6d+7MqVOnnpg45Xb/fd596EVkrufHff3117z//vu5Kqtdu3aG31an0zFv3jzatGlj\nWDf169fHxsaGiRMn0q9fP0Pctra2LF26FI1GQ8OGDUlISGDdunV8/vnnpKamsnz5cvr168d//vMf\nQzlJSUnMnj2bli1bZovj6tWr9OzZk0GDBhmGmZqaMnjwYK5cuVIgmwMLIV4tSaqEEACGE6vnbUYW\nFBSEt7d3lhNKe3t7fHx8DCe98PDKc/Xq1Q2fHRwcKFKkCMWKFTMMs7Ozy9KkC8jSU5ipqSm+vr6G\nchs1akSjRo1IS0vj4sWLREVFERYWBpDtqrGrq6vhf3Nzc8PdlujoaKKiorh48SKXL1/GwsICeNis\nTa/X06RJkyzl/PDDD4b/n1VG5h2tx0/OWrVqxfbt24mIiMh2EpaSksL58+fp0qVLluHNmzc3JFUp\nKSmcOnWKIUOGZLny7+vri16vJzAw0HAC/yRffvkl9erVQ6fTERAQwObNmxk1ahRt2rQxTBMZGUls\nbCyNGjXKNo/58+cTFhZG1apVsbOzY+DAgbRp04ZGjRpRr1496tSpk+O8c+t5fqvM5mANGzY0fM/J\nycmQ6MHD7dTa2jrbiX6rVq2YPn06ycnJ1K5dm+TkZDp06ECrVq1o3Lhxtt/hSerXr59l+2/atCmT\nJ08mODiY4sWLM3fuXABu375NREQEERERnDhx4qnbKEDnzp3p3LkzycnJXL58maioKEPz15yaJOZ2\n/83NPpRba9eufWJHFY/u88/r0XUTERHB/fv3DUlWptatWzNx4sQsyeC7776bJSn28/Nj9erVnD59\nmsTERNLT05+4jW/evJnr169niyMz6Y2PjyciIoLIyEj27t0L5PybCCHeLpJUCSGAf094bt68meM0\nMTExODk5oVKpSEhIoGrVqtmmcXBw4NKlS4bPFhYW2Zr0PE8vYM7Ozlk+29vbExcXBzy8Yj19+nQ2\nbdqEVquldOnSeHl5Adk7OihSpEiWz3v27DE0VbS3t6datWpYWloaTkYz5/H493JbhkajwdbWNsv3\nHB0dgYfNEh8XHx+PoijY29s/8TuZ02TeSZozZ06W6VQqFXfu3MkxZoBSpUoZfjMPDw9SUlIYOXIk\n9vb21K9fH8DwDNfw4cMZPnx4tnnExsZiZWXFhg0bWLRoEVu3bmXDhg3Y2trSv39/+vbt+9QYcuNZ\n6zk+Ph6NRoOVlVWW7zk6OpKcnGyY5km/paOjI4qikJSURO3atVm8eDFr1qxh+fLlhqaXkyZNMtwl\nexInJ6csnzOfV8rchk6cOMGkSZMIDw/HxsaGypUrY2FhkS3xeTy+5ORkJkyYYGiK5urqSqVKlYCc\nO/J4nv03NjYWR0dHVCpVrvah3KpUqdIr66ji0XWT075pY2ODmZkZSUlJhmFP+20yL+D4+/tnm1/m\nNv7ofgcP191XX33F33//jampKRUqVDDcFZbOVYQQIEmVEOJ/HBwcqFKlCn///Xe2Z2MyffLJJzg5\nObF27VpsbW2JjY3NNs2dO3deyQnV/fv3szxUf/fuXcPJ1JIlS/jll1+YMWMGjRo1wsLCgtTUVH79\n9denlhkVFcUXX3xB586d+fzzzylatCgAX3zxBREREQCGK+z37t3LcmJ27tw5ACwtLZ9Zhp2dHRkZ\nGcTHx2dJrDKTnietHzs7O1QqFXfv3s0y/NGOKjKTh88++yxLEzd4eGL3eCL6LGPHjuXAgQN89dVX\n7NixA0tLS8PyT5w4MVvvZ4qiULJkSeBhk7W5c+eSkZFBUFAQ69atY9asWdStW9fwvceTh8xE53k8\nz29VuHBhMjIySExMxNra2vDdBw8eYGZmBjxcr09KNjO3XTs7OwCaNGlCkyZNSExM5ODBgyxZsoSh\nQ4dy+PBhTE1Nnxjj/fv3s3zO/O0cHBxISEhg4MCBeHl5sWjRIkqVKgXAjBkzDNtSTiZPnszhw4dZ\nsWIFXl5emJqacunSJX7//fccv/M8++/HH39s2H9fdB96lXK7fWTuN4/vI/Hx8aSnp2fZrx7/bTKf\nRXs0IVu0aBEuLi5ZplMUBVdX12zfHz58ODExMfz8889Uq1YNtVrNgQMH5D1WQggD6ahCCGHw4Ycf\ncu7cuSeeWP33v//l8uXLhg4NvLy8CAwMzHLyce/ePY4cOUKtWrVeOpZHnyNKT0/n4MGDeHt7AxAS\nEkL16tVp0aKFoSnYwYMHgadfNT579iwZGRn079/fcJKenJxMcHCwYRoPDw80Gk2W+QNMmDCBlStX\nPlcZtWvXBh52PPGoHTt24OjoSNmyZbPFZmFhgaenZ7Ye3g4cOGD439ramkqVKnHlyhXDS4erVq2K\niYkJs2fPztKr3POwsbFh6NCh3Lx5kxUrVgBQrlw5ChcuzK1bt7LMI/Oh/4SEBA4ePIiPjw/37t1D\no9Hg4+NjeP4q806JtbU1t2/fNswrOTn5qclEZvO1TM+znuvWrQvAn3/+aRgWFxdHSEiI4XPt2rVJ\nSkoydEqR6Y8//qBatWqYmZmxYMECw7M+1tbWtG7dmt69e5OQkPDEu4qZAgMDDb1WwsOX7qrVaurU\nqUNERATx8fF89NFHhoRKr9dz+PDhHMvLFBISQsOGDfHx8TEkdH///Tfw9O07N/vvi+5Dr0putw94\neMfO3t7+ifsVkKXeyVyWTLt378bGxoYqVarg6emJRqPh7t27WbbxCxcusGjRoifOOzQ01NA7ZObz\nkM/zmwgh3h5yp0oIYdCxY0cOHDjAhAkTCAsLw8/PD5VKxT///MP//d//0bp1a8MzOx9//DFbt26l\nd+/efPrppyiKwpIlSzA3Nzd0j50bj5+YLFq0CI1Gg6urK+vWrSM1NdXQtMzDw4Ply5ezYcMGKlSo\nwKlTp1i8eDEqleqpV7urVKmCiYkJM2fOxN/fn/v377N69Wru3r1raJJYpEgR/P39WbJkCRqNhqpV\nq/LHH39w/vx5JkyYgI2NzTPLqFSpEs2bN2f69OkkJSXh7u7Onj172LFjBxMnTswxvv/85z/07duX\nMWPG0Lp1a44ePcqePXuyTfP5559jY2NDs2bNuH//PvPmzUOj0VCxYsVcr/cuXbqwbt06Vq9ezXvv\nvYeLiwuDBw9m2rRpwMNOOqKjo5k9ezaurq6UKlXKcPdt8ODB9OvXD41Gww8//ICdnZ0h8W3YsCFb\ntmyhSpUqODg4sHLlSlQqVY4noJl3yPbt24elpeVz/VblypWjffv2TJ06lbS0NIoVK8ayZcuydK/d\npEkTPD09+fLLLxk6dCguLi5s2bKFU6dOsWTJEsMyLl68mPHjx9O6dWvi4uJYunQpXl5e2ZpjPurB\ngwcMHDiQTz75hCtXrjB37lx69OiBk5MTFhYWWFlZsWjRInQ6HSkpKfz0009cuHDhib3ePcrDw4M9\ne/YQEBCAi4sLR48eNXQ/npKSkuP3crP/vug+9DxOnz6d5c7ho6pWrYqpqWmutw94mHgPGjSIyZMn\nY2dnh5+fHxcuXGDhwoW0atUqy3OKly5dYujQoXTu3JnQ0FB+/PFHRowYgUajwcHBgV69ejF9+nTi\n4uKoXr0658+fZ968eTRt2hQrK6tsd6qqV6/Oli1bcHd3x9bWlr/++ouNGzcCT/9NhBBvD0mqhBBZ\nzJkzh02bNrFlyxb+/PNPMjIycHV1ZcKECXTt2tUwnYuLCxs2bGDmzJmMGjUKjUZDvXr1+P777w13\nFlQqVbYTyOcdNnr0aNavX090dDSenp78+OOPhmcY+vfvT2xsLAsXLiQtLY2yZcsyYcIEfvvttyy9\nCD5eZtmyZfnuu+9YuHAhAwYMwNHRkSZNmtC1a1cmT55MbGwsTk5OjB07lsKFCzNr1izg3xPQzA43\nnqeMWbNmMX/+fNauXcuDBw9wc3Nj1qxZtG3bNsd1X79+fRYsWMC8efPYvn07Hh4efPnll0yePNkw\nTeY7eBYtWsSWLVsMnTCMGDHiuZ5Ve5xarWbUqFH07duXWbNmMWvWLHr27ImFhQVr16419O7YunVr\nQ++BdnZ2rFy5ktmzZzNy5Ei0Wi2enp6sWbPG0ARrzJgxpKWlMWnSJKytrenZsydVq1blzJkzT4zD\n3d2dDh06sHz5cs6cOcOSJUueaz1PmTIFBwcHFixYQEZGBl27dsXFxcVwB0mtVrNy5UpmzpzJ3Llz\nSUlJoXLlyixfvjxLr4KzZ89mxYoVbNu2DTMzMxo3bmzowTInDRo0wNXVlaFDh2JjY0Pfvn0N3cHb\n2NiwYMECZsyYwaeffoq9vT116tTh+++/54svviAsLCzHl8uOGjWK1NRUQ9frbm5uLFy4kKlTpxIS\nEkLHjh1zjOl5998X3YeeJnPanJ6rU6lU7N+/n6JFi+Z6+8iUuW2uXr2aX375BWdnZ3r37m1Y75k6\nd+5MWloagwcPxtnZma+++oru3bsbxo8cOZIiRYqwadMm5s+fj7OzMx999FGW3v0eNW3aNCZNmsSY\nMWMwNzc3vEOrX79+hISEvNJOWoQQBZNKkfvWQoh8JPNFsJs3b35iRxiv09ixY4mMjOTrr79+qS6m\nxZunV69eWFlZsXTpUmOHIh7j5+eHn5+foUmqEEK8DvJMlRBCPMH169fp1KkTWq2W77//3tjhCCGE\nECIfk6RKCJHv5KbJUV5Zt24dvXv3Ji0tjd69exs7HCGEEELkY9L8TwghhBBCCCFegtypEkIIIYQQ\nQoiXIEmVEEIIIYQQQrwESaqEEEIIIYQQ4iVIUiWEEEIIIYQQL0GSKiGEEEIIIYR4CZJUCSGEEEII\nIcRL0Bg7ACGEECIvLVu2DFNTU3nfmBAiT+zdu5eVK1cSGxtL586d0el0hIWFYWNjw+zZs40dnnhN\nJKkSQgjxxkpJSSEsLIzQ0FA++OADzMzMjB2SEOIN4+fnR1xcHPv37+fTTz81DF+wYIERoxKvmzT/\nE7kWHR1N5cqV6dixo+GvQ4cObN682dihCSFEFtu3b2fy5Mk4ODhIHSWEyDOKoqAoSpZhZcqUMVI0\nwhjkTpV4IRYWFgQEBBg+3759m3bt2lGtWjUqVqxoxMiEEOIhrVZLUlISDg4ODBgwgLlz5/L++++j\nVsv1RCFE3mvXrp2xQxCvkRxZxCtRtGhRypQpw6FDh+jRowedO3fmo48+AuCXX36hc+fOdOrUiU8+\n+YSIiAgAkpKSGD16NC1atKB169Z8//33ACQkJDBixAjatWtHu3btmDlzJjqdDoD58+fTvn17unTp\nQp8+fYiNjTXOAgsh8r1du3bRunVrAFq1aoWJiQnbt283clRCiLeFSqUydgjiNZI7VeKVOHnyJFev\nXiU1NZXLly+zd+9erKysOHbsGP/973/56aefsLCw4J9//mHw4MFs376d+fPno9Vq2blzJ1qtlg8/\n/JCGDRuyceNGHBwc+P3330lPT+fTTz9l1apVtGvXjnXr1nHkyBFMTU1Zs2YNYWFhNG3a1NiLL4TI\nZxRF4c6dOzg5OQGgVqvp27cvy5cvl6vHQgghXjlJqsQLSUtLo2PHjgDodDrs7e2ZNWsWd+7cwd3d\nHSsrKwD279/PlStX8Pf3N3w3Li6OuLg4jhw5wpgxY1CpVJiZmbFx40YAPv/8c8P/ZmZmdO/enR9+\n+IF+/fpRqVIlOnXqhK+vLw0bNsTHx+c1L7kQoiDYt29ftgsuHTt2ZNGiRezbt48mTZoYKTIhxJtI\n7koJSarECzE3N8/yTFWmLVu2GBIqeHi1uEOHDowYMcLwOSYmBjs7OzSarJvfjRs3KFSoEHq9PsvD\nnjqdDq1Wi0ql4scff+T06dMcPnyYadOm4e3tzVdffZVHSymEKKjCw8OpWbMm9+7dyzK8a9euLFu2\nTJIqIcQr9XgnFeLtI89UiTz1zjvvsH37dsOzTz/99JPhWSsfHx8CAgJQFIX09HQGDRpEaGgoDRo0\nYMOGDQCkp6ezadMmGjRowPnz52nbti3lypWjf//+fPTRR1y4cMFoyyaEyJ+OHDnCvHnz8PHxoX79\n+ln+Fi5cSGhoKMHBwcYOUwjxhjhw4ABbt24lNDSUBQsWcOfOHWOHJIxA7lSJF5LTbe7Hhzdo0IC+\nffvSu3dvVCoVNjY2LFq0CIBBgwYxZcoUKleuTKlSpejWrRuNGjXC09OTyZMn065dO9LT02nYsCED\nBw5Eo9HQsmVLunTpQqFChbC0tGTcuHF5vqxCiILFx8eH8+fPGzsMIcRbolGjRjRq1MjYYQgjUyly\nv1IY2aRJk3BwcOA///mPsUMRQgghhBAi16T5nzCqDRs2EBgYKF2jCyGEEEKIAkvuVAkhhBBCCCHE\nS5A7VUIIIYQQQgjxEiSpEkIIIYQQQoiXIEmVEEIIIYQQQrwESaqEEEIIIYQQ4iVIUiWEEEIIIYQQ\nL0GSKiGEEEIIIYR4CZJUCSGEEEIIIcRLkKRKCCGEEEIIIV6CJFVCCCGEEEII8RLyNKlatmwZ/v7+\ndO7cmV9//ZUrV67QvXt3evbsyaRJk1AUJS9nL4R4C4SGhtKrV69sw/fu3UvXrl3x9/fnl19+MUJk\nQoj8TK/XM2HCBPz9/enVqxdXr17NMv5pdUhO9c7vv/+Ov79/nsYthMif8iypCgwM5OTJk2zcuJEf\nf/yRW7duMX36dIYNG8aGDRtQFIU9e/bk1eyFEG+BFStWMG7cOLRabZbhWq2W6dOns2bNGtavX8/P\nP//M3bt3jRSlECI/2r17N1qtlo0bNzJixAimT59uGPe0OiSneufs2bNs3rz5tS6DECL/yLOk6tCh\nQ1SsWJHPPvuMgQMH0rhxY86cOUOdOnUAaNiwIYcPH86r2Qsh3gJlypRh4cKF2e56X758mdKlS2Nj\nY4OpqSm1a9cmKCjISFEKIfKjEydO4OvrC4CnpyenT582jHtaHfKkeuf+/fvMnTuXsWPHSiscId5S\nmrwq+N69e9y8eZNly5Zx7do1Bg4cmKWiKVSoEAkJCXk1eyHEW6B58+ZER0dnG56YmIiNjY3hs5WV\nldQ3QogsEhMTsba2Nnw2MTFBr9ejVqufWoc8Xu/odDq++uorRo8ejbm5+etbACFEvpJnSZW9vT1u\nbm5oNBpcXV0xNzcnJibGMD4pKQlbW9tnlhMcHJxXIQoh8ljt2rWNMl8bGxuSkpIMn5OSkrCzs3vq\nd6SuEaJgy219Y21tnaWeyEyoIHd1yJkzZ7h69SqTJk0iPT2dS5cuMW3aNMaMGZPjvKW+EaLgyqmu\nybOkqnbt2qxbt45PPvmE27dvk5qaSr169Th27Bh169bl4MGD+Pj4PHdZeSU4ONhoJ36vQkGOvyDH\nDhL/85RvLOXKlePKlSvExcVhaWlJUFAQffr0eeb3pK7JmcRvXBL/s8vPrVq1arFv3z5atWpFSEgI\nFStWNIzLTR3i4eHBtm3bALh+/TrDhg17akKVSeqbnEn8xlOQYwfj1jV5llQ1btyYoKAgunbtil6v\nZ+LEiZQoUYLx48ej1Wpxc3OjZcuWeTV7IcRbRKVSAbBt2zaSk5N57733GD16NH369EGv19O1a1ec\nnZ2NHKUQIj959913OXTokKG3vmnTpuWqDsmsdx6lKMoThwsh3nx5llQBfPnll9mGrV+/Pi9nKYR4\ny5QsWZKSAoclAAAgAElEQVSNGzcC0LZtW8PwJk2a0KRJE2OFJYTI51QqFV9//XWWYa6urob/n1aH\nPFrvPM9wIcSbL0+TKiGEEEIIIZ6HkpIIcqdPFFCSVAkhhBBCiNdO0etRbkehRJ1CiTqDcisStW9X\nUDkaOzQhck2SKiGEEEII8Vrpw4+j2/MjpCY+HKBSoypRnoxCNijJ8q4vUfBIUiWEEEIIIfJEjp13\n2DiAxhRVNV/UZauhK1mRP2Ii+OPaWRxUZjgllKOMjcPrD1iIFyRJlRBCCCGEeGWUhHsoV86gjzoN\niQ/Q+GfvYl7l4oqm7wxUKhVRCXdZd/Yg15MfUEhjSmxGKtNCdtKwWAU6lPGkUMJdsHeRnhVFvqY2\ndgAFXVpaGn5+fgBMnTqVW7duERcXR6dOnZ7rvTjGNHPmTNq3b88PP/zAokWLcpzu77//ZtOmTQD8\n/PPPZGRkvK4QhRD/I3WNECI/U/Q6dAd/QbtuIhkrR6L76weUi8EoSXEoaSnZplepVGj1OjZHnmR6\nyC6uJz+goUt5ptbpSBvzkhS1tOXAzYssPbiBtA3foNu5EiVDa4Qle3O8DceR0NBQox1H5E7VKzR2\n7FgAgoKCKFWqFPPnzzdyRE/3559/8ttvv1GoUKGnTufr62v4f9myZXTq1CmvQxMF3J27N4wdwhtN\n6hohRH6jUpugjwyFuLuoylZDVaYq6rLVwb7oE+8whcfFsP5iIDEpCThaWPNhBW8qFi4KQAkTK1rX\nfIc91y+w73IwV80tcT0fSHJcLIU6foHKwuo1L92b5009jnh6ehpe/vu6jyOSVL2ApKQkRowYQUJC\nAqVLlzZUFr169WLcuHF8++23xMbGsnDhQrp06cKECRNITU3FwsKCyZMnk5GRwaeffkrhwoVp1KgR\nvr6+TJkyBUVRsLe3Z+rUqZw5c4YVK1ZgZmbGtWvXaNOmDQMHDiQqKopx48aRkZGBhYUFH3/8MeHh\n4Xz33XfodDru37/PpEmTqFmzJmPGjOHq1aukpqby4Ycf0qFDB8MyLFy4kJiYGAYMGEC/fv0ICAhg\nzpw5NG/enNq1axMZGUmRIkVYsGABAQEBREZGUqZMGe7cucOwYcOYP38+48eP59atW8TGxuLn58eQ\nIUPYtWsXK1euRKPR4OzszNy5c+V2/Vvmbth+LPb9BA0GGDuUAk/qGqlrhMhPFEVBf2w76nKeqJxK\nZRuvaTcIbB1QacxyLCM1Q8uWqBAO3LyICmhaoiIdynhibpL1lFSjNqFFqSrUcS7DliIleRC8i5o3\nI7i/fiKWnYdjWaTYq168N1JujyPfffcd5ubmeXIcmTt3LrGxsXl6HDlw4AD79+83ynGkwCdVv0ac\n5MSdqy/8/bT0NDYfi84yrJZjabqWq5njdzZu3EjFihUZMmQIYWFhHD161DDOzMyMr776io0bNzJo\n0CCGDBlCr169aNiwIUeOHGHWrFkMHTqUO3fusHXrVjQaDe+99x7Tpk3Dzc2NX3/9lRUrVvDOO+9w\n8+ZNfv/9d9LS0vD19WXgwIF89913DBw4kAYNGrBnzx6uXLlCcnIyo0aNwt3dnW3btrFlyxbc3d05\nfvy44RbooUOHsizDoEGD2LJlC6tWreLkyZOG4dHR0axfv56iRYvSvXt3Tp06hUqlQqVS0bVrVxYv\nXsycOXO4efMmNWrUoFu3bqSlpdGoUSOGDBnC9u3b6du3L82bNycgIIDExERsbGxe+PcRBUtabDTm\n+zei8Oad3EpdI3WNyD+U1CSUG5dQrl9E7Skv+X5dlPDj6A8HgDYdkyckVSoHl6d+//S9G/x46Rj3\n05IpVsiODyt4U8726d2nO5hb0bd6E04Xr8DhPeupf/0yDzZO4XTnIXi5uBWoiykvexx5kld9HGnZ\nsiW9e/fOk+PI+fPnuX//fp4fRwCjHEcKfFJlDFeuXKFRo0YAeHh4YGpqahinKAqK8m9XoOHh4Sxb\ntowVK1YAGKYtWbIkGs3D1R8REcGkSZMAyMjIoGzZsgC4u7ujVquxtLTEwsICgKioKGrUqAFA06ZN\nCQ4ORlEUFi9ejIWFBUlJSVhbW2NlZcXYsWMZP348iYmJtG/f/rmWzd7enqJFH95+L1asGGlpaYbl\nepSdnR2nTp0iMDAQa2tr0tPTARgzZgzLli1j/fr1lCtXjmbNmj3XfEXBp09PJS5gHva6DAJrN8PS\n2AG9AaSukbpG/Et/5QzK5RD018Phzg3g4baicigGWBg1treBkqFFd2gLqE1QV6mfq+8madP4JeIE\nR2IiUatUtC5Vldalq2GqNnnuMqoVKYm260jOHthIUMIdgi4d4+/YK3Qv70WxQna5XZy3Rm6PI5GR\nkezbtw949ccRgOPHj7+xx5ECn1R1LVfzqRn6swQHBxvaXj4vNzc3QkJCaNq0KWfPnkWrzfnBSTc3\nN3r37k3NmjWJiIggKCgIALX63z5CXF1dmTlzJi4uLpw4cYLY2FiAJ159cXNz49SpU/j4+BAQEMD5\n8+c5duwYM2fOxM3Njfnz53Pjxg1iY2M5c+YMCxcuJC0tjcaNG9OxY8cs832SZ13xUavV6PV6tmzZ\ngq2tLd988w1XrlzJ8lDg4MGDcXBwYMKECezevZuOHTs+tUxR8CmKws1tS3BOfMDJEuWp16AboSdD\njB3WKyV1jdQ1wriUyFPoQ/eBiSmqku6oSlRAVaICiks5OH3W2OG98fRh+yAuFnXNZs+8I/Wok3eu\n8dOlIOK1qZS2tufDCvUoZW3/QjGYqk3wbNKT4imJpEYc59S9G0w+8QfNSlSidemqWJiYPrsQI3rZ\n48iLyO1xpH79+nTv3j1PjiPJycn8+uuvb+xxpMAnVcbQvXt3Ro4cSY8ePShXrhzm5uaGcZnNVzJ/\n6JEjRzJp0iTS09NJTU1l3LhxhukyTZo0iS+//BKdTodKpWLq1Kncvn37iRvLyJEjGTNmDAMGDKBe\nvXr07NkTFxcXhgwZgq2tLS4uLjx48AAnJydiY2Px9/fHxMSEPn36ZNs4M8t/NN6cZI738vKif//+\nTJgwgeHDhxMSEoKZmRlly5bl9u3beHh4MGDAAKysrLCysqJJE2mW8Ta4eu86SswVrlrZUb7Np2hy\ncfVR5EzqGqlr3gaKXocScw3lxkWU6xdRFXfDpHaLbNOpPRqjcq9DskNRwhPvczHuNuF3r3DjWhh9\nLd2NEPnbQ0lNQn90G5hbovZu+1zfiU9PYePlYILvXEWjUtOpbA3eLVkJE9XLdzztZGnNoKqNCb0b\nzc+Xg/kz+izHYqN4r1wtahYpVaCaBOa13B5Hhg0bxo4dO/LkODJz5kzS09Pf2OOISnn8Hlk+8yJX\nd/NT+XkhJiaG6dOnM2rUKKKjowtc/JkK4rp/lMT/UJI2jSknd5KQEs/n5etSqUTFV1r+6yJ1TXZv\nSl0DBXP9P+pNjF9/Kwr94a0oNy6BNs0wXFW+Npp2nxo+J6SncjE+hgsPYgiPu82N5DjDOFO1CeVt\nnfBNtytQ66eg1Tf68OPodixD3aALJl4tnzqtoigExkax6XIwSRnpuNk68WGFurjkoolebuJP12Ww\n49oZIs4eJrKQNeUdS+LvVpuilrbPPb9XrSDvr6869kePI5lN9fKSMfctuVNVAK1evZqoqCj0er2x\nQxFvOb2isCb8CHfTkmhb1tOQUIk3g9Q14lXI6d1CKhMTlCtnwMEFVXF31P9rzpdoYcXFO1dzTKIq\nFS6Ku11RKto5U8amCKZqE4KDg1/X4ryV1O5eD59dK+z81OnupyXz48VjnL5/AzO1Ce+Xq03j4u6o\n8/DOkZmJhg5WDmgvhRJbyJZ5ugy+eXCbFiWr0LJUFcxM5FTXmN6m44hsaQXQ6NGjDf/fuCHvAxLG\nsyv6LKfu3aByYRfalK5m7HDEKyZ1jXhRSkoCyqWT6MODUB7EgGe37BM5lkAzYC6JGtN/70RdCsyW\nRFUu7EIFO+csSZR4/VSOJXIcp1cU/rl1ic2RJ0nVZVCpcFF6VfDG0cL69QTnUAx15Xo4n/6HSZdP\ns7SCJ9uvneZoTCT+bl54FMk5dpG3Hj2OvOkkqRJCvJALD24TEBWGvVkh+lSsj/oVtJMXQhRciqKg\nnP4bffhxlGvnQXl4ZVrl4opa9+/dqmc156tUuCgV7R7ejSpr4yDPaOZzsSkJrL94jAtxt7EwMaVX\nBW/eKVrutT7XpDLRYNLsI/R2Tpgd2srgs8c4Urs5G9OTWHT2AB4OJXjfrfbrS/LEW0mSKiFEriVE\nnSbh4M9YlnGnX+V3sDGT7oyFeNupVCp0pw6i3I5C5eKKqoIX6gq1SbS05tLJo5y/FER4XEyWJMrs\nf3ei3O2K4m7nLElUAaJX9Oy9EU5AVChavQ4PhxL0KF8He/NCRolHpVJhUrcNKltHdLvWUP/Ebty7\nj2HD1TOE3bvOuQe3aF2qKu+WrCx3O0WekKRKCJErGYkPyNi+lGrpafTwbIybrZOxQxJCvEZKahLo\nMlBZZe94QO3XA5WlDalWhTl59xqBV0O58OD2wzdK3Xw0iXKmYuGilLGWJCq/UrRpqEzNnzjuRlIc\n6y4eJTLhLtYacz6q4I2XU5l80eueupI3WNuDNpVi9sUYXtiFwNgoNkec5L9XwjgSE0n/Sg1euFt3\nIXIiSZUQ4rkpej0xW+filJ5KkHttfDz8jB2SEOI1UFKTHr54NzwI5eo51DX8MGn0fpZpMvQ6zpia\ncezGBULvXUer1wHgZuuIQwo0qVJTkqgCQtFlkPHTt6iKlsWkRe8sydKf0Wf5LSqMDEVPHacyvF+u\ndr5rraAu+W8X+yqVinrOrng4lOD3K2HsuxHOkrMH+apmK6xMzYwYpXjTyEMQRrBgwQI2btwIwI8/\n/sjBgwdJT0/nl19+AWDr1q3s3bvXmCEK8UQ39v2I053rXHBwoWbz3vniqqTImdQ14mUpd2+QEfA9\nGcuGodu1BiXqNDiWeNgTHA+fo7ocH8tPl4IYGRjA4rMHOX7nKg7mVrQvU51vvdoz0rM5NU2L4Gbr\nJAlVAaE//Tfcu4lKY5alnr8UF8OWyBCsTM35tEpD+lYqOM2/C2nMeN/Nizalq3E3LYm14UfI528V\nyhfkOPL85E6VETxaQX3wwQcAREdH8+uvv9KtWzc6depkrNCEyNH9SydxDjvIXXNLHNp9hmUOzUJE\n/iF1jXhpZhYokafAqRRqd6+HXWsXLsqt5HiORYURGBvFndREAGxNLfArXhFv57KUsXaQiy4FlJKe\niv7ob2BqjtqnfZZxO6PPAtC/UgPK2xW8pt/68OO0di7NpcKxhN27zq7r52hRsoqxw8rX5Djy/CSp\negGJiYmMGzeOhIQEYmJi6N69O3/88QeVK1fm4sWLJCYm8v3331O8eHFmz57NmTNnePDgARUrVmTa\ntGnAvxupn58fO3fuZOnSpVy6dIlFixahKAqOjo74+/vzzTffcOrUKbRaLYMHD6Zp06ZMnz6dEydO\nAODp6VlgXzAnCo50XQZLH1ynrlMJHGs3x9OhuLFDeitIXSNeByUtGSXyFKqKdVA91ounysYBTd8Z\nqGwciE9PISj2CoGRJ7mSeA8Ac7WGes5lqetclkqFXTCRXkALPP3xnZCcgNqnQ5bn5qKT7nPq3g3K\n2zoVyIRKuX8b3R8rwLwQfdt9xuTkeAIiQ3GzcaS83dPfv1WQ5fY4cuTIEfR6fZ4cR9q2bcuHH35o\ntHWR196IpEq7atQTh5v2+e6Z01dKS0cbsump0z/u6tWrtGnThnfffZeYmBg++OADihYtiqenJ2PH\njmXu3Lls27aNHj16YGdnx+rVq9Hr9bRt25bbt28/scxPP/2Uixcv8vnnn7Nw4UIA/vrrLx48eMAv\nv/xCfHw8a9aswcTEhOvXr7Np0yYyMjLo0KED4eHhuLu7P7FcIV6FnyOCiUqJp6R3a5pW8DZ2OEYj\ndY3UNW8S5UEs+hO70J85BBnpmFjboyqZ9fdN1WkJTYkj8EooZ+/fQkFBjYpq9sXwdnbFs0hJzOXl\nqm8MJfE++uBdYGWHunbzLOP+vPbwLlXLUgXzzo7Kvijqxv7o927A4q+19Gv3KXPO/s2K84cYV7PV\na2vG+DLHkeeZ/nG5PY6MGTOGmjVr5slxpEePHtSrV++NPY5ITfgCihQpwg8//MCuXbuwtrYmIyMD\ngMqVKwNQrFgx7ty5g4WFBXfv3mX48OEUKlSI5ORkw7SPe1K73sjISGrUqAGAra0tX3zxBatWrTJc\nLdZoNJQvX55Lly69sRuoML7DtyP459ZlSlnZ4+/mZexw3ipS14i8oMReQ3dsB8rF46AoYFsEddUG\nqOwcAdApes7dv0VgTBQhd6+R/r8OJ8raFMHbqSxeTqWxNbM05iKIvKIxQ+3RCJVjySw9/91JTSQo\n9irFC9lRzb7gtlQw8WwCD2LQn/iLcmEH6VC+BlujQlh94TCDqzV+I9+3mNvjyMKFCylZsmSeHEc8\nPT3f6OPIG5FUPW+2/qTpw4KDc92kZc2aNdSoUYPu3btz9OhR9u/f/8TpDh48yK1bt5g7dy737t3j\nr7/+MmyIj2+QarUavV6fZZibmxs7d+4EICEhgSFDhtCrVy+2bNnCxx9/jFarJTw8nIEDB+YqfiGe\nV3TSfX66FISliSkDKvu+9e/2kLpG6po3gf76RZTwIHAqhYlXS1TuXqBSE5V4l2OXjxMUe5UEbSoA\nThbW1HUui7dzWYpa2ho5cpHXVBZW2Xp1BNgVfQ4FhZalqhT4Z+XU73RGH3UGfche3nX15JJDcU7d\nu8GOq2doW6Z6ns//ZY4jLyK3x5FBgwbh6uqaJ8eRkydP0rlz55danvzsjUiqXrcmTZrw7bffsmPH\nDmxsbNBoNGi12mwVjYeHB4sXL+aDDz5ApVJRunRpYmJiALJNW6RIEbRaLbNmzcLCwgKVSkXTpk05\ncuQIPXr0QKfTMWjQIHx9fQkMDMTf35/09HS8vb0NVxuEeJVS7t1ibfhhtHod/aq8g5OlvIn+dZO6\nRuQFddV3UNkXRVW6CskZ6eyPPsfRmEhiUhIAsNaY07hYBbydXXG1KVLgT6LFy4lPT+Hw7QiKmFvh\n5VTG2OG8NJXGFE2rvmRsX4bK1IyP3X2YcvIPtl09hZutE5XtXYwd4iuV2+PIN998g62tbZ4cR1q3\nbv1GH0dUSh73J9mpUyesrR+ejJUqVYoBAwYwevRo1Go1FSpUYOLEiU+tsINf4OpubuR1+XmtIMdf\nkGOHNzt+fXoqsT+MJ0ObyvFmPengXu+Vlp8fSV3zdBK/ceU2fkWbhnI+EFWV+qie8MxTojaV3dcv\nsO/GBVJ1GZiqTahRpCTezmWpUrgYJupX2wwqP+5fer2eSZMmER4ejqmpKVOmTKF06dKG8Xv37mXx\n4sVoNBq6dOlCt27dDONCQ0OZNWsW69evB+DcuXN8++23qNVqzMzMmDFjBkWKFHml8ebGqyw/ICqU\nP66dobubF42Lv55mW69jf1X0elT/284j4+8wM2w3hTRmjKvZksLmhV6q7IJc3xTk2MG4+1ae3qlK\nS0sDMFQ6AAMHDmTYsGHUqVOHiRMnsmfPHpo1a5aXYQghcil6+1KKJd4ntIQbbSvUNXY4QojnpKQk\nog/Ziz5kL6QmYqIxRVXZxzA+UZvKX9Hn2XcjnDR9BramFrQtXR1fl/JYaEyNGPnrt3v3brRaLRs3\nbiQ0NJTp06ezePFiALRaLdOnT2fz5s1YWFjQvXt3/Pz8KFKkCCtWrOC3337DysrKUNbUqVMZP348\nlSpV4ueff2bFihWMHj3aWIv2yqRkaNl/IxwbU3PqFy1n7HBeKdUjFw5cbR3p4lqDTREnWHn+MEM9\n/KQnS5FreZpUnT9/npSUFPr06UNGRgZDhw7l7Nmz1KlTB4CGDRty6NAhSaqEyEduHf+DYlGnibay\no0K7z+XAIkQBoMTfRR/8J/rT/0BGOpgXQu3dFlWZqgDEp6fy1/VzHLhx0ZBMtS/rQUOX8pi9pb33\nnThxAl9fX+DhKwNOnz5tGHf58mVKly6NjY0NALVr1yYoKIiWLVtSpkwZFi5cyMiRIw3Tz507F0fH\nhx19ZGRkYG5ecN7jp48IA1Mz1KUqZRt38NZFUnRaOpT0fOO3E7/iFbkUF8uJu9f47UoYncrWMHZI\nooDJ0z3E0tKSPn360K1bN6Kioujbt2+W8YUKFSIhISEvQxBC5ELC9UvYHtpKkokGfat+2MmD6UIU\nCMqtyId3p2wcUNdqjrpaA1RmFsSnp7Ar4gQHbl4kXa+jsJklHUt60sDF7Y0/SX6WxMREw+MJACYm\nJuj1etRqNYmJiYaECsDKyspwvtK8eXOio6OzlJWZUJ04cYINGzawYcOG17AEL0/RpqHbsx5SElH1\nnYGq0L/LrNXr2B19HgsTDY2LVzBilK+HSqXiQ3dvrp28z85rZylv60R1hxLGDksUIHlao5YtW5Yy\nZcoY/i9cuDDnzp0zjE9KSsLWVk7ahMgP9IqekOM7qKfXc6Z+O+o84aqlECJ/UpWvhUmbgajcaqAy\n0RCXnsKfEcEcvHkJ7f+Sqc6lqtDApfxb34tnJmtra5KSkgyfMxMqABsbmyzjkpKSsLOzy1bGo3bs\n2MHSpUtZvnw59vb2eRP0K6Y/uRsS76Ou0ypLQgVw5HYk8dpU3i1RmUIaMyNF+HooGVr0h7diVrgo\n/Ss34LuQXay5cIRxNVvhYGH17AKEII+Tqs2bNxMeHs7EiRO5ffs2SUlJvPPOOxw7doy6dety8OBB\nfHx8nllOcHBwXoaZ5+XntYIcf0GOHd6s+I+n3+GEgyPnCjWklkmxAr9sQrxpFL0e5dIJVGWqojLP\n+p4olVqNyt2LB2nJ/BkVwt+3LqPV67A3L0SrklWp71JOkqnH1KpVi3379tGqVStCQkKoWLGiYVy5\ncuW4cuUKcXFxWFpaEhQURJ8+fXIs67///S+bNm1i/fr1z0y+Mhn73MYkPZlKQdtQTC04b1oM/SPT\n6xWF31MjUaPC+W46wfdf//HgdR6DNGlJuIceQK3XERefgY+pE3+n32Zu8J+0My+NyQv0gFmQj6EF\nOXYwXvx5mlR17dqV0aNH06NHD1QqFdOmTaNw4cKMHz8erVaLm5sbLVu2fGY5BaWHHGMoyPEX5Njh\nzYr/9L0bnDxzgSLmVvSs1xIr05d/HqCgV8pC5BeKNo0iN06TEforxMWi9u2GiVeLLNPcT0tm57Wz\n/HPrEhmKniLmVrQsVRWfoq6STOXg3Xff5dChQ/j7+wMwbdo0tm3bRnJyMu+99x6jR4+mT58+6PV6\nunbtirOzc5bvZ/ZcrNPpmDp1KsWLF2fQoEEA1K1bl8GDBz91/sY+t9Ht3YBep0XdsBs1a9TPMu54\n7BXiz4fTwMWNhhW88yzOnBjj+KovYoFux3IqRwdStdtI0i8dIzAmikh7Fe+75S6Wgnx+UJBjh9fT\n+19O8jSpMjU1Zfbs2dmGP9oboBDCuO6lJrH6whFMVGr6V27wShKq1+FZ3SH/9ttvrF27FrVaTZcu\nXejevbsRoxUi9xRFQblwDN2BTZRIjgMTDerqDVG7/fsA/b20JHZeO8uhW5cNyVTr0lWp5+yKRpKp\np1KpVHz99ddZhrm6uhr+b9KkCU2aNHnid0uWLMnGjRuBh89iBQYG5l2geUDRpqG/HAKFi6Ku3jDr\nOEVh57WzqFDRvOSb+06hx6kr1kV/OQTlwjGU4D/pWbsFVxPusffGBSrYOVPLsZSxQxT53Nv9lKoQ\nb7kMvY7l5/8hKSONHuXrUNYm5/eq5DdP6w4ZYMaMGezYsQNLS0vatGlD27Ztszx4LkR+p9y8jO6P\nFWBiSkypmhRv9QEqq4dNy+6mJrHz2hkO3Y5Ap+hxtLCmdamHydSrfseUePOoTM3RfDQZ4u9me4/Z\nuQe3uJZ0n9qOpSn6lnVWZOLXg4zocPRHfsOsbHX6V/ZlWshOfgg/SimrwjhZyjFE5EySKiHeVoqe\niIB5aK2s8S5bnYYu5Y0dUa48rTtkgIoVKxIfH49arUZRlKe+ZFyI/EhdvDzKO51Ru9fh1uWrlLCy\n405qIn9cO8OR25HoFD3OFta0Ll2Nus5l5fUHIldUZhbgmL13u53XzgLQslSV1x2S0aksrDFp8Qn6\nsINgbU/xQjb0LF+XNeFHWHbuH0bVaC7NaUWOJKkS4i1lGnUY12vn6OhYHPdmfQpc0vG07pABKlSo\nQJcuXbC0tKR58+ZZphWioDCp2xqAeP0l1oUf5UhMJHpFoailDa1LVaOOcxlJpsQrExl/hwtxt6lS\n2IXS1g7GDsco1GWqov7f+90A6hV15WJ8DP/cusymy8H0rFDXiNGJ/EySKiHeQnfDj1Hx2inumVng\n3OZTzAvg+2qe1h3y+fPnOXDgAHv37sXS0pIvv/ySnTt3PrNjHGP3xpXfSfx5w0SbglXcLeIdXbON\nS1V0BKbHEq6LQ0mFwiozapoVwQ0b1NH3CIm+Z4SIX0x+Xf/iXzujM+9SVX3GlG+X98vVJirhLgdv\nXaK8nRPeztn3VSEK3pmUEOKlpN67hebPtehVKu749aSqQzFjh/RCntYdso2NDRYWFpiZmaFWq3Fw\ncHiuF40buzeu/Ezif/UURUE5cwjdsV8gPRXNh9+gsi9qGH/izlW2XjpOgi4Ve5UZXdy9qO1UGnUB\nvDNlzB65xEOKLgNUKlQ5NF+7mRxHyN1oytoUwd3O+YnTvK3MTDT0r9yAqSd3suFiEKWtHShW6Pm6\nzhdvD0mqhHiL6HUZ3N86B8eMdA661qRp5We/Jy6/elZ3yO+//z49evTA1NSUMmXK0KlTJyNHLMS/\nlLs30O1Zj3L9Ipiao/btCnaOAMSnp7Lx8nGC71zFVG1CF9ea2N9Koo5zWeMGLQo0fehe9GEH0bQZ\ngMope092u6LPAdCqZJUC1xw8rymKnqKWtnxYoR7Lz//D8nP/MLpGiwLZykPkHdkahHiL7LpxgSuO\nxYk7GTkAACAASURBVKhl64htiYLdLvxZ3SH7+/sbEi4h8hP9+UB0f64GvQ5V+ZqYNO6OysYBRVEI\nioni/y4Hk5SRhputEx9V8KZoIVuCb8udGPHilNRE9Ee3PfxgbZ9t/L20JAJjonCxtMWjSMnXHF3+\npjy4je6PVajrtKJ2+Zo0iXdn341wfroUxMfu9SQBFQaSVAnxljh97wYBUaEUdnGle82WXDx1xtgh\nCfFWUhUvD4WLYtKgs+GdU3HpKfx0KYiQu9GYqk14r1wtmhR3L5BN/UT+ow/cDmnJqH27obLM3mnP\n7ujz6BQ9LUpVQS1JQlY6HUrsVXS7f0BVrBxdXGsSGX+HozGRuNs5846Lm7EjFPmE1NZCvAViUxJY\ndeEQJio1A6v4YmtmYeyQhHhr/T97dx5QxXn2ffw7c85h3zcVBBUExD3irrhrNE2bNC6xTUzSmKbp\n0zRbbWvbNEtbG5u8fZq2SZo0bWxjXPIkzabZ3Y0bCqIiKoKsIggIyH6Wud8/MCRUjUuE4cD1+csz\nNzPnJwpnrpl77ksLCMV6xxPoccNRSrG7LI8n0t4no7KYhMAIHh9xA9OjBkhBJa4JVVOOcWAzBISi\nD5923nido5ntpTkEe/gwOryPCQk7Ny00En3iXGisw7XhVayazveTJuJjtbEmdx9FdVVmRxSdhPzG\nFqKLa3Y5+VvWdhqcDm6LH+1WDX6FcGfKMFBNdRcc0zSdquYGns/ayorsXbgMg+/EjeThIdOlwai4\nplw73gaXE8uEW9CstvPGN5dkYzdczOg9AKv0YLog/brpaNEDUCcOoA7vIMzLj7sSxuEwXPz96Gc0\nOh1mRxSdgBRVQnRhhsPOun3vc7Khmim94hnfI9bsSEJ0C+p0Ia61v8f1/t/PH1OKz0pzeSLtfQ6d\nKSEpqCePJd/AlMgEmXolrjk9bjhafDJa4qjzxppdTjaXZONr9SDFzRrAdyRN07HM+h54eOPasgZV\nV8Ww0N7M6p3E6cZaXju+B6WU2TGFyeSZKiG6KKUURe+/wA35h3EMn8L82BFmRxKiy1P2Joxd72Ls\n3wBKoQ0Yg3La0aweAFQ21fPa8T1kVZfiZbFye//RTOwZJw+7i3ajJ45GT7zwwkSfleZQ72zmxpjB\nspLdJWgBoVim345qqgffluXUb+4zjBNnK9hXUUj8qQimRCaYnFKYSX6ChOiiTu5ZR2ReJid9A7hh\n9I0yrUOIdmbkZuDatArqqiAoAsu029D7tDRRNZRie2kO/8nbT7PLyaDgXtweP5oQT1+TU4vuymm4\n+LT4KB66hamRiZfeQaAPGNPmtUXXuWfABH6X/iFvnEinr3+oTLHvxmT6nxBdUFX+IUJ3r6POakP7\nxg8JlCaFQrQ7VXkSGs6ij7kR66InWwuq8sY6nj20idU5e7FoGncmjOXHg6ZIQSVMlVpeQJW9gZSe\n/fGzeZodx20Fe/qweMB4XMrg70c+o95hNzuSMIncqRKii7GfrYT3X0JXisKUuQyLijc7khDdgp58\nPXr/ZLSQnkDL3aktJdm8nZ+B3XAxNCSK2/qPIsjTx+SkorszlOLjoix0TWNG7wFmx3F7A4N7cUPM\nYN4vzOTf2bsYreSCSXckRZUQXYhSik8ObWGS08GBgWMZPXyG2ZGE6DY0ixXOFVRljWd5NXsPOWfL\n8bV6sCh+DKPC+8izU6LdqeZGwooPoIYNveBqfwAHK4spbTzLuB6xcsf0a1L2JjQPL26MGUxOTTkH\nzpzE1xbBSLODiQ4n0/+E6EI2lhxjndHMq2Nmc92Mu8yOI0SXpOxNqNOFFxwzlMGnxUf4bfqH5Jwt\nZ0RoNE8kf4PREX2loBIdwtj3EZEndmIc2HTBcaUUHxZnATArKqkjo3U5Rs5+nP/8OUZJDrqms3jA\neHysHqQ6yqlsqjc7nuhgUlQJ0UUcqy7jPyf2E2Dz4vbrrscmKzkJcc2pqjKca36P8z//i6o902bs\nVEMNTx/4lDfz9uNlsXLvgIn8YGAKAR7eJqUV3Y2yN2Gkf4rDwwd96JQLfk12zWnyaysZHtqbSF95\n3vZr8faDpgZcH/0TZW8i0MObBbEjcKJ4LSdVllnvZqSoEqILONNUz9+PfAYa/CApRZ7ZEKIdGHkH\nca75HZwpQU8aCz4BALiUwUdFh/ld+ofk1VYyKrwPTyR/g+TwGJMTi+5GnTgATjtneg5Eu8jiEx+d\nu0t1fe+BHRmtS9Kj4tFHXg815Rjb/g+AsRH96K37kFV1it2n80xOKDqSXMoWws3ZnXb+dmQ7dc5m\nvhs3iv6B4WZHEqJLUUph7P0QY8fbYLFgmfU99EETAKhubuDFI9vJq60kwObFbfGjGR7a2+TEorsy\nju8DoDo8jgv9LyysO0NW1SkSAiOIDQjr2HBdlD7uJoz8TIxD29Bih6PHDiXFoydv2Qt540Q6g4Ij\nCfDwMjum6AByp0oIN2Y4HZSu/h19ThxkfEQ/JvXqb3YkIbqe8iKMnW+DXxCWBUtbC6rCujM8lfEx\nebWVjD53d0oKKmEWZW9C5WVCSC+afUMu+DUfFbXcpZodLXeprhXNasM6ezFYrLg2vYZyOfHXbdzc\ndxj1Tjuv5+4zO6LoIHKnSgg3VvjRP4iqLGG4HkVi/1HyILwQ7UCLiMEy51603glo555BSa8oYsWx\nnTgMF3P7XcfMqAHy8yfMZfXA8u0HwWGHKsd5w2WNZ0mvKCLaN5iBQb1MCNh1aeHRWKYvQgvr3bIK\nKDAlMp7U8nz2VRQyurKYYXLBpcuTO1VCuKmStI+JOp5GqbcfkTc/KAtTCNGO9MRRaL6BLSunFR3m\npSPb0dC4b+AkZvVOkoJKmE7TdfToAeixQy84/mnxURSK66MHyv/XdqAPmoDWo88XrzWdO+LHYNF0\nVufspdEpTYG7OimqhHBDNcXHCNr+HxosVhw33EuI34Wnegghrh2H4eJf2bt5J/8AwZ4+/HTYTJnu\nJ9xCjb2RXWUnCPfyY0RYtNlxuo1I3yBuiB5Etb2R/+RlmB1HtDMpqoRwMw6Xk9oPX8aiDE6M+xax\nMTI3XohrQTmacX74MkZ+5nljtfYmnj20id2n8+jrH8ovhl9PtF+wCSmFuHIbTh7FqQxm9R6IRZNT\nv440O3ogkT6BbC/NIbu6zOw4oh3JT5YQbkQpxZrcNP7WdwCpgycwfOQcsyMJ0SWomgqcry9HHd2D\nkdG2aWpJfTXLD3xMztlyRobF8JMh0wmU3lPCTTQ47Ww7dZwAmxfjevQzO063ouxNWHULdySMQUNj\n5fE92F1Os2OJdtLuRVVlZSWTJ08mLy+PgoICvvOd73DbbbfxxBNPSFM0Ia7Q9tIcdpTl4hMWxZhp\ni2RevBDXgFF4BOfq30F5EfqQSVi++T+tY5lnSvjDgU+paKrnxpjB3DNgAh7y/GKXYBgGjz32GAsX\nLmTRokUUFha2Gd+0aRPz5s1j4cKFvPHGG23GDhw4wKJFi1pfm3l+o5x2VF3VRce3njpOk8vJjKgB\n2HRLh+Xq1pTC+em/cK76Dcppp59/GNOiEjjdVMe6wkNmpxPtpF2LKofDwWOPPYa3tzdKKZ566ike\neeQRVq1ahVKKjRs3tufbC9Gl5NSUszY3DT+rJ/clTZITOyGuAePQNlxv/QnsjejTF2GZcUfr6l2b\nS47x3OGtOA0X9ySO55t9hsqFjC5kw4YNOBwO1q5dy5IlS1i+fHnrmMPhYPny5axYsYKVK1fy+uuv\nU1lZCcDLL7/Mo48+isPxxQp7Zp7fqNwMnC//DOPg1vPG7C4nG08ew9tiY1Kv+A7L1O1pGpqHN1Sf\nxti9HoCb+gwjzMuXDcVHKaw7Y3JA0R7atah6+umn+c53vkN4eEsz0qysLEaNGgXApEmT2LlzZ3u+\nvRBdRnVzAy8d2Y5SinuTJhLq5Wt2JCG6huCeLf2n5i3BMnQyAC5lsDpnL2tz0/C3efKToTMYFdHX\n3JzimktPTyclJQWAYcOGkZn5xbN0ubm5xMTE4O/vj81mIzk5mb179wLQp08fnnvuuTZ3o8w8vzGy\n0wCFFhl33tiusjxqHU1MiUzA22rrsEyipSkwAaEYaR+jyovwtFi5vf8YDBSvZu/BZRhmRxTXWLsV\nVW+99RYhISFMnDgRaHkW5Mu/gHx8fKitrW2vtxeiy3A0nGXnxn9z1t7ILf2GkxjUw+xIQnQZeu8E\nrHctQ49quYrf4LTzXOYWtp46TpRPEEuHX09sQJjJKUV7qKurw8/Pr/W1xWLBOHeiW1dXh7+/f+uY\nr69v6znLrFmzsFjaTqMz6/xGOZpR+YdaLg6ERrUZcymDT05mYdMtTItM6JA84guahxeWabeD4cK1\n4VWUYZAU3JMJPWIpqq/ik5NHzI4orrF2mz/01ltvoWkaO3fu5OjRoyxdupSqqi/m/NbX1xMQENBe\nby9El6AMg1Nv/YmZ5UV4DJ/M9KgBZkcSosvRzl3BL2+s5bnDWyltPMuQkEjuSZyAl1zd77L8/Pyo\nr69vfW0YBrrecq3Z39+/zVh9fT2BgYEXPdbn+33+tR11fqPyDoHTjp4w8rypqWnlhVQ01TO5VzwB\nsrCKKfR+QzASR6OOpWJkbscydDJz+43g0JkS1hcc4rrQaHr6yLlwV9FuRdVrr73W+udFixbx5JNP\n8vTTT5Oamsro0aPZtm0b48aNu6xjpaWltVfMDjl+e3Pn/O6cHdo/vzV3KwPLi8gODMffL4H09PRr\nenx3//4LcdmUwig9gd4z9oLD2TWneTFrO/XOZmZGDeCWfsPRZenpLm3EiBFs3ryZOXPmkJGRQWJi\nYutYbGwsBQUF1NTU4O3tzd69e1m8ePFFj5WUlHTF5zfX4vdvTNanBAFHHT40fel4Sinezt6HBvSq\ncrrl73p3zPxln+e3BCcREdVMWaMHxrlto7UQNqgS/rZ/I9/0jO50z2p2le99R+uwJ901TWPp0qX8\n+te/xuFwEBcXx+zZsy9r3+Tk5HbLlZaW1q7Hb2/unN+ds0P75z91cAthJ7Oo8PShx9yHGRQYcU2P\n39753f2Xsug6lNNB7+zNuLYfg2/djx43vM34jtJcVuXsRaFYFD+GiT3PfzZFdD0zZ85kx44dLFy4\nEGhZbGL9+vU0NDSwYMECli5dyuLFizEMg3nz5hER0fZ38JdPhK/m/OZa/P51NRagvG0MnDSzTZ63\nU7dyRtkZHd6HqQMu7wJ2Z9Llzg/GpRD5pfFkoCJrGxmVxdRHBTK5Ey0i0uW+9+1w/IvpkKJq5cqV\nF/yzEOLCzpaewH/zGpp1C/Wz76b/NS6ohOguVFMDrnf+TEhZLlpEH7SImNYxQxm8nX+AT4qP4GP1\n4L6kFHlmsRvRNI0nn3yyzbZ+/b7o4zR16lSmTp16wX179+7N2rVrW1/37dvXlPMby8RbLrg9w9Gy\nutz10dIcvrP6bv9RHKsu4628/QwNiSLY08fsSOJrkrkNQnQyDsPFqvyDlHn5cHzUbPrHDr/0TkKI\n86imelxv/S/qVC7V4f2x3PpzNP8QAJpcDl488hmfFB+hh7c/S4fPkoJKdAk5NeWUGo0MDo6kt2+w\n2XHERQR6eDMvdgRNLierclKld2sXII1uhOhElFK8dnwPGY4GPFJu4e6kiWZHEsJtuT74O6osH23g\neApDhxBu9QDgTHM9LxzeRlF9FYmBPfhBUgq+Ng+T0wpxbXxcnAXAbLlL1WkpZaBpOhN6xJJ6Op9D\nZ0rYV14grRvcnNypEqIT+bAoi92n8+nnH8qixHGd7uFVIdyJZeJc9BEzscy6C84tOpFXW8FT+z+m\nqL6KlJ79eXDwVCmoRJdR1dzAwTMnidC96B8QbnYccQFGaT7OlU9gFGejaRqL4kdj0y2szU2jztFk\ndjzxNUhRJUQnkVZeyLsFBwjx9OGHAyfhYZEbyUJ8HVpEDJbJt6KdK6j2lRfwx4MbqXU0Mz92BLf1\nH4VFl49B0XWkVRQCkGAJkItynZVyQeWplt5VTgfh3v7c1Gcodc5mXs+9tiv8io4lnyZCdALFhYf5\n17GdeFqs/GjQZAKlp4gQ14xSijRHBS8f3YGuafxo0CRmRA2Qk07hlpSjGecbz2Bk7TxvLK28EA2N\nvlb/C+wpOgO9Vxz68KlQVYqx9wMApkcl0tcvhNTyfDLPlJicUFwtKaqEMFl18TGC3/4Lt57I5J7E\nCfJgsRBXQTkdF9zuUgYrsneR5qgk1NOXnw+bxZCQqA5OJ8S1o/IzUcXHUGdK22w/01TPidoKEoMi\n8NFkpkNnpo//NvgFY6R+gKosQdd07kgYi65pvJaTStNFfp+Jzk2KKiFM1FRTjvHuc1gNF74DxjA0\nVE72LpdhGDz22GMsXLiQRYsWUVhY2Gb84MGD3HbbbXz3u9/lgQcewG63m5RUtDdVX4Nz9W9xHdjc\nZruhDP51bBd7TucToXuxdPj1RPkGmZRSiGvDyN4HgJ4wss32z6f+JYf16fBM4spont5Ypn0XDFfL\nNEBlEOUbxJzeg6hqbuDt/ANmRxRXQYoqIUzisjdy5s1n8Lc3cmjAaIaPutHsSG5lw4YNOBwO1q5d\ny5IlS1i+fHnrmFKKxx57jOXLl7N69WpSUlI4efKkiWlFe1F11TjffAYqS6D6dOt2Qxn8O3s3qeUF\nxAWEcYNnNAEeXiYmFeLrU047Ku8gBIZDeHSbsbSKQnQ0rgvtbVI6cSX0uOvQh05GHzYVaJmKPCdm\nEL28A9h6KpucmnJzA4orJkWVECZQyqD47WcJP3uGrF79GD5rsTzfcYXS09NJSUkBYNiwYWRmZraO\n5eXlERQUxIoVK1i0aBE1NTVtmnqKrqG1oDpTip48C33SAgAMpXj1eGrrSpo/HjQVD00+7oT7U3mH\nwNGMnjCqzWdGRVMdebWVJAb1wF8uHrgNy/RF6APGtP5b2nQLixLGALDy+B4chsvMeOIKyaeMECbY\nXXyUpppyCgJC6X/zw1gtFrMjuZ26ujr8/PxaX1ssFgzDAKCqqor9+/dz++23s2LFCnbt2sXu3bvN\niiragao9g/ONp6GqDH3kbPSU+WiahqEUrx1PZVfZCfr6h/Lg4Kl4W21mxxXimlCFR4Dzp/6lVxQB\nkBwW0+GZxLUVFxDOlMgEShvP8n5h5qV3EJ2GPMkoRAc7Vl3GqwUH8B80hp8OmoKvl4/ZkdySn58f\n9fX1ra8Nw0A/tzx2UFAQMTExxMbGApCSkkJmZiZjx479ymOmpaW1X+AOOH5760z5PevPEFd/lsro\nEZR594X0dJRSbLeXcdRVQ5juyWRnMFkHDrXu05nyXw3JL/Rpt6EPnnj+1L/ygpapf2HRF9lTuJOb\n+w7jQGUxHxdnkRwWQ7SfLGDlDqSoEqIDlTWe5aUj29HQuGfQFMKDepgdyW2NGDGCzZs3M2fOHDIy\nMkhMTGwdi46OpqGhgcLCQmJiYkhLS2PevHmXPGZycnK75U1LS2vX47e3zphfJY8myieA3pqGUoo1\nufs4eqqGaN9gHh4yDV+bZ+vXdsb8V0LyX/r43YGmadCjb5ttFU115NedYWBwL/y+9H9euC8vi43b\n+o/mr4e38OrxPSwdPguLTGHu9KSoEqKD1DvsPH94K/VOO3fEjyFBCqqvZebMmezYsYOFCxcC8NRT\nT7F+/XoaGhpYsGABy5Yt4yc/+QlKKUaMGMHkyZNNTiyuNc03EGhZmGRtbhpbTx2nt28QD/1XQSVE\nV5ZW3rLq30iZ+ufWlOHCSN8AjbVYUuYxOCSSsRF92X06n40njzGrd5LZEcUlSFElRAdwNjXw96M7\nKGusZVbvJCb0jDM7ktvTNI0nn3yyzbYvL0YxduxY3njjjY6OJTqYUor/O5HGllPZRPkE8fCQaXK1\nXnQr+yoK0TWN4bLqn3szDIzD2+FMGVrcdeiRccyPTeZw1SneKzjI8NDeRHhLU+fOTO4lCtHODJeT\nkjefZmraBkYG9uDbfYebHUkIt6KqT2Mc3Hr+dqV4M28/m0qy6eUTyENDpuFnk5XPRPdR3lhLYd0Z\nkoJ6yt1ZN6dZbVim3wGolt5VLid+Nk9ujU3GYbh47XgqSimzY4qvIEWVEO2s8IMX6VVejKfVxqKk\nieiydLoQl01Vl+F84xlcG1dilOZ/sV0p3srPYMPJo/TyDuCRIdOkD5XosozcDFT1+X2Lvmj4K1P/\nugK9dwL6kElQeRIj7WMARob3YWhIFMdqythRlmtyQvFVpKgSoh0V7XiLqJwMSn386XnLI3jJlUQh\nLpuqKsX5f89AXRV6ynz0nn1btivFO/kH+KT4CD28A3h46HQCPLzNDStEO1FOO64PX8b51v+ed6di\nX/nnU/9k1b+uQp84D3wCMXavQ1WVoWka3+0/Ci+LlTdP7Ke6ucHsiOIipKgSop2cPrqLiNQPOGvz\ngG/+iGD/ELMjCeE21JlTON94Buqr0SctwDLy+pbtSvFewUE+Ks4iwtufR4ZMI1AKKtGFqfzDLQ1/\n45PbNPwtazxLUX0VA4N64WvzMDGhuJY0Lx8sU7+D1isWzv17B3v6MLffdTS6HKzJ3SfTADspKaqE\naAc19kZO7Xkfl6ZzetrtREf2NzuSEG5DKYXzw5ehvgZ98kIsybNax9YXZvJB0WHCvfx4ZMh0gjyl\nz5vo2ozj+wDQ4ts2/E0rb2n4OzJcpv51NVp8MpZ5P0ULimjdNrFnfxICI8ioLG6d9ik6FymqhLjG\n7C4nf8vaxot9B5A+ZQFJA8ebHUkIt6JpGtY592KZcQeWETNat79fmMn6wkOEefnxyNDpBEtBJbo4\n5XSgThyAgDC0Hn3ajKVVFGDRdIbJqn9djqZpbe5KAuiaxqL4Mdh0C6tz9nHW3mhSOnExlyyqXC5X\nR+QQoktQSvHv7N3k1VYyumcsE4ZNNzuSEG5JC+nZ8sD2OR8WHea9goOEevryyJDphHj6mphOiI6h\nCjLB3nT+1L+GsxTXVzMwuCc+Vpn6111EePtzS9/h1DubZTXATuiSRdXcuXM7IocQXcL6wkPsqygk\nLiCc2+PHnHelSQhx5T4uyuKd/AOEePrwyNDphHpJQSW6By0kEn3kbPSksW22fz79a2RYnwvtJrqw\nKZEJJAb24MCZk+w+nWd2HPEllyyqwsLC2Lt3L3a7vSPyCOG2UsvyWF+YSZiXLz9MSsGmW8yOJIRb\nUA1nLzr2afER3srPINjTh0eGzCDMy68DkwlhLi24B5aUeWjhbVf3S6soxKrpDAuNMimZ6EiqrgrX\nhpUoRzO6pnFHwhg8LVZez02jSlYD7DQuWVRlZmayaNEihg4dyoABAxgwYABJSUkdkU0It1FyYBO+\n614gxFD8aOAU/KVfjhCXRVWX4Xz1MVx7PzxvbMPJo7yZt58gD28eGTKdcG8pqIQoPTf1b1BwL7xl\n6l+3YBzcinFoK8bOdwAI8/JjQewIGl0OXj2+R6YBdhLWS33B7t27OyKHEG6rqjCLoM1r8dc07o4e\nSKRvoNmRhHALqqEW51vPQmMd/NeiE5tOHuONE+kEenjzyNDpRHj7m5RSiM4lraIAgBGy6l+3oY++\nAeNYKsb+DegDxqD16MuEHnHsrygis+oU20tzmdRLVhk22yXvVDU0NPD0009zyy238K1vfYvf//73\nNDTIrUYhABqrymDd81iUwYkJNxMfe53ZkYRwC8rRjOvdv0JNOfrob2AZOrl1bEtJNq+fSCPA5sUj\nQ6bTwzvAxKRCdC77ys9N/QuRVf+6C83qgWX6IlAK54ZXUYYLTdO4PX4MPlYbb+alU9FUZ3bMbu+S\nRdVvf/tbmpqa+P3vf88f/vAHHA4Hjz/+eEdkE6Jzc9qpfvP/4Wdv5tDAcQwbOcfsREK4BWUYuD54\nGVV6Ai1pHPr4m1vHtp3KYU3uvpaCauh0evpIQSW6H+V0XHB7SX0NJQ01DA6JxNtq6+BUwkx6TBLa\nwPFwuhDj3HTpYE8fbo0bSbPLyb+zd2PINEBTXXL6X2ZmJuvWrWt9/fjjjzNnzuWdPLpcLh599FHy\n8/PRNI0nn3wSDw8Pli5diq7rxMfH8/jjj8sKacItNRTtIayuisNR/Rk+8y6z4wjhPuqrUeWFaDFJ\nWGbe2foZ8FlpDqtyUvG3efLwkGn08pGptKL9GIbBE088QXZ2NjabjWXLlhET88WUuk2bNvHCCy9g\ntVqZO3cu8+fPv+g+R44c4fHHH8dqtdK3b1+WLVv2tc5tXJ/+G1VRjPWWh9G+NKX881X/ksNk6l93\nZJm8AGfRUfhS8TQmvC/7K4rIqCxmS0k206ISTUzYvV1W89+ampo2f7ZaL1mLAbB582Z0XWfNmjU8\n9NBD/O///i/Lly/nkUceYdWqVSil2Lhx49UlF8JEW0uOsyoinA/7Dyfxpgexykp/Qlw2zT8E68Jf\nYrnxf9AsLZ8nO0pzee14Kn5WTx4eMp1I3yCTU4qubsOGDTgcDtauXcuSJUtYvnx565jD4WD58uWs\nWLGClStX8vrrr1NZWXnRfZ577jnuv/9+Vq9ejd1uZ8uWLVedq7Xhr70R/utObVpFITbdwtAQWfWv\nO9K8/LDe+VssY7/5xTZN47b+o/C1evJWfgZlX7Gaqmhfl6yO7rrrLubPn8+0adNQSrFp0ybuvffe\nyzr4jBkzmDp1KgAnT54kMDCQnTt3MmrUKAAmTZrEjh07mDFjxtf4KwjRsdLKC1mTuxdPzcr4mXfh\n7eltdiQh3I7m90XRtLssj5XH9+Bj9eChIdOIkoJKdID09HRSUlIAGDZsGJmZma1jubm5xMTE4O/f\nskBKcnIye/fuJSMj44L7DBw4kOrqapRS1NfXY7Nd/dQ8VXAY7I3oQ1La3O0qqa/mVEMN14VG4yVT\n/7otzeZ53rYAD29u6z+Kvx/9jBXZu/jZsJno2mXdNxHX0GU1//3rX/9KdHQ0vXv35rnnnmP+/PmX\n/QYWi4Wf//znLFu2jG9+85ttln308fGhtrb26pILYYIjVaW8cmwnnhYrN3j1lp45QnxNh86cl3on\nzQAAIABJREFU5N/Zu/E+V1BF+wWbHUl0E3V1dfj5ffE73GKxYBhG69jnBRWAr68vtbW1F92nT58+\nLFu2jBtuuIEzZ84wevToq85lHE8DQIsf2Wb7vs+n/smqf+ICksNjGBXeh7zaSj4pPmp2nG7poneq\n3n777TZXSHx8Wpa7zcrK4siRI9x8880X2/U8f/jDH6ioqGD+/PltmgjX19cTEHDph5DT0tIu+72u\nRnsfv725c353yl7ubGS9vQgDmG7tSZju5Vb5L8Td8wv3oBrr0C7QYyq/tpK/H/kMi65z/6DJxPiF\nmJBOdFd+fn7U19e3vjYMA11vudbs7+/fZuzz85WL7bNs2TJWr15NXFwcq1atYvny5Tz22GNf+f4X\n+v2rGS4GZqfh8vTj6MkzUFIFgFKKHU35WNBwFZwmrbDikn8/d//9LvmvXJKykYmFd/MPYCmtJkQ/\n/67W5ZDv/dW5aFG1Z8+er3zI8nKKqnfffZeysjLuvfdevLy80HWdwYMHk5qayujRo9m2bRvjxo27\n5HGSk5Mv+TVXKy0trV2P397cOb87Za/ISSdw8zt4xQ3hu0OnMiIsxq3yX0h753f3X8ri2lC1Z3Cu\nfQo9cRSWSQtat5c31vHc4a04DIP7kiYSFxBuYkrRHY0YMYLNmzczZ84cMjIySEz84gH/2NhYCgoK\nqKmpwdvbm71797J48WI0TbvgPkFBQfj6+gIQERHB/v37L/n+F/r9q6rKcB4OwdZvCMkjv7hTdbK+\nmur0bEaERTM2adQljy2fT+bqyPxGfiaq4DCWybcC4F8ZxfNZW9ljqeEXw6/Hol/ZNED53l/6+Bdz\n0aLqyw9s/rfGxsbLeuNZs2bxi1/8gttvvx2n08mvfvUrYmNj+fWvf43D4SAuLo7Zs2df1rGEMEtN\n8TE8P/g7UYaLRSG9GSarLglxWVRTA863/wx1VW0euK9zNPGXw5updTSxMG4kw8OiTUwpuquZM2ey\nY8cOFi5cCMBTTz3F+vXraWhoYMGCBSxdupTFixdjGAbz5s0jIiLigvsA/O53v+Phhx/GarXi4eHB\nb3/726vKpAX3wHrnb8HlbLN9X3lLw19Z9U98mVIKY/d7qFMn0Hr2Q08czdDQKMb3iGVn2Qk+KDrM\nN/sMMTtmt3HJhSo++ugjnn/+eRobGzEMA8MwaGpqYvfu3Zc8uLe3N88+++x521euXHl1aYXoYPXl\nRah3/oyHy8mhMd9g5PDpZkcSwi0opwPXuueh8iT68GnoydcDYHc5ee7wVk431nJ974FMjUwwOano\nrj5v9fJl/fr1a/3z1KlTWxfb+qp9oOWu05o1a65ZLr60EIVSqnXVvyGy6p/4Ek3TsFx/N87XfoNr\n42toUfFofsEsiB3BkepSPijKZFholEyt7iCXvCf4zDPP8Mtf/pK4uDj++Mc/Mnfu3MvuUyWEO2uu\nqaDxzf+Hr8POwSEpJI+7/OcIhejOlDJwffovVPExtP7XoU9eiKZpGMrgH8d2kldbyejwvtzcd5jZ\nUYXo9IrrqylrrGVoSBSelstraSO6Dy24J/qkBdDcgOuTf6GUwtvqwR3xYzCUYsWxXTgMl9kxu4VL\nFlWBgYGMGzeOYcOGUVtby49//GMyMjI6IpsQpnEZBvu2riawqZ798SNInn6HNKkW4nI11qNK89F6\nxWGZ8300XUcpxdrcNA5UFjMgqAd3JoxBl58pIS5JGv6KS9GHTkbrOxhVcBjjwGYABgb3YnKveEoa\nalhXcMjcgN3ERYuq6upqALy8vMjLyyM2NpbU1FTsdjt1dXUdFlCIjmYoxb+yd/FqUCgfDpvMiDk/\nkJM/Ia6A5uOPdeFSLDfdj2b1AODj4iy2njpOb98g7ktKkYbZQlwGpRRp5QV46BaGhESaHUd0Upqm\nYZl5F4RHo4X0at1+S7/hhHn58UnxEXLPlpsXsJu4aFF1/fXX8+CDDzJ+/Hj+9Kc/MW3aNHbt2sX4\n8eOlWa/ospRSvHEijdTyAmIDwrl+8newWuTkT4grpXn7o3m39PnZXZbH2/kHCPb04ceDpuB9rtAS\nQrQwirNx7XoXVXumzfai+ipON9UxJCQKD5n6J76C5heE9bbH0GOSWrd5WWzcmTAWUPwrezf2/1oA\nRVxbF/0J3bx5M5988gnvvfce+fn5/O1vf+PZZ58lICCAwMDAjswoRIf5sOgwm0qyifQJ5P5Bk2X+\nuhBf05GqUv59fDc+VhsPDJpCkKeP2ZGE6HSMw5+hsnai9RmE5v/FogJp5S1T/0aG9zErmnAjF3pM\nISEwgulRA9hw8ihv5x/g1jj3XS69s7vonSofHx9uvvlmXnnlFdasWYOvry/3338/DzzwAO+9915H\nZhSi3Sml+Kwoi3cLDhLq6csDg6fia7u6pnlCdDeqsRal1Hnbi+qqePHINnQ0fjhwMpG+QSakE6Jz\nUy4nKjcD/ILResV+sV0p9lUU4qlbGRzc6yuOIMRXu6nPUHp6B7Cp5BjHqsvMjtNlXVZHsB49enDP\nPffw0ksv0adPH375y1+2dy4hOlTxljXErH+R3obBg4OnEixX04W4LKrhLM41v8e14dU2hVVlUz1/\nPbyFZpeTuxPHkxAYYWJKITovVZgFzQ3o8clo2henZYV1VVQ01TE0VKb+iaunlMLDYuWuxLFoaPw7\nezdNTofZsbqkSxZVNTU1vP766yxatIi77rqLqKgoNm7c2BHZhOgQJ/eso2fGJjwNg7sSx9PjS01K\nhRAXpxzNuN75C9SUo/kGtk49qXc089fMzdTYG5kXO4LkcFm1TIiLMbL3AaAljGyzfV9FS8PfkbLq\nn7gKyuXE9dlbGFta+qf18w9jdvRAKpvreTNvv8npuqaLXvp4//33WbduHfv372fatGk8+OCDjBw5\n8mJfLoRbKju4lbCd71JntVF34w+I6xl76Z2EECjDhev9l1Bl+WgDx6OPuwkAh+HihaxtnGo8y4yo\nAcyIGmByUiE6r6+a+pdWXoinxcogWfVPXA2lME4cgMqTaH2HoPcbwjdiBnOw8iTbS3O4Lqw3g4Ll\n/9a1dNE7VatWrWLmzJls2rSJp556Sgoq0eVUHk8jYNNr2HULp2beSVyfIWZHEsItKKUwNq1G5R1E\nixmIZcYd55r7Kl45tpOcs+Ukh8Uwt991ZkcVolPTLFasty7FMvPONlP/CurOUNlcz7CQ3tik/YC4\nCprVhnXOPaBbWpoCN9Zh0y18L3EcuqbxavYeGpx2s2N2KRctqlavXs3cuXPx9fXtyDxCdIiq5gYO\n7P8UBeROmsfAAWPNjiSE+7A3YZzKhfBoLDf+EM1iPdeOIJ30iiLiAyJaP7iFEF9NC41E7zu4zbZ9\n51b9k6mz4uvQwqPRx98MDTW4Nq5EKUW0XzA3xgym2t7I67n7zI7YpciTj6LbqXc085fMzZT0jEYf\nOJ4pgyeZHUkIt6J5emNd8DNwOtA8vQHYcPIom0qOEekTyA8HTpKr60JcJaUUaRUFeFlsDJJV/8TX\npCdfjzpxEHU8DXUsFW3AGGb3HkRG5Ul2n87nurAYhof2Njtml3BZq/8J0VXYXU6eO7yVkoYapkUl\nMnlQitmRxFUyDIPHHnuMhQsXsmjRIgoLCy/4db/+9a/54x//2MHpuj7N0wfNt6Vn4d7yAt7M20+Q\nhzc/HjQFX5s09xXiauXXVnKmuYHhoVFycUJ8bZquY5l9N1rCKLTolmdcLbrO9xLGYtV0XjueSp2j\nyeSUXYMUVaLbcBkGLx3ZzonaCkaH92F+bPIFG+UJ97BhwwYcDgdr165lyZIlLF++/LyvWbt2LceP\nH5d/53aUXV3Gv47twsti5f5BUwjxkinjQnwd+yrOTf0Lk4a/4trQAsOxfuMHrRfCACJ9g/hW36HU\nOppYnSPTAK8FKapEt+CyN/F65iYyq04xKLgXdyaMlec93Fx6ejopKS13GocNG0ZmZuZ54wcPHuTW\nW2+9YGNacflUYx1c4Ht4sr6aF7K2oYD7kiYR7Rfc8eGEcFOqvOi8302GUqRVFOJtsZEU3NOkZKK7\nmBk1gLiAMNIqCtl7Ot/sOG5PiirR5RlOByVvPM3U7e8wxObND5JSsMqUCrdXV1eHn59f62uLxYJh\nGACcPn2a559/nscee0wKqq9JNTfifOMZYo5uQBmu1u1VzQ38NXMLjS4HdyaMkRNAIa6Q87UnMXa/\n12Zbfm0lVc0NDA+VVf9E+9M1nTsTxmLTLazJ3UeNvdHsSG5NFqoQXZpSBsXv/JlepwvJCe7B94Zf\nj6d0pu8S/Pz8qK+vb31tGAa63nKd6OOPP6aqqorvf//7VFRU0NTURFxcHDfffLNZcd2SMly4PngJ\nKk/ijBwM55Z8bnTa+WvmFqrsDXy77zDGRPQzOakQ7kmLTmrz+vOGv7Lqn2hvyjBAGfTwDmBuv+Gs\nzU3jteOpjFEyhftqydml6LKUUhR98BK9io5S6B9Mz3lL8PXyMTuWuEZGjBjB5s2bmTNnDhkZGSQm\nJraOLVq0iEWLFgHw9ttvc+LEicsqqNLS0totb0cc/5pSisic7YSdOszZkBhK4iZQkp6OSyk+bC6m\nxGhgoDWIsLJG0k67x9/Lrb7/FyD5uxjfQLSo/q0vDaVILy/Cx2ojKUju/Ir2o+qqcb3/IlpUPJaJ\nc5ncK4H9FcUcPHOSEI+eSGfaqyNFleiyirespld2GqXefvjd8gjB8rxHlzJz5kx27NjBwoULAXjq\nqadYv349DQ0NLFiwoM3XXu5CFcnJydc85+fS0tLa9fjXmit9A8apwxAWRcitPyP/0GGuGzGCFcd2\nUtLYMj3pB0kT0TX3mEXubt///yb5L318d6PHJ7dp+JtXW0GVvYHxPWJlirpoXx5eqPoa1N6P0PoN\nRY+K546EMfw2/QN22E8zs6mOMC+/Sx9HtCFFleiSjlSVkns6Hw8PL9TND9AjRHp9dDWapvHkk0+2\n2dav3/nT0L797W93VKQuQxkuVPZe8AnEetMDaB5eALydn0FqeQGx/mEsThzvNgWVEJ2RFt/2fkBr\nw98wmfon2pfm4YXl+rtxvfE0ro/+ibboCcK8/FgQm8yrx/fw0pHt/HToTDzkcYkrIp+Ioss5XFXC\n81lb+TAqjup5S4jpGWt2JCHciqZbsMz7Cdb5S9ACQgHIdFTxSfERenj786NBk+XDVoivSYv8r6l/\nFYX4WD1k6p/oEHpUPPrIOXC2AtfWtQCM7xFLoiWQwroqVufuk4WerpAUVaJLOVBZzAuHtwHww4GT\nSOzR19xAQrgpzeqBdu4Ob3pFETsdpwmwefHA4Kn42TxNTieE+9P0L07BTpwtp9reyHWh0Vh0OTUT\nHUMf9y0Ij0ZlfoZRdBRN05jgEUEfvxB2lZ1g66njZkd0K/KTK7qMtPJCXjyyHV3TuH/QZAaHRJod\nSQi3l1NTzivHdmJF4/5BU2SevRDt4POGvyNl1T/RgTSLFevse9AnLUDrnQCAVdO5LykFP6sn/3ci\nndyz5SandB9SVAm3p5Qif+NK3s74FA/dwoODpzJApk8IcdmUYbQsr/tfShtqeD5rKy7DYKZnFH38\nQ0xIJ0TX1jL1rwhfqyeJgT3MjiO6GS0sCkvyrDaLpoR4+fL9pAkYSvHSkc+kf9VlkqJKuDWlDE6+\n/zeiDm5lYVE2Dw2eRv/ACLNjCeFWjM/exPXecyh7U+u2Gnsjf8ncQoPTzqKEMURbpHeJEO0h92w5\nNfZGrgvrLVP/RKcxIKgnc/sNp8beyN+PfIbzS83fxYXJT69wW8owKH7vOXocT+eUjz9BN/4P/QLC\nzI4lhFtxHdyKkfYJquY0nPvQbHQ6+GvmFiqb6/lWnyGM7yGLvQjRXvaVtzT8HRnWx+QkQrQ1I2oA\nyWEx5Jwt5828/WbH6fTabfkmh8PBL3/5S0pKSrDb7fzwhz8kLi6OpUuXous68fHxPP7445fdP0aI\nL1OGi5Pv/JmeBVkU+wbgOfcnRIZGmR1LCLdiFBzG2LQKvP1alk738sVpuHjpyHaK6qtI6dmfG6IH\nmx1TiHZhGAZPPPEE2dnZ2Gw2li1bRkzMF880bdq0iRdeeAGr1crcuXOZP3/+RfeprKzk0Ucfpba2\nFpfLxdNPP010dPSlMyiD9Ioi/KyeJATJLAvROajq0+Dli+blyx0JYzjVUMPmkmz6+oUytsf5rUtE\ni3a7U7Vu3TpCQkJYtWoV//jHP/jNb37D8uXLeeSRR1i1ahVKKTZu3Nheby+6uL2p79OjIItCvyB8\n5v9MCiohrpCqOIlr/Yug61i++SO0oAiUUqw8vocj1aUMDYniO/1HyoUv0WVt2LABh8PB2rVrWbJk\nCcuXL28dczgcLF++nBUrVrBy5Upef/11KisrL7rPM888w0033cRrr73GQw89xIkTJy4rw/Gacs46\nmrguLBqL9H0TnYBHYzXONctwrX8R5XLiZbFx38AUvC02XstJpbDujNkRO612+wmePXs2DzzwANBy\nNchqtZKVlcWoUaMAmDRpEjt37myvtxddlFKK9/IP8k9HHf+JH07Agp/TI1gWpRDiSrn2fQT2Riyz\nvoceFQ/AO/kH2H06n37+oXx/wAQ5yRNdWnp6OikpKQAMGzaMzMzM1rHc3FxiYmLw9/fHZrORnJzM\n3r17L7rP/v37KS0t5Xvf+x7r1q1j9OjRl5UhrUIa/orOxe4VgBYZjyo6grF5DUopengHcHfieByG\nixeztlPnaDY7ZqfUbp+YPj4++Pr6UldXx4MPPshDDz2E8aXVpXx8fKitrW2vtxddkFKKt/IzeL8o\nk3AvP2bO+B7hgeFmxxLCLVlm3onlW/ejDxgDwJaSbD4qziLC258fDZTmvqLrq6urw8/vixYBFoul\n9Tylrq4Of3//1jFfX19qa2svuI/L5eLkyZMEBgayYsUKevXqxcsvv3zJ93edm/rnb5Opf6IT0XQs\nc+6B8GiMQ1sxMjYBMDQ0ihtjBlPZXM8/ju7AUOevGNvdteun5qlTp7j//vu57bbbuPHGG3nmmWda\nx+rr6wkICLis46SlpbVXxA45fntz5/yXm10pxU7HaQ47qwnUPJhFBPmHj5LfvvEuyZ2/9+D++cXV\n0yxWtLjhAGRUFLE2dx/+Ni8eGDQVfw8vk9MJ0f78/Pyor69vfW0YBvq51ff8/f3bjH1+znKhfSwW\nC0FBQUybNg2AadOm8ac//emS7//+3s+odTSRZA0kI/3aLwLg7r/fJb950g8dxtZvMv2r/4N1y1py\nKs5SFxJDL6WI0X05Ul3KS7s/YbRH57ywbdb3vt2KqoqKCu6++24ef/xxxo4dC0BSUhKpqamMHj2a\nbdu2MW7cuMs6VnJycnvFJC0trV2P397cOf/lZnc11bPuyGccbqwm0ieQh4dMI8DDuwMSfjV3/t5D\n++d35w+U7iT3bDn/OLYTD93K/YMmE+4tzX1F9zBixAg2b97MnDlzyMjIIDExsXUsNjaWgoICampq\n8Pb2Zu/evSxevBhN0y64z4gRI9iyZQs33XQTqampxMfHX/L9a4O9oBRmJyVf896K8vlkLnfO/+Xs\nRmwMrv/8kfieoehDWrYNdA7lqf0fkdF0hjHxgxgRdukFWTqSmec27VZUvfjii9TW1vL888/z/PPP\nA/CrX/2KZcuW4XA4iIuLY/bs2e319qKLcDXWUr5mGRMbzlKQPJ3FQ6fjZ5Or6EJcKaXUeYtOlDac\n5fnDLc197xs0mb7+oSalE6LjzZw5kx07drBw4UIAnnrqKdavX09DQwMLFixg6dKlLF68GMMwmDdv\nHhERERfcB2Dp0qU8+uijrFmzhoCAAP74xz9e8v1bpv55kSC9FUUnpfeKRVu8HM37i6mwPlYP7hs4\nieUZH/Ov7F308gmgl0+giSk7j3Yrqh599FEeffTR87avXLmyvd5SdDHOuhoq1/6O0NoqDvXsyz0j\nvoGvFFRCXDGj+BjG3g+xzPk+mldLE9+W5r6bqXfauSN+DINDIk1OKUTH0jSNJ598ss22fv2+WC56\n6tSpTJ069ZL7AERGRvLKK69c0fvXOZuZ3CseXRaEEZ3Ylwuqz0X5BnFnwlhePrqDv2Vt5xfDr8fb\najMhXeciP8miU3LUnuHM6t8QUlvFwag4kub9FF9PKaiEuFKqqgzXuhdQhUdQFScBaPqv5r4TesaZ\nnFKI7mmkrPon3NTI8D7MjEqirPEsK7J3YShldiTTSVElOh1HcyPVq39LcH0N+6MTGXzLErxtnmbH\nEsLtqMY6nO/8BZrqsUxfhN47AZdhtDb3ndgzTpr7CmGSAJsX/WUFW+GGVFPLYi3f7jeMxMAeHKgs\n5qOiwyanMp8UVaJTaXY5eS57JxtCe5LWbxDDb34IT7mlLMQVUy4nrnUvQHUZ+qg56IMnopTi1eN7\nyKouZUhIJN/tP0qa+wphkhFhMTL1T7gdo+AwzleWYuTux6LpfH/ABII9fXiv4CCZZ0rMjmcq+WkW\nnUaT08FfMjdztLqMqoHjSP7WA3hIQSXEVTEObEGdzEaLT0af8G0A3i04yO7TefT1D+X7AyZKc18h\nTDQyXKb+CfejefmBy4Xrw3+gThfi7+HFfUkpWDSdfx7bSXljndkRTSOfqKJTaHDaeTZzEzlny0kO\ni+EHAyZi0y1mxxLCbenDp6FPWoDl+rvRNJ2tp47zYdFhIrz8uH/gZDylua8QpooLkKl/wv1oPfq0\nNAd2NON87zlUfQ19/UP5bv9RNDjtvHhkG3aX0+yYppCiSpiurrmBPx3aSF5tJWMi+rJ4wHgsuvzX\nFOLr0HQdS/IsNJsnGZXFrMnZh7/NkwcGS3NfIToDXabeCjel9x+BPuEWqD2D673nUU47E3rGMaln\nf4rrq1l5fA+qGy5cIWeuwlS1RUeoX/FLHOVFTOwZx10JY2VKkhDXUO7Zcv5xdAc2Xef+QVMIv8Dy\nuEIIIcSV0EfNQUsahzpdgCrNA2BBXDL9/ENJLS9gU8kxkxN2PDl7FabRq4rR3v4zQY11TPf057b+\no+WhXSGuoS839703aaI09xVCCHFNaJqGZcYdWG79BXrvRABsuoUfJKUQYPPizRP7ya4uMzllx5Iz\nWGGK6ux9JBz+AKvhYt/IWUyctFCmQghxlVRzA86P/omqr2ndVmNv5K+HW5r73hY/miEhUSYmFEII\n0dVoVht6z75ttgV7+nBv0kTQ4O9Hd1DV3GBOOBNIUSU6XOnOd/B+/0U0ZbB/zA2MnzhflnUW4iop\np72lue+RXRiHtgEtK2k+d3gLFU313BgzhInS3FcIIUQHiQ+MYH6/EdQ6mnjpyHYchsvsSB1CiirR\nobadOs5HZbnU2jzYPGgG48Z9WwoqIa6Scjlxrf8bqugoWv/r0Ed/o6W579HPKKxrae57Y4w09xVC\nCNFxlFJMjUxgTERf8moreT03zexIHUKKKtEhnIaLVcdTWZWzl0M9+1K14Of0DOlvdiwh3JYyXLg+\nfBmVdwit72Asc+4FTWPl8T1kVZ1icLA09xVCCNGxjOx9uP7vD+C0c3v/0fT2DWJ7aQ6fleaYHa3d\nSVEl2t1ZexPPHtrMttIcevsG8Yvrric+oo/ZsYRwa+roHtTxNLTeCVhu/CGa1ca7BQfZdTqPvn4h\n3JskzX2FEEJ0LKMgC1WSg+ujf2LTde5LmoSP1YM1OfvIq60wO167kk9c0a5OnsrhqYyPOH72NCPC\novnZsFmEefmZHUsIt6cljUOfshDLTQ+g2TzZdq65b7iXHz8aNEWa+wohhOhwlmnfReudiMpJx9j5\nDuHeftwzYDwuZfBS1mectTeZHbHdSFEl2oVyOSn54CWC/u9pfKrKuKnPUO4dMFFO9IS4RjRNw3Ld\nDDQPLzIqilj9pea+AdLcVwghhAk0ixXLjT+EoAiM1A8wjuxiUHAk3+ozjCp7Ay8f/QyXYZgds11I\nUSWuOVfDWUpX/47wY3s54+nN3MRx3BAzWJ7tEKIdpJUX8tLRz7DpOj8aNJkIae4rhBDCRJq3H9ab\nfgye3rg2r0E1NzAneiDDQ3uTXXOafxzd0SULKymqxDXVWHqC6lcfI6yimCOhPbHe+ksG9h1qdiwh\n3J5yOs7btrssj5eP7sBDt/DA4Kn08w8zIZkQQgjRlhbSC8uN/4N17iNonj5omsbdieNJCIwgvbKI\nV47txKW6VmElRZW4Zspqyml+8/8R0FhHar/BxC38Fb2Ce5gdSwi35zqwBeeq36Dqqlq3bTuVw7+y\nd+FttfLQkGnEB0aYmFAIIYRoS49JQuvRt/W1p8XKjwZNpn9AOPsqCvnXsd0YXaiwkgdcxDWReaaE\nfxzdwYDoBAaHRjFuwlxZeUyIa8DI2oWxaRV4+8G5B3w3nDzKGyfS8bd58uDgaUT7BZucUgghhLg0\nL4uNHw+awrOZm0gtz8ei69wRPwa9CzwiIkWV+FqUUnx68ihv5WVg0TSGjf0W43rEmh1LdAOGYfDE\nE0+QnZ2NzWZj2bJlxMTEtI6vX7+eV199FYvFQkJCAk888YTbPddnHE/D9ckr4OndMoUipBcfFB7m\n3YIDBHl489CQafTyCTQ7phBCCHHZvKw2Hhw8lWcPbWJX2QksmsZt/Ue7fWEltxLEVbO7nLxybBf/\nydtPoIcXS4bNkIJKdJgNGzbgcDhYu3YtS5YsYfny5a1jTU1N/PnPf2blypWsWbOGuro6Nm/ebGLa\nK2fkHcT1wd/B6oHl2w9BWG/eyT/AuwUHCPX0ZcnQGVJQCSGEcCvGwa24dr6Dl8XGA4OnEeMXzGel\nuazN3YdSyux4X4vcqRJX5WxOOhtz9pHq60c//1DuS0ohyNPH7FiiG0lPTyclJQWAYcOGkZmZ2Trm\n6enJ66+/jqenJwBOpxMvL/daZlydPA6ajuXmB9B69uONE+lsLDlGhJcfDw+ZToiXr9kRhRBCiMum\nnA5caZ9AdRk01eMz9Ts8OHgafzq0ka2njqNrGrfGJrvdrJLPyZ0qcUWUUpze+Tae6174WfsBAAAg\nAElEQVRgenYak0Oi+MnQGVJQiQ5XV1eHn98XjaQtFgvGuSVaNU0jJCQEgJUrV9LY2Mj48eNNyXm1\n9Am3YF30BEQl8FpOKhtLjhHpE8iSYTOloBJCCOF2NKsN6/yfQlgUxoHNuD76J766hYcGTyPSJ5DN\nJdm8mbffbe9YSVElLptyOih9588E73mfWpsHR6fcyncGTsKmW8yOJrohPz8/6uvrW18bhoGu621e\n/+EP/7+9Ow+Lqu7/P/48M+yroLghICACKlDggpqZ6w/NlVwzs69+71u/ZYt232Va5n1lamW2mbfp\nXXfdZmpmWXinlUvuCanghguaqEgoIMoMILOc3x/ezS2paCpzZuD9uK6uC2bmc87rHOrdeZ9z5nNe\nY+fOnbz33ntaRLwjiqJgrRfEJ0d3su3X44R4B/BsfA/83Ty1jiaEEELcFsWnHi5Dn0NpEol6eBeW\ntAX4KAqT4nrQxNOP9XmH+fJkplM2VnL7n7gl5ktFFK2aS4OS85zy9sfy4HjaB7fUOpaowxITE9m0\naRN9+vQhMzOT6OjoKu9Pnz4dd3d33n///Vu+lWD37t01EfW2lm9RVTZWnuUXi4GGOg+6W+tzZN/B\nGkx3czW9f2qa5NeWs+cXQtwdioc3+ocmY0lbgJp/Agwl+AU0YlJ8D97ct57vz2SjV3QMDIt3qlsB\npakSN2UwXWblgc0MuVTMvoYhhA54kiDfQK1jiTquV69ebN++nREjRgAwe/Zs1qxZQ1lZGW3atGHV\nqlW0bduWRx99FIAxY8bQs2fPapeZlJRUY3l37959w+WrJefBxQXlP1OjV1rMfJC9jV/KDbT0b8gT\nrbri4eJaY9luRXX5nYHk11ZN55eGTQjnori6ox/4JFw8j/KfZ5r6u3kyKa4H8/atZ+3pg+gVHf3D\n4jROeutqvKnKyspi7ty5LFmyhNzcXKZMmYJOpyMqKoqXX37ZqTrQuijPWMKCQ5sptFTg2nkAQxJ6\n4eHqpnUsIVAUhb/97W9VXgsPD7f9nJ2dbe9It0UtLca8ai6g4PLIy1x2cWHBwS0cuVhAq4Am/F9s\nF9z0cv5LiLvtZo9l2LhxIwsWLMDFxYWHHnqIoUOH3nRMWloaS5cuZfny5VpskhBORdG7QGCTKq8F\nuHvZrlitObUfvaKjb2hrjRL+MTX6narFixfz4osvYjKZgCtnkidPnszSpUtRVZUNGzbU5OrFHdpT\neJrXMr+nsMJIv9A2PJzUVxoqIe4i1XgR86o34VIRutadqdDreffAJo5cLCChfjMeb3W/NFRC1JDq\nHstgMpmYM2cO//znP1myZAkrVqygqKio2jGHDh1i1apVWmyKELVKoLs3k+N6Ut/dm69zs/juzCGt\nI92SGm2qwsLCmD9/vu3LZocOHaJdu3YA3H///ezYsaMmVy9uU3nBSZYdy+CD7K0AjI/tQv+weKd/\nKJsQjkStMGD+8i24UICubQrlib14a/9Gjl8qpF1QGONj7pNJYISoQdU9luH48eOEhobi6+uLq6sr\nSUlJZGRk3HDMhQsXeOutt5g6dapTfsFeCEdiydpEQMk5Jsf3IMDNiy9/yWR93mGtY91UjTZVvXv3\nRq//70HB1YXGy8uL0tLSmly9+IPUygp+XbcY3Wczubx/M409/Xj+nt4kNgjROpoQtYpqNmH56h0o\nPIMuoRvG9n15c/8Gcg3FdGoUwdjojuh1MjmrEDWpuscyGAwGfH19be95e3tTWlp63TGVlZVMmzaN\nKVOm4OUljxcR4k6oJQVYNy3D8sVcAs+fYXJ8D+q5ebLyxB425h3ROl617Pp/7aunOzYajfj5+dlz\n9aIal45kUPLh89TP3kWhuxctQlvzYmIfgr3raR1NiNpH74IS1galVScudRrI3P0bOFt2kQeatGR0\nVAd0ijRUQtS06h7L4OvrW+W9345Zrjfm8OHDnDp1ihkzZvDss8+Sk5PD7Nmz7bchQtQiSr1G6B8c\nD1YLlq/epkFeDpPjeuDn6sGKE7vZnH9M64g3ZNeb9WNjY0lPT6d9+/Zs2bKFjh073tI4R5rm2BHd\nSX7FdBn/oz8QWnQai6KwtWkL1OadqKd4s29v5l1MeX11ed87AmfP76wURUHfaSCF5Zd4a/8GCiuM\n9G4WS2rze2TyHiHspLrHMkRERJCbm8vFixfx9PQkIyODcePGoSjKNWPi4+NZs2YNAHl5eUyePJkX\nXnjhpuuXY5vqSX7tOEJ2n1Z9CDu4FjVtAcaWD/D/GoaTZjrNZzkZnDl1ihiXG5/01yq/XZqq3w4S\npkyZwksvvYTJZCIyMpKUlJRbGq/VNMfO4E7ynzVeZOnRnaSWl5Dr48+F+4bwQEyy3b47VZf3vSOQ\nKY61VVB2iXn7N1BSWc6AsDj6hrSRhkoIO6rusQzDhg1jypQpjBs3DqvVypAhQ2jYsOF1x1xNVdVb\n/u9Yjm1uTPJrx3GyJ2FtHYflq7cJydtLeK+HiDW14s19G9haWUBE83A6Noq4ZpSWxzY13lQ1a9bM\nNrVo8+bNWbJkSU2vUtyEyWph7amDrDtzCItqZXuHvgyM7UQLd2+towlRJ+QZS3h7/0YumSoYEn4v\nvZrFah1JiDrnZo9l6NatG926dbvpmKtdfcwjhLgzuiYRKMOeB0Bx8yDYzYNJcd15a/8GPjn6EzpF\noUPD8JssxX5krt465mhJAZ/mZFBQfokAdy9GRrYloX4zrWMJUWupl8ux7vgKV9crz+I4WVrEuwc2\nYTRXMjKyLQ80balxQiGEEMIxKQ2Cq/we4hPAM/9prP555Cd0io52QWEapatKmqo6ouzUIYo3LWNh\nSCRlrm50bxrNwLB4PFxctY4mRK2lnjuFec3f4eJ5mgS1ICeuDe8d/JHLFjNjWibT6Tq3LgghhBDi\nxkJ9Anm6TXfe2r+Rjw7vQIdCUlDozQfWMGmqajlrhZGC9Z/Q4NgeGgH3NQzm3nb9CPdtoHU0IWot\nVVWx7vsR6+YVYDGja9eHn1zr8/2BjZhVK+NiOjnMmTUhhBDC2YTm5fB0TCfePrydfxzZjl6n4x6N\n77ySpqqWUlWVS9k7UTcto0FlOfme3uR16M/AhO7y/Bshapjlu49Qs3eChw+6fmPZ4+PH2iM7URSF\nCbFd5JZbIYQQ4jZZc/ZgWbuY0KZRPN1tBO8c28Wi7G1MiO2iaS45uq6FLKqVnYd34PHdR7iZKtgV\nEYfnIzPoeG9PaaiEsAOlSQRK0xaUD3+ORRUl/OPIDgCeaN1VGiohhBDiDijh8Sgt26GePUbo9x/z\nVEQSOkXhg+ytnLYYb76AGiJXqmqZU4ZilhxL55ShmLzmrWjR5n46t0iSqZqFsCMlriu7Goaw8sh2\nyswmWvgFkVTpQ6uAJlpHE0IIIZyaondB3+dPWN29sO7fTNi6D3mm12jezt3Hd5fzCPr1OJ0bR9o9\nlzRVtcRli5m03P1syDuMFZXkhuH0SU7Fx9VD62hC1ClFFUY+zUnn0IV83PUujIhsS9cmUezds0fr\naEIIIUStoOh06Ho8Ap7eWNO/pfn2b5jY+1HeP7CZfx3bRa6hmGERibjo9HbLJE2Vk1OsZk5mbWTR\n5VKKLhtp4OHDqBbt5Iy4EHagnjuFaihBFxGPVVXZnH+Mr05mctliplVAEx5p0Z76HvL8NyGEEOJu\nUxQFfedU8K6HLqw1MQGNSPUIY6vuApvzj3HGeIE/x9xHPXcvu+SRpsqJGU7so9nPn+FfYcQ/pi3t\nYpJ5MLQNbnr5swpRk1RVxbp/C9Yfl4HelcKRU/nk9AFyLp3Hy8WNx1omk9wwXG67FUIIIWqY/p7u\ntp/9dG48f09vlhzbRcb5XF7du47xsV1o4R9U4znk6NvJqKqVspy9XEr/Nw3OncIV2NMsilHJg2gW\n0FjreELUemplBZb1/0I9kg4e3mQl9eLj7C2YrBburR/CyBZt8Xfz1DqmEEIIUSe5610YF92J5r71\nWXViL2/uX8/wiCS6Nomq0ZOd0lQ5kTxjCae2f0nbgztoAOT4BpDTvB0P9hiCTpFZ/YSoaWrhGcxp\nf4eSAiobhfFheGsOXr6Er6sH/9Oyo0M8fFAIIYQQ0C07g+igZrxdVsyy4z9z0lDMw5Fta+yOLmmq\nHJxVVTl44Swb8o6QXfIr3i469A1DUBO6kRDTkbKsfdJQCWEvFguUFnEiKpF3/fwxmytIbhjO0IhE\nfFzdtU4nhBBCCIALBVgP7aCxxcQr0e1ZENSEnQUnyDOWMCG2S41831maKgdVee4UO80VbDx7lF/L\nLwHQ0r8hPYJjiO/WVBopITRw0tObL5N6cNRqIsDdi0datKdNYFOtYwkhhBDiKkpgY1xGvYR53T9w\nPZLO02frs751MqsNxczau47/jelM7F3+2ow0VQ5EVa2UHt2NMf3fNCg8Q2ZUAufrBZHcMJwewdGE\n+gRqHVGIOqnSYubr3H1syDuCikrXJlEMbn4Pni6uWkcTQgghxHUo9ZviMmIq1l1rsKb/m54/fUtw\nl1QWVlzknQObSA2/h17BMXfte1bSVDkA1XSZ83vXo8vciL/xIp5Ajl997m3Sksfi7pcvvQthZ6qq\nop7NQRccxdGSApYc28W5CgNBHj6MjupAdL1GWkcUQgghxE0oehf0nQahNI/D+vNa4u7pybNlJXyQ\nvY1Vv+wlt7SIR1sm434XvmclTZWGrKqVzKIz5GespffhDEyKwr5GoSj39qRNy/bEytToQtidWlmB\nZcOnqId/YmtiDz7TqSgo9AqOZUBYnDyyQAghhHAyuqaR6AZMBCDSL4hp96bwQfY2fi48xdmyi/xf\nq/tp6Ol7R+uQowMNlJsr2fbrcTadPUrRZSOuXl7Ui4ynQVIKiU1rdrpHIcSNqYVnMK9ZCBd+5bRP\nPdaaymga0JgxLZNp7ltf63hCCCGEuAv83TyZHNedlSf2svnsEWZnrmNsdCfiAoNve5nSVNmJqlop\nOZzOer3C1sJcLlvMuOr03N+4Bd2Do2ni5a91RCHqPNNnr6JYTGxoFMK/m0XRO6wNfUJa46LTax1N\nCCGEEHeRi07PiJDW9N26im8Cgnjf9CP9m8fTJ6QNutu4wCFNVQ2zVlZQsPs7XPf9iH9ZKYbmMXg2\njaRvSGvua9xCpmEWwoFUoPKvyDguhUQzpWUywd71tI4khBBCiBqiFp7Bq8zAiJLzJFws4hOzidzS\nYv4nuiOeLm5/aFnSVNUQY2EexT+vxf/YbhqYTZgUHfsaNyexzQM8GpmIXidTogvhaN5ok0yXlh3o\nERyNXh5bIIQQQtRquuAolNEzsHz3EbFnjjC9tIQlxovMLr/EhNj7aep963eSSVN1l1RYTORcPM/h\nkgIOl/yK99njTDyWSamLK3siEwhq/yCJjcLl+1JCOLCJHVNp5OmndQwhhBBC2IniVx/9kGex7l2P\n17YvGZ+zn9luHszJ+o7HWiaT2CD0lpYjTdVtMpWc5/zRdC4WniEtOIJfSguxqioALoqOqOAWZNZv\nRnhcVzr4BGicVghxK6ShEkIIIeoeRdGhT+yNLrQ11hNZ9A1vzb+O7uKD7G2kNGvFwObx6G5yB4s0\nVbfIYjFz/uBWyn/Zh0/+L9QrNxAE1AfyPT0JDWhEjH8jYuo1JtKvgUy7LIQQQgghhBNRGgSjbxBM\nW6CJlz8LD21h3ZlD5BqK+d+YztWOlSP/G1BVlbNlFznyn9v5jpYUMHXvZpqZLlOu03M0sDHlTSPx\niUhgVmhrPGXCCSGEEEIIIWqFYO96vHBvCh8d2cH+4rO8lf4NfT0ibvh5aar+w2oxU3L6MBdy9vBz\nQBAZpnJKTRW294M8fDiQ0JVG9ZsSEnEPrT18NEwrhBBCCCGEqEleLm483qorW7M2kLR5JUfu+/MN\nP1tnmyqrqnKx6AzW0+mcOPItQYV5+FrM+ALpIVHoQlrSoWFzYuo1Jtq/EfU9vLWOLIQQQgghhLAj\nnaLQJTCYcu/qv3dt96bKarUyY8YMjh49iqurK6+++iqhobc2q8YfYSo3cKkoD0NxPhf0Lpz28aPo\nchnFFUaKLxu5cLmM7mdPMCDvBACF7l6cbBKBGhpD96h2jAhoLDP1CeHAblZLNm7cyIIFC3BxceGh\nhx5i6NChGqYVQjia26khNxqTnZ3NzJkz0el0uLm58frrr1O/fn0Nt04IcTfpQmPxGjsH9mbe8DN2\nb6rWr1+PyWRi+fLlZGVlMWfOHBYsWPCHlqGqKmVmE8WXjbZ/iirK8D6dTfzRPfiWG/C0mPED/IBf\nGjRlTfMY23g/Vw+a+QSghMSw070+ke170KRxJE2kiRLCaVRXS0wmE3PmzGHVqlV4eHgwcuRIunfv\nLgc5Qgib26khu3fvvu6YWbNm8dJLLxETE8OKFStYvHgxU6ZM0XgLhRB3k6LTV/u+3ZuqPXv20KVL\nFwASEhI4cODATcccWv8JXCrC1XgRr/JScrz9+Cy05TWfS7h4ji5ll7jk7kWBly+V3v6oPoEENG7O\nM6GtCPTwItDdG9erdsru3bsJbtLi7m2gEMIuqqslx48fJzQ0FF9fXwCSkpLIyMggJSVFk6xCCMdz\nOzUkMzPzumPmzZtHUFAQAGazGXd3mbxKiLrG7k2VwWDAx+e/kzzo9XqsVis63Y3nfo/av9X2c4VO\nj49PPeICmxLo7k19d28C3b0I9PAm0NUTT3cvfKpZlhCidqiulhgMBtvBEIC3tzelpaVaxBRCOKjb\nqSE3GvNbQ7Vnzx6WLl3K0qVL7bchQgiHYPemysfHB6PRaPv9Zg0VwOkHRuAV2Bj/+s3w8fYnSVFI\nqumgQgiHVl0t8fX1rfKe0WjE39/f7hmFEI7rj9YQPz+/asd8++23LFy4kEWLFhEQEGCnrRBCOAq7\nN1WJiYls2rSJPn36kJmZSXR09E3HXLAGcKHwMnmFx2sk0+7du2tkufbizPmdOTtIfi1VV0siIiLI\nzc3l4sWLeHp6kpGRwbhx4266zJreH868v0Hya03y3123U0MURbnumK+//prPP/+cJUuW3PIJHKk3\n1ZP82nHm7KBdfkVVVdWeK1RVlRkzZnDkyBEAZs+eTXh4uD0jCCFqgevVkoMHD1JWVsawYcPYtGkT\n77//PlarlSFDhvDwww9rnFgI4Uhup4Zcb0xoaCidOnWiadOmtlsD27dvz5NPPqnZtgkh7M/uTZUQ\nQgghhBBC1CYyo4MQQgghhBBC3AFpqoQQQgghhBDiDkhTJYQQQgghhBB3QJoqIYQQQgghhLgDda6p\n+uCDDxgxYgSpqal88cUX5ObmMnLkSEaNGsWMGTNw1Hk7TCYTzz77LCNGjGDUqFGcOHHCabJnZWUx\nevRogBtm/vzzz3nooYcYPnw4P/74o4Zpr3V1/uzsbEaNGsXo0aMZN24cRUVFgOPmvzr7b9LS0hgx\nYoTtd0fN7uyctdaA89YbqTXaknqjHak39if1RlsOWW/UOuSnn35Sx48fr6qqqhqNRvW9995TJ0yY\noKanp6uqqqrTp09Xf/jhBy0j3tAPP/ygPv3006qqqur27dvViRMnOkX2RYsWqf369VOHDx+uqqqq\njh8//prM586dU/v166dWVlaqpaWlar9+/dTLly9rGdvm9/kfeeQRNTs7W1VVVV2+fLk6e/Zs9fz5\n8w6Z//fZVVVVDx48qI4ZM8b2miPve2fmzLVGVZ2z3kit0ZbUG+1IvbE/qTfactR6U6euVG3fvp3o\n6Ggef/xxJkyYwAMPPMDBgwdp164dAPfffz87duzQOOX1hYeHY7FYUFWV0tJSXF1dnSJ7WFgY8+fP\nt521OXTo0DWZ9+/fT2JiIq6urvj4+BAWFmZ7BojWfp9/3rx5xMTEAGA2m3F3d2ffvn0Omf/32S9c\nuMBbb73F1KlTba85anZn58y1Bpyz3kit0ZbUG+1IvbE/qTfactR641KjS3cwxcXF5Ofn88EHH3D6\n9GkmTJhQ5ZKyl5cXpaWlGia8MS8vL/Ly8khJSaGkpISFCxeSkZFR5X1HzN67d2/OnDlj+/3q/e3t\n7U1paSkGgwFfX98qrxsMBrvmvJHf5w8KCgJgz549LF26lKVLl7J161aHzH91dqvVyrRp05gyZQru\n7u62zzjyvndmzlxrwDnrjdQabUm90Y7UG/uTeqMtR603daqpCggIIDIyEhcXF8LDw3F3d+fcuXO2\n941GI35+fhomvLGPP/6YLl26MGnSJH799VceffRRzGaz7X1Hzn41ne6/F0cNBgN+fn74+PhgNBpt\nrzv6tnz77bcsXLiQRYsWERAQ4BT5Dxw4wKlTp5gxYwaVlZXk5OQwe/ZsOnTo4PDZnZEz1xqoHfVG\nao12pN7Yl9Qb7Um90Y4j1Zs6dftfUlISW7duBaCgoICKigqSk5NJT08HYMuWLbRt21bLiDfk7++P\nt7c3AH5+fpjNZlq1auUU2a8WGxt7Teb4+Hh+/vlnKisrKS0t5fjx40RFRWmc9Pq+/vprli5dypIl\nS2jWrBmAU+SPj49nzZo1LFmyhHnz5tGiRQteeOEF4uLiHD67M3LmWgO1o95IrdGO1Bv7knqjPak3\n2nGkelOnrlQ98MADZGRkMGTIEKxWKy+//DLBwcG89NJLmEwmIiMjSUlJ0TrmdT322GNMnTqVUaNG\n2WbKad26tVNkB1AUBYApU6Zck1lRFB599FEefvhhrFYrkydPxs3NTePEVSmKgtVqZdasWTRt2pSJ\nEycC0KFDByZOnOjQ+X/b979RVdX2WlBQkENnd1bOXGvAueuN1BptSb2xP6k32pF6oy1HqzeKqjrg\nPJVCCCGEEEII4STq1O1/QgghhBBCCHG3SVMlhBBCCCGEEHdAmiohhBBCCCGEuAPSVAkhhBBCCCHE\nHZCmSgghhBBCCCHugDRVQgghhBBCCHEHpKlyMmfOnKFNmzYMGjSIwYMH069fP8aOHUtBQYEmebp3\n787Zs2dv+fPr1q0jNTWVgQMH0r9/fz788MObjhk9erTtoXpXW758OcuXL/9DeW/X6NGj7bIeIRyJ\n1Jv/knojRM2SevNfUm+cU516+G9t0bBhQ1avXm37fd68ebzyyivMnz9fw1Q3V1BQwOuvv85XX32F\nv78/ZWVlPPLII4SHh9O9e/c/vLwRI0bUQMrry8jIsNu6hHAkUm+ukHojRM2TenOF1BvnJFeqaoGk\npCROnjwJXDmzMmnSJFJSUiguLmb16tWkpqYyaNAgpk2bRmVlJQBpaWk8+OCD9OvXjxdffBGr1Uph\nYSHjx49nwIABpKamsnXr1mvWVVJSwp/+9Cf69+/PpEmTbMuzWq3MnDmTfv360b9/fxYvXnzN2AsX\nLmAymSgvLwfAy8uL1157jaioKFv2384K7dq1q8rZkxUrVpCamsrgwYNtZ3Xee+89W6H99NNPGTZs\nGP3792fAgAEcP34cgB07dtjOGk2YMAGDwYDFYmH27Nm2M0off/yxbZ1jx47liSeeICUlhaeeegqT\nycTMmTMBGD58OABbtmxh6NChDB48mCeffJKSkpLb/MsJ4Xyk3ki9EcJepN5IvXEm0lQ5OZPJxNq1\na0lMTLS91rVrV9atW0dRURErV65k+fLlrF69msDAQD788EMKCgqYM2cOH330EWvWrKG8vJytW7fy\nyiuv0LFjR7755hveeecdpk6dSlFRUZX1vfvuu7Rp04a0tDRGjRpFYWEhAMuWLaOgoIC0tDRWrlzJ\n999/z+bNm6uMjYmJoUePHvTs2ZOhQ4cyd+5cLBYLISEhN91Ob29vvvzyS+bMmcNzzz1HZWUliqIA\nYDAY2LBhA59++ilpaWn07NmTZcuWUVlZyV//+ldee+010tLSiI6OZvXq1Xz++ecoisKXX37JypUr\n2bBhAz///DMAe/fuZfr06axdu5b8/Hy2b9/Oiy++CFwpfMXFxcybN4+PPvqIr776is6dOzN37tzb\n/wMK4USk3ki9EcJepN5IvXE2cvufEzp37hyDBg0CoLKykoSEBP7yl7/Y3o+PjweunJnIzc1l2LBh\nwJUC1bp1azIzM0lMTKRRo0YAvPnmmwA8//zzvPrqqwCEhISQkJBAVlZWlUvXGRkZzJs3D4C2bdsS\nEhKCqqrs2rWLwYMHoygKHh4e9O/fn507d9K1a9cq2WfMmMHjjz/Otm3b2LZtG8OHD2fu3Ln06tWr\n2m0eMmQIANHR0QQGBnLixAnbez4+Prz55pukpaVx8uRJtm3bRmxsLEePHqVRo0bExMQAMGnSJACe\neuopDh8+zE8//QRAeXk5x44dIzIykpYtW9r2S2Rk5DVnabKyssjPz7edZbJYLNSrV6/a7EI4M6k3\nUm+EsBepN1JvnJk0VU7o9/cc/56Hhwdw5ZJ1SkqK7UxEWVkZFovlmi9FFhcXA6CqapXXrVYrVqv1\nmuVbLBbbz3q93jb26vFWqxWz2Vxl3ObNmzEajfTt25fU1FRSU1NZuXIlX3zxBb169UJRFNsyfj/2\nt/X8ti5XV1fb778VgdGjR9O1a1eCgoLIzs7GxaXqv94GgwGDwYDVauW5556jZ8+ewJXL9l5eXmRm\nZuLm5mb7/G9nin6/7YmJifz9738HrhR9g8FwzeeEqC2k3ki9EcJepN5IvXFmcvtfLda+fXvWr19P\ncXExqqry8ssv88knnxAXF0dWVhaFhYWoqsorr7zC5s2b6dChA1988QUAp0+fZu/evdxzzz1Vltmp\nUye++eYbAPbt28epU6cASE5OZvXq1VitVsrLy1mzZg3JyclVxnp4eDBv3jzy8vKAK8Xj2LFjtGrV\nCoCAgACOHTsGwIYNG6qMTUtLA2D//v0YjUbCwsJs7x04cICwsDDGjBlDfHw8mzdvxmKxEBERQXFx\nse3+48WLF7N8+XKSk5NZsWIFZrMZg8HAyJEj2bdvX7X7Uq/XY7FYSEhIIDMz03aP9/vvv88bb7xx\nC38NIWo3qTdSb4SwF6k3Um8ckVypckLXO8NwPTExMTzxxBOMGTMGq9VKq1at+DYmIqAAAAGzSURB\nVPOf/4ybmxvTpk2znT0ZMGAAgwcPpnPnzkyfPp1Vq1ahKAqvvvoqDRo0qLLMJ598khdeeIF+/foR\nERFBSEgIiqIwfPhwfvnlFwYOHIjJZGLgwIG2MyW/6dChAxMnTmTChAmYTCYAunTpwhNPPGFb9syZ\nM5k/fz733Xdfle0sKytj8ODB6PV65s6dW+UsTefOnVm2bBkPPvggbm5uxMfHk5OTg5ubG2+88QbP\nPfccJpOJsLAwXn/9dVxdXTl58iSDBw/GbDYzZMgQ2rVrR3p6+g33bY8ePRg0aBCrVq1i1qxZPPPM\nM1gsFpo0aSJFR9RqUm+k3ghhL1JvpN44M0X9/TVRUWesW7eO9evX8/rrr6PTOd9Fy1mzZtG4cWPG\njh2rdRQhxE1IvRFC2IvUG6EF5/s3TdwV+fn5LFq0iPz8/Gvu73UGs2fPZv369XTr1k3rKEKIm5B6\nI4SwF6k3QitypUoIIYQQQggh7oBcqRJCCCGEEEKIOyBNlRBCCCGEEELcAWmqhBBCCCGEEOIOSFMl\nhBBCCCGEEHdAmiohhBBCCCGEuAPSVAkhhBBCCCHEHfj/c2GwmI9A9sQAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x11e247850>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 4.2. Contrato Log\n",
    "\n",
    "Derivando gamma analítico da equação a paritr do Delta $\\Delta = \\frac{e^{-r\\cdot t}}{S}$, tenho que:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\frac{\\partial V^2}{\\partial S^2} &= \\frac{\\Delta}{\\partial S} = -\\frac{e^{-r\\cdot t}}{S^2}\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "\n",
    "Abaixo vou comparar os resultados analíticos com o que obtive do método de diferenças finitas. A única diferença que é necessária tomar nesta implementação é quando o valor do ativo no final é $0$. Nestes casos, fiz o valor da opção também ser $0$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 1.83 s, sys: 11.1 ms, total: 1.84 s\n",
      "Wall time: 1.84 s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.LogContract(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8TecfwPHPzZLIlIhVYrVuiAxJkCAi1KY2oWhLa5VW\nKdVWlaL8qqq1dWirpUZp2qIoatSuvUcIYmXvnfv8/khz60pCjLgS3/frldcr95znPPd7xj3nfM9z\nznM0SimFEEIIIYQQQogHYmLsAIQQQgghhBCiOJOkSgghhBBCCCEegiRVQgghhBBCCPEQJKkSQggh\nhBBCiIcgSZUQQgghhBBCPARJqoQQQgghhBDiIUhSJYQo0ObNmxk4cCCNGjXC29ubLl26sHTpUrKy\nsowd2hMhJSWFXr16UadOHdzc3HBzc6Njx45F8l1r1qzB1dWVuLi4B64jPDwcV1fXPH+enp60atWK\nmTNnPvZ1mxvTpk2bAEhISGD06NGcPHnyoevu168fQ4YMeeh6iqvH+fu9efMmAwcOJDY29qHrOn/+\nPC+99NJD1/O0r38hxONlZuwAhBBPpkmTJrFixQo6d+5Mnz59KF26NPv37+eTTz5h3759fP7555iY\nPN3XZczMzJg6dSqpqamYm5tTqlQpXFxcjB3WPY0aNQo/Pz/95/j4eDZt2sRXX31FdnY2Y8eONVps\np0+fZt26dQwYMMBoMZQEj/v3u3v3bnbt2oVGo3noujZs2MCxY8ceQVRCCPH4SFIlhMgjJCSEn376\nicmTJ9OjRw/9cH9/f5577jlGjRrF77//TqdOnYwYpfFZWFjw7LPPGjuM+1atWjU8PDwMhgUEBBAa\nGkpISIhRk6pc8l76B2fM36+sNyHE0+rpvswshMjXN998g6urq8EJWa527drxyiuv4OjoqB8WHh7O\nm2++qb/NaNiwYVy+fFk/fs6cOXTr1o2QkBBatmyJp6cnr7zyCpGRkSxfvpxmzZrh6+vLmDFjSEtL\nA2Dfvn24urqyc+dOOnXqhKenJ926dWPv3r0G8Rw7dozXXnuN+vXrU7duXdq0acOKFSv049esWUPD\nhg35+uuvadiwIc2aNSMtLY2kpCSmTJlC8+bNqVu3Lv7+/owbN47ExET9tNnZ2SxcuJDnn38eLy8v\nOnfuzObNm/XjC1NHZmYmX375Ja1bt8bDw4OOHTuydu3ae66DkJAQWrdujaenJ4MGDcr3tr9du3bR\no0cPPD09CQwMZPbs2eh0unvWXZDSpUvnaWlYu3YtHTt2xN3dnZYtW/Ljjz8ajD969Cgvvvgi3t7e\nNGzYkDfffJPr16/rx7u6urJ48WKDaYYNG0a/fv3yfP++ffv0t311796dd999Fyjcck5OTmb8+PE0\nbNgQPz8/vvzyyzz1Jycn87///Y/mzZvj6elJjx492LVrl0GZX375hfbt2+Ph4UFgYCDTpk0jIyOj\nwGXWr18/Jk2axLRp06hfvz7+/v5MnjzZYJrMzExmz55N69atcXd3p0GDBowYMYKbN2/qyzRv3pyZ\nM2fSs2dPPD099cts586d9O3bF29vbzw8POjcuTN//vlngfFA0f1+165dq9+Ou3fvzuHDh4Gc39h7\n770H5CRuc+fO1d/WuWTJEpo3b46vry+HDh0C4Pvvv6djx454eHjg7e3NgAEDOHfunP675s2bR2pq\nKq6uroSEhAAQExPD+PHjCQwMxMvLi5deeokTJ07cdTkURmG2ifDwcIYOHYqPjw8BAQF88803vPzy\ny/rtUwghAFBCCHGbW7duKa1Wqz777LNClb9x44by8/NTXbp0UZs2bVIbNmxQHTt2VI0aNVK3bt1S\nSik1e/ZsVa9ePdWhQwf1559/qt9++015eXmpVq1aqZ49e6pt27ap7777Trm6uqpFixYppZTau3ev\n0mq1qkGDBmru3Llq+/bt6tVXX1V169ZV586dU0opde3aNeXp6alGjhypdu/erXbs2KEGDx6stFqt\nOnv2rFJKqdWrV6s6deqozp07q7///ltt3LhRKaXUoEGDVFBQkFq3bp3av3+/+vLLL5Wbm5uaPn26\nft4mT56s6tatqxYsWKD27NmjPvzwQ1WnTh114MCBQtfx1ltvKS8vL7V48WK1a9cuNWHCBKXVatXK\nlSsLXKbr169XWq1WTZ48Wf39999q0qRJys3NTbm6uqrY2FillFK7d+9WtWvXVqNGjVI7d+5U33//\nvfLy8lKTJk0qsN6rV68qrVar1q9frzIzM1VmZqbKyMhQkZGR6ttvv1W1a9c2iH3NmjX6OHbt2qXm\nzp2r6tSpo77++mullFIJCQmqQYMGatSoUWrv3r1q48aN6vnnn1e9evXS16HVatXixYsN4hg6dKjq\n16+fQUwbN25UiYmJaunSpUqr1apffvlFXblypdDLedCgQaphw4Zq9erVavPmzapTp07Kzc1NDR48\nWCmlVHZ2tgoODlZ+fn5qxYoVaseOHWrEiBGqTp06aufOnUoppfbv369q166tFi5cqA4cOKCWLVum\nPDw81MyZMwtcpn379lU+Pj6qW7duasuWLerHH39UXl5eavTo0foykyZNUg0aNFCrV69WBw4cUEuX\nLlU+Pj5qxIgR+jJBQUHKzc1NLVq0SG3btk1dunRJHT16VLm6uqqPPvpI7d27V23evFn16tVLubu7\nq+jo6HzjKarfr7e3t2rVqpVau3at2rZtm+rQoYMKCAhQWVlZKjo6Wn3++edKq9Wqv//+W928eVO/\nXv38/NT69etVSEiISk9PV19//bVyd3dXS5YsUQcOHFBr1qxRAQEBqkuXLkoppW7evKnef/995enp\nqY4ePaqio6NVUlKSatWqlWrRooX67bff1NatW1W/fv2Up6en/nde0LrJXf/5Kcw2kZqaqlq0aKHa\ntm2rNm3apH777TcVGBio3N3d1bhx4wq1jIUQTwdJqoQQBo4ePaq0Wq1avnx5ocpPmzZNeXt760/2\nlVIqJiZGeXt76096Z8+erbRarTp69Ki+zKhRo5RWq1XXr1/XD+vTp48aNmyYUuq/pOr2E9qMjAzV\ntGlT/cnMtm3b1CuvvKKysrL0ZeLi4pRWq1U//vijUionqdJqterPP//Ul0lLS1MDBgzQnzjlGjJk\niOratatSSqnY2FhVu3ZtNX/+fIMy/fv3VwsWLFDp6en3rOPMmTNKq9WqFStWGJQZNWqU8vf3V9nZ\n2fku086dO6vXXnstT71arVa/nHv27Kn69OljUCYkJETVrl1bhYeH51tv7olufn8BAQFqzpw5KjMz\nUymVc8LZpEkTNWbMGIM65s2bp7y9vVVqaqo6fPiw0mq16vDhw/rx+/fvV3PmzNF/vp+kSqn/1vuJ\nEyeUUoVbV6dPn9Yni7kiIiKUu7u7/qR6y5Yt+pP+2/Xq1Ut/Qr9o0SLl7e2t0tPT9eN//vlnFRIS\nku/yVCrnxL1evXoG2/+PP/6otFqtunbtmlJKqZEjR6rVq1cbTDd58mTVsGFD/eegoCDVqVMngzKr\nV69Wb775psGwkydPKq1Wq7Zt25ZvPEX5+z127Ji+TO7yPHnypD7W27fP3PU6depUg++bMmWKWrhw\nocGwb7/9Vmm1WpWSkqL/Pi8vL/34JUuWqNq1a6sLFy7oh2VkZKigoCCDxPRO90qqCrNNrFixQtWp\nU0ef4Cul1IkTJ5RWq5WkSghhQJ6pEkIYMDU1BSj0bWQHDhygYcOGODg46IeVKVMGf39/9u/frx+m\n0Whwd3fXf3Z0dMTJyYmKFSvqh9nb2xvc0gU5tyvlMjc3JyAgQF9vYGAggYGBpKenc/78ecLCwvQP\nuGdmZhrUU716df3/pUqV4ptvvgFybu0JCwvj/PnzhIaGYmlpCeTc1qbT6QgKCjKo5/vvv9f/f686\n/vnnHwDatGljUEfbtm1Zt24dFy9ezPNMVmpqKmfOnKFbt24Gw1u1asVff/2lL3P8+HFGjhxp0JNb\nQEAAOp2Offv20bVrVwoyZswY/Pz8yM7OJiQkhNWrV/POO+/Qvn17fZlLly4RGRlJYGBgnu+YPXs2\nx44dw83NDXt7e4YMGUL79u0JDAzEz8+P+vXrF/jd96sw6yr3trKmTZvqp3N2dsbLy0v/+cCBA9jY\n2NC4cWOD+tu2bcv06dNJSUnBx8eHlJQUOnXqRNu2bWnWrFme9ZCfRo0aGWz/LVq0YPLkyRw8eJBK\nlSoxa9YsAG7dusXFixe5ePEihw4duus2CtC1a1e6du1KSkoKoaGhhIWF6W9/LeiWxKL6/ZqZmRn8\nfsuXLw/k9IB5N3fO0/vvvw/k3M6Xuyy2bt2qnycrK6t8Y3zuueeoWbOmfpi5uTktW7bk119/LdR8\n5ude20RycjL79u2jVq1aVKlSRT/ezc2NypUrP/D3CiFKJkmqhBAGcpOcGzduFFgmIiICZ2dnNBoN\niYmJuLm55Snj6OjIhQsX9J8tLS3zPK9TqlSpe8ZTrlw5g89lypQhPj4eyHnmafr06axcuZLMzExc\nXFzw9fUF8j4w7+TkZPB5y5YtTJs2jfDwcMqUKUPdunWxsrLSn4zmfsed091vHWZmZtjZ2RlMV7Zs\nWSDnWaE7JSQkoJSiTJky+U6TW0an0/HZZ5/x2WefGZTTaDRERUUVGDNAlSpV9OvMw8OD1NRUxo4d\nS5kyZWjUqBGA/hmu0aNHM3r06DzfERkZibW1NUuXLmXevHn88ssvLF26FDs7OwYNGsSrr7561xju\nx72Wc0JCAmZmZlhbWxtMV7ZsWf1Jf0JCQr7rsmzZsiilSE5OxsfHh/nz5/Ptt9/y5ZdfMn/+fCpX\nrszEiRNp0qRJgfE5OzsbfM59Xil3Gzp06BATJ07k3Llz2NraUrt2bSwtLfMkPnfGl5KSwoQJE9iw\nYQOQk6C4uroCBXcIUVS/X3Nzc4PxuT0HFhRHQfMUGhrKBx98wKFDh7CyssLV1VW/3gqqKyEhwWD7\nv73u/H5DhVWYbSIuLs7g+bPbywghxO0kqRJCGHB0dKROnTrs3LmTUaNG5VvmlVdewdnZme+++w47\nOzsiIyPzlImKijK4+v2gYmNjDU5qoqOj9SdCCxYsYNWqVXzyyScEBgZiaWlJWloaP//8813rDAsL\n480336Rr1668/vrr+qvub775JhcvXgTA1tYWyLmifvtJ8+nTpwGwsrK6Zx329vZkZWWRkJBgkFjl\nJj35LR97e3s0Gg3R0dEGw2/vqCL3JHTYsGG0aNHCoJxSKk8iei/vvfce27dv5/3332f9+vVYWVnp\n5//DDz/M01OgUkp/pf7ZZ59l1qxZZGVlceDAAZYsWcKnn35KgwYN9NPdmTzcq3XjdoVZVw4ODmRl\nZZGUlISNjY1+2ri4OCwsLICc5Zpfspm77drb2wMQFBREUFAQSUlJ7NixgwULFvDWW2+xe/fuPIlF\nrjvfzZS77hwdHUlMTGTIkCH4+voyb948fYvHJ598ot+WCjJ58mR2797NV199ha+vL+bm5ly4cIHf\nf/+9wGmetN/v7XQ6HUOHDsXR0ZG1a9fqW2mXLl3K33//XeB09vb2XLp0Kc/wyMjIPBcf7se9tgkH\nBwfKlSuX73qKjo7O0wonhHi6Se9/Qog8+vfvz+nTp/NNTn799VdCQ0N54YUXAPD19WXfvn0GJ5Yx\nMTHs2bMHb2/vh44l95Y3yLk9aMeOHTRs2BCAI0eO4O7uTuvWrfW3gu3YsQO4+xX0U6dOkZWVxaBB\ngwxuYzp48KC+jIeHB2ZmZgbfDzBhwgS+/vrrQtXh4+MDwB9//GFQx/r16ylbtizVqlXLE5ulpSWe\nnp55enjbvn27/n8bGxtcXV25fPmy/qXDbm5umJqaMnPmTINe5QrD1taWt956ixs3bvDVV18BUKNG\nDRwcHLh586bBd8TExPDFF1+QmJjIjh078Pf3JyYmBjMzM/z9/Rk/fjzwX0uJjY0Nt27d0n9XSkrK\nXZOJ3NvXchVmOTdo0ACAjRs36ofFx8dz5MgR/WcfHx+Sk5PznLz/8ccf1K1bFwsLC+bMmUOvXr30\ncbdr144BAwaQmJh41xaRffv26XuthJyX7pqYmFC/fn0uXrxIQkICL730kj6h0ul07N69u8D6ch05\ncoSmTZvi7++vT+h27twJ3H37NsbvtzDvvIqJieHKlSv07NnT4LbXO+fpzrp8fX25cOECoaGh+mEZ\nGRls3rz5ofYxvr6+99wmfH19OX/+POHh4frx586dM/gshBAgLVVCiHx07tyZ7du3M2HCBI4dO0bz\n5s3RaDT8/fff/PTTT7Rr107/zM7LL7/ML7/8woABAxg6dChKKRYsWECpUqX03WPfjztPFufNm4eZ\nmRnVq1dnyZIlpKWl6W8t8/Dw4Msvv2Tp0qU899xzHD9+nPnz56PRaO7aGlKnTh1MTU2ZMWMGwcHB\nxMbGsnjxYqKjo/W3JDo5OREcHMyCBQswMzPDzc2NP/74gzNnzjBhwgRsbW3vWYerqyutWrXSP59R\nq1YttmzZwvr16/nwww8LjO+NN97g1Vdf5d1336Vdu3bs3buXLVu25Cnz+uuvY2try/PPP09sbCyf\nf/45ZmZmaLXa+17u3bp1Y8mSJSxevJiePXtSoUIFRowYwbRp0wDw8/MjPDycmTNnUr16dapUqaJv\nfRsxYgSvvfYaZmZmfP/999jb2+sT36ZNm7JmzRrq1KmDo6MjX3/9NRqNpsCkILeF7K+//sLKyqpQ\n66pGjRq88MILfPzxx6Snp1OxYkUWLVpEdna2vt6goCA8PT0ZM2YMb731FhUqVGDNmjUcP36cBQsW\n6Odx/vz5fPDBB7Rr1474+HgWLlyIr6/vXVtE4uLiGDJkCK+88gqXL19m1qxZ9OnTB2dnZywtLbG2\ntmbevHlkZ2eTmprKsmXLOHv27D1flOvh4cGWLVsICQmhQoUK7N27V9/VempqaoHTGeP3m7stbNq0\nKc8zSrnKli1LpUqV+O6773B0dMTExISQkBD9BYPU1FTKlCmDnZ0daWlpbNmyBQ8PD7p27cr333/P\noEGDGDlyJDY2Nnz33XfExMQwdOjQu8YVHh7Od999l2d4s2bNaNas2T23iU6dOrFo0SKGDBnCG2+8\nQVZWFp9//jkajeapf/m5EOIOj79vDCFEcaDT6dTy5ctVz549VYMGDZS3t7fq1q2bWrFiRZ5e686f\nP68GDRqkvLy8lK+vrxo+fLgKCwvTj58zZ46qV6+ewTRTp05VzZs3Nxg2bNgwfa9wub3ALV++XLVv\n3155enqq/v37q9OnT+vLp6amqvHjxys/Pz9Vr1491aVLFxUSEqIGDBigXn31VaVUTq9kt3dFnuv3\n339XrVu3Vu7u7iooKEh99NFH6qefflJ16tRRERERSqmcHvDmzJmj7yGvR48eavfu3fdVR3p6upox\nY4YKCAhQ7u7uqnPnzur333+/5/LfvHmz6tChg3J3d1cvvviiWrp0aZ752Lp1q+rWrZtyd3dX/v7+\n6u2331Y3b94ssM47e9q7086dO5VWqzXoDvznn39WHTp0UHXr1lVNmjRRkyZNUgkJCfrxJ06cUK+8\n8oqqX7++8vLyUi+99JK+RzilcnrhGzZsmPL09FSNGzdW8+fPV9OnTy+w9z+dTqfGjh2r3N3d1ZAh\nQwq9nDMyMtS0adOUn5+f8vX1VdOnT1dvvvmmQe9vCQkJ6oMPPlB+fn7K09NTBQcH5+lVcN26dapz\n587Ky8tLNWjQQI0dO7bA7suVyulh7tVXX1VTp05V9erVU02bNlVz585VOp1OX2bXrl2qU6dOysPD\nQwUGBqq3335bbdy4Ubm6uup7xAwKClKTJ082qDs6Olq98cYbqn79+qp+/foqODhYbd++XbVu3Vp9\n+OGHBcaUuxyL8vd76tQp5erqqvbv36+UyvktDhw4UNWtW1dNnjxZhYeH57utnThxQvXq1Ut5eXmp\nxo0bq2HDhqk9e/YorVar1q1bp5/vbt26KTc3N333/Tdv3lRvvfWW8vX1VV5eXmrAgAEGvREWtG7y\n6+nS1dVV/12F2SauXLmiBg4cqDw9PVVAQID64YcfVFBQkJoyZcpdv18I8XTRKCWvPxdCPHlyXwS7\nevXqfB+kf5zee+89Ll26xKRJk6hVq5ZRYxFPln79+mFtbc3ChQuNHYooAufOnePq1asGzy4mJSXR\nqFEjxo4dS9++fY0YnRDiSSJt10IIcRfXrl2jS5cuZGZm8sUXXxg7HCHEY5SQkMDrr7/OrFmz2Ldv\nH1u2bGHo0KH6Z+6EECKXPFMlhHhi3euZk8dhyZIlLFu2jGrVqjFgwABjhyOEeIx8fX2ZMWMGixcv\nZsmSJZibm1O/fn2WLl2ab1frQoinl9z+J4QQQgghhBAPQW7/E0IIIYQQQoiHIEmVEEIIIYQQQjwE\nSaqEEEIIIYQQ4iFIUiWEEEIIIYQQD0GSKiGEEEIIIYR4CJJUCSGEEEIIIcRDkPdUCSGEeCosWrQI\nc3Nzed+YEOKx2Lp1K19//TWRkZF07dqV7Oxsjh07hq2tLTNnzjR2eOIRk6RKCCFEiZeamsqxY8c4\nevQoffv2xcLCwtghCSFKuObNmxMfH8+2bdsYOnSofvicOXOMGJUoKnL7nyiU8PBwateuTefOnfV/\nnTp1YvXq1cYOTQgh7mndunVMnjwZR0dH2W8JIR4bpRRKKYNhVatWNVI0oihJS5UoNEtLS0JCQvSf\nb926RceOHalbty5ardaIkQkhRMEyMzNJTk7G0dGRwYMHM2vWLHr16oWJiVxXFEI8fh07djR2CKII\nyBFFPLDy5ctTtWpVdu3aRZ8+fejatSsvvfQSAKtWraJr16506dKFV155hYsXLwKQnJzMuHHjaN26\nNe3ateOLL74AIDExkbfffpuOHTvSsWNHZsyYQXZ2NgCzZ8/mhRdeoFu3bgwcOJDIyEjjzLAQolja\ntGkT7dq1A6Bt27aYmpqybt06I0clhHhaaTQaY4cgioC0VIkHdvjwYa5cuUJaWhqhoaFs3boVa2tr\n9u/fz6+//sqyZcuwtLTk77//ZsSIEaxbt47Zs2eTmZnJhg0byMzMpH///jRt2pTly5fj6OjI77//\nTkZGBkOHDuWbb76hY8eOLFmyhD179mBubs63337LsWPHaNGihbFnXwhRDCiliIqKwtnZGQATExNe\nffVVvvzyS7laLIQQ4pGRpEoUWnp6Op07dwYgOzubMmXK8OmnnxIVFUWtWrWwtrYGYNu2bVy+fJng\n4GD9tPHx8cTHx7Nnzx7effddNBoNFhYWLF++HIDXX39d/7+FhQW9e/fm+++/57XXXsPV1ZUuXboQ\nEBBA06ZN8ff3f8xzLoQorv766688F2E6d+7MvHnz+OuvvwgKCjJSZEKIp4G0Sj09JKkShVaqVCmD\nZ6pyrVmzRp9QQc6V4U6dOvH222/rP0dERGBvb4+ZmeEmd/36dUqXLo1OpzN4kDM7O5vMzEw0Gg0/\n/vgjJ06cYPfu3UybNo2GDRvy/vvvF9FcCiFKknPnzlGvXj1iYmIMhnfv3p1FixZJUiWEKFJ3dlIh\nSi55pko8co0bN2bdunX6Z5+WLVumf9bK39+fkJAQlFJkZGQwfPhwjh49SpMmTVi6dCkAGRkZrFy5\nkiZNmnDmzBk6dOhAjRo1GDRoEC+99BJnz5412rwJIYqPPXv28Pnnn+Pv70+jRo0M/ubOncvRo0c5\nePCgscMUQpRQ27dv55dffuHo0aPMmTOHqKgoY4ckipC0VIlCK6gJ+87hTZo04dVXX2XAgAFoNBps\nbW2ZN28eAMOHD2fq1KnUrl2bKlWq0KNHDwIDA/H09GTy5Ml07NiRjIwMmjZtypAhQzAzM6NNmzZ0\n69aN0qVLY2Vlxfjx44t8XoUQxZ+/vz9nzpwxdhhCiKdUYGAggYGBxg5DPCYaJe2SwggmTpyIo6Mj\nb7zxhrFDEUIIIYQQ4qHI7X/isVu6dCn79u2TrtGFEEIIIUSJIC1VQgghhBBCCPEQpKVKCCGEEEII\nIR6CJFVCCCGEEEII8RAkqRJCCCGEEEKIhyBJlRBCCCGEEEI8BEmqhBBCCCGEEOIhSFIlhBBCCCGE\nEA9BkiohhBBCCCGEeAiSVAkhhBBCCCHEQ5CkSgghhBBCCCEeQpEnVdHR0QQGBnLp0iWD4b/99htd\nu3ale/fu/PTTT0UdhhCiBNDpdEyYMIHg4GD69evHlStXDMZv3bqV7t27ExwczKpVqwDIzMxkzJgx\nvPjii/To0YOtW7cCcPnyZXr37s2LL77IxIkTUUo99vkRQhjXg+xTCpqmoH3KypUr6datG7169WLb\ntm0ApKWlMWLECF588UUGDRpETEzM45tpIUTRUEUoIyNDDRs2TLVu3VpdvHjRYFzjxo1VfHy8ysjI\nUC1btlQJCQlFGYoQogTYuHGjGjdunFJKqSNHjqihQ4fqx92+L8nIyFDdunVTUVFRavXq1erjjz9W\nSikVFxenmjVrppRSavDgwWr//v1KKaUmTJig/vzzz8c8N0IIY3uQfUpB0+S3T4mIiFAdOnRQGRkZ\nKjExUXXo0EGlp6erxYsXqzlz5iillFq3bp2aMmXK45xtIUQRKNKWqk8++YTevXvj7OycZ5xWqyUh\nIYH09HSUUmg0mqIMRQhRAhw6dIiAgAAAPD09OXHihH5caGgoLi4u2NraYm5ujo+PDwcOHKBNmza8\n8cYbQM4VZjMzMwBOnTpF/fr1AWjatCm7d+9+zHMjhDC2B9mnFDRNfvuU48eP4+3tjbm5OTY2NlSt\nWpWzZ89y6NAhmjZtCkBAQAB79ux5nLMthCgCRZZUrVmzBkdHR5o0aQKQ59aa5557jm7dutGhQweC\ngoKwsbEpqlCEECVEUlKSwb7C1NQUnU6nH2dra6sfZ21tTWJiIqVLl8ba2pqkpCTeeOMNRo4cCRju\nk0qXLk1iYuJjmgshxJPiQfYp+U2TnZ1tsE+5veyddSQlJZGUlIS1tbVBWSFE8WZWVBWvWbMGjUbD\n7t27OXPmDOPGjWPBggU4OTlx5swZtm/fztatW7GysmLMmDFs2LCBNm3a3LXOgwcPFlW4Qoj75OPj\n89i/08ZXitQWAAAgAElEQVTGhuTkZP1nnU6HiUnOtSFbW1uDccnJydjb2wNw48YNhg8fzosvvkj7\n9u0B9NPllrWzs7vrd8v+R4gnx6Pa/9zvPsXOzi7faUxNTQ32KUlJSfmWTU5OxtbW1mC47H+EKF4K\n2v8UWVL1448/6v/v168fH330EU5OTkDOjsrS0hILCwtMTExwdHQs9FWaojiRO3jwoFFOEB9WcYxb\nYn58ijJuYx3gvb29+euvv2jbti1HjhxBq9Xqx9WoUYPLly8THx+PlZUVBw4cYODAgURFRTFgwAA+\n/PBD/Pz89OVr167N/v37adCgATt27MDf3/+e31+Uy7O4bWMS8+NTHOMuLvufB9mnaDSafKfJb5/i\n4eHBrFmzyMjIID09ndDQUGrVqoW3tzc7duzAw8ODHTt24Ovre89YZf/zn+IYMxTPuItjzFB0cd9t\n/1NkSdWdlFKsXbuWlJQUevbsSa9evejTpw/m5uZUrVqVLl26PK5QhBDFVMuWLdm1axfBwcEATJs2\nzWC/Mm7cOAYOHIhOp6N79+6UK1eOKVOmkJiYyLx585g3bx4AX3/9NePGjeODDz4gMzOTmjVr3rOl\nXAhR8jzIPiW/aYB89ykajYb+/fvTp08fdDodo0aNwsLCgt69e/POO+/Qp08fLCwsmDlzptGWgRDi\n0XgsSdUPP/wA5Fz1yRUcHKzfIQkhRGFoNBomTZpkMKx69er6/4OCgggKCjIYP378eMaPH5+nrmrV\nqun3TUKIp9OD7FPymwYK3qf06NGDHj16GAyztLTkiy++eJjQhRBPmMfWUiWEKN4SMlJZe+UE+yIu\n0b9UTWOHI4QQQgjxxJCkSghxV2nZmWwOP8Oma6dJz86inJXtvScSQgghhHiKSFIlhMhXttKx62Yo\nv18+TkJmGrbmlnSrVo8mFWpy5PBhY4cnhBBCCPHEkKRKCGFAKcXR6HDWhB3lVmoCpUzM6OBSl5aV\ntFhcOg4Rl40dohBCCCHEE0WSKiGEXmhCJKsvHSE0IRITNDSt8Cwdqrhhe/kk2cumkh1zHU1VN6ja\n1NihCiGEEEI8MUzuXUQUVnp6Os2bNwfg448/5ubNm8THx9OlSxcGDhxo5OjubsaMGbzwwgt8//33\n+m6n87Nz505WrlwJwIoVK8jKynpcIYoidCslgYWndvLJ0T8JTYjEy6kyH/q048XnGmBzbBvZ67+E\n2Jto3Bpj2ryPscMVoliSY4QoqWTbFkJaqorMe++9B8CBAweoUqUKs2fPNnJEd7dx40Z+++03Spcu\nfddyAQEB+v8XLVok7xcr5nJ79Nt54wI6FDVsy9Ktej2etXfWlzFxa4KKj8a0fhs0DuX+HRpunICN\nLCEjFTsLK2OHIUqAkn6MOHjwoBwjnlIlfdsGOf95GqVnZ3E1KfauZSSpekjJycm8/fbbJCYm4uLi\ngkajAaBfv36MHz+eKVOmEBkZydy5c+nWrRsTJkwgLS0NS0tLJk+eTFZWFkOHDsXBwYHAwEACAgKY\nOnUqSinKlCnDxx9/zMmTJ/nqq6+wsLDg6tWrtG/fniFDhnDjxg369u1LVlYWlpaWzJo1i8jISP73\nv/+RnZ1NbGwsEydOpF69erz77rtcuXKFtLQ0+vfvT6dOnfTzMHfuXCIiIhg8eDCvvfYaISEhfPbZ\nZ7Rq1QofHx8uXbqEk5MTc+bMISQkhEuXLlG1alWioqIYNWoUs2fP5oMPPuDmzZtERkbSvHlzRo4c\nyaZNm/j6668xMzOjXLlyzJo1y1irSdzhzh79ylvZ0sXFAy/n/7bhXBpre8xa9jdSpE+WLdfP0qWa\nl7HDEMXIozhGvPPOO1SsWPG+jxFhYWGMHz/eKMcI4IGOEXfuf8STS85/ZNsuqTKyswhPjuNyUjSX\nk2K5nBjNjZQEFIpBpbUFTleikqqfLx7mUNSV+54uPSOd1fvzv/LuXdaF7jXqFTjt8uXL0Wq1jBw5\nkmPHjrF37179OAsLC95//32WL1/O8OHDGTlyJP369aNp06bs2bOHTz/9lLfeeouoqCh++eUXzMzM\n6NmzJ9OmTaNmzZr8/PPPfPXVVzRu3JgbN27w+++/k56eTkBAAEOGDGHZsmUMGzaMJk2asGXLFs6c\nOUNsbCzvvPMOtWrVYu3ataxZs4ZatWrxzz//6Jutd+3aZTAPw4cPZ82aNXzzzTccvq1Xt/DwcH74\n4QfKly9P7969OX78OBqNBo1GQ/fu3Zk/fz6fffYZN27cwMvLix49epCenk5gYCAjR45k3bp1vPrq\nq7Rq1YqQkBCSkpLue92IRytbp+PvW6Gsva1Hv+5VPWgUE4FauxDV6mU0lQveYTzttl0/T5vKdbAy\nszB2KOIB7M2IYPX+Xx9pnY/jGBEfH8+GDRvu+xjxv//9jyFDhhjlGBEYGMi6devu+xhhayuvbHgQ\nD3r+AwWfA8n5z6M9/5Ft+8mUqcsmPDmWK4mx/yZRMVxPjkeH0pcpZWJGTbuyVLVxhLiC6ypRSZUx\nXL58mcDAQAA8PDwwNzfXj1NKodR/K+XcuXMsWrSIr776CkBftnLlypiZ5ayKixcvMnHiRACysrKo\nVq0aALVq1cLExAQrKyssLS0B9D9mgBYtWgDwzz//MH/+fCwtLUlOTsbGxgZra2vee+89PvjgA5KS\nknjhhRcKNW9lypShfPnyAFSsWJH09HT9fN3O3t6e48ePs2/fPmxsbMjIyADg3XffZdGiRfzwww/U\nqFGD559/vlDfKx69/Hr061i5Ni3jYzHZ8B0qIQpMzVBR10CSqgKlZWey/cYF2lSpY+xQRDHxKI4R\nzs7OD3SMCAsLk2OEKDJy/iPbdnGTpcvmWnI8l5NichKoxBiupcShu229mpuYUs3WiWq2jrjYOFLV\nxokKpW0x0eR0Q3Hw4MEC6y9RSVX3GvXuelWlIAcPHsTHx+eBvrNmzZocOXKEFi1acOrUKTIzM+9a\ndsCAAdSrV4+LFy9y4MABAExM/usvpHr16syYMYMKFSpw6NAhIiMjAfJtNn7mmWc4fvw4/v7+hISE\nkJKSws8//8yMGTOoWbMms2fP5vr160RGRnLy5Enmzp1Leno6zZo1o3Pnzgbfm597NVWbmJig0+lY\ns2YNdnZ2fPTRR1y+fNngQc4RI0bg6OjIhAkT2Lx5M1WqVLlrneLRy+nR7zChCVH6Hv06li6D1R9f\nQWIMmJph4tUck/pt0diUMXa4TzQrE1O2XDtDi2e0mJuYGjsccZ/8LMo98L7+QT2KY8Tt++L7OUbU\nrFmz2B0jOnfufNc6Rf4e9PwHHvwcSM5/ZNt+kumU4mpSrD55upwUw7XkOLKUTl/G3MSUqjaOOX+2\nTlS1caRCaTtMNQ/Wj1+JSqqMoXfv3owdO5Y+ffpQo0YNSpUqpR+X21Sc++McO3YsEydOJCMjg7S0\nNMaPH68vl2vixImMGTOG7OxsNBoNH3/8Mbdu3cr3B96nTx/mzp3L4MGD8fPzY8aMGWRkZDBy5Ejs\n7OyoUKECcXFxODs7ExkZSXBwMKampgwcODDPDiW3/tvjLUjueF9fXwYNGsSECRMYPXo0R44cwcLC\ngmrVqnHr1i08PDwYPHgw1tbWWFtbExQUxIULFx5gKYsHEafLYOGpnRyOvgqAl1NlulTzpEJpe1RG\nGlmASb3nMfFtg8bGwbjBFhPdNeb8kJnGnlsXaVrxOWOHI4oBYx4jxo4dy7vvvlusjhGi+JDzH9m2\nnyTJmRlcSIjgfHwEFxIiuZIaQ/bhc/rxZhoTKls75LQ+/ZtAVSptj+k9Euz7oVF3tmU+wR6mRckY\n9Ra1gwcPUqVKFaZPn84777yjb6p+khXHZV3cYk7MSOP3K8fZceM8CvLt0Q9AZWehMX2w6yrFbZk8\nCgcPHsTtzDpGuzyHg6U1H/l2eOCrWfnVXdyWp8T8+DxM3BEREUY5RhTlsi6u6/FhyPI0VBzPf6D4\nLusnMebEjDTO/5tEnYuP4FpynP4pKBONBkcscC1fmao2ObfyVSptj9kjuMPkbstDWqqKucWLFxMW\nFoZOp7t3YVGiZemy+ev6OdZdOUFqdiZOyoTBGlMq21XA9I6ECnjghOppZhpxha7V3FiZlsShqKvU\nd65q7JCEuCs5RoiSSrbtp0tceoo+gTofH8GN1AT9OHMTU56zL8dz9uWoZV+OGrZlOX7kKD7PPd5k\nUM6qirlx48YZOwRhZLmdUPx86TCRaUnYmZgyJFPhcmoX5pmpqGsXoIaHscMsMRpdPs2qyjXYePUU\nvmXzdkEvxJNEjhGipJJtu2SLSkvi/L8J1Pn4CCLS/utBupSJGbUdKlDr30Sqmq3TE/GcsyRVQhRj\nV5NiWXXxEGfjb2EKvJKlw/vCITRJcWSbmmPSoB0m3i2NHWaJoanhidmV0wRqfdiWHMvJ2BvUdaxk\n7LCEEEKIYkspRURaoj6BOhcfQUx6in68lak57o6Vclqi7MrhYuP4SJ+FelQkqRKiGIrPSOXXsGPs\nvhWKAtwdK9HdxR2nlTMgNRkTn9actKiEl19jY4daopg2CwZzS5rosth2+A82hp+SpEoIIYS4D0op\nbqYmcDbuVk4ilRBJfEaqfry1WSm8nCrrW6IqWzvouzR/kklSJUQxkqnLZsu1M6y/epL07Cwqlban\nRw1v6pSpCICu7WtobMugsXUk+y7vUhAPRvPvs2lVALcyFTkZe4OLCVHUsCtr3MCEEEKIJ1imLptz\n8bc4Fn2dE7HXiEpL1o+zM7fEt6yL/pmoCqXtMTHyrfUqIw3iIlDJ8ZhUdy/UNJJUCVEMKKU4FHWV\n1ZcOE52ejBMmdHu2Pk0q1DTogc6kUk0jRvl0aVO5Didjb7Ax/BRD6zQ1djhCiPuUlpbGmDFjiImJ\nwdramunTp+Po6GhQZuXKlaxYsQIzMzOGDh1Ks2bNCpzuyJEjfPzxx5iamtK4cWOGDx8OwNy5c9m+\nfTumpqa89957eHh4EBcXR+vWralVqxYALVu2pH///o99GQhRlOLSUzgRe51jMdc5E3uTdF0WAJam\n5viUdaFOmQo8Z1+Ocpa2Rn8+WWVlkr3lh5xEKu4WpCTmjDA1QzN8PppC3G4oSZWRzZkzB2dnZ4KD\ng/nxxx9xcXHBz8+PX3/9lR49evDLL79gb29P8+bNjR2qMJKwxGhWXTzEhYRIKqSn8m50JJUSYzD3\n74amGDSHl1TP2Zejuq0TR6LDuZEST8XS9sYOSZRAc+bMITU1FR8fHzlGPGI//fQTWq2W4cOHs379\nehYsWMD777+vHx8ZGckPP/zAmjVrSE9Pp3fv3jRq1KjA6T788EPmzp1LlSpVGDRoEKdPn0an03Hg\nwAFWrVrFjRs3GDFiBD///DOnTp2iY8eO+vc1PY3k/Kfk0SnF5aRojkdf53jsNa4kxerHlbeyw8Ox\nEu6Oz/CsnfNjeyZKpSXnJElxkai4CFRcBKYtX8rbA7KpGSr0MGSkg50TmqouaBzKgUM50GWDJFVP\nvtsz8759+wIQHh7Ozz//TI8ePejSpYuxQhNGFpueQkjYUfZGXMI+I53XYyJwvRaKRunQlK8GyfFg\nL7edGYtGo6FNFTcWnNrBxquneFnrb+yQRAkkx4iic+jQIV577TUAAgICmD9/vsH4Y8eO4e3tjbm5\nOebm5lStWpWzZ8/mO11SUhKZmZlUqVIFgCZNmrB7924sLCxo3Djn2daKFSuSnZ1NTEwMJ06c4MSJ\nE/Tr1w9HR0fGjx+Ps3PeV1+UZLJtlwypWZmcjrvBsZjrnIi5TmJmGgCmGhNqO1SgrmMlPByfoZyV\n7WOPLfO78RB7M++Ihh2gjOG7zTQaDWb9JkFpuwd+5YwkVQ8pKSmJ8ePHk5iYSEREBL179+aPP/6g\ndu3anD9/nqSkJL744gsqVarEzJkzOXnyJHFxcWi1WqZNmwb8t2Np3rw5GzZsYOHChVy4cIF58+ah\nlKJs2bIEBwfz0Ucfcfz4cTIzMxkxYgQODg5Mnz6dQ4cOAdChQwe5faAEyMjOYlP4aTaGnyJDl80L\ncTE8f+kEJtlZUKYCpo27oHnW2+hN5cag0+mYOHEi586dw9zcnKlTp+Li4qIfv3XrVubPn4+ZmRnd\nunWjR48e+nFHjx7l008/5YcffgDg9OnTfPjhh5iZmVGtWjWmTp16X8tUd/Mibjt+xqtcJfZFhvFC\nVQ8cLa0f3cyKEuFRHCNy3e8xokWLFnKM+NeqVatYsmSJwTAnJyesrXN+s9bW1iQmJhqMT05Oxtb2\nvxNBa2trkpKSSEpKyjNdcnIyNjY2BmWvXr1KqVKlcHBwyFNHzZo1cXd3x9/fn99//53Jkycze/bs\nRz7fRUnOf55et1ITOB5znWPR17iQEEm2ynlXmJ25JY3L16Cu4zPUcaiApZn5I/9ulZaEirqGiroG\nUddQUeGYth6ApkzeF0BryrmAQzl9i5PGoRwaB2ewy/8ChsbWMd/hhVXikqrMb97Jd7j5wP8VWN41\nPYPMIysLVf5OV65coX379rRs2ZKIiAj69u1L+fLl8fT05L333mPWrFmsXbuWPn36YG9vz+LFi9Hp\ndHTo0IFbt27lW+fQoUM5f/48r7/+OnPnzgXgzz//JC4ujlWrVpGQkMC3336LtbU1165dY+XKlWRl\nZdGnTx/8/Pz092iL4kWnFAciw/jl0lFiM1KwM7ekV01f/FOS0N28jKlfRzRujdE8Ae9iMJbNmzeT\nmZnJ8uXLOXr0KNOnT9dfXc7MzGT69OmsXr0aS0tLevfuTfPmzXFycuKrr77it99+058IAcybN4/h\nw4fTtGlT3n77bbZt20ZQUFDhg0lLgWvn6Gqi4Uj5Z/jz2hl61Xzy3jovDD3IMeJ+yt/JmMcIU1NT\nOUb8q0ePHgYXWQBGjBhBcnLOw/LJycnY2dkZjLexsdGPzy1ja2trMDx3Omtra4OySUlJ2NnZYW5u\nnqcOOzs7/Pz8sLKyAuD5558vVEJ18B6dD7nu+zHf4Wca9r1reVcg+bZpCyp/p7CwMFxdXalfvz6x\nsbF89NFHODk5YWtry/Dhw1m5ciWLFi2iZcuWJCYm8vrrr6PT6XjnnXfYvHkz169fJyUlhYMHD5KR\nkcHhw4dp0qQJhw8fxs/Pj9WrV5OSksLChQu5ePEi48aNIzk5mfXr1/Pss89y4sQJ3nnnHbKzs5k0\naRJ2dnb6lsIn2b3W45No/z//cFOXwpXsZK5kJxGvMvXjnE0sqWJqTVVTG8qalEKTqEElRnDycsQj\nj6PqyQ3YR18yGKbQEPrPbpIcXfKUP1r+tmNyNhCdDtHhQPgjjw1KYFL1uDk5OfH999+zadMmbGxs\nyMrKeQivdu3aQE5zf1RUFJaWlkRHRzN69GhKly5NSkqKvuydlFJ5hl26dAkvLy8A7OzsePPNN5k0\naRI+PjkbjJmZGZ6enly4cOGpPGAWd6EJkay6eIhLidGYaUxoU7kObau4YWlmjlIKk1c+RlMEV3yK\nm0OHDhEQEACAp6cnJ06c0I8LDQ3FxcVFf2XZx8eHAwcO0KZNG6pWrcrcuXMZO3asvnzt2rWJi4tD\nKUVycjLm5ve3fDVV3dCUr4bj1bNoy1bg75sXaO/iho255SOYU1FSGPMY8c0338gx4i68vb3ZsWMH\nHh4e7NixA19fX4PxHh4ezJo1i4yMDNLT0wkNDaVWrVr5TmdjY4O5uTlXr16lcuXK7Nq1i+HDh2Nq\nasqMGTMYOHAgN27cQCmFg4MDb731Fq1ataJt27bs2bOHunXr3jPe3HVZkDsvDt9rutzyGekZWJSy\nKPT35KpcuTKfffYZoaGh2NjYYGZmho2NDe3bt6dGjRqcP3+eqKgo/Pz82LVrF8uWLaN06dLodDpq\n167NmTNncHZ2xsfHBwsLC+rVq0dERAQ2Njb4+PiwZ88eypYtS0JCAs2bN9fH1bRpUyZNmsTzzz+v\nH9aoUSMsLCwKHbuxHDx48ImPMVd6dhZHoq/y14Xj3CCNtOyc/VEpEzO8HCvj7vgM7o6VsLeweqjv\nUUoH8VH/tj6Fo6KuYeLeFJOqdfKUzU6/irK1RlO2Mpqyz6ApWxnKVECbz/lRUS3ruyXFJS6pKuzV\nw9vLH3uIBf/tt9/i5eVF79692bt3L9u2bcu33I4dO7h58yazZs0iJiaGP//8U39gvPMAaWJigk6n\nMxhWs2ZNNmzYAEBiYiIjR47E39+fQ4cO8fLLL5OZmcnhw4fp2rXrA82HMI7otGR+CTvCPxFh1IuN\noHx1TzrWakBZy/9uI9FoNCAJFZBz9ff2W2xMTU3R6XSYmJiQlJSU51ad3Nt5WrVqRXi44ZWpqlWr\nMnnyZBYsWICdnR0NGjS4r1g0Gg0mDTuQ/dtcekXf4qNylfjr+jk6VvV4iDkURe1BjhEP41EcI+5U\n2GNEv379WLNmjRwjCtC7d2/eeecd+vTpg4WFBTNnzgTgu+++w8XFhebNm9O/f3/69OmDTqdj1KhR\nWFhYFDjdpEmTePvtt8nOzqZJkyZ4eOTsC3x9fenVqxc6nY4JEyYAMHr0aN577z2WLVuGtbU1U6ZM\neej5edBt+0HPgeT8p+TJVjrOxN1kX0QYR6LC9b31lbW0oVH5nE4mnrMvh/kjumMme/86dPvWQVaG\nwXDlXBnySapMG3V+JN9bVEpcUvW4BQUFMWXKFNavX4+trS1mZmZkZmbmeTbDw8OD+fPn07dvXzQa\nDS4uLkRE5DSN3lnWycmJzMxMPv30UywtLdFoNLRo0YI9e/bQp08fsrOzGT58OKVLlyY6Oprg4GAy\nMjJo166d/uqneLJlZGexIfwUm66e4tm4SMbfuEz5pDhMnKtjeltCJQzdeTtObkIFYGtrm+c2G3v7\ngnvkmzp1KsuWLaNmzZosXbqU6dOn6094CktTwxOcq+B89SxVy5Tjr+vnaFm5NpamkgSLHI/iGHGn\nwh4jAgIC2LdvnxwjCmBpackXX3yRZ/jLL7+s/z+/2wYLms7T05MVK1bkGT58+HB99+q5KleunOcZ\nr+JGzn9KBqUUl5Ni2B8RxoHIyyT829FEWUtrnnd2pXRkEi18/R/oOW6VloK6eRHMS2HyzHN5C1ja\n5Dzr9G+rk771yabMw86WUWhUQZfCHpHo6Gi6du3Kd999R/Xq1fXDjx07xv/+9z/9g4iffvopFhYW\nd6mpaJvyiktz7O2KY9xPe8xKKY7GXGNl6EFsom/Q/fpFqifEABo0rg0w9e+c8xDlI1CUy9pY63HT\npk389ddfTJs2jSNHjjB//ny+/PJLIOeZqg4dOrBy5UqsrKwIDg5m4cKFlCtXDsjpVWr06NH6k562\nbdvy7bffUqFCBf788082btzIp59+WuB3F9Tkbx8ZyjMXdvBXTV9+tbHA39wZd/OHe9hVCHF3xe04\n8rBK4v78YRTHmOHJijsqLYl9EWHsiwjjVmoCANZmpfB1dqFhuWrUsC2LRqO5r5hVcjzq4lF0N0JR\nNy5CzA0ANM96Y9ZxWJHNS36MkTMUaUtVZmYmEyZM0D+MmUspxYQJE5gzZw5VqlRh1apVXLt2zSDp\nEqKkiUhNZEXoQU7EXqdCWgpjzvwDgKa6R06Pfs5P/gO2xtayZUt27dpFcHAwANOmTWPt2rWkpKTQ\ns2dPxo0bx8CBA9HpdHTv3l2fUOW6/UrblClTeOuttzAzM8PCwoLJkyff8/vz25EqVQ9adKIpsGH/\nr5zRJNO3XnPM7uP2iCfpQFtYEvPjUxzjLuokQAhx/5Iy0zkYeYV9kWGEJkQCYG5iik9ZF/zKVadO\nmQr3dey6k4q5Qfbmf1tgzUuhqVIbTcUaaKq4Porwn3hFmlR98skn9O7dm0WLFhkMv3TpEg4ODnz7\n7becP3+ewMBASahEiZWRncWGq6fYGH6KLKXD1aE8wTV9MSntiKaqGyaVtcYOsdjQaDRMmjTJYNjt\n+46goKACe/CrXLkyy5cv13/28fHhp59+egQxmYB5KWyAJhVrsuXaWfZHXqZR+RoPXbcQQgjxMDKy\nszgWc419EWGciL2OTik0QG2HCjQoV416TlWwusdz20qng+hr6K6Hom6EQnoKZp1G5CmnqVAd0xb9\n0FSsAU7PoHlML/h9UhRZUrVmzRocHR1p0qQJixYtMngYMTY2lsOHDzNhwgRcXFwYPHgwdevWxc/P\nr6jCEeKxu/1Wv+j0ZBwsrOhewxvfsi45LSaN5aHakqblM7XZdv08G6+ewq9cdUyewneJCSGEMC6d\n0nE2LoL9kWEcirqi77mvinUZGpSrRn3nqpQpVfqe9aj0VGoc/ZWsPYshM/2/EaVKo7Iy0JgZPraj\nMS+FxiPwkc5LcVKkSZVGo2H37t2cOXOGcePGsWDBApycnHBwcMDFxYUaNXKu5AYEBHDixAlJqkSJ\nkXurX1z4WeqkJGBV73nau9SVDgxKuDKlStOwXDV237rIsehwvMrKLZ1CCCGKnlKK8OQ49kWEcSAy\njLiMVAAcS5WmWcVaNChXjWesHe5Ryx0sLDFPTwZbJzSVamBSoQaaijXBseJT1wpVGEWWVP34438v\nkuvXr5/+pXAAVapUISUlhStXruDi4sLBgwfp3r17oeotqnupi+s92sUx7pIcc5bScSQzhtDUG7S/\nFop/1A2URsPZCg04GXOsiKPMqzgu6+Ku1TNa/rl+nj/CT+HpVPmBekwSQgghCiMhI5Xdty6xL+IS\n11PiAShtZk6TCjVpWK46z9o553vXhNLpUDcvocJOoMKOY/p8fzTlDF+gq9FoOOfbC+/69/fKkafV\nY+tSXSll8ED51KlTGT16NEopvL29CQwsXHOh9P73n+IYd0mNOfdWv5Dz+/G4epY+Ny9jmZ0FTs9g\n1iwYD5fH39WrPCj++Km4W5T9dR6v2DqwyNSUc/ERaB3KGzssIYQQJcy15Dg2XzvD/ogwspQOM40J\nXk6V8StXnbqOlQp8l5Qu7AS6U7tRl09C2r+vITExRUVfy5NUAahH9E6qp8FjSap++OEHAP3tfgB+\nfuqZdmAAACAASURBVH6sWrXqcXy9EEXq9l79ul09T9CtqyhLa0wCe2Hi3hSN7JCeHjaOkJGK27VI\nbBwc2XD1pCRVQgghHgmdUpyMvc6Wa2c5HXcTgHJWtjSvpKWBczWsze/+aiIAdSsMdXY/2JRBU9cH\nk+p1c3rpK2V1z2nF3cnLf4V4QBnZWfxx9SSbwk/re/Xz1DbG5Mw+TBp0QGN574dARcmiMTPHxLcN\nbPuJ7nHRfGduwZWkGFxs5L1VQgghHkxGdhZ7I8LYcu0MN/99p5TWvjwtntHi7viMwe19KikOFXYC\nNBpM3BrnqcvErQkmNeuBUyW5Pf0Rk6RKiPuklOJodDgrLx4iOj2ZMhal6VHDG++yVXJ2UOWqGjtE\nYUQm7gHo9q/D+1ooK8uUZcPVUwyq3cTYYQkhhChm4jNS+ev6OXbcuEByVjqmGhP8ylWnxTNa/cU6\npdOhu3YOFXYCXdgJiLyaM3GZ8vkmVRobB7C5zw4rRKFIUiXEfYhITWTV+X04nf2H0vZO1H+uPm1d\n3KRXP6GnMbPAxLc17FhFp9golptZcCs1gfJWdsYOTQghRDFwNSmWzdfOcCDyMtlKh7WZBW2ruBFU\nqRb2FnfcppcQRfaqGTn/m5qhqeqGppobJlXrPva4n3b/Z+/eA6Kq8/+PP89cuM1wEQRvXBQVJBUM\nvAukZl62rNw0L7uYrdV3/S7Wfs3KLddyu0jtum5luvuzNjcyQctaddtuXiLvCCIiiILIzRsXRWYQ\nGGbm94cb6ySmlcMw8H78NXM+5/M5rzOWznvOOZ+PFFVC3IRGcxP/Lsmh7Og33Fdygi4NdTRq3ND1\nGuToaKINUkWOxnoik8CgCKz1F/my7Bi/7CuzJwkhhGiZxWrlSHU528rzya85B0AXdy/u7BHOiIBe\nuKhb/squ+ASgin0Axa8HSlA4ita1NWOLq0hRJcT3sFqtnGqqJe2bFO4szOZnl6qxKgpK1Bg8Rtzn\n6HiijVK0rmhm/I5Qq4WAg1vZe+4kk0MGXvsLoxBCiA6twdzE3nMn2XY6n/OXawGI8OnKnT3C6d+p\nO4rVgrU4l6bc3ahiJqLq2vOaMdRDJrVyatESKaqEuI4LDXV8UJBO3uVSXsreg85swhoUgXb0DJTO\nPRwdTzgBlaJifOBtvF9wgK/Kj/FAr9sdHUkIIUQbcKGhjp2nj5N2toC6pkY0ioqRXUK5s0c4gbpO\nWCvLsXzzIeZj+8B4Zf0pa6du0EJRJdoGKaqE+A6L1co3ZwrYdOoQ9eYmumn1WON+jto7AKVXpMyW\nI36Q4V16saXkCGlnTjApqD8emhtPeSuEEKJ9Kq6t5qvyYxysLMZiteKpdeXu4AGM7tYXr//czWA5\nuhvzF+9e6eDqgSpqDMptI1C69HJgcnEjUlQJcZUzdTUknzhA4aUKPDRaEvoOw63sAp1uH+zoaMJJ\naVVq7uwRzqaiLL7+T2ElhBCi47BarWRXl7OlvoQzWfkAdPPwZlyPcIYF9LpmoV6l5wCUXpGobhuJ\nEhqFopHJsJyBFFVCAE0WM58XH6Hi8HYKfbsQ4x/C9N4xeLu4k1Ge4eh4wsnFd+7JoWP72Faez53d\nw6/7wLEQQoj25VRtFRtOZlJ4qQKA2zp1Y1yPcCKazFhPZKAKCL2mj6LzRnP/460dVfxE8i+76PBO\nXqpkx8FPGZefQfd6I3d0D6eXrCskbhGrxYxm/cv8b72B3902hD3nTjK6e5ijYwnR4dXX1/PUU09R\nXV2NTqcjKSkJX1/bhbo3bNhAamoqGo2GefPmMXr06Ov2y8rK4pVXXkGtVjNq1CgSExObxykuLiYx\nMZEtW7YAUF1dzcKFC2loaCAgIIBly5bh5ubWqucv7OtCQx0fn8pi//lTAAzyCyTiYhNxJjOWT9/G\nfL4EAKVHGErIbQ5MKm4VlaMDCOEo9WYTH+XtouSfbzD7cBrd6o1YBsbRM3KMo6OJdkRRqVH1jsK9\n3sjI6nN8UZaH2WpxdCwhOrz169cTHh7OunXruP/++1m9erVNe0VFBcnJyaSkpPDOO++wfPlyGhsb\nr9vv+eefZ/ny5axfv57s7Gzy8vIA+OSTT1iwYAEXLlxoHnvVqlXce++9rFu3joiICFJSUlrvxIVd\n1ZtNbC7O5vcHt7D//CmCdJ1YMPBOHqs8y4gDKVh2pkBlOUroINT3zEMJlB/Z2gspqkSHdKS6nFXf\npDD6q3WMqjxNY6euaKb/DtdxD6G4eTg6nmhnVDETQK3l7nNlXLhcS0ZFiaMjCdHhZWZmEh8fD0Bc\nXBx79+61ac/OziY6OhqtVoteryckJIT8/PwW+xkMBkwmE0FBQQDExsayZ88eAHx8fHj//fevOXZc\nXBwA8fHx1xxbOB+L1cqecydZcnAr/yrJwUPjwkNhw3n29gmE+3RB6RxEg0cnVHdMR/PoH9Hcl4iq\nbwyK3A7ebsifpOhQLjXWs+FkBukVxWhUKsxefnDbSDyix8tfbMJuFJ03qoFx6LK2M6z6HJ+V5jLE\nP0RmkhSilWzcuJH33nvPZpufnx86nQ4AnU5HbW2tTbvRaMTT07P5vU6nw2AwYDAYrulnNBrR6/U2\n+5aWlgIwevToa/IYDIbmsVs6tnAuxy+eY8PJTEqNF9Cq1NwdNIDxQRG4qf87wYQSMZwTdVpiomXi\nq/ZKvkWKDsFqtbLvfBEbT2ZibGqkl6cfCX2H4R83E0WRC7bC/lSDJ2I5ksbk82Us9utCzoXTDPSV\n9c6EaA3Tpk1j2rRpNtvmz5+P0WgErhRQXl5eNu16vb65/dt9PD09bbZ/20+n09nsazAYrhnvu2Mb\nDAZ8fX1bPLZwDucv1/JR0SGyqsoAGO/mzcSqs3gE9kNR287YpygKyA9p7ZoUVaLdq6w3sDF3F1nG\nalxVGqaHxjC6e19UUkyJVqR4+qIa9XPMHnosFUV8VporRZUQDhQdHU1aWhqRkZGkpaUxeLDtFYTI\nyEhWrFhBY2MjDQ0NFBYWEhYW1mI/vV6PVqultLSUwMBAdu/ebTNRRUvH/vrrr5kyZUqLx25JRob9\nZqK159j24sjMDVYzh0xV5DRdwAL0bzAx5XQpXapOoQAnLR5c7NLys1LyWbee1s4tRZVot8xWC2lF\nWWj2fMK0i5WoRt3L1Ig4/Nx0jo4mOih1zHgCgIGWRo5Un6ag5jx9vAMcHUuIDmnmzJk888wzzJo1\nCxcXF5YvXw7A2rVrCQ4OZuzYscyePZtZs2ZhsVhYsGABLi4u1+23dOlSFi5ciNlsJjY2lsjIyOse\ne968eTzzzDNs2LABX1/f5jG+T0xMzK058e/IyMiw29j24qjMZquFtDMFbCk+grGpgb4WK7OrztOp\nOBewogSEoBpxH6G9BrZ4e7d81q3HXrm/r1CTokq0S6W11WTs2kh8QRaeTSbqfAJ4NCQKlRRUog2Y\nGHgbR6pP81lZLolSVAnhEG5ubrz++uvXbJ8zZ07z65ZuG7xev6ioKFJTU697vF27djW/9vPz4+23\n3/4RqYWj5FSf5sOTmZy5fAk3tYYpPQdxp8kEmW9CQDDq4fdeWahXbvHrsKSoEu1Ko7mJHXm76LHv\nX9xde4EmtYamkffjNXiiTETRDlgsFl544QWOHz+OVqvl5ZdfJjg4uLl9+/btrFq1Co1GwwMPPGDz\nZejw4cP86U9/Ijk5GYCqqioWL15MbW0tZrOZ1157rXnmLnvr4x1Aby9/jlSfptx4sVWOKYQQ4oc7\nbbzIxqJD5F44g4JCXNc+3BsyEC8Xd6xWK9YHnkQJ6ifFlJCiSrQfxy+eI7ngAJ7nSxlbewFDYF98\nxs9F8e7s6GjiFvnqq68wmUykpKRw+PBhkpKSWLVqFQAmk4mkpCQ++ugj3NzcmDlzJmPHjsXPz481\na9awefPm5hm7AP74xz9y3333MXHiRPbv38/JkydbraiCK1er3sr9ms/LconCtdWOK4QQ4sZqG+vZ\nXJzNN2cL8as3MsgvkMnhwwjUdWreR1EUlOAIB6YUbYkUVcLpXW4y8WFRJrvOFqKgMDB8GOZB4/Hp\n1lt+OWpnrl7bJSoqipycnOa2wsJCgoODm6cpjomJIT09nYkTJxISEsLKlSt5+umnm/c/dOgQ/fr1\n4+GHH6ZHjx4899xzrXou/T28uediFZ9aIdQ9tFWPLYQQomUmi5ntp/P5tOQourpL/Op8OYPOl6Ea\n4ovmqoJKiO+Soko4tRM153k3fy9VDUZ6ePiQEDaUXp5yZaq9MhgMNmvBqNVqLBYLKpXKZt0XsF37\nZfz48ZSVldmMVV5ejre3N++++y5vvfUWa9as4fHHH2+dEwGsO9czseAwhX2j2K/xZHSrHVkIIURL\nDleVseFkBuaaSqadK2VIxWlUVgv4dkPVpaej44k2Tooq4ZRMFjNph76g8uRhqruGMCmoP/cED0Cj\nUjs6mrCj764b821BBeDp6XnNmjLe3t7XHcvHx4exY8cCMHbsWFasWHHD49/K6VndPIIJYz/3ninh\nVS9fNu7fSajG88Yd2xBnnGbXGTODc+Z2xsyiY2qymNlUlMW20/n4mhp44eh+1BYLdOqKevhklLAh\nKCpZhkV8PymqhNMpv1RJwZfvEluSDygMGzmFnj3CHR1LtILo6Gh27NjBpEmTyMrKIjz8v3/uoaGh\nFBcXU1NTg7u7O+np6cydO/d7x9q5cyf33XcfBw4coG/fvjc8/q2enrXp4nGCTh4movYi+13cmBQ5\nHL3W7ZYew16ccZpdZ8wMzpnbnpmlWBO3UlW9kTXHdlFUW0U3dy8ejY5Fq7ihdOmJ0m+YFFPipklR\nJZyGxWphb+4uuu/axMg6AwZ3T9wnPSIFVQdy1113sXv3bmbMmAHAsmXL2Lp1K3V1dTz44IMsWrSI\nuXPnYrFYmDp1KgEBttOVX/2M3aJFi1i8eDHr16/Hy8vrptaJudXUwyfTdDKb2cUneF7nxfqCgzwa\nEdvqOYQQoiPKrirn3eN7qWtqZKh/T37Rdwhuai2MmenoaMIJSVElnEJlvYFvdn/IxCO70VitXOwb\nTefxv0JxcY5f9cWtoSgKS5cutdnWq1ev5tdjxoxhzJgxLfYNDAwkJSWl+X337t35+9//bp+gN0np\n0hNVzHg8Mz5nTGMjn1eWEFNZQnTn4Bt3FkII8aOYLRY+KT7MgZOHaHT1IKHvUEZ1kcmtxE8jRZVo\n06xWK3vPF5FaeBCNAsP1PnjFT8c/bLCjowlxS6hG3s/xJndGDo9nW+anfFBwkDDvAKe5DVAIIZzJ\nhYY63s1NIyLvAC+cL+PifYl069rH0bFEO2D3G0Wrqqq44447KCoqarH997//vUNuuxFtX21jPX/N\n+4Z/HN8HwNT+8XT51avopKAS7Yii0VLn3Y2uHl7c1zOKWlM96wsOOjqWEEK0O7kXzrBm9wam7P+M\ncedKUHt3pquHl6NjiXbCrleqTCYTS5Yswd3dvcX2lJQUTpw4wdChQ+0ZQzih7MoykgsOcMlUT1+v\nAOaED6ezm/7GHYVwYuN6hJNZWcLByhJiKkuJ7tx6ixELIUR7ZbFa2Fp8BMPBz/hNWSEuVgvKgHg0\no6ejaGXxdXFr2PVK1WuvvcbMmTPx9/e/pi0zM5Ps7GymT5+O1Wq1ZwzhROqbGvlmx/tY//kG9aZ6\nHuh1Owsix0pBJToElaJiTthwNIqKDwrSMZjqHR1JCCGcWk3jZf5yZAdpJzO553QRald31Pf+Bs1d\ns6WgEreU3YqqTZs24evrS2zslZmsri6czp8/z1tvvcWSJUukoBLNis4Vkf/BiwzP2klv4yUWB0cx\nPjAClSLTmYqOo6uHN7P1nbHWXSKlUKaOFkKIHyv/4jleyvw3+TXnCO0Simbyb3Cd/QdUvW93dDTR\nDtnt9r9NmzahKAp79uzh2LFjLFq0iNWrV+Pn58fnn3/OhQsXePTRR6msrKS+vp7evXtz//332yuO\naMOaLGbS9/2T8IwvCWwyUeXXHb/Jv0HfqYujownR6ixlx4nekYpn5+68rtES0zmY2+U2QCGEuGkW\nq5XPSnPZXJyNosDUXrczrkc/md1P2JXdiqr333+/+XVCQgJ/+MMf8PPza36fkJAAwMcff8zJkydv\nuqCy16J/zrqYoDPmvjpztaWBkvPZzD5+EJOi4ljPwTQGDab8ZBlQ5riQ3+GMnzM4b+6OTOnRB6VH\nX/qWH2e4pw/rCtLp6x2AXm5TEUKIGzKY6vk44zN2NxrxcdXxaMQoentd+xiKELdaq02pbrVabRbp\nvNoP+eXAHiu0O+Nq9eCcub/NbLFa2X46n0+KTmD29GRYzwH0GfVzBga0vfV5nPFzBvvmlmLNfhRF\nhXrCwzQlv8D0sgKWenqTWniQuf1GOTqaEEK0aQUXznJiWzLTSo8TGB7NkBEPyPIUotW0SlGVnJwM\nQGho6DVtU6ZMaY0Iog2pbjCyNn8f+TXn8NS68su+sQzwC3R0LCHaDMXbH/Ud0+Gr93iktJA/aV2J\n6RzMILkNUAghrmG1Wvnm+H4C0jYyzlBDvbue+AGjUUtBJVqRLP4rWo3VauVUfQXJGSe5bDYR5duD\nX/YdhpeL/KUnxHcpA+JQCjIJPnuKAFMj6wrS6SO3AQohhA1jYwN7vl7HsNz9uFvMGHoOxGfSIyhu\nOkdHEx2MFFWiVdQ31pPz2RruPHWUwwNHMjViJKO69JaHRoW4DkVRUI9/GLWiEFtVxqZTWaQWZjC3\n30hHRxOiXaivr+epp56iuroanU5HUlISvr6+Nvts2LCB1NRUNBoN8+bNY/To0dftl5WVxSuvvIJa\nrWbUqFEkJiY2j1NcXExiYiJbtmwB4OLFi0yYMIGwsDAA7rrrLmbPnt16J99OnKqtYk3uNzxUlINa\nUWgcl4DPgHj5biEcQooqYXenz5/CuHU1UTVVXHBx57e9h+DbtY+jYwnR5ik6bwDGufcjs6qUAxWn\niPEPZpDcLivET7Z+/XrCw8NJTEzk008/ZfXq1Tz33HPN7RUVFSQnJ7Np0yYaGhqYOXMmI0eOvG6/\n559/npUrVxIUFMRjjz1GXl4eERERfPLJJyQnJ3PhwoXmsXNzc5k8eTKLFy92xKk7PavVyo7T+Ww8\neQiL1UJJ7BR6dw9H7RPg6GiiA5MFgIRdHcnahlvqa/SsqeJ0t1BKY2bgGxzh6FhCOBW1ouKhvlcW\nBV534gBGU4OjIwnh9DIzM4mPjwcgLi6OvXv32rRnZ2cTHR2NVqtFr9cTEhJCfn5+i/0MBgMmk4mg\noCvPPcbGxrJnzx4AfHx8bGZEBsjJySEnJ4eEhASeeOIJKioq7H267cblJhPbGs+QUpiBh0bL4wPG\nMO62OCmohMPJlSphF43mJj45+jX37ExBAc4OmUjwqAeozMx0dDQhnFJ3nTeTQwby8anDpJ7M4Ffh\nchugEDdr48aNvPfeezbb/Pz80OmuPHej0+mora21aTcajXh6eja/1+l0GAwGDAbDNf2MRiN6vd5m\n39LSUgBGjx59TZ7evXszcOBARowYwZYtW3jxxRd54403bsm5tmcNDZdZlbuTk+Za+nj580i/UXRy\n9XB0LCEAKaqEHZyru8Tf8nZRXncRt7Bo4vrHExTS39GxhHB647qH0XQkjU8tJ4npHEyU3AYoxE2Z\nNm0a06ZNs9k2f/58jEYjcKWA8vLysmnX6/XN7d/u4+npabP92346nc5mX4PBcM14Vxs+fDju7u4A\njBs37qYKKnsuZeEMy2RYzE3ojm7mTosJwkcSb+rEyZw8R8f6wZzhs/4uZ8wMrZ9biipxSx2sKOa9\nE/tpMDdxR7e+TBoVjValdnQsIdoFJeMLJuRnQPdevO96gD5e/uhkNkAhfpTo6GjS0tKIjIwkLS2N\nwYMH27RHRkayYsUKGhsbaWhooLCwkLCwsBb76fV6tFotpaWlBAYGsnv3bpuJKr5r8eLFjB8/nkmT\nJrF3714GDBhww7z2XHewra/FaDabOJmaRM+L5yj168YdLl2v+fNyBs7wWX+XM2YG++X+vkJNiipx\nS5jMTXxYlMXOM8dxVWmYGz6SoQE9HR1LiHZFFTUWy5E07jpzisPefmw4mcHDchugED/KzJkzeeaZ\nZ5g1axYuLi4sX74cgLVr1xIcHMzYsWOZPXs2s2bNwmKxsGDBAlxcXK7bb+nSpSxcuBCz2UxsbCyR\nkZHXPfaTTz7Js88+ywcffIBOp+Oll15qlXN2RhazmVMf/ome54op9Qkg8MHfceGo812hEu2fFFXi\nJ6u+cI6KzW9S6RtA9+69+Z+IWLp6eDs6lhDtjuLqjnr8w/Dhn5hbnM9L7jqi5TZAIX4UNzc3Xn/9\n9Wu2z5kzp/l1S7cNXq9fVFQUqamp1z3erl27ml8HBgZe84yXuJbVauHUJysIPl1ImZcfXacvwsVN\nnqESbZMUVeInKTi2F+9t6whtrGeiqwfBgybgqpb/rISwF1VQP6yD7sQvaxv3lZ/kfVed3AYohGiX\ntpUcpfPF85TrffCb/gweHtd/Tk0IR5Mp1cWP0mQxc/jLdwn87O94NdZTGhlP7wefkYJKiFagiv05\ndOrCQCsYGurYcFJm1RRCtC+7zhayseQIG24biv7Bp/HS+964kxAOJN+AxQ9W03iZgk9eJ7K8gFqt\nK6bxDxMa5nwPjArhrBStK5qpT9HZQ0/Q4a/Yd76I6M5BchugEKJdyKws4f0TB9BpXEmMHEdnnTxS\nINo+uVIlfpBjF8/yYua/+dLTmzK/7rjPXkoXKahEK7FYLCxZsoQZM2aQkJBASUmJTfv27duZOnUq\nM2bMYOPGjTZthw8fJiEh4Zoxt2zZwowZM+ya2x4UvQ8alYaHwv6zKHBBOkZTo6NjCSHET5J74Qzv\nHNuDi1rN4wNG010KKuEk5EqVuCkWq5V/lx5lS/ERFAUmRo6hZ/dwFEVxdDTRgXz11VeYTCZSUlI4\nfPgwSUlJrFq1CgCTyURSUhIfffQRbm5uzJw5k7Fjx+Ln58eaNWvYvHlz84Kd38rNzeWjjz5yxKnc\nMj10PtwdPJB/Fh/+z2yAIxwdSQghfpSzh77indoKUCn8723x9PT0c3QkIW6aXKkSN2Qw1bPy6E42\nF2fj4+LOwshxjOvRTwoq0eoyMzOJi4sDrsy0lZOT09xWWFhIcHAwnp6eaLVaYmJiSE9PByAkJISV\nK1ditVqb979w4QIrVqzg2WeftdnujCYERRCi92Xf+SKyq8odHUcIIX6wC3s+xm9nClNOHeXRfqPo\n59PV0ZGE+EGkqBLfq6ToMNu3vsXRC2fo36kbi6Mn0tvL39GxRAdlMBjQ6/XN79VqNRaLpbnN09Oz\nuU2n01FbWwvA+PHjUav/uwi12WzmueeeY9GiRXh4OP/0vGpFxcM9Ihh3tpT3Cw7IbYBCCKdy6cC/\n0O//F9UurriN+jmDOgc5OpIQP5jc/idaZLFYyNu1kV6Z25hgteDVdwjx/eNQydUp4UB6vR6j0dj8\n3mKxoFJd+W3I09PTps1oNOLt3fK9+EePHqWkpIQXXniBxsZGCgoKWLZsGb/73e++9/jft5L6T/VT\nx+6Z8y/ury6hysWF1elfMMa12y1Kdn32/DzsxRkzg3PmdsbMovUZM7/EfffH1GhdKLjzl4zqHe3o\nSEL8KFJUiWtcrrvEqc1vEnamiDqNlsrRv2T0gHhHxxKC6OhoduzYwaRJk8jKyiI8PLy5LTQ0lOLi\nYmpqanB3dyc9PZ25c+e2OE5kZCRbt24FoLy8nAULFtywoAKIiYm5NSfyHRkZGT95bGtoIE3vL2VW\nyQle1Pvg0u92Bvr2uEUJr3UrMrc2Z8wMzpnbnpmlWGs/6gqycPk6lUsaLVnx0xjXT54JFc5Liiph\n42z5Caxb3qLPZQNnvP3wue9xgv3s98VMiB/irrvuYvfu3c2z9S1btoytW7dSV1fHgw8+yKJFi5g7\ndy4Wi4WpU6cSEBBg07+l5wCtVmu7eD5Q6dQFVdxU3Hd8wC+K83lf582SmHvQaV0cHU0IIa7RYG5i\nde0Zhvh149KAUdw9cLSjIwnxk0hRJZodqS5nfcE+5pubKOwziD6THkOjkS9kou1QFIWlS5fabOvV\nq1fz6zFjxjBmzJgW+wYGBpKSknLT252RKmo01oJD9C/NI+L0STb6ZjInbLijYwkhhI0mi5m/5n3D\nccMFvIdO5FfhI9vFj1uiY7vhRBVms7k1cggHslqtbCs/xltH07ikceHslCfoNzlRCiohnIyiqFBP\neBjcdPRQa9h77iS7zhY4OpYQQjSzWC38PX8vuRfOMKBTdx4OGyHPa4t24YZF1QMPPNAaOYSDmK0W\n1hceZMPJTDy1rjwZeSe3d+/r6FhCiB9J8fRF86skIsf/Cr3GlfdPpHO4qszRsYQQAovFwgcFB8mo\nLKGPlz//ExGLWiUTUYv24Yb/JXfu3Jn09HQaG2WK3vbmct0l3sreztdnThCo8+F3gybQy7Ozo2MJ\nIX4ixdWdLu5eJPa/A61KxZpjuym8VOHoWEKIDsxSkseZ9S9xoPwYQbpOJPa/Axe1PIUi2o8b/tec\nk5NDQkKCzTZFUcjLy7NbKGF/VeeKqf/kL/TTe6MaNJpHwkfhptE6OpYQ4hbq5dWZxyJiWXU0jbeO\nfs1TUXfRzaPlaeaFEMJeLGXHafzkdTpZzAzoGsyMAWNwl0cMRDtzw6Jq3759rZFDtKLSEwfRff53\nAkyNXOrSkzsjYlGr5NciIdqjgb49+GXfoWzM28UbOTt4Omo8nVydf8FjIYRzsJwupPHjv2C1mEkJ\nj+GBUdPwcnFzdCwhbrkbfpOuq6tj5cqV7Nu3j6amJoYPH85vf/tbPDzkH2VndGL/Vnrs3YzKauVk\nzF1ExE93dCQhhJ2NMJm4/egB/hHUlzfVO1kYNQ4P+ZVYCGFnlrNFNG76MzSZ+CBsED+7YyZ+bjpH\nxxLCLm74TNWLL75IfX09r7zyCq+++iomk4nnn3++NbKJW8hqtZLxTSo993xCk0rF2bsSCJeCVPTj\ndAAAIABJREFUSogOQXFxR6soPHwqF93Zk6zOTcNkkZldhRD2VX3wMxRTAx/0GcCd8TPk9mPRrt3U\nM1Vbtmxpfv/8888zadKkmz5AVVUVP//5z1m7dq3NejJbt27lvffeQ61WExYWxgsvvCBrFNiJyWLm\nH8f3kdNUz2M+/viNm0PPoHBHxxJCtBKlSwjqyb+BT17n14VH+bNGy9+1rjzabxQqRWbeEh1TfX09\nTz31FNXV1eh0OpKSkvD19bXZZ8OGDaSmpqLRaJg3bx6jR4++br+srCxeeeUV1Go1o0aNIjExEYBX\nX32VQ4cO0dTUxPTp05k2bRrV1dUsXLiQhoYGAgICWLZsGW5u7euWuJOXKnnDpxPB4TH8bOQUenr6\nOTqSEHZ1U/+a1tTU2LzWaG7u+RuTycSSJUtwd3e32V5fX8/rr79OcnIy69evx2AwsGPHjh8QW9ys\nS431/Dl7G+kVxXT37UbQL56nixRUQnQ4quAI1BMfwcXcxOMnsikpyye1MBOr1eroaEI4xPr16wkP\nD2fdunXcf//9rF692qa9oqKC5ORkUlJSeOedd1i+fDmNjY3X7ff888+zfPly1q9fT3Z2Nnl5eezb\nt4+ysjJSUlL44IMPWLNmDZcuXWLVqlXce++9rFu3joiIiHazAPm3KusNvHl0Jw1WK2OHTaafT1dH\nRxLC7m5YVM2ZM4dp06aRlJTEsmXLmDp1KrNnz76pwV977TVmzpyJv7+/zXZXV1dSU1NxdXUFoKmp\nqd39QtMWnDZeJCnrc07WVjLUP4T/G3gnnvJwqBAdlipsMKqxs3A3NzHAYmXnmeN8Xpbr6FhCOERm\nZibx8fEAxMXFsXfvXpv27OxsoqOj0Wq16PV6QkJCyM/Pb7GfwWDAZDIRFBQEQGxsLHv27CE6OpqX\nX365eUyz2YxGoyEzM5O4uDgA4uPjrzm2s0stzKCuqZGZfQYzyC/Q0XGEaBU3vOT0wAMPMGDAAA4e\nPIjFYmHlypWEh9/4SsemTZvw9fUlNjaWv/3tbza/hiqK0nyJPTk5mcuXLzNy5MifcBriuwqP7eWt\nyhKMVjOTgwdyd/AAub1SCIE6agyqkAFMdNdx+PAXfHzqMF4u7ozsEuroaELYzcaNG3nvvfdstvn5\n+aHTXZk0QafTUVtba9NuNBrx9PRsfq/T6TAYDBgMhmv6GY1G9Hq9zb6lpaW4uLjg4uKCyWRi0aJF\nTJ8+HQ8PDwwGQ/PYLR3bmR2uKiO7upww7wDiuvZxdBwhWs11i6qPP/7Y5kv4t7P95ebmkpeXx/33\n3/+9A2/atAlFUdizZw/Hjh1j0aJFrF69Gj+/K/fUWiwW/vjHP1JcXMybb75504EzMjJuet8fwl7j\n2ts1ua1WTKUHuP1UJvf69+Bc39F0q2wkszLTMQFb4IyftTNmBufNLexL8fGnE/DEgDG8dvhLko/v\nx0vrxgDf7o6OJoRdTJs2jWnTptlsmz9/PkajEbhSQHl5edm06/X65vZv9/H09LTZ/m0/nU5ns6/B\nYGger6amhieeeIJhw4bx2GOPNY9tMBjw9fVt8dgtseff57dqbJ/yI2zRqVBcNEQ1eJCZab/vHs76\n75sz5nbGzND6ua9bVO3fv/97r2zcqKh6//33m18nJCTwhz/8obmgAliyZAmurq689dZbP+gKSkxM\nzE3ve7MyMjLsMq69fTe32WzixOaV9D51lFqtC72H38voPm3rvJzxs3bGzGDf3M76F6yw1c3Dm8T+\nd7DiyHb+lvcNCyLvpJdnZ0fHEqJVREdHk5aWRmRkJGlpaQwePNimPTIykhUrVtDY2EhDQwOFhYWE\nhYW12E+v16PVaiktLSUwMJDdu3eTmJhIfX09c+bMYe7cudxzzz02x/7666+ZMmVKi8duiT3/Pr8V\nY1vKjmNO28WDOi+OjPsl40Kjb0G6lsm/y63HGTOD/XJ/3/ef6xZVSUlJ1+10+fLlHxzCarWydetW\n6urqGDBgAB999BGDBw9ufj7roYceYty4cT94XHFFvbGG0x/9id5VZzin88J9yv8R5B/k6FhCiDau\nt5c/j/QbxUeZn7PyyE6eHjSeLh43/tVcCGc3c+ZMnnnmGWbNmoWLiwvLly8HYO3atQQHBzN27Fhm\nz57NrFmzsFgsLFiwABcXl+v2W7p0KQsXLsRsNhMbG0tkZCRr166lrKyM1NRUUlNTgSvfr+bNm8cz\nzzzDhg0b8PX1bR7DWVmbTDR++Q8U4IvQgTwSMtDRkYRodTd8puqzzz7jrbfe4vLly1gsFiwWC/X1\n9ezbt++mD5KcnAxAaOh/79nPy8v7EXFFS6rrjRz71yqGVJ3hVOceBD7wJO7ypUgIcZMi6wxE5KXz\neUAgb2i1PB01Hm8X9xt3FMKJubm58frrr1+zfc6cOc2vW7pt8Hr9oqKimgunq8e6eryrvf322z88\ndBtlOfgZ6ovnSPPvwchB43BTax0dSYhWd8Oi6o9//CMvvfQSa9eu5de//jW7du2iurq6NbKJm1BU\nW8mqo2nUB/TAxdufQePmoFHf3JT3QggBoPh2Q6XvxKQzpzBotLypduHJyHG4a+SLkRDi+1mrz9K0\nfyuXtC6c6D+S/5HZ/kQHdcMp1b29vRkxYgRRUVHU1tYyf/58srKyWiObuIGTTbUsz95GramBKX2H\nMXjCI1JQCSF+MEXnjebnC8DDi6mlJ/AvPcZf89JospgdHU0I0cY1ni7AYrWyKbgfP+83UmYaFh3W\ndYuqixcvAlcucxcVFREaGsqBAwdobGzEYDC0WkBxLavVyqclOXzVeBqVovCb/vGM7SEL+gohfjzF\nxx/NlN+iuLjxUFEeFOex9vg+LLI4sBDie2z28OCFgcPpHnkHAe6eN+4gRDt13aJqwoQJPPHEE4wc\nOZIVK1YwduxY9u7dy8iRI2VCCQcym81kfPkunxYdQq9oeCZqPAN9ezg6lhCiHVACglHfm4jKxY1A\ndz3pFcV8WNR2lmMQQrQt5caLbC/PR+PVmQlB/R0dRwiHuu69Yjt27OCLL75g8+bNnDp1itWrV/OX\nv/wFLy8vvL29WzOj+A+z2cTJj5YTVV7AjB59sIaOoYfOx9GxhBDtiCqoH9q5SfxMpebo4S/ZVp5P\nJxcP7gqMcHQ0IUQbYrVa+aAgHQtWZvSOwUUePxAd3HWvVHl4eHD//ffz97//nfXr16PT6UhMTOTx\nxx9n8+bNrZlRAE1NjRSlJtGzvIByL18G/ex/8FDkLzAhxK2nuHqg07ry+IAx+Li482HRIQ6cP+Xo\nWEKINmTf+SIKLlUwyC9Q7pgRgpuYqAKgS5cuPPLII/ztb38jJCSEZ5991t65xFVMjZcpWf8yIeeK\nKfXxJ2DmYvT6To6OJUSrs1gsLFmyhBkzZpCQkEBJSYlN+/bt25k6dSozZsxg48aNNm2HDx8mISGh\n+X1eXh6/+MUvSEhIYO7cuVRVVbXKOTgTXzcdjw8Yg7tay9rj+8i9cMbRkYQQDmY1NVBXcIiPig7h\nolIzPdT5FoYVwh5uWFTV1NSQmppKQkICc+bMoUePHmzbtq01sgmg0dxE+r/XEFRZzim/bnSftRgP\nWYNKdFBfffUVJpOJlJQUFi5caLNIuclkIikpiXfffZfk5GRSU1ObC6U1a9awePFiTCZT8/6vvPIK\nv//970lOTmb8+PGsWbOm1c/HGfTQ+fC//e+gl+Eibx/dSYlBltQQoiOz7NuCdstbRJw5xd3BA/F1\n0zk6khBtwnXvH/vXv/7Fli1bOHToEGPHjuWJJ55g8ODBrZmtw6s3m1h1NI1CH18sfaIYOv4RXFxl\nQU7RcWVmZhIXFwdcWWgzJyenua2wsJDg4GA8Pa/MPhUTE0N6ejoTJ04kJCSElStX8vTTTzfvv2LF\nCjp37gxAU1MTrq6urXgmzqWPoYbH8zPJ8fLlLbWWhYMmOjqSEMIBrBWlmDO+oNrFjbPde/OQzDws\nRLPrFlXr1q3jgQceYPny5eh08itEa7vc1MibR3dSeKmSQf7BDIubiValdnQsIRzKYDCg1+ub36vV\naiwWCyqVCoPB0FxQAeh0OmprawEYP348ZWVlNmN9W1BlZmaybt061q1b1wpn4JyULj1RB4YTWZKH\n8cRh3lBrmaDq6uhYQohWZLVYaPryHyhWCykh4UwNH4FGvpcI0ey6RdUHH3zQmjnEVQymBl7P2UGJ\noZoh/iE8HDYCteqmHn8Tol3T6/UYjcbm998WVACenp42bUaj8YYzlX766af89a9/5f/9v/9Hp07y\nnOL1KBot6sm/wfzhnxhx7hS1hdl8GtRE/4aBdHL1cHQ8IUQrsGTvhHOnOOjbBc8+MYT7dHF0JCHa\nFJk+ro25VH2GVScOUNJoZFSXUH7ZdygqRQoqIQCio6PZsWMHkyZNIisri/Dw/956EhoaSnFxMTU1\nNbi7u5Oens7cuXOvO9Y///lPNmzYQHJy8k0vE5GRkfGTz8ERY98q6l6j6XPpY8afLeaiiyt/SN/K\nRNcedFa5OTraTXOGz7klzpjbGTOLllmtFpqOpFGv1rC1ZwRPh97u6EhCtDlSVLUhF8+X0Pjhn5js\n4sKR+Kk82HcYKkVxdCwh2oy77rqL3bt3M2PGDACWLVvG1q1bqaur48EHH2TRokXMnTsXi8XC1KlT\nCQgIsOmv/Of/J7PZzCuvvEL37t1JTEwEYOjQocyfP/97jx8TY59ZrjIyMuw29q1mva0fTR/+CS/P\nQC5bm9jaWMYj/UYR5Rfo6Gg35Eyf89WcMbc9M0ux1voURcWGweMoPZXDnX2G4O0iz3cL8V1SVLUR\n1WcKsW5aQafGes6GDuTBPkOloBLiOxRFYenSpTbbevXq1fx6zJgxjBkzpsW+gYGBpKSkAFeexdq/\nf7/9grZjindnNA+9SPfD2fw6JIB38vewOjeNqaHR3Nk9vLlwFUK0HwU159lVWUJQlxDu6N7X0XGE\naJPkvrI2oLL0GMqHy/FqrOfYwDgGTnik+TkRIYRoaxSNFoBBnYNYGHkXXi7ubDyZyQcF6ZitFgen\nE0LcSmaLhXUF6QDM7DMYtTySIESL5P8MBztbfhztx6+jb2rkWPSdDBz3kPzSK4RwGiGevvxu0AQC\ndT5klOayMmcnl5saHR1LCHGLbD+dz+m6GmK79qa3l7+j4wjRZklR5UAlhmr+dCqLfC8fjg/9GQPv\nmOnoSEII8YN1cvXgaXdfXszZj3Iqh1cPf0llvcHRsYQQP4H1YgUXDBfZUnIEncaFKT2jHB1JiDZN\nnqlykMJLFbyZs5N6SxOmCXPp362PoyMJIcSPptVoUQG/LjjChw2XSTI18L+3xRPq1dnR0YRoUX19\nPU899RTV1dXodDqSkpLw9fW12WfDhg2kpqai0WiYN28eo0ePvm6/rKwsXnnlFdRqNaNGjWqeBOfV\nV1/l0KFDNDU1MX36dKZNm8bFixeZMGECYWFhwJVJeGbPnt3qn8H1WM1NNG1ZicV4CfrdzpTwkei1\nzjPLpxCOIEWVA+RfPMdbR7/GZDHzq/CRDA3o6ehIQgjxk6j6xoBnJ8z/XMm00hMENFxmhame2f1G\nMcQ/xNHxhLjG+vXrCQ8PJzExkU8//ZTVq1fz3HPPNbdXVFSQnJzMpk2baGhoYObMmYwcOfK6/Z5/\n/nlWrlxJUFAQjz32GHl5edTU1FBWVkZKSgqNjY3cc889TJgwgdzcXCZPnszixYsd+AlcnyXjC6gs\n50jnbnT36cKorr0dHUmINk9u/2tlOVVlvHl0J2arhf+JiJWCSgjRbqi6hqKZ+Rz49eCO82VML87n\n7WO7+bQkB6vV6uh4QtjIzMwkPj4egLi4OPbu3WvTnp2dTXR0NFqtFr1eT0hICPn5+S32MxgMmEwm\ngoKCAIiNjWXPnj1ER0fz8ssvN49pNpvRaDTk5OSQk5NDQkICTzzxBBUVFa101jdmvXgey74tGLSu\nbA7sy6w+Q2Q2YiFuglypakVF+7eiyd6JS/jtzB04hv6dujs6khBC3FKKlx+a6Yswf7GWvpFx+J4r\n4J/F2Zy/XMsv+g5Fq1I7OqLogDZu3Mh7771ns83Pzw+dTgeATqejtrbWpt1oNOLp6dn8XqfTYTAY\nMBgM1/QzGo3o9XqbfUtLS3FxccHFxQWTycSiRYuYPn06Hh4e9O7dm4EDBzJixAi2bNnCiy++yBtv\nvGGv079pVqsV87ZkMJvYGNKfIUG3Eaz3vXFHIYQUVa2lcNdHBKf/mzq1hvmBA+glBZUQop1SXN3R\nTJ5HF2BRt96sOvo1e88XUVlv5Ne3xaHXujo6ouhgpk2bxrRp02y2zZ8/H6PRCFwpoLy8vGza9Xp9\nc/u3+3h6etps/7afTqez2ddgMDSPV1NTwxNPPMGwYcN47LHHABg+fDju7lcW0B03blybKKgArGX5\nWEvyyPX240RAMH/oGenoSEI4DSmqWkHBzvWEHNqGQeOCYfI8evUc6OhIQgjRKrxd3HkychzvHt9L\nZmUprx7+gsT+d9DF3evGnYWwo+joaNLS0oiMjCQtLY3BgwfbtEdGRrJixQoaGxtpaGigsLCQsLCw\nFvvp9Xq0Wi2lpaUEBgaye/duEhMTqa+vZ86cOcydO5d77rmneezFixczfvx4Jk2axN69exkwYMAN\n82ZkZNzyz6ClsQvChpLlqiZG1Yncw0fsdsyfyp6fhz05Y25nzAytn1uKKjuyWq0UfvUPQnJ2UaN1\npeH++QQF9nN0LCGEaFUuag2P9ovln6cOczxvD0mNnzPvtnjCfLo4OprowGbOnMkzzzzDrFmzcHFx\nYfny5QCsXbuW4OBgxo4dy+zZs5k1axYWi4UFCxbg4uJy3X5Lly5l4cKFmM1mYmNjiYyMZO3atZSV\nlZGamkpqaioAy5Yt48knn+TZZ5/lgw8+QKfT8dJLL90wb0xMjF0+h4yMjOaxs6vK2V6nJ8w7gOkD\nx7TZdTOvzuxMnDG3M2YG++X+vkJNiio7+rIsD/3pE3i6umOZ8lt6dJPZc4QQHZNKUbiv/jLm/Ex2\n+ffgjSYTvwgfzoguoY6OJjooNzc3Xn/99Wu2z5kzp/l1S7cNXq9fVFRUc+F09VhXj3e17z7j5WiN\n5iZSCg+iUhRm9h7cZgsqIdoqKarsZNfZAj46lYVfWAy/7TuUbp0DHR1JCCEcSgkMB/8gYitK8W+s\nZ425iXOXa7k3JFJmFxPCwf5depSqBiPjAyPorvNxdBwhnI7dp1SvqqrijjvuoKioyGb79u3bmTp1\nKjNmzGDjxo32jtGqDleV8f6JdHQaVx6PGkeAFFRCCIHi6YvmwWdQekUSXlPF08cPsb/gIO8c202j\nucnR8YTokNSmBs7VXeKLsjw6uXhwd/CNn+8SQlzLrkWVyWRiyZIlzTPcXL09KSmJd999l+TkZFJT\nU6mqqrJnlFZTUFPBmmO70apUzO9/B1095GFsIYT4luLihvreRFS3jyOgrpZ5xcc5WFHMn49s41Lj\nZUfHE6JDsVaW0+9AMjk71tFktfBg72jc1FpHxxLCKdm1qHrttdeYOXMm/v7+NtsLCwsJDg7G09MT\nrVZLTEwM6enp9ozSKs6V5vFO9pf/Wdg3jl5enR0dSQgh2hxFpUI9egaqOxPodm8iw7v0oqi2iqSs\nLzhtvOjoeEJ0GObt61CbTeRaTNzWqRu3+wU5OpIQTstuRdWmTZvw9fUlNjYWuDIT3rcMBsM1C+p9\nd9E9Z3PhXBGun7zJI7npPNR7KAN8ZR0qIYT4PurIO9D6BzEnbAT3hgykqsHIq4e/5FBlqaOjCdHu\nWc+XYC0/zjHvzhzrFMCM3jEyOYUQP4HdJqrYtGkTiqKwZ88ejh07xqJFi1i9ejV+fn54enpes6Ce\nt7f3TY1rrznnf8q45oZaeh76iE5NjWQHR6I7fZGM060zN74zrh0gmVuPs+YWHYuiKNwdPJAAN0/W\nHt/HX/O+YYh/CDN6x6DXujk6nhDtkuXobgC+7tyNCUG3ydpxQvxEdiuq3n///ebXCQkJ/OEPf8DP\nzw+A0NBQiouLqampwd3dnfT0dObOnXtT49przvkfO25jXS0V65bSqfEyuf2GEDfxsVb7pccZ1w6Q\nzK3HnrmlWBP2MCSgJ4H6Thz//B22XTbywsVzzOozmOjOwY6OJkS7YjU3YT62D4PGhRKfrjwWeJuj\nIwnh9FptSnWr1crWrVupq6vjwQcfZNGiRcydOxeLxcLUqVMJCAhorSi3TJOpgTMbkuhuuMix4H4M\nmPCoXDoXQoifoEtNJZ1P5TJMpWFzj178v8bLRPuHMLP3YDxd5KqVELdEw2UquvYio8FAuEsnXNSy\nwo4QP1Wr/F+UnJwMXLlC9a0xY8YwZsyY1ji8XVitVtafzCRYraIuIIh+9z2BWmX3GeqFEKJdU3Xr\nDZP/F75KZkrpCQbXXuTtxnpeuHiOmX0GM9g/xNERhXB6iocnH4T2p/BSBTPVctufELeCVAE/0j+L\ns9l1vohd/UfSa+ozaDUyBakQQtwKqj7RaGYvRel9O0EXK/h93kG611SyJm8Xf8v9RqZeF+Inqqw3\nUHCpgjDvLuhV8v1FiFtBiqofYcfpfP5depQANz3zB4zBzVVuSRFCiFtJ8fBCPfl/UU+Yi7ZzEL8c\n+QB9vPzJrCrlhYxPST9/ymZWWSHEzdt/vgiAYQE9HRtEiHZEiqofKKOihNTCDLy0bjw+YCxeco+/\nEK3GYrGwZMkSZsyYQUJCAiUlJTbt27dvZ+rUqcyYMYONGzfatB0+fJiEhITm98XFxcycOZNf/OIX\nvPDCC/IFvQ1SFAXVbSNQz/gdXbw682TUXUwPjcFkaeLt/D38Ne8bauSqlRA/iNVqZd/5U2hVapkE\nRohbSIqqH6A4dw+pOTtxVWuYP2A0/u56R0cSokP56quvMJlMpKSksHDhQpKSkprbTCYTSUlJvPvu\nuyQnJ5OamkpVVRUAa9asYfHixZhMpub9ly1bxoIFC1i3bh1Wq5Vt27a1+vmIm/PtBEAqRWFsj3CW\nRP+MMO8AsipLeSHjX+w/XyRFsRA3wWq1cKq2ivOXaxnkF4i7PLogxC0jRdVNOnsiA/8v1vLr44eY\nFxFLsN7X0ZGE6HAyMzOJi4sDICoqipycnOa2wsJCgoOD8fT0RKvVEhMTQ3p6OgAhISGsXLnS5ot3\nbm4uQ4YMASA+Pp49e/a04pmIn8Lf3ZPfho/i5eIThFWd4+/5e1mVm8bFhjpHRxOiTbNsW4dm80r0\npkaGB/RydBwh2hUpqm5CdflxPP69BhVWTMMn069Td0dHEqJDMhgM6PX/vUKsVquxWCzNbZ6ens1t\nOp2O2tpaAMaPH49arbYZ6+oCy8PDo3lf4RyUsyfxvnCWR04cYl75KY5XFLM081/sPXdSrloJ0QKr\nqQFL/n5caypRu3sS0amroyMJ0a7IwgQ3UFt5Gusnb+BubuLYsLsZGDXW0ZGE6LD0ej1Go7H5vcVi\nQfWfpQw8PT1t2oxGI97e3tcdS3XVEghGoxEvrxtPK2zPRY+dcUFlR2d2G/Rzgo5tp/+ZkyytPse7\nIeGsbdrHtoIjxLt0QdfCrGaOzvxjOWNuZ8zcnllPZEBjPfu69WRwQE/UivyuLsStJEXV96g3XsL4\n0R/xa6zn6IBRDBo5xdGRhOjQoqOj2bFjB5MmTSIrK4vw8PDmttDQUIqLi6mpqcHd3Z309HTmzp17\n3bEiIiI4cOAAQ4cOJS0tjREjRtzw+DExMbfkPL4rIyPDbmPbS1vJbB01Fsv+regOfMpvjh8iZfgk\ndjcZ2WQqZVpoNCO7hDY/k9VWMv9QzpjbnpmlWPtxLEd3A7DfryuPya1/QtxyUlRdR5PFzN8K0+nn\n6UPXrj2JGjfH0ZGE6PDuuusudu/ezYwZM4Ark01s3bqVuro6HnzwQRYtWsTcuXOxWCxMnTqVgIAA\nm/7ffrkGWLRoEb///e8xmUz07t2biRMntuq5iFtDUWtQj7wfpVck1qJsEobfR6+zhXxYlMl7J/Zz\nsLKEhL5D8XXVOTqqEA5jvViBtSyfAk8ftJ26Eqzv5OhIQrQ7UlS1wGK18o/j+8mtOYc6Mp47b4u3\n+TImhHAMRVFYunSpzbZevf77i+uYMWMYM2ZMi30DAwNJSUlpft+zZ0+Sk5PtE1S0OlW3UOgWCkBc\ntz7079SN5BP7yb1whqUZ/2JaaDRu8qyVuEp9fT1PPfUU1dXV6HQ6kpKS8PW1nYRqw4YNpKamotFo\nmDdvHqNHj75uv6ysLF555RXUajWjRo0iMTERgBUrVrB3714UReHJJ59k6NChVFdXs3DhQhoaGggI\nCGDZsmW4udlviRbrhbOYXNzZ69eNYV16yXcaIexAbqhtwaaiQxyoOEWoZ2cei4hDo1LfuJMQQog2\nw9dNx+MDxpDQdxhuTU0knzjApw1llBsvOjqaaCPWr19PeHg469at4/7772f16tU27RUVFSQnJ5OS\nksI777zD8uXLaWxsvG6/559/nuXLl7N+/Xqys7PJy8sjNzeX7OxsNmzYwJ///GdefvllAFatWsW9\n997LunXriIiIsPnBxx5UvQayeuTdHPTtwjD/nnY9lhAdlRRV3/FlWR5flh+jq7sXv+l/By5quZgn\nhBDOSFEURqldeDF7N7+oucBps5EXMz/lnWO7OX9ZZnvs6DIzM4mPjwcgLi6OvXv32rRnZ2cTHR2N\nVqtFr9cTEhJCfn5+i/0MBgMmk4mgoCAAYmNj2bNnD7fddhtvv/02AOXl5c0T4ly9PER8fPw1x77V\nKusNHDdU07tTV3zd5FZYIexBKoarHN+/mS8NVfjofXhiwBj0WldHRxJCCPETWOuNKFpXRpw4RLin\nP5+ERXKgopiDFSWM7BrK3UED5EtmB7Bx40bee+89m21+fn7odFf+7K9eguFbRqPxmmUaDAYDBoPh\nmn5Go9FmuQedTkdpaSlwZemHFStWkJyczJIlSwDbJSBaOvattv/8KQBZm0oIO5Ki6j8q9h4rAAAg\nAElEQVRKMj6n157NPKr3wWPmc/KPrBBCtAOqoH4os5di3vY+vicy+FXGdu7vHcU/Ondj19lC9p0r\nIq5bHyYF9cfbxd3RcYWdTJs2jWnTptlsmz9/fvMyDC0tq/DdJRy+LbKu3v5tP51OZ7OvwWCwGe//\n/u//eOyxx5g+fToxMTHo9XoMBgO+vr52X9LBarXydX0RahRUZVVklF97C6wzzqjojJnBOXM7Y2Zo\n/dxSVAFNVYX4537JZbUG7bgEesisOEII0W4o7p5o7plH/pcfE3omC9+SPJ4c+0sOGKvZWnKEHaeP\ns/tsIWO6hzMhMAKd3KXQIURHR5OWlkZkZCRpaWkMHjzYpj0yMpIVK1bQ2NhIQ0MDhYWFhIWFtdhP\nr9ej1WopLS0lMDCQ3bt3k5iYyL59+/jiiy9YsmQJLi4uaDQaFEUhOjqar7/+milTprR47Jb82Cnq\ni2orqck6zuDOwYyIGHpNu0zZ33qcMbczZgb75f6+Qq3DF1WVxbnclrcNKwpn7/wlYb2iHB1JCCGE\nHRh8g9HceR9UlqHofRih92GIfwi7z53k05IcPi/L5eszJ/j/7d15XFV1/sfx17kby2UXUIxFRMUV\nHDC1BC1Ts9z3La1f/sasbH5Zli3+XMa9Qqemqal+Ts6YuVWj0ZhTlrnvsojiAooiKrIocgEF7jm/\nPxhvEpCVwuXK5/l49Jg4537PeZ8rfcbPWb6n1z2t6XVPa1wMVV8eLO4eY8aMYfr06YwdOxaTyURc\nXBwAy5cvJzg4mJ49ezJhwgTGjh2Lqqq88MILmEymGsfNmTOHadOmYbVaiYmJISIiAlVV2bRpE2PG\njEFVVcaNG0dgYCBPP/0006dPZ+3atfj4+Ni2caeVf/t3Lup1YNTTtbHc+idEbWrQTdW1oivwr/cx\nqVZOdhtC+3Yx9o4khBCiFik6HfgH23426PT0CGjJff6h7Mg8ysaLJ21Xrx4OasODAa1kwqK7lLOz\nM2+//XaV5U888YTt36u7bbCmcZGRkaxZs6bSMp1Ox+zZs6t8tlGjRrYJLGqLlpuFlrIdNy8/3Nt0\noq1XQK3uT4iGrsH+P4Wmaaw8m4J3owD89S7EdO5n70hCCCHsxKjT033Pv4hxcmV3y9/xz6vZfHE6\nkc3njvFocHtimoRhlNdrCAeiHt0JwA6fxtzrF4JeJxM+C1GbGux/YdsuprEv9ywnwqMxNYu1dxwh\nhBD2dL0Y9AaUjMPcv/kTFhUVM8i/Odet5axOP8CsA1+x82I6Vk21d1IhbkmzlqOm7uaa0YkUL1+6\nyKx/QtS6BtlUZRTmsTb9IGaDE5PaxKCXN4sLIUSDpjib0Q+fhn7gs+Dlhz5lO703r2ShizcP3RNO\nQWkJ/zi5l9kH/8W+SxmommbvyELUSMs4DMWF7PP2x9fsRYibj70jCXHXa3BNVVFZKR+m7sCqqTwZ\nfh8+TjJ1uhBCiIqXBevCfodh/Bx0D4wBnQ5nRWFk82jm3TuQ7k1akHvNwrLju5h36GsS886hSXMl\n6iH1VBIAO32b0MU/FEVOHgtR6xrUM1XW8jLWJn9H3vUi+gW1p71PU3tHEkIIUc8oegP63z2Erk1X\n+M/06t5Oroxr2Zk+gW3519nD7LmUwftHt9HMvRGDQiJo49VE/uIq6g19rwl86uRMlqLyrH8ze8cR\nokFoUE3V6X8vY9CpJAy/60n/kPb2jiOEEKIeU6p5CbyfixuPt+zCI15N2JCfxcHcs7ydsoUwD196\nBLQkyjdYJrQQdpd/vYRtikorT38aVfN7LIS48xpMU3Uu+QdCThwg19nMoI690CkN7s5HIYQQd4CW\nugufzSuY2LEnj7TvzoaLaRzOP0/61VzWpB/i/sahxAa0oLGLh72jigZq76UMAJmgQog61CCaqsKc\nTDx+WE2poqO075MEuHnbO5IQQghH5ewGbt6oh76lydFdPN11AHm/e5TtOafZdfEU32Yd49usY4R7\nNqZHQEsiG92DQa5eiTqiaRp7L53GqNMT7Rtk7zhCNBh3fVNlLbvO1Q3v4G8tJ7XTw0SERto7khBC\nCAemC+uIEtIONfE71L3/Qv1hNd4J3zF0+DQGhkSQkJvJ9otpHC/I5nhBNh5GZ+5v0pzYJi3wdXaz\nd3xxlztjyediyVWifYNxMZjsHUeIBqNWmyqr1cqMGTPIyMhAURTmzJlDy5Ytbeu//PJLli9fjk6n\nY9iwYYwZM+aOZ9hz6N90KrzMsXta0CFm+B3fvhBCiIZHMRjRd+qLrm031L3xqOfTwN0bo6Kjs38z\nOvs342JxAdsupLH70mk2ZR7l35lHaesdQPeAlnTwaYpebkMXd5BWXoqauIUkF2cAusqtf0LUqVpt\nqrZs2YJOp2PVqlXs27ePpUuX8t5779nWv/HGG2zcuBEXFxf69etH//79cXd3v2P7T8k/zz9KLRyO\n6MaEbiNkZiYhhBB3lOLqjv7BsehUFeUnTVITV09GhkUzuFkkB3PPsv1iGkcuX+DI5Qt4mVzo1iSM\nmCZh8moPcUdoaQmo29fh2rQ57iHhtPMOsHckIRqUWm2qevXqxYMPPghAVlYWnp6eldaHh4dz9epV\ndDodmqbd0aYn/1oRfzu+C4Oi49Eug3CVWy6EEELUEkVX/VUn64F/o8u/QNdOD3NfZB+yiq6w9cJJ\n9l46zb/OprDx7BE6+DSle0AL2nkHyCRK4jdTj+wEYJuPP538QtDX8DsphKgdtf5MlV6vZ/r06Wze\nvJl33nmn0rqWLVsybNgwXFxc6NOnD25ud6bxKVetfHBsB0XlpYxr0ZlgeZO4EEIIO9BOJaFlnaD8\nyE6UFh0J6PQIY1vcy7DQ37E/J4NtF9JIzs8iOT8LHydXYpu0oFuTMDxNLvaOLhyIdjUP7Wwq2V7+\nXHJ2ZaLc+idEnauTiSoWL15Mbm4uI0eOZOPGjTg7O3Ps2DG2bt3K999/j4uLCy+99BKbNm2ib9++\nt72/z04nkFGYRxf/ZsQ2CbsDRyCEEEL8evrh09DSE1APbEJLS8CaloAaGI5p8B+IadKCmCYtOFOY\nz7aLJ9l/6QwbziQTf/YwkT6BdA9oQWuvJvY+BOEA1KO7AI0t3r40dvEgRE4mC1HnarWp2rBhA9nZ\n2UyaNAlnZ2cURbHd4ufu7o6zszMmkwmdToePjw+FhYW33ObBgwd/dn15VgIXdSV4ewXQttDIoUOH\nflHWW223vnLE3JK57jhq7pqoqsrs2bM5ceIERqOR+fPnExwcbFv//fff895772EwGBg2bBgjRoyo\ncUxqaiqzZs3CYDDQrFkz5s+fL89dijtO0elQWkajtIhCO3ccdf/XoFpRjE62z4S4+zDevQvDQ6PY\ndymDbRdPkpCXSUJeJn7ObgSVO+FnySfI7C2/o6IKTdNQj+7CqjdywMuXh/2bye+JEHZQq01Vnz59\nePXVV3nssccoLy/n9ddf59tvv6W4uJiRI0cyatQoxo4di9FoJCQkhCFDhtxym9HR0TWuy804jHn7\nXlrqjVyfMIoAT/9flPPgwYM/u936yhFzS+a6U5u57dWsbd68mbKyMlavXk1SUhKLFi2yTX5TVlbG\nokWL+Pzzz3F2dmbMmDH07NmTgwcPVjvm3XffZcqUKXTv3p1p06bxww8/2J4BFeJOUxQFJag1uqDW\naOWl1X7GxWCkR9OWdA9owenCPLZdTONAzhlyVAuHEjbh4+RKx0aBRDYKpKWHvzwzI2wM/Z7im8Rv\nuaY30Nm/mb3jCNEg1WpT5eLiwp/+9Kca148ePZrRo0ffkX2VWq7Axg/RaRrZ3YfT5hc2VEIIx3Ho\n0CFiY2MBiIyMJCUlxbYuPT2d4OBg2wyi0dHR7N+/n8TExGrHtG3blitXrqBpGkVFRRiNxjo+GtFQ\nKTW8O8i6+0tQFHQdH6S5hy/NPXwZ1Tya+IM7uOppIiX/PN+fP8H350/gajDRwacpHRsF0tY7AGe9\n/P42VIqikO/px5euZlp4+Mm70ISwk7vi5b+qauX8+j9xz/USjrSKpmNkT3tHEkLUAovFUmlCG71e\nj6qq6HQ6LBZLpVcymM1mCgsLaxwTEhLC3Llzef/99/Hw8KBz5851eixC3EyzlqOmbAfLZdQDm9C1\nj0UX3QcXdx/CDB5Et46mXLVysiCHhLxMkvOy2Hspg72XMjAoOtp4N6Fjo0AifO7BQya5aHD25mQA\n8m4qIezprmiqMrZ8SlDOOU57N6Zd3/+2dxwhRC1xc3OjqKjI9vONhgoqntO8eV1RUREeHh41jpk/\nfz6ffvopYWFhrFy5kkWLFjFz5syf3X9t3vboiM+/SeY7SxcxFJ+LqfieS8KUsBlr4vdc9m8FrR6o\nlDscHa30geQ6X+dMuYXT1kIO55/ncP55ABrrnAnRu9FM746XrvqrYnWhPn/XANeuXeOll14iPz8f\ns9nMokWL8PGpPMHD2rVrWbNmDQaDgaeffpoHHnigxnGJiYksWLAAvV5Pt27dmDJlCgBLly5l9+7d\nKIrCiy++SOfOnbly5QoPP/wwrVq1AqB3795MmDDhNx2HpmnszT6NQdER7Rd86wFCiFrh8E1VpuUy\n60uLGGT2pNGg5zDKLRBC3LWioqLYsmULjzzyCImJiYSHh9vWNW/enDNnzlBQUICLiwv79+9n4sSJ\nKIpS7RgvLy/M5oqXrvr7+5OQkHDL/dfmM2qO9tyeZK4t96FZy9GO7cF6YBONPN05pyi3zJ1TUkhi\n3jmS8rJIu5pDtnqNfWW5BLh4EOkbSEefQELcG6GrowkMHOGZzlWrVhEeHs6UKVPYuHEj77//Pq+/\n/rptfU5ODitWrOCLL77g+vXrjBkzhvvvv7/GcbNmzeLdd98lKCiISZMmkZqaiqZpJCcns3btWrKy\nsnjmmWfYsGEDR48eZcCAAcyYMeO2j+Os5TIXSq4S5RuEaw23lgohap9DN1Ul5aV8kLqdHDcPioZO\nJcxbpp4V4m7Wu3dvdu7caXsWc+HChXz11Ve2yW9eeeUVJk6ciKqqDB8+HH9//2rHAMybN4+pU6di\nMBgwmUzMnTvXbsclxM0UvQGlXQxK2/vh+jU4klrlM1rpNTA62WZ583Nxp3dgG3oHtqGw9BrJ+Vkk\n5Wdx9PIFNmUeZVPmUTxNLkT63ENko0DCvRpj1Onr+tDqlUOHDvH73/8egNjYWNukNzckJycTFRWF\n0Wi0Tah1/PjxasdZLBbKysoICgoCICYmhl27djFx4kT+7//+D4CsrCw8PDwASElJISUlhfHjx+Pj\n48OMGTPw8/P7Vfk1yxUou8ae/CxAbv0Twt4ctqnSNI2/n9hLzjULfQPbEuEbaO9IQohapigKc+bM\nqbQsNPTHv0g8+OCDVWbwq24MVFx1WrVqVe0EFeIOUBQdOLtWu87672VoVy6ha98dXZuuKM5m2zp3\nkzPdmoTRrUkYpdZyjl65SFLeOZLzsth2MY1tF9Nw0hto792UVp7+tPD0o6mrV51dxbKHdevW8Y9/\n/KPSskaNGtmuVt94BvNmRUVFVZ7TtFgsWCyWKuOKiooqPbtpNpvJzMwEKp7jXLp0KStWrLDdYhwW\nFkaHDh247777iI+PZ+7cubzzzju/6pjUhM2oBzZxpc29mD19aecd8KvGCyHuLIdtqr47f5yEvExa\nefozsFmEveMIIYQQdULTVNAbIf8i6g+rULd/htIyGl2H7ij3tKz0jiKT3kDHRoF0bBSIqqmkXc0l\nKe8ciXnnOJh7loO5ZwFw0RsJ8/AlzKOiyWrm5oNJ77B/RahixIgRjBgxotKy5557zva85Y1nMG/2\n0+cxbzRZNy+/Mc5sNlf6rMViqbS9qVOnMmnSJEaNGkV0dDRdu3bFxaViQpFevXr9ooaq0m2Pmkqb\n5G1oehOHXVxpiQtJCYm/8Nu4xbYdhCNmBsfM7YiZoe5zO2TFPH0pg89PJ+BhdOa/W3dDr8i7OoQQ\nQjQMiqLD8OgktOKrqEd3oR7eXvEM1qlEDJPi4KYXC99Mp+ho5elPK09/hof+juySQtKu5pBWcIn0\nqzmkXL5AyuULAOgVHSFuPrTw9KOFhx9hHr64GZ3r8jBrXVRUFNu2bSMiIoJt27bRqVOnSusjIiJY\nunQppaWlXL9+nfT0dFq1alXtODc3N4xGI5mZmQQGBrJz506mTJnCnj17+Oabb5g5cyYmkwmDwYCi\nKMyYMYM+ffrwyCOPsHv3btq3b3/LvDc/o6aeTsZaWsyx4NaU6fQMbNeZUA/f3/Q9OMazhpU5YmZw\nzNyOmBlqL/fPNWoO11RZcs/hs2YxD/sH0ubh/8ZTpo4VQgjRACmuHug79UUX/TBa1gkoyEWpoaGq\nMlZRaOLqQRNXD2KahAFQUFpC+tVc0q5eIq0gh4zCPE4V5vINFc90NXHxoIWnH2EeFY2Wn7Nbpati\njmbMmDFMnz6dsWPHYjKZiIuLA2D58uUEBwfTs2dPJkyYwNixY1FVlRdeeAGTyVTjuDlz5jBt2jSs\nVisxMTFERESgqiqbNm1izJgxqKrKuHHjCAwM5MUXX+S1117j008/xWw2M2/evF+VXU3ZCcBGNw/8\nXdxp5t7ozn45QohfzeGaqoL1b+NfXkazpi0J92ps7zhCCCGEXSmKghIYDoHh1a5X0xPRcs+ha9cN\nxc27xu14mlyI8g0iyrdisoXr1nJOXc0l/WoOaVdzOFWYy46L6ey4mA6Ah9G54irWf65mBbl5O9Sd\nI87Ozrz99ttVlj/xxBO2f6/utsGaxkVGRrJmzZpKy3Q6HbNnz67y2cDAwCrPeP1SWkkh2qlEij39\nOOViZqB/M4duboW4WzhcU+VfeJnUpmFExIy49YeFEEKIBk5N2oJ25gjq7g0ooRHo2seihHZAucXs\nf056A228m9DmPzPrWjWVrKIrpBVUNFnpV3M4lJfJobyKCRmcdAaauTeihacfqrWI5teL8TK5yF/4\na4GuU192FeaCotBFZv0Tol5wuKbqgtmDsIFT7upZioQQQog7Rd9vMtrxfagp29FOJWE9lQRmLwzD\np6H4/PJXkegVHcFuPgS7+dDznnA0TSPvehFpBRUN1smrORwvyOZ4QTYAX+87h4veSFOzJwGuntzj\n6kVTsydNXT1xNzpLs/UbKS7uFHTqw4Z9G2jh4Yevs9utBwkhap3DNVXKo5Mwu7jf+oNCCCGEQHFy\nQYnogS6iB9qls6gp21Ezj4HXr3svUpXtKgq+zm74OrvRtXHF1ZKisuukX81l94kU8HLlfFEBp6/m\nkX41t9JYN4OTrcFqavaq+F9XT8y/8Jmwhm7fpTNoIFephKhHHK6pCgpsbe8IQgghhENS/IPR9xyH\nTlMr3oP1E1pRAeqRneha3YvyG5ous9GJiEb3UGa6SHSbipm3ylQr2SVXOV9UwPni//xTdIWTBZc4\nUXCp0nhPk4utwapourwIcPXExWD8bQd8F9I0jb2XTmNQdET7Bts7jhDiPxyuqRJCCCHE7amuoQJQ\nTx5E3fkF6s4vUPxDUMLvrWiwPH777HJGnZ5AszeB5sqTZJRay7lQfJXzxVdsjdb54gJSr1wk9crF\nSp/1cXK1XdVq9puT3B0yiy5zvriAqEZBmI0me8cRQvyHNFVCCCGEAEDXuguKwYR68gDa2VS0S2dQ\nt3+GLnY4+k597+i+THoDIe4+hLj7VFpeUl7GheKCimbrpqtbN96jNcm1+lkO73ba9RIwObPn0mkA\nujSWW/+EqE+kqRJCCCEEAIqzGaV9DLr2MWglFrS0Q6gn9qMEhNVZBheDkeYevjT/yctsi8quc7Hk\nKldOnq2zLPWJdeMHaIX5JDdvh9ngRHvvAHtHEkLcRJoqIYQQQlShuLihdOiOrkP3Gj9j3fIp+ASg\naxGFYvas1TxmoxNhRj8O0jCbKu3MEUoaNSVHs9LDrzmGW0yJL4SoW9JUCSGEEOJX04oLUZO2gKah\nbvkUJTC84vmrllH2jnZ30jQSG1dMTNFVZv0Tot6RpkoIIYQQv5ri6o5h4mLUkwfRThxAyzyGNfMY\n7P8aIofbO95dR9Mb+dLJCX8Xd0Ldf/vEIUKI2iFNlRBCCCF+E8XdB31Ub4jqjXY1D/XkAdAbwVr1\nxb5a6TXQG1D08leP3yI/sBWFOh0P+DWTFycLUQ9JZRNCCCHEbVM8GqGPfrjih4MHq6xXk7ag7vsX\nSnBbdKERKKEdav05rLvJdh9/QF74K0R9JU2VEEIIIWqf0Qlc3NHSDmFNOwSA4h+CrvsIdEGt7Ryu\n/vtOB2Eefvi5uNk7ihCiGtJUCSGEEKLW6Tv2RBf5IFzORs1IRjt1GC3rREWzJW5JUxS6+jezdwwh\nRA2kqRJCCCFEnVAUBXyaoPdpAlF9/vNC2+qbqvJNy1B8A9GFdgCfgAb/HJFB0RHtG2zvGEKIGkhT\nJYQQQgi7UJxcql2uWS6jpe5BQ0Pdvg48fNGFdkAJjajjhPVHe5+mmOWqnhD1ljRVQgghhKhXFDdv\nDE/FoZ0+jHr6MNqZIxXvxMo8Du0H2TueXci7qYSo32q1qbJarcyYMYOMjAwURWHOnDm0bNnStj45\nOZnFixejaRq+vr689dZbmEym2owkhHBgqqoye/ZsTpw4gdFoZP78+QQH/3g7zPfff897772HwWBg\n2LBhjBgxosYxeXl5zJgxg8LCQqxWK2+88QZBQUF2PDohxM0UVw+Udt3QteuGZi1HO58GZaVwueyO\nbP/atWu89NJL5OfnYzabWbRoET4+PpU+s3btWtasWYPBYODpp5/mgQceqHFcYmIiCxYsQK/X061b\nN6ZMmWLbTklJCaNHj2batGnExsaSn5/PtGnTuH79Ov7+/ixcuBBnZ+efzdvBp+kdOW4hRO3Q1ebG\nt2zZgk6nY9WqVTz//PMsXbrUtk7TNGbOnMmiRYv49NNPiY2NJSsrqzbjCCEc3ObNmykrK2P16tVM\nmzaNRYsW2daVlZWxaNEiPv74Y1asWMGaNWvIy8urccybb77JoEGD+OSTT3j++ec5deqUvQ5LCHEL\nit6ALqg1uuZ37va/VatWER4ezsqVKxk8eDDvv/9+pfU5OTmsWLGC1atXs2zZMuLi4igtLa1x3KxZ\ns4iLi2PVqlUkJyeTmppq29Yf//hHdDqd7bmw9957j4EDB7Jy5UratGnD6tWrb5nXoNPfsWMXQtx5\ntdpU9erViz/+8Y8AZGVl4en54/soTp8+jZeXFx9//DHjx4+noKCA0FC5tC2EqNmhQ4eIjY0FIDIy\nkpSUFNu69PR0goODcXd3x2g0Eh0dzf79+2sck5CQwMWLF/mv//ov4uPj6dy5c90fkBDCbg4dOkT3\n7t0BiI2NZffu3ZXWJycnExUVhdFoxM3NjZCQEI4fP17tOIvFQllZme1qd0xMDLt27QJg2bJlREVF\n0bp160r7vlGXunfvXmXfQgjHU6tNFYBer2f69OnMmzeP/v3725ZfvnyZhIQEHnvsMT7++GN2797N\nnj17ajuOEMKBWSwW3Nx+fEeLXq9HVVXbOnd3d9s6s9lMYWFhtWOsVqvtRM/HH39MQEAAH330Ud0d\niBCiTq1bt44BAwZU+qewsBCz2Qz8WC9uVlRUVKWmWCwWLBZLlXFFRUWV6syN5bt37+bMmTOMGDEC\nTdPQNA2oXK+q27cQwvHUyUQVixcvJjc3l5EjR7Jx40acnZ3x8vIiODiY5s2bAxVne1JSUujatWtd\nRBJCOCA3NzeKiopsP6uqik5XcW7I3d290rqioiI8PDyqHaPX6/Hy8qJnz54A9OzZs9LtyUKIu8uI\nESMYMWJEpWXPPfecrTbcqBc3+2ntuNFk3bz8xjiz2Vxt/fnss884f/4848eP5/Tp06SmpuLn54eb\nmxsWiwUfH59q9y2EcDy12lRt2LCB7OxsJk2ahLOzM4qi2O4nDgoKori4mLNnzxIcHMzBgwcZPnz4\nLbd58ODBWslaW9utbY6YWzLXHUfNXZOoqCi2bNnCI488QmJiIuHh4bZ1zZs358yZMxQUFODi4sL+\n/fuZOHEiiqJUOyYqKooffviBQYMGsW/fvkqT6NSkNr9PR/yzksx1xxFz1/fMUVFRbNu2jYiICLZt\n20anTp0qrY+IiGDp0qWUlpZy/fp10tPTadWqVbXj3NzcMBqNZGZmEhgYyI4dO5gyZQpPPvmkbXuv\nvvoq/fr1o3Xr1kRFRbF161aGDBlS7b6rI/WnMkfMDI6Z2xEzQ93nVrQb16JrQUlJCa+++iq5ubmU\nl5czadIkiouLKS4uZuTIkezZs4e4uDg0TSMqKorXXnuttqIIIe4CmqYxe/Zsjh8/DsDChQs5cuSI\nraZs2bKFv/zlL6iqyvDhwxk7dmy1Y0JDQzl//jwzZsyguLgYDw8P4uLiKt3qI4S4u127do3p06eT\nk5ODyWQiLi6ORo0asXz5coKDg+nZsyfr1q1jzZo1qKrK008/Te/evWscl5SUxIIFC7BarcTExPD8\n889X2t+NpiomJoa8vDymT59OUVERPj4+xMXF3XL2PyFE/VarTZUQQgghhBBC3O1qfaIKIYQQQggh\nhLibSVMlhBBCCCGEELdBmiohhBBCCCGEuA3SVAkhhBBCCCHEbWiQTdUHH3zA6NGjGTp0KJ999hln\nzpxhzJgxjBs3jtmzZ1Mf5+4oKyvjxRdfZPTo0YwbN45Tp07V29xJSUmMHz8eoMaMa9euZdiwYYwa\nNYoffvjBjml/dHPu1NRUxo0bx/jx45k4cSJ5eXlA/ct9c+Yb4uPjGT16tO3n+pa5oZP6U/scsQY5\nYv0BqUGOyNFqkNSfuuGINaje1R+tgdmzZ4/21FNPaZqmaUVFRdqf//xnbfLkydq+ffs0TdO0mTNn\nat9++609I1br22+/1f7nf/5H0zRN27lzpzZlypR6mfvDDz/U+vfvr40aNUrTNE176qmnqmS8dOmS\n1r9/f620tFQrLCzU+vfvr12/ft2esavkfuyxx7TU1FRN0zRt9erV2sKFC7WcnAPfwIUAAAuUSURB\nVJx6lfunmTVN044cOaI9/vjjtmX18btuyKT+1D5HrEGOWH80TWqQI3LEGiT1p/Y5Yg2qj/WnwV2p\n2rlzJ+Hh4TzzzDNMnjyZBx54gCNHjnDvvfcC0L17d3bt2mXnlFWFhoZitVrRNI3CwkKMRmO9zB0S\nEsK7775rOxtz9OjRKhkPHz5MVFQURqMRNzc3QkJCbO8Qspef5l6yZAmtW7cGoLy8HCcnJ5KTk+tV\n7p9mvnz5MkuXLuW1116zLatvmRs6qT+1zxFrkCPWH5Aa5IgcsQZJ/al9jliD6mP9MdTaluup/Px8\nLly4wAcffEBmZiaTJ0+udNnY1dWVwsJCOyasnqurK1lZWfTt25crV67w17/+lf3791daXx9y9+nT\nh3Pnztl+vvm7NZvNFBYWYrFYKr1k1Ww2Y7FY6jTnT/00t5+fHwCHDh1i5cqVrFy5ku3bt9er3Ddn\nVlWV119/nVdeeQUnJyfbZ+rjd92QSf2pfY5Ygxyx/oDUIEfkiDVI6k/tc8QaVB/rT4Nrqry9vQkL\nC8NgMBAaGoqTkxOXLl2yrS8qKsLDw8OOCau3fPlyYmNjmTp1KhcvXmTChAmUl5fb1tfX3DrdjxdD\nLRYLHh4euLm5UVRUZFteX7Nv3LiRv/71r3z44Yd4e3vX69wpKSmcPXuW2bNnU1paSlpaGgsXLqRL\nly71NnNDJPWn7jlqDXKk+gNSgxyFI9YgqT/24Ug1qL7UnwZ3+190dDTbt28HIDs7m2vXrtG1a1f2\n7dsHwLZt2+jUqZM9I1bL09MTs9kMgIeHB+Xl5bRt27be527Tpk2VjBERERw4cIDS0lIKCwtJT0+n\nZcuWdk5a2YYNG1i5ciUrVqwgMDAQoF7njoiI4KuvvmLFihUsWbKEFi1a8Oqrr9KhQ4d6m7khkvpT\n9xyxBjla/QGpQY7CEWuQ1J+652g1qL7UnwZ3peqBBx5g//79DB8+HFVVmTVrFvfccw//+7//S1lZ\nGWFhYfTt29feMat44okneO211xg3bpxtJpx27drV29yKogDwyiuvVMmoKAoTJkxg7NixqKrKCy+8\ngMlksnPiCoqioKoqCxYsoGnTpkyZMgWALl26MGXKlHqZ+8Z3fYOmabZlfn5+9TJzQyX1p+44Yg1y\nxPoDUoMciSPWIKk/dccRa1B9qj+KptWjeSiFEEIIIYQQwsE0uNv/hBBCCCGEEOJOkqZKCCGEEEII\nIW6DNFVCCCGEEEIIcRukqRJCCCGEEEKI2yBNlRBCCCGEEELcBmmqhBBCCCGEEOI2SFPlAM6dO0f7\n9u0ZPHgwQ4YMoX///jz55JNkZ2fbJU/Pnj05f/78L/78pk2bGDp0KIMGDWLAgAEsW7bslmPGjx9v\ne2HezVavXs3q1at/Vd7favz48XWyHyHqM6k/P5L6I0Tdkxr0I6lB9VuDe/mvo/L392f9+vW2n5cs\nWcLcuXN599137Zjq1rKzs3njjTf45z//iaenJ8XFxTz22GOEhobSs2fPX7290aNH10LK6u3fv7/O\n9iVEfSb1p4LUHyHsQ2pQBalB9ZtcqXJQ0dHRZGRkABVnTaZOnUrfvn3Jz89n/fr1DB06lMGDB/P6\n669TWloKQHx8PP369aN///7MmDEDVVXJzc3lqaeeYuDAgQwdOpTt27dX2deVK1f4/e9/z4ABA5g6\ndapte6qqMm/ePPr378+AAQP46KOPqoy9fPkyZWVllJSUAODq6srixYtp2bKlLfuNMz579+6tdGZk\nzZo1DB06lCFDhtjO2Pz5z3+2FdFPPvmEkSNHMmDAAAYOHEh6ejoAu3btsp0Rmjx5MhaLBavVysKF\nC21ni5YvX27b55NPPsmzzz5L3759+cMf/kBZWRnz5s0DYNSoUQBs27aNESNGMGTIEJ577jmuXLny\nG//khHB8Un+k/ghhT1KDpAbVR9JUOaCysjK+/vproqKibMt69OjBpk2byMvLY926daxevZr169fj\n4+PDsmXLyM7OZtGiRfztb3/jq6++oqSkhO3btzN37lzuu+8+vvzyS95++21ee+018vLyKu3vnXfe\noX379sTHxzNu3Dhyc3MBWLVqFdnZ2cTHx7Nu3Tq++eYbtm7dWmls69ateeihh+jVqxcjRozgrbfe\nwmq1EhQUdMvjNJvNfPHFFyxatIiXX36Z0tJSFEUBwGKx8N133/HJJ58QHx9Pr169WLVqFaWlpbz0\n0kssXryY+Ph4wsPDWb9+PWvXrkVRFL744gvWrVvHd999x4EDBwBISEhg5syZfP3111y4cIGdO3cy\nY8YMoKKo5efns2TJEv72t7/xz3/+k27duvHWW2/99j9AIRyY1B+pP0LYk9QgqUH1ldz+5yAuXbrE\n4MGDASgtLSUyMpJp06bZ1kdERAAVZx3OnDnDyJEjgYri065dOxITE4mKiqJx48YAxMXFATB9+nTm\nz58PQFBQEJGRkSQlJVW6LL1//36WLFkCQKdOnQgKCkLTNPbu3cuQIUNQFAVnZ2cGDBjA7t276dGj\nR6Xss2fP5plnnmHHjh3s2LGDUaNG8dZbb9G7d++fPebhw4cDEB4ejo+PD6dOnbKtc3NzIy4ujvj4\neDIyMtixYwdt2rThxIkTNG7cmNatWwMwdepUAP7whz9w7Ngx9uzZA0BJSQknT54kLCyMVq1a2b6X\nsLCwKmdgkpKSuHDhgu0MktVqxcvL62ezC3E3kfoj9UcIe5IaJDXIEUhT5SB+ej/xTzk7OwMVl6P7\n9u1rO8tQXFyM1Wqt8sBjfn4+AJqmVVquqiqqqlbZvtVqtf27Xq+3jb15vKqqlJeXVxq3detWioqK\nePTRRxk6dChDhw5l3bp1fPbZZ/Tu3RtFUWzb+OnYG/u5sS+j0Wj7+cZ/4OPHj6dHjx74+fmRmpqK\nwVD5V9pisWCxWFBVlZdffplevXoBFZfkXV1dSUxMxGQy2T5/4yzQT489KiqK999/H6go6BaLpcrn\nhLhbSf2R+iOEPUkNkhrkCOT2v7tM586d2bx5M/n5+WiaxqxZs/j73/9Ohw4dSEpKIjc3F03TmDt3\nLlu3bqVLly589tlnAGRmZpKQkEDHjh0rbfP+++/nyy+/BCA5OZmzZ88C0LVrV9avX4+qqpSUlPDV\nV1/RtWvXSmOdnZ1ZsmQJWVlZQEVhOHnyJG3btgXA29ubkydPAvDdd99VGhsfHw/A4cOHKSoqIiQk\nxLYuJSWFkJAQHn/8cSIiIti6dStWq5XmzZuTn59vu7f4o48+YvXq1XTt2pU1a9ZQXl6OxWJhzJgx\nJCcn/+x3qdfrsVqtREZGkpiYaLt/+y9/+QtvvvnmL/jTEKJhkfoj9UcIe5IaJDXInuRKlYOo7uxB\ndVq3bs2zzz7L448/jqqqtG3blkmTJmEymXj99ddtZ0YGDhzIkCFD6NatGzNnzuTzzz9HURTmz5+P\nr69vpW0+99xzvPrqq/Tv35/mzZsTFBSEoiiMGjWK06dPM2jQIMrKyhg0aJDtLMgNXbp0YcqUKUye\nPJmysjIAYmNjefbZZ23bnjdvHu+++y4xMTGVjrO4uJghQ4ag1+t56623Kp2B6datG6tWraJfv36Y\nTCYiIiJIS0vDZDLx5ptv8vLLL1NWVkZISAhvvPEGRqORjIwMhgwZQnl5OcOHD+fee+9l3759NX63\nDz30EIMHD+bzzz9nwYIFPP/881itVgICAqSgiAZF6o/UHyHsSWqQ1CBHoGg/vfYp7mqbNm1i8+bN\nvPHGG+h0jnehcsGCBTRp0oQnn3zS3lGEEL+S1B8hhD1JDRK1yfF+o8RvduHCBT788EMuXLhQ5d5d\nR7Bw4UI2b97Mgw8+aO8oQohfSeqPEMKepAaJ2iZXqoQQQgghhBDiNsiVKiGEEEIIIYS4DdJUCSGE\nEEIIIcRtkKZKCCGEEEIIIW6DNFVCCCGEEEIIcRukqRJCCCGEEEKI2yBNlRBCCCGEEELchv8HBHnF\nUNppbK4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x112216790>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 4.3. Contrato Log Quadrático\n",
    "\n",
    "Derivando gamma analítico da equação e aplicando a regra de quociente, tenho que, se\n",
    "$$\\Delta = \\frac{2e^{-r\\cdot t}}{S}\\left[ln(S)+ \\left(r - \\frac{\\sigma^2}{2} \\right) \\cdot t \\right]$$\n",
    "\n",
    "Então\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\frac{\\partial V^2}{\\partial S^2} &= \\frac{\\Delta}{\\partial S}= 2e^{-r\\cdot t} \\frac{\\partial}{\\partial S} \\left [ \\frac{ln(S)+ t \\left(r - \\frac{\\sigma^2}{2} \\right)}{S} \\right ]\\\\\n",
    "&= 2e^{-r\\cdot t} \\frac{S \\frac{\\partial}{\\partial S} \\left ( ln(S)+ t \\left(r - \\frac{\\sigma^2}{2} \\right) \\right) - \\left( ln(S)+ t \\left(r - \\frac{\\sigma^2}{2} \\right) \\right) \\frac{\\partial}{\\partial S} (S)}{S^2}\\\\\n",
    "&= 2e^{-r\\cdot t} \\frac{S \\cdot \\frac{1}{S} - ln(S)- tr + \\frac{t \\sigma^2}{2}}{S^2}\\\\\n",
    "&= \\frac{e^{-r t}}{S^2}\\left[2 + \\sigma^2 t - 2ln(S) -2rt\\right]\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "\n",
    "Abaixo vou comparar os resultados analíticos com o que obtive do método de diferenças finitas."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 2.02 s, sys: 85.9 ms, total: 2.11 s\n",
      "Wall time: 2.09 s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.SquaredLogContract(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdUFFcbB+DfLgvSm6BgFAvRpYOACgoimNgNiA2JJZYY\nsUTFrtiCiokxJirYu8YSRWJL7BXsKGJFqaL03ll27/cHHxNXqiKs6Puc4znuzJ0778zcGeadcofH\nGGMghBBCCCGEEPJe+LIOgBBCCCGEEEIaMkqqCCGEEEIIIaQWKKkihBBCCCGEkFqgpIoQQgghhBBC\naoGSKkIIIYQQQgipBUqqCCGEEEIIIaQWKKkiREbOnTuHsWPHonPnzrC2tsaAAQOwb98+lJSUyDq0\nj0J+fj6GDh0KExMTmJqawtTUFP3796+TeQUGBsLIyAiZmZnvXUd8fDyMjIzK/bO0tESPHj2wevXq\net+2ZTGdOXMGAJCdnY0ZM2bg0aNHta57xIgRmDBhQq3raajqc/9NTEzE2LFjkZGRUeu6nj9/jlGj\nRtW6no9h+z948ADe3t7o1q0bLC0t0bNnT/z8889ITk6utxhu3rwJIyOjD7JPrV+/Hvv27eN+fwzr\nmBBScwJZB0DI52jp0qU4ePAg3Nzc4OnpCWVlZdy6dQu//PILbt68id9//x18/ud9zUMgEGD58uUo\nKCiAvLw8GjVqBAMDA1mHVS1vb2/Y2dlxv7OysnDmzBls2bIFYrEYs2fPlllsT548wcmTJzFmzBiZ\nxfApqO/9NyQkBMHBweDxeLWu699//8WDBw8+QFSytX//fixbtgx2dnaYM2cOdHR0EBERgZ07d+LY\nsWPYsGEDLCwsZB3mO1m/fj3mzJnD/V6yZAnk5ORkGBEh5F1QUkVIPQsKCsL+/fvh6+uLwYMHc8Pt\n7e3Rtm1beHt74/jx43B1dZVhlLKnoKCAL7/8UtZhvLNWrVqVO5lzdHREZGQkgoKCZJpUlaFvvr8/\nWe6/tN1KPXz4EMuWLYOHhwcWLlzIDe/QoQP69++PESNGYNq0aThx4gSUlZVlGOm7e3MbGxoayjAS\nQsi7+rwvhRMiA9u2bYORkZHUCVmZPn36YPTo0dDW1uaGxcfHY+rUqdxjRhMnTkRsbCw3ft26dRg4\ncCCCgoLw9ddfw9LSEqNHj0ZKSgoOHDiAbt26wdbWFrNmzUJhYSGA/x5ZuXr1KlxdXWFpaYmBAwfi\nxo0bUvE8ePAA33//PTp06AAzMzP06tULBw8e5MYHBgaiU6dO2Lp1Kzp16oRu3bqhsLAQubm5WLZs\nGVxcXGBmZgZ7e3vMnTsXOTk53LRisRgbN27EV199BSsrK7i5ueHcuXPc+JrUIRKJsHnzZvTs2RMW\nFhbo378/Tpw4Ue02CAoKQs+ePWFpaYnx48dX+NhfcHAwBg8eDEtLSzg5OWHt2rWQSCTV1l0ZZWXl\ncncaTpw4gf79+8Pc3Bxff/019u7dKzU+LCwM3377LaytrdGpUydMnToVr1+/5sYbGRlh+/btUtNM\nnDgRI0aMKDf/mzdvco99DRo0CPPmzQNQs/Wcl5cHHx8fdOrUCXZ2dti8eXO5+vPy8vDzzz/DxcUF\nlpaWGDx4MIKDg6XKHD16FH379oWFhQWcnJzg5+eH4uLiStfZiBEjsHTpUvj5+aFDhw6wt7eHr6+v\n1DQikQhr165Fz549YW5ujo4dO2LKlClITEzkyri4uGD16tUYMmQILC0tuXV29epVDB8+HNbW1rCw\nsICbmxvOnj1baTxA3e2/J06c4NrxoEGDcO/ePQCl+9j8+fMBlCZu69ev5x7r3L17N1xcXGBra4vQ\n0FAAwK5du9C/f39YWFjA2toaY8aMQUREBDcvf39/FBQUwMjICEFBQQCA9PR0+Pj4wMnJCVZWVhg1\nahQePnxY5XqoiZq0ifj4eHh5ecHGxgaOjo7Ytm0bvvvuO659VmTbtm3Q0NCQuqtTRl1dHQsWLMDr\n169x7Ngxbh2+/XhvdnY2jIyMcPToUW5YTdrD5cuX4ebmBktLS3h4eCA+Pl5q/Ny5czFp0iTMmDED\n7du3x8SJEwEAUVFR+PHHH2Fvbw8zMzO4uLggICCAm87IyAgA8Msvv6B79+4Ayj/+l5mZiQULFqBL\nly6wsbHB2LFjuW0L1N12JITUECOE1JukpCQmFArZb7/9VqPyCQkJzM7Ojg0YMICdOXOG/fvvv6x/\n//6sc+fOLCkpiTHG2Nq1a1n79u1Zv3792NmzZ9mxY8eYlZUV69GjBxsyZAi7dOkS27lzJzMyMmKb\nNm1ijDF248YNJhQKWceOHdn69evZ5cuX2bhx45iZmRmLiIhgjDH26tUrZmlpyaZNm8ZCQkLYlStX\n2A8//MCEQiF79uwZY4yxI0eOMBMTE+bm5sauXbvGTp8+zRhjbPz48czZ2ZmdPHmS3bp1i23evJmZ\nmpqylStXcsvm6+vLzMzM2IYNG9j169fZ4sWLmYmJCbt9+3aN65g+fTqzsrJi27dvZ8HBwWzRokVM\nKBSyQ4cOVbpOT506xYRCIfP19WXXrl1jS5cuZaampszIyIhlZGQwxhgLCQlhxsbGzNvbm129epXt\n2rWLWVlZsaVLl1Za78uXL5lQKGSnTp1iIpGIiUQiVlxczFJSUtiOHTuYsbGxVOyBgYFcHMHBwWz9\n+vXMxMSEbd26lTHGWHZ2NuvYsSPz9vZmN27cYKdPn2ZfffUVGzp0KFeHUChk27dvl4rDy8uLjRgx\nQiqm06dPs5ycHLZv3z4mFArZ0aNHWVxcXI3X8/jx41mnTp3YkSNH2Llz55irqyszNTVlP/zwA2OM\nMbFYzDw8PJidnR07ePAgu3LlCpsyZQozMTFhV69eZYwxduvWLWZsbMw2btzIbt++zf78809mYWHB\nVq9eXek6HT58OLOxsWEDBw5k58+fZ3v37mVWVlZsxowZXJmlS5eyjh07siNHjrDbt2+zffv2MRsb\nGzZlyhSujLOzMzM1NWWbNm1ily5dYtHR0SwsLIwZGRmxn376id24cYOdO3eODR06lJmbm7O0tLQK\n46mr/dfa2pr16NGDnThxgl26dIn169ePOTo6spKSEpaWlsZ+//13JhQK2bVr11hiYiK3Xe3s7Nip\nU6dYUFAQKyoqYlu3bmXm5uZs9+7d7Pbt2ywwMJA5OjqyAQMGMMYYS0xMZAsWLGCWlpYsLCyMpaWl\nsdzcXNajRw/WvXt3duzYMXbhwgU2YsQIZmlpye3nlW2bsu1fkZq0iYKCAta9e3fWu3dvdubMGXbs\n2DHm5OTEzM3N2dy5cyut++028DaJRMLs7Oy4+I4cOcKEQiG3fzPGWFZWFrcvMMZq1B7u3bsndVz4\n448/mJmZGRMKhezhw4eMMcbmzJnDTE1Nmbe3N7t+/Tq7efMmy83NZV26dGGjRo1ily9fZiEhIWze\nvHlMKBSyCxcuMMYYu3//PhMKhWzZsmXsyZMn5daxSCRibm5uzNHRkR05coRdvXqVeXp6si5durCs\nrKz33o6EkA+HkipC6lFYWBgTCoXswIEDNSrv5+fHrK2tpU4G0tPTmbW1NXfSu3btWiYUCllYWBhX\nxtvbmwmFQvb69WtumKenJ5s4cSJj7L+k6s0T2uLiYta1a1fuZObSpUts9OjRrKSkhCuTmZnJhEIh\n27t3L2Psv5OVs2fPcmUKCwvZmDFjuBOnMhMmTGDu7u6MMcYyMjKYsbExCwgIkCozcuRItmHDBlZU\nVFRtHU+fPmVCoZAdPHhQqoy3tzezt7dnYrG4wnXq5ubGvv/++3L1vnnSNWTIEObp6SlVJigoiBkb\nG7P4+PgK6y070a3on6OjI1u3bh0TiUSMsdITTgcHBzZr1iypOvz9/Zm1tTUrKChg9+7dY0KhkN27\nd48bf+vWLbZu3Tru97skVYz9t93LTgBrsq2ePHnCJYtlkpOTmbm5OXfCd/78ee6k/01Dhw7lTug3\nbdrErK2tWVFRETf+8OHDLCgoqML1yVjpSWX79u2l2v/evXuZUChkr169YowxNm3aNHbkyBGp6Xx9\nfVmnTp24387OzszV1VWqzJEjR9jUqVOlhj169IgJhUJ26dKlCuOpy/33wYMHXJmy9fno0SMu1jfb\nZ9l2Xb58udT8li1bxjZu3Cg1bMeOHUwoFLL8/HxuflZWVtz43bt3M2NjY/bixQtuWHFxMXN2dpZK\nTN9WXVJVkzZx8OBBZmJiwiX4jDH28OFDJhQKK02q0tPTa5TYuru7s2+++YYxVrOkqibtYdKkSaxv\n375SZXx9fcslVUZGRiw7O5srEx4ezr799luWnp7ODROLxaxDhw7s559/5oa9vT+/uY7Pnj3LhEIh\nu3PnDjc+LS2Nde/enYWEhLz3diSEfDj0ThUh9ajspeOaPkZ2+/ZtdOrUCZqamtwwLS0t2Nvb49at\nW9wwHo8Hc3Nz7re2tjYaN24MfX19bpiGhobUI11A6eNKZeTl5eHo6MjV6+TkBCcnJxQVFeH58+eI\niYnhXnAXiURS9bRu3Zr7f6NGjbBt2zYApY/2xMTE4Pnz54iMjISioiKA0sfaJBIJnJ2dperZtWsX\n9//q6rhz5w4AoFevXlJ19O7dGydPnkRUVFS5d7IKCgrw9OlTDBw4UGp4jx49cPHiRa5MeHg4pk2b\nJtWTm6OjIyQSCW7evAl3d3dUZtasWbCzs4NYLEZQUBCOHDmCOXPmoG/fvlyZ6OhopKSkwMnJqdw8\n1q5diwcPHsDU1BQaGhqYMGEC+vbtCycnJ9jZ2aFDhw6Vzvtd1WRblT1W1rVrV246XV1dWFlZcb9v\n374NVVVVdOnSRar+3r17Y+XKlcjPz4eNjQ3y8/Ph6uqK3r17o1u3buW2Q0U6d+4s1f67d+8OX19f\n3L17F82aNcOaNWsAAElJSYiKikJUVBRCQ0OrbKMA4O7uDnd3d+Tn5yMyMhIxMTHc46+VPZJYV/uv\nQCCQ2n+bNm0KoLQHzKq8vUwLFiwAUPoYWNm6uHDhArdMSkpKFcbYtm1bqfd35OXl8fXXX+Pvv/+u\n0XJWpLo2kZeXh5s3b6Jdu3Zo0aIFN97U1BTNmzd/7/mW4fP57/S4bk3aQ2hoaLl35Xr06FHusV1t\nbW2oqalxv83MzLB3716IRCK8ePECMTExePz4MUQiUZWPv77p3r17UFdXh42NjdR8yh6Z3r9/f51s\nR0JIzVFSRUg9KktyEhISKi2TnJwMXV1d8Hg85OTkwNTUtFwZbW1tvHjxgvutqKhY7n2dRo0aVRtP\nkyZNpH5raWkhKysLQOk7TytXrsShQ4cgEolgYGAAW1tbAOVfmG/cuLHU7/Pnz8PPzw/x8fHQ0tKC\nmZkZlJSUuJOcsnm8Pd271iEQCKCuri41nY6ODoDSd4Xelp2dDcYYtLS0KpymrIxEIsFvv/2G3377\nTaocj8dDampqpTEDQIsWLbhtZmFhgYKCAsyePRtaWlro3LkzAHDvdsyYMQMzZswoN4+UlBSoqKhg\n37598Pf3x9GjR7Fv3z6oq6tj/PjxGDduXJUxvIvq1nN2djYEAgFUVFSkptPR0eFO+rOzsyvcljo6\nOmCMIS8vDzY2NggICMCOHTuwefNmBAQEoHnz5liyZAkcHBwqjU9XV1fqd9n7SmVtKDQ0FEuWLEFE\nRATU1NRgbGwMRUXFcifUb8eXn5+PRYsW4d9//wVQmqCUvdfydvsuU1f7r7y8vNT4sp4DK4ujsmWK\njIzEwoULERoaCiUlJRgZGXHbrbK6srOzpdr/m3VXtA/VVE3aRGZmptT7Z2+WqYyWlhaUlZXLvcv0\ntlevXsHMzKzG8dakPWRnZ1d57ChT0TJt2LAB27ZtQ25uLr744gtYWVmV2+5VycrKKjfvN9XVdiSE\n1BwlVYTUI21tbZiYmODq1avw9vausMzo0aOhq6uLnTt3Ql1dHSkpKeXKpKamSl39fl8ZGRlSJwBp\naWncidCGDRvw119/4ZdffoGTkxMUFRVRWFiIw4cPV1lnTEwMpk6dCnd3d0yaNIm76j516lRERUUB\nAHcVNz09Xeqk+cmTJwAAJSWlauvQ0NBASUkJsrOzpRKrsqSnovWjoaEBHo+HtLQ0qeFvvsBedhI6\nceJE7oXxMoyxcolodebPn4/Lly9jwYIFOHXqFJSUlLjlX7x4cbmeAhlj3JX6L7/8EmvWrEFJSQlu\n376N3bt349dff0XHjh256d5OHqq7u/GmmmwrTU1NlJSUIDc3F6qqqty0mZmZUFBQAFC6XitKNsva\nroaGBgDA2dkZzs7OyM3NxZUrV7BhwwZMnz4dISEhlZ5gvv1tprJtp62tjZycHEyYMAG2trbw9/fn\n7nj88ssvXFuqjK+vL0JCQrBlyxbY2tpCXl4eL168wPHjxyud5mPbf98kkUjg5eUFbW1tnDhxgrtL\nu2/fPly7dq3S6TQ0NBAdHV1ueEpKSpUn8dWprk1oamqiSZMmFW6ntLS0cnfh3uTs7Ixr166hqKiI\nu3iUmpoKiUSCJk2aIDQ0FOnp6dxdsrILTm/uK2/vJzVpD5qamuWWqSbftgsKCsLatWuxZMkS9O3b\nl9uPyi6y1ISamlqF3ym7ceMGWrRoAU1NTW6ffVNttyMhpOao9z9C6tnIkSPx5MmTCpOTv//+G5GR\nkfjmm28AALa2trh586bUH9P09HRcv34d1tbWtY6l7JE3oPQRlytXrqBTp04AgPv378Pc3Bw9e/bk\nHgW7cuUKgKqvoD9+/BglJSUYP3681GNMd+/e5cpYWFhAIBBIzR8AFi1ahK1bt9aojrLHYP755x+p\nOk6dOgUdHR20atWqXGyKioqwtLSssEevMqqqqjAyMkJsbCz30WFTU1PIyclh9erVUr3K1YSamhqm\nT5+OhIQEbNmyBQDQpk0baGpqIjExUWoe6enp+OOPP5CTk4MrV67A3t4e6enpEAgEsLe3h4+PD4D/\n7pSoqqoiKSmJm1d+fn6VycTb37ypyXru2LEjAOD06dPcsKysLNy/f5/7bWNjg7y8vHIn7//88w/M\nzMygoKCAdevWYejQoVzcffr0wZgxY5CTk1PllfSbN29yvVYCpR/d5fP56NChA6KiopCdnY1Ro0Zx\nCZVEIkFISEil9ZW5f/8+unbtCnt7ey6hu3r1KoCq27cs9t+afPMqPT0dcXFxGDJkiNRjr28v09t1\n2dra4sWLF4iMjOSGFRcX49y5c7U6xtja2lbbJmxtbfH8+XOpu04RERHV3oUaN24c8vLysGLFCm7Y\n6dOn4eLigt9//x2+vr7Q0dHBoEGDAIBLYt78KHDZ48NlatIeOnXqhIsXL0IsFnPTvXnsqMy9e/eg\np6eHoUOHcrE8evQI6enpUm2tqu3cvn17ZGdnc71CAqX74ffff4+QkBDY2NjUyXYkhNQc3akipJ65\nubnh8uXLWLRoER48eAAXFxfweDxcu3YN+/fvR58+fbh3dr777jscPXoUY8aMgZeXFxhj2LBhAxo1\nasR1j/0u3j5Z9Pf3h0AgQOvWrbF7924UFhZyj5ZZWFhg8+bN2LdvH9q2bYvw8HAEBASAx+NVeTfE\nxMQEcnJyWLVqFTw8PJCRkYHt27cjLS2Nu6rcuHFjeHh4YMOGDRAIBDA1NcU///yDp0+fYtGiRVBT\nU6u2DiMjI/To0YN7P6Ndu3Y4f/48Tp06hcWLF1ca348//ohx48Zh3rx56NOnD27cuIHz58+XKzNp\n0iSoqanhq6++QkZGBn7//XcIBAIIhcJ3Xu8DBw7E7t27sX37dgwZMgR6enqYMmUK/Pz8AAB2dnaI\nj4/H6tWr0bp1a7Ro0YK7+zZlyhR8//33EAgE2LVrFzQ0NLjEt2vXrggMDISJiQm0tbWxdetW8Hi8\nSpOCsjtkFy9ehJKSUo22VZs2bfDNN99gxYoVKCoqgr6+PjZt2iR1Yuns7AxLS0vMmjUL06dPh56e\nHgIDAxEeHo4NGzZwyxgQEICFCxeiT58+yMrKwsaNG2Fra1vllfTMzExMmDABo0ePRmxsLNasWQNP\nT0/o6upCUVERKioq8Pf3h1gsRkFBAf788088e/as2g/lWlhY4Pz58wgKCoKenh5u3LjBdbVeUFBQ\n6XSy2H/L2sKZM2fKvaNURkdHB82aNcPOnTuhra0NPp+PoKAg7qS/oKAAWlpaUFdXR2FhIc6fPw8L\nCwu4u7tj165dGD9+PKZNmwZVVVXs3LkT6enp8PLyqjKu+Ph47Ny5s9zwbt26oVu3btW2CVdXV2za\ntAkTJkzAjz/+iJKSEvz+++/g8XhVJhjGxsZYvHgxli5divj4eAwaNAjt2rVDnz59sHHjRgCl75eV\n3XW2s7NDo0aNsHz5ckyYMAGvX7/Ghg0buDutQM3ag5eXFwYOHIhJkyZh2LBhePbsGf78888q11FZ\n3QcPHoS/vz86dOiAyMhI+Pv7lzuWqqmp4c6dO7CxsSl3B9vFxQUmJiaYPn06pk+fDk1NTWzZsgV6\nenro3bs3eDzee29HQsgHUs8dYxBCWGmXvwcOHGBDhgxhHTt2ZNbW1mzgwIHs4MGD5Xqte/78ORs/\nfjyzsrJitra2bPLkySwmJoYbv27dOta+fXupaZYvX85cXFykhk2cOJHrFa6sF7gDBw6wvn37MktL\nSzZy5EiuK1/GSrs79vHxYXZ2dqx9+/ZswIABLCgoiI0ZM4aNGzeOMVbaY9abXZGXOX78OOvZsycz\nNzdnzs7O7KeffmL79+9nJiYmLDk5mTFW2vvVunXruB7yBg8ezEJCQt6pjqKiIrZq1Srm6OjIzM3N\nmZubGzt+/Hi16//cuXOsX79+zNzcnH377bds37595ZbjwoULbODAgczc3JzZ29uzmTNnssTExErr\nfLunvbddvXqVCYVCqa6gDx8+zPr168fMzMyYg4MDW7p0qVSvYQ8fPmSjR49mHTp0YFZWVmzUqFFc\nj3CMlfbCN3HiRGZpacm6dOnCAgIC2MqVKyvt/U8ikbDZs2czc3NzNmHChBqv5+LiYubn58fs7OyY\nra0tW7lyJZs6dapU72/Z2dls4cKFzM7OjllaWjIPD49yvQqePHmSubm5MSsrK9axY0c2e/bsSrsv\nZ6y097Nx48ax5cuXs/bt27OuXbuy9evXM4lEwpUJDg5mrq6uzMLCgjk5ObGZM2ey06dPMyMjI65H\nTGdnZ+br6ytVd1paGvvxxx9Zhw4dWIcOHZiHhwe7fPky69mzJ1u8eHGlMZWtx7rcfx8/fsyMjIzY\nrVu3GGOl++LYsWOZmZkZ8/X1ZfHx8RW2tYcPH7KhQ4cyKysr1qVLFzZx4kR2/fp1JhQK2cmTJ7nl\nHjhwIDM1NeW6709MTGTTp09ntra2zMrKio0ZM0aqN8LKtk1FPV0aGRlx86pJm4iLi2Njx45llpaW\nzNHRke3Zs4c5OzuzZcuWVTl/xkp7Y5w6dSpzcHBgFhYWrEePHmzZsmXsp59+Yqampmzu3Lnc9rhw\n4QLr06cPMzMzYwMGDGC3b99mnTp14nr/q2l7uHPnDhsyZAizsLBgbm5u7NixY8zIyIjr/W/u3Lms\nX79+UnFKJBL266+/MgcHB2ZlZcX69evHduzYwXx8fFifPn24cnv27GE2NjasY8eOrKSkpFwPi+np\n6Wzu3LmsY8eOzNbWlnl5ebGXL19y499nOxJCPhweY/SJdkI+N2Ufgj1y5EiFL9LXp/nz5yM6OhpL\nly5Fu3btZBoL+biMGDECKioq3N0H8mmJiIjAy5cvpd5dzM3NRefOnTF79mwMHz78vet++PAhrl69\nSndpCCH1ht6pIoTIzKtXrzBgwACIRCL88ccfsg6HEFKPsrOzMWnSJKxZswY3b97E+fPn4eXlxb1z\nVxtmZmaUUBFC6hW9U0XIZ6q6d07qw+7du/Hnn3+iVatWGDNmjKzDIYTUI1tbW6xatQrbt2/H7t27\nIS8vjw4dOmDfvn0VdktOCCEfM3r8jxBCCCGEEEJqgR7/I4QQQgghhJBaoKSKEEIIIYQQQmqBkipC\nCCGEEEIIqQVKqgghhBBCCCGkFiipIoQQQgghhJBaoKSKEEIIIYQQQmqBvlNFCCHkk7Zp0ybIy8vT\nt9AIIfXiwoUL2Lp1K1JSUuDu7g6xWIwHDx5ATU0Nq1evlnV4pI5QUkUIIeSTVVBQgAcPHiAsLAzD\nhw+HgoKCrEMihHziXFxckJWVhUuXLsHLy4sbvm7dOhlGReoaPf5HaiQ+Ph7GxsZwc3Pj/rm6uuLI\nkSOyDo0QQip18uRJ+Pr6Qltbm45XhJB6wxgDY0xqWMuWLWUUDakPdKeK1JiioiKCgoK430lJSejf\nvz/MzMwgFAplGBkhhJQnEomQl5cHbW1t/PDDD1izZg2GDh0KPp+uJxJC6l///v1lHQKpQ/SXhby3\npk2bomXLlggODoanpyfc3d0xatQoAMBff/0Fd3d3DBgwAKNHj0ZUVBQAIC8vD3PnzkXPnj3Rp08f\n/PHHHwCAnJwczJw5E/3790f//v2xatUqiMViAMDatWvxzTffYODAgRg7dixSUlJks8CEkAblzJkz\n6NOnDwCgd+/ekJOTw8mTJ2UcFSHkc8Xj8WQdAqlDdKeKvLd79+4hLi4OhYWFiIyMxIULF6CiooJb\nt27h77//xp9//glFRUVcu3YNU6ZMwcmTJ7F27VqIRCL8+++/EIlEGDlyJLp27YoDBw5AW1sbx48f\nR3FxMby8vLBt2zb0798fu3fvxvXr1yEvL48dO3bgwYMH6N69u6wXnxDyEWOMITU1Fbq6ugAAPp+P\ncePGYfPmzXS1mBBCyAdHSRWpsaKiIri5uQEAxGIxtLS08OuvvyI1NRXt2rWDiooKAODSpUuIjY2F\nh4cHN21WVhaysrJw/fp1zJs3DzweDwoKCjhw4AAAYNKkSdz/FRQUMGzYMOzatQvff/89jIyMMGDA\nADg6OqJr166wt7ev5yUnhDQ0Fy9eLHfxxc3NDf7+/rh48SKcnZ1lFBkh5HNAd6U+P5RUkRpr1KiR\n1DtVZQIDA7mECii9Quzq6oqZM2dyv5OTk6GhoQGBQLrJvX79GsrKypBIJFIvdIrFYohEIvB4POzd\nuxcPHz5KGnd7AAAgAElEQVRESEgI/Pz80KlTJyxYsKCOlpIQ8imIiIhA+/btkZ6eLjV80KBB2LRp\nEyVVhJA69XYnFeTTR+9UkQ+uS5cuOHnyJPfu059//sm9a2Vvb4+goCAwxlBcXIzJkycjLCwMDg4O\n2LdvHwCguLgYhw4dgoODA54+fYp+/fqhTZs2GD9+PEaNGoVnz57JbNkIIR+/69ev4/fff4e9vT06\nd+4s9W/9+vUICwvD3bt3ZR0mIeQTdfnyZRw9ehRhYWFYt24dUlNTZR0SqQd0p4rUWGW3st8e7uDg\ngHHjxmHMmDHg8XhQU1ODv78/AGDy5MlYvnw5jI2N0aJFCwwePBhOTk6wtLSEr68v+vfvj+LiYnTt\n2hUTJkyAQCBAr169MHDgQCgrK0NJSQk+Pj51vqyEkIbL3t4eT58+lXUYhJDPlJOTE5ycnGQdBqln\nPEb3J4kMLFmyBNra2vjxxx9lHQohhBBCCCG1Qo//kXq3b98+3Lx5k7pGJ4QQQgghnwS6U0UIIYQQ\nQgghtUB3qgghhBBCCCGkFiipIoQQQgghhJBaoKSKEEIIIYQQQmqBkipCCCGEEEIIqQVKqgghhBBC\nCCGkFiipIoQQQgghhJBaoKSKEEIIIYQQQmqBkipCCCGEEEIIqQVKqgghhBBCCCGkFgR1VbFIJML8\n+fPx+vVrFBcXw8vLC5aWlvDx8UFOTg7EYjF++eUXtGjRoq5CIIR8giQSCZYsWYKIiAjIy8tj+fLl\nMDAwkCpTUFCA0aNHY8WKFWjTpg0AYMCAAVBVVQUAtGjRAitWrKj32AkhH5/qjikXLlxAQEAABAIB\nBg4ciMGDB1c6TWxsLObOnQs+n4+2bdti8eLF4PF4OHToEA4ePAiBQAAvLy9069ZNdgtMCKkTdZZU\nHT9+HNra2li1ahWysrLg6uoKe3t7uLq6olevXrh58yaioqIoqSKEvJNz585BJBLhwIEDCAsLw8qV\nKxEQEMCNDw8Px+LFi5GcnAwejwcAKCoqAgDs2bNHJjETQj5eVR1TRCIRVq5ciSNHjkBRURHDhg2D\ni4sL7t69W+E0fn5+8Pb2RocOHbB48WKcP38elpaW2LNnDwIDA1FUVIRhw4ahc+fOUFBQkPGSE0I+\npDp7/K9Xr1748ccfAZReBRIIBAgNDUViYiJGjx6N48ePo2PHjnU1e0LIJyo0NBSOjo4AAEtLSzx8\n+FBqvEgkQkBAAFq3bs0Ne/r0KQoKCjB27FiMGjUKYWFh9RozIeTjVdUxJTIyEgYGBlBTU4O8vDxs\nbGxw+/btSqd5/PgxOnToAADo2rUrQkJCEB4eDmtra8jLy0NVVRUtW7bEs2fP6nkpCSF1rc6SKmVl\nZaioqCA3NxdTp07FtGnT8OrVK2hoaGDHjh3Q19fHli1b6mr2hJBPVG5uLvcYHwDIyclBIpFwv62t\nraGnpyc1jZKSEsaOHYtt27Zh6dKlmDlzptQ0hJDPV1XHlNzcXKipqXHjVFRUkJOTU+E0YrEYjLEK\ny75dR25ubl0uEiFEBurs8T8ASEhIwOTJk/Htt9+iX79+WLlyJVxcXAAALi4uWLNmTbV13L17ty5D\nJITUgo2NTb3PU1VVFXl5edxviUQCPr/q60OtWrVCy5Ytuf9ramoiJSUFTZs2rXQaOvYQ8nH7UMef\nqo4pampqUuPy8vKgrq5e4TRycnJSx6Lc3NwKy5bVURU6/hDy8ars2FNnSVVqairGjBmDxYsXw87O\nDkDpFeRLly7B1dUVt27dQtu2bWtUV12duN29e1cmJ4W11VDjBhpu7BR3xXXLgrW1NS5evIjevXvj\n/v37EAqF1U5z5MgRREREYPHixUhKSkJubi50dXWrnS5JVxF9DEw/RNhSGmp7Ahpu7BR3/Wsox5+q\njilt2rRBbGwssrKyoKSkhNu3b2Ps2LHg8XgVTmNsbIxbt26hY8eOuHLlCuzt7WFhYYE1a9aguLgY\nRUVFiIyMrNH5D537SKO4619DjV1Wx546S6o2btyInJwc+Pv7w9/fHzweDytXroSPjw/2798PdXV1\nrF69uq5mTwj5RH399dcIDg6Gh4cHAMDPzw8nTpxAfn4+hgwZUuE0gwYNwty5c+Hp6Qkejwc/P79q\n724BwJn4x3DSbwsVeXqhnJBPVXXHlLlz52Ls2LGQSCQYNGgQmjRpUuE0ADB37lwsXLgQIpEIhoaG\n6NWrF3g8HkaOHAlPT09IJBJ4e3tTJxWEfILqLKny8fGBj49PueHbt2+vq1kSQj4DPB4PS5culRr2\nZqcUZd7s6U9eXv69LuIUlhTj7KsncGtl+e6BEkIahOqOKc7OznB2dq52GqD08eKKehkdPHgwBg8e\n/IEiJoR8jOjjv4QQUgmH7Aycf/UU2cUFsg6FEEIIIR8xSqoIIaQSrq9jIC4R4Z+Xj2QdCiGEEEI+\nYpRUEUJIJRTzMtEjMxVXEl4gvTCv+gkIIYQQ8lmipIoQQioj3wg9XkeBX1KME3EPqy9PCCGEkM8S\nJVWEEFIJvk0PyBfmo396Cq4nRSEpP1vWIRFCCCHkI0RJFfksFRUVcR+iXrFiBRITE5GVlYUBAwZg\n7NixMo6uaqtWrcI333yDXbt2wd/fv9JyV69exYULFwAABw8eRElJSX2F+Mng2/QEv2MfNO3UFxIw\nHIt9IOuQSAP3uRx7Dh06BICOPZ8qaseElFdnXaoT0lDMnz8fAHD79m20aNECa9eulXFEVTt9+jSO\nHTsGZWXlKss5OjpyZTZt2oQBAwbUR3ifFJ6CIuS6uMOCMRgkx+BOahx65WaghaqWrEMjn4BP+dgD\nlH4kk449n75PvR0D9DeU1AwlVeSzkZeXh5kzZyInJwcGBgbg8XgAgBEjRsDHxwfLli1DSkoK1q9f\nj4EDB2LRokUoLCyEoqIiBg8ejPj4eHh5eUFTUxNOTk5wdHTE8uXLwRiDlpYWVqxYgUePHmHLli1Q\nUFDAy5cv0bdvX0yYMAExMTHw8fFBSUkJFBUVsWbNGqSkpODnn3+GWCxGRkYGlixZgvbt22PevHmI\ni4tDYWEhRo4cCVdXV24Z1q9fj+TkZPzwww/4/vvvERQUhN9++w09evSAjY0NoqOj0bhxY6xbtw5B\nQUG4fv06oqOjkZqaCm9vb6xduxYLFy5EYmIiUlJS4OLigmnTpuHMmTPYunUrBAIBmjRpgjVr1nDr\nh5R+k8atlQXWPryEv2PDMNm0m6xDIg3I53jsiY6OBgA69nxCatOOfX19UVJSUqt2/NNPP0FJSane\n23HLli2pHZMaoaSKyMThqHsITY37oHVa6xhgUJv2lY4/cOAAhEIhpk2bhgcPHuDGjRvcOAUFBSxY\nsAAHDhzA5MmTMW3aNIwYMQJdu3bF9evXsWXLFvj6+iI1NRVHjx6FQCDAkCFD4OfnB0NDQxw+fBhb\ntmxBly5dkJCQgOPHj6OoqAiOjo6YMGECfv75Z0yYMAEODg44f/48nj59ioyMDMyZMwft2rXDiRMn\nEBgYiHbt2uHOnTvcIwfBwcFSyzB58mQEBgZi27ZtuHfvHjc8Pj4ee/bsQdOmTTFs2DCEh4dzB/RB\ngwYhICAAv/32GxISEmBlZYXBgwejqKgITk5OmDZtGk6ePIlx48ahR48eCAoKQm5uLtTU1D7k5mnw\nTDT18aW6LsLTXyMyOwWG6rqyDom8Bzr21M+xh8fjwcnJCSdPnqRjTx2oTTsuKi7CkVvx5YbXZTv+\n9ddfMX369Fq1Yzc3N4wePbre2zH9DSVlGGNVjqekinw2YmNj4eTkBACwsLCAvLw8N44xJrWzRERE\nYNOmTdiyZQsAoKCg9OOvzZs3h0BQuttERUVhyZIlAICSkhK0atUKANCuXTvw+XzuihoAxMTEwMrK\nCgDQvXt3AMCdO3cQEBAARUVF5OXlQVVVFSoqKpg/fz4WLlyI3NxcfPPNNzVaNi0tLTRt2hQAoK+v\nj6KiogrLaWhoIDw8HDdv3oSqqiqKi4sBAPPmzcOmTZuwZ88etGnTBl999VWN5vs5Kb1bZYlfH5xD\nUEwYvM2705VIUiOf47Hn7ZMPOvY0fLVpx2Vla9OOv/32WwDUjkn9ETMJXuZmIDI7BS+yU/AiKwUe\n8i0rLU9JFZGJQW3aV3lFrC4YGhri/v376N69Ox4/fgyRSFRl2TFjxqB9+/aIiorC4cOHAQB8/n99\nu7Ru3RqrVq2Cnp4eQkNDkZKSAgAVnmgbGhoiPDwc9vb2CAoKQn5+Pg4fPoxVq1bB0NAQa9euxevX\nr5GSkoJHjx5h/fr1KCoqQrdu3eDm5iY134pUd3LP5/MhkUgQGBgIdXV1/PTTT4iNjZV6CXfKlCnQ\n1tbGokWLcO7cObi5uVVZ5+fIMDsdY1MTsQ3A08wkGGvpyTok8o7o2EPHnk9Bbdrx3bt3YWNj887T\n1aYd3759G0Dt2nFkZCQcHByoHZM6UygWITo7DS+yk/EiOwXR2WkokvzXQYmGglKV01NSRT4bw4YN\nw+zZs+Hp6Yk2bdqgUaNG3Liy2/xlB9bZs2djyZIlKC4uRmFhIQYNGsSVK7NkyRLMmjULYrEYPB4P\nK1asQFJSUoUH59mzZ2PevHn44YcfYGdnh1WrVqG4uBjTpk2Duro69PT0kJmZCV1dXaSkpMDDwwNy\ncnIYO3ZsuT8GZfW/GW91bG1tMX78eCxatAgzZszA/fv3oaCggFatWiEpKQkWFhb44YcfoKKiAhUV\nFTg7O7/byv0MMMYguXEc7eOfwbBRIwTF3IeRZk+6W0Wq9Tkee8rG07Hn01Gbduzj48OVK/Ou7XjK\nlClYvXo1tWPywWQW5SMyO/X/SVQq4nMzIMF/dyf1lTXwpbouvlTXhaG6LnQUVRAaGlppfTxW3QOC\nMva+V1RkXXddaqhxAw039g8Rd3JyMlauXIk5c+ZwjxnUNdp/3l9FyydJiIT4gB+SNHXha2gGL1Mn\nWDVu/kHqbigaauyfc9yyOPYAdPypDVp35Z07dw6nTp2q93ZcWw11fQMNN/YK/34zhsT8bLzITkHk\n/5Oo1MJcbryAx0dLNW18qd4Ehuo6+FJdFyryjd6uusp1QneqCKkn27dvR0xMDCQSiaxDIe+Jr28I\nyZft0fTFPVhkpuHvmDBYaDcDn0ef/CMfLzr2kE/ByZMnERsbS+2Y1IhIIkZsTnrpu1DZyYjKTkVe\nSTE3XlmgAHPtZv+/E9UELdW0Ic+Xq9U8KakipJ7MnTtX1iGQD0CuiztKIu9jSFIcFmlq43ZKLDo1\naS3rsAipFB17yKdg+PDhDfKuCakfYokEUTmpeJSRgNDCOGwPeY4S9l8CrqOoAnPtZjD8fxKlp6wO\n/gd+fJ+SKkJIgyKRSLBkyRJERERAXl4ey5cvh4GBgVSZgoICjB49GitWrECbNm244WlpaXB3d8fO\nnTvRuvX7JUI8bX3wTLtAPTIMTYuKcDw2HLY6LSFXzYvQhBBCCPlwUgtz8SgjAY8zEvA0MwmF4tLO\nU3gAWqhqwVBdF23//zifZqOqP/b8IVBSRQhpUM6dOweRSIQDBw4gLCwMK1euREBAADc+PDwcixcv\nRnJystRLyCKRCIsWLYKSUtW999SEnMMgyDl5QBgXjksJzxGcFIWu+l/Wul5CCCGEVKxQLEJEZnJp\nIpWZgOSCHG6crqIqOjVpBVMtfeRHv4Z9+471Hh8lVYSQBiU0NBSOjo4AAEtLSzx8+FBqvEgkQkBA\nAGbNmiU1/JdffsGwYcOwadOmWsfAU1IFAPQxMENwUhROxoXDvmnrWj+PTQghhJBSjDHE52Vyd6Ne\nZKdA/P9H+hrJCWCp/QVMtPRhqqUPXaX/PrZ8NyZJJvFSUkUIaVByc3OhqqrK/ZaTk4NEIuG6zbW2\nti43TWBgILS1teHg4IBNmzZV+1X0mtJQUIJLMyFOxz/GpdcR+Lq58QeplxBCCPkc5RQX4klmIpdI\nZYsKuXEGqlqlSZSmPtqo60DwkV3IpKSKkBpat24ddHV14eHhgb1798LAwAB2dnb4+++/MXjwYBw9\nehQaGhpwcXGRdaifNFVVVeTl5XG/30yoKhMYGAgej4eQkBA8ffoUc+fORUBAAHR0dKqc7u7du9XG\n05SJIQ8+TkQ/gGpiLhRq2BNgTer+WDXU2Btq3PPmzYOWlha6d++O06dPQ09PDyYmJrh27RqcnZ1x\n5coVqKiofJQv8TfUdU4+PPobSipSIhEjKicNjzMS8CgjAXG56dw4dXlF2DVpBWMtfZho6kNdQVGG\nkVaPkipCaujN93OGDx8OAIiPj8fhw4cxePBgDBgwQFahfVasra1x8eJF9O7dG/fv34dQKKx2mr17\n93L/HzFiBH766adqEyoANT5JzYpphNMxYUhvooS+BmbVlm+o3/4AGm7sDTnuL774Ajo6OrCxseGW\nIT4+Hrdv38bMmTM/2uWq628tkYaF/oaSMqmFuXiY/rq0g4msJBSJSwAAcjw+hBpNYaKlB1OtZvhC\nRfOD99BXlyipIp+N3Nxc+Pj4ICcnB8nJyRg2bBj++ecfGBsb4/nz58jNzcUff/yBZs2aYfXq1Xj0\n6BEyMzMhFAoxaNAgAP/9UXBxccG///6LjRs34sWLF/D39wdjDDo6OvDw8MBPP/2E8PBwiEQiTJky\nBd27d8fKlSu5L3H369cPI0eOlNm6aMi+/vprBAcHw8PDAwDg5+eHEydOID8/H0OGDKn3eFhWKr66\neAjqCgr4S0EJ3fTbVvjBQPL5omMP+RTUph37+fkBqF073rt3L37++WcA1I4boqSCbNxLfYm7qS+l\n7kY1UVSFSZNmMNXSRzvNJlCUk5dhlLVDSRWRGdG2ORUOlx/78wcp/7a4uDj07dsXX3/9NZKTkzF8\n+HA0bdoUlpaWmD9/PtasWYMTJ07A09MTGhoa2L59OyQSCfr164fu3btXWKeXlxeeP3+OSZMmYf36\n9QCAs2fPIjMzE3/99Reys7OxY8cOyMnJ4dWrVzh06BBKSkrg6ekJOzs7tGvXrkaxk//weDwsXbpU\nalhF3aPv2bOnwukrG/7e1LTA4/HQMSUep5s0w5n4JxjQ2urDzoN8UHTsoWPPp+B927FRUTFE9w9V\nW/5ttWnHSUkVdxzwLu04JSWF2nED8zovC/fS4hCa+hLxeZkAAD6PBxMtfVhpN4eptj50FFWrqaXh\noKSKfDYaN26MXbt24cyZM1BVVUVJSentZmPj0s4F9PX1kZqaCkVFRaSlpWHGjBlQVlZGfn4+V/Zt\nFXV4EB0dDSur0pNqdXV1TJ06Fdu2beMegxEIBLC0tMSLFy/oD8IngMeXg1yXARCf2AD3hFhsU1aH\nyxdCaCjUvut28mmgYw/5FMi6HRsZGQGgdvwxY4zhVX4mQlNeIjQ1DgkF2QAAAY8Pc+1msNYxgKX2\nFw3maQ5WmA+WkQikJ4AVFUDO+qsqy1NSRWSmplfH3rf823bs2AErKysMGzYMN27cwKVLlyosd+XK\nFSQmJmLNmjVIT0/H2bNnuXFv/wHg8/mQSCRSwwwNDfHvv/8CAHJycjBt2jSMGDECgYGB+O677yAS\niXDv3j24u7vXannIx4P3pTV4em1glhgF/SbNcSruEYZ9aSvrsEgl6NhDx55Pwfu24wfv+a5bbdpx\nWfutTTsumx+1448LYwxxuRkITY1DaNpL7ttR8nw5WDVuDmudFrDQ/gJKAgUZR1ozrKgA4r/XliZT\n+f99BwsCBfDbV92JCiVV5LPh7OyMZcuW4dSpU1BTU4NAIIBIJJJ6eRYALCwsEBAQgOHDh4PH48HA\nwAAZGRkAUK5s48aNIRKJ8Ouvv0JRURE8Hg/du3fH9evX4enpCbFYjMmTJ8PR0RE3b96Eh4cHiouL\n0adPH+7qHmn4eDwe+A7uEB/+FYNex+APFQ30aG6Mxooqsg6NfATo2EM+BbVpx8nJyQBq146PHTtG\n7fgjIWEMMTlppYlU6kukFZX2yKvAl4ONjgGsdVrATLvZR/V+FCvM+/9dp0SwjESwzBTI9RkP3tu9\nBysogqXEA0qq4LVqCZ6WHqClB562HlDN11h47EN9sOUtIpEI8+fPx+vXr1FcXAwvLy+um8zjx49j\n3759OHDgQLX11HXvQR9rr0lVaahxAw03doq7fuv+GLzP8onP78ELNS38VpiFznqGGNXO7oPV/bFo\nqLFT3PWPjj/vj9ZdeRR3/XszdgmTIDI7FaGpL3Ev9SUyivMBAIpyAlhof4H2OgYw09KHgpzs79e8\nvc5FO+YDmcnlyglG+4GnqVtuOBOXgFfJclS1PetsyY8fPw5tbW2sWrUKWVlZcHNzg4uLCx4/fowj\nR47U1WwJIURm5LqPQFsmQbPQf3A9KRo9mxtDT1lD1mERQggh70zCGJ5mJnKJVNmHeJUFCrBv2gY2\nOi1gpKkHeRl8hJeViIC012ApL8FS4sBS4iHXayx46o3LleXpNAe0mkrddeJp6QHK6hXWXVlCVZ06\nS6p69eqFnj17Aij9OKdAIEBmZibWrFmD+fPnY+HChXU1a0IIkRk+jw/XlhbY8OQqjsWGY7yxg6xD\nIoQQQmqEMYaonFRcT4rG7YJoFIZHAABUBY3goGcIGx0DCDWaQu7tx+bqUcmpzWARdwD25vt4PLCM\nxAqTKkH/ifUSV50lVcrKygBKv2swdepU/Pjjj5g/fz7mzp2LRo0aRq8fhJDynmclIygmDC7QlnUo\nHy3Lxs3RSlUbd1PjEJebDgNVWleEEEI+XtnFBbiZHIPgxEiu1z4lyMFJvy2sdVqgrUYTyPHqNpFi\nTAJkpvz/7tNL8AwtwddrU64cT1kd0GsFnq4BoNsCPN0W4Ol8AZ6MexWs0wcfExISMHnyZHz77bdo\n2bIl4uLisGTJEhQXF+PFixfw8/PDvHnz6jIEQsgHEpebjr9jwvAwIwEA4KJMiUJleDweXFtZ4o+H\nF/F3zANMMesm65AIIYQQKWImwaP0BAQnReJB+itIGIOAx4etjgG66BkiL/IVOtRDT7aSx9cheXAJ\nLDUeEBVxw/kCeaCCpEqum0edx/Q+6iypSk1NxZgxY7B48WLY2ZW+rH3ixAkAwKtXr+Dt7V3jhOru\n3bt1FWad1l2XGmrcQMON/XONO0NShDuiVESLcwEA+nwldJQv/2InkWakqo0hWRkIEpfgRVYKvtSg\ndUYIIUT2kvKzEZwUhRvJ0cgqLgAANFfRRJemhujUpBX3Ham7vNcfZH6MMSArGZCw0l703h5fmAuW\nGA1o65fedSr719Tgg8y/vtRZUrVx40bk5OTA398f/v7+AICtW7eiUaNGYIyV61azKtQDjrSGGjfQ\ncGP/HONOK8zD8bhw3EiKBQNDK1VtuOu3g2FUOPg6ariXUfHHHEkpdv8Cuj6/h+xmrREUE4YZFt3f\n6bhHCCGEfChF4hLcTY1DcGIkXmSnAACUBfLopt8WXfQMP+hj6kxcApYUC/b6BVjCC7DXL4D8HPCE\nHSHoM75ceb6ZI/gW3cATfDxdsL+POkuqfHx84OPjU+G45s2b16g7dUJI/csqLsCpuEe4mvgCYiZB\nM2UNuDdpA+Poh2DBq8FERZC0MAZad5N1qB81vqUzJHfPoEdSPBbpfoEnmYkw0dKXdViEkDcUFhZi\n1qxZSE9Ph4qKClauXAltbemTy0OHDuHgwYMQCATw8vJCt27dKp3u/v37WLFiBeTk5NClSxdMnjwZ\nAODl5YXMzEwIBAIoKSlh8+bNslhc8plhjCE6Jw3BSZG4nRKLInHpxVChRlM46BnCqnHzOukCnb18\nCvHR3/8boKoFXjtb8FuZV1iep6D4wWOQBdl3Jk8I+SjkiYpxJv4xLrx+hmKJGDqKqnBt1g7Wz+6C\nBa8FE4sAFQ3w7V3BN+8KhD+SdcgfNZ6CIvid+kLh0gH0SIhFkFYYjDX16G4VIR+R/fv3QygUYvLk\nyTh16hQ2bNiABQsWcONTUlKwZ88eBAYGoqioCMOGDUPnzp0rnW7x4sVYv349WrRogfHjx+PJkycw\nNjZGXFwcTp48KcMlJZ+T7OJC3EyORnBSFBLyswAAWo2U8VUzI3TWawMdRdX3rpsxBmQkgr2OBMvN\ngJxd/3JlePptwLdyAU/fELxmX1bYI9+niJIqQj5zhWIRLrx6hjPxT1AgFkFTQQmDDczQpakh+EyC\nkn93Airq4Nv2At/UocHfnq9PfHMnSELPwSnlFS6mvcL9tHi012kh67AIIf8XGhqK77//HgDg6OiI\ngIAAqfEPHjyAtbU15OXlIS8vj5YtW+LZs2cVTpebmwuRSIQWLUr3cQcHB4SEhKBJkybIzs7GhAkT\nkJ2djfHjx6Nbt271upzk0ydmEjzOSMC1xIo7nTDSbAr+e/bex8QlkISeLX2c73UkUFj6jjV4fPBt\nepTrdY/XSBlyzp61XaQGh5IqQj5TIokYVxKe45+Xj5EjKoSKoBEGtW4PJ/22bzwOwIfAfRqgrvPe\nH8P7nPEE8pDr7Ar8uw0d0pPxd+wDWDb+QtZhEfJZ+uuvv7B7926pYY0bN4aKigoAQEVFBTk5OVLj\n8/LyoKamxv1WUVFBbm4ucnNzy02Xl5cHVVVVqbIvX76ESCTC2LFjMXLkSGRmZmLYsGGwsLAo95gh\nIe8jqSAbIUlRuJEUjcwqOp2oFb4cJKHngPys0vOBVqbgNfsS/GZfAnShlUNnSYR8ZsRMgutJ0TgR\nF46MonwoygngqaqLTmo6UGxuXK48T6t8Tz2k5nhGnSCnqoXc/AwkJEfjVkos6E8QIfVv8ODBGDx4\nsNSwKVOmIC8vD0BpAqWuri41XlVVlRtfVkZNTU1qeNl0KioqUmVzc3Ohrq4OHR0dDB06FHw+H9ra\n2jA2NkZ0dHS1SRX1fFwexV1Kwhhixbl4WJKBBElpIqUAPkwEmhAKNKAjaQReYi6eJj6sUX2Colyo\np8dBLT0OCW3sUKykWS525bYuKFZURUmj/184KAEQl1z67yMki7ZCSRUhnwkJY7ibGofjsQ+QVJAD\neWP+drkAACAASURBVL4cPBppoHPcE/BfngHUtMFam3/0d6QkEgmWLFmCiIgIyMvLY/ny5TAwkO52\ntaCgAKNHj8aKFSvQpk0biMVi+Pj4ICYmBjweD0uXLkXbtm3rJV4ejw9eCyP0K8zDzZRYHI8Nhyuv\nWb3MmxBSNWtra1y5cgUWFha4cuUKbG2lv8ljYWGBNWvWoLi4GEVFRYiMjES7du0qnE5VVRXy8vJ4\n+fIlmjdvjuDgYEyePBkhISHYu3cvNm/ejLy8PDx//hyGhobVxkY9H0ujuIFicQluJEfj7KunSC4u\nvav6vp1OsKQYSCLuQBLzEEiN54Zrt3cE39zmg8den+oy7qqStY/77IkQUmuMMTzMeI2gmDDE52WC\nD2AIvxG6vHwGuYQoAACvhRH4HfsCfDnZBlsD586dg0gkwoEDBxAWFoaVK1dKvQcRHh6OxYsXIzk5\nmesU4uLFi+Dz+di/fz9u3bqFNWvWlHt3oq41VlRBV/0vcfF1BJ7JZ6Fjvc6dEFKRYcOGYc6cOfD0\n9ISCggJWr14NANi5cycMDAzg4uKCkSNHwtPTExKJBN7e3lBQUKh0uqVLl2LmzJkQi8VwcHCAhYUF\nAODatWsYOnQoeDwevL29oampWWlMhLwtV1SEywkRuPg6AjmiIgh4fHRpaoivmxtBX1njveqUPA+F\n5M6/gJwAvFZm4LUyA7+VOXhaTT9o7J8TSqoI+YS9Fufj/IOziMxOBQ9Apyat0L+FGTSP/g4kx4HX\n2gL8Tn3B16/+qunHIjQ0FI6OjgAAS0tLPHwo/XiDSCRCQEAAZs2axQ376quv4OzsDKD04+MaGu/3\nR6i2ercwRXBiJEJL0jBEXIJGH/ldQUI+dYqKivjjjz/KDf/uu/+x99/hUdX5//9/PzOT3gshPSSB\nFEoCCSAtNKnCKi6CFNuquz95f2BddV1ddGVdZUH9+basouu6ysobBXFtICICEZAikJAGIZBGSCEk\npPfJnPP9A41GqkByMsnzdl1c18w58zrzmFzkTJ7nvMo9bY8v1G3wYu1iY2NZv379eduXLl167WFF\nj1PeVMfXhcfYU5qDWbXgaLJhWlB/JvpH4mbrcMm2mmpBK8mF1hYMIQPO228YMOrczHxBkedNNCGu\njnyjC9ENnaqr5OP8FI42l0AzDPYK5OaQGAKczl0dVScuRDHaoPhY12rlcG6cwk8HgxuNRlRVxWA4\nN6tRXFzcBdsZjUYee+wxtm3bxquvvtopWX/OzdaBSQFRfFmQwUe5ySzsJ/erhBBCtJdfe5athZkk\nl59CQ8PTzpEbA6IY0zsc+0tMDKE11KDlZ6DmpaOdPALNDdAr6IJFleLhK2OmrzMpqoToRsqb6vgs\nP40DZfkYVZW4ZgtTR86kj0v7NSKs6c7Uz/184PhPC6rLee655ygvL2fu3Lls3rwZe/tLLzh43Qe6\nahpD8g8QezaH59BwqGwkxHj164XoRQaLdy5rzQ3WnV2IzvRDV/2thZkcrz43+UOgkztTAqMZ6h2C\n8TLfc1rNWVr//diPG1w8MUQMQwm98IK74vqTokqIbqDO3MQXBUfYWXICzdLKzLoabizKQWluxH7c\nXL3jXVdxcXEkJiYyffp0UlJSiIyMvGybzz77jNLSUn73u99hb2+PoihXVIh1xEBXS9VR1FPV3FRy\nkp0hjkwafAOuVrSavAxc7lzWmhv0GywuhDVpVS0cKDvJ14WZFH+/UG+0uy9TAqMvuGC8pmkXXkTe\nxRMl6gaUXkEY+gwCL39ZbL6TSVElhBVrtrSyvegYXxVm0tLazPiaKmaU5GNXVwVGG8p8o/HTLHrH\nvK4mT57Mnj17mDdvHgArVqxg06ZNNDQ0MHfuhQvIKVOm8Oc//5k77riD1tZWnnjiCWxtbTszdhvD\nmNtoOp7M1OJ8jrh68n/ZB1gUnSBffkII0YM0trawqySbHcVZVLU0YkBheK8+TAmMJsjZ47zXa7UV\nqJn7UTP3YpqxCMW7/ZqHiqJgmv7bzoovLkCKKiGskEVT2XM6l00F6VS3NOJssuOPFeX45mWA0YQh\ndgKG4TMoycrB3976upddyg9Tov9UaGjoea9bs2ZN22MHBwdefvnlDs92JRR7RwqibqRv2ufcn3+M\nZxyc2OMZwBhf6+2SKYQQ4spUNjewvegYu09n0/T9hEU3BkQyyT8KT3undq/VWprQTiShZu5DO5UF\naGA0oZWdOq+oEvqTokoIK6JpGofPFvJpfiqljTXYGozMCBrI5MBo7MoK0Fy8MAyfgeJy6UUlhb4a\n3PwxDJuO24HN/Loojw9t7Il086GXg4ve0YQQQnSAovoqthZmcqAsH1XTcLWxZ3rQAMb69cPRdOGe\nE+rhbah7PwVACeiHIXokSr+hKPaOnRldXCEpqoSwEieqz/DfvMPk1Z7FgMJY377MDBn047SqfuHn\n/gmrYBhxM7Q04xo6gOaCdN49vo9HYiZhVK5s0g0hhBBdm6ZpFFnq2ZORyJHKEgD8HFyZHBjNcJ8+\n2FxmbUhD1AhQ1XPFlHuvzogsroEUVUJ0ccX1VXycn0L62SIGVp/lL+Ul2M5chE8v65sOXfxIMZow\nTpjPYE1jaGMNh8oL+OrUUW4KHqh3NCGEENcov/Ys/807zPHmM9AM/Vx9mBIYzUBPfwzfj6HVGmpR\ns75DKzyBceYD542tVdy8MY68WY/44ipIUSVEF1XRXM/Gk+nsO51LVM1Zniw9hW9NBaBgPFMAUlR1\nC4qisKDvcLJrythYkM4AD39CpPumEEJYpYqmej7JT+VAWT4AwQYnFgwaTairNwBaqxk1N/XcOKn8\nDFAtoBig8jR4+umYXFwrKaqE6GLqzS1sKTxCYvFxfOqq+FNhDkE1FQAofeMxjrxZBqh2M042ttwT\nMZKXM3bwTtZenhgyDVujnJ6FEMJaNLaa2VJ4hO1FWZhVC0FOHtwWNoT6nKK2ggrA8snLaIVZ5574\nBGOIHoUhajiKo6tOycX1It/aQnQRLZZWEkuOs+XUURpaW/Cwc2RmWBxBmUkoYYPPFVM+cnequ4r2\n8GWiXwSHTqbz37wU5vcdqnckIYQQl2HRVL4tyWFjQRq15mbcbR2Y1SeWG3xCMSgKSRS1e72h/yi0\n3n0w9B8lF0i7GSmqhNCZqqnsP5PP5/lpVLY04GiyZXboECb4R2BjMKLdG4bi6qV3TNHBNEsrt6bs\nZFz5KZYbTcR4+TPAw1/vWEIIIS5A0zTSK4r5b95hTjfWYGc0cUtIDJMCorCpr0YrOAohA85rZxgw\nWoe0ojNIUSWETjRNI6OymI/zUjCVncLOxo6pYUOYFtS/3fSqUlD1DIrRhLFXIF6nMpldmM1/HJx5\nKm46zjb2ekcTQgjxEwV1FXyUe5is6lIUFBJ8+3JzyCBc6quxbF9Da+Z+sHdEue85vaOKTiRFlRA6\nKKyv5KPcw9QUn2BmcR4xVeWYw4fgGDpY72hCR4bRv0YtyGR0WSFHXD1Ze+Igv4sec96MUEIIITpf\nZXMDn+Wnsv9MHhow0MOP2aFD8GuoxfL1e7SeOASaBp6+GIfdBJeZMl10L1JUCdGJqlsa+fxkGpkn\njzCjKIdhFaUogOLfF/shN+odT+hMMdlgmv5bWt9/ljsLsnjWyZX9XgGM7B2mdzQhhOixmlrNbC3M\nZGtRJmbVQqCTO7NDh9Df49xsfa2b30IrPA69gjAOn4HSLw5F1hzscaSoEqITtFha2VZ0jC2njqKZ\nm/j70YPYW8znTsBjZqOEDJC7EQIAxTsAw9g5OCS+z+SyQtblHKKfmw/e9s56RxNCiB7FoqnsOZ3L\nxpNp1JibcLN14JaQGEb2DsXwk6LJMGY2NNWj9Bkk3+U9mBRVQnQgVdM4UJbPp/mpVDY34GJjx81h\nI3Fw6Y3B0RUl6ga5miXOY4idgGLngJN7L5qyD/Bu1j4eibmx3Ze4EEKIjqFpGkcqS/hv3mGKG6qx\nNRiZGTSQKU6e2PUKPO/1Br9wHVKKrkaKKiE6SHb1GTbkJpNfV4FJMTAtsD/TggbgYLIBv356xxNd\nmKIoKNEjGalppFWWcPjsKb4uPMbUoP56RxNCiG7thzHPmVWnUYDRPmH82qJit+dTqDiNdv9zKA4u\nescUXZAUVUJcZ2WNdXycl0xLTgrDq8/iHT+ZW0MHS/ct8YspisId/YaRU1PGZyfT6O/hR5Czh96x\nhBCi26lqbuDzk2nsLc09NwmFqw/zVQ23/Zug4jSgoEQMhVaz3lFFF9VhRZXZbGbp0qUUFxfT0tLC\nokWL8PPz49lnn8VgMGBra8vzzz+Pl5dMFy26h4bWFr48dYTcrO+YeeoEfeuq0RSFiT5hKFJQXTeq\nqvLXv/6V48ePY2Njw/LlywkObr8ocmNjI7/5zW/4+9//TlhY2AXPRxMnTtTpE/wyzjb23B0xgn8c\n+YZ3svaydMg0bGRGKSGEuC6aLa1sLTzK1sJMWlQL/o5u3BY2hKjDiaipiWAwogwYjXHYdBQPX73j\nii6sw4qqjRs34unpyQsvvEB1dTW33HILQUFB/OUvfyEqKor169fzr3/9i8cff7yjIgjRKSyayu6S\nbPYd28ekk8e4uaoMACUsFtOY2ShesoDr9bRt2zbMZjPr1q0jNTWVlStXsmrVqrb96enpLFu2jDNn\nzrQNGP75+WjWrFlWU1QBDPT0Z6pnIMcKjvJJfgpzw+L1jiSEEFYvr6acf2ftpaypDlcbe+aGxTPa\nNwyDYkAbmACAYeg0WS9SXJEOK6qmTZvG1KlTgXNXlk0mEy+99BLe3t4AtLa2Ymdn11FvL0SH+2Hx\n3v/mHqaksYabzpYwuKoM/MIwJszBECDjpjpCcnIyCQnnvuxiY2PJyMhot99sNrNq1SoeffTRtm0/\nPx8ZjdZ1p0drNTNz70YmNDfwrJ09gzwCiJYrpkIIcVUsmsqXBUf4oiADNJXJgf2ZGTIQe6NN22sU\nn2CMExfqmFJYmw4rqhwdHQGoq6vjwQcf5KGHHmorqJKTk1m7di1r167tqLcXokO1H8iqMNa3LxPi\nZmI8nYMSNlimVO1AdXV1ODv/2J3SaDSiqioGw7mZ8eLi4s5rc6HzkTVRTDYY4ybhvGsDC08e4z+O\nbvwlfgZONrZ6RxNCCKtS1ljHO1l7ya0tZ2RdDXOL8nCImYTyk4JKiKvRoRNVlJSUsHjxYhYuXMiM\nGTMA2Lx5M2+++SZvvfUWHh4y4FpYl+qWRjblHWZ3aT6aAv09/LgtdAgBTu7nXhA+RN+APYCzszP1\n9fVtz39aUF3Khc5H1sQQNxktL4NBpzI5UpTNB+4HuT9qtN6xhBDCKmiaxv4zeXyQcwibpgYeKS0k\n9HQ+GE1op/NR3HvrHVFYuQ4rqsrLy7n33ntZtmwZI0aMAOCzzz7jww8/ZM2aNbi5uV3xsZKSkjoq\nZoceuyNZa26wzuytmsrb+75COXOU6UU5qIFRuPjGENTsxOljOZzWO+AlWOPP+1Li4uJITExk+vTp\npKSkEBkZedk2FzofXYmudu4x+Q8loiSX2YUnWOnizvrqFvqaXDsg3aVZ6/8pyd35rDm76D7qzS2s\nzT5AUtlJRlWWMbcwB1NLI4pfOMbJd8vYZ3FddFhR9eabb1JbW8vrr7/O66+/jqqqnDhxgoCAABYv\nXgzA8OHDWbJkyWWPFR/fMYOyk5KSOuzYHclac4P1Zdc0jYNlJzl06EumnTpOcEMtqsHAfL8wTMPG\n6h3vsjry563XH0uTJ09mz549zJs3D4AVK1awadMmGhoamDt37gXb/Px8BPD2229fdlxnVzz3qL2c\nad30JtF1NexzLmfy4OF42jld54QXZ22/wz+Q3J2vO55/hPU5VnWad7P2UdXSSKydM/NPfouiKBjG\nz8MQOxHlCno6CHElOqyoevLJJ3nyySc76vBCdLhTdZV8lvktY9J287uaCgDUiKHYjp6N4t5L53Q9\nl6IoPP300+22hYaGnve6NWvWtD3uTucjQ794bO5+hsDmOr7JPsDqrP38YdBEDDKOTwgh2phVC5/l\np7GtKBMFhZtDBjEtaACKZyCKTwiKm7feEUU3I4v/CvEz9eZmPj+Zxs6SbAyqhdtbW6ly88N7xn0o\nvfvoHU8IFE9fxmga6RVFpFYUsaM4i0kBUXrHEkKILqG4vpp3svZyqr4SH3tn7o0aRajL90VUP+u8\n8yu6PimqhPieqqnsOZ3Lp/mp1LU209vBhdvD4/EedgvJR7PoJQWV6EIUReGOfjeQm7yZT/JSiHb3\n/XHCFCGE6IE0TeObkuN8kpNM/4rThESPZE54fLup0oXoKFJUCQHk1pTzybG9HG+uw85o4tehg7nR\nPxKT4fv1jKRrleiCXG3tubPfcFYd3cU7WXt5fPBUbAzWtQaXEEJcD9Utjfzn+H5qCrN45GQW/g21\nGKMTMEhBJTqJFFWiR6tpaeSro98SkrKDO+tq+HL8XG7pNwx3O0e9owlxRWK9Avm1yYG8U8f53MOP\n2aEyrb8QomdJPVvI+8f2MrbgGJNKT2HQNJQBY1CCo/WOJnoQKapEj2RRVXadyqBp/yZmlORjo6k0\n+QRzV9AAFCmohBXRmhuZcHgHo1tbWOnozCAPfyJkvRUhRA/QbGnlo9xkjuan8fsTafg0N4CrN8ZJ\nd2EI6a93PNHDSFElepysqlIOHtzElKxkPMzNNDs4o4y7HeeoESjSzU9YGcXOAdOEhShb3ubuvKOs\ndvHkiaEzcTTZ6h1NCCE6TH7tWd7J2ktpYy0hHr3xdHTB0H8UhtG3othcerkMITqCFFWix6hsbuCj\n3GQOlRcQ2dKIq6WV1qHTcBrxKzkBC6tmiB6Bmp9On2PfMTz/KG84uvL7gRNkfJUQl9HU1MSjjz5K\nRUUFTk5OrFy5Ek9Pz3av+fDDD1m/fj0mk4lFixYxfvz4S7azWCw89NBDzJkzh4SEBABee+01du7c\nidFoZOnSpcTExHT6Z+0uVE1ly6lMNhakoWoakwKimNUnFtPgaSgmGT8l9CMrnoluz6xa+PLUEZ46\ntJFD5QWEunjx67Hzsbv/eRwSbpOCSnQLxgkLwcWLaSUnMRQc452svaiaqncsIbq0Dz74gMjISNau\nXcusWbN444032u0vKytjzZo1rFu3jn//+9+8+OKLtLS0XLRdQUEBCxcuJCMjo63nw5EjRzh48CAb\nNmzgpZde4m9/+1unf87u4mxTPS+mbuOzk6m42tjzh4ETmRMWh43BKAWV0J0UVaJbyyg7yYoDn/Fp\nfip2Rhvu6ncDf4qdQh8XLxQnN73jCXHdKPaOGG/6LQYnN3zcvEkuP8X6nCQ0TdM7mhBdVnJyMmPH\njgUgISGBffv2tduflpZGXFwcNjY2ODs7ExISQlZW1kXbNTQ0sHz5cm644Ya2YyQlJTFmzBgA/Pz8\nsFgsVFZWdsbH61ZOmKvZuPVtfv3dlwx38+UvcTcR7eGrdywh2kj3P9EtlTXUsP+7z4jPPMBw915U\n3zCDX4UMknEmolsz+PdFuXcFt6KRk7qNb0pO4G7nyPSgAXpHE0J3GzZs4L333mu3zcvLCycnJwCc\nnJyora1tt7++vh4XF5e2505OTtTV1VFXV3fBdlFR5y/CXV9fj7u7+3nH8PDwuD4frJuzaCofp+0g\n8ujXDKw+i8Vowz3ufhill4noYqSoEt1Ks6WV3Ud20/vgl0yrqUBVFEb0DsU9XFZQFz2DYrLBEVgy\ncDzPp27l0/xz3WRG+4brHU0IXc2ZM4c5c+a027ZkyRLq6+uBc8WPq6tru/3Ozs5t+394jYuLS7vt\nF2p3Jce4nKSkpMt/qKvUkce+niyaSkZFJrOy9uHSaqbS3Z/T/SZgLmuAMuv4DGA9P+8LsdbseuSW\nokp0C5qmkVxWQN2O/2NMST5GNGr8wvCYdDd23gF6xxOi03nYOfL7gRN4IfVr/u/EAVxt7RnkKb8L\nQvxUXFwcu3btIiYmhl27djF06NB2+2NiYnjppZdoaWmhubmZnJwcIiIiLtsOaOt6GxcXxwsvvMB9\n991HSUkJqqq2u3N1MfHxHXMxMCkpqcOOfT21WFpZk7yF2zP3YKtaKAgbTdjN9+BjZbP0WsvP+0Ks\nNXtH5r5UsSZFlbB6pQ01vJ9zkGNVpdzb3ECTkyv2ExfiGT5EpkgXPZqfoxv/b8A4Nu/+kLeP7OIP\nsZMJdfXWO5YQXcb8+fN57LHHWLBgAba2trz44osArF69muDgYCZOnMhdd93FggULUFWVhx9+GFtb\n24u2+6kfvn8GDBjA0KFDuf3221FVlWXLlnXqZ7RGja0tvHZkJ9lNNQwMiSau/2iqag3ynS66NCmq\nhNVqVS18VXiUzQVHaNVUBnr4EXrzBNxcvGUWICG+F1pWxAPHD3PYw4fXjDY8Ongyvo4ySYsQAPb2\n9rzyyivnbb/nnnvaHl+o2+DF2v1gxYoV7Z4vXryYxYsXX1vYHqLO3MwrGYkU1FUw1DuYoaPnYTQY\nwEq7oYmeQ4oqYZWyK0/zfzmHKGmswc3WgXnh8QzxCpKrWEL8jBIyACWgH0OKTlCTm86rRhN/GjwF\ndztHvaMJIUQ71S2NvJy+g+KGakb3DuOOfsMxKDJRtbAO8j9VWJX6lmYSd63H6f1nUSqKGefXj6fj\nZxDnHSwFVQ+jqipPPfUU8+bN484776SgoOC81zQ2NjJv3jxyc3PbtlVUVDB16lRaWlo6M65uFJMN\nxpuXgHcA48qKGJp/hH8c+YbG1p7x+YUQ1uFsfQ1vffcZxQ3VTPSP4I5+N0hBJayK/G8VVkHTNFLy\nUsl5/2nGJH2Nh7mZ/59nMAv6DsNBpknvkbZt24bZbGbdunX88Y9/ZOXKle32p6ens3DhQgoLC9sK\n7t27d3Pvvfdy9uxZPSLrRrF3xHTrQ+Dixa+K8wg8eZRVR3dhVi16RxNCCEqryzj94QruTt3NLO8Q\n5obFY5ALpcLKSFElurzyhmp2ffEGfT9fRXTlGSq9AzHd8Vd8h07TO5rQUXJyMgkJCQDExsaSkZHR\nbr/ZbGbVqlWEhoa2bTMajaxevfqS0x93V4qzO6ZfPwTeATj59eN49RnezdqHKosDCyF0VHS2kPoP\nVxJRVYbF049pfYdKzxNhlWRMleiyLJrKjqIsvjlxgMdzUlGNJurHzaVX7EQ54Qrq6upwdnZue240\nGlFVFYPh3LWiuLi489qMGjWq0/J1RYqnL6Y7lnGrplGQnkhSeQGuufbcHhYvv1NCiE5XUHwc02ev\nEdTUQGmfgQTcvBjFKH+aCusk/3NFl5Rfe5b/O3GAU/WVONs7UzD+dqL7DcPgePkFE0XP8PMFNX9a\nUImLUxQDNgr8z4CxvJD6NYnFx3GzdWB60AC9owkhepDs0nzcP34FN3MzJdEjCJp6n1zcEVbtskWV\nxWLBaDR2RhYhaGo189nJNBKLj6OhMap3GLNDh+BsY6d3NNHFxMXFkZiYyPTp00lJSSEyMvK6v0dH\nrsjeFVapH6968ZlSz6f5qVQWlxJpurKp1rtC9qshuTufNWcXHSejopg3s7/jRp9A4nzDCRk7V+9I\nQlyzyxZVs2fP5tNPP+2MLKKHO5qfRvHBzezoHYSPoyt39B1OpHtvvWOJLmry5Mns2bOHefPmAefW\nhdm0aRMNDQ3MnXvpL+grvRrakSuyd5VV6iMaovl6+39Icm5lUGwkgzwDLvn6rpT9l5Dcna8js0ux\nZr2Sywt4+9heDIpCv0l3E+Lpr3ckIa6LyxZV3t7eHDx4kNjYWGxtZZY1cf1VNdSQuWMNMdmp9NNU\nHIOiGRZ3EzYGuUMqLk5RFJ5++ul22346KcUP1qxZc9627du3d1gua9O7rJD52WmMdHLjTaOJxYOn\nEOrqrXcsIUQ3tL80j9XH92NrNLK4/zgi5MKp6EYuW1RlZGRw5513ttumKAqZmZkdFkr0DKqmcjgt\nEZ99nzO0sZ56W3uaxtzGyJhx0q9aiE6iBEejRI2gz7H93JGdyutGG/44ZCq+jj1vhkQhRMfQNI19\nOcn8pyQLR5Mtvx84nlAXuXgjupfLFlX79+/vjByihymsr+Tb/Z8zO203KnC67xD8J92D0cFJ72hC\n9CiKYsA45R4sTXUMzM/glpxUXjXZ8KfBU3C3c9Q7nhDCymmqysnP/0HUqWP0GTiKO+NuJNDJQ+9Y\nQlx3ly2qGhoaeO2119i/fz+tra2MGDGCP/zhDzg6ypet+OVaNZVP8lLYWpQJJiOD/cIIGDWLoOD+\nekcTosdSjCaMMx7A8tH/nxGl+ZTnH+EfNrb8MWaSLK4thLhqqrmZov++SEBJLiVOrtw3aAI+UlCJ\nbuqy8w8/88wzNDU18fe//53nnnsOs9nMsmXLOiOb6GaOVpawoSmfLYVH8bB15H8GTSBq3lJcpKAS\nQneKrT3GWQ+iBPfHGDmcwvoqVh3dhVm16B1NCGGF1MY6St9/Ft+SXHLdvHGctxQf70C9YwnRYa5o\nTNXGjRvbni9btozp06df9sBms5mlS5dSXFxMS0sLixYtIjw8nMcffxyDwUC/fv1YtmyZjJ3pARpb\nGtmSsZMt9RUowOSAKH4VEoOdLPAnRJeiOLpgmv0wMzWV4sw9HD57inez9nF/1GgMcq4WQlwhS2sL\nZ9f+De/aCo72CqDP7Edwc5BxmqJ7u6K/aqurq3Fzc2t7bDJdvtnGjRvx9PTkhRdeoLq6mltuuYXo\n6Ggefvhhhg0bxrJly9i+fTuTJk26tk8gurTsvDSM2/7D2KZGcoZPYZChF1PD4vSOJYS4BINi4L6o\nUbySnkhSeQGuufbcHhYvF8GEEJdlUVXeOXEAJ3cvwlw9GTjr9zjbypAR0f1dtjq65557mDNnDhMn\nTkTTNHbs2MHvfve7yx542rRpTJ06FQBVVTGZTBw9epRhw4YBMHbsWPbs2SNFVTfVZG7myPb3iD52\nABtNoygokgcHTSQt84Te0YQQV8DGYOR/BozlhdSvSSw+jrutA9OCBugdSwjRhZlVC//M3E16881E\nOAAAIABJREFURTF9+8Vx64BxMi5T9BhXtPjvwIEDOXToEKqq8tprrxEZGXnZA/8wkUVdXR0PPvgg\nf/jDH3juuefa7a+trb2G6KKryis4irb1XWJqK6mzsaN2/Dz6DEzQO5YQ4hdyNNny+wHj2bnlLb5t\n2oerrQN2eocSQnRJTRYzq47sIqu6lGh3Xxb1Hyvd/EWPctH/7Z988km7rh4/FElHjx4lMzOTWbNm\nXfbgJSUlLF68mIULFzJz5kxeeOGFtn319fW4ul5Z/9qOXDndWldl74q5WzWVg+ZyGipzebC2khyv\nQOr73QjNjhT+JG9XzH4lJLfoidwqTjMj7wgj7Bx4yWBiqHMf4vUOJYToUsyWVv6R8Q3ZNWUM9grk\n/qjR2BiMescSolNdtKj67rvvLtl//nJFVXl5Offeey/Lli1jxIgRAERHR3PgwAGGDx/Orl27GDly\n5BWFjI/vmK/wpKSkDjt2R+qKufNqynn3+H5KW2vw8QmmNDqBqNCY817XFbNfCcl94WOL7s/gH442\n4ma89n/OouxUXoow4F2cxQT/y/dYEEJ0f1pTA+UfrkD19iMudBD3R47GaLjs5NJCdDsXLapWrlx5\n0UaNjY2XPfCbb75JbW0tr7/+Oq+//joATzzxBMuXL8dsNhMeHs60adOuIrLoSsyqhU0F6Xx1KhMN\njYn+kdzaJxZbueUvRLdhGPEraKgmIG0nD2Ud5nXVwtmmBn4dOlhmBRSiB9M0jcov3sD7bAnDHF0Y\nFTFCCirRY132L98tW7bw+uuv09jYiKqqqKpKU1MT+/fvv2S7J598kieffPK87WvWrLn6tKJLKSrO\nJin5K7a4eeBl58TdESOIdO+tdywhxHWmKAqGCQtB0whI38W9p07wsq0dlc313BM5Urr5CNFD1R/c\njEtBJidcPOg35V7sjTZ6RxJCN5ctql544QWeffZZVq9ezQMPPMC3335LRUVFZ2QTXVSrxULGrnX0\nTdvFVNWCMvY2JsfeiL1JTqZCdFeKwYDhxjsprG8leMw0wguPcKi8gBpzEw9Ej8XJRmb4EqInsRRn\nY9r7KTUmW86On0d/V2+9Iwmhq8veo3Vzc2PkyJHExsZSW1vLkiVLSElJ6Yxsogs6XZpH3pq/MCAl\nEVUxcCZhNjPjpkpBJUQPoCgK5YGxOHn589CgicR5B3G8+gwvpH3N2aZ6veMJITqJ1mqmfuPrKJrG\nrsHjGRMu608KcdGiqqqqCgB7e3vy8vIICwvjwIEDtLS0UFdX12kBRdegairfHdqC07qV9Kk8Q1Gv\nIEx3PU3Q0OmyIKgQPZCNwchvo8ZwY0AkJQ3VPJe6lVN1lXrHEkJ0gpz6Slb7h7EltD9TRtwifwcI\nwSWKqqlTp/Lggw8yatQoXnrpJSZOnMi+ffsYNWqULNjbw5Q21PB86td8WHOaOls7ikbdQsjCp3B0\n99E7muiBVFXlqaeeYt68edx5550UFBSc95rGxkbmzZtHbm7uFbcRv5xBUZgbFs+c0CH0KS3ghdSt\nHK0s0TuWEKID1ZubeTtrL0fdvRkw4Q6cbGT1OiHgEmOqEhMT2bp1K59//jn5+fm88cYbvPzyy7i6\nuuLm5taZGYVOVE0jsTiLT/JTMasWhvn3w2X0XPzsHPWOJnqwbdu2YTabWbduHampqaxcuZJVq1a1\n7U9PT2fZsmWcOXOm7erp5dqIazPhTCHjctLZX32W1y2tLIwcyajeYXrHEkJcZ5qm8d6J76hsbuDm\nkBj6usnFVSF+cNGiytHRkVmzZjFr1ixKS0vZuHEjixcvxt3dndmzZ3PzzTd3Zk7Rycoa6/jP8f2c\nqDmDs8mO30SMJL5XsN6xhCA5OZmEhAQAYmNjycjIaLffbDazatUqHn300StuI66NIXI42rHvGFGa\nj1urmX+pKmeb6pkZPFC6BQnRjXxTcoKUs4VEuvVmelB/veMI0aVc0WICvXv35v777+ef//wnISEh\nLF26tKNzCZ2oqsqRfZ9y+oNnyKk+zWCvQJbF3yQFlegy6urqcHZ2bntuNBpRVbXteVxcHL6+vr+o\njbg2ipMbxtv+iBIygOiqMh4+kco3OUmsOXEAi/ychbB6mqpSkp/BR7nJOJvsuDdyJAZF1qMS4qcu\nO6V6dXU1W7ZsYdOmTZSVlXHrrbeyffv2zsgmOllVZSmlX7xBRFkhzQYji3qFMShqpFxpFl2Ks7Mz\n9fU/zjSnqiqGyyw2eTVtAJKSkq4+qI7H7mgXzR40msCmVgJLs7ir4ASrbGwpKDvNJDt/bLrAH2DW\n+jO31txg3dnFj8z7PsPzwGYGhA8gYcwc3GUYgBDnuWhR9cUXX7Bx40YOHz7MxIkTefDBBxk6dGhn\nZhOdKDt9J5471xNmbqHYwwf3mx4gxkfuTomuJy4ujsTERKZPn05KSgqRkZEd0gYgPj7+WuNeUFJS\nUocdu6NdLrs2dBhq0ldE9otn4KkMMipL2G4sZ/GA8bjZOnRi0vas9WdurbmhY7NLsdZ51JNH4MAX\nVNja4x8xnEGeAXpHEqJLumhRtXbtWmbPns2LL76Ik5NTZ2YSncisWth16EvG7PkUVVHIj51A+Ph5\nGAxGvaMJcUGTJ09mz549zJs3D4AVK1awadMmGhoamDt37hW3ER1DURSMQ6dhBP7HdRzvZx/k29M5\nPJeylSUDx+PnKBMdCWEttLpKmr74J4qisHngKO6OuEHvSEJ0WRctqt5///3OzCF0UNpYw9vH9nCq\nqRon3z6EjriZfqExescS4pIUReHpp59uty00NPS8161Zs+aSbUTHMyoG7ug7HE87Rz4/mc7zqV/z\n//qPlRnDhLACmmqhcdMb2DQ38ElIFL8a/itMcsFViIu67Jgq0T19dyaPtdkHaba0Mtq3L0NG346d\nUf47CCGuL0VRmBE8CA9bR1IPbOKltO3cGzVaJr8RootrrSjBXFZIukcv+oyejY+Di96RhOjS5K/o\nHqbJYmZdThL7SnOxN5q4L3IUw3366B1LCNHN3ZB/lGE56ezxCeRtTaWyJZ5JAVF6xxI9XFNTE48+\n+igVFRU4OTmxcuVKPD09273mww8/ZP369ZhMJhYtWsT48eMv2c5isfDQQw8xZ86ctqUcFi1aRFVV\nFSaTCQcHB956661O/6y/1Cc1pST1H0qsb18W9D6/N4AQoj0pqnqQkoJM6r9ezbGQSIK9/Plt1Gi5\n8iSE6BSGgQmo2cmMPnMKj1Yz/9JUKprquS0sDoPMMCp08sEHHxAZGcnixYvZvHkzb7zxBk888UTb\n/rKyMtasWcPHH39Mc3Mz8+fPZ9SoURdtV1BQwJ/+9CfOnDnTboxnQUEBX3zxhR4f8aqkVxSxvSiL\n3m4+zI4apXccIayC/nPcig6nqiqZuzfg+slLhNSc5TbNwJ9iJ0tBJYToNIqzO6Y5j6IERdG/opSH\ns9PZV5DBv459i1m16B1P9FDJycmMHTsWgISEBPbt29duf1paGnFxcdjY2ODs7ExISAhZWVkXbdfQ\n0MDy5cu54YYb0DQNgPLycmpqanjggQdYsGAB33zzTed9wKtQ2dzA6qz9mBQDv40aLUMDhLhC8pvS\nzdXXVVG48R/0PX2SBqMNZ8bPZeiQSXrHEkL0QIqdI8ZZD2LZ+i5BWQe45/QpVplsqG7Zwf/0H4uz\njZ3eEUU3tmHDBt57771227y8vNpmOHZycqK2trbd/vr6elxcfrwA6eTkRF1dHXV1dRdsFxV1fpfW\n1tZW7rvvPu666y6qqqqYP38+MTEx53Uz7ApUTeWdrL3UtTYzL3woQc4eekcSwmpIUdWN5VSW4Lhu\nJWFN9RS5eeN+82JCvQP1jiWE6MEUkw3G6fej+gTTP3okw05lcLDsJM+nfs2SAePp5eCsd0TRTc2Z\nM4c5c+a027ZkyZK2hcHr6+txdXVtt//nC4f/UGT9dPuF2v2Ut7c3t99+OwaDAU9PT6Kjo8nLy+ty\nRZWanUxmXgon7OwY7B3EeL9+ekcSwqpIUdUNqZrKllOZbDyZxkQvPwY6exIx9TcYjTZ6RxNCCBTF\n0LaW1b2Ro/Cwc2RrYSbPHv6SBX2HcoOPDIoXnSMuLo5du3YRExPDrl27GDp0aLv9MTExvPTSS7S0\ntNDc3ExOTg4RERGXbfdTe/bsYe3atbz11lvU19dz4sQJwsPDL5utIxc4/vmxbRurCU/eQIhmIXDA\nKGIa7ElOTu6w979a1rros7XmBuvNrkduKaq6meqWRt7J2suxqlLcbR2InfIbItx76x1LCCEuyKAo\nzA4dgr+jGx/kHOKdrH2kVxSzoO8wHE22escT3dz8+fN57LHHWLBgAba2trz44osArF69muDgYCZO\nnMhdd93FggULUFWVhx9+GFtb24u2+ynl+wlYxo0bx549e7j99ttRFIWHH34Yd3f3y2aLj4+/vh/2\ne0lJSe2OrbWaaVn3dwwWM2v69GfesBn0devVIe99LX6e21pYa26w3uwdmftSxZoUVd3Ikcpi3s3a\nT625iUGe/twTMQJnG3u9YwkhxGWN7B1GXycPjn69mo8srWTXlPGbiJFEykUh0YHs7e155ZVXztt+\nzz33tD2+ULfBi7X7wYoVK9o9X7p06bUF7UCWnesxlJ1ij7cfveOndMmCSghrIEVVN9BqbuH4V2+z\nQ2ulwcOHuWFxTPSPbLtKJoQQ1sDzeBKj8o8QW+7Oa8ERvJS+ncmB0dwSEoPJYNQ7nhDdjpp1AC3t\nGwodnEkdOIYlQf31jiSE1ZKiysqdPXOSuo2v06+mAgcXD24et5AQVy+9YwkhxC9miB0PdRU4JW3l\nT8eS+LJPfzZrGpmVp7kvahR+jm56RxSiWylx68VZVy82hw3ggf4JGBRZaUeIqyW/PVYs+9AWbNat\nwL+mgjy/MPwW/EUKKiGE1VKMJoxj52Kc9XsUOwduyk3nscI8TteUs/zwFhKLj7et/SOEuDZNFjP/\nLMzg9YhYZsZOwt3OUe9IQlg1KaqsUKumkrJpFSG7P8KgqeSNmEnfuY9j73jxKV2FEMJaGEJjMN2x\nDCUwkmBHV+4bMA5bg5F1OYd47chOqlsa9Y4ohNVbl32I0sZaJgdEMdDTX+84Qlg96f5nZYrrq/mk\n6SQeBvBydsf+pt8RERChdywhhLiuFGcPjLMfgdYWhtjaE+rqzerj+8moLOaZ5M3c2e8GYr1k3T0h\nrsb+M3nsO5NHiLMns/rE6h1HiG5B7lRZkZTyU6xM/YpKrYXgiGH43ruCXlJQCSG6KcVgQLE9N4Op\nu50jvx84gTlhcTS2mll1dBdrTxyg2dKqc0ohrIdWX021pZn3TxzE3mjit1GjZRIYIa6TDi+qUlNT\nufPOOwHIzMxk7ty5LFiwgKVLl0rf+CukahobT6bxRuZuNE3jRls/5vcdho0s5it6IFVVeeqpp5g3\nbx533nknBQUF7fbv2LGD2267jXnz5rFhwwYAWlpaeOSRR7j99tu57777OHnypB7RxTUyKAqTAqJ4\nsu9wRjc3s+t0NssPf0l+7Vm9ownR5WmtLbRueB7fjI2YLS3c0Xc4vRxc9I4lRLfRoUXVv/71L558\n8knMZjMAr732GosXL+b999+npaWFb775piPfvltobKhh64732FSQgZedE3+KnUK4ScZOiZ5r27Zt\nmM1m1q1bxx//+EdWrlzZts9sNrNy5Ureffdd1qxZw/r16zl79iwffvghTk5OrF+/nieffJK//e1v\nOn4CcS00TaPX7o+Yn76XJdVVlNVX81zqVjYXHEHVVL3jCdFlqWm7oLKUIjs7Rvr2ZZhPH70jCdGt\ndGhRFRISwmuvvdZ2R6p///5UVVWhaRr19fXY2MidlkspL8mlcs0ybkzbzUQLLB0ylSBnD71jCaGr\n5ORkEhISAIiNjSUjI6NtX05ODsHBwbi4uGBjY0N8fDwHDx4kJyeHsWPHAhAaGkpubq4u2cW1UxQF\nQ8JccPMm8kQyzxXmEmxR+exkKi+mbae8qU7viEJ0OVqrGfPBzTQbjOz1j+D28KF6RxKi2+nQomrK\nlCkYjT/21Q0JCWH58uXcdNNNVFRUMHz48I58e6uWl/4Nthuep1dDLSfCYpidMAdnG3u9Ywmhu7q6\nOpydndueG41GVFVt2+fi8mN3FicnJ2pra4mOjiYxMRGAlJQUSktLpfuxFTP49sG08CmUyOE4nCng\nkSP7mWXRyK4p45nkL/nuTJ7eEYXoUtQjezA21LC7VwCDnQKxM8o8ZUJcb536W7V8+XLef/99wsPD\nWbt2LStXruSpp566bLukpKQOy9SRx74amqpiKdjH4II0LIqBA31HYO8/hNSUtHav62q5fwlrzS65\nuwZnZ2fq6+vbnquqisFw7vqQi4tLu311dXW4ublx4403kpOTw4IFC4iLi2PAgAEoinLZ9+pJ555f\nostk94nDU3XAP2cP/asaqfQLY29LKe9k7WNndgZjbHtjp/x4Ya/L5P6FrDU3WHf27kKztGI+8AUW\nxcDxsBhGG2Q9KiE6QqcWVe7u7jg5OQHg4+PD4cOHr6hdfHx8h+RJSkrqsGNfjRZLK+uO7mJaSRa1\ntvY0Tb+P0WFDzntdV8v9S1hrdsl94WPrIS4ujsTERKZPn05KSgqRkZFt+8LCwjh58iTV1dU4ODhw\n6NAh7r//ftLT0xk5ciR//vOfSU9Pp6Sk5Ireq6ece36Jrpd9KFrVNILdvAhRDExurOWdrH3k1JZT\noVq4N2IkEe69u2DuK2OtuaF7nn+skqaREtiPkpoyxvaNRz15Ru9EQnRLnVJU/XBF+Nlnn+Whhx7C\nZDJha2vLM8880xlvbxUqmupZdXQXp+orMQ8ex20Dx+Ht3lvvWEJ0OZMnT2bPnj3MmzcPgBUrVrBp\n0yYaGhqYO3cujz/+OPfddx+qqnLbbbfh4+ODjY0Nr7zyCm+++Saurq4sX75c508hrifFvVfb414O\nLvwxdhJfFhzhi4IM/jd9O1MC+xMo3T1FD1XZ2sJ/XFzo3cufW7wCOSxFlRAdosOLqsDAQNatWwec\nu+r7wQcfdPRbWp3j1Wd4K3M3teZmxviGMy98KDayboQQF6QoCk8//XS7baGhoW2PJ0yYwIQJE9rt\n9/Dw4N133+2UfEJ/RsXAzJBBDG5t5d9leXxVeBQPxRbnygD6e/jpHU+ITrW1KBNV05ga1B/DFXR7\nFkJcHRmpqCNVVdlZcoIP85IBmB8+lHF+/a5orIcQQoiL02or6P3Vu/zZwZmtg8awsbGKVzISGejh\nz21hQ/BzdNM7ohAdrraliW9P5+Bp58jwXn30jiNEtyZFlU7MLU3kfvYqzeZGnMIG8rvoBCLcfPSO\nJYQQ3YOjK4aBY1CTtjJ17+eEBsexNTSUjMpijiaVMNavL78KGSSzqopubXtxFmbVwuSAaIyGDp3w\nWYgeT4oqHdRUlFD1yUuE1VTg4OLB8IET8ZT1p4QQ4rpRjCaMY+eiBEVh+eodIvIOENFQSs7wm1hb\nVcw3JSf47kw+M4IHMt4/Qrpci25F01Sasw+z80wOLjZ2jPEN1zuSEN2eXLboZEXZSbS+/yx+NRXk\n+Ifje+fTUlAJIUQHMYTGYLrrb1T6RMCZU0S6eLMs7ibmhsWhKAof5R3m6aQvOFx+StYuE92GlpOK\ncdMbTD2ZyUT/KGxlXSohOpz8lnWio8lbCd21AYOmcSJ2HFHjF7atryOEEKJjKI6unIq6kV4z7kZx\n740JuDEgiht8QvmiIJ1vSk7wZuZuItx8mBMWR7Czp96RhbhqmqZh+W4jKpDUO4iH/PvpHUmIHkGK\nqk5g0VQ+yj3Md9UlLHZ0QRl9K/0HJOgdSwghehTlZ8tUONvYcXv4UMb5RfDfvMOkVRTx98NbGNE7\njFkhMbjbySKpwvpo+RlwpoAUDx+iw+JwNNnqHUmIHkGKqg5WZ27ircw9ZFWX4ufqjfMdf8XH0VXv\nWEIIIb7Xa9/nPODqxfH+4/joZCr7SnNJKjvJ1MD+TAmMlq5Twmr8cJcK4Gv/UJYERF6mhRDiepFv\nig50qq6SN47u4mxzPYO9AvlNxEjsTTZ6xxJCCPE9rakONTsJGmrpm7mfpTcuZJ/RwGf5aWwsSOfb\n0znMCo1leK8+ssaP6PK0ouNQkkuquzdhYYNxs3XQO5IQPYYUVR0kK2U7b9SeoRGNmcGDmBE8UL6Q\nhRCii1HsnTHd/Szqt/9FTd+F+uHzjBiYwNCRt/BleT7bCo/xbtY+EouymBMWR19Z+kJ0YZpfOJ9F\nxpNpNLIoMFrvOEL0KFJUXWeqauH45n8SfiKZGb4h9Jp8D4O9g/SOJYQQ4iIUeyeMk+5C6T8Ky/Y1\naBm7sbFz5Naxcxjr249P8lM4WHaSF9K2Ee8dzK9DB+Nt76x3bCHOk1F1mq9d3LjBp4/8HxWik0lR\ndR21mlvI/fhFwotzKHdwImbs7fSWgkoIIayCwb8vyoK/oKZ+g2HAKAC87J24P2o0E/wj2JCbTFJ5\nAalnC5kYEMlNQQNwkEkARBehaRpfnjoCwLTA/jqnEaLnkaLqOmlurKPow5WEVpymyNUTrzmP4eLq\npXcsIYQQv4BiNGGMm3Te9nDXXjwWO4WDZSf5OD+FrYWZ7CvN5VchMYzxDceoyPIYQl/Hq8+QV3uW\nWK9A/J3c9Y4jRI8j3wLXQZ25icObXiOo4jT53gH4LlwmBZUQQnQz2uk8hjY28Lf4mdwSEkOLauH9\n7IP8LWkz357Oxqxa9I4oerAt39+lmi53qYTQhdypukblTXW8mpFIdS9/jI5uDJl6PyaZ4U8IIboV\nTdOwbF8DZacwRN3A9LFzGe0bzucn09hbmsuaEwf4ND+N8X79GOfXDxdbe70jix5CKzvF2ezDnGip\nJtLDn1BXb70jCdEjSVF1DU7VVfKPI99Q3dLIlJBBDO0zGEVm+BNCiG5HURRMk+85N5HFse9ozUvH\necxs7hiUwMzgQSQWH2f36RNsLEhnS+FRRviEMikgEl9HN72ji27Osv9z3LIPExYxmGkx53ddFUJ0\nDimqrlJWVSmrju6iyWJmTlgckwKi9I4kRI+gqip//etfOX78ODY2Nixfvpzg4OC2/Tt27GDVqlWY\nTCZmz57NnDlzMJvNPP744xQVFWE0GnnmmWcICwvT8VMIa6T0DsE4bylq2jeoez5B3b4GLT8Dj5v/\nH78OHcxNwQPYezqX7cXH2H06m92nsxnk6c/kgGgi3Hzkopu47rTyQrTsw+Q5udLoF060u6/ekYTo\nsaSougpZqYmsqi7GbDByf+Qohvn00TuSED3Gtm3bMJvNrFu3jtTUVFauXMmqVasAMJvNrFy5kv/+\n97/Y29szf/58Jk6cyOHDh7FYLKxbt469e/fy8ssv8+qrr+r8SYQ1UgwGjIMnYugbh2XnOgxhg9v2\n2RttmBgQyXj/fqScLeTrwmOkVxSTXlFMsLMHkwKiGOodgtEgw5nF9WH57gsAvvLrw/TgAVK4C6Ej\nKap+oeOJawlLSWROrwC8Ziwi2kOuCgnRmZKTk0lISAAgNjaWjIyMtn05OTkEBwfj4uICQHx8PAcP\nHqRfv35YLBY0TaO2thYbGxn3KK6N4uyOacYDF9xnUAzEeQcT5x1MTk0Z24uySC4/xTtZ+/g4L4WJ\n/pEk+PXFUaZjF9dAqyhBPX6IQkcXynxDGewlS7gIoScpqq6Qqlo4/sWbhGcfpsbGjrCEufhLQSVE\np6urq8PZ+cdFLY1GI6qqYjAYqKurayuoAJycnKitrcXR0ZGioiKmTZtGVVUVb775ph7RRQ+htZpR\nD2/DEDOOcNdehLv2orypju1FWewpzeHj/BS+KMhgtG8YNwZEySKt4qqoWQdQ0NjiF8LUoP4Y5C6V\nELqSouoKtLa2kPvx/xJelE25gzM2v34If58QvWMJ0SM5OztTX1/f9vyHggrAxcWl3b76+npcXV1Z\nvXo1CQkJPPTQQ5w+fZq7776bjRs3Ymt76TsFSUlJHfMhOvjYHc1as3dWbs/iDAKzd9OyfxNnguM4\n6zcQzWiiLxBk24djrdVktFayo/g4icXH6WN0JsbkSW+jg665O0JXz97U1MSjjz5KRUUFTk5OrFy5\nEk9Pz3av+fDDD1m/fj0mk4lFixYxfvz4i7bbt28fr7zyCiaTCU9PT55//nns7e157bXX2LlzJ0aj\nkaVLlxITE3PN2Rvjp/B2VTGlHr78ToYhCKE7Kaouo8XSyqEv32JYUTbFLp54zPkTrm4yXakQeomL\niyMxMZHp06eTkpJCZGRk276wsDBOnjxJdXU1Dg4OHDx4kHvvvZecnBxMpnOnO1dXV8xmM6qqXva9\n4uPjO+QzJCUlddixO5q1Zu/M3FrMQNTD3pgObcE/dx/+Z45hHPErlAGjUQxGRgEWVeVQ+Um+LjxG\nXn0leZY6wl29mRQQxWCvQAzfLyZsrT9v6Njs16tY++CDD4iMjGTx4sVs3ryZN954gyeeeKJtf1lZ\nGWvWrOHjjz+mubmZ+fPnM2rUqIu2e/rpp3n//ffx9PTkf//3f9mwYQNxcXEcPHiQDRs2UFJSwpIl\nS/joo4+uOfuO4hNkOrsxNygak8F4zccTQlwbKaouoc7czOtHdnLK1Q1Dn/4MnvY77B2km4YQepo8\neTJ79uxh3rx5AKxYsYJNmzbR0NDA3Llzefzxx7nvvvtQVZXbbruN3r17c88997B06VIWLlyI2Wzm\nkUcewd5e1hESHUOxscM4fAaGmHGoB7egHt6OZdt7GF08UfoMBMBoMHCDTyjDe/XhePUZvi7KJL2i\nmJyab/G2d+ZG/0hG+coMlR0tOTmZ3/72twAkJCS0TXrzg7S0NOLi4rCxscHGxoaQkBCysrIu2m7N\nmjVtd7rMZjN2dnYkJyczevRoAPz8/LBYLFRWVuLh4XHVuZtazSSWZOFssmOMb9+rPo4Q4vqRouoi\nKprqeTUjkZLGGob3DmNowgK5EiREF6AoCk8//XS7baGhoW2PJ0yYwIQJE9rtd3R05OWbcFlwAAAg\nAElEQVSXX+6UfEL8QLF3xphwG4YhN6Ie3YcSMuD81ygKke69iXTvzemGarYVZbH/TB7rc5PYWJBG\nX5zxq6/C38ldh0/QvWzYsIH33nuv3TYvLy+cnJyAH8dg/lR9ff154zTr6uqoq6u7YLtevXoBsHXr\nVg4ePMhDDz3Ev//9b9zd3c87xrUUVTtPn6Ch1czNITHYGeVPOSG6AvlNvICi+ipezUikqqWRSQFR\nzA4dIgNAhRBCXBXF2QPj8JsuuE/TtLZpsH0d3bij33BuCYlhZ8kJvik5Tpq5krTkzQQ4ujPcJ4Sh\nvUJkYourNGfOHObMmdNu25IlS9rGYf4wBvOnfj6G84ci66fbf95u9erVbN26lbfffhtbW9uLHuNq\nmVUL24uysDOaGO8XcdXHEUJcX1JU/UzB8YO8fiabKk3jttAhTA6M1juSEEKIbkr9bhNaWQHGUbei\nePkD4GJrz8yQQUwN6s8nB3dR7mLkSEUxn+Sn8kl+KmEu3gz3CSHeOxhX2wtPbiGuTFxcHLt27SIm\nJoZdu3bx/7V353FV1fkfx1/nXi6L7IjgwqKQghs2uJaZitmPcicVl7TFadLSZqzJTB2zKZdcH02m\nqZM5mSNqLolTZpa5L+SCuyIKgiIKiHIB4XLP+f1h3kQ0TYV7L3ye/+Q9h+8573PVj33O9m3RokWp\n9REREcyaNYvi4mKKiopITk6mQYMGdxw3d+5cjh49yhdffIGTk5NlH9OmTWPIkCFkZGSgqmqpK1d3\ncrvnxvxT9pBlvkahny/hTr4cP3jovo7b1l8gcieSu+LZa3Zr5Jam6ianf1lPrW0r6ePpS8mzf6GN\nf727DxJCCCHug6ZpaBnJaCmHKUk+gNLwMfSP9UDxqA6AQacn1MGDvo2ak28qZn92GgmXUjiRe5HT\neVksS95HuJc/rfzq8qfqAbjIvFd/WP/+/XnnnXcYMGAAjo6OzJgxA7h+tSkoKIioqCgGDx7MgAED\nUFWVN998E0dHx9uOy8rK4tNPP6VJkyb8+c9/BqBLly7069ePFi1aEBsbi6qqvPfee/eU7daXfGgF\nVynZ8W+c9A4oNf15vnkHPO+jqbbXl59I7opnr9mt9ZKccm+qEhMTmT59OosXLyY7O5tx48aRl5eH\n2Wxm6tSpBAbaxmR1JzcvJXjfjxTr9Hi36kKoNFRCCCHKkaIo6Hv+Fe10Iubtq9GO7qDkxB50ER3Q\nPdkH5abneF0NjjxRM5QnaoZypbiQXy6lknAplWO5FziWe4Elio6mPnVo5RdME+/aOMpzNvfE2dmZ\njz/+uMzyF1980fLr2902eKdxN09GfrPhw4czfPjwB8qq7t0AJSa+r12P1rUeua+GSghRfsq16i5Y\nsIC1a9daHuacNm0aPXr0IDo6mt27d3P69GmrN1WqqpL03TxCTu7lqsGJa12HElq3qVUzCSGEqBoU\nRUEJfRSlXgTa8d2Yd36DlptZqqG6laejC53qhNOpTjiXCvNIuJTKnkup7M9OY392Gs56Bx6tHkgr\nv2DCvWqi//X17MJ+aYVG1MRN5Dk6s8u3Nu8FNLJ2JCHELcq1qQoODmb27NmMGjUKgP379xMeHs5L\nL71EnTp1Ss0FYQ2qprFr01e0PLmXbGdX9DF/o45coRJCCFHBFJ0OpdFjKGEt4Vr+3Qf8qoaLO88G\nNeGZwMacK8gl4WIqey6lsOviGXZdPIO7wYlI3yBa1ahLiIevvHTJTqn7N4KpiO8D6/Mn/3rUkOld\nhLA55Xr66umnn0av/+1s27lz5/D09OSLL76gVq1aLFiwoDx3/7uKzSVsLD7PVw469gTUx2XAWGpI\nQyWEEMKKFL0Diqvnbdepx3ai5WbefpyiEODqTa96jzKxZQ/ejuhMh1r1AdickcS0gz8wNuEbVp7Z\nT5rxMpqmldsxiIdPu5JFvsGJ7b61iQ4s+2p+IYT1VehN115eXkRFRQEQFRXFrFmzKnL3FtdKTHxy\n5GdSzEbCvGsR2TYWFweDVbIIIYQQd6MZczFvWASqivJIJLoW/4eu1u0nB9YpCo941uARzxr0DW3O\n8dwLJFy8fnvghvRjbEg/Ri0XD1r6BdPEuw6Bbl7o5BZBm3bm8e7McTYQXiOQOjJnmRA2qUKbqsjI\nSH7++Wd69OjBnj17qF+//j2Ne5ivRTRpKt8VpXNBLSRE784TxR4cTTz40LZfUez1FZdgv9kltxDC\naqq5o48egvmX9Win9mI+tRe1TgN0rZ5FV7fJHYfpFR2NvWvT2Ls2A9VWHMo5R8LFVA7mnGNt6iHW\nph7C1cGRMC9/wr1q0tCrJjWc3SxzZwnbsD7tCAUOBp6Rq1RC2KwKaapuFOfRo0czbtw4li5dioeH\nh+XVpXfzsF6LWFxoZN6xbVxQC2nuG8Sf8p1pecucFPbAXl9xCfabXXLffttCiIqh6PQoYa1QGrRE\nSzuOuvd7tJTDqEl+v9tU3cyg0xPpG0SkbxCFJcUczjnPsdxMjuVmsC8rjX1ZaQBUd3KloXdNwj39\nCfOqiYejc3kemriLs8YcDl/OoIGnH6EeNawdRwhxB+XeVAUEBBAXFwdA7dq1WbhwYXnv8rZMRYWc\nXzaJzqYiXFo/y0thj3Ng/36rZBFCCCHuh6IoKEEN0QU1RMtKB8P9NTwuDo609KtLS7+6aJrGpWtG\njl2+wPHcCxy/ksm2C8lsu5AMQICrFw29ahLuVZP6nn44yevaK9T6tKMARAfKG/+EsGVVojKaigtJ\nj5tIwOWLnPYL4oWG7dDr5P5xIYQQ9kvxDbjjOvXQFpS6TVDcfe6+HUXBz8UdPxd32teuj6qpnDVe\n5njuBY5evkDy1Uuk5+fyw7nj6BUdoR6+hHvVJNzLn7ru1eWV7eVEKzFx0VTIvqw0Al29aeRVy9qR\nhBC/o9I3VSXFRaQtm0xgzgXO1AggpO9oDAaZdV4IIUTlpGWdw7zxS/j1lkF9i//73QbsVjpFR133\n6tR1r050YGOKzSUkX8263mTlXiDpykVOXrnI2lRw1hsI8/KnoZc/Db1q4u/iIc9jPSQl/xnHxeq1\n0Kr78UxgY/lehbBxlbqpKikpJnX5ZIKyzpNavRZ1+7wjDZUQQojKzcsPfecXMe/9Hu3YTkqO7USp\n2wRdy2fRBTT4w5tz1DvQ0LsmDb1r0gswmoo4eSXTcrtgYnY6idnp13ft6GK5ilWoFqNqmsyNdb+u\nZpNezQ1/l1D+9AeaYiGEdVTapkrVVP5zcjeNS4rBx5+g2DE4OrlYO5YQQghRrhQHA0qTJ1AaP452\n+qDlpRaaXxDcR1N1K7dfJxSO9A0CIOuakeO5mRzPvcCxyxcsEw8DfLMzjQBXb4LcfAhyu/7fmtU8\n5JbBe1Cid2CjfyAxAY3klfdC2IFK2VTdaKj2ZKeR06w9Ixo9IQ2VEJWEqqpMmDCBkydPYjAYmDhx\nIkFBQZb1P/30E3PmzMHBwYHnnnuOPn36sGrVKlavXg1AUVERx48fZ8eOHbi5uVnrMIQod4qiQwl9\nFF3oo6gZySie5fPmOF9nN56o6cYTNUNRNY1z+bmcuJLJ/tRT5DtC8tUsTl29ZPl5g05PHVcvgly9\nCfy12arj6oVBpy+XfPZqu29tDK5etPara+0oQoh7UOmaKlXT+CopgV0Xz1DPvTrDm0ThLBP7ClFp\nbNy4EZPJRFxcHImJiUyZMoU5c+YAYDKZmDJlCitXrsTZ2Zn+/fsTFRVFTEwMMTExAPzzn/+kT58+\n0lCJKkVXK/S2yzVNQ92xBt0jf0Lxr/vg+1EUAt28CXTzxvtCPs2bN6fIXEJ6/mXOGi+TZrzMWWMO\nacbLpORllxpXu5qn5YpWoKsPAW5eOOur7r/fG/wDeTogHAdpNoWwC5WqqdI0jaWnEtiemUyQmw9v\nNOmIizRUQlQq+/bto127dgA0a9aMw4cPW9YlJycTFBSEu7s7cH2Ou4SEBKKjowE4dOgQSUlJjB8/\nvuKDC2GDtPOnUPf8D3XP/8AvCF3T9ujCW6M8xLmpnPQOhHrUKDXHkkk1k1FwhbO/NllnjTmk5+eS\nnp/LjszrP6MAfi4eltsGbzRbrlXk2eiSah60q/mItWMIIe5RpWmqVNXMgR++IMHRQIBnDf7WpCPV\nHKpG4RWiKjEajaWuMun1elRVRafTYTQaLQ0VgKurK3l5eZbP8+bNY8SIERWaVwhbptQKRd/zr6iH\nNl9//urHxahblqNr1QV9q2fLbb8Gnf7XRskHuH4VzaypXCi4+tvVrF+vbiVcukrCpVTLWF9nV2J0\nlf/FDVG1G8icYELYkUrxt1VVVU598wlNUw4z0D+Yhk/E4mpwsnYsIUQ5cHNzIz8/3/L5RkMF4O7u\nXmpdfn4+np6eAFy9epWUlBRatWp1z/vau3fvQ0pdsdsub/aaXXL/jjqP4eDbFJ8Lx/G5cIxLFy6S\n/RD2ez/ZDVxvs0LxRnP04qpmIlstIku9RpZ6jctFRVAFHpPuWPvBXyoihKg4dt9UqapKUvynhKQc\nJtPVg7Cuw3C7zxnmhRC2LzIykk2bNvHMM89w4MABwsLCLOtCQkJITU3lypUruLi4kJCQwJAhQwBI\nSEigTZs2f2hfzZs3f6jZb9i7d2+5bbu82Wt2yX2v2qOpKsGqmbq3uX1eK8hDqeZ+m3FllWd2e22Q\n/wg5OSyEfbHrpkrTNJK+/YyQ04lcrOaOe+xoPDx8rR1LCFGOOnfuzPbt2+nXrx8AkydPZt26dRQU\nFNC3b19Gjx7NkCFDUFWV3r174+fnB0BKSkqptwQKIW5P0elAV/YV3pq5hJKvJqC4eaNr+iRKWKuH\n+uyVEELYM7tuqvbuXE2zpH1kubjh2vcdPD39rB1JCFHOFEXh/fffL7WsXr16ll937NiRjh07lhl3\n44qVEOI+XctH8a+LduYg5o1fwpbl6MJbo2vaHsVPTlgIIao2u22qvk87yuqSQvoEPEJk1GC8vGta\nO5IQQghRaSmunjj0GIGWl4N6eBvq4a2oBzej5WTg0GeUteMJIYRV2WVTtfHccValHMDbyZVm3Ybj\n7SzzzQghhBAVQXH3Qf9Yd3Stu6ClHAZ59kcIIeyvqdp0/iQrTu/D09GFNyM64SsNlRBCCFHhFJ0e\nJaTZHdf7nd2LWb14fd4rd58KTCaEEBXPrpqqrekniDuzFw+DM282jcLP5d7eQCSEEEKIiqOpZnzP\nHURN2YO6bRVKQH104W1Q6keiyMlQIUQlZDdNVdK2FdQ+sgP/Rq0Y2jSKmtU8rR1JCCGEELeh6PSc\naNGfptVK0I7vQks/iTn9JGxehsOrM1HklkEhRCVjF03VqR2rqJvwPXkGR4aFRFLL1cvakYQQQgjx\nO8wGZ/QRzSGiPdrVbNQTe6DgqjRUQohKyS6aqsDd35LvYOBa9+HUrhN29wFCCCGEsBmKR3X0LZ+5\n43o19Sja6QMo4W1QatZDUZQKTCeEEA/OLpqqa3oHjN2GERDUyNpRhBBCCPGQqSd2ox3ZDgd+Ai8/\ndGGt0TVsjSLTpQgh7ETZKdNt0JWuQwmoG2HtGEIIIYQoB/pOg9D3eAMlrBUYc1F3x1OyaBxq8gFr\nRxNCiHtiF1eqgkIetXYEIYQQQpQTRe+AEhKBLiQCrfgaWvIB1KRfUALDrR1NCCHuiV00VUIIIYSo\nGhRHZ5SGbdA1bGPtKEIIcc/s4vY/IYQQQgghhLBV0lQJIYQQQgghxAOQpkoIIYQQQgghHkC5P1OV\nmJjI9OnTWbx4sWVZfHw8S5YsIS4urrx3L4SoZFRVZcKECZw8eRKDwcDEiRMJCgqyrP/pp5+YM2cO\nDg4OPPfcc/Tp0weAefPmsWnTJoqLixkwYAC9e/e21iEIIWzEtWvXePvtt8nJycHV1ZUpU6bg4+NT\n6meWL1/OsmXLcHBwYNiwYXTo0OGO43bu3MnHH3+Mg4MDPj4+TJ06FWdnZ4YNG0Zubi4ODg64uLgw\nf/58Kx2xEKK8lGtTtWDBAtauXYurq6tl2dGjR1m5cmV57lYIUYlt3LgRk8lEXFwciYmJTJkyhTlz\n5gBgMpmYMmUKK1euxNnZmf79+xMVFcWpU6fYv38/cXFxFBQUsHDhQisfhRDCFixdupSwsDCGDx/O\nt99+y9y5cxk7dqxl/aVLl1i8eDGrVq2iqKiI/v378/jjj99x3Pvvv89///tffHx8mDlzJitWrGDQ\noEGcPXuW//3vf1Y8UiFEeSvX2/+Cg4OZPXs2mqYBcPnyZWbNmsWYMWMsy4QQ4o/Yt28f7dq1A6BZ\ns2YcPnzYsi45OZmgoCDc3d0xGAw0b96chIQEtm/fTlhYGK+99hpDhw6lQ4cOVkovhLAl+/bt48kn\nnwSgXbt27Ny5s9T6gwcPEhkZicFgwM3NjeDgYE6cOHHHcYsXL7Zc6TKZTDg7O5Odnc3Vq1cZOnQo\nAwYM4Oeff664AxRCVJhyvVL19NNPk56eDly/ZWfs2LGMHj0aJyen8tytEKISMxqNuLm5WT7r9XpU\nVUWn02E0GnF3d7esc3V1JS8vj8uXL3P+/HnmzZtHWloaw4YNY/369daIL4SwkhUrVvDll1+WWla9\nenXL3TQ36sXN8vPzy9QUo9GI0Wi87bgaNWoAsGHDBhISEhg5ciQ5OTkMGTKEwYMHk5ubS//+/YmI\niChzm6EQwr5V2DxVhw8f5uzZs0yYMIHi4mJOnTrF5MmTeffddysqghCiEnBzcyM/P9/y+UZDBeDu\n7l5qXX5+Ph4eHnh5eRESEoKDgwP16tXDycmJnJwc+Z8aIaqQPn36WJ6xvGHEiBGWmnGjXtzs1npz\no8m6efmt4xYtWsSGDRv497//jaOjI76+vsTGxqLT6fDx8aFhw4acOXNG6o8QlUyFNVURERGsW7cO\ngHPnzvHmm2/ec0O1d+/ecstVntsuT/aaG+w3u+S2DZGRkWzatIlnnnmGAwcOEBYWZlkXEhJCamoq\nV65cwcXFhYSEBIYMGYKTkxNffvklL730EpmZmRQWFuLt7X3XfUntuT17zS65K56tZ4+MjGTLli1E\nRESwZcsWWrRoUWp9REQEs2bNori4mKKiIpKTk2nQoMEdx82dO5ejR4/yxRdfWO7K2b59O0uWLGH+\n/Pnk5+eTlJREaGjoXbNJ/SlLclc8e81ujdyKVs4PN6Wnp/P3v/+91Jv+brdMCCHuhaZpTJgwgRMn\nTgAwefJkjhw5QkFBAX379mXTpk18+umnqKpK7969GTBgAADTpk1j9+7dqKrKW2+9Rdu2ba15GEII\nG3Dt2jXeeecdLl26hKOjIzNmzKB69eosWrSIoKAgoqKiWLFiBcuWLUNVVYYNG0bnzp1vO07TNDp0\n6ECTJk0wGAwAdOnShX79+jFp0iQSExNRFIVXXnmFTp06WfnIhRAPW7k3VUIIIYQQQghRmcnkv0II\nIYQQQgjxAKSpEkIIIYQQQogHIE2VEEIIIYQQQjwAaaqEEEIIIYQQ4gFUqaZq3rx59OvXj5iYGL7+\n+mtSU1Pp378/AwcOZMKECdjiOztMJhNvvfUW/fr1Y+DAgZw+fdrmcycmJjJo0CCAO2Zdvnw5zz33\nHLGxsTYzu/zNuY8dO8bAgQMZNGgQQ4YMITs7G7DN3FA6+w3x8fH069fP8tlWs1cFUnsqhr3WHrDf\n+iO1x/ZJ/akY9lp/7LX2gA3WH62K2LVrl/bqq69qmqZp+fn52ieffKINHTpU27Nnj6ZpmjZ+/Hjt\nhx9+sGbE2/rhhx+0v/71r5qmadr27du14cOH23Tu+fPna127dtViY2M1TdO0V199tUzWixcval27\ndtWKi4u1vLw8rWvXrlpRUZE1Y5fJ/fzzz2vHjh3TNE3T4uLitMmTJ2uXLl2yudyaVja7pmnakSNH\ntBdeeMGyzBa/86pCak/FsNfao2n2W3+k9tg+qT8Vw17rj73WHk2zzfpTZa5Ubd++nbCwMF577TWG\nDh1Khw4dOHLkCC1btgTgySefZMeOHVZOWVa9evUwm81omkZeXh4Gg8GmcwcHBzN79mzLWZmjR4+W\nyXro0CEiIyMxGAy4ubkRHBxsmXPIWm7NPXPmTMLDwwEoKSnBycmJgwcP2lxuKJv98uXLzJo1izFj\nxliW2Wr2qkBqT8Ww19oD9lt/pPbYPqk/FcNe64+91h6wzfrjUG5btjE5OTlkZGQwb9480tLSGDp0\naKlLx9WqVSMvL8+KCW+vWrVqnDt3jujoaHJzc/nss89ISEgotd6Wcj/99NOkp6dbPt/8Hbu6upKX\nl4fRaMTd3b3UcqPRWKE5b3Vr7ho1agCwb98+lixZwpIlS9i6davN5YbS2VVVZezYsYwePRonJyfL\nz9jid15VSO2pGPZae8B+64/UHtsn9adi2Gv9sdfaA7ZZf6pMU+Xt7U1oaCgODg7Uq1cPJycnLl68\naFmfn5+Ph4eHFRPe3qJFi2jXrh0jR47kwoULDB48mJKSEst6W819g07328VQo9GIh4cHbm5u5Ofn\nW5bb6jF8++23fPbZZ8yfPx9vb2+7yH348GHOnj3LhAkTKC4u5tSpU0yePJnWrVvbfPbKSmqPddhz\n7QH7qz9Se2yT1B/rsOf6Y2+1B2yn/lSZ2/+aN2/O1q1bAcjMzOTatWu0adOGPXv2ALBlyxZatGhh\nzYi35enpiaurKwAeHh6UlJTQqFEjm899Q8OGDctkjYiI4JdffqG4uJi8vDySk5OpX7++lZOW9s03\n37BkyRIWL15MQEAAgF3kjoiIYN26dSxevJiZM2fyyCOP8O6779K0aVObz15ZSe2xDnutPWCf9Udq\nj22S+mMd9lp/7LH2gO3UnypzpapDhw4kJCTQu3dvVFXlvffeo06dOvzjH//AZDIRGhpKdHS0tWOW\n8eKLLzJmzBgGDhxoeRtO48aNbT63oigAjB49ukxWRVEYPHgwAwYMQFVV3nzzTRwdHa2c+DpFUVBV\nlUmTJlG7dm2GDx8OQOvWrRk+fLjN5obfvvMbNE2zLKtRo4ZNZ6/MpPZULHutPWC/9Udqj+2S+lOx\n7LX+2GvtAduqP4qm2dg7KYUQQgghhBDCjlSZ2/+EEEIIIYQQojxIUyWEEEIIIYQQD0CaKiGEEEII\nIYR4ANJUCSGEEEIIIcQDkKZKCCGEEEIIIR6ANFVCCCGEEEII8QCkqbID6enpNGnShJ49e9KrVy+6\ndu3Kyy+/TGZmplXyREVFcf78+Xv++fXr1xMTE0OPHj3o1q0bn3/++V3HDBo0yDJx3s3i4uKIi4v7\nQ3nv16BBgypkP0LYKqk9v5HaI0TFkdrzG6k99qPKTP5r7/z8/FizZo3l88yZM/nggw+YPXu2FVPd\nXWZmJlOnTmX16tV4enpSUFDA888/T7169YiKivrD2+vXr185pLy9hISECtuXELZKas91UnuEqFhS\ne66T2mM/5EqVnWrevDkpKSnA9TMoI0eOJDo6mpycHNasWUNMTAw9e/Zk7NixFBcXAxAfH0+XLl3o\n2rUr48aNQ1VVsrKyePXVV+nevTsxMTFs3bq1zL5yc3N55ZVX6NatGyNHjrRsT1VVPvzwQ7p27Uq3\nbt1YsGBBmbGXL1/GZDJRWFgIQLVq1fjoo4+oX7++JfuNsz+7d+8udZZk2bJlxMTE0KtXL8vZm08+\n+cRSUL/66iv69u1Lt27d6N69O8nJyQDs2LHDcnZo6NChGI1GzGYzkydPtpw5WrRokWWfL7/8Mq+/\n/jrR0dG88cYbmEwmPvzwQwBiY2MB2LJlC3369KFXr16MGDGC3Nzc+/ydE8K+Se2R2iOENUjtkdpj\n66SpskMmk4nvvvuOyMhIy7L27duzfv16srOzWbFiBXFxcaxZswYfHx8+//xzMjMzmTJlCgsXLmTd\nunUUFhaydetWPvjgAx577DHWrl3Lxx9/zJgxY8jOzi61v3/96180adKE+Ph4Bg4cSFZWFgBLly4l\nMzOT+Ph4VqxYwYYNG9i8eXOpseHh4XTq1ImnnnqKPn36MH36dMxmM4GBgXc9TldXV1atWsWUKVMY\nNWoUxcXFKIoCgNFo5Mcff+Srr74iPj6ep556iqVLl1JcXMzbb7/NRx99RHx8PGFhYaxZs4bly5ej\nKAqrVq1ixYoV/Pjjj/zyyy8A7N+/n/Hjx/Pdd9+RkZHB9u3bGTduHHC9wOXk5DBz5kwWLlzI6tWr\nadu2LdOnT7//30Ah7JTUHqk9QliD1B6pPfZAbv+zExcvXqRnz54AFBcX06xZM/7+979b1kdERADX\nz0CkpqbSt29f4Hohaty4MQcOHCAyMhJ/f38AZsyYAcA777zDxIkTAQgMDKRZs2YkJiaWukSdkJDA\nzJkzAWjRogWBgYFomsbu3bvp1asXiqLg7OxMt27d2LlzJ+3bty+VfcKECbz22mts27aNbdu2ERsb\ny/Tp0+ncufPvHnPv3r0BCAsLw8fHh9OnT1vWubm5MWPGDOLj40lJSWHbtm00bNiQkydP4u/vT3h4\nOAAjR44E4I033uD48ePs2rULgMLCQpKSkggNDaVBgwaW7yU0NLTM2ZjExEQyMjIsZ5PMZjNeXl6/\nm12IykJqj9QeIaxBao/UHnsjTZWduPXe4ls5OzsD1y9NR0dHW844FBQUYDabyzz8mJOTA4CmaaWW\nq6qKqqpltm82my2/1uv1lrE3j1dVlZKSklLjNm/eTH5+Ps8++ywxMTHExMSwYsUKvv76azp37oyi\nKJZt3Dr2xn5u7MtgMFg+3/jLPmjQINq3b0+NGjU4duwYDg6l/0gbjUaMRiOqqjJq1Cieeuop4Prl\n+WrVqnHgwAEcHR0tP3/jjNCtxx4ZGcncuXOB68XdaDSW+TkhKiOpPVJ7hLAGqT1Se+yN3P5XybRq\n1YqNGzeSk5ODpmm89957/Oc//6Fp06YkJiaSlZWFpml88MEHbN68mdatW/P1118DkJaWxv79+3n0\n0UdLbfPxxx9n7dq1ABw8eJCzZ88C0KZNG9asWYOqqhQWFrJu3TratGlTaqyzs85kNNIAAAJlSURB\nVDMzZ87k3LlzwPUikZSURKNGjQDw9vYmKSkJgB9//LHU2Pj4eAAOHTpEfn4+wcHBlnWHDx8mODiY\nF154gYiICDZv3ozZbCYkJIScnBzLfcYLFiwgLi6ONm3asGzZMkpKSjAajfTv35+DBw/+7nep1+sx\nm800a9aMAwcOWO7l/vTTT5k2bdo9/G4IUXVI7ZHaI4Q1SO2R2mMr5EqVnbjdmYTbCQ8P5/XXX+eF\nF15AVVUaNWrEX/7yFxwdHRk7dqzlLEn37t3p1asXbdu2Zfz48axcuRJFUZg4cSK+vr6ltjlixAje\nffddunbtSkhICIGBgSiKQmxsLGfOnKFHjx6YTCZ69OhhOSNyQ+vWrRk+fDhDhw7FZDIB0K5dO15/\n/XXLtj/88ENmz57NE088Ueo4CwoK6NWrF3q9nunTp5c6G9O2bVuWLl1Kly5dcHR0JCIiglOnTuHo\n6Mi0adMYNWoUJpOJ4OBgpk6disFgICUlhV69elFSUkLv3r1p2bIle/bsueN326lTJ3r27MnKlSuZ\nNGkSf/vb3zCbzdSqVUuKi6gypPZI7RHCGqT2SO2xN4p263VQUamtX7+ejRs3MnXqVHQ6+7tQOWnS\nJGrWrMnLL79s7ShCiD9Aao8Qwhqk9oiKYn9/usR9y8jIYP78+WRkZJS5j9ceTJ48mY0bN9KxY0dr\nRxFC/AFSe4QQ1iC1R1QkuVIlhBBCCCGEEA9ArlQJIYQQQgghxAOQpkoIIYQQQgghHoA0VUIIIYQQ\nQgjxAKSpEkIIIYQQQogHIE2VEEIIIYQQQjwAaaqEEEIIIYQQ4gH8P7XKK5a1MDQcAAAAAElFTkSu\nQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x11e2c1150>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 4.4. Exótico Quadrático\n",
    "\n",
    "Derivando gamma analítico da equação a partir de $\\Delta = 2S e^{(r + \\sigma^2)} - 2K$, tenho que:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\frac{\\partial V^2}{\\partial S^2} &= 2 e^{(r + \\sigma^2)}\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "\n",
    "Neste caso, também preciso **mudar as condições de contorno**. Abaixo vou comparar os resultados analíticos com o que obtive do método de diferenças finitas."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 1.82 s, sys: 34.3 ms, total: 1.86 s\n",
      "Wall time: 1.85 s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.SquaredExotic(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFXbwOHfbgohFUKVXoRNAumkURKCCkiRBARCVXp5\nQYqCiEgxIvghovQi8CoiRUoUA1LF0OEFpEmTamhJCKRB2u75/sCsLkkohrBEnvu6ciU7c/bMMzO7\nJ/PMnDmjUUophBBCCCGEEEL8I1pzByCEEEIIIYQQRZkkVUIIIYQQQghRAJJUCSGEEEIIIUQBSFIl\nhBBCCCGEEAUgSZUQQgghhBBCFIAkVUIIIYQQQghRAJJUCfEvsWXLFnr16kX9+vXx8fEhPDycpUuX\nkp2dbe7Qngl37tyhY8eOuLm5UadOHerUqUPr1q0LZVlr1qzBxcWF27dv/+M6YmNjcXFxyfXj6elJ\n06ZNmTp16lPftzkxbdq0CYDk5GTefvttTpw4UeC6u3XrRv/+/QtcT1HTrVu3PPdzzs+CBQue2LLy\n2l8uLi4sXrz4iS0jP3q9nhUrVhAREYG/vz/+/v5ERESwatUqnuaTXUaNGvVEvvfXr1+nV69e3Lp1\nC8j93RBCPH8szR2AEKLgJkyYwIoVKwgLC6Nz587Y2tqyf/9+/u///o99+/bx+eefo9U+3+dQLC0t\nmThxInfv3sXKyopixYpRpUoVc4f1UMOHDycwMND4OikpiU2bNrFgwQL0ej0jR440W2wnT54kOjqa\nnj17mi2GfwNfX1/efffdPOeVL1/+iS0nr/21cuVKKlSo8MSWkZf09HQGDBjAoUOH6NKlC2+99RZ6\nvZ4dO3YwYcIENm3axMyZM7G2ti7UOJ6k3bt3s2vXLjQaDQBly5Zl5cqVVK1a1cyRCSHMRZIqIYq4\nqKgoli1bRmRkJO3btzdODwoKolatWgwfPpx169bRpk0bM0ZpftbW1rz44ovmDuOxVatWDQ8PD5Np\njRo14ty5c0RFRZk1qcohz5AvGAcHh1z7uDD9fX89jeVOmzaNAwcO8PXXX+Pj42Oc3qhRIxo3bkzv\n3r2ZNm1avonlsyxnW1pbWz/VfSiEePY836euhfgXWLhwIS4uLiYJVY4WLVrQo0cPnJ2djdNiY2MZ\nMmSIsZvgwIEDuXTpknH+jBkzaNeuHVFRUbzyyit4enrSo0cP4uPjWb58OY0bN6ZevXqMGDGC9PR0\nAPbt24eLiws7duygTZs2eHp60q5dO/bu3WsSz9GjR+nTpw9+fn7UrVuX5s2bs2LFCuP8NWvWEBAQ\nwJdffklAQACNGzcmPT2d1NRUPvroI5o0aULdunUJCgpi1KhRpKSkGN+r1+uZO3cuL7/8Ml5eXoSF\nhbFlyxbj/EepIysri/nz59OsWTM8PDxo3bo1P/7440P3QVRUFM2aNcPT05O+ffvm2e1v165dtG/f\nHk9PT0JCQpg+fToGg+GhdefH1tbWeJY8x48//kjr1q1xd3fnlVde4ZtvvjGZf+TIEbp06YKPjw8B\nAQEMGTKEq1evGue7uLiwaNEik/cMHDiQbt265Vr+vn37eOONNwB4/fXXee+994BH285paWmMGTOG\ngIAAAgMDmT9/fq7609LS+OSTT2jSpAmenp60b9+eXbt2mZRZu3YtLVu2xMPDg5CQECZNmkRmZma+\n26xbt25MmDCBSZMm4efnR1BQEJGRkSbvycrKYvr06TRr1gx3d3f8/f0ZPHgw169fN5Zp0qQJU6dO\npUOHDnh6ehq32Y4dO+jatSs+Pj54eHgQFhbG5s2b843ncfTt2xc/Pz9u3rxpnNa7d29CQkJITU0F\nHvzdzm9/3b/PT506Re/evfH19aVBgwaMHj2apKSkXPMDAgIICAhg5MiRJjHdLyUlhW+//ZaIiAiT\nhCpH/fr1adOmDUuXLjWuR15dQf/73//i4uJifP0o+yk7O5tPP/2UBg0a4Ovry+TJk9Hr9Sb1uri4\nMG/ePFq2bIm3tzcbNmwA4IcffqBdu3Z4eXnh5eVFREQE//vf/4B77dTo0aOBeyevZs6cmWf3v337\n9tGlSxe8vb0JCQlh8uTJJp+1AwcO0KVLF+O2joyM5M6dO/luSyHEM04JIYqsGzduKJ1Opz777LNH\nKn/t2jUVGBiowsPD1aZNm9RPP/2kWrdurerXr69u3LihlFJq+vTpytvbW7Vq1Upt3rxZ/fDDD8rL\ny0s1bdpUdejQQW3fvl3997//VS4uLmrevHlKKaX27t2rdDqd8vf3VzNnzlS//PKL6t27t6pbt646\nc+aMUkqpK1euKE9PTzV06FC1e/duFRMTo/r166d0Op06ffq0Ukqp1atXKzc3NxUWFqZ27typNm7c\nqJRSqm/fvio0NFRFR0er/fv3q/nz56s6deqoyZMnG9ctMjJS1a1bV82ZM0ft2bNHjRs3Trm5uakD\nBw48ch3Dhg1TXl5eatGiRWrXrl1q7NixSqfTqZUrV+a7TdevX690Op2KjIxUO3fuVBMmTFB16tRR\nLi4u6tatW0oppXbv3q1cXV3V8OHD1Y4dO9RXX32lvLy81IQJE/Kt948//lA6nU6tX79eZWVlqays\nLJWZmani4+PV4sWLlaurq0nsa9asMcaxa9cuNXPmTOXm5qa+/PJLpZRSycnJyt/fXw0fPlzt3btX\nbdy4Ub388suqY8eOxjp0Op1atGiRSRwDBgxQ3bp1M4lp48aNKiUlRS1dulTpdDq1du1adfny5Ufe\nzn379lUBAQFq9erVasuWLapNmzaqTp06ql+/fkoppfR6vYqIiFCBgYFqxYoVKiYmRg0ePFi5ubmp\nHTt2KKWU2r9/v3J1dVVz585VBw4cUN9++63y8PBQU6dOzXebdu3aVfn6+qp27dqprVu3qm+++UZ5\neXmpt99+21hmwoQJyt/fX61evVodOHBALV26VPn6+qrBgwcby4SGhqo6deqoefPmqe3bt6sLFy6o\nI0eOKBcXF/Xhhx+qvXv3qi1btqiOHTsqd3d3dfPmzQfG1LdvX5WdnW3cz3//yXHt2jXl4+OjRo4c\nqZS6913R6XRq586dxvkP+m7nt7/+vs9jY2OVt7e3ioiIUFu2bFHR0dEqODhY9erVSyml1G+//aY8\nPDzUm2++qX7++WcVFRWlQkNDVfPmzdWdO3fyXL8NGzYonU6ndu3ale822Lp1q/FzlbNNcj4LORYv\nXqx0Ot1j7acJEyYoT09P9dVXX6nt27erN954Q9WpU0e1atXKWEan0ylPT0+1cuVKtXHjRpWQkKA2\nbNigXFxc1IwZM9T+/ftVdHS0atGihWrQoIHKzMxUN2/eVJ9//rlx+1+/ft3ku6GUUkeOHFFubm6q\nf//+avv27eq7775Tvr6+auzYsUoppbZv365cXFzUsGHDVExMjFq2bJny9/dXXbt2VQaDId9tJYR4\ndklSJUQRduTIEaXT6dTy5csfqfykSZOUj4+P8WBfKaUSExOVj4+P8aB3+vTpSqfTqSNHjhjLDB8+\nXOl0OnX16lXjtM6dO6uBAwcqpf5Kqv5+QJuZmamCg4PVqFGjlFL3DiJ69OihsrOzjWVu376tdDqd\n+uabb5RSfx0obt682VgmPT1d9ezZ03gwnaN///6qbdu2Simlbt26pVxdXdXs2bNNynTv3l3NmTNH\nZWRkPLSOU6dOKZ1Op1asWGFSZvjw4SooKEjp9fo8t2lYWJjq06dPrnp1Op1xO3fo0EF17tzZpExU\nVJRydXVVsbGxedabc5CW10+jRo3UjBkzjAfder1eNWzYUI0YMcKkjlmzZikfHx919+5ddfjwYaXT\n6dThw4eN8/fv369mzJhhfP04SZVSf+3348ePK6UebV+dPHnSmCzmiIuLU+7u7sYD6ZyD7JyEIUfH\njh1VeHi4UkqpefPmKR8fH5WRkWGcv2rVKhUVFZXn9lTq3sG6t7e3yef/m2++UTqdTl25ckUppdTQ\noUPV6tWrTd4XGRmpAgICjK9DQ0NVmzZtTMqsXr1aDRkyxGTaiRMnlE6nU9u3b39gTPntZ51OZ7J+\ny5YtM34//Pz8jAfoSj3ad/v+/aWU6T6fOHGi8vf3V6mpqcb5W7duVc2aNVO3bt1SgwYNUqGhoSbJ\n3u+//65cXV3VkiVL8ly/hQsXKp1Opy5cuJDvNjhz5ozS6XRq8eLFxm3ysKTqYfvp1q1bys3NTS1Y\nsMA4PyMjQ9WvXz9XUpXTjuWYN2+eioyMNJm2adMmpdPp1NmzZ5VSf7VVOdv7/u/GwIEDVbNmzUwS\npG+++Ua9/vrrSq/Xq/DwcJMTGkoptWPHDqXT6dS2bdvy3VZCiGeX3FMlRBFmYWEB8MjdyA4cOEBA\nQAAlSpQwTitZsiRBQUHs37/fOE2j0eDu7m587ezsTKlSpXjhhReM05ycnEy6dMG97oY5rKysaNSo\nkbHekJAQQkJCyMjI4OzZs1y8eJGjR48C97ry/F316tWNfxcrVoyFCxcC97o3Xbx4kbNnz3Lu3Dls\nbGyAe93aDAYDoaGhJvV89dVXxr8fVkdO157mzZub1PHqq68SHR3N+fPnc92TdffuXU6dOkW7du1M\npjdt2pSff/7ZWObYsWMMHTrUZLS+Ro0aYTAY2LdvH23btiU/I0aMIDAwEL1eT1RUFKtXr+bdd9+l\nZcuWxjIXLlwgPj6ekJCQXMuYPn06R48epU6dOjg5OdG/f39atmxJSEgIgYGB+Pn55bvsx/Uo++rQ\noUMABAcHG99XpkwZvLy8jK8PHDiAvb09DRo0MKn/1VdfZfLkydy5cwdfX1/u3LlDmzZtePXVV2nc\nuHGu/ZCX+vXrm3z+X3rpJSIjIzl48CAVKlRg2rRpANy4cYPz589z/vx5Dh069MDPKEDbtm1p27Yt\nd+7c4dy5c1y8eNHY/fVBXRIB6tWrZ+yOd7+/D94QERFBdHQ0b731FhUrVmTUqFHGeY/63X6Qw4cP\n4+fnh52dnXFakyZNaNKkiXEZrVu3xtLyr0OHmjVrotPp2L9/P127dn2k5dwvZxCdx+kO+7D9dOTI\nEfR6vcnnzNramuDgYI4fP25S1/37sm/fvsC90RLPnz/PhQsX2LZtG/DwfZnj8OHDtG7d2qSLbpcu\nXejSpQtpaWmcPHky1z1kDRs2xMnJiQMHDuRqy4QQzz5JqoQownKSnGvXruVbJi4ujjJlyqDRaEhJ\nSaFOnTq5yjg7O/P7778bX9vY2OS6X6dYsWIPjads2bImr0uWLGm8H0Ov1zN58mRWrlxJVlYWVapU\noV69ekDugQ5KlSpl8nrr1q1MmjSJ2NhYSpYsSd26dSlevLjxICxnGfe/73HrsLS0xNHR0eR9pUuX\nBjDe7/F3ycnJKKUoWbJknu/JKWMwGPjss8/47LPPTMppNBoSEhLyjRmgcuXKxn3m4eHB3bt3GTly\nJCVLlqR+/foAxnu43n77bd5+++1cy4iPj8fOzo6lS5cya9Ys1q5dy9KlS3F0dKRv37707t37gTE8\njodt5+TkZCwtLU0O3OHeNsu5nyQ5OTnPfVm6dGmUUqSlpeHr68vs2bNZvHgx8+fPZ/bs2VSqVInx\n48fTsGHDfOMrU6aMyeuc+w1zPkOHDh1i/PjxnDlzBgcHB1xdXbGxscl1wH9/fHfu3GHs2LH89NNP\nwL0D9Zx7gO7/fN/P3t4+z+9lXlq1asWBAweoV68exYsXN05/1O/2gyQlJeHq6prv/JSUFJPP9t+X\nkZaWlud7ckYWjI2NpVq1anmWiY2NBTA5afMw+e2nnG2dnJwM8MDvZo7792V8fDzvv/8+O3bswMrK\nilq1alGxYkXg0Qdlye8zDPe2o1Iq322ZV1sjhHj2SVIlRBHm7OyMm5sbO3bsYPjw4XmW6dGjB2XK\nlOG///0vjo6OxMfH5yqTkJBgcob7n7p165bJoBg3b940HljMmTOH7777jv/7v/8jJCQEGxsb0tPT\nWbVq1QPrvHjxIkOGDKFt27b85z//oVy5cgAMGTKE8+fPA/dGTwNITEw0OWg+efIkAMWLF39oHU5O\nTmRnZ5OcnGySWOUkPXltHycnJzQaTa4b9f8+UEVO8jBw4EBeeuklk3JKqVyJ6MOMHj2aX375hfff\nf5/169dTvHhx4/qPGzcu1whkSikqVaoEwIsvvsi0adPIzs42jsb26aef4u/vb3zf/cnD49w4/yj7\nqkSJEmRnZ5Oamoq9vb3xvbdv3zZelXFycsoz2cz57Do5OQEQGhpKaGgoqampxMTEMGfOHIYNG8bu\n3buxsrLKM8ac5wrlyNl3zs7OpKSk0L9/f+rVq8esWbOoXLkyAP/3f/9n/CzlJzIykt27d7NgwQLq\n1auHlZUVv//+O+vWrXvwRnsMt2/fZvr06bi4uBAVFUXbtm2NVxqdnJwK/N12cHAgMTHRZFpmZiZ7\n9uzB29v7gcvIb2TNhg0bUqxYMbZs2WKS7J49e5bq1atjaWnJli1bsLKyIiAgwDj//uTl75/DR9lP\nOet88+ZNkzbhUZ4d9/bbbxMXF8eKFSuoW7cuWq2WX3755bGeQWVvb5+rXUhKSuLEiRN4eHjke0Il\nPj4+VyIohCgaZPQ/IYq47t27c/LkyTyTk++//55z587x2muvAfe6Ge3bt8/kwDIxMZE9e/bkOTLX\n48rp8gb3DsZiYmKMB0q//vor7u7uNGvWzNgVLCYmBnjw2d/ffvuN7Oxs+vbtazxIv3PnDgcPHjSW\n8fDwwNLS0mT5AGPHjuXLL798pDp8fX0BjKN/5Vi/fj2lS5fO8yy7jY0Nnp6euUZ4++WXX4x/29vb\n4+LiwqVLl4wPHa5Tpw4WFhZMnTrVZLSyR+Hg4MCwYcO4du2a8cGwNWrUoESJEly/ft1kGYmJiXzx\nxRekpKQQExNDUFAQiYmJWFpaEhQUxJgxY4C/rnTa29tz48YN47Lu3LnzwGQip/tpjkfZzv7+/gBs\n3LjROC0pKYlff/3V+NrX15e0tDR27txpUv+GDRuoW7cu1tbWzJgxg44dOxrjbtGiBT179iQlJeWB\nZ/r37dtnHLUS7j00W6vV4ufnx/nz50lOTuaNN94wHqgbDAZ2796db305fv31V4KDgwkKCjImdDt2\n7ACe3JDzkyZNAmDJkiUEBAQwZswYMjIygHvb7GHf7fv31/28vb05cOCASQKzZ88e+vXrR2JiIr6+\nvmzbts2kK+S5c+c4e/Zsvu2Hvb09Xbp0YdWqVcYutgDvvfceTZs2ZfHixaxdu5bXX3/deELGwcHB\n5HMIcPDgQePV80fZT97e3lhbW5skQtnZ2blGkMzLkSNHjKNK5nRNvH9fPuy5f97e3sTExJjs++jo\naPr164dGo8HV1dV4VTPHjh07SE1NfSJtsRDi6ZMrVUIUcWFhYfzyyy+MHTuWo0eP0qRJEzQaDTt3\n7mTZsmW0aNHCeM/Om2++ydq1a+nZsycDBgxAKcWcOXMoVqyYcbjlx3H/weKsWbOwtLSkevXqfP31\n16Snpxu7lnl4eDB//nyWLl1KrVq1OHbsGLNnz0aj0TzwaoibmxsWFhZMmTKFiIgIbt26xaJFi7h5\n86axS2KpUqWIiIhgzpw5WFpaUqdOHTZs2MCpU6cYO3YsDg4OD63DxcWFpk2bMnnyZNLS0qhduzZb\nt25l/fr1jBs3Lt/43nrrLXr37s17771HixYt2Lt3L1u3bs1V5j//+Q8ODg68/PLL3Lp1i88//xxL\nS0t0Ot1jb/d27drx9ddfs2jRIjp06ED58uUZPHiw8aA7MDCQ2NhYpk6dSvXq1alcubLx6tvgwYPp\n06cPlpaWfPXVVzg5ORkT3+DgYNasWYObmxvOzs58+eWXaDSafJOCnCtkP//8M8WLF3+kfVWjRg1e\ne+01Pv74YzIyMnjhhReYN2+eyVDXoaGheHp6MmLECIYNG0b58uVZs2YNx44dY86cOcZ1nD17Nh98\n8AEtWrQgKSmJuXPnUq9evQee6b99+zb9+/enR48eXLp0iWnTptG5c2fKlCmDjY0NdnZ2zJo1C71e\nz927d/n22285ffp0ru6w9/Pw8GDr1q1ERUVRvnx59u7daxyq/O7duw98b3JyMkeOHMlzOzs4OFCz\nZk127NjB999/zyeffIKDgwNjx46lTZs2TJ8+nREjRjzSd/v+/VWjRg2TZb355ptERUXRt29fevXq\nRVpaGp9++ilNmzalWrVq9O/fn4iICPr06cObb75JcnIyn3/+OZUqVSI8PDzf9Rs6dChnzpyhV69e\ndOnShYYNGzJo0CAiIyP55JNPsLW1ZeDAgcbywcHBjB8/npkzZ1KvXj02btzIiRMnjNunRo0aD91P\n9vb29OrVi/nz52NjY4OLiwvLli3j5s2bubqe3s/d3Z01a9ZQu3ZtHB0d2bx5M8uXLzfZlznfp02b\nNuW69w+gf//+xgcdt2/fnuvXr/PFF1/QtWtX7OzsGDx4MAMHDmTYsGGEh4dz7do1PvvsM7y9vU3u\nAxNCFCFPd1wMIURhMBgMavny5apDhw7K399f+fj4qHbt2qkVK1bkGrXu7Nmzqm/fvsrLy0vVq1dP\nDRo0SF28eNE4f8aMGcrb29vkPRMnTlRNmjQxmTZw4EDjqHA5o4otX75ctWzZUnl6eqru3burkydP\nGsvfvXtXjRkzRgUGBipvb28VHh6uoqKiVM+ePVXv3r2VUvdG1Pr7UOQ51q1bp5o1a6bc3d1VaGio\n+vDDD9WyZcuUm5ubiouLU0rdGwFvxowZxlHT2rdvr3bv3v1YdWRkZKgpU6aoRo0aKXd3dxUWFqbW\nrVv30O2/ZcsW1apVK+Xu7q66dOmili5dmms9tm3bptq1a6fc3d1VUFCQeuedd9T169fzrfP+0cTu\nlzNS2N+HA1+1apVq1aqVqlu3rmrYsKGaMGGCSk5ONs4/fvy46tGjh/Lz81NeXl7qjTfeUCdOnDDO\nj4uLUwMHDlSenp6qQYMGavbs2Wry5Mn5jv5nMBjUyJEjlbu7u+rfv/8jb+fMzEw1adIkFRgYqOrV\nq6cmT56shgwZYjLiW3Jysvrggw9UYGCg8vT0VBEREblGFYyOjlZhYWHKy8tL+fv7q5EjRz50+PLe\nvXuriRMnKm9vbxUcHKxmzpxpMkLbrl27VJs2bZSHh4cKCQlR77zzjtq4caNycXExjogZGhqaa3S4\nmzdvqrfeekv5+fkpPz8/FRERoX755RfVrFkzNW7cuAfG9KDR/3r06KHS0tJUaGio6tq1q8l7P/vs\nM1WnTh3jaH4P+27ntb/uH/Hx5MmTqkePHsrT01M1bNhQffTRRybDpR88eFB16dJFeXh4qICAAPXu\nu++qhISEfNcvh16vV8uXL1ft27dXvr6+ql69eqpjx45q4cKFKjw8XDVo0EBFR0crpZTKzs5WH3/8\nsQoICFDe3t5q5MiR6vvvv1cuLi6PtZ+UUmru3LkqODhYeXl5qXfffVd99NFHuUb/u3/Ey8uXL6ue\nPXsqb29vFRgYqN5880114MAB5eXlpebPn6+Uutee9erVS9WtW1dFRkaq2NjYXN/XvXv3GofVDw0N\nVTNmzDAZ/XTr1q0qPDzc+H2NjIxUaWlpD92WQohnk0apJ9QvQQjx3Mp5sOjq1asf+Yb7wjJ69Ggu\nXLjAhAkTqF27tlljEc+Wbt26YWdnx9y5c80divibnJEty5QpI1dphBBFltxTJYT417hy5Qrh4eFk\nZWXxxRdfmDscIcQjsLCwoF27dpJQCSGKNEmqhBBPxMPuOXkavv76a3r27ElGRgY9e/Y0dzhCCCGE\neE5I9z8hhBBCCCGEKAC5UiWEEEIIIYQQBSBJlRBCCCGEEEIUgCRVQgghhBBCCFEAklQJIYQQQggh\nRAFIUiWEEEIIIYQQBSBJlRBCCCGEEEIUgKW5AxBCCCHMYd68eVhZWckzzYQQBbZt2za+/PJL4uPj\nadu2LXq9nqNHj+Lg4MDUqVPNHZ54CiSpEkII8dy5e/cuR48e5ciRI3Tt2hVra2tzhySEKMKaNGlC\nUlIS27dvZ8CAAcbpM2bMMGNU4mmS7n+iUMXGxuLq6kpYWJjxp02bNqxevdrcoQkhnmPR0dFERkbi\n7Ows7ZEQ4olQSqGUMplWtWpVM0Ujnja5UiUKnY2NDVFRUcbXN27coHXr1tStWxedTmfGyIQQz6Os\nrCzS0tJwdnamX79+TJs2jY4dO6LVynlGIcST1bp1a3OHIJ4S+Q8inrpy5cpRtWpVdu3aRefOnWnb\nti1vvPEGAN999x1t27YlPDycHj16cP78eQDS0tIYNWoUzZo1o0WLFnzxxRcApKSk8M4779C6dWta\nt27NlClT0Ov1AEyfPp3XXnuNdu3a0atXL+Lj482zwkKIZ8qmTZto0aIFAK+++ioWFhZER0ebOSoh\nxL+RRqMxdwjiKZErVeKpO3z4MJcvXyY9PZ1z586xbds27Ozs2L9/P99//z3ffvstNjY27Ny5k8GD\nBxMdHc306dPJysrip59+Iisri+7duxMcHMzy5ctxdnZm3bp1ZGZmMmDAABYuXEjr1q35+uuv2bNn\nD1ZWVixevJijR4/y0ksvmXv1hRBmpJQiISGBMmXKAKDVaunduzfz58+XM8pCCCH+MUmqRKHLyMgg\nLCwMAL1eT8mSJfn0009JSEigdu3a2NnZAbB9+3YuXbpERESE8b1JSUkkJSWxZ88e3nvvPTQaDdbW\n1ixfvhyA//znP8a/ra2t6dSpE1999RV9+vTBxcWF8PBwGjVqRHBwMEFBQU95zYUQz5qff/4518mV\nsLAwZs2axc8//0xoaKiZIhNCFHVyVer5JkmVKHTFihUzuacqx5o1a4wJFdw7g9ymTRveeecd4+u4\nuDicnJywtDT9qF69ehVbW1sMBoPJTaF6vZ6srCw0Gg3ffPMNx48fZ/fu3UyaNImAgADef//9QlpL\nIURRcObMGby9vUlMTDSZ/vrrrzNv3jxJqoQQ/9j9g1SI54vcUyWeGQ0aNCA6Otp479O3335rvNcq\nKCiIqKgolFJkZmYyaNAgjhw5QsOGDVm6dCkAmZmZrFy5koYNG3Lq1ClatWpFjRo16Nu3L2+88Qan\nT58227o6++y/AAAgAElEQVQJIcxvz549fP755wQFBVG/fn2Tn5kzZ3LkyBEOHjxo7jCFEEXQL7/8\nwtq1azly5AgzZswgISHB3CGJp0yuVIlCl9/l8PunN2zYkN69e9OzZ080Gg0ODg7MmjULgEGDBjFx\n4kRcXV2pXLky7du3JyQkBE9PTyIjI2ndujWZmZkEBwfTv39/LC0tad68Oe3atcPW1pbixYszZsyY\nQl9XIcSzKygoiFOnTpk7DCHEv1BISAghISHmDkOYkUbJtUpRhIwfPx5nZ2feeustc4cihBBCCCEE\nIN3/RBGydOlS9u3bJ0OjCyGEEEKIZ4pcqRJCCCGEEEKIApArVUIIIYQQQghRAJJUCSGEEEIIIUQB\nSFIlhBBCCCGEEAUgSZUQQgghhBBCFIAkVUIIIYQQQghRAJJUCSGEEEIIIUQBSFIlhBBCCCGEEAUg\nSZUQQgghhBBCFIAkVUIIIYQQQghRAJaFWfnatWtZs2YNABkZGZw6dYpvv/2WiRMnotVqqVWrFuPG\njUOj0bBy5UpWrFiBpaUlAwYMoHHjxqSnpzNixAgSExOxs7Nj8uTJODs7F2bIQogiKisri9GjR3P1\n6lUyMzMZMGAANWvWZNSoUY/U3gghRI682pMmTZrkKvfBBx9QokQJ3n77bQwGA+PHj+fMmTNYWVkx\nceJEqlSpYobohRDmUKhXqsLDw1myZAlLliyhbt26fPDBB8yaNYvhw4ezdOlSlFJs3bqV+Ph4lixZ\nwvLly1m4cCFTp04lMzOTZcuWodPpWLp0KWFhYcyZM6cwwxVCFGHr1q3D2dmZpUuX8uWXX/Lhhx8y\nefLkR25vhBAix/3tSWRkZK4yy5cv5+zZs2g0GgC2bNlCVlYWy5cv55133mHy5MlPO2whhBk9le5/\nx44d4/fff6d9+/acOHECPz8/AIKDg9m9ezfHjh3Dx8cHKysr7O3tqVq1KqdPn+bQoUMEBwcD0KhR\nI/bs2fM0whVCFEHNmzfnrbfeAsBgMGBpaclvv/32yO2NEELkuL89sbCwMJl/6NAhjh49SseOHVFK\nGac1atQIAE9PT44fP/50gxZCmNVTSarmzZvHoEGDAIyND4CdnR0pKSmkpqbi4OBgMj01NZXU1FTs\n7OxMygohRF5sbW2NbceQIUMYOnQoBoPBOP9h7Y0QQuS4vz0ZNmyYcV5cXByzZs1i7NixJsc0qamp\n2NvbG19bWFiYtEFCiH+3Qr2nCiA5OZmLFy/i7+8PgFb7Vx6XmpqKo6Mj9vb2pKWlGaenpaXh4OBg\nMj0tLQ1HR8cHLuvgwYOFsAZCiMLk6+v7xOq6du0agwYNokuXLrRq1YopU6YY5z2ovZG2RYh/n4K2\nLX9vT1q2bGmcvnHjRm7dukWfPn1ISEggPT2dGjVq5GpbDAaDyTFPXqRtEaLoya9tKfSk6sCBAwQG\nBhpfu7q6sn//fvz9/YmJiSEoKAgPDw+mTZtGZmYmGRkZnDt3jtq1a+Pj40NMTAweHh7ExMRQr169\nhy7vSR6g3e/gwYOFWn9hKsqxQ9GOvyjHDoUb/5M8oEhISKBnz56MGzfO2OY8antTq1ath9YvbUve\ninLsULTjl9gfXH9B5NWe5OjWrRvdunUD7g3IdeHCBcLDw9m0aRM///wzr776Kr/++is6ne6RliVt\nS96KcuxQtOOX2B9cf34KPam6ePGiyeg3o0aN4oMPPiArK4uaNWvSvHlzNBoN3bt3p3PnzhgMBoYP\nH461tTWdOnXi3XffpXPnzlhbWzN16tTCDlcIUUTNnTuXlJQUZs2axaxZswB4//33mThx4iO1N0II\nkSOv9qRDhw7cvXuXDh065PmeV155hV27dhEREQHApEmTnlq8QgjzK/SkqlevXiavq1WrxpIlS3KV\na9++Pe3btzeZZmNjwxdffFGo8Qkh/h3GjBnDmDFjck1/1PZGCCFy5Nee3C88PNz4t0ajYcKECYUZ\nlhDiGSYP/xVCCCGEEEKIApCkSgghhBBCCCEKQJIqIYQQQgghhCgASaqEEEIIIYQQogAkqRJCCCGE\nEEKIApCk6inKyMigSZMmAHz88cdcv36dpKQkwsPDc42S+KyZMmUKr732Gl999ZVxeNm87Nixg5Ur\nVwKwYsUKsrOzn1aIQjy3pG0RQgghzKvQh1QXeRs9ejRw7+HIlStXZvr06WaO6ME2btzIDz/8gK2t\n7QPLNWrUyPj3vHnzTIabFUIUPmlbhBBCiKdPkqpClpaWxjvvvENKSgpVqlRBo9EA957IPmbMGD76\n6CPi4+OZOXMm7dq1Y+zYsaSnp2NjY0NkZCTZ2dkMGDCAEiVKEBISQqNGjZg4cSJKKUqWLMnHH3/M\niRMnWLBgAdbW1vzxxx+0bNmS/v37c/HiRcaMGUN2djaZmZksXLiQ+Ph4PvnkE/R6Pbdu3WL8+PF4\ne3vz3nvvcfnyZdLT0+nevTtt2rQxrsPMmTOJi4ujX79+9OnTh6ioKD777DOaNm2Kr68vFy5coFSp\nUsyYMYOoqCguXLhA1apVSUhIYPjw4UyfPp0PPviA69evEx8fT5MmTRg6dCibNm3iyy+/xNLSkrJl\nyzJt2jTj9hFCPJi0LdK2CCGEeHY8V0nVqvOHOZRw+R+/PyMzg9X7Y02m+ZSuwus1vPN9z/Lly9Hp\ndAwdOpSjR4+yd+9e4zxra2vef/99li9fzqBBgxg6dCjdunUjODiYPXv28OmnnzJs2DASEhJYu3Yt\nlpaWdOjQgUmTJlGzZk1WrVrFggULaNCgAdeuXWPdunVkZGTQqFEj+vfvzyeffEL//v1p2LAh8+fP\n59SpU9y6dYt3332X2rVr8+OPP7JmzRpq167N//73P2PXml27dpmsw6BBg1izZg0LFy7k8OHDxumx\nsbEsWbKEcuXK0alTJ44dO4ZGo0Gj0fD6668ze/ZsPvvsM65du4aXlxft27cnIyODkJAQhg4dSnR0\nNL1796Zp06ZERUWRmpqKg4PDP94/QpiLtC3StgghhHi+PVdJlTlcunSJkJAQADw8PLCysjLOU0qh\nlDK+PnPmDPPmzWPBggUAxrKVKlXC0vLerjp//jzjx48HIDs7m2rVqgFQu3ZttFotxYsXx8bGBoCL\nFy/i5eUFgK+vL76+vvzvf/9j9uzZ2NjYkJaWhr29PXZ2dowePZoPPviA1NRUXnvttUdat5IlS1Ku\nXDkAXnjhBTIyMozr9XdOTk4cO3aMffv2YW9vT2ZmJgDvvfce8+bNY8mSJdSoUYOXX375kZYrhJC2\nBaRtEUII8ex4rpKq12t4P/DM78McPHgQX1/fx3pPzZo1+fXXX3nppZf47bffyMrKemDZnj174u3t\nzfnz5zlw4AAAWu1f44lUr16dKVOmUL58eQ4dOkR8fDxAnl1batasybFjxwgKCiImJobTp0+zatUq\npkyZQs2aNZk+fTpXr14lPj6eEydOMHPmTDIyMmjcuDFhYWEmy83Lw7rTaLVaDAYDa9aswdHRkQ8/\n/JBLly6Z3Gw+ePBgnJ2dGTt2LFu2bCEsLOyBdQrxLJK2RdoWIYQQz7fnKqkyh06dOjFy5Eg6d+5M\njRo1KFasmHFeTneWnAOIkSNHMn78eDIzM0lPT2fMmDHGcjnGjx/PiBEj0Ov1aDQaPv74Y27cuJHn\nQcjIkSN577336NevH66ursyfP5/MzEyGDh2Ko6Mj5cuX5/bt25QpU4b4+HgiIiKwsLCgV69euQ56\ncur/e7z5yZlfr149+vbty9ixY3n77bf59ddfsba2plq1aty4cQMPDw/69euHnZ0ddnZ2hIaG/oMt\nLMTzSdoWaVuEEEI8OzTq/v4URdg/Odv7LNVfGOLi4pg8eTItWrQo0l1giuK2z1GUY4fCjb+obBtp\nW3KTtsX8JHbz1f+kyHbIX1GOHYp2/BL7P6tfrlT9yy1atIiLFy9iMBjMHYoQ4l9E2hYhnoyshe/m\nmmbV65NHLvug8i77viHr15WFVr+Ul/LPc/n7SVL1Lzdq1CjgXmYthBBPirQtQgghxF8kqRJCCCGE\nMJNHPQv+uGUBTgV0fayuUI9bv5SX8s9z+fs9eAgmIYQQQgghhBAPJEmVEEIIIYQQQhSAJFVCCCGE\nEEIIUQCSVD3jZsyYwfLlywH45ptviImJITMzk++++w6AtWvXsm3bNnOGKIQogqRtEUIIIZ4cGaji\nGff3h2F27doVgNjYWFatWkX79u0JDw83V2hCiCJM2hYhhBDiyZGkqpClpqYyZswYUlJSiIuLo1On\nTmzYsAFXV1fOnj1LamoqX3zxBRUqVGDq1KmcOHGC27dvo9PpmDRpEvDXwU+TJk346aefmDt3Lr//\n/juzZs1CKUXp0qWJiIjgww8/5NixY2RlZTF48GBeeuklJk+ezKFDh0hLS6Njx450797dnJtDCAD0\n+34EfTYUq2zuUIosaVuEEEKIZ8dzl1QV5EFgLhmZxofoPeqwi5cvX6Zly5a88sorxMXF0bVrV8qV\nK4enpyejR49m2rRp/Pjjj3Tu3BknJycWLVqEwWCgVatW3LhxI886BwwYwNmzZ/nPf/7DzJkzAdi8\neTO3b9/mu+++Izk5mcWLF2NhYcGVK1dYuXIl+/fv59NPPyUwMJDatWs/UuxCFAaVnobhwAayLa3A\nr5u5w3lipG2RtkWIZ4XeYCAp6y6phiySM+9iobHASqvFQqtFi8bkSrUQ4sl47pKqp61UqVJ89dVX\nbNq0CXt7e7KzswFwdXUF4IUXXiAhIQEbGxtu3rzJ22+/ja2tLXfu3DGWvZ9SKte0Cxcu4OXlBYCj\noyNDhgxh4cKFxudTWFhY4Onpye+//y4HPsKsDL9ug6wMNleoQUVzB1OESdsixPMry6AnMT2Nmxlp\nJGakkZCexs30e3/fzEjjdsZdFPe+z9/uO2/yXg1gqbXAQqPFUqPFUvvnj8biz99aLLQWf/7+WxmN\nFss/p1tqtVhrLSlZzJZSNnY4F7OjVDE7bCytzLA1hHg2PHdJVUEeBHb04MHHeogewOLFi/Hy8qJT\np07s3buX7du351kuJiaG69evM23aNBITE9m8ebPxAOf+Ax2tVovBYDCZVrNmTX766ScAUlJSGDp0\nKN26dWPNmjW8+eabZGdnc/jwYdq2bftY8QvxJKnMdAyHt5JtbcNm5zK8ae6AniBpW6RtEeJJSddn\nGZOmmznJ099eJ2el5/k+DRpKWBenpmNpShaz5VZiIo4lS6BXCr1BT5bBgF4ZyDboyVYG9AYDWX/+\nzlAZZBsMxukGcp9keRhbS2tKFbPD2caOUsVscS72Z8L1Z+LlYFVMrpKJf63nLql62kJDQ/noo49Y\nv349Dg4OWFpakpWVlatR8fDwYPbs2XTt2hWNRkOVKlWIi4sDyFW2VKlSZGVl8emnn2JjY4NGo+Gl\nl15iz549dO7cGb1ez6BBg2jUqBH79u0jIiKC27dv8/rrrxvPYgthDobjMZCeyo7KtTFYWps7nCJN\n2hYh/h22XDllkjAlZqSRlp2ZZ1kLjZaSxWzR2Zb76wqRzb2rRKVs7ChpbYuF9q+BnQ8ePIiv6+Od\nsMlhUAZjkpVt0KNX6s/fBrIMBjL0WSRm3DFJ+BLT07hxN5k/0m7lWaeV1uLPq1q2fyZedsbfpYrZ\nUaJYcbQaGZhaFE2FmlTNmzePn3/+mczMTDp37oyfnx+jRo1Cq9VSq1Ytxo0bh0ajYeXKlaxYsQJL\nS0sGDBhA48aNSU9PZ8SIESQmJmJnZ8fkyZNxdnYuzHALRUBAAOvWrct3fkREhPHvVatW5Zrv4+Nj\n/PvvwxtHRUXlKjtmzJhc09599959Gwf/wZlwIZ40dfMqektrNpQqR6MXXoTbT34ZR44c4dNPP2XJ\nkiX89ttv9O/fn6pVqwLQuXNnXn311TzbnKJG2hYh/h2+O3/I+LeV1oJSxeyo6lDKmCiV+tvVHidr\nm6eWdGg1WqwttDzu6S+lFGnZGdxMv2Psnmjsmvjn7xt3k/NZpoaS1ve6FFpkZqDiL6FzKoeDtU3B\nV0iIQlZoSdW+ffs4fPgwy5cv586dOyxatIjJkyczfPhw/Pz8GDduHFu3bsXT05MlS5awZs0aMjIy\n6NSpE/Xr12fZsmXodDoGDRrE+vXrmTNnDu+//35hhSuEeAo0L3dnmq0tmcpAs0punL998onWv2DB\nAn744Qfs7OwAOHHiBD169KBHjx7GMvHx8Xm2OdbWcuVMCPH09XVp+K/qHqfRaLC3ssHeyoaqDnmf\nDP9798bEjDsm94fdTE/jbFIcCjh5ahcAlexKoCtRDhen8tRyKktxuXdLPIMKLanatWsXOp2OgQMH\nkpqaysiRI1m5ciV+fn4ABAcHs2vXLrRaLT4+PlhZWWFlZUXVqlU5ffo0hw4dok+fPgA0atSI2bNn\nF1aoQoin5ED8JS4asgku/yIli9k+8fqrVq3KzJkzGTlyJADHjx/n4sWLbN26lapVqzJ69GiOHj2a\nZ5vj7u7+xOMRQhQelXEHw841aP1boPnbwfup29fNGNXj8y1TxdwhPHU2FlZUsCtBBbsSec7PNujZ\n/L898EJJTt2+zrnkBGLTbrP1ymm0aKjq4IxLifK4lChHTccyWGktnvIaCJFboSVViYmJXLt2jXnz\n5vHHH3/Qv39/k5ui7ezsSElJITU1FQcHB5PpqamppKamGs8255QVQhRdBmVgw+UTaDUamlV2K5Rl\nNG3alNjYWONrT09POnbsiJubG3PnzmXmzJm4urrm2eYIIYoOwx+n0G9cBCmJoLXAIrQTqVkZfHf+\nEHvjLtDXVmfuEEUBWGotKGtRHN/KdXi1ch2yDHrOJcdz6vYNTt2+zqWURC6k3GTDHyew1Gip6VjG\nmGRVdXDGQu7LEmZQaElVyZIlqVmzJpaWllSvXp1ixYoZb46Gew+udHR0xN7enrS0NOP0tLQ0HBwc\nTKanpaXh6OhYWKEKIZ6CQwl/cP1uMg3K1aC0jf1TWeYrr7xiTKBeeeUVIiMj8fPzy9XmSPsiRNGg\nsjMx7FyD4fAW0GjRBrZG49eCA3EXWXH+IClZGVSxLwmGh9clig4rrcWfSVN5wJP07CzOJsdx8vZ1\nTt++wemkez/fXwIbC0tqOZU1JlkVbEugLeJdKkXRUGhJla+vL19//TU9evTgxo0bpKenExgYyP79\n+/H39ycmJoagoCA8PDyYNm0amZmZZGRkcO7cOWrXro2Pjw8xMTF4eHgQExNDvXr1Hmm5Bw8eLKxV\neir1F6aiHDsU7fiLcuxQwPjVvaelrEq/iAaolKSe2vbo1asXY8aMwcPDg927d1O3bt0825xatWo9\ntC5pW/JXlGOHoh3/cxW7QU+tw6sonpZIevES/OHyEvGWJdm5bz2XDWlYoCHAqgzu+pL3HsYk/rVs\nLK1wd66Iu/O9px2mZKZzJimOU7evcyrpBscSr3Is8SoADlbFqO1UDpcS5XApUZ4yNvZF/r418Wwq\ntKSqcePGHDhwgNdffx2DwcC4ceOoWLEiH3zwAVlZWdSsWZPmzZuj0Wjo3r07nTt3xmAwMHz4cKyt\nrenUqRPvvvsunTt3xtramqlTpz7ScgtzFKqiPMpVUY4dinb8RTl2KFj8Sin0q6Zws7gDtx0d8S9X\nnSa6IJO6C0POP8zx48cTGRmJpaUlZcuW5cMPP8TOzi7PNudhpG3JW1GOHYp2/M9j7HpDHNxNxbZB\nOHHxl1h78VfSDdnonMrRrZY/ZYo7GOsXzw8Haxt8y1Qx3p+WmJHG6ds3jN0FDyZc5mDCZQCci9mi\nK1GeeqWrUKfkC5JgiSemUIdUHzFiRK5pS5YsyTWtffv2tG/f3mSajY0NX3zxRaHFJoQofCr2NCr2\nDAmlKoCTEy0q1yn0ZVaqVInly5cD4ObmxrJly3KVyavNEUI8+ywCWnH9ThJf/xbDueR4bC2t6F4r\ngPrlasjBsTByLmZHULkaBJWrgVKKuLspxgTrdNIN9tw4z54b56loW4JXKrngV6YqljLYhSggefiv\nEKLQGPZHA/B9mQr4lq5CeVsnM0ckhCgKlFK5kqRsg56NsSdZf/k42cqAb+kqdKzpi5N1cTNFKYoC\njUZDOVtHytk6ElKhFgaluJRyk21XT/O/+Mv898xeoi4e4aWKLjQq/6IM1y7+MUmqhBCFwnD9POry\nSS6VKMsle0feqFLX3CEJIYoAlXwT/abFaL1fRlvTC4ALKQksObOfK3duU8K6OJ1e9MOrVCUzRyqK\nIq1GQ3XH0vRyLE1YNS+2XjnFzuvnWH3hMNGXjxP8wos0qaArlMd+iH83SaqEEIXCsH8DAN+XrYBX\nqUpUzOd5JEIIAfeuTqnfdqPfvgwy0zE4lSGrWl2+v3SEbVfOoFA0LF+T16t7U9xSHtYtCq6UjR0d\navrSsoo7MdfPsu3KaTbFnmTLlVP4l6lG00qu8r9LPDJJqoQQT5wyGMDGlitOpTnjUJL35SqVEOIB\n1J1k9Fu+Rp37FaxtsGj6JqdeqMHSQ9EkpKdR1saerrUC0JUoZ+5Qxb+QnZU1r1auw8sVXdgXd5HN\nsSfZG3eBvXEXqFPyBZpWckXnVE7u2xMPJEmVEOKJ02i1nPNvwTQba9xLVaSKvbO5QxJCPKOUUuij\npqNuXERTSUd6ky6sSrjEnhPb0aKheSU3Wlapi7WFHLKIwmWltaBh+ZrUL1eDY4lX2BR7khO3rnHi\n1jWq2JekaUVXfMpUkYcLizxJCyWEKBTRl4+jNBpaVparVEKI/Gk0GrTB7VE3LnGocm1WnN1jfIhv\nt1oBclJGPHVajQbPUpXwLFWJC8kJbIo9yeGbsXx5ejelLh7h5You1C9fAxsLGdRC/EWSKiHEE/d7\nUjynk27gVqI81R1LmzscIcQzLqlMZZYmXePY6d1YaS1oW92Llyu6yBUBYXbVHUvTz60R8XdT2Hzl\nFLtvnGfF+YOsu3yMkBdq0aRCbRxlBEqBJFVCiEIQ/cdxAFrKvVRCiL9R2ZnAX/elGJRix7XfWXPx\nMOn63A/xFeJZUaa4A51f9KN1FXe2XzvL9qtn2PDHCTbHniSwXHVeqehKeVtHc4cpzEiSKiHEE6Pu\npnApO5Pfbl2jtlNZXnQqa+6QhBDPCMP1i+g3fom2uifY1eD6nSSWnN3P738+xLdbrQAayEN8xTPO\nwdqG1lXdaVbJlT03LrD5ykl2Xj/Hruvn8ChViaYVXXnRqYy5wxRmIEmVEOKJUOmpZC96j6SylaF8\nZVpVcTd3SEKIZ4DSZ2PYH41hXzQoA4YqdTiUmcCiQ2fJVgZ8SlUm4sV6z9RDfLOyshg9ejRXr14l\nMzOTAQMG0KRJE+P8jRs3smDBAjQaDa1bt6Z79+4AhIeHY29vD0DlypX5+OOPzRK/KHzWFpaEVKhF\noxdqcjghlk1XTnLkZixHbsZSw6E0Hnp5ztXzRpIqIcQTYfj1Z8hM5xSKmo5lqC1XqYR47qmbV9H/\ntBAVdwkcnLnZqB0L0m4Sm3YTJ+vidK5ZD6/Slc0dZi7r1q3D2dmZKVOmkJSURFhYmDGp0uv1fPbZ\nZ6xevRpbW1tatGjBa6+9RvHi95LCJUuWmDN08ZRpNVp8y1TBp3RlzibHsyn2N44lXuUCoC4fp3ll\nN7Ryb+BzQZIqIUSBqcx0DIe3kG5VjJ1lKtC/Sh3pwiOEQL/vx3sJlUsgP9VwZ33ceQwoXCyc6Of7\nCrbP6EN8mzdvTrNmzQAwGAxYWFgY51lYWLBhwwa0Wi0JCQkYDAasrKw4deoUd+/epVevXmRnZzN8\n+HA8PT3NtQriKdNoNNR2Kkttp7KcvHWdBSdi+P7SUU7cukYPXRClbezNHaIoZJJUCSEKzHAsBtLT\n2FKhOhWcyuJW4gVzhySEeAZYNO7EtUq1mZeZyvW4c5QqZke3WgHcOX/lmU2oAGxt73XdSk1NZciQ\nIQwbNsxkvlarZdOmTXz44YeEhoZSvHhxihcvTq9evWjfvj0XL16kT58+bNy4Ea1WrlI8b1xLlqed\nTTVO2GVyMOEykYfW06mmHwFlq8kJx38x+aYLIQpEZWdhOLiRLAtLYspWokWVuvJPQwhBhj6bldfO\n8GHSVW7cTaZJhdqM9W2Ba8ny5g7tkVy7do033niDsLAwWrZsmWt+06ZN2bFjB5mZmURFRVGtWjVe\ne+01AKpVq0aJEiWIj49/2mGLZ4SNxoI+Lg14s3YgAIvP7GHBqV2kZWWYOTJRWORKlRCiYAx67tby\nZVvcBUo5lcXDuaK5IxJCPGXqTjJkZaJxuvdcupO3rvPN7/tISE+jXHEHutcKKFKjgSYkJNCzZ0/G\njRtHYGCgybzU1FQGDBjAwoULsba2pnjx4mi1WlavXs2ZM2cYN24cN27cIDU1lTJlHj4K3MGDBwtr\nNZ5K/YWpKMcOcOjQIayBMKvK/KyucTDhMqduXqWxdXkqWtiZO7wHKsrb3lyxS1IlhCgQjbUNqytU\nZ68l9JN7qYR47hh+P4x+y9donEqT1W44qy8dY8f139GioVklN1pVqYu1RdE63Jg7dy4pKSnMmjWL\nWbNmAdChQwfu3r1Lhw4daN26NV27dsXS0hIXFxfatGlDdnY2o0aNonPnzmg0GiZNmvRIXf98fX0L\nbT0OHjxYqPUXpqIcO+SOP1gZ2PjHb6y7fIzojFheqehCm2qeWGktHlCLeRTlbV/YsT8oYStarZwQ\n4pkTfzeV/XEXqWDrhFepZ28ULyFE4VAZd9BvX476bTdYWHK9Um1mHtrArax0KtmVoHutQKo6OJs7\nzH9kzJgxjBkzJt/5HTp0oEOHDibTrKysmDp1amGHJoooC42WFlXq4lbyBRae3s3mK6c4efs6vXT1\nqWBXwtzhiSdAkiohRIH8FHsCA4oWleuglatUQjwXDH+cQr9xEaQkYihTmR9d6rHpbhIW2XpaV3Gn\neWU3LJ/BM/BCmFs1h1K8792c784fYuf1c0w8/BPtqnsTWqG29PQo4iSpEkL8YzfT09hz4wLlijvg\nWycIBPQAACAASURBVKaKucMRQjwlKuEKpN7mhnsjptvakXQ3iWr2znSvHUhFOesuxAPZWFjRrVYA\n7s4VWXJmHyvOH+TYrau8WTvwmXoItng8klQJIR6bUgp1/QIbUxPQKwOvVq4jDzcU4jmS6hbIhqw0\nfs5IxUrpaVvdi5crumAh7YAQj8yrVCWq+5bi6zN7OX7rGhMOrqdbLX+8n8EHYouHk6RKCPHY1B+n\n0K+eSsnyVSn9oif+ZauZOyQhxFOglGJv3AVWnj/EnexMXnQsQ/daAZSzdTR3aEIUSU7WxRlUpzHb\nr51l9YXDzD25gwblatKhpg82FlbmDk88BkmqhBCPzbB/PQCHSpbh1cp15Oy0EP9SKvEaKikBbXV3\nEjPSWHp2P8dvXaOY1pKImvUIeaGW3EspRAFpNBpCK9RG51SORad3s+vGOc78P3t3HhZlvf9//DkD\nMyzDJqui7AIuLAqC+17mkqUZllTWyUq9jpV5TicrDTvnlHY8ZotWtpeZWqmVa4uamLsoihu4saio\nIIgMwgwzc//+8MQ3f25YDjfL+3FdXdd438N9v+47+My87/tzfz5lZxgT3Y0wD1+144lakqJKCHFT\nbIXHUAoOku3hjdG7OV3kLpUQjY6i2LDtXoft1yXg4MjWIY+z+NQhqqwW2no158HIZHyd3dSOKUSj\nEmjwZHKHAXyXt5efThzkP3t+YkhwDIOC5eJlQyBFlRDipth2XLpLtaZ5CANbtZcRvoRoZJQL57D+\n+AlKwSFszgZWR3ZgdcE+XBx0jI7sTLeAcBmlTAg7cdQ6MCKsIzHNAvkkZwvL87PYV3qKMdHd8HNx\nVzueuA4pqoQQtaYUn0Q5mkmumydFPi3o1jxc7UhCiFvIdnQ31jUfg7mS4sAI3gxoSamDI/HeLUlt\nnYSXk6vaEYVoEqK9ApjacTALj+5gR1Ee/9q9mvvCE+WiRj0mRZUQovY8fdkf25N1pnLuCGpfL2eC\nF0L8cRq3Ztg0Gn5qk8RygxtuOmcei0ikk1+IfJEToo4ZdHoea9OdOO+WLDiyg88PbyOr5BQPRibj\npnNSO574/9i9qBo+fDhubpf6XQcFBTF27FgmT56MVqslMjKStLQ0NBoNX331FYsXL8bR0ZHx48fT\np08fqqqqePbZZykpKcFgMDBjxgy8vRvm7OxCNAYX0fCJqwt6N3cmNI9QO85V7dmzh//+97/Mnz+f\nvLy8Wrc3QjR1VsXGz+aLrGnfmYtaDZ18g7k/ohPueme1ownRpCX7hxLh4cfH2ZvZfa6A4+XFPB3T\nj0CDp9rRxO/YtagymUwAzJ8/v2bZuHHjmDRpEklJSaSlpbF27Vri4+OZP38+S5cuxWQyMWrUKLp1\n68bChQuJjo5mwoQJrFq1infffZcXX3zRnpGFENex7lQ2VVYLQ4Jj0TvUvxvdH3zwAd9//z0GgwGA\n6dOn17q90ev1KqcXQj2nKsr47PBWcsvP4eHkwrjWSTJXjhD1iI+zgb/F9Wd1wQG+z9vL61k/80xs\nf5lsux6x61Aihw4dorKykjFjxvDwww+TmZnJgQMHSEpKAqBXr15s3ryZrKwsEhIS0Ol0uLm5ERIS\nQnZ2Nrt27aJXr14A9OzZky1bttgzrhDiOiot1aw7dQiDoxO9WrRWO85VhYSEMGfOHBRFAbip9kaI\npsRWcAjrpmVYFRtrCvbzyu7V5JafI9kvlLTEIVJQCVEPaTVahgTHkNo6ifJqE6/vXUuBsVTtWOJ/\n7Hqp2cXFhTFjxpCSkkJubi6PPfbYZesNBgPl5eUYjUbc3d0vW240GjEajTVXnH97rxBCHetP5XDR\nUs3dIfH1dkLCAQMGcOLEiZp//1ZcwY3bGyGaAsVixvbrUmy7f0bRaPkQC3ts1XjonHkwMpl4n1Zq\nRxRC3EDvFpE4aDR8cXg7s7PWMjG2H8Fu8niM2uxaVIWGhhISElLz2svLi4MHD9asNxqNeHh44Obm\nRkVFRc3yiooK3N3dL1teUVGBh4fM2C5EXXOorsJ0cDNrS0/h6qijb2CU2pFqTav9v5vx12tvpG0R\nTYHtdC7WHz6EktNUuDXjvaDWHLdV08U/lJHhiRjkwXchGowezVujQcP8w9uYnbWOiTH9CHGXwkpN\ndi2qlixZQk5ODmlpaZw5c4aKigq6d+/O9u3bSU5OJj09na5duxIXF8fs2bMxm82YTCaOHj1KVFQU\nCQkJpKenExcXR3p6Op06dbrhPjMyMux5SHbfvj015OzQsPM35OwBJ7PQbtlJfEg0VYFxHNizV+1I\ntda2bdtatTeRkZE33Ja0LdfWkLNDw85f2+zu53IJ3b8GDQrb/ENY1DIUnaOeO/TNCTE6cWjvPjsn\nvVJDPu9C1Afdm0fgoNHyac5WZmet5enYvoS5+6odq8mya1F17733MnnyZFJTU9FoNEyfPh0vLy+m\nTp1KdXU1ERERDBw4EI1Gw+jRo0lNTcVmszFp0iT0ej2jRo3iueeeIzU1Fb1ez6xZs264z8TERLsd\nT0ZGhl23b08NOTs07PwNObtirqJq88dUOOrI8mvJtMS+GHS3bkAHe32p+m3o58mTJ9e6vbkRaVuu\nriFnh4ad/2ayWyrbcO7MXhb6BHDQ3Yuu/mGkhCfe0r/nm2Hv8y4Fm2gqugSEodVo+Dh7C29kreep\nmD5EePipHatJsmtRpdPprloI/X40wN+kpKSQkpJy2TJnZ2fefPNNu+UTQlyfLWsDjhYTawLD6B7U\nXrUvYDejVatWLFq0CLjU7bi27Y0QjVWBsZTPcrZSEBqNl96FCZHJxHq3VDuWEOIWSfYPRaPR8PGh\nzby5bz1Pte9La08prOpa/RsTWQhRLyiWamwZP2LSOrC1eShTW0arHUkIUQuKoqDRaLDYrKwuOMCq\ngn3YFIXuAeHcG56Aq2P9vzgihLg5SX4hOGg0fHBoE2/tW8+TMX2I9PRXO1aTYtch1YUQDZeSvR0q\nykj3a0lycDvcdDIBqBD1maIo2PZvwrp4BvnnzzA98wdW5GfhqXPhyfZ9GB3VRQoqIRqxBN9gnmjT\ng2rFylv71pN9/ozakZoUKaqEEFdljU5maet41jcP4faWbdSOI4S4DuXiBazL38H64ydUF+Xz5dZl\nnKg4T4/mEaQlDibGO1DtiEKIOtDRN4hxbXtiVRTe3v8LB0tPqx2pyZCiSghxVb+ePc46Lx+CXfzx\n0LuoHUcIcQ22o7uxfJ6GcnQ3eZ6+/LNtJ857N+fpmL48FNkZF7k7JUSTEu/TivHteqIoCnMPbOBA\naaHakZoEKaqEEFcwVpv4Pm8vzg46Ouhk3gsh6ivbqSNYv5+L1XSRZa0i+W/rWGJCYklLGEK7Zi3U\njieEUEmsd0vGt+t1qbDav4F9JafUjtToSVElhLjC8ry9XLSYuTM4BleNjGcjRH2V7+bFpqBoprft\nRGZIG56O7c8Dkcm4OOrUjiaEUFmMdyB/bd8bjUbDuwfSySo5qXakRk2KKiFEDUVROFlxng2FRwhw\n8aBvYJTakYQQV1Fts7LdXMRrmT+y0D+Q6PAOvJQwmLbNmqsdTQhRj7Rr1oK/tvutsNpI5rkTakdq\ntKSoEkIAoFgtWL56jQO/LERBYWR4Ao5aB7VjCSH+R6mqACC3/Byv7F5DpqUEbxcDk+JuI7V1Es5y\nd0oIcRVtmzXnyfZ9cNBomHdwI7uLC9SO1ChJUSWEAMCWlQ6njuBQeppY70AZLUyIekKxWrBuXY7l\no+f4KesXXsv8kcKLZbRz9GJqwmCivQLUjiiEqOeivQJ4KqYvOo0D7x/6lYyifLUjNTpSVAkhUKqM\nWLd8R5WDI6tbRpASnqB2JCEEoJQUYl08A9uW77iAhowTB2nm5Mqk2P700Afg7CB3p4QQtRPp6c9T\nMX3Rax348NAmdhTlqR2pUZEn0IUQ2LauQFNVwapWrekSGkuAi4fakYRo0hTFhm33Omy/LgFrNdt8\nmvNNUCRJrdoyIqwjzo46MpBnI4QQN6e1px9Px/TjzX3r+ejQZhRFIdk/VO1YjYLcqRKiiVNKCrHu\nWUexkwu7W0YwOChG7UhCiAslWH9dwkWthg8iYljRphNPdBjAA5HJ8uyUEOJPCffwZWJsX5wdHPk4\nezNbzhxTO1KjIHeqhGjqbDaKPHxZ5hPA0PAEGYpZCJVZbTZWny/keHg78lzdiQ9qS1qY/G0KIW6d\nMHdfnontzxv71vFZzlZsikL35hFqx2rQpKgSook7qtMxM6I9oW7edA0IVzuOEE3ayYrzfJqzhXxj\nKV5+rXgksrMMGiOEsIsQd2+eie3HG1nr+fzwNmyKQs8WrdWO1WBJUSVEE2ZTbCw6mgEaDfe1TkKr\n0agdSYgmx1Z4DFtACD+dPMTyvCysio2uAeGMDE/A1VGvdjwhRCMW7ObNpLh+zN67ji+ObMeGgpva\noRooKaqEaMI2nT5GQUUpXfxDCffwVTuOEE2KYqrEumERyv5NrGyTxGo3dzz1LjwUmUysd0u14wkh\nmohWhmZMiuvP7Ky1fHlkB911/iSqHaoBkoEqhGiiLlrMfJu7ByetI8NDO6gdR4gmxVZwCMv8NJT9\nmyhwdWe3g5Yu/qGkJQyRgkoIUedaGryYFHsbHjpnNlef5WDpabUjNThSVAnRBNlydvJT9jaMFhOD\ng9vj5eSqdiQhmgTFUo11w2Ks3/wXm7GU1S1CmRfbnXsSB/GX6G4YdNLdTwihjkCDJ+Pb9UIDfHho\nEyVVFWpHalCkqBKiiVFKT2NZ/T5xG5fg52Sgf8s2akcSosmwKTbKj+zirLMrs6ITKOrQl6lJQ4n3\naaV2NCGEINzDl266AIwWE+8d3Ei1zap2pAZDnqkSoomxpn+NxmZjTWAoKRGJ6LQOakcSokk4U3mB\nz3K2cj4kCsXFg5ToLiT4BqkdSwghLtPW0RNrM1e2nD3OoqM7eSiys9qRGoQbFlVWqxUHB/nSJURj\nYMs7gHJsD4fdvDCHxhInz24IYXc2RWHdqWy+zd1Dtc1KYstoUlt3wk3nrHY0IYS4gkajIbV1Eicq\nzvPr6aOEufvQo7kMtX4jN+z+N2LEiLrIIYSwM8VmvTTSGLAsKJKRrTuhkSHUhbALRbFh27uBs2VF\nzNr7M18f24WT1pHH23TnibY9pKASQtRregdHxrXriaujnoVHdpJbfk7tSPXeDYsqX19fduzYgdls\nros8Qgg7UU4dRTlXyFafFrSO7EQLV0+1IwnRKCkXzmH5ZhbWtfPJWvkORy4UkeATRFriEDr5hagd\nTwghasXX2Y0x0d2wKjbmHdyIsbpK7Uj12g27/+3bt4+HHnrosmUajYaDBw/aLZQQ4tYr9w9ibmwX\nTDoXnguJVTuOEI2OoigoBzZj+WUhGnMVWZ4+bGjZmsfadKeTb7DcGRZCNDgx3oEMDYnl+7wsPjy0\nmadi+qDVyDh3V3PDomrr1q11kUMIYWdLj2eS5+TCA62TcHWUYZuFuJUUqwXryvdQjmZi0jrwTWgb\nKiM78beoznjqXdSOJ4QQf9igoBhyy0vYW3KS7/L2ytyW13DDourixYvMmTOHrVu3YrFY6NKlCxMn\nTsTVVea1EaKhOH6hmK1njxNkaEaP5hFqxxGi0TlvMVNQWY6jmxdfR8RyR/tedPYPlbtTQogGT6vR\n8JforkzfvYY1BQcIc/Ohg4xceoUb3r/717/+RVVVFa+++iqvvfYa1dXVpKWl1UU2IcQtYFMUFh3d\nCcB9EYly216IW0hRFLacOcbLGSt5v3krfuoymKe6p9AlIEwKKiFEo+HqqGdcu17otA58krOF0xcv\nqB2p3qnVM1XLly+v+XdaWhqDBg2q9Q7OnTvHPffcw6effopWq2Xy5MlotVoiIyNJS0tDo9Hw1Vdf\nsXjxYhwdHRk/fjx9+vShqqqKZ599lpKSEgwGAzNmzMDb2/uPHaUQTZRiMbP13AlyjSV08g0m0tNf\n7UiqGD58OG5ubgAEBQUxduzYq7ZFQtyMMnMlCw5vZ0/JSZwcHBkZ1ZWezSPkd6kRqK6u5oUXXuDU\nqVOYzWbGjx9Pv379atb/8MMPfPDBB2g0GoYOHcro0aOx2WxMmzaNnJwcdDodr7zyCsHBwSoehRC3\nVkuDF6MjO/NR9mbeO7iRyR0G4OygUztWvVGryX/Lysrw9PSsee3oWLs5g6urq3nppZdwcXFBURSm\nT5/OpEmTSEpKIi0tjbVr1xIfH8/8+fNZunQpJpOJUaNG0a1bNxYuXEh0dDQTJkxg1apVvPvuu7z4\n4ot//EiFaGIUm43qRdNxVKzow9oxIqyj2pFUYTKZAJg/f37NsnHjxl3RFt12221qRRQNiGIxY9u0\njEMBIXxUepIKi4koT38ejuqCr7Ob2vHELbJ8+XK8vb2ZOXMmZWVlDBs2rKaoslqtvP766yxZsgRX\nV1cGDx7M0KFD2bFjB9XV1SxatIg9e/YwY8YM3nnnHZWPRIhbK9k/lOPlxaw7lcPnOdt4vE13uZD0\nPzesjh555BFSUlLo168fiqKwbt06nnjiiVpt/D//+Q+jRo1i3rx5ABw4cICkpCQAevXqxaZNm9Bq\ntSQkJKDT6dDpdISEhJCdnc2uXbt4/PHHAejZs6c0TELcJOXAJjRFBZh8mjMgqD3ezga1I6ni0KFD\nVFZWMmbMGCwWC88888xV2yIpqsSNKGdyMa/+EG3paSq9fDFHdeS+8ET6BEahlS8VjcrAgQO54447\nALDZbDg4ONSsc3BwYPXq1Wi1WoqLi7HZbOh0Onbt2kXPnj0BiI+PZ9++fapkF8LeRoR1JM9YSkZx\nPmEnfbi9VVu1I9ULNyyqRowYQUxMDDt37sRmszFnzhyio6NvuOGlS5fi7e1Njx49mDdv3qWhZhWl\nZr3BYKC8vByj0Yi7u/tly41GI0ajEYPBcNl7hRC1o5gqqf51KdVaLb+GxfK3Jtzgubi4MGbMGFJS\nUsjNzeWxxx67bL2rq6u0L+K6FKsF247VWLcuR6vY2ODfij1tkpnargcBLh5qxxN28NtgXEajkaef\nfppnnnnmsvVarZYff/yRf/7zn/Tt2xdXV1eMRmNNN2O4VHzZbDa0WnmOVTQujloHxrbtwb93rWbp\n8UxC3LyJ8gpQO5bqrllULVu27LLbeb81MAcOHODgwYMMGzbsuhteunQpGo2GzZs3c+jQISZPnkxp\naWnNeqPRiIeHB25ublRUVNQsr6iowN3d/bLlFRUVeHjU7oMrIyOjVu/7o+y9fXtqyNmhYeev6+zN\nj2/Fv7KcnwLDaK0PICtzz5/aXkM+96GhoYSEhNS89vLyumyevdq2L9K2XFtDzg43yK8ohGQtx/P8\nSc7rnPgyrB0ePlH0Uppx4sBhTtRdzKtqyOe+vmcvLCxkwoQJPPDAAwwZMuSK9QMGDOD2229n8uTJ\nfPvtt1d8n6ltQSVty7U15OzQsPPXJnsfrR/LKeCdrF+4xzkEg7Z+PF+l1nm/ZlG1bdu26/aRvFFR\n9cUXX9S8fuihh3j55Zf5z3/+w/bt20lOTiY9PZ2uXbsSFxfH7NmzMZvNmEwmjh49SlRUFAkJCaSn\npxMXF0d6ejqdOnWq1QElJibW6n1/REZGhl23b08NOTs07Px1nV0pK8L86/uU6J3Ii0rk6Q69/1R/\nZ3vmr4uGb8mSJeTk5JCWlsaZM2eoqKige/fuV7RFNyJty9U15Oxw4/z7S0/x42lfgh2sbGuTzKj2\nvQk0eNZhwmtryOfe3tn/bNtSXFzMo48+SlpaGl26dLlsndFoZPz48Xz00Ufo9XpcXFxqHmVYv349\ngwYNIjMzs1a9ekDalmtpyNmhYee/mewuJ7NZfCyDzboy/h53G45ahxv/kB2p2bZcs6iaMWPGNX+o\nsrLypkNoNBomT57M1KlTqa6uJiIigoEDB6LRaBg9ejSpqanYbDYmTZqEXq9n1KhRPPfcc6SmpqLX\n65k1a9ZN71OIpsiid2Zbi1AOOrlwb1TnJv8A6b333svkyZNJTU1Fo9Ewffp0vLy8rmiLhPi9Kks1\n3xzfzcbTR3Dw8mNIXF8mBrXDQaYkaBLee+89ysvLmTt3LnPnzgVg5MiRVFZWMnLkSIYOHcqDDz6I\no6Mjbdq04e677wZg06ZN3H///QBMnz5dtfxC1JW+gVEcLy9me1EeXx3bRWrrJLUjqeaGz1StWbOG\nuXPnUllZic1mw2azUVVVxdatW2u9k9+PuvX7179JSUkhJSXlsmXOzs68+eabtd6HEOKSDSUn+bpF\nCL1bRNLK0EztOKrT6XRXvShztbZING2/PfebU3aWz3K2cs5UQSuDF49EdSXITf6WmpIpU6YwZcqU\na64fOXIkI0eOvGL5yy+/bM9YQtQ7Go2GByM7c7KijA2Fhwlz96FrQLjasVRxw6Jq5syZ/Pvf/+bT\nTz9l3Lhx/Prrr5SUlNRFNiHETbpgrmJ5XhaujnruColTO44QDYZysZzqnz9nj6uBD530aNAwMKgd\ndwbHolO5O4sQQtRnTg6OjGvXk1d3r2HBkR20MjRrkheibtiPwdPTk65duxIfH095eTlPPvkkmZmZ\ndZFNCHGTvsvbQ5W1mqHBsbjpnNSOI0SDYDuaiemzqWiO7kaXd4Dmzu481+F2hod2kIJKCCFqwd/F\nnb9Ed6XaZuW9g+lUVJvUjlTnrllUnT9/HrjUDe/48eOEh4ezfft2zGYzRqOxzgIKIWonr7yETaeP\nEujqSe/ASLXjCFHvKaZKArPXYf1+DjbTRZa2as3hPvfxYsIgwtx91Y4nhBANSrxPKwYHtae4qoKP\nszdj+91USk3BNYuqO+64g6effppu3boxe/Zs+vXrx5YtW+jWrZtMkilEPWPdu4FNGatRgJHhifIw\nvRC1UL76fXzPZFPg6sYHHXqROOBRUiIS0TvcsGe8EEKIqxgaEku7Zi3YV1rIyvwstePUqWt+cqxf\nv54ff/yR77//ntzcXN59913eeOMNPDw88PSsH8PJCiFAuXAOy/ovuc3BkfI+99K2WXO1IwlRr1ls\nVlYV7CfDYCChRSgXE25jXEQnnKSYEkKIP0Wr0fJYdDde2b2GFfn7CHX3Ida7pdqx6sQ1L2e7uroy\nbNgwPv74YxYuXIjBYGDChAk89dRTfP/993WZUQhxHdXpX6O1WVnRqjUjmvBQpkLUxsmK88zI/JGV\n+fswe/qiCe/FqKguUlAJIcQtYtA5Ma5dT3RaBz7O3kxRZbnakepErfoIBQQE8NhjjzFv3jxCQkJ4\n4YUX7J1LCFELtlNH0BzeSa7BA+/4vvg6u6kdSYh6R7FZsVZV8EPBAV7dvYaCilK6B4TzUsJgWjoY\n1I4nhBCNTrCbNw+0TuKipZr3Dm7EbLWoHcnubnhprqysjDVr1rBixQqKiooYPnw4a9eurYtsQojr\nUGw2TOu/xBH4ITyGx4Nj1I4kRL2jlBRStep9jmNjaXAUHnoXHorsTJxP0+iOIoQQaukaEM7x8nNs\nKDzMF0e285eormg0GrVj2c01i6qVK1eyfPlydu/eTb9+/Xj66afp1KlTXWYTQlzPhXOYyorY7R1A\nclw/6b4kxO8oig3r7nVYfv0GR6uFUu8AknxacX9UF5luQAgh6khKeAL5xhK2nc0lzN2HvoHRakey\nm2t+C1uwYAEjRoxg1qxZGAzSPUKI+iaj+iJftu1EiLsPT/mFqB1HiHpDuXCOqjUf4njyMJWOOpZF\ndiC281Aek78TIYSoUzqtA2Pb9uSV3av56tguggzetPb0UzuWXVzzmaovv/ySESNGSEElRD10rqqC\nLw5vp1rvzP3tejXq2+lC3AxFUcjf/C2OJw+T5enD0u53MWLAGJKkoBJCCFU0c3Ll8TY9UBR4/9Cv\nlJkr1Y5kFzKZjRANjFWx8VH2Ziqt1dwf0YkAVw+1IwlRL5SZK3nnQDr/cdHzRetYKgc9zqMdB+Kp\nd1E7mhBCNGnRXgHcE9aBMnMln+ZsRWmEEwPLQxhCNDCr8/dz9EIRib7BdAsIVzuOEPXCzqI8vjyy\nkwqLiehmgdzV+R58nKWnhRBC1Be3t2zDwdJCDpQWsq0oly7+YWpHuqWkqBKigVCM5ynOWMMqrDRz\nMfBA62Tp9ieaNMVUycXS03xZepKdxfnotA7cH5FI7xZRaOVvQwgh6hWNRsMDkcm8nLGSr47uor1X\nC9z1zmrHumWk+58QDYCi2DD/8DFeu34mofQsY6K7YdDp1Y4lhGpsJ7K5+NlUjEtfZ9+ZY4S7+zI1\nYRB9A6OloBJCiHrK19mNu0PjqbCY+OpYhtpxbim5UyVEA2DbvRZt/gH2e3jj36EfkZ7+akcSQhWK\npRrzxm/QZK7FAQ07AkMZHNaB24Nj0GrkOqEQQtR3/QKj2FGUx/aiPJL9Q4n1bhzzBsonkBD1nFJ8\nAsvGbyh31LExpjtDQmLVjiSEKpQzeVz8/CW0mWs56+TKgo596HjnX7kjJE4KKiGEaCC0Gi2jIzuj\n1WhYcGQHVZZqtSPdEvIpJEQ9pliqqVo5D63NytfhMYyK74+DfHkUTZDZaiH9yA70ZUVs8G9F5oCH\nebjX/bQ0eKkdTQghxE1qafBiYKt2lJousix3j9pxbgnp/idEPWYxV5KPwim/QDomDcHX2U3tSELU\nuWMXivkkZwtnbWb2JvRjaMIdhLr7qB1LCCHEnzA4OIZdxQVsKMwh2T+ECI+GPSmwXPIWoh5bfuYY\nr4e1JT/xdpL9Q9WOI0SdqrZZWXY8k//s+YmiynJub9mGsT1GSkElhBCNgE7rwEORySjA5znbqLZZ\n1Y70p8idKiHqqYOlp/nxxAH8XNy5L7KL2nGEqDNKeQlFxzJ511LJqYtl+Dq78UhUFxmgRQghGpnW\nnv70bhHJhsLDrC7Yz10hcWpH+sOkqBKiHjJWV/FJzhY0Gg1j2nTD2VGndiQh7E5RFKwHN2NetwAP\nSzWW9p3pFRrHiPCOODvI34AQQjRGw0M7sPfcSdYUHCDRN7jBPisr3f+EqGcUReHznG2UmSu56AYU\nzwAAIABJREFUOySOMHdftSMJYXfKxXIqvnsL5YdPsFqtfBcey6jEwTwQmSwFlRBCNGIujjpSWydh\nVWzMP7wNm2JTO9IfIneqhKhHlNLTFK35iAK/5kT7hzKgVVu1Iwlhd9YTOVR9Pwcn00UOu3mRlXg7\nd8b2lQmuhRCiiYjzaUmSXwg7ivJYfyqH/i3bqB3ppsmdKiHqCcVqoXLlPJqdPk505UX+Et1V5t4R\njV5xlZEPTx2kymphZXAbqoY9yX0Jd0hBJYQQTczI8EQMjnq+y91LcZVR7Tg3Tb6xCVFPWLZ8h66o\ngG0+zenQdRjNnFzVjiSE3SiKwq+nj/KvXavYZargmz730m/oX0nwC1E7mhBCCBV46J0ZGZ6IyWZh\nwZEdKIqidqSbYtfuf1arlSlTppCbm4tGo+Hll19Gr9czefJktFotkZGRpKWlodFo+Oqrr1i8eDGO\njo6MHz+ePn36UFVVxbPPPktJSQkGg4EZM2bg7e1tz8hCqMJ2Igdlx2rO6Z052Wkg9/kGqR2pUbPZ\nbEybNo2cnBx0Oh2vvPIKwcHBasdqMsrMlcw/vI2sklM4O+h4JKoLXfzD0Gg0akcTQgihos7+oWwr\nyuVAaSHbzubSJSBM7Ui1Ztc7VevXr0er1bJw4UImTpzI66+/zowZM5g0aRILFixAURTWrl1LUVER\n8+fPZ9GiRXz00UfMmjULs9nMwoULiY6OZsGCBQwbNox3333XnnGFUIViqqRq1fsowMq2yQyPluHT\n7e3nn3+murqaRYsW8fe//50ZM2aoHalJUM7kUbjyXf65cwVZJado4xVAWsJgugaES0ElhBACjUbD\nA62TcNI68tWxDC6Yq9SOVGt2vVN122230bdvXwBOnjyJp6cnmzdvJikpCYBevXqxadMmtFotCQkJ\n6HQ6dDodISEhZGdns2vXLh5//HEAevbsyTvvvGPPuEKo4oJiY4NPADYvbwZ2HoreQcaPsbddu3bR\ns2dPAOLj49m3b5/KiRo3xWalautytNtX4qsotGqTSIf4fvRuEYVWiikhhBC/4+vsxt2hcXx1bBdf\nHcvgsTbd1Y5UK3Z/psrBwYHnnnuOV155haFDh17WP9JgMFBeXo7RaMTd3f2y5UajEaPRiMFguOy9\nQjQmNkXh08PbWOnfEvfu99DK0EztSE2C0WjEzc2t5t8ODg7YbA1zCNf6Tik5TfmCf+K4bQVljnq+\nju9Fau8H6BsYLQWVEEKIq+obGEWYuw87ivLIKjmpdpxaqZNL4q+99hrFxcWkpKRgNptrlhuNRjw8\nPHBzc6OioqJmeUVFBe7u7pctr6iowMPD44b7ysjIuPUHUIfbt6eGnB0adv5rZd9bXcKB6iKCtAY8\nC41knK6fx9iQz/3V/P9tjs1mQ6u9/jUmaVuu7VrZHS+cJmrPd7goNnZ4B3AkoittnZtz4uBhTtRx\nxutpjOe+IWjI2YUQ9qXVaHkosjOv7F7DgsM7mJboj7Nj/Z6z0K5F1XfffceZM2d44okncHZ2RqvV\nEhMTw/bt20lOTiY9PZ2uXbsSFxfH7NmzMZvNmEwmjh49SlRUFAkJCaSnpxMXF0d6ejqdOnW64T4T\nExPtdjwZGRl23b49NeTs0LDzXyt7vrGEHZmH8dA581TCHXjonVVId2P2PPdqfalKSEhg/fr1DBo0\niMzMTKKjo2/4M9K2XN21sueUneXzQ/mM8GjG4Zat6dbjXrrVwzuxjfHcNwT2zi4FmxANX0uDFwOD\n2rEyfx/LcjMZ1TpJ7UjXZdeiasCAATz//PM8+OCDWCwWXnzxRcLDw5k6dSrV1dVEREQwcOBANBoN\no0ePJjU1FZvNxqRJk9Dr9YwaNYrnnnuO1NRU9Ho9s2bNsmdcIeqMyVTJh4c2YVVsPBLdpd4WVI3V\n7bffzqZNm7j//vsBmD59usqJGg+z1cK3eXtYdzIb0JDXL5V7gmNw1DqoHU0IIUQDMyioPbuK8tlQ\neJgkv1Bae/qpHema7FpUubi48MYbb1yxfP78+VcsS0lJISUl5bJlzs7OvPnmm3bLJ4QabKdzMS2d\nhU9QJDHtu9O+WaDakZqc36Z4ELeOoijkGUv4NHsLhZUXCHBx55GoroR7+KodTQghRAOl0zrwUFRn\nZu75iS8Ob+PFhEHo6ulFOhlmTIg6pFSbuLjiHVxMlXi7ejI8tIPakYT40yxHdlOWvpi5oW25oNPR\nNzCKe0I7yEiWQggh/rQIDz96t4jil8IcVufv567QOLUjXZV84glRhy6u/QKn8hLWNw/h9q7D6+3V\nFiFqQzFV4pf9M8qZw7hoNLQ3V9El4Q7aeDVXO5oQQohGZHhoPHtKTrD6xH4S/YJpafBSO9IV7D6k\nuhDiEuvhDPQHt1Dg4oZrzxSau954NEsh6itrwUHKP32RFmcOU+Dqxo89h3PfbX+RgkoIIcQt5+yo\n44HWSdgUhc8Pb8Om1L9pUKSoEqIOKBYzlT99hlmjZUdCf7q3vPFoc0LUV+fO5GFZ8jpOFy/wc4sw\nyodPZFjiYFwc9WpHE0II0UjFerck2S+E3PJzrDuVo3acK0j3PyHqwLGLZXwT1o5gq4W7Og5AI5Oe\nigZIURQ2nj7KN8d20b1lBLpWUQToWhLvH6p2NCGEEE3AyPBE9pee5rvcPXTwaYWvs5vakWrInSoh\n7MysWPno0GaOu3mQ2HMkBp2T2pGEuGmlpou8vf8XFhzZjoNWQ2jv+xjeZTjOGrk2J4QQom64650Z\nGZGA2WZlweHtKIqidqQa8mkohB0pisJG8xnOWSsYFNSeKE9/tSMJcVNsF8vZaTzHwqM7uGippl2z\nFoyO7EwzJ1e1owkhhGiCOvuFsu1sLgdKC9l69jhdA8LVjgTInSoh7Grr2eMctZYT5u7D0OBYteMI\nUWuKYuPizjVUffgsG3auxGKzkdo6iafa95GCSgghhGo0Gg0Ptk7GSevI18d2ccFcpXYkQIoqIexC\nqbpI/u6f+OLwdnRoeaxNdxy08ucmGgalvISyRTPQbfwGk0ZDqJOBqQmD6d0iUp4HFEIIoTofZwPD\nQuOpsJhZfHSn2nEA6f4nxC2nVJswLplFi7N5REV1JMwvtl49SCnEtSiKgmn/Jqzrv8RgMbPP05fz\nvUYwIiIRrUYuCoimo7q6mhdeeIFTp05hNpsZP348/fr1q1m/YsUKPv/8cxwcHIiKimLatGloNBqG\nDx+Om9ul9j4oKIhXX31VrUMQotHrExjJ9qJcdhbnk3zuBPE+rVTNI0WVELeQYrVg/PZNnM/mkeEd\nQJ/koVjyi9SOJUStHC7Kx/eXhehsVlZHJZDYexQd3ZqpHUuIOrd8+XK8vb2ZOXMmZWVlDBs2rKao\nqqqq4s0332TFihU4OTnxt7/9jfXr19O9e3cA5s+fr2Z0IZoMrUbL6MjO/Hv3Gr48soMozwBV80hR\nJcQtothsVCx/B+cTOezz9MHhjkeJ9wsmQ4oqUc+ZrRa+zd3D2lPZtA5vT3xIDIPbdsdR66B2NCFU\nMXDgQO644w4AbDYbDg7/97fg5OTE4sWLcXK6NJKrxWLB2dmZQ4cOUVlZyZgxY7BYLEyaNIn4+HhV\n8gvRVAQavBgU1I4V+ftYlptJtIpPNklRJcQtYly/AOfjezns5sXFAX+he/MItSMJcUO55ef4JHsL\npysvEODiwb0dBhDm7qt2LCFU5ep6aTAWo9HI008/zTPPPFOzTqPR4O3tDVy6K1VZWUm3bt3Iyclh\nzJgxpKSkkJuby+OPP84PP/yAVp6nFcKuBga1J6O4gA2Fh/F0ClItR6Mrqs4XFeDlp94JFU1Tqeki\nnzpo6O3pS1m/UfRt1UbtSEJcl+XUUVabyll14iA2FPoFRjE8tAN6h0b3sSDEH1JYWMiECRN44IEH\nGDJkyGXrbDYbM2fOJC8vj7fffhuA0NBQQkJCal57eXlRVFREQMD1uyRlZGTY5wDqaPv21JCzQ8PO\n39CyJ1s9+Y4yNpjP4LtzB44qPAfc6D49q7/+D+dT/iGFlagzF8xVvJG1jtMOWqJue4AhMnS6qMcU\nSzUXNizCZe8GLIFheIW15+GoLrTxaq52NCHqjeLiYh599FHS0tLo0qXLFetfeuklnJycmDt3bs2I\nmEuWLCEnJ4e0tDTOnDmD0WjEz8/vhvtKTEy85fl/k5GRYdft21NDzg4NO39DzX7h6E7Wn8qhJMCV\nQUHt7bKP6xWbja6o8jJVcv7r/1B6799p5h+idhzRyF20mHlr33pOV15gQKu2DA6KUTuSENdkPXOc\n8hXvYbhwjrNOLuhCY3kpYSAujnq1owlRr7z33nuUl5czd+5c5s6dC8DIkSOprKwkJiaGJUuW0KlT\nJ0aPHg3Aww8/zL333svkyZNJTU1Fo9Ewffp06fonRB26OySOzaeOsqZgPz0CInDXO9fp/htdUZXd\nrivRB7ZQ9s1/pbASdlVlreatfespqCilV/PW3BPaQebwEfWSYrNRvvlb9DtXY1AUtgSE4NXvAe5s\nXj9moReivpkyZQpTpky55vqDBw9edfmsWbPsFUkIcQMujnoSdT5srj7Livx9jGrdqU733+guobQf\n8CjZ7bvhaapk/7ovKKmqUDuSaITMOTvYtPoDjpefo7N/KKNaJ0lBJeolRVHYePooBdlbueCoZ03i\nbXS891nipKASQgjRyLR19MLfxZ3004c5ffFCne670RVVGo2GmAGPsqvLEBa0CGFW1s+ck8JK3EKW\n3H3YVn1A56N76Gbw5uGoLmiloBL10HnTRebs/4UFR3ewqHUc+Xf/lTt73lfnXSKEEEKIuuCg0TA8\ntAM2RWFZbmad7rvRFVW/6dx1OIND4yiuqmDWXimsxK1hPXUE8/dzsAFrOvQmtcPtOKgwwowQN7Lj\nbC4v71rFvtJC2nk1Z1KXe+gU1E7uqAohhGjUOvq0IsLDj8xzJzhcdrbO9tuovw0ODYnjzuBYzpku\nFVbFVUa1I4kGzHq2gKolr6O1Wlkd0427eoxEJ5OjinpEURQu7tvIgl0/8GH2Ziw2K6kRSTwV05dm\nTq5qxxNCCCHsTqPRkBLWEYBvju9GUZQ62W+jLqoAhobEclfIpcJq7q41lJzJVTuSaIBsNhsly+ei\nt5hZ3aYTg/ukynw+ol5RLpZTuvR1dD99RvSe9UR4+DI1YTC9AyPl7pQQQogmJczDl06+weSWn2Nn\ncX6d7LNJfCscEhyLxmYj4sfPUHatp+Tev+EtD2mLm7A8P4vtwa1JNAcz4LZHZAhqUa9UHc7A/NOn\nuJsqOermhbHr3fw9ujNa6ZoqhBCiiRoW2oHd506w7HgmHXxa2b13UZP5xB0cGk91RAc8qk0o38yi\npPCo2pFEA/FDwQFWFexH6+VP/9v/gpvOSe1IQgCXuvudW/0BDivexdFcxbrwGNzvf4E+bbpKQSWE\nEKJJ83Nxo29gFOdMFfxyKsfu+2tSn7ox/UeTHdf7UmG15HXOnZLCSlzfhlOHWZqbSTO9KxNj++Op\nd1E7khAAVNusfHN8N+kXzlLg6s7mfqPoP/RJWrp7qx1NCCGEqBcGB7XH1VHHqoJ9VFSb7LqvJlVU\nAcT0f4ic+EuFlWbp6xSfLVA7kqiHFJuNrWeP8+XRHbjrnHkmth8+zga1YwkBQG75OV7ZtZqfTx5i\nd3gMjHyO2+L64SgDpwghhBA1DDonBgfFcNFSzcqCfXbdl92eqaquruaFF17g1KlTmM1mxo8fT0RE\nBJMnT0ar1RIZGUlaWhoajYavvvqKxYsX4+joyPjx4+nTpw9VVVU8++yzlJSUYDAYmDFjBt7et+YK\nbPt+D7FPo+VC/gFWHN/BM+5e+Lm435Jti4ZPsVoo/ea/FGLDNag1T8f0JcDVQ+1Y4g9QFIVevXoR\nGhoKQEJCAs888wyZmZm8+uqrODg40L17dyZMmKBu0Fqy2mysKtjPqvx92FDo0yKKEWEdZNAUIYQQ\n4hr6BEbxS2EOv5w6TN8W0fi5uNllP3b7JF6+fDne3t7MnDmTsrIy7r77btq2bcukSZNISkoiLS2N\ntWvXEh8fz/z581m6dCkmk4lRo0bRrVs3Fi5cSHR0NBMmTGDVqlW8++67vPjii7csX0zfB/ghfz/n\n8vYwa+9a/hbXXworgWKzUfL9HDxOHSHC04cO7XoT5NZM7VjiD8rPz6d9+/a89957ly2fNm0ab7/9\nNkFBQTzxxBMcPHiQtm3bqpTyxhSblbJNy1hTdYH1zs4007vycFQX2jZrrnY0IYQQol7TaR0YFtqB\nDw9tYlluJk+07WGX/dit+9/AgQN56qmngEvDUTs6OnLgwAGSkpIA6NWrF5s3byYrK4uEhAR0Oh1u\nbm6EhISQnZ3Nrl276NWrFwA9e/Zky5YttzzjHcHtuSesA6Xmi8zau5azleW3fB+i4VAUhZI1H+CR\nu49jbl443zWBMK8AtWOJP2H//v2cPXuW0aNH88QTT3D8+HGMRiNms5mgoCAAevTowebNm1VOem3W\nc4WUzE/DsHMNScey6OIXykuJg6WgEkIIIWqpk28wYe4+ZBTnc+xCsV32YbeiytXVFYPBgNFo5Omn\nn2bixInYbLaa9QaDgfLycoxGI+7u7pctNxqNGI1GDAbDZe+1hztatWNEWMf/FVY/c6bygl32I+o3\nRVEoXfsFHtk7KHB1xzJ0PFG+QWrHEjfh66+/ZujQoZf95+/vz9ixY/n8888ZO3Yszz77LBUVFbi5\n/d+tf3u2L3+Goti4sGMVpi+m4VFymt2+gVTcOZ6/tOmGqwzpL4QQQtSaRqPhXjtPCGzXjviFhYVM\nmDCBBx54gDvvvJOZM2fWrDMajXh4eODm5kZFRUXN8oqKCtzd3S9bXlFRgYeH/Z5pGdCqLRpg5eHt\nFC2ajsOAR/BtGW23/Yn6p7CkEMfsbZx2dqVs8ON0bB6hdiRxk1JSUkhJSblsWVVVFQ4OlwZvSExM\n5OzZsxgMhsvanN/aovpEURROfT8H/2N7MTrqSI/tTrceI/HQO6sdTQghhGiQWnv608GnFZnnTrD7\n3AkSbvHFc7sVVcXFxTz66KOkpaXRpUsXANq2bcv27dtJTk4mPT2drl27EhcXx+zZszGbzZhMJo4e\nPUpUVBQJCQmkp6cTFxdHeno6nTp1qtV+MzIy/lBeb2DoRSvR54swLn2DLbF3one/snvNH91+fdCQ\ns4P98pfZzHxflY9TmwS66PwIPltJxtlbuy859+qYM2cOXl5ePPbYYxw6dIjAwEDc3NzQ6XQUFBTQ\nqlUrNm3aVKuBKux9Dn7b/kXFQrrpNDqdA7d7+pIb2ZMglwAOZ+236/7/jIb6+/GbhpxfsgshRO3d\nE9qBvSUnWXZ8N3Hegbd01Fy7FVXvvfce5eXlzJ07l7lz5wLw4osv8sorr1BdXU1ERAQDBw5Eo9Ew\nevRoUlNTsdlsTJo0Cb1ez6hRo3juuedITU1Fr9cza9asWu03MTHxT6ROZL+7gaiMn2ibtRLLsKfw\nDWpTszYjI+NPbl89DTk72C9/cZWRWXt/phIrd7XpTj873KGUc3/9bdvTE088wbPPPsuGDRtwdHRk\n+vTpALz88sv8/e9/x2q10qNHD+Li4m64LXv+P/ztHO8symPZkR1U2My0CWpDSP9H6OhUv4fyl99v\n9Uj2629fCCH+fwGuHvRqHskvhTmkFx65pd/77FZUTZkyhSlTplyxfP78+Vcsu1q3HWdnZ9588017\nxbum9r3uY79GQ9TOH6n49k2Khj2N3+8KK9F47CjKY8Hh7VRaq7k7JN4uBZVQl4eHB/PmzbtieXx8\nPIsXL1Yh0dVV2Sx8eGgTO4ry0GkduD8ikd4totBqNGpHE0I0YSaTiUGDBrFu3TpeffVVHn30UVxc\nXHjkkUfw9vbmo48+UjviNc2cOZONGzcyYsQIjEYjf/3rX6/6vo0bN1JYWMjIkSNZvHgxI0aMwNFR\npqlozO4MjmHr2eOsyN9Hl4CwW/acsvzWXEX7niPZD0Tt/JFNm5bQ5q4naS7zFDUaVcf2ciTzZz70\nDUDv4MhDkZ3pIc9QCRUopkqKf/qEqgvn2BEUQZi7D3+J6irzogkh6p0XXngBgB07dhAUFMRbb72l\ncqLr++GHH/j+++9xdXW97vt69uxZ83revHkMHz7c3tGEytz1zgwKasey3D2sLtjPiP8NYPFnSVF1\nDe17jiTDzZtF5Wdw3/szf4vrr3Yk8ScpVgulvyzEfe8GIjQaEvxaMqzjIPkCK1RRlX+AylUf4FVZ\nTpirO8Na3cWA0FgcNHYblFUI0cB8c2w3u4rz//DPm8wmlmw/cdmyBN9g7g2/9pfIiooK/v73v1Ne\nXk5wcDCa/90xf+ihh5gyZQr//ve/KSoqYs6cOYwYMYKXXnqJqqoqnJ2d+de//oXFYmH8+PF4eXnR\nu3dvevbsySuvvIKiKDRr1oxXX32V/fv388EHH6DX6ykoKGDIkCGMGzeO3NxcpkyZgsViwWw289FH\nH1FUVMRrr72G1WqltLSUadOm0bFjR55//nny8/Opqqpi9OjR3H333TXHMGfOHM6ePcvYsWN5/PHH\n+fbbb3n99dcZMGAAiYmJHD9+HB8fH95++22+/fZbjh8/TkhICMXFxUyaNIm33nqLqVOncvr0aYqK\niujXrx8TJ07kxx9/5MMPP8TR0RF/f39mz55dc35Ew9IvMJpfCg+z7mQ2fVpE4eP857vaS1F1HYkd\nb6PsZDaLj2Uwa+9abneQOYsaKmtJIee/n4NH6RnOOrlwsMudjOlw2y19QFGI2lAs1Zxb/yUe+zbi\nCmwKisYc1JlBYfFqRxNCCBYtWkR0dDQTJ05k7969bN26tWadXq/nxRdfZNGiRUyYMIGJEyfy0EMP\n0atXL7Zs2cJ///tfnnnmGYqLi1m2bBmOjo6MHDmS6dOnExERwTfffMMHH3xA9+7dKSwsZPny5ZhM\nJnr27Mm4ceN47bXXGDduHD169OD999/n0KFDlJaW8txzzxEVFcWKFStYunQpUVFR7Ny5k6+++gqA\nTZs2XXYMEyZMYOnSpXz00Ufs3r27ZvmJEyeYP38+AQEBjBo1iqysLDQazaXhtu+9l3feeYfXX3+d\nwsJCOnToQEpKCiaTid69ezNx4kRWrlzJY489xoABA/j222+vmBZINBx6B0eGhcbzSfYWvs3dw5g2\n3f70NqWouoF+LaPRaGDR0QyWVedhyvNgYKu26Bzk1DUUZXn7cfzubTysFnb7tcRjwKPc5h+idizR\nBFXbrBxd9R4RR/dw1smF7M5D6NnxdvbuzlQ7mhCiHro3vON17yrdyB8ZECQvL4/evXsDEBcXh06n\nq1mnKMpl8/vk5OQwb948PvjgA4Ca97Zq1armuaRjx44xbdo0ACwWC6GhoQBERUWh1WpxcXHB2fnS\ndBG5ubl06NABuDQ4UGJiIjt37uSdd97B2dm5Zp5Bg8HACy+8wNSpUzEajdx11121OrZmzZoREHDp\nAnmLFi0wmUw1x/V7np6eZGVlsW3bNtzc3DCbzQA8//zzzJs3j/nz5xMeHs5tt91Wq/2K+inZL5S1\nJw+xvSiX/i2jCXX3+VPbk8qgFvoGRuPr7MYnBzax8chO4n/8DMfe9xEYlaR2NHEDu4oLWHhiH2Nc\nDOSFxdK99/246WSuH1H38o0lfJK9hTI3d+5q2Zqgfg/Rz7el2rGEEOIyERERZGZm0r9/fw4cOEB1\ndfV13/voo4/SsWNHjh07xo4dOwDQav+vG3NYWBgzZ86kefPm7Nq1i6KiIoCrdpuLiIggKyuLrl27\nkp6eTnZ2Nt988w0zZ84kIiKCt956i1OnTlFUVMT+/fuZM2cOJpOJPn36MGzYsMv2ezU36qqn1Wqx\n2WwsXboUDw8P/vnPf5KXl1dzR2zx4sU8+eSTeHt789JLL/Hzzz8zbNiw625T1F9ajYYRYR2ZnbWO\nJcd3Mym2/5/qzilFVS3FerckxTkUa3UOAcbzaFfO4/D+Xwm54zH0rnLrt74xWS18dSyDX08fRad1\n4OyQsQxoESl9n0Wdsyo21hTsZ0X+PmyKQu/g9nTp/QDODrob/7AQQtSxUaNG8Y9//IPU1FTCw8Nx\ncnKqWfdbV7nfPkv/8Y9/MG3aNMxmM1VVVTWjPv/+s3batGk8++yzWK1WNBoNr776KmfOnLnq5/E/\n/vEPnn/+ecaOHUvbtm15//33MZvNTJw4EQ8PD5o3b8758+fx8/OjqKiI+++/HwcHB8aMGXNFQfXb\n9n+f91p+W9+pUyeeeOIJXnrpJf72t7+RmZmJXq8nNDSUM2fOEBcXx9ixYzEYDBgMBvr27fsHzrCo\nT9p4NSfWO5CsklPsLTlJvE+rP7wtKapugl7jQGLfB8lt1QbHdQsIzd1P2SfPU9n7PoJiet54A6JO\n5BtL+PDQZs5UXqCVwYsx0d0JNHiqHUs0MYpi42zpGT7O20OusQQvvQsPR3WhXbMWakcTQohr0uv1\nvPHGG1cs/21KnLCwMJKTkwEICgq66rDqixYtqnndvn37K6bTCQkJqdkGwK+//gpAcHAws2fPZsaM\nGQwePBhPT08eeeQRHnnkkSv28fLLL1/3ONauXQtAcnJyzb5+2w/A66+/fsXPzJgxo+b1d999d8X6\ngIAAKaQaoXtCO7KvpJClxzOJaRaIww3ueF6LFFV/QGhkJ8whMRz6+VMiczJw+/lzvrVVM7BdT5wd\n5eqzWqzlJZz8+TNme/txUaulf8tohod2QCeDUYg6Zr1wjnMr3qHcWEp+mwQ6B4RzX3gnDLpbMxeG\nEEI0Vh9//DG5ubnYbDa1o4gmItDgSc/mEaSfPsKvp4/SOzDyD21Hiqo/SK93JnbwOAra7SNj3y+s\nLjvN1l0rebB1MjHegWrHa3KM2dux/fQZLapN9KItUX1G0b6Z/H8QdUtRFC5kpeOwYRHNLNWc9vJj\nbOtkOgRGqR1NCCEahMmTJwOXBtkQoq7cGRLLtqJcludnkewfissfuEkiRdWfFBQaQ/MxoOh6AAAc\nR0lEQVTgtmjz97P6xH7e3v8LXfzDGBmegEHndOMNiD9FsZg5++MneGfvoFqjZWObJPr3G42Hk4va\n0UQTY7t4gaJV8/AuyKZK60B6uy4k9UnFw+n6E08KIYQQQl3/r707D4uy3v8//pwZBpBNwQU3JEVF\nUMEQwl1z6XASVEgD9y67TmliZaupqSdNLVGvjlpWv7ZjfkVR84gn/aaeFMMNRRCXDFxQkUC2YhCd\n5b5/f/h1joimpTCMvR/X5XXBvc17bqZX8763T33HevylZQCbc7P434snGPbI7x/mRJqqB0Cv1THk\nkSAebeTDP7MPsL/wLCdK83nWvTH+gb3k4Qg1xFhp4JfV7+BVXkJ+PVfy+zzN4wE9ZH+LWversZJD\nKWvpfeEUZ9wbUN4vjv5+XeWzKIQQQtiJgS0CSMnPYUfej/Rt1g7P33lQ9I/diSVuy8fNk2ldniD6\nkS60Kr6E33dfkbtqFr8WXbz7yuJ3uVhRyvwTuznm5MzhZq3RjZxJeGBP+RIral160XnmHP6WdS4u\nbOvYnUajZhPaNlQ+i0IIIYQdcdI5MMQ3CJNi4V+5R3/3+nKm6gHTabRE+AQS4ujKuaKfeaQ4n2ur\n53L60f607jUcrTw04b6oqsp/Lp1i49kMzKpCQfcoYlo/iqMMxixqWYXJSOLpQxy8fA69VscIv648\n3twfrTRTQgghhF3q7t2anXmn2F9whgHN/fFx87zndeVMVQ1p4u1Lm7HvcCr8ScwaLa0Ob+fiVzMp\nlbNWf9ivxkqWHd/FujPp1HPQE9+xL3Ftw6ShErVKNZvIyU7jnfR/c/DyOR5xb8jMR//KgBYdpKES\nQvzpLVu2zPpI9a+//pqUlBSMRiNJSUkAfPPNN/znP/+xZYlC3JFWo+WpNl1QgQ1nj6Cq6j2vK99G\na5BOq6VTjxhKOnQnZ+sneJUVMv9ECpFtw+jdrK18AbtHqmLB+Wwq/6/0KKecnAj0bMYz7btR31Ee\nRiFq19X8Mxj+/RGNr5Sj7RjO0HZh/MUnEJ1Gjk8JIQRUHfh3zJgxAFy8eJH169czYsQIoqOjbVWa\nEPeko2dzAhs05UTZzxwvzb/np3pLU1ULvLya4TlqFgdzj2HO/5H/OZ1G2uVcxrZ/DO96HrYur85S\nLWYM2Yep2L+Z9qUFKL94ERQxgf5yiZWwgcu71+J+ZAf1VZVDzdvwQshf8fFsauuyhBAPOdNnb952\nuv7Z9+66fIdrRkwZ635z+VsZDAZmzpxJeXk5hYWFjBw5kq1btxIQEEB2djYGg4EPPviA5s2bs3jx\nYo4fP05ZWRn+/v4sWLAA+G9j1b9/f7Zt28bKlSvJyclhxYoVqKpKo0aNiIuL45133iErKwuTycSU\nKVMYMGAACxcuJD09nYqKCmJjYxk3btw97yshHpSn2jzKyfStbDh7hEDPpmjv4eCpNFW1RKPREP5I\nZzo0b8v/5KSRUXyRuelbifLtzMAWHeRI901MVyso3JWI2+kjuBiv4gwc9WqKd9QLdJYxwISNNEjf\nTqneiR/DnqB7WKQMKi2EeCidP3+ewYMHM2jQIAoLCxkzZgze3t4EBwczffp0li5dypYtWxg1ahT1\n69fn888/R1EUIiMjKSgouO02J02aRHZ2NpMnT2b58uUAbN++nbKyMpKSkvj111/54osv0Ol05OXl\nsW7dOg4ePEhCQgLdunWjfXsZ60/UrpaunvTwbkNqwRn2FpylV1O/u64jTVUtq+9Yj4kBvUkvusCa\n04fYfPowPt8n0rBHDN5+XWxdns2oqkquoYS9BWc4VHiOaTnpqIqF9BZt0XXshaXSiZbSUAkbOtq4\nBZ5PPEufJq1sXYoQ4k/kXs8w3W75o4cP07Vr19+1fsOGDfnqq6/47rvvcHNzw2w2AxAQEABAs2bN\nKCoqwtnZmeLiYl599VVcXFy4cuWKddlb3e6+lLNnz9Kly/XvPR4eHrz00kt89tln1np1Oh3BwcHk\n5ORIUyVsIso3iLTLuWzOPUpYY1+c7nIPvzRVNqDRaOjauBX+DbxJ3fcNfkWX0G5eTp67J5WtAmgY\n2JMGLdo/9I9kVlWFX68aOFCcx76CM1y68gsAHnpnMnpH06n1o4R7NARkZHVhex1HzsRZ9/tHWBdC\nCHvyxRdf0KVLF0aOHMn+/fvZtWvXbZdLSUnh559/ZunSpZSUlLB9+3Zr83RrE6XValEUpco0Pz8/\ntm3bBkB5eTkvv/wyY8eOZePGjTzzzDOYzWaOHDlCTEzMg3+TQtwDTycXBrUI4N8XjrH94kkifTv/\n5vLSVNmQm96Jv/SJI6dxK5QD/8anrBCH43vh+F72tWhLcfiTBDdsiY+r50PVYJnKCig4/L+4/HSY\nHY2asbNpKxw0WkIa+dDDuw2Bns3kckhR50hDJYT4M3j88ceZN28e3377Le7u7jg4OGAymap9DwkK\nCuLDDz9kzJgxaDQaWrVqRWFhIUC1ZRs2bIjJZCIhIQFnZ2c0Gg0DBgxg3759jBo1CovFQnx8PL17\n9+bAgQPExcVRVlbG8OHDrWfIhLCFJ1oGsOfnHL67eJLezdr+5rLSVNUBbQN6QEAPSn8tJu9kKtoz\nmaS7uJF1/hhbzh/D08mFYK8WdGnoQzuPxjjo7O9eDsV4leLjezBm7aFJ8SW8gataHY0cHInz60pY\n40dw0zvZukwhhBDiTy08PJzk5OQ7zo+Li7P+vH79+mrzQ0JCrD/f/Oj0TZs2VVt25syZ1aa9+eb1\nB20c/gOXLgrxoDk76Iny7czqnDSSc7MI4M7fwaWpqkM8PRriGT4EwofQ2mziRGk+GcUXOVaax678\nbHblZzMpJwtPnR6ldRBNO/WiXh1/+tivxqscvHyOc9mHGH9kFwBnPLwo8+tCyy4D6N/A27YFCiGE\nEEIIcQc9m/rxn7xT/PDzaQJc7nx/nzRVdVQ9Bz1dG7eia+NWWBSF7F8LySy6gPupIzQvuwzFl+DQ\nNi65e3KlVSBePYbi5eZl67IBMCsWjpVcYm/hWbJK8lBUFZ1Oh79/KA0De+DfqhM6rVzeJ4QQQggh\n6jadRstTbR5l+fHdv7mcNFV2QKfV0qFBUzo0aIrqF8qlgnMUnUil3vkT+JRdxuXHA7zlrKele0OC\nvVoS3LAlLV0b1Op9WKrFzOUTqVzLSuGfzXw573D9o+Xzf4+kfKyJL25651qrRwghhBBCiAeh0/8N\nCIzxzstIU2VnNBoNLZq2pkXT1gCUlBdz+lwW/iic+qWA84ZSks9n0dDJlcfcvAi9WknTgB533a6q\nqpgryzEbSjEbr1r/KeZrXHX15EqDxpgUCybFglExY1IsuObl4HXxFBqTEc+Cc3iarn/S2tdzpW1Q\nX3p4t8HHzbNG94cQQgghhBA1SaPRMCmwD1kZmXdcRpoqO+fl3hCvzv0IAyrNRo6VXCKzJI+skkv8\n8uN+vHNPYU5JwtvZjYJDq3GwmDnS7BF2+7TDZLHc1ChZGJh/lqF5Z6p9KLZ7t+JfPtWfeDIwP5eg\nvNMAlDvoyfINoF7nvkT7PYqDDIwqhBBCCCEeEo62HqcqMzOThIQEVq1aRW5uLtOmTUOr1dKuXTtm\nz56NRqNh3bp1rF27FgcHByZNmkS/fv24evUqr7/+OiUlJbi6urJw4UK8vOrGPUN1VT0HR8KaPEJY\nk0cwKxbOXjjJcWd3GlzMpmGlAZNWi0mr44rZyFWzCUedDmcHZ/RaHY5aHVgUTmgcUBz0oHNAddCD\ngyMuXk0Z0sQHvdYBvVaLXuuAo1aHU+uunDFdQ6d3oknDloTUc7X1LhB/ctu3b2fbtm0sXrwYgIyM\nDObPn49Op6Nnz57Ex8cDsHz5cnbv3o1Op2P69OkEBQXZsmwhRB1jMpmYPn06ly5dwmg0MmnSJPr3\n72+dv2XLFv75z3+i0+lo3749c+bMQVVV5syZw08//YRer+fdd9+lVSsZLFyIP4sabao+/fRTNm/e\njKvr9S/bCxYs4JVXXiEsLIzZs2ezc+dOgoODWbVqFRs3buTatWuMHDmSHj16sGbNGvz9/YmPj+fb\nb7/lo48+YsaMGTVZ7kPFQaujnW8n8O2EqqocPHyIsK6haDUahgBDbF2gEA/YvHnzSE1NJTAw0Dpt\nzpw5LFu2DB8fH5577jlOnjyJoiikpaWRlJREfn4+U6ZMue1jgYUQf17Jycl4eXmxaNEifvnlF4YN\nG2Ztqq5evcoHH3zAli1bcHJy4tVXX+X777/HbDZjMplITEwkMzOThQsX8uGHH9r4nQghakuNPoLN\n19eX5cuXW0fWPnHiBGFhYQD06dOHvXv3kpWVRUhICHq9Hjc3N3x9fTl16hTp6en06dMHgN69e7Nv\n376aLPWhptFocNBo0T5EAwgLcauQkBDr0WIAg8GA0WjEx8cHgF69erF3717S09Pp2bMnAM2aNcNi\nsVBaWmqzuoUQdU9ERAQvvvgiAIqioLtpfEgnJyfWrl2Lk9P1sRXNZjNOTk6kp6fTu3dvAIKDgzl2\n7FjtFy6EsJkabaqeeOKJKkF048sOgKurK+Xl5RgMBtzd3atMNxgMGAwG6xmuG8sKIURSUhJRUVFV\n/h07downn3yyynIGgwE3Nzfr73fLHCGEuMHFxcWaDS+99BJTp061ztNoNNbbEVatWkVlZSU9e/as\nljk6nQ5FUWq9diGEbdTqgyq0N41NZDAY8PDwwM3NjYqKCuv0iooK3N3dq0yvqKjAw8OjNksVQtRR\nI0aMYMSIEXdd7tZsuZE5er3+tpkjhBA3y8/PJz4+ntGjRzN48OAq8xRFYdGiReTm5rJs2TKgeuYo\nilLle48Q4uFWq01VQEAABw8e5LHHHiMlJYXu3bsTFBTE0qVLMRqNXLt2jdOnT9O+fXtCQkJISUkh\nKCiIlJQUQkND7+k1Dh8+XKPvoaa3X5PsuXaw7/rtuXawz/rd3NzQ6/VcuHCBli1bkpqaSnx8PDqd\njkWLFvHss8+Sn5+Poig0aNDgrtuTbLkze64d7Lt+qb1mFBUVMWHCBGbPnk23bt2qzZ81axZOTk6s\nWLHCOiZkSEgI33//PX/961/JyMjA39//nl5LsuXO7Ll2sO/6pfbfr1aaqhuBM23aNN5++21MJhN+\nfn5ERESg0WgYN24co0aNQlEUXnnlFRwdHRk5ciRvvvkmo0aNwtHR0fo0r9/StWvXmn4rQog6TKPR\nVBn0+u9//zuvvfYaFouFXr16WZ/yFxoaSmxsLIqiMHv27LtuV7JFiD+XlStXUl5ezooVK1ixYgUA\nTz/9NJWVlXTq1IkNGzYQGhrKuHHjABg/fjyDBg0iNTWVuLg44PrDue5GskWIh4dGvflGJyGEEEII\nIYQQv4tc7CuEEEIIIYQQ90GaKiGEEEIIIYS4D9JUCSGEEEIIIcR9kKZKCCGEEEIIIe6DNFW/4eOP\nPyYuLo6YmBjWr19Pbm4uI0eOZPTo0cyZM4e6+owPk8nEq6++SlxcHKNHj+bMmTN2UXtmZiZjx44F\nuGO969at46mnniI2NpZdu3bZsNrqbq7/5MmTjB49mrFjx/Lss89SXFwM1N36b679huTkZOtTrKDu\n1m6PJFtqlz1niz3nCki21CZ7zRWQbLEFyZYaoIrb2r9/v/r888+rqqqqFRUV6rJly9SJEyeqBw8e\nVFVVVWfNmqVu377dliXe0fbt29WXXnpJVVVVTU1NVePj4+t87Z988okaGRmpxsbGqqqqqs8//3y1\negsLC9XIyEjVaDSq5eXlamRkpHrt2jVblm11a/1jxoxRT548qaqqqiYmJqoLFixQL1++XCfrv7V2\nVVXV48ePq+PHj7dOq8v73t5IttQue84We84VVZVsqU32nCuqKtlS2yRbaoacqbqD1NRU/P39eeGF\nF5g4cSL9+vXj+PHjhIWFAdCnTx/27t1r4ypvr3Xr1lgsFlRVpby8HL1eX+dr9/X1Zfny5dYjOydO\nnKhWb1ZWFiEhIej1etzc3PD19eXUqVO2LNvq1vqXLFlChw4dADCbzTg5OXH06NE6Wf+ttZeWlrJ0\n6VKmT59unVZXa7dHki21y56zxZ5zBSRbapM95wpIttQ2yZaaUSuD/9qjkpIS8vPz+fjjj7lw4QIT\nJ06scurZxcWF8vJyG1Z4Zy4uLuTl5REREUFZWRkrV64kLS2tyvy6VvsTTzzBxYsXrb/fvK9dXV0p\nLy/HYDDg7u5eZbrBYKjVOu/k1vobN24MQHp6OqtXr2b16tXs2bOnTtZ/c+2KojBjxgymTZuGk5OT\ndZm6vO/tjWRL7bLnbLHnXAHJltpkz7kCki21TbKlZkhTdQeenp74+fnh4OBA69atcXJyorCw0Dq/\noqICDw8PG1Z4Z19++SW9e/dm6tSp/Pzzz4wbNw6z2WydX5drv0Gr/e9JVIPBgIeHB25ublRUVFin\n1/X38e2337Jy5Uo++eQTPD097aL+Y8eOcf78eebMmYPRaCQnJ4cFCxYQHh5e52u3F5IttmXv2WKP\nuQKSLTXNnnMFJFvqAsmW+yeX/91B165d2bNnDwAFBQVcvXqVbt26cfDgQQBSUlIIDQ21ZYl3VL9+\nfVxdXQHw8PDAbDYTGBhoF7XfEBAQUK3eoKAgDh06hNFopLy8nNOnT9OuXTsbV3p7//rXv1i9ejWr\nVq2iZcuWAHZRf1BQEFu2bGHVqlUsWbKEtm3b8tZbb9G5c+c6X7u9kGyxLXvOFnvNFZBsqWn2nCsg\n2WJrki0PhpypuoN+/fqRlpbG8OHDURSF2bNn06JFC95++21MJhN+fn5ERETYuszbeuaZZ5g+fTqj\nR4+2PlGnY8eOdlG7RqMBYNq0adXq1Wg0jBs3jlGjRqEoCq+88gqOjo42rrgqjUaDoijMnz+f5s2b\nEx8fD0B4eDjx8fF1uv4b+/4GVVWt0xo3blyna7cnki22Yc/ZYs+5ApIttcGecwUkW2xFsuUB16Oq\ndfAZlUIIIYQQQghhJ+TyPyGEEEIIIYS4D9JUCSGEEEIIIcR9kKZKCCGEEEIIIe6DNFVCCCGEEEII\ncR+kqRJCCCGEEEKI+yBNlRBCCCGEEELcB2mqHmIXL16kU6dODBs2jOjoaCIjI5kwYQIFBQU2qad/\n//5cunTpnpfftm0bMTExDB06lKioKD777LO7rjN27Fjr4Hs3S0xMJDEx8XfV+0eNHTu2Vl5HCFuR\nbPkvyRYhHhzJlv+SbLE/MvjvQ65JkyZs2rTJ+vuSJUuYO3cuy5cvt2FVd1dQUMD777/PN998Q/36\n9bly5QpjxoyhdevW9O/f/3dvLy4urgaqvL20tLRaey0hbEWy5TrJFiEeLMmW6yRb7I+cqfqT6dq1\nK+fOnQOuH4GZOnUqERERlJSUsGnTJmJiYhg2bBgzZszAaDQCkJyczODBg4mMjGTmzJkoikJRURHP\nP/88Q4YMISYmhj179lR7rbKyMv72t78RFRXF1KlTrdtTFIV58+YRGRlJVFQUn376abV1S0tLMZlM\nVFZWAuDi4sJ7771Hu3btrLXfOHp04MCBKkdZ1q5dS0xMDNHR0dajP8uWLbMG8tdff83TTz9NVFQU\nQ4YM4fTp0wDs3bvXenRp4sSJGAwGLBYLCxYssB55+vLLL62vOWHCBCZPnkxERAQvvvgiJpOJefPm\nARAbGwtASkoKI0aMIDo6milTplBWVvYH/3JC1G2SLZItQtQEyRbJFnshTdWfiMlkYuvWrYSEhFin\n9e3bl23btlFcXExSUhKJiYls2rQJLy8vPvvsMwoKCli4cCGff/45W7ZsobKykj179jB37ly6d+/O\n5s2b+eCDD5g+fTrFxcVVXu8f//gHnTp1Ijk5mdGjR1NUVATAmjVrKCgoIDk5maSkJL777jt2795d\nZd0OHTowYMAABg4cyIgRI0hISMBiseDj43PX9+nq6srGjRtZuHAhb7zxBkajEY1GA4DBYGDnzp18\n/fXXJCcnM3DgQNasWYPRaOT111/nvffeIzk5GX9/fzZt2sS6devQaDRs3LiRpKQkdu7cyaFDhwA4\ncuQIs2bNYuvWreTn55OamsrMmTOB6wFZUlLCkiVL+Pzzz/nmm2/o2bMnCQkJf/wPKEQdJdki2SJE\nTZBskWyxJ3L530OusLCQYcOGAWA0GgkODua1116zzg8KCgKuH8HIzc3l6aefBq4HWceOHcnIyCAk\nJARvb28AFi9eDMCbb77Ju+++C4CPjw/BwcFkZmZWOcWdlpbGkiVLAAgNDcXHxwdVVTlw4ADR0dFo\nNBqcnZ2Jiopi37599O3bt0rtc+bM4YUXXuCHH37ghx9+IDY2loSEBAYNGvSb73n48OEA+Pv74+Xl\nxZkzZ6zz3NzcWLx4McnJyZw7d44ffviBgIAAfvrpJ7y9venQoQMAU6dOBeDFF1/kxx9/ZP/+/QBU\nVlaSnZ2Nn58f7du3t+4XPz+/akdzMjMzyc/Ptx6NslgsNGjQ4DdrF8JeSLZItghREyRbJFvslTRV\nD7lbr02+lbOzM3D91HZERIT1iMWVK1ewWCzVbp4sKSkBQFXVKtMVRUFRlGrbt1gs1p91Op113ZvX\nVxQFs9lcZb3du3dTUVHBk08+SUxMDDExMSQlJbF+/XoGDRqERqOxbuPWdW+8zo3X0uv11t9vhMXY\nsWPp27cvjRs35uTJkzg4VP1PwWAwYDAYUBSFN954g4EDBwLXT++7uLiQkZGBo6OjdfkbR5Rufe8h\nISF89NFHwPX/ORgMhmrLCWGPJFskW4SoCZItki32Si7/EwA89thj7Nixg5KSElRVZfbs2Xz11Vd0\n7tyZzMxMioqKUFWVuXPnsnv3bsLDw1m/fj0AFy5c4MiRI3Tp0qXKNnv06MHmzZsBOHr0KOfPnweg\nW7dubNq0CUVRqKysZMuWLXTr1q3Kus7OzixZsoS8vDzgeshkZ2cTGBgIgKenJ9nZ2QDs3LmzyrrJ\nyckAZGVlUVFRga+vr3XesWPH8PX1Zfz48QQFBbF7924sFgtt2rShpKTEep3yp59+SmJiIt26dWPt\n2rWYzWYMBgMjR47k6NGjv7kvdTodFouF4OBgMjIyrNeCr1ixgkWLFt3DX0OIh4dki2SLEDVBskWy\npa6RM1UPudsdibidDh06MHnyZMaPH4+iKAQGBvLcc8/h6OjIjBkzrEdZhgwZQnR0ND179mTWrFls\n2LABjUbDu+++S6NGjapsc8qUKbz11ltERkbSpk0bfHx80Gg0xMbGcvbsWYYOHYrJZGLo0KHWIyo3\nhIeHEx8fz8SJEzGZTAD07t2byZMnW7c9b948li9fTq9evaq8zytXrhAdHY1OpyMhIaHK0ZyePXuy\nZs0aBg8ejKOjI0FBQeTk5ODo6MiiRYt44403MJlM+Pr68v7776PX6zl37hzR0dGYzWaGDx9OWFgY\nBw8evOO+HTBgAMOGDWPDhg3Mnz+fl19+GYvFQrNmzSScxENDskWyRYiaINki2WKvNOqt50OFuI1t\n27axY8cO3n//fbRa+zvBOX/+fJo2bcqECRNsXYoQ4iaSLUKImiDZImqb/X3KRK3Lz8/nk08+IT8/\nv9p1wPZgwYIF7Nixg8cff9zWpQghbiLZIoSoCZItwhbkTJUQQgghhBBC3Ac5UyWEEEIIIYQQ90Ga\nKiGEEEIIIYS4D9JUCSGEEEIIIcR9kKZKCCGEEEIIIe6DNFVCCCGEEEIIcR+kqRJCCCGEEEKI+/D/\nAXkQyVuG6cODAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1157fef50>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 4.5. Opção Digital\n",
    "\n",
    "Por último, vou compara o resultado do método explícito com o resultado analítico de uma opção digital. Seguindo a derivação do gamma analítico a [daqui](http://www.stat.nus.edu.sg/~stalimtw/MFE5010/PDF/L2digital.pdf), tenho que:\n",
    "\n",
    "\\begin{equation}\n",
    "\\begin{aligned}\n",
    "\\frac{\\partial V^2}{\\partial S^2} &= - \\frac{e^{-rt} d_1 N(d_2) }{S^2 \\sigma^2 t }\n",
    "\\end{aligned}\n",
    "\\end{equation}\n",
    "\n",
    "\n",
    "Abaixo vou plotar os resultados para comparação"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 2.46 s, sys: 92.1 ms, total: 2.55 s\n",
      "Wall time: 2.61 s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 20,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.DigitalOption(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcVfX/wPHXZQmyBHHmNgUXQ1BARcSZe6CJs3LP1LQc\nmSMzrVTKvS3NvmamlCM1tzmQHOAWRVFc4EKGMu79/P4g7k9kqCDgeD8fDx9xz/jc97n33NPnfc5n\naJRSCiGEEEIIIYQQ2WKQ3wEIIYQQQgghxOtMkiohhBBCCCGEyAFJqoQQQgghhBAiBySpEkIIIYQQ\nQogckKRKCCGEEEIIIXJAkiohhBBCCCGEyAFJqoQQGdqxYwe9e/emTp061KxZk/bt27N69WqSk5Pz\nO7RXQnx8PJ07d6Zq1apUq1aNatWq0bp161x5r/Xr1+Pg4MCDBw+yXUZERAQODg7p/jk5OdG0aVNm\nzpyZ599takzbt28H4OHDh4wcOZLTp0/nuOwePXowYMCAHJfzutq3bx+9e/fG3d0dZ2dnWrVqxdy5\nc4mJicnv0F7I0+dr9erV8fb2ZvTo0Vy7di3NtmPGjHmh3+DT59+tW7fo3bs39+/fz3YZQoi3l1F+\nByCEePVMnjyZX3/9lXbt2tG1a1cKFizIkSNH+PbbbwkMDOT777/HwODtvidjZGTE1KlTefToEcbG\nxhQoUIAyZcrkd1jP9Mknn+Dh4aF/HR0dzfbt21myZAlarZbPPvss32I7e/YsmzdvplevXvkWw5tg\n5syZLFmyhObNmzN16lQsLS0JCQnhp59+YuPGjSxdupTSpUvnd5jPrUePHvpk6fHjx4SHh7No0SI6\nduzIL7/8QsWKFQEYPHgwjx49eu5yixYtytq1aylXrhwABw8e5MCBA2g0mpd+DEKIN58kVUKINAIC\nAvjf//7HlClT6NSpk365p6cnlSpV4pNPPmHjxo20bds2H6PMfyYmJrz77rv5HcYLK1euHI6OjmmW\neXl5cenSJQICAvI1qUolc9Jn319//cWSJUsYN24cPXv21C93d3enVatW+Pn5MXLkSNasWfPa3Bgp\nWbJkmnO2du3a+Pj40LZtWyZNmsSqVasAXjhRNDExSfdbADn/hBDZ83pcUYUQeWbZsmU4ODikSahS\ntWjRgo8++ghbW1v9soiICIYNG6ZvJjho0CDCw8P16+fMmYOvry8BAQE0adIEJycnPvroI6Kioliz\nZg0NGjTAzc2NTz/9lMePHwMQGBiIg4MD+/fvp23btjg5OeHr68vhw4fTxBMSEkLfvn2pVasW1atX\n57333uPXX3/Vr1+/fj3u7u4sXboUd3d3GjRowOPHj4mNjeWrr76iYcOGVK9eHU9PT8aMGZOmaZRW\nq2XhwoU0btwYZ2dn2rVrx44dO/Trn6eMpKQkFi9eTLNmzXB0dKR169Zs2rTpmd9BQEAAzZo1w8nJ\niX79+mXY7O/AgQN06tQJJycnvL29mT17Njqd7pllZ6ZgwYLp7tBv2rSJ1q1bU6NGDZo0acLPP/+c\nZn1wcDDdunWjZs2auLu7M2zYMG7cuKFf7+DgwPLly9PsM2jQIHr06JHu/QMDA/nggw8A6NixI2PH\njgWe73OOi4tj/PjxuLu74+HhweLFi9OVHxcXxzfffEPDhg1xcnKiU6dOHDhwIM02GzZsoGXLljg6\nOuLt7c20adNITEzM9DPr0aMHkydPZtq0adSqVQtPT0+mTJmSZp+kpCRmz55Ns2bNqFGjBrVr12bo\n0KHcunVLv03Dhg2ZOXMm77//Pk5OTvrPbP/+/XTv3p2aNWvi6OhIu3bt+PvvvzONB2DRokXY29un\nSahSlShRguHDhxMSEqI/9jlz5tC6dWs2bNhAgwYNqFmzJgMGDOD69etp9g0MDKRbt264uLjg7e3N\n9OnT0xznn3/+ia+vL87Ozjg7O+Pn58e///6bpoygoCC6deuGq6srdevWZcqUKcTHx2d5PJmxs7Oj\nc+fOBAUF6a83Tzf/e/DgAZ9++im1a9fG3d2dGTNmMHbsWP35l9p0b9u2baxfv55x48YBKTeQ5s6d\nC0BkZCRjx47Fy8uL6tWr4+Xlxddff53leSGEeDtJUiWE0IuMjCQ0NBRvb+9Mtxk9ejReXl5ASh+E\nTp06ce3aNX3lMiIigq5duxIZGanf5/LlyyxbtozRo0fz1VdfceLECbp3786GDRuYPHkyQ4cOZdOm\nTaxcuTLNe40aNYqmTZsyZ84cbG1t6du3L6GhoQDcuHGDnj17YmFhwezZs1mwYAHlypVj4sSJXLhw\nQV9GbGwsmzdvZtasWYwbNw5TU1NGjhzJrl27GDVqFCtWrKBXr15s2rSJ+fPn6/ebNm0a8+bNo2PH\njixcuBBnZ2eGDRumryg+TxmjR49mwYIF+Pn5sXDhQmrWrMmoUaP47bffMv18//rrL8aMGYOXlxfz\n58+nVKlSzJo1K03Cc+jQIfr27UuZMmWYN28evXv3ZsWKFXz11VdZfr+QkiwmJyeTnJxMUlISd+7c\n4ccff+TgwYO0adNGv92GDRsYNWoU7u7uLFq0iHbt2jFt2jSWLVsGQExMDP369aN48eIsWLCAKVOm\ncObMGT755JM075dRU6qMllWrVo0JEyYAMH36dAYNGvTcn/Mnn3zCjh07GD16NFOnTmXLli0cP35c\nv16n09GnTx8CAgIYMGAAc+fOpUSJEvTr149//vkHSKnwf/7557Rp04bly5czYMAA1qxZo69cZ2bj\nxo0cPXqUb775hiFDhqSpnEPKebR69Wr69+/PihUrGD58OIcOHeLrr79OU86KFSto3Lgxs2fPpmHD\nhoSEhNCvXz/s7e1ZsGAB/v7++nP33r17GcZy7949zp07R/369TONt3Hjxmg0Gvbu3atfdv36dWbO\nnMmwYcOYNm0aYWFhfPjhh/rEISQkhF69emFlZcX333/P0KFDWbduHVOnTgVg69atjB49Gh8fH5Ys\nWcLXX39NTEwMw4cPJykpCYC9e/fSs2dPihUrpi9j06ZN9O/fP9tPhlKbsT75XadSSjFgwAAOHz7M\n559/ztSpU9m7dy+bN29Od/5pNBoaNGjAwIEDgZQbS506ddKfN+fOnWPixIksW7aMtm3bsnLlStau\nXZutmIUQby5p/ieE0Eu9e16yZMnn2v7HH38kMTGR5cuXU6hQISClaU7jxo1ZsWIFo0ePBlIGdZg6\ndaq+qc2ePXvYvHkzP/74IyVKlMDb25vt27cTHBycpvzOnTszePBgIOXucePGjVm+fDnTpk0jNDSU\nmjVrMmPGDAwNDQFwdHTE3d2doKAgKleuDKQkEYMHD6Zu3boAJCQkkJyczJdffkm9evUAqFWrFseO\nHePIkSNAyh3uX375haFDh+oHO/Dw8ODy5cv8+++/ODo6PrOM8+fPs2XLFr788kvef/99AOrUqUNs\nbCz+/v74+vpm2Pxq8eLF1K9fn/HjxwNQt25dbt68ye7du/XbfP/997i4uDBz5kwA6tWrh7W1NWPH\njqV379688847mX5nI0aMSLesaNGiDBo0SH+sOp2OWbNm0aZNG30cderUQaPRMH/+fLp168alS5eI\njo6mR48eODs7A2BjY0NgYGCm750VCwsLfd+YSpUqUbp06ef6rs6dO8fevXvx9/enefPmQMp50KhR\nI33Ze/bs4fjx4yxbtkx/Hnh5eeHn58esWbOoV68ex48fx8zMjI8++ggTExPc3NwwMTHByCjr/03q\ndDqWLl2qP/8BpkyZwieffELJkiW5f/8+o0ePpkOHDgC4ubkRFhaW7onlu+++S79+/fSv169fT7Nm\nzfjiiy/0y0qUKEGHDh04efJkhjc+IiIiALL8/i0tLbG2tk7zRDE+Pp7Zs2frP+MKFSrQpk0btmzZ\nQrt27Vi0aBGlS5dm/vz5+oQkISGBgIAAdDodV69epVu3bgwZMkRfprGxMUOHDiU8PJx3332XH374\nAScnJ2bNmqXfplSpUvTp04c9e/bg4+OTxaecscKFCwNw586ddOsOHjzIiRMnWLVqFbVq1QJSzovG\njRtnWJatra2++WC1atUoVKgQN2/epFChQowfP15/PXF3d2f//v0cOXKE7t27v3DMQog3lyRVQgi9\n1OTkeZuRBQUF4e7unqZCaWNjg6enp77SCyl3gmvUqKF/bWtrS+HChSlRooR+mbW1dbqRyVq0aKH/\n29jYGC8vL3253t7eeHt7k5CQQGhoKFeuXCEkJARAf3c8Vfny5fV/FyhQQP+0JSIigitXrhAaGsql\nS5cwNTUFUpq16XS6dBW9n376Sf/3s8pIfaL13nvvpSmjefPmbN68mbCwsHR9sh49esS5c+fw9fVN\ns7xp06b6pOrRo0ecPHmS4cOHpxmtz8vLC51OR2BgoL4Cn5FPP/0UDw8PtFotAQEB/P7774wePZqW\nLVvqt7l8+TJRUVF4e3une4/Zs2cTEhJCtWrVsLa2ZsCAAbRs2RJvb288PDz0FdiX4Xm+q2PHjgGk\neTpTpEgRfaIHKeephYWFPqFK1bx5c6ZPn058fDyurq7Ex8fTtm1bmjdvToMGDdJ9DxmpU6dOmvO/\nUaNGTJkyhaNHj1KyZEn8/f0BuH37NmFhYYSFhXHs2LEsz1GADh060KFDB+Lj47l06RJXrlzRN399\nVtOz1N/x8663srLSJ1Tw/0nt0aNHadeuHcePH6d169ZpnvB069aNbt26AeiTwYcPHxIWFsbly5fZ\ntWuXPta4uDjOnj2rv8mSKvVmQFBQULaSqqwcOXIEa2vrNOdj0aJFcXFxee4nYyVKlGDlypXodDqu\nXLnClStXOHfuHHfv3n3uG09CiLeHJFVCCL3UJOfmzZuZbhMZGUmRIkXQaDTExMRQrVq1dNvY2tpy\n8eJF/WtTU9N0TW4KFCjwzHiKFi2a5rWNjQ3R0dFAyhOo6dOns3btWpKSkihTpgxubm5A+o7mqXe0\nU+3cuVPfVNHGxobq1atjZmamTyZT3+Pp/V60DCMjI6ysrNLsZ2dnB6Q0S3zaw4cPUUphY2OT4T6p\n26Q+SXryrj+kJK8Z3bV/UunSpfXfmaOjI48ePeKzzz7DxsaGOnXqAOj7cI0cOZKRI0eme4+oqCjM\nzc1ZvXo18+bNY8OGDaxevRorKyv69etHnz59sozhRTzrc3748CFGRkaYm5un2c/Ozk7fX+fhw4cZ\nfpd2dnYopYiLi8PV1ZX58+ezYsUKFi9erG96OWnSpDQJx9OKFCmS5nVqf8PUc+jYsWNMmjSJCxcu\nYGlpSZUqVTA1NU134+Lp+OLj45kwYQJbt24FUpIuBwcHIPOBFFIr+ln9fuPj43nw4EGaGxpPnl+p\nnvytZfb5pYqKiuLzzz9n//79GBsbU6lSJf3TMqUUMTExKKUyfB9bW9sMfwvP4/bt2wAUK1Ys3br7\n9++nSXZTFS5cmKioqOd+j99++43vv/+eu3fvUqRIEZycnChQoIAMZiGESEeSKiGEnq2tLVWrVmX/\n/v3p+sak+uijjyhSpAg//vgjVlZWGVZQ7ty5k2GF5kXdv38/zaAYd+/e1VfuFixYwG+//ca3336L\nt7c3pqamPH78mHXr1mVZ5pUrVxg2bBgdOnRg8ODB+grZsGHDCAsLA1KaSEFKH5UnK81nz54FwMzM\n7JllWFtbk5yczMOHD9MkVqlJT0afj7W1NRqNhrt376ZZ/uRAFanJw6BBg9I0cYOUCuzTieizjBs3\njr179/L555+zZcsWzMzM9Mc/ceLEdKOjKaUoVaoUkNJkzd/fn+TkZIKCgli5ciUzZsygdu3a+v2e\nTh5eZGCC5/muChUqRHJyMrGxsVhYWOj3ffDgASYmJkDK55pRspl67lpbWwPg4+ODj48PsbGx7Nu3\njwULFjBixAgOHjyIsbFxhjE+PadR6ndna2tLTEwMAwYMwM3NjXnz5umbl3377bf6cykzU6ZM4eDB\ngyxZsgQ3NzeMjY25ePEiGzduzHQfOzs7atSowd9//83HH3+c4Ta7d+9Gq9WmaT6Y0UAod+/epUqV\nKkBK08ynz8no6GhOnTqFq6srI0eOJDIykl9//ZXq1atjYGDA3r179XM3WVpaZprwR0VFpbuJ8LxS\nm5rWrFkz3bqiRYtm2Pfs3r17zz1k+pEjR5gwYQKDBw+mW7du+jg7duyYrXiFEG82GahCCJFGz549\nOXv2bIbJyR9//MGlS5f0Axq4ubkRGBiYpmJ57949Dh06lGFF50U92Y8oMTGRffv24e7uDsCJEyeo\nUaMGzZo10zcF27dvH5D1kMhnzpwhOTmZfv366Svp8fHxHD16VL+No6MjRkZGad4fYMKECSxduvS5\nynB1dQVSBp540pYtW7Czs9PPjfMkU1NTnJyc0o3w9uSgAhYWFjg4OBAeHq6fdLhatWoYGhoyc+bM\nNKPKPQ9LS0tGjBjBzZs3WbJkCZDSp6ZQoULcunUrzXvcu3ePH374gZiYGPbt24enpyf37t3DyMgI\nT09Pff+r1CclFhYW+qcJqZ9RVsnE083Snudzrl27NgDbtm3TL4uOjubEiRP6166ursTFxekHpUj1\n119/Ub16dUxMTJgzZw6dO3fWx92iRQt69epFTExMlk9SAgMD9aNWQsqk2QYGBtSqVYuwsDAePnzI\nBx98oE+odDodBw8ezLS8VCdOnKB+/fp4enrqE7r9+/cDWZ/fgwYNIjQ0NMMREKOiopg5cybVqlVL\n8/Tt3r17+qazkNJPLSIiQv9bc3FxYd++fWned/PmzQwYMACtVktwcLB+1MTUfoJPxmpubk6VKlX0\nT91S7d+/n9jY2GxdK+7du8fatWupW7duhn3I3NzciImJSTMC4b1799KcF097uo/jiRMn0Gg0DBw4\nUJ9Q3b59O81AOEIIkUqeVAkh0mjXrh179+5lwoQJhISE0LBhQzQaDf/88w//+9//aNGihb7Pzocf\nfsiGDRvo1asXAwcORCnFggULKFCggH547BfxdGVx3rx5GBkZUb58eVauXMnjx4/1TcscHR1ZvHgx\nq1evplKlSpw8eVLfkT6rpyFVq1bF0NCQ7777Dj8/P+7fv8/y5cu5e/euvkli4cKF8fPzY8GCBRgZ\nGVGtWjX++usvzp07x4QJE7C0tHxmGQ4ODjRt2pTp06cTFxdH5cqV2blzJ1u2bGHixImZxvfxxx/T\np08fxo4dS4sWLTh8+DA7d+5Mt83gwYOxtLSkcePG3L9/n++//x4jIyPs7e1f+HP39fVl5cqVLF++\nnPfff5/ixYszdOhQpk2bBqQM0hEREcHMmTMpX748pUuX1j99Gzp0KH379sXIyIiffvoJa2trfWW8\nfv36rF+/nqpVq2Jra8vSpUvRaDSZJgWpT8h2796NmZnZc31XqYMqfP311yQkJFCiRAkWLVqEVqvV\nl+vj44OTkxOffvopI0aMoHjx4qxfv56TJ0+yYMEC/THOnz+fL774ghYtWhAdHc3ChQtxc3PL8knK\ngwcPGDBgAB999BHh4eH4+/vTtWtXihQpgqmpKebm5sybNw+tVsujR4/45ZdfOH/+/DOfljg6OrJz\n504CAgIoXrw4hw8f1g+1ntUEtz4+PgwZMoRZs2Zx5swZWrdujaWlJWfOnGHZsmWYmpri7++fJoHQ\naDSMGDFC39TT39+fqlWr0qxZMwAGDBhAt27d+Pjjj+nUqRO3bt3ihx9+oHv37pibm1OjRg3Wr19P\n5cqVsbKy4u+//2bNmjVpYh06dCiDBg1ixIgRtG/fnps3bzJr1ixcXFyyHK0QUkYnTE2GEhISCAsL\nY8WKFQD6ESOf5uHhgZubm74Ja8GCBVmwYAGJiYmZzs+Vek5v376dunXr4ujoiE6nY+rUqTRr1oyb\nN2+yYMECkpKSsj0UvBDiDaaEEOIpOp1OrVmzRr3//vuqdu3aqmbNmsrX11f9+uuvSqvVptk2NDRU\n9evXTzk7Oys3Nzc1ZMgQdeXKFf36OXPmKBcXlzT7TJ06VTVs2DDNskGDBqkePXoopZQ6fPiwsre3\nV2vWrFEtW7ZUTk5OqmfPnurs2bP67R89eqTGjx+vPDw8lIuLi2rfvr0KCAhQvXr1Un369FFKKfX7\n778rBwcHdf/+/TTvtXHjRtWsWTNVo0YN5ePjo7788kv1v//9T1WtWlVFRkYqpZTSarVqzpw5yt7e\nXtnb26tOnTqpgwcPvlAZCQkJ6rvvvlNeXl6qRo0aql27dmrjxo3P/Px37NihWrVqpWrUqKG6deum\nVq9ene44du3apXx9fVWNGjWUp6enGjVqlLp161amZV67dk3Z29urbdu2Zbh+//79yt7eXo0cOVK/\nbN26dapVq1aqevXqql69emry5Mnq4cOH+vWnTp1SH330kapVq5ZydnZWH3zwgTp9+rR+fWRkpBo0\naJBycnJSdevWVfPnz1fTp0/Xf89Px6TT6dRnn32matSooQYMGPDcn3NiYqKaNm2a8vDwUG5ubmr6\n9Olq2LBhqn///vpYHj58qL744gvl4eGhnJyclJ+fn9q/f3+az2Dz5s2qXbt2ytnZWdWuXVt99tln\n6u7du5l+pt27d1d9+vRRU6dOVS4uLqp+/fpq7ty5SqfT6bc5cOCAatu2rXJ0dFTe3t5q1KhRatu2\nbcrBwUEFBwcrpZTy8fFRU6ZMSVP23bt31ccff6xq1aqlatWqpfz8/NTevXtVs2bN1MSJEzONKdXB\ngwdV//79Vd26dZWTk5Nq1aqVmjNnjoqJiUmz3ezZs5Wzs7PasGGDqlu3rnJzc1OfffaZevDgQZrt\nDh8+rDp37qz/HubMmaOSk5OVUkpdvXpV9erVS7m4uCgPDw/14YcfqqCgIOXs7KwWL16sL2Pnzp2q\nffv2+vNpypQpKi4uLsvjsLe3Vw4ODvrfYbVq1ZSPj48aP368unHjRpptx4wZo1q1apXmMxw+fLhy\ncXFR7u7uyt/fX3Xr1k0NHDhQKZX+/Hv06JHq3bu3ql69uv77WLFihfLx8VGOjo6qadOmyt/fX82Z\nM0fVqlVLJSYmPvN3JYR4e2iUkt6WQohXS+pEsL///nuGA2HkpXHjxnH58mUmT56sH1ZZCEiZ/Nfc\n3JyFCxfmdyjZNmfOHJYvX57hXE+vs4iICEJCQmjWrJm+WalWq6Vhw4a0aNEi3UiEQgiRU9KnSggh\nMnH9+nXat29PUlISP/zwQ36HI4R4TkopRo8ezaRJkzh06BD79u1jxIgRPHjwgE6dOuV3eEKIN5Ak\nVUKIV9LzjtCVm1auXEmvXr1ISEigV69e+R2OEC+dRqN5JX5rL1vqZMUXL15kyJAhjBgxgpiYGFat\nWkWFChXyOzwhxBtImv8JIYQQQgghRA7IkyohhBBCCCGEyAFJqoQQQgghhBAiBySpEkIIIYQQQogc\nkKRKCCGEEEIIIXJAkiohhBBCCCGEyAFJqoQQQgghhBAiB4zyOwAhhBAiLyxatAhjY2OZc0wIkat2\n7drF0qVLiYqKokOHDmi1WkJCQrC0tGTmzJn5HZ7IJZJUCSGEeOM9evSIkJAQgoOD6d69OyYmJvkd\nkhDiDdWwYUOio6PZs2cPAwcO1C+fM2dOPkYlcps0/xMvJCIigipVqtCuXTv9v7Zt2/L777/nd2hC\nCJGpzZs3M2XKFGxtbeV6JYTIdUoplFJplpUtWzafohF5QZ5UiRdmampKQECA/vXt27dp3bo11atX\nx97ePh8jE0KI9JKSkoiLi8PW1pb+/fvj7+9P586dMTCQ+4pCiLzTunXr/A5B5CL5P4rIsWLFilG2\nbFkOHDhA165d6dChAx988AEAv/32Gx06dKB9+/Z89NFHhIWFARAXF8eYMWNo1qwZLVq04IcffgAg\nJiaGUaNG0bp1a1q3bs13332HVqsFYPbs2bRp0wZfX1969+5NVFRU/hywEOK1sn37dlq0aAFA8+bN\nMTQ0ZPPmzfkclRDibaPRaPI7BJGL5EmVyLHjx49z9epVHj9+zKVLl9i1axfm5uYcOXKEP/74g19+\n+QVTU1P++ecfhg4dyubNm5k9ezZJSUls3bqVpKQkevbsSf369VmzZg22trZs3LiRxMREBg4cyLJl\ny2jdujUrV67k0KFDGBsbs2LFCkJCQmjUqFF+H74Q4hWmlOLOnTsUKVIEAAMDA/r06cPixYvlrrEQ\nQoiXRpIq8cISEhJo164dAFqtFhsbG2bMmMGdO3eoXLky5ubmAOzZs4fw8HD8/Pz0+0ZHRxMdHc2h\nQ4cYO3YsGo0GExMT1qxZA8DgwYP1f5uYmNClSxd++ukn+vbti4ODA+3bt8fLy4v69evj6emZx0cu\nhHjd7N69O93Nl3bt2jFv3jx2796Nj49PPkUmhHiTyVOpt48kVeKFFShQIE2fqlTr16/XJ1SQcoe4\nbdu2jBo1Sv86MjISa2trjIzSnno3btygYMGC6HS6NB07tVotSUlJaDQafv75Z06dOsXBgweZNm0a\n7u7ufP7557l0lEKIN8GFCxdwcXHh3r17aZZ37NiRRYsWSVIlhMgVTw9SId580qdK5Jq6deuyefNm\nfd+nX375Rd/XytPTk4CAAJRSJCYmMmTIEIKDg6lXrx6rV68GIDExkbVr11KvXj3OnTtHq1atqFCh\nAv369eODDz7g/Pnz+XZsQohX36FDh/j+++/x9PSkTp06af7NnTuX4OBgjh49mt9hCiHeMHv37mXD\nhg0EBwczZ84c7ty5k98hiTwgT6rEC8vskfbTy+vVq0efPn3o1asXGo0GS0tL5s2bB8CQIUOYOnUq\nVapUoXTp0nTq1Alvb2+cnJyYMmUKrVu3JjExkfr16zNgwACMjIx477338PX1pWDBgpiZmTF+/Phc\nP1YhxOvL09OTc+fO5XcYQoi3jLe3N97e3vkdhshjGiXPJ0U+mjRpEra2tnz88cf5HYoQQgghhBDZ\nIs3/RL5ZvXo1gYGBMjS6EEIIIYR4rcmTKiGEEEIIIYTIAXlSJYQQQgghhBA5IEmVEEIIIYQQQuSA\nJFVCCCGEEEIIkQOSVAkhhBBCCCFEDkhSJYQQQgghhBA5IEmVEEIIIYQQQuSAJFVCCCGEEEIIkQOS\nVAkhhBC77HYTAAAgAElEQVRCCCFEDkhSJYQQQgghhBA5kGtJlU6nY8KECfj5+dGjRw+uXr2aZn1A\nQABt2rShW7durFu3LrfCEEK8AZ51Pdm1axcdO3bEz8+P3377Lc264OBgevTooX999uxZunXrRo8e\nPejduzd3797Nk2MQQryasnN9yWyf8PBwunTpQrdu3Zg0aRJKKQBWr15Nx44d6dSpE3/99VfeHqAQ\nIm+oXLJt2zY1ZswYpZRSJ06cUAMHDtSvu3v3rvLx8VHR0dFKp9Opnj17qoiIiNwKRQjxmsvqepKY\nmKiaNGmiHj58qBITE5Wvr6+6c+eOUkqpxYsXq1atWqnOnTvrt+/evbs6e/asUkqpNWvWqGnTpuXh\nkQghXjXZub5ktk///v3VkSNHlFJKTZgwQf3999/q7t27qlWrVio5OVnFxsYqb2/vvD1AIUSeyLUn\nVceOHcPLywsAJycnTp06pV8XERGBg4MDVlZWaDQaatSoQXBwcG6FIoR4zWV1Pbl06RJlypTB0tIS\nY2NjXF1dCQoKAqBs2bLMnTtXf7cYwN/fHwcHBwCSk5MpUKBAHh6JEOJVk53rS2b7nDlzhlq1agFQ\nv359Dh48iK2tLQEBARgaGhIVFSXXHCHeULmWVMXGxmJhYaF/bWhoiE6nA1IqOhcvXuTu3bs8evSI\nQ4cO8ejRo9wKRQjxmsvqehIbG4ulpaV+nbm5OTExMQA0bdoUQ0PDNGXZ2dkBKRWp1atX8+GHH+Zy\n9EKIV1l2ri8Z7aPVatPcwClYsKD+WmRoaMjPP/9M586dadOmTW4fkhAiHxjlVsEWFhbExcXpX+t0\nOgwMUnI4a2trxo4dy9ChQylUqBDVqlXDxsYmy/KOHj2aW6EKIXLI1dU1V8vP6npiaWmZZl1cXBzW\n1tZZlrdlyxYWLlzI4sWL5dojxGvsZVx7XvT6YmVlleE+hoaG+v2e3DZV9+7d6dy5M3379iUwMBB3\nd/dMY5LrjhCvrsyuO7mWVNWsWZPdu3fTvHlzTpw4gb29vX6dVqvl9OnT/PLLLyQmJtKrVy8++eST\nZ5aZWxW3o0eP5nqlMLe8rrFL3HkrN+POi//5Z3U9qVChAuHh4URHR2NmZkZQUBC9e/fOtKw//viD\ntWvXsmrVqmcmX6nk2pOWxJ23Xte44fW49mTn+qLRaDLcp0qVKhw5coTatWuzb98+PD09uXz5MrNm\nzWLOnDkYGRlhYmKS7gl6RnLzO39dzymJO29J3BmXnZlcS6qaNGnCgQMH8PPzA2DatGls2rSJ+Ph4\n3n//fQDat29PgQIF6NWrF4UKFcqtUIQQr7lnXU/GjBlD79690el0dOzYkaJFi6bZX6PRACk3dL7+\n+mtKlizJkCFDAKhduzZDhw7N2wMSQrwysnN9yWgfgDFjxvDFF1+QlJRExYoVee+999BoNNjb29O5\nc2c0Gg3169fHzc0t345XCJE7ci2p0mg0TJ48Oc2y8uXL6/8eMmSIvlIjhBBZedb1xMfHBx8fnwz3\nLVWqFGvWrAFS+jUEBgbmXqBCiNdOdq4vGe0DUK5cOVatWpVu+atS5wmKCmdjeAiGCVpuXS2AvXVR\nyloWxtjg2U/OhBBZy7WkSgghhBBC5D+lFH9dO80f4SEYagzQKh1/hocAYGxgSEUrOypbF8Peuhjl\nLG0xkiRLiBcmSZUQQgghxBsqWafl59AjHIq8jG2Bggyp1oArZ89jVq4k5x/c5kL0bc49SPkHKUnW\nu1ZFqGxdlMqSZAnx3CSpEkIIIYR4A8UlJbDw7H4uREdSzsKWQdW8sTYx45bGiJp2palpVxqA2KTH\nXIiO0idZZx/c4uyDW4AkWUI8L0mqhBBCCCHeMJGPYph7eg+3H8VQs3BpPrL3xMQw42qfhbFpmiQr\nJvExoQ8j/0uyItMkWSYGhlSUJEuIdCSpEkIIIYR4g1yMjmT+mf3EJSfQrFRV2pVzwuC/UVCfh6WJ\nKTXtylDTrgyQkmRdiI7879/tTJKsYtgXKkoFSzv9iKtCvE0Mnr2JeB4JCQk0bNgQgK+//ppbt24R\nHR1N+/bts5wz51Xw3Xff0aZNG3766SfmzZuX6Xb79+9n7dq1APz6668kJyfnVYhCCCGEeA5HIq/g\nf3IXj7SJ9KhUmw7lnV8oocqIpYkprkXK0OVdNya6tmSGewf6OdSjQYnK2JlacPbBLf4ID+bb4L/5\n+eIRlFIv6WjEy/S21FV37doF5H1dVZ5U5YJx48YBEBQUROnSpZk9e3Y+R5S1bdu28eeff1KwYMEs\nt/Py8tL/vWjRItq3b5/boQkhhBDiOSil2HT1FJuunsTU0JgBVbyoYlM8V94rNclyLZL2SdZf107z\nz61LWBqb0q6cU668t3g53uS6auo2eV1XlaQqB+Li4hg1ahQxMTGUKVNG/7i7R48ejB8/nq+++oqo\nqCjmzp2Lr68vEyZM4PHjx5iamjJlyhSSk5MZOHAghQoVwtvbGy8vL6ZOnYpSChsbG77++mtOnz7N\nkiVLMDEx4dq1a7Rs2ZIBAwZw5coVxo8fz4MHD7Czs8Pf35+oqCi++eYbtFot9+/fZ9KkSbi4uDB2\n7FiuXr3K48eP6dmzJ23bttUfw9y5c4mMjKR///707duXgIAAZs2aRdOmTXF1deXy5csULlyYOXPm\nEBAQwOXLlylbtix37tzhk08+Yfbs2XzxxRfcunWLqKgoGjZsyPDhw9m+fTtLly7FyMiIokWL4u/v\nL80BhBBCiFyQpNOyKjSQwMgrFC5gzpBqDShpbp1n75+aZFWyLsp3wdv569pprIxNafiOfZ7FIDKW\nk7pqp06diIiIyHFdNTk5GVNT0zyrqx46dIjLly/neV31jUmq1oUd59idq9naNyExgd+PRKRbXtOu\nDB0ruGS635o1a7C3t2f48OGEhIRw+PBh/ToTExM+//xz1qxZw5AhQxg+fDg9evSgfv36HDp0iBkz\nZjBixAju3LnDhg0bMDIy4v3332fatGlUrFiRdevWsWTJEurWrcvNmzfZuHEjCQkJeHl5MWDAAL75\n5hsGDBiAmZkZDx484Ny5c9y/f5/Ro0dTuXJlNm3axPr166lcuTL//vuvvtnegQMH0hzDkCFDWL9+\nPcuWLeP48eP65REREaxatYpixYrRpUsXTp48iUajQaPR0LFjR+bPn8+sWbO4efMmzs7OdOrUiYSE\nBLy9vRk+fDibN2+mT58+NG3alICAAGJjY7G0tMzW9yOEEEKIjMUmJbDgzD4uPoyivGVhBlWtj5WJ\nWb7EYmViyrAaDfnmxHbWhh3F0sSUWkXK5kssr6Kc1FUzk5t11SVLljBlypQc11Xr1avHzp0786yu\nCuRLXfWNSaryQ3h4ON7e3gA4OjpibGysX6eUStOm+MKFCyxatIglS5YA6LctVaoURkYpX0NYWBiT\nJk0CIDk5mXLlygFQuXJlDAwMMDMzw9TUFIArV67g7OzM+fPnadSoEQD//vsv8+fPx9TUlLi4OCws\nLDA3N2fcuHF88cUXxMbG0qZNm+c6NhsbG4oVKwZAiRIlSEhI0B/Xk6ytrTl58iSBgYFYWFiQmJgI\nwNixY1m0aBGrVq2iQoUKNG7c+LneVwghhBDP53b8Q+ae3kPk41hc7crwYWWPTEf4yyt2phZ8XN2H\nGSE7WHH+EBZGBXKtGaJ4tpzUVR89egTkvK4K5Gld9Wl5VVd9Y5KqjhVcsszUs3L06FFcXV1feL+K\nFSty4sQJGjVqxJkzZ0hKSspy2169euHi4kJYWBhBQUEAGBj8/1gh5cuX57vvvqN48eIcO3aMqKgo\ngAwfRVasWJGTJ09iYmJCQEAA8fHxrFu3ju+++46KFSsye/Zsbty4QVRUFKdPn2bu3LkkJCTQoEED\n2rVrl+Z9M/Ksx58GBgbodDrWr1+PlZUVX375JeHh4WkGshg6dCi2trZMmDCBHTt20K5duyzLFEII\nIcTzuRAdycIz+4hLTuS90lVpW/bFRvjLTaUtbBhUtT6zT+1mwdl9jHJsTBkL2/wOK9/lpK6aXTmp\nq65btw7IeV3V09PzrairvjFJVX7o0qULn332GV27dqVChQoUKFBAvy61qVzqF/7ZZ58xadIkEhMT\nefz4MePHj9dvl2rSpEl8+umnaLVaNBoNX3/9Nbdv387wpPnss88YO3YswcHB1KlTh++++47ExESG\nDx+OlZUVxYsX58GDBxQpUoSoqCj8/PwwNDSkd+/e6U7S1PKfjDczqevd3Nzo168fEyZMYOTIkZw4\ncQITExPKlSvH7du3cXR0pH///pibm2Nubo6Pj082PmHxqlBKB7EP0FjK/xSFECK/Hb59mZWhgSgU\nPSu5U7d4xfwOKR37QsXoZV+HJef+YfapPYx2akIRM+kGkNdyUlft2LGjfrtU2amr9u/fHw8Pjzyr\nq6bK87qqek38+++/r2XZuen27dvqgw8+ULdu3crvUF7Y6/qZv21x6+IequQjW1TisjEq8cfPlU6n\ne2llvy7k2pOexJ23Xte4lZLfT3Zldmw6nU79cSVY9du3Wg0/uFadvX/zpZafG/Zcv6D67Vutxh35\nQ0UnxOeorNf1O3+b4759+7YaMWJEntZV8+u6I0+qXmPLly/n1q1b6HS6/A5FvEGUUqjroehC9qAu\nHgNtMhiZoLGvBUkJYGKa3yEKIcRbJ0mn5acLhwmKCsfO1Jyh1RpQvGDejfCXXd4lKxGd9IjNV08x\n+9QeRjo2xszI+Nk7ijfC8uXLuXLlyltRV5Wk6jU2ZswYmjRpQokSJfI7FPGG0e5aDXevg21xDGo0\nwKCqJxpT8/wOSwgh3koxiY9ZcHY/lx5GUcHSjkFV62P5Gt3gal2mBg8TH7P/1kUWnNnH0OoNMDYw\nzO+wRB4YM2ZMfoeQZ3ItqdLpdEyaNIkLFy5gbGzM1KlTKVOmjH79n3/+yY8//oiBgQG+vr506dIl\nt0IRQrwAjUaDoff7YGiM5p1KMr+YEELko1vx0cw5vZc7j2OpVaQsH1T2eO0SEo1GQ9d33YhJesyJ\nuxGsOH+IPg51X5mBNYR4GXItqdqxYwdJSUmsWbOG4OBgpk+fzvz58/Xrv/32W7Zs2YKZmRktW7ak\nVatWMo+REHlEJT5GnT8CgEGN+unWG5StltchCSGEeMr5B7dZeHYf8clJNC9djTZlHV/bRMRAY0Bv\n+zr8cGo3R+9cxfKSKX4VXeXGnXhj5FpSdezYMby8vABwcnLi1KlTadbb29vz8OFDDAwMUErJj0qI\nPKDuXEcXsgfd2cOQ+AgsbNBUr4dGk/WwpRm5EnOXgCvBePHqt+kXby/1OB4MDNC8Rk2lhAA4eDuM\nVaGBaNDwYWUPPItVyO+QcszE0IjB1byZEbyDPTcvYG1iSosy1fM7LCFeilxLqmJjY7GwsNC/NjQ0\nRKfT6YdIrFSpEr6+vpiZmdG0adM02wohXi6NNpnkX79B3QhNWWBhg0HNxhhU93rhhCrqUSx/hAcT\nFBUOgNdr0FFavB5uxEUTcu86Gg0Yagz++6fBUGOAwX//1S8zMNC/TrNOl0yByGsUuB6K8fULGEZd\nI6lBF6hWF+1Tk5erO9ehUFE00mn+rfesLgu7du1i/vz5GBkZ4evrS6dOnTLdJzw8nDFjxmBgYECl\nSpWYOHEiGo2GH3/8kS1btgBQv359hgwZkmVMP104TEEjEwZU8cK+ULFcPf68VNDIhI+rN+Cb4O38\nER6ClYkp9Yq/m99hCZFjuZZUWVhYEBcXp3/9ZEJ17tw59u7dy65duzAzM+PTTz9l69atvPfee1mW\nefTo0dwKN1fLzsy6deuwsbGhUaNGbNu2jeLFi1O1alX++ecffHx82LdvH+bm5s+cmDg/Yn8ZJO48\nZGhETFwcyqY0d0tU42HhsqAxgAuXgcvPVcRjlcyxpHucSb6PDihiYIq7cZFcDVu8PQ7dDmP1xSCS\ndNpsl1Ev8jodIkIx+W+UKa1GwyVzK/ZcDeFEzC0M0XA7vADNSlXBWGNA8obvIfExmkquGDi4oyll\nj+YZk02KN1NWXRaSkpKYPn06v//+O6ampnTp0oWGDRty9OjRDPeZNm0an3zyCbVq1WLixIns3LkT\ne3t7Nm7cyLp169BoNHTp0oUmTZpgb2+faUxFTS0YUq0BxQpa5dXHkGcKFSjIsOoN+Tb4b34ODcLC\n2BTnwqXyOyyRgTlz5lCkSBH8/Pz4+eefKVOmDB4eHvzxxx906tSJDRs2YG1tTcOGDfM71HyXa0lV\nzZo12b17N82bN+fEiRNpLhyWlpaYmppiYmKCgYEBtra2xMTEPLPMZyUX2XX06NFcKzsrhw4dws7O\nDldXV/37R0REEBQUxKhRo54rpvyKPack7rx19OhRCn0wAY2hES86fW+iNpldN87z17UzPNYmYWdq\nTrtyzrjalcFAo3k9k0zxykjSaVl76Sj7bl3EzNAYv0puWBmbolU6/T+dUmiV+u9vHSQmkGho9N96\npd/OzsiUR/ejuGJXkpuFS3LTthgJhkYYKoWz0nH+7k02XT3JodthdC5Tg2r2tVHnj6BO/4P29D8p\nT3Ad3DGo1yFbTWLF6yurLguXLl2iTJky+n7frq6uBAUFceLEiQz3OXPmDLVq1QJSnkgdOHCABg0a\nsHTpUn1Xh+TkZExNs26SOtq5KRbGb26z1eIFrRhazZtZJ3ey9NwBhldvyLvWcqPuVfNk95zu3bsD\nKXXVdevW0alTJ9q3b59fob1yci2patKkCQcOHMDPzw+AadOmsWnTJuLj43n//ffp3LkzXbt2xdjY\nmLJly76WX0psbCzjx48nJiaGyMhIunTpwl9//UWVKlUIDQ0lNjaWH374gZIlSzJz5kxOnz7NgwcP\nsLe3Z9q0acD/n6wNGzZk69atLFy4kIsXLzJv3jyUUtjZ2eHn58eXX37JyZMnSUpKYujQoTRq1Ijp\n06ezf/9+zM3NadWqFT179szPj0O8AnRXz6Lu3cTQOf0dI43hi/3cdUrHoduX+TM8hAeJjzA3KkCn\nCjXxLlHptRt5Srya7iXEsejsP1yJuUsp80L0r+JFUbP0Axap+BjUtbMp5/fVs2gsCmHUOYNhesu7\ngGcH7ICMhlo59O8Rrtsas/PGOeaHHqaabQk6d/2cIvdvozsbiAr9F3XjoiRUb6GsuizExsamGUjL\n3NycmJiYDPfRarWoJ5qZFixYkJiYGIyMjLCxsUEpxbfffkvVqlUpW7ZsljG9yQlVqvJWdvSv4sW8\nM3uZd2YPnzo2oaR5ofwO642Sk7pqx44dgZzXVY8dOwbwxtdVcy2p0mg0TJ48Oc2y8uXL6//28/PT\nJ1wvS9Ky0RkuN+79TZbbOyQkknRi7TO3f9rVq1dp2bIlTZo0ITIyku7du1OsWDGcnJwYN24c/v7+\nbNq0ia5du2Jtbc3y5cvR6XS0atWK27dvZ1jmwIEDCQ0NZfDgwcydOxeAv//+mwcPHvDbb7/x8OFD\nVqxYgaGhIdevX+fLL7/EycmJrl274uHhQeXKlZ8rdvFmUbevoP3nd9TVs2BojIF9bTRm2eunqJTi\n9P2brL98guvxDzA2MOS9UlVpVroqBY1MXnLk4m119v4tlpw7QFxyAh5Fy9Ht3dqYPJX4q/iHJK/3\nh6hr/7+wQEEoXi5bAxyZaAzpWMGFesUrsObSUU7fv8nkB7dp/I4DLRp2oYBPF4iLznBfFfsAjIzQ\nmEr/3zdRVl0WLC0t06yLi4vDysoqw30MDQ31+z25LUBCQgLjxo3DwsKCSZMmPTOm3G4F8Cq1Mqhv\nXIw9ibeYcXw7bQuUwcIg836Or1LcLyI1bofAnzNcf869e4bLX3T7p125cgUHBwdq1arF/fv3+fLL\nLylcuDCWlpYMGTKEtWvXsmjRIpo0aUJMTAyDBw9Gp9MxevRoGjVqxI0bN4iPj+fo0aMkJiZy/Phx\n6tWrx/Hjx/Hw8OD3338nPj6ehQsXEhYWxpgxY4iLi2PLli1cvnyZU6dOMXr0aLRaLZMnT8bKyorS\npUs/V+w5kR/niUz+mwOFCxfmp59+Yvv27VhYWJCcnAxAlSpVAChRogR37tzB1NSUu3fvMnLkSAoW\nLEh8fLx+26eppzpSA1y+fBlnZ2cArKysGDZsGMuWLdM3QzMyMsLJyYmLFy9KUvWWUfdvoT0QgAr9\nFwBNmaoY1uuQ7YTqSsxd1l8+wfno22gAz2IVaFvWEZsCBV9i1OJtplOKrdfO8Gd4CAYaDV3frUX9\n4u9mnCCZWUJCPJrSDmjKVEVTxgFN0XI57vdUvKA1w6r7cOJuBGvDjrIt4gyBkZfpWN4FtyIZPz3Q\nHdmM7uQ+NOVqYFDFA00FRzRyk+GNkVWXhQoVKhAeHk50dDRmZmYEBQXRu3dvNBpNhvtUqVKFI0eO\nULt2bfbt24enpydKKQYNGoSHhwd9+/Z9rphys6n5q9aU3RWwizjLusvH2a25wyjHJlgYF0i33asW\n9/N6Mu4nb+I/KbPjetHtn1aqVClmzZrFpUuXsLCwwMjICAsLC1q2bEmFChUIDQ3lzp07eHh4cODA\nAX755RcKFiyITqcjOTmZkiVLUqRIEVxdXTExMcHFxYXIyEgsLCxwdXXVd2V5+PAhDRs21MdVv359\nli1bRuPGjfXL6tSpg4mJSa5/h7l5nmSVrL1RSdXzPmF6evuQbH74K1aswNnZmS5dunD48GH27NmT\n4Xb79u3j1q1b+Pv7c+/ePf7++2998vR0EmVgYIDuv07WqSpWrMjWrVsBiImJYfjw4fTo0YP169dT\no0YNkpKSOH78OB06dHjhYxCvN+3hjajQf9EUK4dBPV8MylTJVjl3HscScOX/R/SrblOSDuWdeUea\nYYiXKD45kRXnDxFy7zo2JgXpX6Ue5a3sMt1eo9Fg9NG0XBk8QqPR4GJXmmo2JdgacYZt186w9PxB\n9t26SOeKrpQyt0m7g10pKFwSFXYCbdgJMDFD864Lhp5t0VgVfunxibz1rC4LY8aMoXfv3uh0Ojp2\n7EjRokUz3AdgzJgxfPHFFyQlJVGxYkWaNWvGjh07CAoKIikpiX379gEwcuRI/Q1TAU1KVSE68RF/\nXz/H3NN7GFGjEQVesNn66yC7ddXsykldNVVO66offvjhW1FXffPO1jzk4+PDV199xZYtW7C0tMTI\nyIikpKR0d1wdHR2ZP38+3bt3R6PRUKZMGSIjIwHSbVu4cGGSkpKYMWMGpqamaDQaGjVqxKFDh+ja\ntStarZYhQ4bg5eVFYGAgEydOxMTEhBYtWuifkIm3h6FnW9S7NdG8WzNbc73FJiWw5eop9twMRat0\nlLGwwbe8Cw6FiudCtOJtdi32PovO7ifqcSwOhYrRx74ulv/NHaULP4O6egaDer7pzuPcHo3PxNCI\nNmUd8Sxagd8uHyP4bgRfHdtKg5KVaF3GEXPjlKdRho7eGDp6p8z1dvYQuvNHUGcPQT3fXI1P5I1n\ndVnw8fHBx8fnmfsAlCtXjlWrVqVZ1qRJE0JCQl5ixG+mDuVdeJj0mMDIKyw++w+DqtbHUEbkzJGc\n1FXv378P5Lyu6ufnR2Ji4htfV5WkKgfc3d3ZuHFjpuuf7DO2bt26dOtr1qyp/3vXrl36vwMCAtJt\nO378+HTLRo8eneaxqnhzKZ0WTQaDQ2gKFUVTqOgLl5cyot8Ftl47zSNtEoULmNOunBNuRcpi8ApO\nxJ2dOWRSBQcHM2PGDH0lJ7M5ZETueXK49Oalq9GmbA0M/hsMQnftHNo/54LSYVC1DhQumS8xFjGz\nYFDV+py6d4Nfw46y+8YFgiLDaV/emTrFKuh/Fxq7dzD06ohBvQ5w5zoac5mnTYiXxUCj4YNKHsQm\nJXDq/g1WhQbyQWUPuUbnQE7qqk83o8tuXfVtIUmVEK8wpdOiTv2D9shmjNoNQ2P3To7K0ykdgZFX\n+CM8hPsJ8ZgbmbwWI/plZw6ZwoULs2TJEv7880/Mzc31ZWU0h0zjxo3z69DeaEk6Lb+FHWPvzVDM\nDI3pW7UuTk/MRaO7Hor2jzmgdBi2HoQmnxKqJ1W3LYl9oWLsvH6eLVdPsSo0kP03Q/F7143ylv/f\nVFGjMYAiGXe2VomPwbiAVATFK0XFRaf0DTx7iMqGpiRHnUhpOl6+OppXaHJhQwMD+lWph3/ITg5F\nXsbSxBTf8i75HZYQzyTPVIV4BSmlQ3fhX5JXTkC7cxU8ikXdichBeYpT924w9fhWfrxwmJjExzQt\nVYWvarWh8TsOr3RCBc8/h4yxsbF+DhmAsmXLMnfu3DTtwZ+eQ+bgwYN5eCRvj3sJccwI2cHem6GU\nMi/EOJf30iZUNy+hDfgBtMkYthyAQXnHfIw2LWMDQ94rXZXJbq2oVaQsV2LvMf3EdlZeCCQm8XGW\n+yptMtrfZ6LduiwluRLiFaEL2YPuxC4wNMH4cQzq7CF0e/6HunY+w+0zGjgrr5gaGqdMfGxmyfaI\ns+y4fi7fYhHiecmTKiFeMerOdbTblqMiw8HAEAMnHwxqt0Rjkb1BI67F3mdLQgTXT19IGdGvaHna\nlHXE1tT8mfu+KrIzhwxA06ZNiYhIm4xmNIeMeLnO3r/F0nMHiM1kuHSlFLq9v0JSIoYt+mFQ8dXs\nrG9ToCB9HOpSv/i7rLl0lAO3L3H87lVal3HEu2QlDDOazyohHtCgzh0mOTIco1YDX4kncEIY1GwC\n5oUwqFaXkOPHqVn+HVRkOJp3Mh41WLtpIerBbTTFyqEpVjbln11pNEaZD3f+MlmamPJxdR++Df6b\n38KOYWVsyqt9+0+87SSpEuJVY2aBun8LjX1tDOu0zXazjCSdls1XT7Ht2hl0KKralMC3vHP6Uc1e\nAy86h4y1deb9XDKbQ0bkXLrh0ivWon6J9MOlazQaDFsPRt26/MomVE+qXKgYn9d8j703QvkzPIRf\nw47yz61L+FV0pfJTv09NQSsM3/8M3b7f0J3YSfIvX2HYuAcGVTzzKXrxtlHaZDAwTP+7K1AQQ0fv\n/7HjEIUAACAASURBVF4YoClc8hkJv4IHkag7EajT/6QsMjDEqMvnaIqWyWK/l8fO1IKPqzdgRvAO\nfrxwmPdMSiK9yMWrSpIqIV4xGnNrjHpNQ1Mw+5X9yw/v8FNoIDfjoylcwJza2NCuev2XGGXeys4c\nMpnJaA6ZZ8nNSQRf94ksUyUoLbsTb3JVG4e5xogmJiWxuPmQYzePPaugXIwyo7fL/vtZAx1NynAk\n8Q7n4x8w8+ROKhpa4m5cJP1kpVaVsa5iSKkLu2HrMkIjbhNrm/0JL1/X8wRe79hfJ0rpUOeD0B4M\nwLCBH5oKTjkqz6j1IJROC/duoW5fSfkXeRVsMr7Rpz2wHo2VHRr72mj+G9nzZShlbsOgat78cHIX\nOxNu4pUQL3MnileSJFVC5COVnJRhU4rsJlSJ2mT+DA9hx/XzKBQNSlSifTlnTge/3kP5ZmcOmSc9\necf26Tlk3nvvvWe+f25OIvg6jt75dNz64dK1cemGS3+VvKzPux5wOeYOay7+y6XYe0SoR7QoU52m\npRz0oxqmcEV5eKM7uZ/K9dpme+CK1/U84f/Yu/P4qKrz8eOfe+/MZF8JIUAWEgghISSQsAsISBQE\nARUQVNRKtdq6i5Vf+61Lq4VqcWldWq1iiwuuoCKgsssmEMhGIIRANgghO5msM/fe3x9RJCQhZJnJ\ndt6vl6+S3HvOPDNNbuaZe87z0HFNOHsSXdfRTyWj7lkLBTkgK+jFZ6GNSRVQV3XWp39dkaShVzUd\nQ3Ul2v4NdV8kbMVw48NIru23KmKwhy8LQmL5MOMAbx/bxePDpolS60KnI5IqQegAek0l6vY1UFaI\nMn9pXSWxNjpems//0n+koNqMr6MriwePZbBHy8utd0at6SHzM39/f9asWXPh68Z6yAitd7ly6T/T\nK8rA2b1bVcMLdvPhyeHXsSc/g7WnElmbmcCp8kKWhI2vt39M8uyDMnFeB0YqdGd6eTHqhrfRz6QD\nElL4OJRxs5E8ets3EJMjhtueQk3cjp6yE+ua5e1SsfZik/oO4sfMY2ScL2RtZgLzQmKaHyQIdiSS\nKkGwMy0rFfX796C8GHwDocoMbVjqV2218EVmAjvy0pGQiOs/hNlBUfXe2AlCe7NoKp9kxLPz7IlG\ny6X/TC8rwPrJC8ghUchTb+9WiZUsSUzwG8SIXgH8++guEopyeTVlG7+NmISL0aGjwxN6Aic39PIi\npIHDUcbf2K5JTEtIsgy+gSjTFqN5+KDt/gLrJ3/DMP8JpCZaD7T4MSSJiSY/zMD3p48xyMOX4Y1c\ncwSho4h3XYJgJ7qlBu2Hz9ASt4EkI4+9oa6qXxuSn9SSPFan/0hxTSV9nT24M3QMwe4+zQ8UhDYw\naxb+nvg9meZi/F08+U34RHyd3Bqcp58vwvrZ38FcAh6+3SqhupiL0YEHIyfzXtpeDhZm82LSZh6K\nnIy3Q9MVNvWyQtSt76NcsxjJvZcdoxW6E8lgxHD700idpJqrJEkoo69HcvVCO7Kryf1XrWWSZH4z\nZCLLE77lv8f34j9iBj6Ors0PFAQ7EAtSBcFOtNQ9dQmVdz8Mi/6AMm5OqxOqSmst/zu+j1dTtlFa\nW8XMgEj+OGK6SKgEmztedo7Pq7PINBcz1ncAT0Zf23hCZS6pS6jOFyGPn4sy8roOiNZ+jLLCkiFX\ncU3/MPIqy/hbwnecriht8nzt6F70zBSsH/wZ7VSyHSMVuiLdXIJ2JqPRY50lobqYHDEOZd7jSAZT\nu8/d38WTRQNHUmm18O+ju7Boars/hiC0hrhTJQh2Ig+7GjQNedikNvX5SCzK5YMTByirrSLAxYs7\nB48loB03BAtCUyosNbx19AcsqNw6aBST/BqWSwfQzaV1CVVZAfKYG1DGzOqAaO1PliQWhMTiZXLm\ns1OHeTHxe34bMalB2XUAecwscHZH2/4R6rpX0UdfjzxuTl1hAEH4iV5lRjuwsa5pr4sH0l3PtWl1\ngz21x17hplzlN5D08wXszT/JZycPs2jQSJs9liBcKZv9ZmqaxjPPPMPx48cxGo08//zzBAbW9TUo\nLCzk0UcfvXDusWPHWLp0KbfccoutwhGEDifJMsqIa1o93myp5uOMePYXZGGQZOYERXGdf4SogCTY\nzeenDlNuqWGMsTdX9w1t+kRZBsWAPGoG8rjZ9guwk4jzD8fd5Mh/j//IqynbWDJkPDE+9fv6SJKE\nEnU1cp8BWL/5F9r+DehnM1FuesSmb0aFrkP9cT3awW+htgpcvVDGzIQuvoRWr62u66HVDg2Ebx04\nkqzyIrbnHSfUozcjewe1Q4SC0Ho2S6o2b96MxWJhzZo1JCYmsmLFCt544w0AfHx8LlTfOnz4MK++\n+ioLFiywVSiCYFe6aoWS/HbbMKzrOvGF2azJOEi5pYZgt17cETqWfi5NN7gVhPZ2vDSf3fkn8Xfx\nZJh2+TujkrM7hlv+Hxgduu0+quaM8Q3GzejIv47+wFtHd3HLwJFM6Te4wXlSnyAMt/0J9bv3kPoP\nEgmVcIG2Zx04uSJfvQA5akq7JCIdSVetqN/8Cyy1KLN/1+ZliybFwG/CJ/DXw9+yOv1HAly86NOG\nok+C0FY2u3ofOnSIiRMnAhAdHU1KSkqDc3Rd57nnnuOZZ57psX94he5FLzyNumY51k9frCsj3UZl\ntVX86+gPvH1sN9WqlXnBI/h9dJxIqAS7smgq7584gATcHjoa+Qqu15LJscdf1yO8+rI0ahquRkfW\nZBxkXWYiuq43OE9ycEaZdT/yiLgOiFLorOSxszH8ajlKzLVdPqECQNfB6Ih++jjWj1egny9q85R+\nzh7cHjqaatXKW8d2Uata2yFQQWgdmyVVZrMZV9dfKrIoioKmafXO2bp1K4MHD2bAgAG2CkMQ7ELX\nNNSD32L98C/o57KQgoeB0vo/grquszf/JM/Ef0NCUS6h7r78KWYGcf7hDXoACYKtbcw5Qn7Veab0\nG0ywmyiG0hKBrt48GR2Hr6MrG3OO8N/0H1Ev+VsIdcsBe3oSKtSnjJuN5ODU0WG0G8lgRJl5L/KI\naVCch3XNX9ELcto872jfAUzyG0RuRSkfnxQNoYWOY7Plf66urlRUVFz4WtM05Ev2fnz99dfceeed\nVzynLbund+XO7F019u4St6mqjIC0rbicP4vF6MTpsGmc9wmGI0dbNb9Zs/BDbT45WgVGJK4y+hJh\n8SQ3NZ3cdoxbEK5EXmUZm3JS8TI5MycousFxvbYaLWk7cuy1YulaE3o7ufFE9LW8dmQ7e/NPUl5b\nxb3hE3G4goID2qlknM+ftUOUgmB7kiSjTF4I7t5oOz6p62W14Mk297JaMDCWU+VF7DqbwSD33ozr\nE9JOEQvClbNZUhUTE8O2bduYMWMGCQkJhIWFNTgnJSWFESNGXPGcsbGx7RniBfHx8Tab29a6auzd\nKW4tLwP1YD7SoFicrrmdUOeG5aWvhKbr7Dp7gi9OHaZasxLh6cftoWPo1Q7lcm35eotkrfvSdJ33\n0/ej6hoLB43E8ZIlSLqlBnXtq+hn0pEcnJGGTeqgSDs/d5Mjj0Vdw1tHd5FSksdLSZt5YOhk3EyO\nTY7Ra6tRN73DwJpKND9v5PBxdoy457lcgS2oW13zxhtvYDAYuPnmm5k/f36TY7Kysli2bBmyLBMa\nGsrTTz994U5kcXExixYt4uuvv8Zkav+S412BEnMtkosX2rF94N23zfMZZYXfhE/gucOb+PDEAYJc\nvenn4tkOkQrClbPZx4pxcXGYTCYWLlzIihUr+H//7/+xfv16PvnkE6DuouLm1ro3n4LQmch9B2K4\n7SmUWfchtTKhKqgy80ryVj44cQAJiTtCx/BQ5JR2SagEobV2n83gxPkCRvQKYHgv/3rHdGst6pf/\nrEuoBo9EGnpVB0XZdTgqRn4XcTXjfIPJNBfzQtL3FFSZmzxfMjmizLoPVTGgbnoXNWmHHaPteS4u\nsLV06VJWrFhx4ZjFYmHFihWsWrWK1atX8/HHH1NUVNTkmOXLl/PYY4/xwQcfoOs6W7ZsAeCHH37g\n7rvvpqio7fuJujo5bBTK7AfarUR8byc37hw8llpN5a2ju6hWLe0yryBcKZvdqZIkiWeffbbe94KD\ngy/829vbm7Vr19rq4QXBrtqydCGhMIdVx/dSrVqJ8u7PbYNG4eng3I7RCULLldVW8UXmYRwVA7cM\nrH+XU9KsqF+9jp5zDGnQCJTpvxb9la6QIsvcOXgsHg5ObMpJ5YXE73gwcjKBrt6Nni8HDOFk1BwG\nH92EtmU1WGpQYq+1c9Q9w+UKbGVkZBAYGHjhw+DY2FgOHDhAQkJCo2NSU1MZNWoUAJMmTWL37t1M\nmzYNRVF47733uOmmm+z51Dqt9t5HGOMTwDX9wthyJo0P0vdzd9h4sVdRsBuxAF4QrpBeUYZXXuv2\nSTVG0zXWZibw5tEf0HSduwaP5bcRk0RCJXQKn2TEU2m1cOOA4Xhd8jPpd2o/etYRpOAolOt/02Wa\nkXYWkiRx44DhLBwYS7mlmpVJmzla0vS+qWpXHwwLfg8unmi7PkcvPWfHaHuOyxXYMpvN9VbXuLi4\nUF5e3ugYVVXrVXl0dnamvLwcgPHjx+PpKZalXY5eXYluqWn1+JuChxPs1ov9BVn8cDajHSMThMsT\nSZUgXAEtLwPr+88SkL4dLe9km+crr63mHynb2ZSTiq+jK8uGX8e4PiHiEzWhU0gpPsPBwmyC3Xox\nqZEmv+cCY5Bj4lBm3S8SqjaY0i+Me4ZMwKpp/PPIdvafy2zyXMm7L4YFT6Lc8FskT1/7BdmDXK7A\nlpubW71jFRUVuLu7NzpGUZR6hbl+Pldonm61oH71GurnK9Gryls1h0FWuHfIBFwMJj7OOEi2ubid\noxSExom/hoLQDC1tP+q374KmciZkHIF+A9o036nyQv59dBclNZVEeffnV2HjcDb0zM3KQudTo1r5\n8MQBZEliceiYRntSqUZHlLG3dEB03U9s70DcjA68kbqTd9L2UFZbRZx/eKPnSp69kTx72znCnuNy\nBbZCQkLIysqirKwMJycnDhw4wJIlS5AkqdEx4eHh7N+/n9GjR7Nz507GjWt5kRFbFwHqjEWGJE3F\n36Ljde4kFf99hlORs6h1qp+QXmncE5XebLKe5p8JW7jJMQiT1LFLlDvj630lRNxXTiRVgtAEXdfR\n9n2Ftu9rMDmhzH6AwqIaglpZNlrXdX44m8HHGQdRdY05QVFMDxh6RY1UBcFevs5KoqimgukBEfQX\n1bPsYrBnH56IjuMfKdv47NRhSmuruDl4hLg22FlcXBy7d+9m4cKFQF2xifXr11NZWcmCBQtYtmwZ\nS5YsQdM05s2bh6+vb6NjAJYtW8af/vQnLBYLAwcOZPr06fUe60pWJdiyQm5nrsCrjxyJtnstDgc2\nMuTIVyhzHkb+6cPMlsQdC5CZwKacVJKca7g3fEKHrQbpzK/35Yi4G5+7KSKpEoSmVFegpewCdx8M\ncx9C6tUPilr3yUetauWjjIPsyT+Ji8HEr4dcRYRX28vICkJ7yjYXs/l0Gr0dXZkZENnR4fQo/V08\neTL6Wv6Rso3Np49RVlvFXYPHYriCAiDa2Uyk3v5iKWYbNVdga8qUKUyZMqXZMQADBgxg9erVTT7W\nz9UAhYYkSUaZcDO4eaNt/RD10xeQFv0Byce/+cGXmB0URUZZIYeKcth25jhT+zds7yMI7UVcgQWh\nCZKTK4abHgUnt1aXSgcorDbz76M/kG0uIdDVm/vCJ4pS6UKno+oaq9P3o6Nz26DRmC56g65bakAx\niAp/Nubt6MIT0XG8nrqDAwVZlFuquS/88r2/tLyTdW86g4aizLwP6ZJeYoLQVSnRU5BcPNHSD4J3\nv9bNIcn8esh4nju8ic9OHSbYrRfB7j7tHKkg1BGFKgThMqRe/dqUUKUUn+GvhzeRbS7hqj4D+X10\nnEiohE5p25njZJuLGesbTLiXX71j2q4vsL7/Z/Sygg6KrudwMTrwSORUonv5c6w0n5VJm6nUrU2e\nL/n0R+o/GP1kIuqX/2hT1TRB6GzkQSMwzLgHSW7921VPB2eWhI1H0zXeOraLCvE7ItiISKoEwQY0\nXeeb7GReO7KdGtXK4tDR3DF4DEbxSb/QCRVVV/BVZhIuBgfmh4yod0wvPI2WuA1UK4g9VnZhUgz8\nJnwCE/0GkVNRwpfV2ZxrohKaZHRAmfMgUshw9OyjqF+8jF5TaeeIBaFzC/fyY1bgMIprKll1fC/a\nRSXvBaG9iKRK6PF0XUc9+C3qzk/bZb4KSy1vpO7gq6xkvByceSI6jgl+g9plbkFob7qu81HGAWo0\nK/NDRuBqdKx3TN2+BnQNZfItYmmZHSmSzG2DRjErcBjluoWVSZs5W3m+0XMlgxFl1n1Ig0ehnzmB\n+uU/6/VJEgQBrg8cSrinH8nFZ/gut/16TgrCz0RSJfRoumpF3fxftB8+RUvbj15tbtN8OeYS/pqw\nieTiM4R7+vHHEdMZ4NarnaIVhPZ3qDCH5OIzhHn0YaxvcL1j+olD6DlHkYKHIQdHdVCEPZckSdwQ\nNIyxxt6U1laxMmkzZyrKGj9XMaDMuAd52NXIo64XPe+EbkuvPI+69QN0a22LxsmSzN1h4/E0OfFl\nZiLpZaKJttC+RFIl9Fh6lRn1i5fQU3Yh+QZhWPRHJEfXVs+379wp/pb4HYXVZmYEDOWhyMn1PvUX\nhM6m0lrLmoyDGCSZ20JH1XsjrltrUXd+ArKCcrXoSdWRoozeLBwYy3lLNS8lbya3oqTR8yRZRpm2\nGDl4mJ0jFAT70Q5+i5a4DXXL+y2+I+tucuTXQ64C4D/HdnO+ttoWIQo9lEiqhB5JL83H+tHz6LnH\nkUJjURb8Hsm1dftFrJrKRycOsCptL4okc3/EJOYOiEZuZT8rQbCXtacSOG+pZmbgMPpc0mATxYgy\nfi7y+LlIlxSuEOxvSr8wbhs0inJLDS8lbSHbXNzRIQlCh5DHz0XqMwA9dU/dfs8WCvXwZe6AaEpr\nq3g3bQ+artkgSqEnEu/6hJ7Joa4Cnzz6epSZv0EyOrRqmpKaSlYmbWF7Xjr9nD34w4jrGN6r5b00\nBMHeTpQVsPPsCfo5e3Ct/5AGxyVJQg4fhzJqRgdEJzRmUt9Q7ggdQ6W1lpeTt5BZXnTFY1u6VEoQ\nOivJYES54bfg5Ia242O00+ktniPOP5xh3v04WnqWDdlHbBCl0BOJpErokSQnVwy3P41y1U1Irbyj\nlFaaz/OHN3GyvJBRvYNYNvy6hp/2C0InZNVU3j+xHwm4PXT0FTWYFTqHq/wGclfYOKqsVl5O3krG\n+ebL3GunkrCu+iP6uWw7RCgItie5eaPM/A3oOur6N9Gb2GvYFFmS+NXgcfRycGF9djJHS87aKFKh\nJ7FZUqVpGk899RQLFy5k8eLFZGfXv5gnJSVx2223ceutt/LQQw9RWys+RRPsSzK1br+Trut8n3uU\nV5K3UmGt4ZaQWJaEjcdBEb20baW568nWrVuZN28eCxcu5NNPP73smKNHj7JgwQJuvfVW/vCHP/TI\nKmnf5h4lr7KMSX1DGejeu6PDEVporG8wS4aMp1a18mrKNk40t+HeXArmUqyf/R0t76R9ghQEG5MD\nhiBPWoAcOQGcWt5P0sXowD1DrkKWZN5J20OpaEUgtJHNkqrNmzdjsVhYs2YNS5cuZcWKFReO6brO\nU089xYoVK/jwww+ZOHEip0+ftlUoQg+n11Shq003z2yJWl3j7WO7+ezUYdxMjjw+bBpT+4eJSls2\ndrnricViYcWKFaxatYrVq1fz8ccfU1RU1OSY1157jQceeIAPP/yQ2tpatm/f3kHPqmPkV55nQ3YK\nHiYnbhwQ3dHhCK00qncQ94RfhUVTeTVlG2ml+U2eKw+bhDL9bqitRv18JVpumh0jFQTbUWKm1a04\naWVz4GB3H+YFj6DcUs0bqTupslraOUKhJ7FZUnXo0CEmTpwIQHR0NCkpKReOnTp1Ck9PT1atWsXi\nxYspKysjODi4qakEodX0sgKsHy9H2/ZRm+9InK0sY111FvGF2Qxy780fR0xnkIf4lN8eLnc9ycjI\nIDAwEDc3N4xGI7GxsRw4cKDJMREREZSWlqLrOhUVFRiNPaf3kq7rfHDiAFZdY+HAWJwMpnrHtSO7\nUOO/a7cPIQTbivEJ5L7wiWi6zj+PbCe1JK/Jc+XwcXXLpVQr6hevoGWmNHmuIPQkU/oNZnyfELLM\nxbyRuoNacf0TWslmSZXZbMbV9Zfy1IqioGl1FVZKSko4fPgwt99+O6tWrWLv3r3s27fPVqEIPZR2\nOh3rR89D0RkwGIHWJ1XHS/NZnvAdpXot0/oP4bFh1+Bhcmq/YIXLutz1xGw24+b2y9IPFxcXysvL\nmxwTFBTE888/z/XXX09xcTGjR4+23xPpYHvPnSKtLJ8o7/6M6BVQ75heZUbd8Qnavq+huqKDIhRa\nKrqXP/dHTELXdV4/soPk4qZXfcihsSizHwCj6adroiAIkiRxe+hoRvQK4HjZOd46tgtVExUBhZaz\nWVLl6upKRcUvf5g1TUP+6fasp6cngYGBhISEYDAYmDhxYr1PngWhrbTUvaifr4TqSuSpt6NMXtjq\nghSHC3N4NWUbFk1liqkv80NiUFq51EBonctdT9zc3Oodq6iowN3dvckxzz//PB9++CEbN25k9uzZ\n9ZYSdmfltdV8dvIQDoqBRQNHNliyqu1ZBzWVyGNnIbl4dFCUQmtEevfjgaGTkSSJN1N/IKEot8lz\n5eBhGO5egewfZscIBcF+dHNpiwtXKJLMkiHjCff0I7n4DO8d34vWA/fbCm1js531MTExbNu2jRkz\nZpCQkEBY2C8X8ICAACorK8nOziYwMJD4+HjmzZvX7Jzx8fG2Ctemc9taV43dVnF75qcRmLYVq8FE\nduQMzFY3aOVjHbWWsqs2HwWJ6xz646+4iNe7A1zuehISEkJWVhZlZWU4OTlx4MABlixZgiRJjY7x\n9PTExaWupL6vry+HDx9u9vG7w7Vna00eFWot44y+nDpyjFMXHXM0FxKatIMaJ0/SNS/0K4ipq/48\ndee4rzP2Y1NNLv9K3ck1pn6EGFq+ed8WuuprLnQ9enkx1o+eR/Lsg3LzY0gtKCBllBXuj5jEK8lb\n2V+QhZPB1OgHUILQFJslVXFxcezevZuFCxcCsHz5ctavX09lZSULFizg+eef5/HHH0fXdWJiYrj6\n6qubnTM2NtYmscbHx9tsblvrqrHbMm69JgLVWozjhHmEebeuaamu62zMOcIPWfm4Ghx4MHIyA9x6\nide7ibltrbnrybJly1iyZAmapjFv3jx8fX0bHQPw3HPP8eijj2IwGDCZTPzlL39p9vG7+rUntSSP\nEylpBLl6c8fwqfUaU+u6jvrpi+jouEy/i5gBkc3OJ34P7OtK444FwsvO8Y8j29lam8eAkGBG9Q6y\nfYCX0dWvPUIX4+qF1HcQ+ol4tB8+Q5m8sEXDHRQDDwydzEvJm9mRl46zwcRcUdBHuEI2S6okSeLZ\nZ5+t972Li1GMHTv2QuljQWhPkoMThtkPtHq8put8nBHP9rzj9HJw4aHIKfg5i/5THam568mUKVOY\nMmVKs2OgLkH66KOPbBNoJ1SrWvngxAFkJBaHjqmXUAFQUwWAFDIc+QoSKqFzG+ThyyORU3k1ZRvv\nHNuDqmuM9W2+EJSWHg/VFcjDJtkhSkGwDUmSUK77FdbiPLTDm5H6BCGHj2vRHC5GEw9HTuHFxO/Z\nmHMEJ4OR6/wjbBSx0J2IjSGCcBGrpvJu2h625x2nn7MHT0THiYRK6NLWZ6dQWG1mmv8QAly9GhyX\nHJ1R5j+BMuPXHRCdYAsh7j48OmwqTgYD76XtZffZjMuer1tqULd9iLr5f2hJO+wUpSDYhmRyxDD7\nt2ByQt28ulVNr91NTjwy7Bo8TU58cSqBH/JO2CBSobsRSZXQpelWS7uVf662WnjtyA4OFGQx0L03\nS6Pi8HJwbpe5BaEj5FaU8H3uUXo5uDArcFiT50mS1Opm2ELnNMCtF48OuwZng4n/pf/Izrz0Js+V\njA4YbnoMnNxQt6xGTdxuv0A7ifZsMJ6VlcWiRYu47bbbeOaZZy608/jkk0+4+eabueWWW3pcfzx7\nk7z8UKYvAdWCdqZ1CVEvRxceHTYVV4MDH5zYz8GCrHaOUuhuRFIldFm61YL69euoG/+Drqltmqu8\ntpqXkrdwtPQsUd79eSRyCi5GU/MDBaGT0nSN1en70dC5ddAoHFqwYVvoHgJdvXks6hrcjA58cOIA\n28403fRX8umPYd5ScHZD2/o+auI2O0ba8dqzwfjy5ct57LHH+OCDD9B1nS1btlBQUMDq1atZs2YN\n77zzDitXrqS2trajnm6PIA8cjuGu51CGT231HH7OHjwUOQUHxcC7aXtJKT7TjhEK3Y1IqoQuSbda\nUL96DT0zBSzV0IaeEoXVZl5M+p4sczHj+4RwX8RETOINqNDF7chLJ7O8iFG9g4j07tfR4QgdxN/F\ni8eGTcPd6MiajHg2nz7W5Ll1idUT4OyOtuvzFpel7sras8F4amoqo0aNAmDSpEns2bOH5ORkYmJi\nMBqNuLq6EhQURFpa00mu0D4kzz5tniPIzZvfDZ2MLEn86+gPnCg71w6RCd2RSKqELke31tYlVFlH\nkIKHodzwO6RWNrI8XVHKC4nfk19VznX+EdwROgallf2sBKGzKKmpZF1mIs4GIwtCYhoc1wty0M2l\nHRCZ0BH6uXjweNQ0PE1OfHryEJtyUps8V+rVD8O8pShzH+5R/craq8G4qqoXlvtdeu6lc5jNZls+\nJaEdDfbw5TfhE1B1jX8e2UG2ubijQxI6IfFxvNCl6NZa1C9fQ89ORQqOQpl1f6sTqhNl53g9dQeV\nVgvzQ2KY1n9IO0crCB3j05OHqFatLA4djbvJqd4xXbVi3fA2mEswLFmO5OjaxCxCd+Ln7M7jMv78\n5wAAIABJREFUUdN4KXkLazMTUHWVmU3ss5N69aOndeZprwbjiqJcGAd1CVlj5/48x+XYumR8Vy1J\n3+a4dR1a2XtqstGPrbV5rDz8PbMdA/GUr3ybQI99vTtIR8Qtkiqha9E0sFqQQqJRZt7X6oQqsSiX\nt4/tRtU17g4bx5grKDksCF1BjrmE+MJsgt16Mb7PwAbHtcTtUHwGedjVIqHqYXyd3FgaNY2Xkrbw\nVVYyVk1jdlCUaG5K+zYYDw8PZ//+/YwePZqdO3cybtw4oqKiePnll6mtraWmpoaMjAxCQ0MvG5Mt\ne6p1955tTdFyjqHt+RJl7oNIrShEFQv0zUvngxMH+F7P5/dD4/B2dGl2XE99vTtKR/XHE0mV0CX8\nvJxCMjmi3PgwyEqrE6rdZzN4P30/BlnmdxFXi/0mQreyIaduX8eswGHIl7xZ1ivPo+37Ehycka+a\n2xHhCR3Mx9G1LrFK3sKGnCOous6NA6KvKLHSi88itbKhemfXng3Gly1bxp/+9CcsFgsDBw5k+vTp\nSJLEHXfcwa233oqmaTz22GOYTKIYkr3pmSnoZ9JRN/4HZc4DSK1Y7j+pbyiVVgtrMxN4JWUrS6Om\nNVgRIPRMIqkSuoyf/+i3tvSzrutsyk1lXWYiLgYTDw6dTLC7T3uGKAgd6kxFKYcLcwhy9WaoV98G\nx9Xda6GmCnnyIiQnt4YTCD2Ct6MLj0dN4+XkLXybm0q1amHhwNiGjaEvoqXHo37zb+SJN6PEXmfH\naO2jPRuMDxgwgNWrVzf4/vz585k/f347RSy0hnzVTejnstFPJaHtW48ybnar5pkeEEGltZZvc1P5\nR8p2Houqa18g9GxiR77QJbR1eYqm63x68hDrMhPxcnDmieg4kVAJ3c6GnCPowMzAyAa/M7q5FD11\nD/Tqhxw9uUPiEzoPLwdnHo+ahr+LJzvy0vnPsT1YLtOaQvLxBxcPtJ2foh7cZMdIBaH9SLKMcv29\n4O6Dtu8rtJOJrZ7rxgHRTPIbRE5FCa8d2UFtO/XMFLoukVQJnZZuqUHd+1Wbm/taNZVVaXvYciaN\nvs4e/D46jr7OPaeqldAznK08z8GCLAJcvIjy7t/guOTqieG2p1CuvRtJVjogQqGz8TA58XjUNELd\nfYkvzOafKdupsloaPVfy6oNh/lJw9UL74TPUAxvtHK0gtA/JyRXDDb8FxYj67bvoNVWtm0eSWDRo\nJCN9Ask4X8CbR3/A2saemULXJpIqoVPSLTWo616t+yQpYUur56lRrbyeupP9BVmEuPnwRNQ0vB2a\n31QqCF3Nxp/uUl3fyF2qn0k+/ZH9Btg1LqFzczaYeHjYFIb38ietLJ+VSZs5X9v4m0zJsw+G+U+A\nmzfars9RD31n52gFoX1IvoEo192Ncv29SA6t3w8lSzK/ChtHpFc/UkvyeDdtL5re+r6ZQtcmkiqh\n09Frq1HXvoqeexwpNBZ5+DWtmsdsqeal5C2kluQR6dWPR4dNxcXo0M7RCkLHO1dVzv5zmfRz9mB4\nL/+ODkfoYoyywm/CJzDxp6VMLyR+T0FVeaPnSp6+dQ2Cffoj9R1k50gFof3IYaOQg4a2eR7DT78/\ng9x7E1+YzfvpB+r1KhN6DpFUCZ2KXluNuu5V9NPHkUJHosy4B0lpeT2V4uoKXkjcTGZ5EWN9g/lt\nxCRMrZhHELqCTTlH0NC5PjCyQcU/QbgSsiRz26BRzAyIpKDazN8Sv2+ywank2RvD7U8j9w2xc5SC\n0DmZFAMPDL2aQFcvdudn8PmpBJFY9UAiqRI6FW3f1+in05EGj0K5vnUJ1ZmKUv6W+B35VeeJ6x/O\nnYPHosjiR13ongqrzew9dwo/J3difQLqHWvrfkShZ5EkidkDolg0cCRmSzUrkzZzrPRsE+eKa6og\nXMzJYOKhoVPwc3Ln+9NH2ZiT2tEhCXZms6uipmk89dRTLFy4kMWLF5OdnV3v+HvvvcesWbNYvHgx\nixcv5tSpU7YKRehC5HGzka+6CWXGr1u1mT7jfAEvJm2mtLaKm4NHMC9khPjkXujWNuWkouk61wcO\nbVASW13/JtZv/oVuqemg6ISuaHK/wdwzZAJWTeOfKduJL8hufpAgdANa9lH0irJWj3czOfLwsCl4\nOzjzZVYi288cb8fohM7OZuuhNm/ejMViYc2aNSQmJrJixQreeOONC8ePHDnCCy+8QEREhK1CELog\nyeiAMvr6Vo09XprPP49sx6pp3DV4LOP6iKUpQvdWXFPBnvyT+Dq6MrJ3UL1jWmYK+slEJP8wEP1T\nhBaK7R2Ii9HEm6k7efvYLsotI5ncb/Blx2hHdqOfL2p17x9B6EjamQzUz19CChiCctOjSK1c4eLt\n4MIjw6by98TNrMk4iJPBKJrC9hA2u1N16NAhJk6cCEB0dDQpKSn1jh85coR//etf3Hrrrbz11lu2\nCkPoIU6UneO1IztQdZ37IiaKhEroEb7NSUXVNWYERqJcdJdKV62o29eAJKFMWdTmPm9CzzTE04/H\no6bhanTko4yDfJWZ1OQ+Ed1qQd3/Ddq+r1D3rBP7SYQuR+obghQSjZ5zFG3f122aq4+TOw9FTsHJ\nYOS9tH1kWM+3U5RCZ2azpMpsNuPq6nrha0VR0LRfykzOnDmTP//5z/z3v/8lPj6e7du32yoUoZPS\na6rQm+iJ0hIZ5wv4x5HtWHSVe8MnEC2qnwk9QGlNJbvOZuDj6MKY3gPqHdMStkDJWeSoyXVNWwWh\nlQJdvXkyOg4fR1e+yUnh/RP7URspGS0ZjBjmLQWP3mg/rkfb+6VIrIQuRZIklOt+VdcY+Mf1aFlH\n2jRfgKsXDwydjEGW2VKbxzvHdmO2VLdTtEJnZLOkytXVlYqKigtfa5qGfNGt1DvvvBNPT0+MRiNX\nX301qaliQ19PIltrUL94GXX9G21KrE6dL+QfKduwqCr3DJkgykkLPcZ3uUex6hrT/YfWK8Si11Si\n/fgNOLogj5/TgREK3UVvJzeejI4jwMWLXWczeOvoLiyNNDmV3Lzr+lj9nFjtWQcisRK6EMnRBWXm\nfaAoqBvfRi9vvALmlRro3ptlw6+jt+zI/oIsnon/hgMFWeIDh26q2WWeqqqiKC0vGBATE8O2bduY\nMWMGCQkJhIWFXThWXl7ODTfcwIYNG3BycmLfvn3Mmzev2Tnj4+NbHMeVsuXcttbVYpetNYQkr0cv\nP0ex72ByExKgFZWkCtRqvqnJwYLGNaZ+6FnniM86Z4OI6+tqr/fPumrcQkPna6vYefYEXg7OjOsT\n3OC4PGwSuHgiObo2MloQWs7d5MTjUdN4M3UnCUW5vJq8jd8OnYTzJfv1fk6srJ/9HS1xG4bhzf9t\nF4TORPYbgH71LWj7vkI3lyC5ebdpvv4unsxxCKTUz4Uvs5L4z7HdHOiVxa0DR+Lp4NxOUQudQbNJ\n1c0338y6detaPHFcXBy7d+9m4cKFACxfvpz169dTWVnJggULePTRR7njjjswmUyMHz+eSZMmNTtn\nbGxsi+O4EvHx8Tab29a6Wux6TRXq5yvRy88hRYzHN+4u+rRiM2i2uZj3k7dgQefusPGM9h3Q/sE2\noqu93j+zZdwiWbO/708fw6KpTPePwHBJlUzJwRllongjK7Q/J4ORByMn827aHg4V5vD3xM08FDm5\nwRvDnxMr3VyG9XRRB0UrCK0nR01GDhvVbh9MyZJEnH840b38WZ3+I4lFuRwvzWdeSAxX9QkR+167\niWaTKh8fHw4cOEB0dDQm05VXkJIkiWeffbbe94KDf/lEdc6cOcyZI5am9CS61YL69Rvo+ZkU9wnD\nN+6uVlXXyTGX8EryVqqsFu4aPM5uCZUgdAZmSzU7zqTjaXLiKr+BHR2O0MMYZYV7hlzFxxnxbM9L\n54XE73k4cgp9nN3rnSe5eiG5eoFIqoQuSJIksMGdfl8nNx4ddg27zp7g81OHWZ3+IwcLsrg9dDQ+\nYmVBl9dsUpWSksLixYvrfU+SJI4ePWqzoIRuStdAlpFChpPbf0yr7lCdrijl5eStVFpruWPwWMY2\nsvRJELqzzafTqNGszPWPxtiKXm6C0FayJLNw4EjcTU58lZXEC4nf82DkZAa49ero0ASh05MliUl9\nQxnm3Z/30/eTUnKGZ+O/Ye6AaKb0G9yg36DQdTSbVO3bt88ecQg9gGR0QJnzYF1ylZjc4vFnKsp4\nOXkLFdYaFoeOZrwomy70MBWWGradScPd6MgEcZdK6ECSJDEzMBJ3oyMfnDjAS0lb+E3EBIZ69bvs\nOC3tAFJQBJKji50iFYT2o+t6uy3V83Jw5oGhV7O/IJOPMw7xyclDxBdmc0foGPycPdrlMQT7ajYd\nrqys5IUXXuCmm25i9uzZ/PWvf6WystIesQndkKQYkFrRiPRsZV1CVW6p4dZBo5jgN8gG0QlC57bl\nTBrVqpVr/cMxKb98JqbXVKFlHxUVpQS7m9h3EPeFT0BD57UjO9h/LrPJc7XcNNQN/8b66YvoFWX2\nC1IQ2kjXNNS9X6Jt/6hd55UkiTG+wTwTO5NYn0Ayzhfyl0Mb2ZB9BFVr2LpA6NyaTar+8pe/UF1d\nzV//+lf+9re/YbFYePrpp+0RmyAAkF95npeSt3LeUs3CgbFc3Te0o0MSBLurstay9XQargYHJl3y\nO6Albq0rAHNkdwdFJ/Rkw30CeDhyCg6ygXfS9rD59LFGz5P6hyJHTYbCXKyf/A29rNC+gQpCa2lW\ntBOH0BK2oqXtb/fp3U2O3Bs+gfvDJ+JidODLrESWJ3xLtrltJd0F+2o2qUpJSeGpp55iyJAhhIeH\n8/TTT5OSkmKP2IQuTjt7Et1a26Y5CqrKeSl5C2W1VcwPiWFKv7DmBwndjqZpPPXUUyxcuJDFixeT\nnZ1d7/jWrVuZN28eCxcu5NNPP73smKKiIu6//35uv/12Fi1aRE5Ojt2fT2tsPXOcKtVCnP8QHC6+\nS1VbjRb/HTg4I4XGdGCEQk8W6uHLE9FxeJic+PTkIb44ldDgzqkkychTb0MefT2UnqtLrIrOdFDE\n9VVXV/Pggw9y2223ce+991Jc3PDN7CeffMLNN9/MLbfcwvbt2y87LiEhgQULFrBo0SJee+21evNk\nZWVxww032Pw5Ce1HMpgwzLofjA6o3/8XvTjPJo8z3CeAp2NmMr5PCDkVJSw//C3rMhMb7Qsn2FdJ\nTSW7z2Zc9pwr2g1XVlZW798GQ7NbsYQeTsvLQP3076hfvd7qJUmF1WZWJm+htLaKecEjmNZ/SDtH\nKXQVmzdvxmKxsGbNGpYuXcqKFSsuHLNYLKxYsYJVq1axevVqPv74Y4qKipoc8+KLLzJnzhzef/99\nHnnkEU6ePNlRT+uKVVstbD59DBeDicl9B9c7piVsheoK5Jg4JNHzROhA/V08+X10HH2c3Pg2N5X/\npv+I1iCxklCuugl54jwwl2D95t/oescvc/roo48ICwvjgw8+YO7cubz55pv1jhcUFLB69WrWrFnD\nO++8w8qVK6mtrW1y3NNPP83KlSv56KOPSEpKulDca926dTz22GOUlJTY/TkKbSN5+aHE3QWWGqzr\n30S31NjkcVyMJu4cPJaHI6fg5eDMxpwjPHdoIxnnC2zyeELjqq0WEotyWZNxkKcPrmfZ/nX8L/3H\ny45pNju66667mD9/PlOnTkXXdbZu3cq9997bbkEL3Y9enIe67h+gWpGHT23Vps6i6gpeStpCSU0l\nNw4YTpx/uA0iFbqKQ4cOMXHiRACio6Pr3S3PyMggMDAQNzc3oK6f3YEDB0hISGh0zOHDhxkyZAi/\n+tWv6N+/P3/84x/t/GxabnvecSqttcwOisLRYLzw/YvvUskjrunACAWhjo+jK09ExfFa6g725p8k\nU3YitCaiQS8rZeR0JCdXJN8gpE5Q7ezQoUPcc889AEycOJE33nij3vGkpCRiYmIwGo0YjUaCgoJI\nS0trdJzZbMZisRAQEADAhAkT2LNnD+Hh4Xh6evL+++8TFxdn3ycotAs5bBT6mfS6ZYC716JMXmiz\nx4rw6stTsdez9lQiO/KO82Li90zpN5g5A6JxVIzNTyC0iKZrZJUXk1qaR2rJWU6WF174UMhBNhDp\n1Y9wLz84W9HkHFfU/DcyMpKDBw+iaRqvvfYaYWFiCZbQON1cgvWLl6G6AuXau5BDols8R3FNBS8l\nb6aopoI5QVFMD4iwQaRCV2I2m3F1/aWHh6IoaJqGLMuYzeYLCRWAi4sL5eXljY5RVZXTp0/j4eHB\nqlWreP3113n77bd56KGH7Pp8WqJGtfJ97jGcFCNT+11ylyp5J1SbkcfNEXephE7DzeTIo8Om8l7a\nPg4X5fDc4U0sCRtf94bkIvLQCR0S36effsr//ve/et/r1asXLi51FQl/voZcrKKiosF1xmw2Yzab\nG4yrqKiod+1xcXG5sMx48uTJtnhKgh3JE+fX/e/I6TZ/LEfFyKJBIxnVO5D/pf/I1jPHSSw6zeLQ\nMQ1+n4SWK6gqJ7X0LEdLzpJWdpZKqwUACQhy9Sbcqy8Rnn6EuPtg+KmFSfzZ+CbnazKpWrt2bb07\nDM7OdX+wU1NTOXr0KHPnzm2P5yN0I3p1JdYvXoHyYuSrbmrVH8ySmkpeStpCYXUFswIjuT4w0gaR\nCl2Nq6srFRW/fDr0c0IF4ObmVu9YRUUF7u7ujY5RFAVPT0+mTp0KwNSpU3n55Zebffz4+KYvom3V\n3NxJlmLM1hpiDL1IvaQVgaS60ytkPMVSLzQbxtgYW74mtiTitp+RuhNORl/2Wc7xSspWYgy9iDH2\nQm6nktStNX/+fObPn1/vew8++OCF68XP15CLXXo9+TnJuvj7P49zcXGpd67ZbG4w35Ww9f/nXfFn\nCjpJ3O5hkHb5/TWXamvcM/HjkMFIYk0xr6RsJUzxYKypNw6SbfsVdorXuxUai7tGVzmtVpKrVXBa\nraRct1w45iYZGWLwwF92oZ/ijKOmQJGV8qJcEsm9osdsMqn68ccfL7tsSyRVQgMGI5KXH1JAGPKo\nGS0eXlZbxcvJWyioNnN9wFBmBQ6zQZBCVxQTE8O2bduYMWMGCQkJ9e6Wh4SEkJWVRVlZGU5OThw4\ncIAlS5YgSVKjY2JiYti+fTtz5sxh//79hIY2X00yNjbWJs8rPj7+snPXqlbWHPgKR8XA7SMn42J0\naOSssQTZJLqmNRd3ZyXitj8pPp6rh47graO7OFRTRIWLgSVDxuNhcmpyjJ6fidRnQLNzt+ebvZiY\nGHbu3ElUVBQ7d+5k5MiR9Y5HRUXx8ssvU1tbS01NDRkZGQwePLjRca6urhiNRnJycvD392f37t08\n8MADLY7Jlv+fd9WfqZ4e9xggq7yY/6XvI62ilHy1lpmBwxjq1ZdeNuj91tVfb6umcrK8iKMleaSW\nniWrvBiduiV9ToqR4Z7+RHj2JcLLj95Obs3M+svcTWkyqbp4I/ilqqqqruiBhZ5FMhhRZv4GJFq8\nj6qstoqXkraQX1XOdP8IZgdFtVuDPaHri4uLY/fu3SxcWLd+ffny5axfv57KykoWLFjAsmXLWLJk\nCZqmMW/ePHx9fRsdA7Bs2TL+7//+j48++gh3d3dWrlzZYc+rObvOZnDeUs30gIgmEipB6PwGuPXi\njyNm8N/0fSQW5fLcoY0sGTKeIZ4Nly9pyTtRN/8Pefxc5NEz7fZ3YNGiRTz55JPceuutmEymC9eF\n9957j8DAQKZOncodd9zBrbfeiqZpPPbYY5hMpibHPfvssyxduhRVVZkwYQJRUVF2eR5C9xfk5s0f\nhk9nU24qG7JT+OBEXYn33o6uDPH0Y4hnH4Z49sHV6NjBkdqfRVM5XVFKsqWEvUe2c7zsHDWqFQBZ\nkhjo7kO4px/hXn4McOuF0s77OZvdU7Vp0yZef/11qqqq0DQNTdOorq5m37597RqI0D1Icst/QM/X\nVvNy8lbOVp0nrn84cwdEi4RKqEeSJJ599tl63wsODr7w7ylTpjBlypRmxwD069ePd9991zaBtiOL\npvJtbiomWWFaP1H5UujaXIwm7g+fyJYzaXx+6jCvJG/7aYn3UOSL3thI/mHg5o22Zx3UVCJPnG+X\nvweOjo68+uqrDb5/1113Xfh3Y8sGmxoXHR3Nxx9/3OTj7dq1q/XBCp2Ormno+ZnIfUPs8niKLDMz\nMJIxvgNIKjrNsdKzpJWd44ezJ/jh7AkA/F08LyRZoR6+3a64RaW1lhxzCTkVJeSYi8kxl5JXVfZL\nxdFi6OPkToSXH+Gefgz26IOTwbavQbNJ1Ysvvshzzz3He++9x3333ceuXbsa7d8gCK1htlTzcvIW\n8irLuKZfGDcHDxcJlSAAe86epLS2imv9w3Ez9bxPHIXuR5IkpvUfQoibD28f28XX2cmcOF/A3WHj\ncf/pZ1zy6oPhlmVYv3gJLf479JpKlGvuaNUHdoJgL+qm/6Cnx8MtTyL72Sexgrpqm1P7hzG1fxiq\nrpFdXszR0nyOlZ4l43wBuRWlbD59DFmSCHHz+ekulh/Bbr0uFF7o7HRdp7S26qcEqphscwm5FSUU\nVtevwmeSFQa49iLA1QuKypk+fAzeDu2/JPJymk2qPDw8GDduHIcPH6a8vJwHH3yQG2+80R6xCZ2c\nlpGAFDAEqZVv+CosNbycvJUzlWVM7juY+SExIqESBMCqqWzMPYJRVoi7pD+blroXFAUpdKR4oyl0\nSSHuPvzfiBmsOr6X5OIzPH94I0uGXMVgD18AJDdvDPOfRF37CnrKLjSDCWXKrR0ctSA0TR46ATXt\nAOo3/0a67U9Ijq7ND2pniiQT7O5DsLsP1wcOpVa1knG+kGNlZzlWmk/G+UJOnC9gfXYKDrKBQR69\nGeJZdxenv4tnhxeQgbqy5ueqysm+cAeq7j+ztX5PMDejA+GefgS4ehHo4kWAqze+Tq4X7nrHl8Xb\nPaGCyyRVpaWleHp64ujoyKlTpwgJCWH//v2MHTsWs9lszxiFTkg7cQh1/ZtIQUMx3PhIi8fX6Cqv\npGwlt6KUq/uGsnBgrEioBOEn+86doqSmkmv6heF+0YZ+3VKD+sMnYLViCBoKNtiYLAj24GJ04LcR\nV/P96aOsO5XIS0lbmDMgiuv8I5AlCcnZDWXeUtTv/4s8fGpHhysIlyUHRaCPvQFt31eom95FmfNA\nh/dfMykGwr38LpRer7TWcrw0n6Ol+aSVnuVISR5HSvIAcDE4EObpe2G5oK+jm83fk9WqVs5Ull24\n85RtLuZ0RSm1mlrvPB9HVwZ59CbQ1YsAF28CXL3wNDl1yveMTSZV1113HWPHjmX8+PG8/PLL/P3v\nf+ftt99mzZo1DdYUN0bTNJ555hmOHz+O0Wjk+eefJzAwsMF5f/rTn/D09OTxxx9v2zMR7EbLPY66\n4S0wmJDHtbwKZKW1lg01uRRo1UzwG8jCgSM75S+HIHQEVdPYmHMEgyRz7SVNr7Wk7VBZjjxmFpJI\nqIQuTpYkrvOPYKBbb/5zbDfrMhNJLzvH3WHjcDU6Ijk4YZh1X0eHKQhXRB4zC/3MCfRTSWgHv0Vp\nRRVkW3I2mBjuE8Bwn7qm1KU1lRwry+dYaT7HSs5yqDCHQ4V1/dS8HZwZ4umH1XKe/OwUVF1D1XVU\nXcOqaT99raFe+LeOtd7XP52vqb8cu+R4haUW7adKfFB3Pejn7IG/i9eFO1D+rl44G0wd8nq1RpNJ\n1bZt2/juu+/46quvyMzM5M033+SVV17B3d0dDw+PZifevHkzFouFNWvWkJiYyIoVKxp0KF+zZg3p\n6emMHj267c9EsAu9MBf1q3+CrqPc8FtkvwEtGl9ttfCPlG0UaNWM7xPCbYNGd4pbzoLQWewvyKSw\nuoLJfUPxvKihr26pQTu4CUyOyDHTOjBCQWhfgzx6838x01mVtpeUkjz+cmgj9wyZwCCP3h0dmiBc\nMUmWUWb8Guv7f0bPPoo+8roOv1t1OZ4Ozoz1DWasbzC6rnOuqrwuwSo9S1pZPnvyT9admFXYqvll\nJBRZRpF+/q/ua6Os4CgZ8XVyJ8DFk4Cf7kD1c/HA2EX2eTWlyaTK2dmZuXPnMnfuXPLz8/n66695\n4IEH8PT05Oabb2b27NmXnfjQoUNMnDgRqKuCk5KS0uB4UlISt9xyCydPnmyHpyLYmm4urWvuW1OF\nMv3XyEFDWzS+VrXyeuoOTpUXEaq4szhUJFSCcDFV19iQcwRFkrkuIKLeMS15R91dqtEzO2S9viDY\nkqvRkd8Nncy3ual8lZnEyqTNzB0QTZx/eKN/J/RLNqkLQmcgObtjWPAkuPfq1AnVpSRJoo+zO32c\n3bm6XyiarpNbUcLB1GSGhA7+JTGSpQv/NkjyRUnTT9+/KInqie/vmi1UAdCnTx9+/etfM2vWLN54\n4w3+8Ic/NJtUmc1mXF1/+cOvKAqapiHLMufOneP111/n9ddfZ8OGDW17BoL9OLkiBUUg+fgjh49t\n0VBV03j72G6Ol51jRK8AYiud6pXRFQQBDhZkca6qnEl+gxpsstVPHP7pLlVcB0UnCLYlSxIzAoYy\nyL1uOeAXmQmknz/HXYPH4XpRnzZ1/wa0xG0Qs7ADoxWExkmeXf8OqyxJBLp6U6C4EuHVt6PD6TKa\nTarKysrYtGkT69evp6CggBtvvJEtW7Y0O7GrqysVFb98kvRzQgXw7bffUlJSwj333ENhYSHV1dUM\nHDiQuXMvvz+nPbun23NuW7Nr7L2iAAla8Ji6rrOtNo8Tajn9ZWdiKh2RJanLvuYibsEWNF1jQ/aR\nun0ml9ylAlDmLYXC00hO4i6V0L2FevjyxxEzWJW2h+TiMzx3eCP3DLmKge4/vVlVFKQWrpQQBEGw\ntSaTqm+++Yavv/6aw4cPM3XqVB5++GFGjhx5xRPHxMSwbds2ZsyYQUJCAmFhYReOLV68mMWLFwOw\ndu1aTp482WxCBRAbG3vFj98S8fHxNpvb1jp77Lqu81HGQU7klTPQ3YeHI6fioBg6fdy89l5ZAAAg\nAElEQVRNEXE3PrfQdocKczhbdZ7xfULwaWR5nyQr4Nuw2I8gdEfuJkcejJzCxpwjfJ2VzN+TNnPT\ngOFM6z8EJfY6dF2HQ4c6OkxBEIQLmkyqPvjgA26++WZWrlyJi0vLq0zFxcWxe/duFi6suz2/fPly\n1q9fT2VlJQsWLKh3rqj81n2ty0xkR146/i6ePDB0Mg7KFa04FYQeRdN1vslOQUbi+gDxCbwgQN0S\npJmBkReWA3526jDpZee4c/A4XIxdpyKY0LPpleUMSNmAHtwPyVsspevOmnyH++GHH7ZpYkmSePbZ\nZ+t9Lzg4uMF5opFw56Um7UAOjW31cqNNOUfYlJuKr5MbD0dO6VJlMQXBnhKKcjlTWcZY3wH0dnLr\n6HAEoVMJ8+zD/8XM4J1je0gsPs3zPy0HFISuQM85hntxFtZ1/8Cw8A9IzuIa312JSgFCo9RDm9G2\nrEb9/r1Wjd+Rl87azES8HJx5NHJqvQamgiD8Qtd1NmSnIAEzAiIbHBMEATxMTjwybAqzAiMprqng\nxaTNHR2SIFwROWwU+YGxUFaA+tVr6FZLR4ck2IhIqoQGtOMH0XasARcPlKtbXl1p/7lMPjpxADej\nA49ETsVbNCkVhCYlFZ8mp6KEkb2D8HN2v/B93VqL+uFzaMk7OzA6Qeg8ZEnmhqAoHo6ciq9oKyB0\nIflBo5CGjEHPy0D99l10XevokAQbEEmVUI+Wexx103/A5IjhxkeQPHxaND6p6DSrju/FUTHycOTU\nem8SBUGo7+K7VJfupdKSd6Kfy0IvPdcxwQlCJxXu5cczI2d1dBiCcOUkCSXuLqR+oejHD6CnHejo\niAQbEFUDhAv080WoX70Guo4y636k3gEtGp9Wms+/j/6AQZJ5YOhkAly9bBSpIHQPuVolmVXFxPgE\n0M/F88L3dasF7cBGMDogx17XgREKgiAI7UEyGFFm/w7tyC6ksFHoui4KtXUzIqkSfuHqhRwxHql3\nAHILe4BklhfxeuoOdOD+iEkM8uj6ze8EwZZ0XSfeUgjA9ZfspdKSd0JFGfLI6WJTsyAIQjchObmi\njJze0WEINiKSKuGC/9/encdFVe4PHP+cGTYZQAV3BRRS3ILCtdy3fppabiiuefW2WHhvi6VZqS0q\nLeq1zBbz5o1McMvSylsuiVtFIuKWCyqikqC4MGwzzDm/P7hOjiDiMgwj3/fr1esF5znPOd8z2Be+\n5znneRSdDn3Xm3+H6kzORd7ftxmTxcITzTrI6ttClMEfF8+SoeYT5tfAZlTXOkrl4iajVEIIIYST\nkKJK3JbMPCP/2reZnEITYxq3I7yGLE4qxI1omsa6k3sB6HvNKBU5l1C8fVGatpNRKiHKQX5+Pi++\n+CJZWVkYDAaio6Px9fW12Wf58uXExcXh4uLChAkT6Nq163X7JSUlMWvWLPR6PR06dCAqKgqAt99+\nm927d1NYWMiwYcOIiIhwxOUKIexEJqoQt+xiQS7/2reRS6Y8IoLC6VAn2NEhCeEU9mad4ejlTAL0\nBgK9bf94U6rWQB/5MroHBzgoOiEql2XLlhESEsLSpUsZMGAAH330kU17ZmYmMTExxMbGsnjxYubM\nmYPJZLpuv+nTpzNnzhyWLVtGcnIyBw8e5JdffuHUqVPExsby1VdfsWjRIrKzsx1xuaKC0bKzKPxx\nCZq5wNGhiNskRVUlpu7bipZz6Zb6Gs0F/GvfZs7l59AvoCU96ze9w9EJcXeyaCqrTyShoNDWteR3\nDxVFQXFxLefIhKicEhMT6dy5MwCdOnVi586dNu3JycmEh4fj6uqKl5cXgYGBHDp0qMR+RqMRs9mM\nv3/RRE8dO3Zkx44dhIeHM3PmTOsxLRYLLi7ysJAANfEntP3bsKxfLFOtOzn5P7qSUvdvx/LTf1Aa\nhOAS8eJN9c0rNPP+vs2k516ie70Q+gXca6cohbj77Dx7nPTcS3SoHYxvtqRgIcrTihUr+OKLL2y2\n+fn5YTAUradoMBiKjSDl5OTg7f3Xo7gGgwGj0YjRaCzWLycnBy8vL5t909LScHNzw83NDbPZzJQp\nUxg2bBhVqlSx12UKJ6LrOBgt4yTa0UTUravQd5bHQp2VjFRVQmrqfiwbvgB3T/Q9Rt1UX5OlkIUH\ntpBqzOLB2kFEBIXLlKBClJHJUsja1GRcdXr6B8rNCCHKW0REBGvXrrX5z9vbm5ycHKCogPLxsV1f\n0cvLy9p+ZR9vb2+b7Vf6GQwGm32NRqP1eJcuXeLxxx+ncePGPPHEE/a+VOEkFL0L+v5Pg28d1F3/\nxZK8xdEhiVskt0krGS3jJJa1C4sWont0Iopv2Wfqs6gqn/6xjcOXMgiv4c/oxm3RSUElRJltPHOI\ni6Y8evs3p7q7p3W7VmiGwgIUD69Segsh7CE8PJz4+HhCQ0OJj4+ndevWNu2hoaHMmzcPk8lEQUEB\nKSkpNGnSpMR+Xl5euLq6kpaWRoMGDdi+fTtRUVHk5+czduxYxo8fT79+ZVu4eNeuXfa43HI7vr3c\nrXG7BffgnuxV6Dd+yR8XCsj38iunyEp3t37e9iBFVSWi5WZTuGY+mE3o+z6Jrn7jMvdVNZXPD+9k\nb9YZmlerw7iQB9EpMtApRFllm/JZn7Yfg4s7vRs0t2lT929H3bYS/cNPomskI1hClKfhw4czefJk\nRowYgZubG3PmzAFgyZIlBAQE0L17d8aMGcOIESNQVZXnn38eNze36/Z7/fXXmTRpEhaLhY4dOxIa\nGsqSJUs4deoUcXFxxMXFATB79mwaNGhw3bhatWplt2vetWuXXY9vL3d73GpQANqpQzRv06tCPAV0\nt3/et3rs65GiqjKp4oWuZSfw8ETXpPWN9/8fTdNYdvR3EjJTCfapyVPNO+Oq09sxUCHuPt+n7SPf\nUsiwoDCquLhZtxetS/U9WCwotWRJAiHKm4eHB/Pnzy+2fezYsdavIyIiik2Bfr1+YWFh1sLp6mNd\nfTwhSqKrFwz1ZCZlZyVFVSWiKAr6W5im+esTe4j/8yj+hupEteiCu17+2QhxMzLzstmSfpQaHl50\nrnuPTZt6YAdkZ6EL74ViqOqgCIUQQghxO+z2/JaqqkybNo3IyEhGjx7NyZMnbdr/+9//MmTIECIi\nIorNxCMqjvVp+/nvqQPUruLNP1p2w/OqO+xClJcb5ZNNmzYxZMgQIiMjWbFiRZn6rF27lsjIyHKJ\nf82JPVg0lQGBobhcNcqrqBbU374DvSu6Vv9XLrEIIYQQ4s6zW1G1YcMGzGYzsbGxTJo0iejoaGub\nxWJh7ty5LFmyhLi4OL766isuXrxor1DELdpy5ghfn9hDdXdPnm3ZHR83D0eHJCqp0vKJ2WwmOjqa\nzz//nJiYGOLi4jh//nypfQ4cOMCqVavKJfYT2ef5/dxJAr18aVUz0Kat+tlDRaNUoV1QvKqVSzxC\nCCGch3YxA0vCD44OQ5SB3YqqxMREOnXqBBQ9X7xv3z5rm16v54cffsDLy4usrCxUVcXVVRa6vNPU\nP35Fu3z+lvr+mnGcZSkJeLt68FzL7vh6GO5wdEKUXWn5JCUlhYCAALy9vXF1daVVq1YkJCRct8+F\nCxeYN28eU6dORdM0u8ataRqrju8GYHCj+4vNlpnrXRPlnnB0rXvbNQ4hhBDOR9M0LD/9B3XbKiy7\nNzo6HHEDdiuqjEajzQJ4er0eVf1rpWidTsePP/7IgAEDaNeunSyCd4epKbuxrP+Mwm8X3PQK3bvP\npbHk0C946F35Z8tu1Pb0uXEnIeyotHxiNBqLLcyZnZ1dYh+TycQrr7zClClT8PT8a0pze9l34QyH\nL2XQsno9QqrVLtae71UTl/5PyyiVEEKIYhRFQf/Q38DTB3VLLOqxPY4OSZTCbjMOXLtYnqqq6HS2\nNdxDDz1Er169mDJlCmvWrGHQoEGlHtOec8476zz8UDz2KpfPEpz8LSh6Uhq0JS9xd5mPlWox8lPB\nafQoPORSl4xDx8i40wH/j7N+5hJ3+Sstn1y9cCf8tQhnSX3++OMPTp48yYwZMzCZTBw9epTZs2fz\n8ssvl3r+W/nsVE1jVf4JFKBpntt1j+GsPxeJu3w5a9zg3LEL4WhK1RroH43CsuI9LN9/ijJ0sswU\nW0HZragKDw9n8+bN9OnTh6SkJEJCQqxtRqORCRMmsHjxYtzc3KhSpUqxgqsk9pxz3hnn4YfisWsX\nz1IYGwOaBf0jUTQPCivzsfZlnWHjgXhcdHomtuxGk6q17BEy4LyfucRd8rHtrbR8EhQURGpqKpcu\nXaJKlSokJCQwfvx4FEUp1ic0NJR169YBcPr0aZ5//vkbFlRwa7ln+58pXDhymAdrB9GrSfsS95F/\nT+VL4i5/zp57hKgIdHWCoM/fsaz9iMI17+My5g0UD/s/bSFujt2Kql69erF9+3br7FqzZ89m3bp1\n5ObmMnToUPr378+oUaNwcXGhadOmPProo/YKpdLQTPkUfj0f8ozoeoxGdxMF1cELf/LRgXgUReGZ\nFl3sWlAJcbNulE+mTJnC+PHjUVWVIUOGUKtWrRL7XE3TNLstrmiyFPJtajKuOj2PBIba5RxCCCEq\nD9094WidI0Cnl4KqgrJbUaUoCq+//rrNtkaNGlm/Hjp0KEOHDrXX6SsnV3d093aBglz0oV3K3O3w\nxbN8eGALAE8370zTanXsFaEQt+RG+aRbt25069bthn2u1qBBA2JjY+9soP+z6cwhLpry+L8Gzanu\nbvvLz7LrR3SNW6H4+Nnl3EIIIe5O+lYPOToEUQpZxfUuoigK+tY3t9bN0UuZLNi/BVXTmNC8E82r\n17VTdEJUDkZzPj+kHcDg4kZv/+Y2bWrqAdT45Wgn9uIy+AUHRSiEEEKIO81us/+Jiu/45XN8sH8z\nZs3CE806cq9vfUeHJITT+/7kfvItZh4OaGmzWLZmKcTy8zJAQd8pwnEBCiGEEOKOk6KqkkrNzmL+\nvs2YLBb+HtKB+/waODokIZzeuXwjP6cfwc/dQJe6jW3a1D2bICsd3b2dZeYmIYQQd4SWcRLLb9/b\nfd1FcWPy+J8TU1N245574ab7pRkv8K99m8i3FDIu5AFa1ZQ/8IS4E9ac2INFUxnQMAxXnd66Xcu5\nhLpzLbh7ouswwIERCiGEuFtomoZl01K09BQwXkDXdThKGWbTFvYhn7yTUlMPYPnuExru+w7NUljm\nfmdyLvKvvZvIKzTxWJN2tK3V0H5BClGJpGZnkZCZSoCXL61rBtq0aWeOQqEJ3YMDUKp4X+cIQggh\nRNkpioK+3wSo0QB1z2YsPyy6qb8JxZ0lRZUTUk8dxvLtAgBON+6Koi/bgOOfuZeYt3cTxsICRjVu\nywO1g+wZphCVhqZprDpetMj24Eb3obtmqnZd41a4PPYGupuYlVMIIYS4EcWrGi4RL6HUb4x2OAHL\nmvfRTPmODqtSkqLKyajpx7CsmQ+qBX2/CRirl+1dqLN5l5m7dxOXzfkMD25Nxzr32DlSISqP/RfS\nOXTpLC2q173ukgRKtdooVz0SKIQQQtwJiocn+kHPoQSFoZ08gHbqsKNDqpTknSonouUZsXz9Lyg0\noX/4yaLFfcuwovy5fCPzkjdxyZRHRFA4Xes1KYdohagcVE1l9fEkFGBQo/scHY4QQohKSHFxQ9//\nabS0P9AFtnB0OJWSFFVORKniha7DIBQ3d3RNWpepT1Z+DnOTN3LBlMughvfRs35TO0cpROXya8YJ\nTude5IHaQTQwVHd0OEIIISopRadHkYLKYaSocjL6sK5l3vdCQS5z9m7kfEEOjwaG8n/XLEQqhLg9\nJksh35xIxlWn55HAe23atAtnUarXdlBkQoiyys/P58UXXyQrKwuDwUB0dDS+vr42+yxfvpy4uDhc\nXFyYMGECXbt2vW6/pKQkZs2ahV6vp0OHDkRFRQEwb948du7ciaIovPDCC7Rt29YRlyuEsBN5p+ou\ndcmUx9y9GzmXb6Svf0seDmjp6JCEuOtsPnOYC6ZcutVrgq+7wbpdO3+Gwi+mYfk51oHRCSHKYtmy\nZYSEhLB06VIGDBjARx99ZNOemZlJTEwMsbGxLF68mDlz5mAyma7bb/r06cyZM4dly5aRnJzMwYMH\nOXDgAMnJySxfvpy5c+cyc+ZMR1yqqKTUM0dRU/c7Ooy7nhRVFditLuR22ZTPvOSNZORl07tBc/pf\ncwddCHH7jOYCfkjbj8HFjT7+fz1uoWkals3LQLWg+MvjtkJUdImJiXTu3BmATp06sXPnTpv25ORk\nwsPDcXV1xcvLi8DAQA4dOlRiP6PRiNlsxt/fH4COHTuyY8cOmjdvzmeffQbA6dOn8fHxKccrFJWZ\nVmjGsu4jLGveRz30m6PDuavJ438VlJZzCcu6j9F3G45Sq+yL8xrN+czbu5H0vMv0rN+UAQ3DUK6Z\n3lkIcft+SNtPnsXMkEb34+niZt2uHU1ESzuI0rAlSlCY4wIUQhSzYsUKvvjiC5ttfn5+GAxFI80G\ng4Hs7Gyb9pycHLy9/1pfzmAwYDQaMRqNxfrl5OTg5eVls29aWhoAer2eefPmERMTw7Rp0+xyfUJc\nS3FxRf/wk1i++QDL94vQ8ozo7+vu6LDuSlJUVUBavpHC1XPh3GnUo7vRl7GoyjEX8K+9mzmTe4mu\ndZswpNH9UlAJYQfn8o38fOYwfu4Gm9k0tUITlvjloNOj7xop//8JUcFEREQQERFhs23ixInk5OQA\nRQXUtaNIXl5e1vYr+3h7e9tsv9LPYDDY7Gs0Gm2O99xzz/HEE08wbNgwWrVqZR3RKsmuMszuezvs\nfXx7kbhvjUfLfjTauw7XzV+RnnKIs4FtoAy/oxwd961yRNxSVFUwWkEullXz4NxpdGHd0D3wSJn6\n5RaamL9vM2k5F+hc5x4ig1vJH3RC2Mk3J5Ip1FQebRiK61VrT6lJm+DyeXSte6NUL3m9KiFExRIe\nHk58fDyhoaHEx8fTurXt7LqhoaHMmzcPk8lEQUEBKSkpNGnSpMR+Xl5euLq6kpaWRoMGDdi+fTtR\nUVH88ssv/Pjjj0ybNg03NzdcXFzQ6Up/A6NVq1Z2u+Zdu3bZ9fj2InHfHi3sfgpXz6N2WiL1O/W9\n4ZNQFSXum2XPuEsr1uxWVKmqyowZMzh8+DCurq7MnDmTgIC/fnjr1q3jiy++QK/X06RJE2bMmFHp\niwDNlI/l6/loGakoLTqi6za8TJ9JXqGZ9/dtJtWYxYO1gxh+T5tK/1kKYS8njVn8lnkCf0N12tRs\naNOmC+sGlkJ09/d0THBCiJs2fPhwJk+ezIgRI3Bzc2POnDkALFmyhICAALp3786YMWMYMWIEqqry\n/PPP4+bmdt1+r7/+OpMmTcJisdCxY0dCQ0NRVZX169czfPhwVFVl5MiR1K9f35GXLSohpVotXIZN\nQTtz9KZeLRFlY7eiasOGDZjNZmJjY9mzZw/R0dEsXLgQKJq+dP78+axbtw53d3deeOEFNm/eTPfu\nlfsZTy3tD7T0FJSm7dD3HIOi3HgeEbOmsmD/zxzPPk+7Wg0Z3bgtOimohLCb1ceTABjc6P5i/68p\nru7o2/VzRFhCiFvk4eHB/Pnzi20fO3as9euSHhu8Xr+wsDDi4uJstul0OmbMmHFH4hXidiiGqiiN\nnW/0yRnYrahKTEykU6dOQFGC2bdvn7XN3d2duLg43N3dASgsLMTDw8NeoTgNXfB9MPgFlAZNUG7w\nWAAUrZGzvuAU6Xl5tK4RwGNN2qMrQyEmhLg1By6kc/DinzSvVodm8nifEEIIIf7Hbn+BG41Gmxlw\n9Ho9qqoCoCiKdWG9mJgY8vLyePDBB+0VilPRBTRDueodjesxWQpZeCCedDWP+/38GRfyIHopqISw\nG1XTWHV8NwowqNH9jg5HCCGEuGPUU4fRLp93dBhOzW4jVdfOlqOqqs1Lmaqq8u6775KamsoHH3xQ\npmPacyYPZ5rdJE8r5L8Fp8lQ8wnQGwjPrULS7t2ODuumOdNnfjWJu3L6LeMEp3Iu0r5WQ/y9qlu3\na5om7zAKIYRwWlp2FpY188HdE5dBz6H41XN0SE7JbkVVeHg4mzdvpk+fPiQlJRESEmLTPm3aNNzd\n3fnwww/L/AeJPWfyKO/ZTTRNhUvnUarVvKl+f+Ze4oP9P3NOzaddrYa0zHal7TUzFTkDmVGmfDlq\nJpy7hVm18E3qHlwUHY8E/rX2lJZ7Gcua99F1GIgusEUpRxBCCCEqJsXbF137/qhbV1K4/G30A/6B\nrm6wo8NyOnYrqnr16sX27duJjIwEYPbs2axbt47c3FxatmzJqlWraN26NWPGjAHgscceo2fPyjFj\nlqZpqJu+Qj30Ky6DJ6HUDixTv8OXMvjoQDy5hSb6BrSkf8C9JCYm2jlaIcTmM4fJKsilV/1m+HkY\nrNst21ajnT2BduEsSFElhBDCSelb90ap4o3lp/9gWTkH+j/t6JCcjt2KKkVReP311222NWrUyPr1\nwYMH7XXqCk3TNNT45ajJP0NNf6jqV6Z+v2Wc4D+Hf0FF47Em7XmwdpB9AxVCWP2Qtg9PF1f6+De3\nblP/PIa2fxvUqI8utIsDoxNCCCFun65FB/AwYPnuEyzrPkLferijQ3IqsvhvOVN3foOa+BP41i16\nbtXDq9T9NU3jh7T9fJOaTBW9K0826ySzjglRznILzQxudD8G16IZSzVNRd28DAB9txFlmlxGCCGE\nqOh0wffBoOcgLxvLZUdH41ykqCpHlt++R/11HVSticvgF1A8fUrfX1VZevQ3tp89hq+7JxNbdKWe\noVo5RSuEuMLX3ZNu9ZpYv9cO7ED78zhKSFt0DUJK6SmEEEI4F12D//2+qwTvTN9JUlSVI8WrelFB\nNWQSilfpxVFeoYlPDm7j4MU/CfDyJapFF6q6VSmnSIUQV3s0MAzXq0ejqviAbz30nYY4LighhBCi\nHGmaBnnZNxwUqKykqCpHuuYPoDRpjeLiWup+WQU5fLDvZ87kXiLUtz5/b9oBd738qETlpaoqM2bM\n4PDhw7i6ujJz5kwCAgKs7Zs2bWLhwoW4uLgwePBgIiIirtvn4MGDvPXWW+h0Otzc3HjnnXfw8yv9\n3ca2tRrafK8LCkVpdK9MpS6EEKLS0A5sx7IlDn3nYSgtOsjvwGvIarHl7EYF1UljFtFJP3Im9xJd\n6zZhQvNOUlCJSm/Dhg2YzWZiY2OZNGkS0dHR1jaz2Ux0dDSff/45MTExxMXFcf78+ev2mTVrFq+9\n9hoxMTE89NBDLFq06Ibn15Xwi0N+mQghhKhUFD1oGpaflmBZPU8WC76G/LVegezNOs2ig9sxqYVE\nBIXTo16I/OEmBJCYmEinTp0ACAsLY9++fda2lJQUAgIC8Pb2BorWs0tISCApKanEPnPnzqVmzaL1\n4QoLC3F3dy/PSxFCCCGckq75Ayj+IVg2fIF2Yh+FX0xD13EwurCuKIqM08gnYAdaoRnLhhjUtD/K\n3GfLmSN8uD8eFY0nm3WiZ/2mUlAJ8T9GoxEvr79mytTr9aiqam27UlABGAwGsrOzr9vnSkGVmJjI\n0qVLGTt2bPlchBBCCOHkFG9f9AP+if7/xoNOj7pvK/zv93FlJyNVd5hmvIhl3Udo6Skol8+h829a\n6v6qprH6eBI/nT6It6s7zzTvQiOfGuUUrRDOwcvLi5ycHOv3qqqi0xXdE/L29rZpy8nJwcfHp9Q+\n33//PR9//DGffvop1atXv+H5tUIT6p6f0YV1u+EjvEIIIcTdTFEUlOYPoAQ2h4JcFHlNBZCi6o5S\n049hWbsQci6ihLRF3+uxUvc3WQr5/NBOEs+nUbuKDxNbdKVmldLXrRKiMgoPD2fz5s306dOHpKQk\nQkL+msY8KCiI1NRULl26RJUqVUhISGD8+PEoilJin2+++Ybly5cTExND1apVy3T+U99+Tp3UBM6k\nniAjsNUdvbZdTjplrcRdvpw1bnDu2IUQ16cYqoKhbL9HKwMpqu4Q9eAvWH5aAqoFXacIdK0eKvXx\nvWxTPgsPxHMs+xxNqtbiqWadrAuLCiFs9erVi+3btxMZGQnA7NmzWbduHbm5uQwdOpQpU6Ywfvx4\nVFVlyJAh1KpVq8Q+FouFWbNmUa9ePaKiogBo27YtEydOLPX8dU4lgWdVGvQbg7+bxx27rl27dtGq\n1Z0t0sqDxF2+nDVusG/sUqwJUTFp+Tmo+7ehu69HpRrFqjxXam+ePuDmgb7P4+gCW5S669ncy7y/\n/2fO5RtpV6shoxu3s10DRwhhQ1EUXn/9dZttjRo1sn7drVs3unXrdsM+AL/++uvNB2Axo+80BOUO\nFlR3SkFBAX369GHTpk3MmjWLcePGUaVKFcaOHYuvry+LFy92dIjX9e6777J161YGDx6M0WjkmWee\nKXG/rVu3kp6eztChQ4mLi2Pw4MG4uMivLyGEqIjUX9ai7t6A+sevuPQai1Ir4Mad7gLyW+kO0QU2\nRxkXfcM/uo5cyuCjA/HkFJro69+S/oGy1o0QFZ1SNxilWXtHh3FDU6dOBSAhIQF/f3/ef/99B0dU\nuv/+9798++23eHp6lrrflVkcAT755BMGDhxo79CEEELcIl37/mimPLT92ylcNhNdmz7o2va9699J\nlqLqDrpRQZWQcYIlh39BRWNM43Z0qBNcTpEJIW6HvtuI6978WHlsN4nnTt7ScQtMBaz67VSx7eE1\nAhgSdP91++Xk5DBp0iSys7MJCAiwxjZ69GheffVV3nrrLTIzM1mwYAGDBw9m2rRp5Ofn4+HhwZtv\nvklhYSETJkygWrVqdOnShU6dOjFz5kw0TaN69erMmjWL/fv3s2jRItzc3EhLS6Nv37489dRTnDhx\ngjfeeIMqVarg4eHBvHnzyMzM5O2338ZisXDhwgVmzJjB/fffz8svv8zJkyfJz89nzJgxPProo9Zr\nWLBgARkZGTz55JM8/vjjrFmzhrlz5/LQQw/RqlUrjh8/jp+fHx988AFr1qzh+PiIj3cAACAASURB\nVPHjBAYGcu7cOZ5//nnef/99XnvtNf78808yMzPp3r07zz77LD/++COfffYZLi4u1KpVi3nz5smN\nK1Gq/Px8XnzxRbKysjAYDERHR+Pr62uzz/Lly4mLi8PFxYUJEybQtWvX6/ZLSkpi1qxZ6PV6OnTo\nYH3UGCAvL4/IyEgmTZpkc7NAiLuJ4mHA5aG/oYa0xfLTf1B/XYd6dDcuw6ei3MWvusiU6rdAy/rz\n5vbXNNan7eezQztw0emZ2KKrFFRCOBGldqCjQ7ARGxtLSEgIX375JZGRkWiaZm1zc3PjlVdeoX37\n9kRFRfH2228zevRoYmJiGDduHO+99x6KonDu3Dk+//xz/v73v/Paa68xffp0YmJi6Ny5M4sWLUJR\nFNLT01mwYAHLly/ns88+A+Dtt99mwIABxMbGMnr0aP744w+OHj3K5MmTWbJkCY8//jirV68mJyeH\n33//nQULFvDZZ5+h19s+4hwVFUWNGjVYvHixzVphp06d4tlnnyU2NpasrCz27t1bNNOUojBkyBBq\n1KjB3LlzSU9P57777mPx4sWsWLGC2NhYAL777jv+/ve/89VXX9G1a1eMRmM5/ESEM1u2bBkhISEs\nXbqUAQMG8NFHH9m0Z2ZmEhMTQ2xsLIsXL2bOnDmYTKbr9ps+fTpz5sxh2bJlJCcnc/DgQeux3njj\nDXQ6nRT6olLQBbbAZcwb6EK7oqt/z11dUIGMVN0UTVVRt69G3fVf9I/+A12je2/Yx6KqfJWSwLY/\nU6ju7snEFl2pb6hWDtEKIcrDkKD7Sx1VKs2tvsSfmppKly5dAAgNDcXV9a9HKjRNsymyDh8+zCef\nfMKiRYsArPs2aNDA+l7SsWPHmDFjBlC0IHLDhg0BaNKkCTqdzjoqBXDixAlGjhwJQI8ePQD4/fff\nWbhwIR4eHuTk5ODl5YXBYGDq1Km89tprGI1GHnnkkTJdW/Xq1alduzYAdevWpaCgwHpdV6tatSp7\n9+7l119/xcvLC5PJBMDLL7/MJ598QkxMDEFBQfTs2bNM5xWVV2JiIo8//jhQ9KjpwoULbdqTk5MJ\nDw/H1dUVV1dXAgMDOXToUIn9jEYjZrMZf39/ADp27MiOHTto1qwZixcvJjw8vHwvTggHU9w80PcY\nhabd/WtZ2b2oUlWVGTNmcPjwYVxdXZk5cyYBAbYvrOXl5fG3v/2NWbNmERQUZO+QbomWn4Pl+0/R\nUvdDtdooPn437GM0F7D40A4OXEjH31CdqBZdqOZe+rsDQghxI8HBwSQlJdGjRw8OHDiA2Wwudd9x\n48Zx//33c+zYMRISEgCsa3ZB0aQf7777LnXq1CExMZHMzEyAEu+mBwcHk5KSQseOHVmzZg25ubms\nXLmSd999l+DgYN5//33OnDlDZmYm+/fvZ8GCBRQUFNC1a1cGDBhgc96S3OgOvk6nQ1VVVq9ejY+P\nD2+88QapqaksX74cgLi4OCZOnIivry/Tpk1jw4YNDBgwoNRjispjxYoVfPHFFzbb/Pz8MBgMwF+L\nh18tJyen2ALjRqMRo9FYrN+VmwpX75uWlsbOnTtJTU3ljTfeYNeuXcVuEghxt1OUknO/mpKEEtji\nrnjfyu5F1YYNGzCbzcTGxrJnzx6io6Nt7gLt3buX6dOnk5GRUWGHw7Vzpylc+yFczEBp2BJ9nydQ\nPK5fHKmaxo6zx1h9PImcwgLu9a3H35t2wEPv/P9ghBCON3z4cF566SVGjBhBUFCQzeNzVx6Vu5JP\nX3rpJWbMmIHJZCI/P59XX33Vut8VM2bM4MUXX8RisaAoCrNmzeLs2bMl5uSXXnqJiRMnMmfOHNq3\nb8+7776LyWTi2WefxcfHhzp16nDx4kVq1qxJZmYmkZGR6PV6xo8fX6ygunL8q+O9nivtrVu35okn\nnmDatGm88MILJCUl4ebmRsOGDTl79iyhoaE8+eSTGAwGDAZDsVkhReUWERFBRESEzbaJEydaFwq/\nsnj41a5dSPxKkXX19iv9DAZDiYuRr1y5kjNnzjB69GiOHz/OgQMHqFmzJk2bNr1urPaeMt5Zp6SX\nuMuXPeOukp1J490rKXT1IKtOM87XbYnZ486s1+qIz9vuRVViYqL1ZcywsDD27dtn0242m1m4cCEv\nvviivUO5JZpqofDbBXAps2j2kgcHopRyp/VUzgW+Ovo7KZczcde7MKTR/XSvH4L+OhW6EELcLDc3\nN/71r38V2x4TEwMUjTy1bdsWAH9//xKnVb/yDhJAixYtrH2vCAwMtB4DYNu2bQAEBAQwceJEvv/+\neyZPnkzVqlUZO3YsY8eOLXaOkqa0v9rGjRuBorXCrpzrynkA5s6dW6xPdHS09etvvvmmWHvt2rWl\nkBI3JTw8nPj4eEJDQ4mPj6d169Y27aGhocybNw+TyURBQQEpKSk0adKkxH5eXl64urqSlpZGgwYN\n2LZtG1FRUYwbN856vJdffpm+ffuWWlABdl2bzFnXPpO4y5e949aMF1H1Rlz2baVW2m5qndqDEnw/\nutYPoat763MPOGp9PLsXVUaj0WYoXK/Xo6qq9Y5lRX++WNHp0T/0N8i5hC6kzXX3yy80s/bkXjad\nPoSKRngNf4YGtaK6PO4nhLjLfPfdd6SmpqKqd/8z8uLuN3z4cCZPnsyIESNwc3Njzpw5ACxZsoSA\ngAC6d+/OmDFjGDFiBKqq8vzzz+Pm5nbdfq+//jqTJk3CYrHQsWNHQkNDHXl5QlRYilc19J2GoHvg\nEbQ/fsOStBHt6C602gFwG0WVo9i9qLp22Pzqgupm2XMo78bH1kEJ+2iaxnGLkZ3mDHK0QrwVVzq4\n1SIg15Nj+w6WcJw7T4aUy5fELSq7UaNGOeVdVyFK4uHhwfz584ttv3r0taTHBq/XLywsjLi4uOue\nb/bs2bcerBB3IcXFDaVlR5QWHdDOHEXxrePokG6J3Yuq8PBwNm/eTJ8+fUhKSiIkJOSWj2XPobxb\nOXZmnpHYlAT2XUjHRdHRN6AlvRs0x01ffpMqypBy+ZK4Sz62EEIIIcTtUBQFpX7jEts0TUXduBSl\ncSuUgGYVch4Gu//136tXL7Zv305kZCRQdIdm3bp15ObmMnToUHuf/qaoJ/ahnTuFvnXvUvczqxZ+\nPHWAH9IOYFYtNKtWh+HBrant6VNqPyGEEEIIIcTN0U4fRd27BfZuAd+66O7rjq7ZAyhuHo4Ozcru\nRZWiKMVeVm7UqFGx/a59SbpcaRqWhB9Qt60GvQu6pu1QvKqXuOvBC3+yLCWBs3nZ+Lh6MKZxO9rU\nDKyQFbMQQgghhBDOTtegCURORU3aiHb4d9RNS1G3rUb3wCPow3s5OjxAFv9FK8gl4I8NqJlHwVAN\n/SNPl1hQXTLlseJYIgmZqSgodKvXhEcDQ6ni4uaAqIUQQgghhKg8dHWD0NUNQus8FHVvPGryz5Vr\npKoiU9P+wLL2Q6oV5KHUDUbf/2kUQ1XbfTSVLelHWHMimXyLmYbefoy8pw0BXr4OiloIIW7PBx98\nQM2aNYmMjOTLL78kICCA9u3b88033xAREcHXX39N1apV6d69u6NDFUIIIWwohqro2/dH16bPdffR\nLpyFqjVQdPpyi6tSF1VKzQCo4k16vTD8+z1WbDXnE9nnWXo0gZPGLDxdXBkR3IZOdYPRyZpTQggn\ndvXjyqNGjQLg1KlTrFy5koiICAYOHOio0IQQQogyUa43MZxqofDL10FRUOrdg1K/MUr9Jih1GhX7\nW/9OqtxFlYcnLmPfIjNxNwFXfci5hSbWnNhDfPoRNKB9rYYMbnQ/Pm5VHBesEKLCMi+eXOJ21/Fv\nl7p/0wIT5qTlN9z/WkajkVdffZXs7GwyMjIYPnw4P/zwA82aNePIkSMYjUbmz59PvXr1mDNnDvv3\n7+fixYuEhIRYp3O+Ulh1796d9evX8/HHH3P06FE+/PBDNE2jRo0aREZG8sYbb7B3717MZjMTJ06k\nR48efPnll7z9dlGs/fr1Y8yYMWX7oIQQQgg701vMKE3bo50+jJa6Hy11f1FDFS9cnpyLYqfBkbu+\nqNKMF1F3/RcloDm6RvcWa7/6g9U0jV8zT7Dy2G6yzfnUreLD8HvaEFKtdnmGLIQQpTp58iR9+/al\nV69eZGRkMGrUKGrXrk1YWBhTp05l3rx5rFu3jhEjRlC1alX+/e9/o6oq/fr14+zZsyUec8KECRw5\ncoRnnnmGBQsWAPDTTz9x8eJFVqxYweXLl/n888/R6/VkZmayfPlyCgsLGTFiBO3bt6dJkybl+REI\nIYQQJbK4euDSq+hmn5Z7Ge30EbTTR0BTSyyotNxstNOHi0a0bmMm77u2qNKys1B/X4+6dytYzCgX\nM0ssqq5Iz73EV0cTOHwpA1ednoENw+hZvyku5fgsphDCOZV1hOna/ZNvcf0wPz8//vOf//Djjz/i\n5eVFYWEhAM2aNQOgbt26nDt3Dg8PD86fP88LL7yAp6cnubm51n2vpWlasW3Hjx/nvvvuA8DHx4d/\n/vOfLF68mKZNmwLg4uJCWFgYR48elaJKCCFEhaN4+qA0bgWNr/+7Vjt5AMsPi4q+qV4HpX5jdPUb\no/g3RfEu+xwKd11RpeXnom5fjbp/G1gKwccPfZuHUZo/WOL+l035/GbKZG/iESyaSqhvfYYFt6KG\nh1c5Ry6EEGXz+eefc9999zF8+HB++eUXfv755xL3i4+P588//2TevHlkZWXx008/WYuna4sonU6H\nqqo224KDg1m/fj0A2dnZPPvss4wePdp6PrPZzO7duxk0aNCdvUAhhBCinCi1A9E9OKBoRCs9BW3f\nViz7tqIL64a++8gyH+euK6pwcUU9tge8qqNv1xelaftiL7JdNuWz+3wauzJPcvhSBhoavu6eRAa3\nJsyvgYMCF0KIsunWrRtvvfUW33//Pd7e3ri4uGA2m4utlxcaGsrChQsZNWoUiqIQEBBARkYGQLF9\n/fz8MJvNvPfee3h4eKAoCj169GDnzp2MGDECi8VCVFQUnTp14ttvvyUyMhKTycTDDz9sHSETQggh\nnI1SvQ76dv0A0FQLZKahnj6CUrvhTR3nriuqFBdXXAa/ANVq2kyjeNmUx+5zp9h17q9CCqCRtx+1\n83WMaNUN9+vNIiKEEBVIu3btWLt27XXbIyMjrV+vXLmyWHt4eLj1602bNlm/XrNmTbF9X3311WLb\nRo4ceUuPLQohhBAVmaLTQ+2G6G+yoAInLqq082fQci+j829arE3xrQP8VUj9fi6VI5cyrYVUkHcN\nWtUMINzPH18PA7t27ZKCSgghhBBCCHFLnK6S0M6dxvLrOrTDvxct6vXYmzaP910y5ZF4Lo3Ecyc5\ncimDK28NBPvUILxGAOE1/PF1NzgmeCGEEEIIIcRdx6mKqsK1C9GOJhZ9Uyug6PlHne5/hdRJdmWm\ncfTy1YVUTVrV8Ce8RgDV3T0dFrcQQgghhBDi7uVURZV2NBGldkN07fpxuX5jEs+fYlfyRlIuZ6IB\nClcKqQDur+EvhZQQQgghhBDC7pyqqMrrN4HfqxjYdT6NlIQDxQqp8Br+VJNCSgghhBBCCFGO7FZU\nqarKjBkzOHz4MK6ursycOZOAgABr+6ZNm1i4cCEuLi4MHjyYiIiIGx7zxT8PAUWF1D0+tWhV05/7\n/aSQEuJudyv55Hp9UlNTmTJlCjqdjsaNGzN9+vRi04sLISqP/Px8XnzxRbKysjAYDERHR+Pra7vg\n5/Lly4mLi8PFxYUJEybQtWvX6/ZLSkpi1qxZ6PV6OnToQFRUFAATJkzg4sWLuLi4UKVKFT799FNH\nXK4Qwk7sVlRt2LABs9lMbGwse/bsITo6moULFwJFC0ZGR0ezatUqPDw8GD58ON27d8fPz6/UYzap\nWovw/70jVdWtir1CF0JUMLeST3bt2lVin9mzZ/P888/Tpk0bpk+fzsaNG+nZs6eDr1AI4SjLli0j\nJCSEqKgovv/+ez766CNeeeUVa3tmZiYxMTGsXr2agoIChg8fzoMPPnjdftOnT2fBggX4+/vzxBNP\ncPDgQZo1a8bJkyf57rvvHHilQgh70tnrwImJiXTq1AmAsLAw9u3bZ21LSUkhICAAb29vXF1dadWq\nFQkJCTc85guhPelWL0QKKiEqmVvJJ9frc+DAAdq0aQNA586d2bFjRzlfjRCiIklMTKRz584AdOrU\niZ07d9q0JycnEx4ejqurK15eXgQGBnLo0KES+xmNRsxmM/7+/gB07NiRHTt2cP78eS5fvsxTTz3F\niBEj+Pnnn8v1GoUQ9me3kSqj0YiXl5f1e71ej6qq6HQ6jEYj3t7e1jaDwUB2dra9QhFCOLlbyScl\n9bFYLGiaZt3m6ekpuUeISmTFihV88cUXNtv8/PwwGIqWWinp75GcnJxiOcZoNGI0Gov1y8nJsck7\nBoOBtLQ0zGYz48ePZ8yYMVy8eJHhw4cTGhpa7DFDIYTzsltR5eXlRU5OjvX7K38AAXh7e9u05eTk\nULVqVXuFIoRwcjebT3x8fErso9frrf2u3lcIUTlEREQUe4d74sSJ1lxRUk64NpdcKbKu3n6ln8Fg\nsNnXaDTi4+NDjRo1GDZsGDqdDl9fX5o1a8bx48elqBLiLmK3oio8PJzNmzfTp08fkpKSCAkJsbYF\nBQWRmprKpUuXqFKlCgkJCYwfP/6Gx9y1a5e9wrXrse3NWWOXuMuXs8YNt5ZPFEUpsU+zZs347bff\naNu2LfHx8TzwwAM3PL/knuIk7vLlrHFDxY89PDyc+Ph4QkNDiY+Pp3Xr1jbtoaGhzJs3D5PJREFB\nASkpKTRp0qTEfl5eXri6upKWlkaDBg3Yvn07UVFR7Nixgy+//JJPP/2UnJwcjhw5QnBwcKlx2ftz\nq+g/l+uRuMuXxF12inb1szB3kKZpzJgxg0OHimbsmz17Nvv37yc3N5ehQ4eyefNmPvzwQ1RVZciQ\nIYwYMcIeYQgh7gK3kk9K6tOoUSNOnDjBa6+9htlsJjg4mLfeektm/xOiEsvPz2fy5MlkZmbi5ubG\nnDlz8PPzY8mSJQQEBNC9e3dWrFhBXFwcqqoyYcIEevXqdd1+e/bsYdasWVgsFjp27Mizzz4LwKxZ\ns9izZw+KovD444/To0cPB1+5EOJOsltRJYQQQgghhBCVgd1m/xNCCCGEEEKIykCKKiGEEEIIIYS4\nDVJUCSGEEEIIIcRtkKJKCCGEEEIIIW5DpSyqPvnkEyIjIxk0aBArV64kNTWV4cOHM3LkSGbMmEFF\nnLvDbDbzwgsvEBkZyciRIzl27FiFj3vPnj2MHj0a4LqxLl++nMGDBzNs2LAKs8L81XEfPHiQkSNH\nMnr0aMaPH8/58+eBihk32MZ+xdq1a4mMjLR+X1Fjrwwk95QPyT3lS/JOxeaMeQecL/dI3il/FS73\naJXML7/8oj355JOapmlaTk6O9sEHH2hPPfWU9ttvv2mapmnTpk3TfvrpJ0eGWKKffvpJ++c//6lp\nmqZt375di4qKqtBxf/rpp1q/fv20YcOGaZqmaU8++WSxWDMyMrR+/fppJpNJy87O1vr166cVFBQ4\nMuxicY8aNUo7ePCgpmmaFhsbq82ePVvLzMyscHFrWvHYNU3T9u/frz322GPWbRXxM68sJPeUD8k9\n5UvyTsXmrHlH05wr90jeKX8VMfdUupGq7du3ExISwtNPP81TTz1F165d2b9/P23atAGgc+fO7Nix\nw8FRFteoUSMsFguappGdnY2rq2uFjjswMJAFCxZY784cOHCgWKx79+4lPDwcV1dXvLy8CAwMtK4p\n5CjXxj137lyaNm0KQGFhIe7u7iQnJ1e4uKF47BcuXGDevHlMnTrVuq2ixl4ZSO4pH5J7ypfknYrN\nWfMOOFfukbxT/ipi7nGx25ErqKysLNLT0/nkk09IS0vjqaeeshk+9vT0JDs724ERlszT05PTp0/T\nu3dvLl68yMcff0xCQoJNe0WK+6GHHuLUqVPW76/+jA0GA9nZ2RiNRry9vW22G43Gco3zWtfGXbNm\nTQASExNZunQpS5cuZevWrRUubrCNXVVVXnnlFaZMmYK7u7t1n4r4mVcWknvKh+Se8iV5p2Jz1rwD\nzpV7JO+Uv4qYeypdUVW9enWCg4NxcXGhUaNGuLu7k5GRYW3PycnBx8fHgRGWbMmSJXTq1InnnnuO\nP//8kzFjxlBYWGhtr6hxX6HT/TUoajQa8fHxwcvLi5ycHOv2inoN33//PR9//DGffvop1atXd4q4\n9+3bx8mTJ5kxYwYmk4mjR48ye/Zs2rVrV+Fjv1tJ7nEMyT3lR/JOxeOseQecO/dI3ilfFSX3VLrH\n/1q1asXWrVsBOHv2LPn5+bRv357ffvsNgPj4eFq3bu3IEEtUtWpVDAYDAD4+PhQWFtK8efMKH/cV\nzZo1KxZraGgov//+OyaTiezsbFJSUmjcuLGDI7X1zTffsHTpUmJiYmjQoAGAU8QdGhrKunXriImJ\nYe7cudxzzz28/PLL3HvvvRU+9ruV5B7HkNxTfiTvVDzOmnfAuXOP5J3yVVFyT6UbqeratSsJCQkM\nGTIEVVWZPn069evX57XXXsNsNhMcHEzv3r0dHWYxY8eOZerUqYwcOdI6I06LFi0qfNyKogAwZcqU\nYrEqisKYMWMYMWIEqqry/PPP4+bm5uCIiyiKgqqqzJo1i3r16hEVFQVAu3btiIqKqrBxw1+f+RWa\nplm31axZs0LHfjeT3FO+JPeUL8k7FZOz5h1wztwjeaf8VaTco2haBZqPUgghhBBCCCGcTKV7/E8I\nIYQQQggh7iQpqoQQQgghhBDiNkhRJYQQQgghhBC3QYoqIYQQQgghhLgNUlQJIYQQQgghxG2QokoI\nIYQQQgghboMUVU7k1KlTtGzZkgEDBjBw4ED69evHuHHjOHv2rEPi6d69O2fOnCnz/uvXr2fQoEE8\n+uij9O/fn8WLF9+wz+jRo60L6F0tNjaW2NjYm4r3Vo0ePbpcziNERSR55y+Sd4QoP5J7/iK5xzlU\nusV/nV2tWrVYs2aN9fu5c+fy5ptvsmDBAgdGdWNnz57lnXfe4euvv6Zq1ark5uYyatQoGjVqRPfu\n3W/6eJGRkXaIsmQJCQnldi4hKiLJO0Uk7whRviT3FJHc4xxkpMrJtWrVihMnTgBFd1Gee+45evfu\nTVZWFmvWrGHQoEEMGDCAV155BZPJBMDatWvp27cv/fr149VXX0VVVc6dO8eTTz7JI488wqBBg9i6\ndWuxc128eJHHH3+c/v3789xzz1mPp6oqb731Fv369aN///4sWrSoWN8LFy5gNpvJy8sDwNPTk7ff\nfpvGjRtbY79yB+jXX3+1uVMSFxfHoEGDGDhwoPUOzgcffGBNql9++SVDhw6lf//+PPLII6SkpACw\nY8cO6x2ip556CqPRiMViYfbs2da7R0uWLLGec9y4cTzzzDP07t2bf/zjH5jNZt566y0Ahg0bBkB8\nfDwREREMHDiQiRMncvHixVv8yQnhvCTvSN4RwhEk90juqcikqHJiZrOZH374gfDwcOu2Ll26sH79\nes6fP8+KFSuIjY1lzZo1+Pr6snjxYs6ePUt0dDT//ve/WbduHXl5eWzdupU333yTBx54gG+//Zb5\n8+czdepUzp8/b3O+999/n5YtW7J27VpGjhzJuXPnAFi2bBlnz55l7dq1rFixgh9//JEtW7bY9G3a\ntCk9evSgZ8+eRERE8N5772GxWPD397/hdRoMBlavXk10dDQvvfQSJpMJRVEAMBqNbNy4kS+//JK1\na9fSs2dPli1bhslk4sUXX+Ttt99m7dq1hISEsGbNGpYvX46iKKxevZoVK1awceNGfv/9dwB2797N\ntGnT+OGHH0hPT2f79u28+uqrQFGSy8rKYu7cufz73//m66+/pkOHDrz33nu3/gMUwglJ3pG8I4Qj\nSO6R3FPRyeN/TiYjI4MBAwYAYDKZCAsLY9KkSdb20NBQoOguRGpqKkOHDgWKklGLFi1ISkoiPDyc\n2rVrAzBnzhwAJk+ezMyZMwHw9/cnLCyMPXv22AxTJyQkMHfuXABat26Nv78/mqbx66+/MnDgQBRF\nwcPDg/79+7Nz5066dOliE/uMGTN4+umn2bZtG9u2bWPYsGG899579OrVq9RrHjJkCAAhISH4+vpy\n7Ngxa5uXlxdz5sxh7dq1nDhxgm3bttGsWTMOHz5M7dq1adq0KQDPPfccAP/4xz/4448/+OWXXwDI\ny8vjyJEjBAcH06RJE+vnEhwcXOyOzJ49e0hPT7feUbJYLFSrVq3U2IW4G0jekbwjhCNI7pHc40yk\nqHIy1z5ffC0PDw+gaHi6d+/e1rsOubm5WCyWYi9AZmVlAaBpms12VVVRVbXY8S0Wi/VrvV5v7Xt1\nf1VVKSwstOm3ZcsWcnJyePjhhxk0aBCDBg1ixYoVrFy5kl69eqEoivUY1/a9cp4r53J1dbV+f+V/\n+NGjR9OlSxdq1qzJwYMHcXGx/adtNBoxGo2oqspLL71Ez549gaIhek9PT5KSknBzc7Puf+Wu0LXX\nHh4ezkcffQQUJXij0VhsPyHuNpJ3JO8I4QiSeyT3OBN5/O8u1bZtWzZs2EBWVhaapjF9+nT+85//\ncO+997Jnzx7OnTuHpmm8+eabbNmyhXbt2rFy5UoA0tLS2L17N/fdd5/NMR988EG+/fZbAJKTkzl5\n8iQA7du3Z82aNaiqSl5eHuvWraN9+/Y2fT08PJg7dy6nT58GihLFkSNHaN68OQDVq1fnyJEjAGzc\nuNGm79q1awHYu3cvOTk5BAYGWtv27dtHYGAgjz32GKGhoWzZsgWLxUJQUBBZWVnWZ40XLVpEbGws\n7du3Jy4ujsLCQoxGI8OHDyc5ObnUz1Kv12OxWAgLCyMpKcn6PPeHH37Iu+++W4afhhCVg+QdyTtC\nOILkHsk9FYGMVDmZku4mlKRp06Y888wzPPbYY6iqSvPmzXniiSdwc3PjjVyPsAAAAa5JREFUlVde\nsd4peeSRRxg4cCAdOnRg2rRprFq1CkVRmDlzJjVq1LA55sSJE3n55Zfp168fQUFB+Pv7oygKw4YN\n4/jx4zz66KOYzWYeffRR612RK9q1a0dUVBRPPfUUZrMZgE6dOvHMM89Yj/3WW2+xYMECOnbsaHOd\nubm5DBw4EL1ez3vvvWdzR6ZDhw4sW7aMvn374ubmRmhoKEePHsXNzY13332Xl156CbPZTGBgIO+8\n8w6urq6cOHGCgQMHUlhYyJAhQ2jTpg2//fbbdT/bHj16MGDAAFatWsWsWbN49tlnsVgs1K1bVxKM\nqBQk70jeEcIRJPdI7nEminbtGKioFNavX8+GDRt455130Omcb8By1qxZ1KlTh3Hjxjk6FCFEGUne\nEUI4guQeUR6c71+WuG3p6el8+umnpKenF3uW1xnMnj2bDRs20K1bN0eHIoQoI8k7QghHkNwjyouM\nVAkhhBBCCCHEbZCRKiGEEEIIIYS4DVJUCSGEEEIIIcRtkKJKCCGEEEIIIW6DFFVCCCGEEEIIcRuk\nqBJCCCGEEEKI2yBFlRBCCCGEEELchv8H5zAeIHf12NsAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x104002d90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A solução não aderiu muito bem às soluções analíticas. Vou tentar melhorar a quantidade de discretizaçòes do ativo subjacente para tentar melhorar este resultado"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU times: user 4min 26s, sys: 1.62 s, total: 4min 28s\n",
      "Wall time: 4min 32s\n"
     ]
    }
   ],
   "source": [
    "import finite_difference; reload(finite_difference);\n",
    "d_param = {\"f_St\": 100.,  # preco do ativo\n",
    "           \"f_sigma\": 0.5, # desvio padra do ativo objeto\n",
    "           \"f_time\": .5,  # tempo para vencimento em anos\n",
    "           \"f_r\": 0.10,  # taxa de juros anual\n",
    "           \"i_nas\": 100,  # passos que o ativo sera discretizado\n",
    "           \"f_K\": 100.  # strike da opcao\n",
    "          }\n",
    "\n",
    "%time my_option = finite_difference.DigitalOption(**d_param)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAErCAYAAAA2SKleAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdUFNf7+PH3Ll2aYMXYjYKFIqKIiogae69Yk9g1Gmss\niS0xlhQ1sUaNmmjMxxijJJaosRsrsYA1NkCxgShIZ9md3x/8mG9WigUBy/M6h3PYKXefmZ2dvc/M\nvXc0iqIoCCGEEEIIIYR4LtqCDkAIIYQQQgghXmWSVAkhhBBCCCFELkhSJYQQQgghhBC5IEmVEEII\nIYQQQuSCJFVCCCGEEEIIkQuSVAkhhBBCCCFELkhSJYTI0u7du+nfvz/16tXD09OTjh07sm7dOtLS\n0go6tJdCYmIi3bt3p1q1alSvXp3q1avTtm3bPHmvTZs24eLiQkxMzHOXERERgYuLS6Y/d3d3mjVr\nxty5c/P9s82IadeuXQA8evSIsWPHcv78+VyX3adPH4YMGZLrcl5VBw8epH///nh7e+Ph4UGbNm1Y\ntGgRcXFxBR3aM3n8eK1RowZ+fn5MmDCBmzdvGi07ceLEZ/oOPn783b17l/79+/Pw4cPnLkMI8eYy\nLegAhBAvn08//ZRffvmFDh060LNnTwoVKsSJEyf48ssvOX78ON988w1a7Zt9TcbU1JSZM2eSlJSE\nmZkZFhYWlC1btqDDeqIxY8ZQt25d9XVsbCy7du1ixYoV6PV6xo8fX2CxXbx4kW3bttGvX78Ci+F1\nMHfuXFasWEHLli2ZOXMmtra2hISE8OOPP7Jlyxa+//57ypQpU9BhPrU+ffqoyVJycjLh4eEsW7aM\nLl268PPPP1OpUiUAPvjgA5KSkp663OLFi7NhwwbKly8PwJEjRzh8+DAajeaFb4MQ4vUnSZUQwkhg\nYCD/+9//mDFjBl27dlWn+/j4ULlyZcaMGcOWLVto3759AUZZ8MzNzXn77bcLOoxnVr58edzc3Iym\n+fr6cu3aNQIDAws0qcogz6R/fn/++ScrVqzg448/pm/fvup0b29v2rRpQ0BAAGPHjmX9+vWvzIWR\nUqVKGR2zderUwd/fn/bt2zN9+nTWrl0L8MyJorm5eabvAsjxJ4R4Pq/GGVUIkW9WrlyJi4uLUUKV\noVWrVrz//vs4Ojqq0yIiIhg5cqTaTHDYsGGEh4er8xcuXEjnzp0JDAzknXfewd3dnffff5+oqCjW\nr19Po0aN8PLy4qOPPiI5ORmA48eP4+LiwqFDh2jfvj3u7u507tyZY8eOGcUTEhLCwIEDqV27NjVq\n1KBFixb88ssv6vxNmzbh7e3N999/j7e3N40aNSI5OZn4+Hg+//xzGjduTI0aNfDx8WHixIlGTaP0\nej3fffcdTZs2xcPDgw4dOrB79251/tOUodPpWL58Oc2bN8fNzY22bduydevWJ34GgYGBNG/eHHd3\ndwYNGpRls7/Dhw/TtWtX3N3d8fPzY8GCBRgMhieWnZ1ChQplukK/detW2rZti6urK++88w4//fST\n0fzg4GB69eqFp6cn3t7ejBw5ktu3b6vzXVxcWLVqldE6w4YNo0+fPpne//jx47z77rsAdOnShUmT\nJgFPt58TEhKYPHky3t7e1K1bl+XLl2cqPyEhgS+++ILGjRvj7u5O165dOXz4sNEymzdvpnXr1ri5\nueHn58fs2bNJTU3Ndp/16dOHTz/9lNmzZ1O7dm18fHyYMWOG0To6nY4FCxbQvHlzXF1dqVOnDiNG\njODu3bvqMo0bN2bu3Ll069YNd3d3dZ8dOnSI3r174+npiZubGx06dOCvv/7KNh6AZcuW4ezsbJRQ\nZXBycmLUqFGEhISo275w4ULatm3L5s2badSoEZ6engwZMoRbt24ZrXv8+HF69epFzZo18fPzY86c\nOUbb+ccff9C5c2c8PDzw8PAgICCAf/75x6iMoKAgevXqRa1atahfvz4zZswgMTExx+3JTtGiRene\nvTtBQUHq+ebx5n8xMTF89NFH1KlTB29vb77++msmTZqkHn8ZTfd27tzJpk2b+Pjjj4H0C0iLFi0C\nIDIykkmTJuHr60uNGjXw9fVl1qxZOR4XQog3kyRVQghVZGQkV65cwc/PL9tlJkyYgK+vL5DeB6Fr\n167cvHlTrVxGRETQs2dPIiMj1XVCQ0NZuXIlEyZM4PPPP+fMmTP07t2bzZs38+mnnzJixAi2bt3K\nmjVrjN5r3LhxNGvWjIULF+Lo6MjAgQO5cuUKALdv36Zv377Y2NiwYMECli5dSvny5Zk2bRqXL19W\ny4iPj2fbtm3MmzePjz/+GEtLS8aOHcvevXsZN24cq1evpl+/fmzdupUlS5ao682ePZvFixfTpUsX\nvvvuOzw8PBg5cqRaUXyaMiZMmMDSpUsJCAjgu+++w9PTk3HjxvHrr79mu3///PNPJk6ciK+vL0uW\nLKF06dLMmzfPKOE5evQoAwcOpGzZsixevJj+/fuzevVqPv/88xw/X0hPFtPS0khLS0On03H//n1+\n+OEHjhw5Qrt27dTlNm/ezLhx4/D29mbZsmV06NCB2bNns3LlSgDi4uIYNGgQJUuWZOnSpcyYMYML\nFy4wZswYo/fLqilVVtOqV6/O1KlTAZgzZw7Dhg176v08ZswYdu/ezYQJE5g5cybbt2/n9OnT6nyD\nwcCAAQMIDAxkyJAhLFq0CCcnJwYNGsTff/8NpFf4P/nkE9q1a8eqVasYMmQI69evVyvX2dmyZQsn\nT57kiy++YPjw4UaVc0g/jtatW8fgwYNZvXo1o0aN4ujRo8yaNcuonNWrV9O0aVMWLFhA48aNCQkJ\nYdCgQTg7O7N06VLmz5+vHrsPHjzIMpYHDx5w6dIlGjZsmG28TZs2RaPRcODAAXXarVu3mDt3LiNH\njmT27Nlcv36d9957T00cQkJC6NevH3Z2dnzzzTeMGDGCjRs3MnPmTAB27NjBhAkT8Pf3Z8WKFcya\nNYu4uDhGjRqFTqcD4MCBA/Tt25cSJUqoZWzdupXBgwc/952hjGas//2sMyiKwpAhQzh27BiffPIJ\nM2fO5MCBA2zbti3T8afRaGjUqBFDhw4F0i8sde3aVT1uLl26xLRp01i5ciXt27dnzZo1bNiw4bli\nFkK8vqT5nxBClXH1vFSpUk+1/A8//EBqaiqrVq2icOHCQHrTnKZNm7J69WomTJgApA/qMHPmTLWp\nzf79+9m2bRs//PADTk5O+Pn5sWvXLoKDg43K7969Ox988AGQfvW4adOmrFq1itmzZ3PlyhU8PT35\n+uuvMTExAcDNzQ1vb2+CgoKoUqUKkJ5EfPDBB9SvXx+AlJQU0tLS+Oyzz2jQoAEAtWvX5tSpU5w4\ncQJIv8L9888/M2LECHWwg7p16xIaGso///yDm5vbE8v4999/2b59O5999hndunUDoF69esTHxzN/\n/nw6d+6cZfOr5cuX07BhQyZPngxA/fr1uXPnDvv27VOX+eabb6hZsyZz584FoEGDBtjb2zNp0iT6\n9+/PW2+9le1nNnr06EzTihcvzrBhw9RtNRgMzJs3j3bt2qlx1KtXD41Gw5IlS+jVqxfXrl0jNjaW\nPn364OHhAYCDgwPHjx/P9r1zYmNjo/aNqVy5MmXKlHmqz+rSpUscOHCA+fPn07JlSyD9OGjSpIla\n9v79+zl9+jQrV65UjwNfX18CAgKYN28eDRo04PTp01hZWfH+++9jbm6Ol5cX5ubmmJrm/DNpMBj4\n/vvv1eMfYMaMGYwZM4ZSpUrx8OFDJkyYQKdOnQDw8vLi+vXrme5Yvv322wwaNEh9vWnTJpo3b86U\nKVPUaU5OTnTq1ImzZ89meeEjIiICIMfP39bWFnt7e6M7iomJiSxYsEDdxxUrVqRdu3Zs376dDh06\nsGzZMsqUKcOSJUvUhCQlJYXAwEAMBgM3btygV69eDB8+XC3TzMyMESNGEB4ezttvv823336Lu7s7\n8+bNU5cpXbo0AwYMYP/+/fj7++ewl7NWpEgRAO7fv59p3pEjRzhz5gxr166ldu3aQPpx0bRp0yzL\ncnR0VJsPVq9encKFC3Pnzh0KFy7M5MmT1fOJt7c3hw4d4sSJE/Tu3fuZYxZCvL4kqRJCqDKSk6dt\nRhYUFIS3t7dRhdLBwQEfHx+10gvpV4JdXV3V146OjhQpUgQnJyd1mr29faaRyVq1aqX+b2Zmhq+v\nr1qun58ffn5+pKSkcOXKFcLCwggJCQFQr45nqFChgvq/hYWFerclIiKCsLAwrly5wrVr17C0tATS\nm7UZDIZMFb0ff/xR/f9JZWTc0WrRooVRGS1btmTbtm1cv349U5+spKQkLl26ROfOnY2mN2vWTE2q\nkpKSOHv2LKNGjTIarc/X1xeDwcDx48fVCnxWPvroI+rWrYterycwMJDffvuNCRMm0Lp1a3WZ0NBQ\noqKi8PPzy/QeCxYsICQkhOrVq2Nvb8+QIUNo3bo1fn5+1K1bV63AvghP81mdOnUKwOjuTLFixdRE\nD9KPUxsbGzWhytCyZUvmzJlDYmIitWrVIjExkfbt29OyZUsaNWqU6XPISr169YyO/yZNmjBjxgxO\nnjxJqVKlmD9/PgD37t3j+vXrXL9+nVOnTuV4jAJ06tSJTp06kZiYyLVr1wgLC1Obvz6p6VnG9/hp\n59vZ2akJFfxfUnvy5Ek6dOjA6dOnadu2rdEdnl69etGrVy8ANRl89OgR169fJzQ0lL1796qxJiQk\ncPHiRfUiS4aMiwFBQUHPlVTl5MSJE9jb2xsdj8WLF6dmzZpPfWfMycmJNWvWYDAYCAsLIywsjEuX\nLhEdHf3UF56EEG8OSaqEEKqMJOfOnTvZLhMZGUmxYsXQaDTExcVRvXr1TMs4Ojpy9epV9bWlpWWm\nJjcWFhZPjKd48eJGrx0cHIiNjQXS70DNmTOHDRs2oNPpKFu2LF5eXkDmjuYZV7Qz7NmzR22q6ODg\nQI0aNbCyslKTyYz3eHy9Zy3D1NQUOzs7o/WKFi0KpDdLfNyjR49QFAUHB4cs18lYJuNO0n+v+kN6\n8prVVfv/KlOmjPqZubm5kZSUxPjx43FwcKBevXoAah+usWPHMnbs2EzvERUVhbW1NevWrWPx4sVs\n3ryZdevWYWdnx6BBgxgwYECOMTyLJ+3nR48eYWpqirW1tdF6RYsWVfvrPHr0KMvPsmjRoiiKQkJC\nArVq1WLJkiWsXr2a5cuXq00vp0+fbpRwPK5YsWJGrzP6G2YcQ6dOnWL69OlcvnwZW1tbqlatiqWl\nZaYLF4/Hl5iYyNSpU9mxYweQnnS5uLgA2Q+kkFHRz+n7m5iYSExMjNEFjf8eXxn++13Lbv9liIqK\n4pNPPuHQoUOYmZlRuXJl9W6ZoijExcWhKEqW7+Po6Jjld+Fp3Lt3D4ASJUpkmvfw4UOjZDdDkSJF\niIqKeur3+PXXX/nmm2+Ijo6mWLFiuLu7Y2FhIYNZCCEykaRKCKFydHSkWrVqHDp0KFPfmAzvv/8+\nxYoV44cffsDOzi7LCsr9+/ezrNA8q4cPHxoNihEdHa1W7pYuXcqvv/7Kl19+iZ+fH5aWliQnJ7Nx\n48YcywwLC2PkyJF06tSJDz74QK2QjRw5kuvXrwPpTaQgvY/KfyvNFy9eBMDKyuqJZdjb25OWlsaj\nR4+MEquMpCer/WNvb49GoyE6Otpo+n8HqshIHoYNG2bUxA3SK7CPJ6JP8vHHH3PgwAE++eQTtm/f\njpWVlbr906ZNyzQ6mqIolC5dGkhvsjZ//nzS0tIICgpizZo1fP3119SpU0dd7/Hk4VkGJniaz6pw\n4cKkpaURHx+PjY2Num5MTAzm5uZA+n7NKtnMOHbt7e0B8Pf3x9/fn/j4eA4ePMjSpUsZPXo0R44c\nwczMLMsYH3+mUcZn5+joSFxcHEOGDMHLy4vFixerzcu+/PJL9VjKzowZMzhy5AgrVqzAy8sLMzMz\nrl69ypYtW7Jdp2jRori6uvLXX3/x4YcfZrnMvn370Ov1Rs0HsxoIJTo6mqpVqwLpTTMfPyZjY2M5\nd+4ctWrVYuzYsURGRvLLL79Qo0YNtFotBw4cUJ/dZGtrm23CHxUVlekiwtPKaGrq6emZaV7x4sWz\n7Hv24MGDpx4y/cSJE0ydOpUPPviAXr16qXF26dLlueIVQrzeZKAKIYSRvn37cvHixSyTk99//51r\n166pAxp4eXlx/Phxo4rlgwcPOHr0aJYVnWf1335EqampHDx4EG9vbwDOnDmDq6srzZs3V5uCHTx4\nEMh5SOQLFy6QlpbGoEGD1Ep6YmIiJ0+eVJdxc3PD1NTU6P0Bpk6dyvfff/9UZdSqVQtIH3jiv7Zv\n307RokXVZ+P8l6WlJe7u7plGePvvoAI2Nja4uLgQHh6uPnS4evXqmJiYMHfuXKNR5Z6Gra0to0eP\n5s6dO6xYsQJI71NTuHBh7t69a/QeDx484NtvvyUuLo6DBw/i4+PDgwcPMDU1xcfHR+1/lXGnxMbG\nRr2bkLGPckomHm+W9jT7uU6dOgDs3LlTnRYbG8uZM2fU17Vq1SIhIUEdlCLDn3/+SY0aNTA3N2fh\nwoV0795djbtVq1b069ePuLi4HO+kHD9+XB21EtIfmq3VaqlduzbXr1/n0aNHvPvuu2pCZTAYOHLk\nSLblZThz5gwNGzbEx8dHTegOHToE5Hx8Dxs2jCtXrmQ5AmJUVBRz586levXqRnffHjx4oDadhfR+\nahEREep3rWbNmhw8eNDofbdt28aQIUPQ6/UEBweroyZm9BP8b6zW1tZUrVpVveuW4dChQ8THxz/X\nueLBgwds2LCB+vXrZ9mHzMvLi7i4OKMRCB88eGB0XDzu8T6OZ86cQaPRMHToUDWhunfvntFAOEII\nkUHuVAkhjHTo0IEDBw4wdepUQkJCaNy4MRqNhr///pv//e9/tGrVSu2z895777F582b69evH0KFD\nURSFpUuXYmFhoQ6P/SwerywuXrwYU1NTKlSowJo1a0hOTlablrm5ubF8+XLWrVtH5cqVOXv2rNqR\nPqe7IdWqVcPExISvvvqKgIAAHj58yKpVq4iOjlabJBYpUoSAgACWLl2Kqakp1atX588//+TSpUtM\nnToVW1vbJ5bh4uJCs2bNmDNnDgkJCVSpUoU9e/awfft2pk2blm18H374IQMGDGDSpEm0atWKY8eO\nsWfPnkzLfPDBB9ja2tK0aVMePnzIN998g6mpKc7Ozs+83zt37syaNWtYtWoV3bp1o2TJkowYMYLZ\ns2cD6YN0REREMHfuXCpUqECZMmXUu28jRoxg4MCBmJqa8uOPP2Jvb69Wxhs2bMimTZuoVq0ajo6O\nfP/992g0mmyTgow7ZPv27cPKyuqpPquMQRVmzZpFSkoKTk5OLFu2DL1er5br7++Pu7s7H330EaNH\nj6ZkyZJs2rSJs2fPsnTpUnUblyxZwpQpU2jVqhWxsbF89913eHl55XgnJSYmhiFDhvD+++8THh7O\n/Pnz6dmzJ8WKFcPS0hJra2sWL16MXq8nKSmJn3/+mX///feJd0vc3NzYs2cPgYGBlCxZkmPHjqlD\nref0gFt/f3+GDx/OvHnzuHDhAm3btsXW1pYLFy6wcuVKLC0tmT9/vlECodFoGD16tNrUc/78+VSr\nVo3mzZsDMGTIEHr16sWHH35I165duXv3Lt9++y29e/fG2toaV1dXNm3aRJUqVbCzs+Ovv/5i/fr1\nRrGOGDGCYcOGMXr0aDp27MidO3eYN28eNWvWzHG0QkgfnTAjGUpJSeH69eusXr0aQB0x8nF169bF\ny8tLbcJaqFAhli5dSmpqarbP58o4pnft2kX9+vVxc3PDYDAwc+ZMmjdvzp07d1i6dCk6ne65h4IX\nQrzGFCGEeIzBYFDWr1+vdOvWTalTp47i6empdO7cWfnll18UvV5vtOyVK1eUQYMGKR4eHoqXl5cy\nfPhwJSwsTJ2/cOFCpWbNmkbrzJw5U2ncuLHRtGHDhil9+vRRFEVRjh07pjg7Oyvr169XWrdurbi7\nuyt9+/ZVLl68qC6flJSkTJ48Walbt65Ss2ZNpWPHjkpgYKDSr18/ZcCAAYqiKMpvv/2muLi4KA8f\nPjR6ry1btijNmzdXXF1dFX9/f+Wzzz5T/ve//ynVqlVTIiMjFUVRFL1eryxcuFBxdnZWnJ2dla5d\nuypHjhx5pjJSUlKUr776SvH19VVcXV2VDh06KFu2bHni/t+9e7fSpk0bxdXVVenVq5eybt26TNux\nd+9epXPnzoqrq6vi4+OjjBs3Trl79262Zd68eVNxdnZWdu7cmeX8Q4cOKc7OzsrYsWPVaRs3blTa\ntGmj1KhRQ2nQoIHy6aefKo8ePVLnnzt3Tnn//feV2rVrKx4eHsq7776rnD9/Xp0fGRmpDBs2THF3\nd1fq16+vLFmyRJkzZ476OT8ek8FgUMaPH6+4uroqQ4YMeer9nJqaqsyePVupW7eu4uXlpcyZM0cZ\nOXKkMnjwYDWWR48eKVOmTFHq1q2ruLu7KwEBAcqhQ4eM9sG2bduUDh06KB4eHkqdOnWU8ePHK9HR\n0dnu0969eysDBgxQZs6cqdSsWVNp2LChsmjRIsVgMKjLHD58WGnfvr3i5uam+Pn5KePGjVN27typ\nuLi4KMHBwYqiKIq/v78yY8YMo7Kjo6OVDz/8UKldu7ZSu3ZtJSAgQDlw4IDSvHlzZdq0adnGlOHI\nkSPK4MGDlfr16yvu7u5KmzZtlIULFypxcXFGyy1YsEDx8PBQNm/erNSvX1/x8vJSxo8fr8TExBgt\nd+zYMaV79+7q57Bw4UIlLS1NURRFuXHjhtKvXz+lZs2aSt26dZX33ntPCQoKUjw8PJTly5erZezZ\ns0fp2LGjejzNmDFDSUhIyHE7nJ2dFRcXF/V7WL16dcXf31+ZPHmycvv2baNlJ06cqLRp08ZoH44a\nNUqpWbOm4u3trcyfP1/p1auXMnToUEVRMh9/SUlJSv/+/ZUaNWqon8fq1asVf39/xc3NTWnWrJky\nf/58ZeHChUrt2rWV1NTUJ36vhBBvDo2iSG9LIcTLJeNBsL/99luWA2Hkp48//pjQ0FA+/fRTdVhl\nISD94b/W1tZ89913BR3Kc1u4cCGrVq3K8llPr7KIiAhCQkJo3ry52qxUr9fTuHFjWrVqlWkkQiGE\nyC3pUyWEENm4desWHTt2RKfT8e233xZ0OEKIp6QoChMmTGD69OkcPXqUgwcPMnr0aGJiYujatWtB\nhyeEeA1JUiWEeCk97QhdeWnNmjX069ePlJQU+vXrV9DhCPHCaTSal+K79qJlPKz46tWrDB8+nNGj\nRxMXF8fatWupWLFiQYcnhHgNSfM/IYQQQgghhMgFuVMlhBBCCCGEELkgSZUQQgghhBBC5IIkVUII\nIYQQQgiRC5JUCSGEEEIIIUQuSFIlhBBCCCGEELkgSZUQQgghhBBC5IJpQQcghBBC5Idly5ZhZmYm\nzxwTQuSpvXv38v333xMVFUWnTp3Q6/WEhIRga2vL3LlzCzo8kUckqRJCCPHaS0pKIiQkhODgYHr3\n7o25uXlBhySEeE01btyY2NhY9u/fz9ChQ9XpCxcuLMCoRF6T5n/imURERFC1alU6dOig/rVv357f\nfvutoEMTQohsbdu2jRkzZuDo6CjnKyFEnlMUBUVRjKaVK1eugKIR+UHuVIlnZmlpSWBgoPr63r17\ntG3blho1auDs7FyAkQkhRGY6nY6EhAQcHR0ZPHgw8+fPp3v37mi1cl1RCJF/2rZtW9AhiDwkvygi\n10qUKEG5cuU4fPgwPXv2pFOnTrz77rsA/Prrr3Tq1ImOHTvy/vvvc/36dQASEhKYOHEizZs3p1Wr\nVnz77bcAxMXFMW7cONq2bUvbtm356quv0Ov1ACxYsIB27drRuXNn+vfvT1RUVMFssBDilbJr1y5a\ntWoFQMuWLTExMWHbtm0FHJUQ4k2j0WgKOgSRh+ROlci106dPc+PGDZKTk7l27Rp79+7F2tqaEydO\n8Pvvv/Pzzz9jaWnJ33//zYgRI9i2bRsLFixAp9OxY8cOdDodffv2pWHDhqxfvx5HR0e2bNlCamoq\nQ4cOZeXKlbRt25Y1a9Zw9OhRzMzMWL16NSEhITRp0qSgN18I8RJTFIX79+9TrFgxALRaLQMGDGD5\n8uVy1VgIIcQLI0mVeGYpKSl06NABAL1ej4ODA19//TX379+nSpUqWFtbA7B//37Cw8MJCAhQ142N\njSU2NpajR48yadIkNBoN5ubmrF+/HoAPPvhA/d/c3JwePXrw448/MnDgQFxcXOjYsSO+vr40bNgQ\nHx+ffN5yIcSrZt++fZkuvnTo0IHFixezb98+/P39CygyIcTrTO5KvXkkqRLPzMLCwqhPVYZNmzap\nCRWkXyFu374948aNU19HRkZib2+PqanxoXf79m0KFSqEwWAw6tip1+vR6XRoNBp++uknzp07x5Ej\nR5g9ezbe3t588sknebSVQojXweXLl6lZsyYPHjwwmt6lSxeWLVsmSZUQIk88PkiFeP1JnyqRZ+rX\nr8+2bdvUvk8///yz2tfKx8eHwMBAFEUhNTWV4cOHExwcTIMGDVi3bh0AqampbNiwgQYNGnDp0iXa\ntGlDxYoVGTRoEO+++y7//vtvgW2bEOLld/ToUb755ht8fHyoV6+e0d+iRYsIDg7m5MmTBR2mEOI1\nc+DAATZv3kxwcDALFy7k/v37BR2SyAdyp0o8s+xuaT8+vUGDBgwYMIB+/fqh0WiwtbVl8eLFAAwf\nPpyZM2dStWpVypQpQ9euXfHz88Pd3Z0ZM2bQtm1bUlNTadiwIUOGDMHU1JQWLVrQuXNnChUqhJWV\nFZMnT87zbRVCvLp8fHy4dOlSQYchhHjD+Pn54efnV9BhiHymUeT+pChA06dPx9HRkQ8//LCgQxFC\nCCGEEOK5SPM/UWDWrVvH8ePHZWh0IYQQQgjxSpM7VUIIIYQQQgiRC3KnSgghhBBCCCFyQZIqIYQQ\nQgghhMgFSaqEEEIIIYQQIhckqRJCCCGEEEKIXJCkSgghhBBCCCFyQZIqIYQQQgghhMgFSaqEEEII\nIYQQIhfoBrzSAAAgAElEQVQkqRJCCCGEEEKIXJCkSgghhBBCCCFyIc+SKoPBwNSpUwkICKBPnz7c\nuHHDaH5gYCDt2rWjV69ebNy4Ma/CEEK8Bp50Ptm7dy9dunQhICCAX3/91WhecHAwffr0UV9fvHiR\nXr160adPH/r37090dHS+bIMQ4uX0POeX7NYJDw+nR48e9OrVi+nTp6MoitH7DBgwgPXr1+ffxgkh\n8k2eJVW7d+9Gp9Oxfv16xo0bx5w5c9R5Dx48YMGCBfz000/89NNPbNmyhVu3buVVKEKIV1xO5xOd\nTsecOXNYvXo1a9eu5ZdfflETpRUrVjB58mR0Op26/KxZs5gyZQpr166lWbNmrFixIt+3Rwjx8nie\n80t268yePZsxY8awbt06FEVhz549alnffPMNcXFxaDSafN9GIUTey7Ok6tSpU/j6+gLg7u7OuXPn\n1HkRERG4uLhgZ2eHRqPB1dWV4ODgvApFCPGKy+l8cu3aNcqWLYutrS1mZmbUqlWLoKAgAMqVK8ei\nRYuMrhbPnz8fFxcXANLS0rCwsMjHLRFCvGye5/yS3ToXLlygdu3aADRs2JAjR44AsGPHDrRaLb6+\nvkbnIyHE6yPPkqr4+HhsbGzU1yYmJhgMBiC9onP16lWio6NJSkri6NGjJCUl5VUoQohXXE7nk/j4\neGxtbdV51tbWxMXFAdCsWTNMTEyMyipatCiQXpFat24d7733Xh5HL4R4mT3P+SWrdfR6vVHClLHs\n5cuX2bZtGyNHjpSESojXmGleFWxjY0NCQoL62mAwoNWm53D29vZMmjSJESNGULhwYapXr46Dg0OO\n5Z08eTKvQhVC5FKtWrXytPyczie2trZG8xISErC3t8+xvO3bt/Pdd9+xfPlyOfcI8Qp7EeeeZz2/\n2NnZZbmOiYmJuh6kJ2R2dnb8/vvv3Lt3j759+3Lr1i3MzMwoXbo0DRo0yDYmOe8I8fLK7ryTZ0mV\np6cn+/bto2XLlpw5cwZnZ2d1nl6v5/z58/z888+kpqbSr18/xowZ88Qy86ridvLkyTyvFOaVVzV2\niTt/5WXc+fHjn9P5pGLFioSHhxMbG4uVlRVBQUH0798/27J+//13NmzYwNq1a5+YfGWQc48xiTt/\nvapxw6tx7nme84tGo8lynapVq3LixAnq1KnDwYMH8fHxoWXLlmp5ixYtolixYjkmVBny8jN/VY8p\niTt/SdxZl52dPEuq3nnnHQ4fPkxAQACQ3nlz69atJCYm0q1bNwA6duyIhYUF/fr1o3DhwnkVihDi\nFfek88nEiRPp378/BoOBLl26ULx4caP1MzqG6/V6Zs2aRalSpRg+fDgAderUYcSIEfm7QUKIl8bz\nnF+yWgdg4sSJTJkyBZ1OR6VKlWjRokWBbZcQIn/lWVKl0Wj49NNPjaZVqFBB/X/48OFqpUYIIXLy\npPOJv78//v7+Wa5bunRpdQhjExMTjh8/nneBCiFeOc9zfslqHYDy5cuzdu3abN9L6j1CvL7k4b9C\nCCGEEEIIkQuSVAkhhBBCCCFELkhSJYQQQgghhBC5IEmVEEIIIYQQQuSCJFVCCCGEEEIIkQuSVL0g\nKSkpNG7cGIBZs2Zx9+5dYmNj6dixY47PzHkZfPXVV7Rr144ff/yRxYsXZ7vcoUOH2LBhAwC//PIL\naWlp+RWiEEIIIYTIhTelrrp3714g/+uqeTak+pvs448/BiAoKIgyZcqwYMGCAo4oZzt37uSPP/6g\nUKFCOS7n6+ur/r9s2TI6duyY16EJIYQQQogX7HWuq2Ysk991VUmqciEhIYFx48YRFxdH2bJl1QeM\n9unTh8mTJ/P5558TFRXFokWL6Ny5M1OnTiU5ORlLS0tmzJhBWloaQ4cOpXDhwvj5+eHr68vMmTNR\nFAUHBwdmzZrF+fPnWbFiBebm5ty8eZPWrVszZMgQwsLCmDx5MjExMRQtWpT58+cTFRXFF198gV6v\n5+HDh0yfPp2aNWsyadIkbty4QXJyMn379qV9+/bqNixatIjIyEgGDx7MwIEDCQwMZN68eTRr1oxa\ntWoRGhpKkSJFWLhwIYGBgYSGhlKuXDnu37/PmDFjWLBgAVOmTOHu3btERUXRuHFjRo0axa5du/j+\n++8xNTWlePHizJ8/X90/QgghhBAi7+Wmrtq1a1ciIiJyXVdNS0vD0tIy3+qqR48eJTQ0NN/rqq9N\nUrXx+mlO3b/xXOumpKbw24mITNM9i5alS8Wa2a63fv16nJ2dGTVqFCEhIRw7dkydZ25uzieffML6\n9esZPnw4o0aNok+fPjRs2JCjR4/y9ddfM3r0aO7fv8/mzZsxNTWlW7duzJ49m0qVKrFx40ZWrFhB\n/fr1uXPnDlu2bCElJQVfX1+GDBnCF198wZAhQ7CysiImJoZLly7x8OFDJkyYQJUqVdi6dSubNm2i\nSpUq/PPPP2qzvcOHDxttw/Dhw9m0aRMrV67k9OnT6vSIiAjWrl1LiRIl6NGjB2fPnkWj0aDRaOjS\npQtLlixh3rx53LlzBw8PD7p27UpKSgp+fn6MGjWKbdu2MWDAAJo1a0ZgYCDx8fHY2to+1+cjhBBC\nCPGqy01dNTt5WVddsWIFM2bMyHVdtUGDBuzZsyff6qpAgdRVX5ukqiCEh4fj5+cHgJubG2ZmZuo8\nRVFQFEV9ffnyZZYtW8aKFSsA1GVLly6NqWn6x3D9+nWmT58OQFpaGuXLlwegSpUqaLVarKyssLS0\nBCAsLAwPDw/+/fdfmjRpAsA///zDkiVLsLS0JCEhARsbG6ytrfn444+ZMmUK8fHxtGvX7qm2zcHB\ngRIlSgDg5ORESkqKul3/ZW9vz9mzZzl+/Dg2NjakpqYCMGnSJJYtW8batWupWLEiTZs2far3FUK8\nWXQGPbGpSTxMSeRhSiJJeh2WJqZYmphhZWKGlak5RS2tsTI1L+hQhRDilZObumpSUhKQ+7oqkK91\n1cflV131tUmqulSsmWOmnpOTJ09Sq1atZ16vUqVKnDlzhiZNmnDhwgV0Ol2Oy/br14+aNWty/fp1\ngoKCANBq/2+skAoVKvDVV19RsmRJTp06RVRUFECWtyIrVarE2bNnMTc3JzAwkMTERDZu3MhXX31F\npUqVWLBgAbdv3yYqKorz58+zaNEiUlJSaNSoER06dDB636w86fanVqvFYDCwadMm7Ozs+OyzzwgP\nDzcayGLEiBE4OjoydepUdu/eTYcOHXIsUwjx+otLTeZ8zB3OP7jDv7H3iE1Neqr1SljZUd7WkfI2\nRShvW4Tyto5oNTLWkhDi1ZGbuurzyk1ddePGjUDu66o+Pj5vRF31tUmqCkKPHj0YP348PXv2pGLF\nilhYWKjzMprKZXzg48ePZ/r06aSmppKcnMzkyZPV5TJMnz6djz76CL1ej0ajYdasWdy7dy/Lg2b8\n+PFMmjSJ4OBg6tWrx1dffUVqaiqjRo3Czs6OkiVLEhMTQ7FixYiKiiIgIAATExP69++f6SDNKP+/\n8WYnY76XlxeDBg1i6tSpjB07ljNnzmBubk758uW5d+8ebm5uDB48GGtra6ytrfH393+OPSxeFkrs\nfTCkoXEoWdChiFdQYloqB+9c5dT9G9yIf0DGdVF7cyuc7UvgYFGIwhZWOJgXopCpOcn6NJL0qSSn\n6UjS67idEEt4/AOOR4ZxPDIMgMLmVtQqVpY6xcpTzsZR+mwKIUQWclNX7dKli7pchuepqw4ePJi6\ndevmW101Q37XVTXK4+25XlLPezepoMvOS5GRkYwfP54vvvhCvf35qnhV9/mbFLeSpkO5egrD+b9R\nblxCU8UL09aDX0jZrxI592T2tHE/TElkz61LHLx7lRR9GlqNhrftilHdoRQ1HJ14q1Dhp/5xNCgK\nkUlxhMVHczkmktPRN0lMS2/CUdzShrolKtDIqQrWZhbZlvG67++XkXx/nk9eb9uruu8k7vz1IuKO\njIxkzpw5TJgwId/qqgV13pE7Va+wVatWcffuXQwGQ0GHIl4jSlIchhPbMVw4AskJAGhKvY22opu6\njN5g4HT0TfbdvkxjHAsqVPGSepCSwNbwsxyLDEOvGLA3t6J1mRr4Or1NoefsG6XVaChZyI6Sheyo\nW7wCPQ1enH94h6CocIKjI/gj/Cw7b16kodPbNH3LhcIWOQ+7K4QQIu+tWrWKsLCwN6KuKknVK2zi\nxIm88847ODk5FXQo4nWiNcVw9iCYmaP1aoG2RgO12d+j1GQO3b3KwTtXiPn/fWEaF5KkSqQzKAqH\n7l7lt9DTpOjTKGFlS7PS1fAuXh4zrckLfS9TrQnuRUrjXqQ0yXodf9+9xl8RF/nr1iX23b6MT4mK\ntCpbHUcL6xf6vkIIIZ7exIkTCzqEfJNnSZXBYGD69OlcvnwZMzMzZs6cSdmyZdX5f/zxBz/88ANa\nrZbOnTvTo0ePvApFCPEMNBZWmHT5CE2x0mhM0k8RtxJi2HPrEscjw0hTDFiamOJfqgr+TlWIuHil\ngCMWL4OopDjWXDnO5dhICpma0beyNz4lKuTLYBKWJmY0fcsFP6fKHLsXys6ICxy6e5VjkaG0LFOd\nZqWrvvCkTrw+nlRf2bt3L0uWLMHU1JTOnTvTtWvXbNcJDw9n4sSJaLVaKleuzLRp09BoNKxbt47N\nmzej0Wjo168fLVu2zPPtSkpL5d/YSB6mJJJm0KP7/38GFJLTYimVGEsJKzu00h9RiBciz5Kq3bt3\no9PpWL9+PcHBwcyZM4clS5ao87/88ku2b9+OlZUVrVu3pk2bNvIcIyHyieFuGIYze9C+7Yn27cwj\nEWlLlkdRFC48vMNfty5x4eEdIL3vin8pZ3xKVMTKNH1Y1sxPeBNvEkVR2HP7XwLDgtEZ9Lg7vkXP\nt2sXSPM7M60Jvk5vU69kRY5HhrE59Ax/hIdw5N51uld89foziPyRU31Fp9MxZ84cfvvtNywtLenR\noweNGzfm5MmTWa4ze/ZsxowZQ+3atZk2bRp79uzB09OT9evXExgYSHJyMq1bt86TpMqgKITHRXMh\n5g7nH94l9NF9DGTfbX7/yW1YmJhSzsaRynbFaVCyEo6WcmdXiOeVZ0nVqVOn8PX1BcDd3Z1z584Z\nzXd2dubRo0dotVoURZGRm4TIY4piQLkeguHkLpRblwEwQKakSq8YOBl1g50RF4hIiAGgsl1x3int\ngqvjW3JVU6h0Bj1rLh/nRFQYNqYWvFulLl5FyxbI+Vx5cBfDtdMQ9wDlUTS14x/iZdBzxaE4iwpr\nWHzhAGW01lRMqYqDRSGUpDiIjwGHkmhMzZ78BuK1lVN95dq1a5QtW1a96FurVi2CgoI4c+ZMlutc\nuHCB2rVrA9CwYUMOHz5M06ZNCQwMxMTEhKioKKPR114ERVEIeXCLP8JD1HO2Bg3lbR2p5uCEUyF7\nzLUmmP3/P0VROHrpLAYHa8LjH3AlNpLLsZFsv3memkVK41+qCpXti0u9TIhnlGdJVXx8PDY2Nupr\nExMTDAaDOkRi5cqV6dy5M1ZWVjRr1sxoWSHEi2WeFEvaj1Ph4V0ANOVroK3ZFE25auoyqfo0jt4L\nZdetC9xPTkCDhtrFytH0LRfK2xYpoMjFyyouNZmlFw9y7dF9KtoWZWg1X+zMrQosHiX6Foa/f/u/\nCWYWaExMcXaqyBTPVvxy/R8uxdzjs1Pb6FGpNl5Rt9DvWg0mZmhKvY2mjDOaMlXRlCinNnsVb4ac\n6ivx8fFGrWisra2Ji4vLch29Xm/0INVChQoRFxenzv/pp59YuHAhffv2fSFxK4rCpZh7/B4eTGhc\nNBrAq2hZPIuWxaVwSazNsh8UJs4sglrO6Xdvk9N0nLx/g323L3Mq+ianom9S2rowrcu6UrNIaUmu\nhHhKefbLYWNjQ0JCgvr6vwnVpUuXOHDgAHv37sXKyoqPPvqIHTt20KJFixzLPHnyZF6Fm6dlZ2fj\nxo04ODjQpEkTdu7cScmSJalWrRp///03/v7+HDx4EGtr6ycOC1kQsb8IEnf+0VjYkJKUQEIJZ+6X\ndifZughEp0D0aVIVAxfSHnJW95Ak9JigoZppYdxMHbBLMCf6chjRhBX0JoiXyENDCnOCd3I/OYHa\nxcrxbpW6ed5nSUlLRbn8D0pMJCb1Mj+cUVPqbUzaj0Bj6wi2RcDCSq0MlgJG1WjMzyf2cjwtmpX/\nHuG2iSUtajTA5F44ys2LKDcvAoFoazbFpFFAnm6LeLnkVF+xtbU1mpeQkICdnV2W65iYmBg9Wydj\n2Qy9e/eme/fuDBw4kOPHj+Pt7Z1jXDn91jwypHIw9R63DYkAVDCxwcusKA6JFnAjiks3op643f8t\n3xJooRTjnoUN59JiCE2IYdnFQ5Q1saaBWQlstC/P3dxX8TcYXt24J02a9ELqqvmtIPZ3niVVnp6e\n7Nu3j5YtW3LmzBmcnZ3Veba2tlhaWmJubo5Wq8XR0VG9mpOT1+1ZF0ePHqVo0aLUqlVLff+IiAiC\ngoIYN27cU8X0Jj/7oCC8ynFbD/wSG1MzMp4SkZSWyt7bl9lz6xIJaalYmZjRspQLjUtVeaY7Dq/q\nD4V4Ppdi7vJ78g1SMdCmbA3alHXN0yvZysO7GIL3pw/xn5IIJqZoPd9B81jfD421PZqK7tmWo9Fo\ncDEtTDO3Oqz69yh/xt3nqJ0973kNxsXSGuXmvyg3L+VYhng95VRfqVixIuHh4cTGxmJlZUVQUBD9\n+/dHo9FkuU7VqlU5ceIEderU4eDBg/j4+BAaGsq8efNYuHAhpqammJubY2Ly5IsQ2f3WnLp/k98v\nHyPJoKOGgxPty7tT1ubZRmHN6besNXAv8RE/XT3B5dhIflNu0K68G41LVcmXgWdy8ir/Br+qcb/1\n1lu5rqvmt7x+TlV28iypeueddzh8+DABAelX/GbPns3WrVtJTEykW7dudO/enZ49e2JmZka5cuXo\n2LFjXoWSZ+Lj45k8eTJxcXFERkbSo0cP/vzzT6pWrcqVK1eIj4/n22+/pVSpUsydO5fz588TExOD\ns7Mzs2fPBv7vCdGNGzdmx44dfPfdd1y9epXFixejKApFixYlICCAzz77jLNnz6LT6RgxYgRNmjRh\nzpw5HDp0CGtra9q0afPCmhSIV5OSFI/h5E40jk5oq9XLND+j30hiWip7bl1iz61/SdLrKGRqTrty\n6T+YVs/5DCHxZvg35h6Lzh/AgEJ/53rUKV4+z95LURQM+37GELIfFAUK2aKt3Qqta8NMCdWzKGZl\nyzj3puy8eZEtN0L49txe2pVzo0XlWphU8cp2Pf2J7enNBN+qLM2hXjNPqq9MnDiR/v37YzAY6NKl\nC8WLF89yHUgfPnrKlCnodDoqVapEixYt0Gg0ODs70717dzQaDQ0bNsTLK/tjLTs6g55NoafZe/sy\nZloT3q1Sl3olKr64HfEfJQrZMca1CUcjQ9l4/RS/Xj/FicgwBrjUp7iVDCr2KslNXbVLly5A7uuq\np06dAnjt66p5llRpNBo+/fRTo2kVKlRQ/w8ICFBPRi+KbuWELKeb9f8ix+VdUlLRndnwxOUfd+PG\nDVq3bs0777xDZGQkvXv3pkSJEri7u/Pxxx8zf/58tm7dSs+ePbG3t2fVqlUYDAbatGnDvXv3sixz\n6NChXLlyhQ8++IBFixYB8NdffxETE8Ovv/7Ko0ePWL16NSYmJty6dYvPPvsMd3d3evbsSd26dalS\npcpTxS5eH0pyPIaTuzCc3gO6lPQH9WaRVCWn6dh7+1/+unWRxDQdNqYWdCzvTiOnKlhKR33xBNcf\n3Wfx+QMYFIVmFm/laUIF//9HXKMFh5KY1G2L5m3PF9bXyUSjpVXZ6lR1KMGyC3/ze3gIYfEPeL9K\n3SwvLCix9zEc3gwoaJwqoa3dAk1FdzQFfNVevBhPqq/4+/vj7+//xHUAypcvz9q1azNNHz58OMOH\nD3/uGO8nx7P84t+Exz/AycqOQVUbUMq68HOX9zQ0Gg31SlTE1aEUv4ae4nhkGLPP7GCgSwOqOcjz\nMZ/X89ZVn3b5x+WmrtqkSZMsy3zWuuqGDRtIS0t77euq0hs3F4oUKcKPP/7Irl27sLGxIS0tDUi/\n/Q/g5OTE/fv3sbS0JDo6mrFjx1KoUCESExPVZR/3306uGUJDQ/Hw8ADAzs6OkSNHsnLlSvXWpqmp\nKe7u7ly9evW1PVBFZkqaDsOJ7RhO/wWpyVDIDm29jmjdGhotl6pPI0T3gJ+D/iA+LQVrU3M6lveg\nUanKWJpIMiWe7Eb8Axac24fOoGdQ1QYYwiPz5X21DTqhNemGJo/6a1WwLconNVuw4tJhgqMjmHVm\nJ0Oq+vLWY5VVjX1RTLqNx/DPTpTrZ9D/sRiKlcGkYTe0ZavmSWxCZLgZ/5Bvz+0lTpeCT4mK9Kjk\nhUU+DqZia25JP+d6ONuX4OerQSw4t5+OFdxp9lZVuWv7CpC6av55rZKqp83aH18+5DnbXq5evRoP\nDw969OjBsWPH2L9/f5bLHTx4kLt37zJ//nwePHjAX3/9pR6Qjx+YWq0Wg8FgNK1SpUrs2LEDgLi4\nOEaNGkWfPn3YtGkTrq6u6HQ6Tp8+TadOnZ55G8QrzMQkfQhpUzO0dduhdfNDY/Z/Q/XqFQNH7l5n\n642zxOiSsDQxo21ZV5q85aI+Y0qIJ7mdEMu3Z/eRrNfRz7keNYuW4eQLTqoUgz7LxOm/x3NesTW3\nZKSrP7+HhbAz4gJzzuzkfed6eBYtY7Sc9q3KaN+qjBJ9G/2JbSiXjqNcDwZJqkQeCouL5ttz+0hM\nSyWgkhf+pQquMlq/ZCVKFbLnu4uH2BR6hoj4h/Sp7I25jJb5TJ63rvq8clNXzZDbuup77733RtRV\n5ZuQC/7+/nz++eds374dW1tbTE1N0el0ma7cuLm5sWTJEnr37o1Go6Fs2bJERqZXSh5ftkiRIuh0\nOr7++mssLS3RaDQ0adKEo0eP0rNnT/R6PcOHD8fX15fjx48zbdo0zM3NadWqlXrVQbwZNBotpm2G\ngI2DUeVTURTOREewOSyYe0mPMNOa4GHqSF+vxjkOsSvE4+4nx/PNub3Ep6XQp7J3njT5M9wNRb/j\ne0ya9EFbxuWFl/80TDRaOlXwoLxtEX749yjLLx6ic4WaNH3LJdM5WlOkFKYtB6J4NgM7edSAyDtX\nYyNZeP4AKfo03qtSF5886j/1LCrYFeXjmi347sIhTkSFE5kUx4ga/tjkwwUQ8XxyU1d9+PAhkPu6\nakBAAKmpqa99XVWSqlzw9vZmy5Yt2c7/b5+xjRs3Zprv6emp/r937171/8DAwEzLTp48OdO0CRMm\n0LRp05dy5BXxYinxD9HYOGSarnEoafT6amwUG0NPERoXjRYNviXfpk3ZGlw7d/GVTqgMBgPTp0/n\n8uXLmJmZMXPmTMqWLavO37t3L0uWLMHU1JTOnTvTtWtXdV5wcDBff/212s8hPDyciRMnotVqqVy5\nMtOmTZMmLFlI0aex9MJBYlOT6FbRkwYlK73Q8hXFgCFoB4ajv4PBgHI3FAooqcrgWbQMxSxtWHR+\nPxtDTxOVHE/3SrUwyaLvlKZEuQKIULxJvj23jzTFwECX+tQqVvbJK+QTe3Mrxrg1Yd2VExyNDGVe\nyB5GufoX6HPqRPZyU1d9fBS9562rvimkl60QLzHl/i3SNs0nbe2nKMmJ2S4XlZTeifmrkL8IjYvG\ns2gZptVqTe/KdShsUSgfI84bu3fvRqfTsX79esaNG8ecOXPUeTqdjjlz5rB69WrWrl3LL7/8QnR0\nNAArVqxg8uTJ6HQ6dfnZs2czZswY1q1bh6Io7NmzJ9+352WnKAo/Xj5GREIMfk6VafLWi012lLRU\n9NuWYTi8CaxsMek8BpPaLV/oezyvMjYOTPRoTmnrwhy4c4Ul5w+QnKZ78or/n+HWFdI2f4MS8+Tn\nBAmRE4OiMKSq70uVUGUw05rQt0pdGjlV4VZiDF+H7OFhSva/UUK8CSSpEuIlpCQ+Qr97DWk/TUcJ\nP4+meBlITcq0XFJaKr+Fnmb6ya2cvH+DCrZFGO/+DoOr+lKykF3mgl9Rp06dwtfXFwB3d3fOnTun\nzrt27Rply5bF1tYWMzMzatWqRVBQEADlypVj0aJFRu3BL1y4QO3atQFo2LAhR44cyccteTXsiLjA\nyfs3eNuuGN0qej55hWek3/odypWTaN6qgmmf6S/dYA8OFoX4yO0dajg4ce7hHb4K+YvYLL5/WVEu\nB6GEnSNt7TT0J3ehKIYnryREFj6o7od7kdIFHUa2tBoNAZVq0ax0Ve4lPeLrkL+4nxxf0GEJUWCk\n+Z8QLxnDv0Ho96yBlCRwdMKkYTc05WsYNVEzKApH7l0nMOwMcboUHC0K0am8B17Fyr2WTdni4+Ox\nsbFRX5uYmGAwGNBqtcTHx2Nr+3/PTbG2tlYfJt6sWTMiIiKMyvpvglWoUKGnevD4m+Tsg1v8HhaM\ng3khBldtgGkejLynrdUMg5UNJk36qM9Pe9lYmpoxrLof66/+w8G7V/kq+C9GuTamqKVNjutpG/VA\n41QJ/f71GA5uQAkNwaR5PzS2z/ZwViFehWHLNRoNncp7YK41ZeuNs3wdvJvRbo0pYfX6XNQT4mlJ\nUiXEy8bWEdCgbdQDrXujTKOihT66z/pr/xAW/wALrSnty7nT9C3n13oEJhsbGxISEtTXGQkVgK2t\nrdG8hIQE7O3tsy0rY72MZe3s5Mc/w93ER3x/6QimWhOGVmuYZ30ktGVcCmxQimdhotHS8+3a2JhZ\nsP3meb4M/otRNfxzfD6QRqNB4+KNpmw19Lt/RLl2hrSNczF9dwYarTQOEa8fjUZD23KumJuYsCn0\nDN+c3ct492Y4vAZNz4V4Fq9vLUyIV5S2VCU0A75EY25pNP1RahKbwoI5eu86AHWKlaNThZpvxA+X\np6cn+/bto2XLlpw5cwZnZ2d1XsWKFQkPDyc2NhYrKyuCgoLo379/tmVVrVqVEydOUKdOHQ4ePIiP\nj255kawAACAASURBVM8T3//kyZMvZDvyu+xnkaYY2JQcTrKiw9/cifuXQ7lPaLbLvyxxP6vnibs0\n4GNWjKOpUcw5tYOWFqUpbvIUCWepujhq7Ukzt+LR6dPPHux/vKr7G17t2MXTa166GnqDgd/DQ/j2\n3D7GuTWVUQHFG0WSKiEKiGIwgF6X5bN4/ptQGRSFQ3evsjn0DEl6HaWtCxNQyYvK9sXzM9wC9c47\n73D48GF1lKLZs2ezdetWEhMT6datGxMnTqR///4YDAa6dOlC8eLG++a/TSInTpzIlClT0Ol0VKpU\niRYtWjzx/fNqhM3HR1YqSP+7GkTMnVQal6pC90peOS77LHErKUloLF6OUcFys79rAc73rvPj5eP8\nqbvN0MoNqfrY6JtZy3lfPo2X6Th5VnkZuyRrL5+WZaoTr0thz+1/WXh+P6NdG8tD5sUbQ5IqIQqA\nci8M/e61aEr+P/buPDyq6n78+PveO1knO1kgIRsBkhCSQFiUJUAQRFxRFgOK2qK2WlekLV/7lUpb\nlerPr/tSq4JSBKQtLrhDWANITAiQhQABkkBYsieTdWbu/f0RjQayZyaTkPN6Hp+HzLnn5DPj5N5z\n7j3nc0JRrrmz1ePyDaV8dCKFU1UlOCp2JIaNYeqgYcgtpHi+kkmSxMqVK5u9Fhoa2vTvhIQEEhIS\nWqw7ePBgNmzY0PRzSEhIU3p1oVFGaSE7zh3H39md20JHW6xd7cJpTP99GSVhIXLEVRZr11Ym+A3B\nSbHjn0eTeSNrJw+MiCfK079LbWmadkWufxT6N0mSmDckjmpTA/svnuLtrN38LmoqdlZYmykIvU3/\n6pkJgo1pxnrMOzdiWv8M2sU8NFNDi9nB6kxGPs5N5dmD33CqqoRxPsH8ZeyNJPiH97sBlWBdBmMd\nHxzbjyLJ/Dp8osU6P1pRAab//B/UVbd/cB8yyjuQ30VNBeDNzF0cKT3bpXbUH77GvPVDtE6kaxeE\nvkCWJO4adhUxXgFkl59ndc4+1F8kCBKEK5V4UiUIPUTNz8b83QdQWQwefigzFre4WD+jtJB1Jw5Q\nWl+Dr5Mri8LGdXCakSB0jqZprD1+gEpjHbeFjiKwhQ2mu9RuSSGm/7wI9bUo195zRTyl+qURnoP4\n3YipvJG1k7eydvObyMmdSn2tqWa046loF06jXjiN7qbfIbkNsGLEgtCzFFnmvohJvJqxg9TifAac\n1jPXgk/BBaE3Ere8BaGHqNn7oKoUedxsdIv/fNmAqqqhjveOJvNa5g7KG2q5PjCKFXHXiwGVYDV7\nL5wkveQMw9x8mWmhDX61mkpMn7wKtYbGGwdRkyzSbm8T6TmQh6OmoZNk3s7eTVpxQYfrSrKCsuAP\nSFGT4GI+pvV/Qy08YcVoBaHn2Ss6HhgxBT8nN749k82e8+I7LlzZxKBKEHqIMnUBuoV/Qpk8F0ln\n3/S6pmkcuHiaP6d+wYGiPEJcvPjf0bO5JSRWzEMXrKao1sDGk6k4Knb8KnyCxaaVauVFUF+NfPXN\nyNFTLNJmbxXu4cfDI6dhJyv8M3tP5wZWOnuUmfcgT1sItdWYN72AeqJ7GQIFobfR29nzUNRU9Dp7\n1p1I4Wj5eVuHJAhWY7VBlaqqrFixgsTERBYvXkx+fn5TWXFxMYsXL276b9y4cWzcuNFaoQhCryA5\nuiD5BTd7rbKhlrezd/Nezl6Mqon5Q+L446hrCWhjHxxB6K7GaX/fU282sTBsLAMc9RZrW/YPQ7d4\nJfLVN1mszd5smLsvj45MwE5RePdoModLOr7GSpIklNHXoNz6GHj4IPkGWTFSoS1t9VkAkpKSmDdv\nHomJiWzatKnNOnl5eSxcuJA77riDp59+umnD8TVr1rBgwQIWLFjA66+/3rNv0IZ8nVx5YMQUJCT+\nkb2b8zWVtg5JEKzCaoOqrVu3YjQa2bBhA8uWLWPVqlVNZd7e3qxdu5a1a9eydOlSoqKiWLBggbVC\nEYQepRYcRStq+461pmmkFOXxdOqXpJecYbi7LyvibmBGQIRIRCFY3fdFp8mpuMBIT3+u8g2xePuS\nq1e/ymwX5ubDQ1HTUKTGTmNmWWGn6svBI9At/otYV2VDbfVZjEYjq1atYvXq1axdu5aNGzdSUlLS\nap3nnnuOpUuXsm7dOjRNY9u2bRQUFPD555+zceNGPv74Y5KTk8nJybHV2+1xw9x9WTxsPDUmI69n\n7sBgrLd1SIJgcVbrvaWlpREfHw9AbGwsGRkZlx2jaRp/+9vfePrpp/vVBVi4MmkmI+YdGzD/+/9h\n+nZ1093JS1U11PFO9h7ePZpMg2ri9iFjeDz6GnycXHo4YqE/qjbW8++TadjJCguHjhXnXgsZ7u7L\ngyOmIkkSb2Xt7vQ0J0kWN1Nsqa0+S25uLkFBQbi6umJnZ8eYMWNISUlptU5WVhbjxo0DYMqUKezd\nu5dBgwbx7rvvNv29mUwmHB2bb/B+pZvgN4TZgVEU1Rn4R/ZuzOrlmW8FoS+z2lncYDDg4vJzJ1FR\nFNRL/oCSkpIYPnw4ISEh1gpDEHqEVny2cbH5wa3gNRDlmsUtdlaPlJ5lZdqXpJUUMNTNhxVx1zM9\nIBxZdGyFHvLf0+lUGeu5MSgab8fuD+Q1s8kCUV0ZIj0H8tvIeDRN443MnRyvuNit9jRNQ6sotlB0\nQlva6rMYDAZcXV2byvR6PVVVVS3WMZvNzW6oOTs7U1VVhU6nw9PTE03T+Pvf/86IESMIDm4+Hbw/\nuDk4hrgBgRyruMi/T6XZOhxBsCirpVR3cXGhuvrn/UlUVUW+5E7c559/zt13393hNq25e3pf3pm9\nr8Z+pcTtdS4L/xN7kDUzxYOiODdkAtrZUjhb2nSMUVPZb7xItqkCGYmr7XyINnpSkHWMji9tt2zc\nQv9zoqKIPedz8Xd2t0i2P62+FtOGZ5GjJqOMnWWBCPu+kV7+/CYynrezd/N65g4ej76GENeuTetT\n932GmvYtLuEzgDGWDVRopq0+i6ura7Oy6upq3NzcWqyjKEqzvs5PxwLU19fz5JNP4uLiwtNPP91u\nTNY+Z9vqmhCrOXJKsiep8BhqcSXDde6dqt9Xr2Ui7p5li7itNqiKi4tj+/btzJ49m/T0dMLDwy87\nJiMjg9GjO75vwZgx1rmopKamWq1ta+ursV9JcauZtZjPpKLMvIdBYaMYdEmd01UlvJezl4umKgKc\nPfh1xAQG6y2zH1BHWfPz7qsn3P7GrKqsO3EAgDuHjUfp5nQzTdMwb/0QSs9BbZUlQrxixAwI4N6I\nibyTncyrGdt5ImZGl5LPSN4BoJoJzfgS1d8HOWqyFaIVoO0+y5AhQ8jLy6OiogInJydSUlJYsmQJ\nkiS1WCcyMpIDBw4wfvx4du3axYQJE9A0jQcffJCrr76a++67r0MxWfMaaetr8JDaCJ5L/5o9xotM\nGBHb4RsPto67q0TcPctWfR6rDapmzpxJcnIyiYmJQOPCzS1btlBTU8OCBQsoLS1t9jhdEPoqacQk\ndGGjkC6ZSqVqGt+eyeLTvMOomsbMgAiRJl2wme/OHqWwpoLJA8MIc/Ppdnvq4Z1ox1KQBoUhT5xj\ngQivLHHeQdw13MQHx/bz8pEk/hA7Ex+nzl3z5OFjwcWD+v+8hPTtGrTqSuRxs8U6OCtor8+yfPly\nlixZgqqqzJs3D19f3xbrACxfvpynnnoKo9FIWFgYs2bNYuvWraSkpGA0Gtm1axcATzzxBKNGjbLN\nG7YxXydXloRP4vXMHbydtZsnR8/Czd7J1mEJQrdYbVAlSRIrV65s9lpoaGjTv728vNi8ebO1fr0g\n9BhJkuCSAVVFQy2rc/aRXX4eD3sn7hk+QWziK9hMaV01W/KP4GrnwG0h3e/EORqKUQ9tBkcXlBt+\ng6RY7VLSp030G0KdycjGk6m8dCSJ38fOxNPBuVNtyP5DyR11K+E536Im/xcUHcqYa60Ucf/VXp8l\nISGBhISEdusAhISEsHbt2mavzZw5k8OHD1swYsvQNBUa6pA6+b20hJFe/swJiWXz6UP8I3sPj0dP\nRyduOgp9mLgSCkIHaYZyXEvzaG9tQ0ZpIWuO7aPKWE+0lz/3DL8aF7v+leVJ6F02n07HqJq5Y+g4\n9HYO3WpL0zQCju8Eswnlpl8juXpZKMor0/SAcGrNDXyWd4SXjySxLGYGrvadOx/UO3uiu3055m3/\nQo64ykqRClc6rboCNWsv2vnTDL1QgDFtA9RUIvkEolv0vy0eb076CMlncON/vsEW/3ufNXgE+YYy\nUovz+c+pg9weNtai7QtCTxKDKkHoADU/G/NX7xBcV4t21dQW95MxqyqbT6fz3dmj6CSZBUPimO4f\nLqbqCDZ1qqqYA0V5BLl4cZVvaPsV2iFJEvmR1zLSVUIOjbFAhFe+6wNHUmsy8t3Zo7yauYMnoq/B\nUWfXqTYkVy90cx6xUoRCv2BsQN3zHwAcJRlcPZH8QpC8B7d4uFZ8Bu1EKtqJX6wh8R6MHDUJJW6m\nRUKSJIm7hl9FYU0FSYXHGOLqzTgr7J0nCD1BDKoEoQ2apqH+8HXjtBtJ5lzo1QS3cKeutL6af2Yn\nc7KqGD8nV+6NmESQi7iDL9iWpmlsOnkQgPmhoy2Wut/o6Ioc0/cWL9uKJEnMDR1NjamB5AsneTNr\nFw+PnCbWVwoWpzXUoZ06jDR83OU39Ny9UW58AGlgKGk5Jxkztu2nQlLQCHT3Po9WdKZxgFV4Ai0/\nC634rEVjdlTs+G3kZJ5N/4a1xw8QoPfEX9+5jICC0BuIQZUgtEKrr8H8zftouemg90C58beUnKsg\n5JILVUZpIe/n7KPaVM84n2DuHDq+03ehBcEa0ooLyK0sYtSAwQz38LN1OP2aJEncMWw81aYG0kvO\n8N7RvdwfOQlZ6m4WRhXqay5LlCP0L1plSeMNwMxkMDWguA1AGhTW7BhJkpCG/XgzRDrVbpuSJIGr\nV+OUvyGNT6W1+low1rccg9nU5fWVA53duXvY1bxzdA9vZ+/myVGzxHVU6HPEFu6C0JqqMrS8LKTA\nCHR3PIXsP7RZsaqpfHr6EK9n7qDebGRR2DiWhE8UFwKhVzCqZv57Oh1FkrkttH9mGOttFEnm3ohJ\nDHf35WBJAetOpDTbKLazNE1D3bEB0/pn0SpLLBip0Fdo5RcwfbsG0+onUQ9tB2c35Am3IHVxb7T2\nSA5OSC4tbw9g/uRVTJ++hnYxv0ttj/EJYkZABBdqK/ng+P5u/W0Igi2IJ1WC0ArJOwDdgj+ATyDS\nJdN0DMY63j26l+zy83g76vlNZLyY7if0KjsKj1FcZ+CagHD8nNy61ZZWdh48/MT6QAuwkxUeHDGV\n/zuylT3nc3HROXBrdwa99o5QfhHTxlXo5j6B5CWyjPYnau4htMw94DkQZfwNSBHjL7te9QTNWA/G\nOrT8LEwnDyNHxyNPvBXJuXPbCNwWMorTVSWkFRew9exRZg6OtFLEgmB54kmVILRB8gu57AKVbyjl\n2YPfkF1+nhivAP40erYYUAm9isFYxxf5GTjr7LkhcGS32tKqSjGtfwbzlrcsFJ3gpLPj4agEfJ1c\n+fpMFlvPHu1SO5IkoUy6DTl+HhjKMG36O1pRgYWjFXozOWYqyg2/RXfXX5BHTLDJgApAsnNAuf1/\nUG57HLwGoR7ZhWnNk5gP7ehUO4osc3/kZNzsHPnvqXROVFy0TsCCYAViUCUIgGYydui4HFMFf0//\nltL6am4OjuaBEVNw1tlbOTpB6Jwt+RnUmo3cGDSyWynUNU3D/N0HUF+LHNK9wZnQnJu9I4+OTMDD\n3olNJ9P4/mL7a1xao4y9Dnn6nVBThWnTC12efiX0XpqmtTgdTrJzQB4+Fkm2fXdOkiTk4Ch0d65A\nnpYISFBn6HQ77vZO3Bc5GYB/Hk2msqHOsoEKgpXY/q9QEGxMK7+Aad1fUDP3tHqMSTXz0YkUdjac\nx15R+F3UVG4IirZYNjVBsJTiOgO7zp3A19GFqYOGdastLTMZLS8TKWQk0sh4ywQoNPF2dOGRkQk4\nKXasObafrLJzXW5LiZ2Gcu2vwG0AuHpaMErB1rTKEsybX0Y79oOtQ+kQSdGhjJ6B7lfPIHdxo+rh\n7r7MCYmlvKGW93KSUTXVwlEKguWJQZXQr6lncjCtfxZKz6GVnm/xmKqGOl4+sp2d547jJdnz5Kjr\niPYK6OFIBaFjvsjPwKyp3BQcg64bU4G0mirMuzeBnQPKjLvEeiorCdB78LuoqchIvJ21m9NVXU84\nIUdNQrfwT0hOnVvHIvROmqY1TqNb+2e0vEzUvExbh9QpkpMrUjdmcswcHEmsVwBHyy+wJS/DgpEJ\ngnWIQZXQb6mZezD/5/+goQ5l5t0o8fMuO6bAUMZz6d9wvPIicd6B3OIYjI/osAi91PmaSvZdOIW/\nsztjfYK61ZZ6cCvUVTcuNm9hbzbBcoa5+3JfxCQaVDOvZezgfE1ll9vqakprofcxb34Z89YPAQnl\n2ntQZt5t65AsQj11GDVjd7vHyZLE3cMn4O2o54uCDDJKC3sgOkHoOjGoEvol8w/fYP52TeNd+Nse\nR25halNqUT7PH/qWkh/XT90fMRm7bu4pIwjWtCX/CBoaNwfHdHv/I/nqm1Bm3oM8KsFC0QltGeUd\nyB1Dx2Ew1fNqxnYqGmptHZJgYz9NvdXdtRI5avIV8bRY01TMuzZh/u4DzFvXoplNbR6vt7PnN5Hx\n6CSZ93P2YlA7tv5ZEGxB9BCFfkkOjUYaGIpu4Z+QAyOalWmaxpa8I7xzdA8SEr+NjOeGoOgr4oIm\nXLnOVJeRUpRHkIsnowYM7nZ7kqJDHjnZZtnE+qP4QUO5OTiakvpqXs3YTq2podttapqKedta1BMH\nLRCh0JOUa+9BmfPoFfWkWJJkdHMeAZ9A1CM7MW96Ac1Q3madIBcvbg8bQ7Wpge8aCjGp5h6KVhA6\nRwyqhH5JGuCPkvgkkqdfs9eNqpn3c/byef4RBjjo+eOoaxntHWijKAWh4z7LOwLALcGx4gZAH3Z9\n4EimDBzKmepy3srajbG7HciyC6jZ+zF/8TZqH0l0IDS6Up5OXUpy90F3+3Kk8PFo53IxffRX1HO5\nbdaJHziUq3xDKFLr+PcpcYNA6J2sNqhSVZUVK1aQmJjI4sWLyc9vnuL18OHD3HHHHSxatIhHHnmE\nhobu35EThM649GJV2VDHS0e2caAojyGu3iwfNYsAfcs7xws9q73zSVJSEvPmzSMxMZFNmza1WSc7\nO5sFCxawaNEinnzyyRbTFPc1p6tKOFRyhjA3H6I8B9k6HKEbJEli4dCxjBowmJyKC6zO2det76jk\nNQjl1sdAZ4f5y3dQj35vwWivLJY8z+Tl5bFw4ULuuOMOnn766Wb/D0tLS5k1a1a/7vdIdg4os+9D\nnjIf6qqhnW1NJEnijqHj8ZTs2V54jJSivB6KVBA6zmqDqq1bt2I0GtmwYQPLli1j1apVTWWaprFi\nxQpWrVrFRx99RHx8PGfPnrVWKEI/p5UXtXtMYXUFq9K/IbeymHE+wSyNuQY3e8ceiE7oiLbOJ0aj\nkVWrVrF69WrWrl3Lxo0bKSkpabXO66+/zkMPPcRHH31EQ0MDO3bssNG7spxPTx8C4JbgmC7f2dY0\nDU3sB9MryJLMkvCJDHXzIbU4n33Gi90aWMkBwxo3ZbV3wPz1u6jZ+y0Y7ZXDkueZ5557jqVLl7Ju\n3To0TWPbtm0A7N69m1//+teUlHQ9y+OVQpIklDGz0P161WXT8FvioOiY6RCAg6Jj7fHvOV9T0QNR\nCkLHWW1QlZaWRnx84+L/2NhYMjJ+Tod56tQpPDw8WL16NYsXL6aiooLQ0FBrhSL0Y+qxHzB9+BTm\ntK2tHpNddp6//5iQ4sagaJaET8ROrCPpVdo6n+Tm5hIUFISrqyt2dnaMGTOGlJSUVuuMGDGC8vJy\nNE2juroaOzu7nn9DFnS84iJZ5eeJ8PAj3MOv/Qqt0I6nYlr9JGpelgWjE7rKXtHx4Iip+Du7k2Eq\n59sz2d1qTx4UhnLbUrB3RD24FU0V+/5cypLnmaysLMaNGwfAlClT2Lt3LwCKorBmzRrc3Nx68q31\napJLx2eEeMj2LB52FfVmE29n76G+nUQXgtCTrDaoMhgMuLi4NP2sKArqjyfxsrIyDh48yJ133snq\n1avZt28f+/eLO2eCZZkPbcf8xT9AVpAGtDwlat+Fk7yauR2TamZJ+ERuChYJKXqjts4nBoMBV9ef\n09zr9XqqqqparRMcHMwzzzzD9ddfT2lpKePHj++5N2IFX+Q3duJuDo7pchuaqaFxT6q6aiS3AZYK\nTegmvZ09j4xMQC/p+O/pdPZfONWt9uSBoejm/wHltseQZLGk+lKWOs+YzeZmTxadnZ2pqqoCYOLE\niXh4iGnlHdHa09lxPsEk+A/nXE0F/zp+4IqYwi1cGax2VnVxcaG6urrpZ1VVkX88iXt4eBAUFMSQ\nIUPQ6XTEx8c3uyMkCN2haRrmvZ+gJq0DZxd08/+AHBx12TFf5B9hzbH9OCo6Ho2eznjfENsELLSr\nrfOJq6trs7Lq6mrc3NxarfPMM8/w0Ucf8dVXX3HzzTc3m+LT15yqLCb7x6dUYW4+XW5H/eEbqCxB\nHj3jsuQtgm15Ojgz22Ewzjo7Pji+n8yy7u3VI/kEIjm6tH9gP2Sp84yiKE31fnms0HFqbjrm/7yI\nVt/y1gLzQkcT6jqAA0Wn2XnueA9HJwgts9ougXFxcWzfvp3Zs2eTnp5OeHh4U1lgYCA1NTXk5+cT\nFBREamoq8+ZdvvHqpVJTU60VrlXbtra+Gru14vbNS2Fg3g/UO7pxKupGGs4Uw5nipnJV09jdcIEc\ncwUuko7ZugCqThSQSoFN47a2vho3tH0+GTJkCHl5eVRUVODk5ERKSgpLlixBkqQW63h4eKDX6wHw\n9fXl4MH2M0n11nPP1/VnABhaa9/lduzqDYSnfIHZzokch8GoHWynr36f+mLcXrIDM5SBfGE6w5sZ\nO7nJIQgfpe+s+ewrn7klzzORkZEcOHCA8ePHs2vXLiZMmNDpeKz9ufXm/y+Dc5LwupBDxdq/cir6\nRlSdQ1PZT3FPUN05Rzkbc3+g5sxF/BQnW4XbIb35826LiLvjrDaomjlzJsnJySQmJgKNiza3bNlC\nTU0NCxYs4JlnnuGJJ55A0zTi4uKYOnVqu22OGTPGKrGmpqZarW1r66uxWzNuLSwI8/Y69Nf+imi9\ne7OyOrORd7L3kFNbQZCLJw9FTcPdvuMnYvF5t9y2tbV3Plm+fDlLlixBVVXmzZuHr69vi3UA/va3\nv/H444+j0+mwt7fnr3/9a7u/vzeeewoMZeQfzCHMzYcbY7qeetn05Ttoqgm7GXcyOqpjHT/xd9Cz\nUlNTuWF8PAHFBbydvYet6nn+EH0tvk6u7VfuAE1V0c4e61CygM7qS+ceS55nli9fzlNPPYXRaCQs\nLIzrrruu2e/qyN+rNb+rvf1vQRs9GvO3q9Fn72Pkia3obluK5ORyWdy+ZSG8krGdnVoRf4qe3WsT\nTPX2z7s1Iu6W226N1QZVkiSxcuXKZq/9MhnF1Vdf3ZSSVBAsSfLwQXfrY5e9bjDW8VrmTk5XlTDS\n05/7IifhqPTtJAX9RXvnk4SEBBISEtqtA40dlfXr11sn0B70VUEmANcHRnVrHaAcMxVV0SGNmGip\n0AQrGeUdyMKhY/noRAqvZGznj7EzcevETaHWqDs3oKYnwcy7kUfGWyDSvsmS55mQkBDWrl3b6u/6\nKRug0DJJllGu/RVmRYeWsRvTv/8furlLLzsu0nMgc0Ji2Hz6EO8eTebR6AQUSawXFGxDfPOEfqGk\nrprnD23ldFUJE3xDeXDEFDGgEvqs8zUVpBXnE+Ti1e19qeTB4ehm/RpJdET6hKmDhnFD4EiK6wy8\nlrmDunb29+kIeWQ8OLpg/u4D1IzdFohSELpPkmWUGYuRYxOg/CJa+cUWj5s1eETTvm6f/Li9hCDY\ngriKCn2aVl/Tbuafs9XlPH/oWy7UVnLt4EjuHn41ish8JfRhXxVkoQE3dPMpldA33RQczeSBYeQb\nyng7ezcm1dyt9iSfQHTzngCnHwdWR3ZZKFJB6B5JkpETFqG7YwWy/9BWjpG4Z/jV+Dq58u2ZbNKK\nO7Y+WhAsTfQshT5LqyjCtO6vqPs/b/WYExUXeeHQd5Q31DJ/SBxzQ0eLTqjQpxXVGjhw8TT+zu7E\nDBhs63AEG5AkiUVDxxHrFUB2+XnWHNuP2s200pJPILq5Pw6stn6IerxvLk4XrjySJCF5DWzzGCed\nPb+NjMdeVlhzbB+F1WJjYKHniUGV0CdpZecxffw8VBSBprb4tCqjtJCXM7ZTr5r4dfgEZgRYfhG2\nIPS0b85koaIxOzAKWdwg6LcUSebeiEmEuXmTUpTHf061n8WyPY1PrJYhhcYgBUZaIEpB6DkBeg/u\nHn419WYTb2XtpMbUYOuQhH5GDKqEPkcrPts4oDKUIcfPR5k457KnTylFebyRtROAB0dM4Srf0Jaa\nEoQ+pby+hr0XTuLr5MpYn6AutaHVVGLetQmt1mDh6ISeZq/o+N2IqQxycmPr2aN8cyar221K3oPR\nzXkEydHZAhEKgvWo+dloDXXNXhvrE8x1g0dwsc7Ae0eTUTXVRtEJ/ZEYVAl9ilZUgOnfL0BNJXLC\nIpSxsy47Zte5E7x3NBl7WcejIxOI9gqwQaSCYHnbCnMwayqzBkcidzGxhPr9FtTUb1BzDlg4OsEW\n9HYOPBKdgIe9E/89lc6+CydtHZIgWJ169jjm/76E+dPX0C55InVLSAxRnoPIKDvHZ3lHbBSh0B+J\nQZXQtzjqwd4JZcZdKKOmX1b8TUEW604cwMXOgSdirmGYu68NghQEy6s1NbDr3Anc7By7/ORVK7uA\nengnePgiR0+xcISCrXg56Hl0ZALOOns+PPY9h0vOWvx3tJcQSBB6kjRoCFLYKLQzOZi/eAfti0QD\nngAAIABJREFUF8laZElmSfgkfB1d+Kogk9SifBtGKvQnYlAl9CmSqxe6u1Ze1iHUNI1PTx/iv6fT\n8XRwZlnMTIJcvGwUpSBY3q7zJ6gzG7kmIBw7WelSG+bk/4JqRpl0G5JitW0KBRvw13vwUNRUFFnm\nnaN7yK0ssljbmmrG/OU7Iiug0GtIsoIy+z6kwEi0k+mYt37YbOCvt7PngRFTcFB0rDm2jwJDmQ2j\nFfoLMagS+hxJZ9/sZ03T+Pepg3xZkImvowt/iJnJQGc3G0UnCJZnUs0knc3BQdExZdCwLrWhnstF\nO56KNHAI0jDr7DQv2FaYmw+/iZyMWVV5PXMnhdXllmm4shStILsxK+DhnZZpUxC6SdLZodz8OyS/\nELTMZNS9m5uV++s9+NXwCTSoZt7M2kllQ62NIhX6CzGoEvo0VdP46EQKW88eZZCzO8tiZ+LlqLd1\nWIJgUQeK8ihvqGXywDCcL7mp0FFaQQ4Acvw8sa3AFSzaK4C7hl9FjamBVzK2U1pX3e02JQ8fdPOW\nNaZb37YWsxhYCb2EZO+IMufRxumAIdGXlY/2DuSW4BhK62t4M2sXxm7u6SYIbRGDKqHXUs8ex7z3\nk1bn8quayofH9rPr/AkC9Z48EX0N7vZOPRylIFiXqml8eyYbWZK6tS2AMv56dL96BnnwcAtGJ/RG\nE/yGMDd0NOUNtbycsZ2qSzKkdYXkPRjdvN+DkyuqGFgJvYjk7Ipy+/8gB7T8FH92YBRX+YZwqqqE\nD47tF+sDBasRgyqhV1LPHse8+WXUlK+ghUXXZk3l/Zx97Lt4ihDXATwefQ2u9o42iFQQrCujtJBz\nNRWM9wnGy6F7T2ElDz8LRSX0dtcOjuTawZFcqK3k1cwd1JqM3W5T8g748YmVK9rR/WiqSFct9A5t\nPX2XJInFw65q2tPty4KMHoxM6E/EoEroddTCXMybXwazCeWG3yB5D25WblZV3j2aTEpRHkPdfHhs\n5HT0dl2bEiUIvd23Z7IBuHbwCBtHIvQ1t4WMYpJfGPmGUt6y0NQnyTsA3YI/Nk65kkUXQugb7GSF\n30ZOYYCDns/yjvBDUZ6tQxKuQOKMKPQq6vlTjQMqkxHl+vuRh8Y1KzepZt45uoe04gKGu/vy8Mhp\nOOnsbBStIFjXqcpijldeZKTnIAL0HrYOR+hjJEnijmHjGDVgMDkVF3j3aDJmC2yGKnkNRBIzA4Re\nTj2eilbxcxZMN3tHfhc19ceMgPstmiFTEEAMqoReRNM01O0fgbEOZfZ9yJdkKDOqZt7J3kN6yRnC\n3f14KGoajooYUAlXrm/Pdu8p1aWbYgr9jyLJ3BsxiXB3P9JLzrDu+AGxpkS44mlFBZi3vI1p8yto\ndYam1wP0Htwf0Zgh843MnZyvqbRhlMKVxmqDKlVVWbFiBYmJiSxevJj8/Oabr61Zs4Ybb7yRxYsX\ns3jxYk6dOmWtUIQ+QpIklJt+h3Ljg8jh45qVGVUz/8jezaHSs0R6DOShH+82CcKVqrjOwMHiMwS5\neDK8C5tYayYjpg9WYE5aZ4XohL7ETlZ4YMQUgl28SL5wkk2n0iw+sNLMJtTcgxZtsye112dJSkpi\n3rx5JCYmsmnTpjbr5OXlsXDhQu644w6efvrpps/6448/Zu7cudx+++3s2LGjR99ffyP5BCKPuRbK\nzmP+9PVmN5hGevlz57DxVJsaeDVjOxUi1bpgIVYbVG3duhWj0ciGDRtYtmwZq1atalaemZnJ888/\nz9q1a1m7di2hoaHWCkXoQyQXD+Sho5u99tOA6khpISM8BvLgiCnYiwGVcIVLOpuDhsaMgIgupUBX\nD++EymLoYgp24cripLPjkZHTGOTkxrazOXyRb9nF+ur29Zg/ewPzD19btN2e0lafxWg0smrVKlav\nXs3atWvZuHEjJSUlrdZ57rnnWLp0KevWrUPTNLZt20ZRURFr165lw4YNvPfee7z44os0NIgnydYk\nx89FCh+PVngC89fvo/1i6uukgWHcGBRNSX01r2fuoM4CiVwEwWqDqrS0NOLj4wGIjY0lI6P5CTwz\nM5O3336bRYsW8c4771grDKGPM/045a9pQBU1VQyohCteramBPRdy8bB3Yox3UKfraw11qClfgL0j\n8rjrrBCh0Be52DnyaPR0Bjjo+Tz/CNvOHrVY2/KYa8HFE3X3vzEf+MJi7faUtvosubm5BAUF4erq\nip2dHWPGjCElJaXVOllZWYwb1zjbYsqUKezdu5cjR44QFxeHnZ0dLi4uBAcHk5OT08Pvsn+RJBnl\n2l8hBQxDO/4D6r7PmpXfGDSSyQPDyDeU8Y+jezCLbJZCN1ltUGUwGHBxcWn6WVEU1F98YW+44Qb+\n8pe/8MEHH5CamioehfdDWl11m1NQGpNSJHP4xyl/D4yYgp2s9GCEgmAbe87nUm82keA/HF0XvvNq\n+jaoqUKOuxbJydUKEQp9laeDM49HT8fd3omPT6ax98JJi7Qrefqhm/8HcPVCTd6Mef/nFmm3p7TV\nZzEYDLi6/vx3pNfrqaqqarGO2Wxudl375bGXtmEw/LzWR7AOSWeHctPvkAYPRxoyqnmZJLFo6DhG\nevqTVXaOD4/vRxXrDYVusNqgysXFherqn3dyV1UV+RfpV++++248PDyws7Nj6tSpZGVlWSsUoRfS\nNdRgWv8s6o71LQ6szKrKP48mc6jkDBEefmLKn9BvmDWVpMIc7GWF+IFDO11fq6tB/eEbcNQjx820\nQoRCX+fj5MqjIxPQ6+z58Nj3pBblt1+pAyQPn8aBlZs36r5PUTOTLdJuT2irz+Lq6tqsrLq6Gjc3\ntxbrKIrSrK9jMBhaPPanNgTrk5xcUOb9HnlgyGVliiRzf+RkQl0HsP/iaTbm/iASuQhd1m4v1Ww2\noyidv1MaFxfH9u3bmT17Nunp6YSHhzeVVVVVcdNNN/Hll1/i5OTE/v37mTdvXrttpqamdjqOjrJm\n29bW12JXjHWEHf4Maso4VxLAhbS0ZuWqprGtoZBTZgP+sjMT6904kn7IRtFerq993j/pq3H3NweL\nCyitr2HqoGHo7Rw634BmRg4fDx6+SA5Olg9QuCIE6D14eOQ0XjqSxLs5ydgrCtFeAd1uV3L3Rjf/\n95j3fYo0fCwc7hsbrbbVZxkyZAh5eXlUVFTg5ORESkoKS5YsQZKkFutERkZy4MABxo8fz65du5gw\nYQIxMTG89NJLNDQ0UF9fT25uLsOGDWszJmufs/vqNcEaccdrnlRIBnacO055UQnj7X0s/jvE592z\nbBF3u4OquXPn8sknn3S64ZkzZ5KcnExiYiLQuHBzy5Yt1NTUsGDBAh5//HHuuusu7O3tmThxIlOm\nTGm3zTFjxrR7TFekpqZarW1r62uxa/W1mP/9/9BqypBHTSdg2kIG/2IRvqqpvJ+zj1NFBoa7+/JQ\n1LReleWvr33eP7Fm3H31hNtbbf1xncs1/uHtHNkyyckV5Zo7LRmScIUKdfXmoahpvJqxnbezdvNQ\n1DQiPQd2u13JbQC6Wb+2QIQ9p70+y/Lly1myZAmqqjJv3jx8fX1brAOwfPlynnrqKYxGI2FhYVx3\n3XVIksRdd93FokWLUFWVpUuXYm/fdhIZa15rxLXsctEN0bxweCvptaWEDA5kdmCUxdoWn3fPslWf\np93eqre3NykpKcTGxrZ7AvglSZJYuXJls9d+meHvlltu4ZZbbulwe0Lfp5kaMH/2GtrFPEr9IvCd\nltgsq5mqaXx4/AApRXmEuXk3bdInCP1FbmURp6pKiPEKwM9ZTA0SrG+4uy8PjpjCG5k7eTNrJ4+O\nTGBoF1L493Xt9VkSEhJISEhotw5ASEgIa9euvez1+fPnM3/+fAtFLHSXmnsQKTgK6ccMqW72Tjwe\nPZ0XDn3HJ6cP4ajoSOjizS2hf2p3TVVGRgaLFy8mJiaGiIgIIiIiiIyM7InYhCtNfS1ajQFp2BjO\nDJ+KJP389dM0jfUnUth34SQhLl48LDb2FfqhbWcbs4HNCIiwcSRCfzLCcxD3R07GpKm8lrmD01Ul\nVvk9msmIJjKsCb2Aejy1cQuAS1KteznoeTz6GtzsHNmQm8quc8dtGKXQ17Q7qNq/fz9Hjx5t9l92\ndnZPxCZcYSS9O7rb/4By3b1wyYDq45Np7Dp/gkC9J4+MnI6T2FtH6GeK6wykFRcQqO/aZr+C0B2x\nAwazJHwi9WYzr2QkkW8otWj7msmIecubmL9+F81ssmjbgtBZUmjMz6nW937arMzXyZXHo6fjaufA\nuhMpbC8Uqe+Fjml3UFVTU8Pzzz/Pbbfdxs0338yzzz5LTU1NT8QmXIEkRxck3c9PoDRNY/PpQyQV\n5uDv7M5j0Qno7cSASuh/dhQeQ0PjmoDwTm/2q9UaUM9bJjW20H+N9Qnm7uFXUWsy8vKRJM5Ul1mu\ncbOpcbZCzgHMX/wDTWy2KthQY6r1B8HdB/XAF6hZe5uV++s9WBo9o+mJ1XdnxMMEoX3tDqr++te/\nUldXx7PPPsvf//53jEYjf/7zn3siNqEf+Kogk2/OZOHn5Mpj0dNxsXO0dUiC0OPqzEb2nM/Fzc6R\nsT7Bna6v/vA15vXPop5Ia/9gQWjDBL8hLB52FdWmBl46nMTZ6nKLtCs5OKHc+hhSYARa7kHMn72O\nZqy3SNuC0BWSkyu6OY+CgzPm7z5APXOsWbm/3p1lMTPwsHfi36cO8nWB2PpHaFuH1lStWLGiaS3V\nn//852Y7jQtCa9Qzx5rNVb7UtrNH+TTvMAMc9Dz242aUgtASVVVZsWIFiYmJLF68mPz85vvqJCUl\nMW/ePBITE9m0aVObdUpKSnjggQe48847WbhwIQUFBT3+fi61/8Ipas1Gpg4a1ukNrrWaStT0JNC7\nI4WMtE6AQr8yaWAYdw4dj8FUz0tHtlFYXWGRdiV7R5Q5jyKFxqDlZWLe/ApaQ51F2haErpC8BqLc\n+AC4eSM56i8r93N2Y1nMDDwdnNl8Op3P846IfayEVnVo89+Kiopm/9bpREY2oW1q9n7Mm55H3bWp\nxfKjpnI+PpmGu70Tj0VPx8vh8pOZIPxk69atGI1GNmzYwLJly1i1alVTmdFoZNWqVaxevZq1a9ey\nceNGSkpKWq3zwgsvcMstt/Cvf/2Lxx57jJMnbTttTtU0kgqPoZNkpgzq/Ga/6g/fgKkBedz1TVms\nBKG74gcNZdHQcVQZGwdW52ssNLD6cdqVNGws6OygkzcRBMHS5KBIdHetRPJueZ82HydXlsXMYICD\nni35R1if+wNqGzeMhf6r3dHRPffcw/z585k+fTqappGUlMT999/fE7EJfZR6OgPzt6vBwQl5xMTL\nylMunmZXwwX0OgceGzkdXydXG0Qp9CVpaWnEx8cDEBsb2+xpeW5uLkFBQbi6Nn6PxowZQ0pKCunp\n6S3WOXjwIBEREfzqV78iICCAP/3pTz38bprLKjvHhdpKJviG4tbJp7VaTRXqoe2g90CObn+vP0Ho\njKmDhqFqKhtyU3nx8DaWxlzDIGf3brcrKTqU6+8H1dRsja0g2IrUzvYt3o4u/CF2Jq9l7mDnueNU\nNNSyJHwi9mLbF+EX2n1SNXfuXF577TUCAwMZPHgwr7/+uthnQWiVWpiL+fM3QZJRbnkEySewWfnh\nkrO8f2wfdsg8Fp2Av777F2jhymcwGHBxcWn6WVEU1B9TMxsMhqYBFYBer6eqqqrFOmazmbNnz+Lu\n7s7q1asZNGgQ//znP3vujbRg24+ZpaYHdH4/FPXg1h+fUl0nOqeCVST4h3P7kDFUGut48fA2Ci21\nxkqWxZNVoU/xcHBmWcwMwt39SC85wysZ26k2Ntg6LKEXaXWIvXnz5mYZqJydnQHIysoiOzubOXPm\nWD86oU/RSgoxf/IKmE0oNz2IHDCsWXlO+QXeOboHnSRznb0/QS5eNopU6GtcXFyorq5u+llVVWS5\n8Z6Qq6trs7Lq6mrc3NxarKMoCh4eHkyfPh2A6dOn89JLL7X7+9vaQb07ytV6ssrOMUh2oijnFEWc\n6lR9RfHDK+Qqio2uaFaKsTXW+kysTcTdee7AZDs/9hgv8Pe0b7jBcTAD5I4nFeqrn7nQv2nFZy+b\nEuiks+fhkdNYnbOP1OJ8/t/h73g4ahpeLazHEvqfVgdV33//fZtpfcWgSriMkwuShy9ybAJy2Khm\nRaerSngjayeqpvG7qCnUnTxnoyCFviguLo7t27cze/Zs0tPTCQ//+anOkCFDyMvLo6KiAicnJ1JS\nUliyZAmSJLVYJy4ujh07dnDLLbdw4MABhg0b1tqvbTJmzBirvK9X9n0JwM3hY4nzDmzn6NZMJMhy\nIXVIamqq1T4TaxJxd90YIOTcCf514gBfm87zePR0Al08263Xmdg1UwPmr95DHjcbeWBIh9oWBGsw\n7/0U9cAWlDmPIl+SAMhOVrg3YhIeJ53YVpjDs+nf8NvIyQwV+wv2e60Oqn65EPxStbW1VglG6Nsk\nZzeUxP9BumThcWF1Ba9mbKfBbOa+iElEefqTihhUCR03c+ZMkpOTSUxMBOC5555jy5Yt1NTUsGDB\nApYvX86SJUtQVZV58+bh6+vbYh2A5cuX87//+7+sX78eNzc3XnzxRZu8p2pjA8dMFQxw0DNqQMsL\npAWhN4kfNBRZklh7/Hv+78g2Hh2ZQIjrAIu1r505hpabhjkvA255GDkwwmJtC0JnSKEj4YevMH/x\nD6Tbl1/2xEqWJOYPicPHyYWPc9P4vyNJJIaNYcqg9m/SCVeudlfYff3117zxxhvU1taiqiqqqlJX\nV8f+/ft7Ij6hj7l0QFVcZ+CVjCSqTQ3cNewqxvj09D114UogSRIrV65s9lpoaGjTvxMSEkhISGi3\nDoC/vz/vv/++dQLthD0XTmBCY5r/cGSpQ4lYBcHmJg0MQ5YkPjj2PS8dSeLhqGkMdfexSNtyyEi4\n/jeYv/on5s0vw+z7kIf1vSeLQt8nDwqDWb/G/OU7mD59Dd3CPyE5N0+qJUkSCf7h+Dt78E72Htad\nSKHAUMbtYWPQiayW/VK7V/IXXniBJ598krCwMF588UXmzp3L7NmzeyI2oY+raKjl5SNJlDfUMn9I\nHJMGhtk6JEHoFcyayo7CY+iQmOQn/i6EvmWC3xCWREykQTXxSkYS2WXnLda2PHwsypxHQVYwf/E2\n6pFdFmtbEDpDDh+PfPXNUFncuFm1ydjiceEefvzP6FkM1nuw6/wJXjqSRFl9TQ9HK/QG7Q6q3N3d\nmTBhArGxsVRVVfHwww+Tnp7eE7EJvZimaahHv0dTW96rocbUwKsZ2ymqM3B9YBQzAsQ0DkH4yaGS\nM5TW1zBc547ernMZ0NTMPagnD4sNKAWbGucTzG8j41E1jdczd3Co5IzF2paDR6DMWwaOetTTGeK7\nLtiMfPVNSOHj0eqqobaq1eMaU65fyxjvIE5UFvHXtK8s+jch9A2tDqrKyxvTpjo6OnLq1CmGDBnC\ngQMHaGhowGAw9FiAQu+kfr8F81f/RE3+72VlDWYTb2Tu5Ex1OVMHDePm4BgbRCgIvVfS2WMAROk8\nOlVPq6/BvHMj5m/fB5NI5SvYVuyAwTwUNQ1Zkng7ezcpRXkWa1seGIou8UmU2fe1mTRLEKxJkiSU\na+9Bl/g/SK5tZyx2UHTcFzGJRWHjqDcbeTNrF+tP/IBRNfdQtIKttTqomjVrFo8++igTJ07kpZde\nYvr06ezbt4+JEycyY8aMdhtWVZUVK1aQmJjI4sWLyc/Pb/G4p556ymYLxYWuUTOTUfd9Cm4DkEc3\n/y6YVZV/ZO/hRGURY72DSAwbIy6IgvALBYYyjldeZITHQDxlh07VVdOToL4WecwsJLvO1RUEa4j0\nHMijIxOwl3W8dzSZneeOW6xtycO3x/Zfq6ur4+GHH+aOO+7g/vvvp7S09LJjPv74Y+bOncvtt9/O\njh072qyXnp7OggULWLhwIa+//nqzdvLy8rjpppus/p4Ey5B09kgdTJkuSRJT/Yfx5Ojr8Hd2Z8e5\nY6xK/4ZStd7KUQq9QauDqu3bt5OQkEBaWhoZGRm89dZbvPzyy2zbto0//vGP7Ta8detWjEYjGzZs\nYNmyZS1mE9ywYQPHjx8Xne4+RD11BPN3H4CjHt2tjyG5/HynXdU01hzbR0ZZISM8B/Gr8AliAb4g\nXKKrm/1qDXWoqd+Cox45NqH9CoLQQ4a6+/JEzDW42Dnw0YkUvszve1P21q9fT3h4OOvWrWPOnDm8\n9dZbzcqLiopYu3YtGzZs4L333uPFF1+koaGh1Xp//vOfefHFF1m/fj2HDx8mOzsbgE8++YSlS5dS\nVlbW4+9R6DkBeg/+Z9Qspgwcypnqcv5bl8eWvCOYxFOrK1qrPV5nZ2fmzJnD+++/z/r169Hr9Tz0\n0EM88sgjfPbZZ+02nJaWRnx8PACxsbFkZGRcVn748GFuv/32Pnfy7a+0i/mYv3gbZAXlloeRvAb9\nXKZpbDqZyoGiPIa4evPbyHiR/UYQLlHVUEfKxdP4OrkS5enfqbqNT6lqkONmItl3fONVQegJQS5e\n/D5mJl4Oznyad5iPT6ahWuHarjXUYfr6PTRDuUXbTUtLY8qUKQDEx8ezb9++ZuWHDx8mLi4OOzs7\nXFxcCA4OJicnp8V6BoMBo9FIYGDj3nOTJ09m7969AHh4ePCvf/3LorELPU/TNLS6tpNR2Cs67hg2\nngdHTMFRUvg8/wjPHPya3MqiHopSsLSadqbdt5tSHcDPz497772XG2+8kTfffJMnn3ySm2++uc06\nBoMBFxeXpp8VRUFVVWRZ5uLFi7zxxhu88cYbfPnllx0JQegN3LyRBoYij5qO7D+0WdFXBZkkFR7D\n39mdh6Km4qB06KslCP3KrvMnMGkqCYOGI3fiCb2maajHUsDBGXnUdCtGKAhd5+fsxh9ir+WVjO0k\nFeZQbaonWutcIpb2qNn70LL3YTqTA6Nv71IbmzZt4sMPP2z22oABA9DrG6d46fV6qqqaJyWorq7G\n1fXnlNp6vR6DwYDBYLisXnV1dbP+j16vp6CgAIBp06Z1KWah99BUFfN3a9Au5KG7fTmSg1Obx8cO\nGMwCxxBOujdeA1449B3T/IdzS3AMTjrL/n0IllVnMnKisoicigscLb9AgaGM+5yHt3p8uz3fiooK\nvv76a7Zs2UJRURG33nor27ZtazcQFxcXqqurm37+aUAF8M0331BWVsZ9991HcXExdXV1hIWFMWfO\nnDbbtObu6X15Z/YejT1kGlRo8IvfmW0qZ3fDBVwkHQnqAI4ezmi9/i/01c9cxC10hUk1s/PccRwV\nOyb6DelUXUmS0CU+iVZ8BsnB2UoRCkL3eTo48/uYGbyWuYPvL56mUNYTbY7FUbHM2ig5ZhrU16J1\nI437/PnzmT9/frPXHn744aY+S3V1NW5ubs3KL+3T/DTI+uXrP9XT6/XNjjUYDJe11xHWPmf31WtC\nb4jbv7wS75KzlK5/gdMjZ0M7Sx3sJYWISnB3CGRXw3m2Fx5jX2EuY+wGEKnz6NRNtp7WGz7vruhK\n3CZN5bxaS6G5hkK1hiK1jp+et8uAn9z2ALrVQdUXX3zB559/zsGDB5k+fTqPPvooY8eO7XBgcXFx\nbN++ndmzZ5Oenk54+M/rBxYvXszixYsB2Lx5MydPnmx3QAUwZox1NgFMTU21WtvWZuvY04oL2JN9\nDBedA7+PnclA545dOGwdd1eJuFtuW2hfWnEBFQ21XOMfjmMXFt9LOjukgaHtHygINqa3c+Dx6Gt4\nJ3s3GWXnePHwVh6Kmoa7fdsdko6QJAll/PWNywbS0iwQbaO4uDh27dpFTEwMu3btuqy/ExMTw0sv\nvURDQwP19fXk5uYyfPjwFuu5uLhgZ2dHQUEBgwcPJjk5mYceeqjTMVnzWiOuZd2jjR6F+dPXcDud\nwajKY8gJi9rMD/DLuGepZr47c5Svz2SSbLxIrq6OuSGjifby73U5BnrL591ZHY27wWziZFUxx8ov\nklNxgVNVJZi1xq2CZCRCXAcQ7uFHuLsfQ918sFd0bfZ5Wh1UrVu3jrlz5/Liiy82PdrujJkzZ5Kc\nnExiYiIAzz33HFu2bKGmpoYFCxY0O7a3fYmEjskpv8B7R5OxVxQeHjmtwwMqQeiPkgpzkIAE/9an\nDgjClcJB0fFg1FRe3fcVRw1l/D39Wx4ZmWCx64Sl+w0LFy7kj3/8I4sWLcLe3r4pK/GaNWsICgpi\n+vTp3HXXXSxatAhVVVm6dCn29vat1lu5ciXLli3DbDYzefJkYmLE1iJXEklWUK7/DaaPV6Ee2g4e\nvihxMztU105WuD4oiskDh/B53hF2n8/ljaydDHf35YagkYS7+4l+sZU0mE3kVhZzvOIixyoucqqq\nGNOPgygJiSAXz2aDqM7eAG11UPXRRx91K3BJkli5cmWz10JDL7/Leuutt3br9wjWoWka2tHvkYaP\nRWphfVS+oZQ3s3YC8EDkFEJcB/R0iILQZ5yqLOZUVQkxXgH4OLm2X0EQrgCKJBNv78cwnyA+zz/C\n84e+5cERUxnq7mPr0C7j6OjIK6+8ctnr99xzT9O/W5o22Fq92NhYNm7c2Orv27NnT9eDFXoFycEJ\n3ZxHMa1/BjV7H3JsQov9pda42Ttxx7DxJPgP5z+n0skoK+TYkSRCXQcwOzCKGK8AMbjqplpTAycq\nizhRUcTxyoucriptehIlIRHo4slwd1/C3f0Y5u7T7TVuIpuA0CI17VvUXZuQC0+gXHNns7Ki2ipe\ny9hBvdnEvRGTiPQcaKMoBaFvaEqj7t+5NOqC0NdJksSNwdF4Ojjzr+MHeOnINu4Jn8A4n2BbhyYI\n3Sa5eqGb+wS4enVqQPVL/noPHh45jdNVJXxVkEl6yRnezNrFYL0H1wREMNY7CHuR/KtDyutryK0s\nZm/DBb5K+4oz1WW/WBMlEeTqxTA3X4a7+zLU3QdnCycKEf+XhMuoOSmouzaB3gN5/PW/FY90AAAg\nAElEQVTNyiobanklYzuVxjoWho1lrLgwCkKbyuprSC3Ox9/ZnQgPvw7X00xGzJtfRo6eghxxlRUj\nFATrmzQwDHd7J/55dA/vHk3mYm0V1wdGiTvxQp8nDejc9hitCXEdwAMjpnC2upyvC7JIKcrjg2P7\n+Tg3lav9QpkycCj+eo/2G+onzJrK2epyTlYWk1tZRG5lMSX1PyeI0Zllwtx8GObeOIga4urdpfXM\nnSEGVUIz6pljmL95D+wd0d36KJKrV1NZrcnIqxk7KKozcH1gFNPE2hBBaNfOc8dRNY1rAsI71YFU\nM5PRzuSg+QWDGFQJV4CRXv78IfZaXs/cwWd5h7lYW8mdw67CTuxpKAhNAvQeLImYyJyQWHafP0Hy\n+Vy2Fx5je+Exhrh6M84nmNHegXj2o0ywmqZRVl/DaUMpp6qKOVVZQp6hhIZfbKas1zkQ4xVAmJsP\n5nMlXDt2Yo+fW8SgSmiilV3A/NnroGkoNz6A5BPYVGZUzbyVtYuC6jLiBw7l5mCx6FYQ2tNgNrHr\n3An0OgfG+4R0uJ5mNqGmfAmKHfKYWdYLUBB6WIDeg+WjZvFm1i72XzxNcV01D4yIx8VObGgtXDk0\nTQVV7fKUQIABjnrmhMRyU1A0h0vPsuv8CbLLznGyqpiNJ1MJc/MmzjuIWK/B+Di5tN9gH/HTAKqg\nuox8Qyl5hlJOV5VSZaxrOkYC/J09CHUbQKirN0PdvPFzcmu6cZl6MdUmN2vEoEr4md4dyT8MedgY\n5OCoppdVTWV1zj5yKi4wasBgFg0dK6ZsCEIHfH/xNNWmemYHRnVqTryWtReqSpFHz0DSu1sxQkHo\nee72TjwRfQ1rju0ntTif59K/4cERUwkQU5uEK4BmMmL++l1QdCjX3dvt/pIiy4z2DmS0dyAVDbWk\nFReQVpzP8YrGKW+bTqYxwEFPhMdAIjz8iPDww80C2xf0hFpTA4U1FZyrqaCwuoIz1eUUVJdRY2po\ndpyngzOjBwQS4upFsMsAQlwH4GTlqXxdIQZVQhPJ3hHllkeanQA0TWNjbhqpxfkMdfPh3ohJyO1s\ncicIQuPfTlJhDrIkMW3QsI7XM5swH/gSFB3y2OusGKEg2I69ouPeiEkMzHfji/wM/p7+LfeEX03c\n/2/vzuOiqtcHjn/ObCwzoIJ7gAsF4oKGppb71rXSchc1zZu/TG94s7KyTW1x6ZZ6LbPF680beQW1\nsjTrlmlhLkUi7vuCuIQoasywzDDn/P4gJwlUVIZh4Hm/Xr1izvd8z3nOgM/Mc5bvt2aYp0MT4iZp\nYL2AdvowakAw+o4DymzL1Ux+dKsfQbf6Efxmz2XbuRPsOX+aAxcz2JhxmI0ZhwEI9jETZgkizFKD\nMEsQoZYaBBp9PXJC3O4sICvfRkZuNmd+/y8zz8rpnItcsOcWWVcBavkF0KR6HULNf8QfaPKOK9lS\nVIki/vwP7qv0PXx/+gC3+FfnsWZd5N53IUpp34UMTuVcpG2tBlS/nnvfrefBaELXojOKRc7ci8pL\npyjc3yCaEHN1Fu/fwvt7f+S+sOb0CWuBTu6GEF5KMZjQPxBHQcKswtu4A4OBsr89L9DkR5d6t9Gl\n3m2omspx63n2XcjgwMUMjluz2HYunW3n0l3r++gM1PS1UMvPQi3fAKr7+BFo9MVi9CHg9/+bdAZM\nej0GRVdiAaZpGgWaSl6Bg3y1gDyng9wCB9mOPLLt+YX/d+Rx3p7L+XwbWXk5WAvyS4y/usmPptXr\nUs9cjfr+1anvX436/tXcPpiEO0lRVYVpWuFAk1c6c/Hjr4f4PG07wT5m/t68a5kPPSlEZfbdqX0A\ndL/l+oZRV6rVwjByGhQ43BCVEBVPTM0wavsFsGB3El8e38UJ2wX+GnFnhby9R4jSUPwCMPR/nIKE\nmajrPiagaW+gtdv2p1N0NAwovC2ud2jTwueS7DkctxY+l3TKdpHMvGwyc62czLlQqm0adXpQVRZv\nPIQGqJqGqmlorkHKr90/yMefUEsNgnzM1PazUNsvgFq+AdT2C8CnEg4TX/mOSJSadiQVpUEzKKFY\n2n7uBB8fTMZs8OHvzbtd35l2Iaq4jJzf2Jl1ivDAmjQKqHnd/RVFB0YfN0QmRMUUYq7B87f/hQ/2\nbmT7uRPMTP2aR6M6yXNWwmsp1Wuj7zcB5/I3qXlyJ5o2oNxuv1MUhSAfM0E+ZloFh7iWa5pGtiOP\nM7lWfnPkku3IJ9ueR7YjH1tBPnbVicNZUPh/1YnVZsPsb0b3+zZ1ig4fnR4fvRFfvQEfvQE/g4mA\n3692BRh9CTD5UN3kh9ngU+Wev5eiqopSD/yC88v3UG5tjaHv+CJthy6eYeG+jRh1OiY070Jd/0AP\nRSmEd1p36gAAPeo38XAkQngPi9GXx1t047Oj2/n25F5mpf6PB29rS7vajTwdmhA3RFe3MQx6imPp\nZwmqAAWGoigEmvxKPZDF1q1baX27+66wVTYy4kAVpJ48WDgyjckXffs+RdpO2i7wzp4fcGoqj0Z1\nuqGz7EJUZTkFdjZnHKGGjz+taoZcu4MQwkWv6BjU+HYejeqETlH49/7NLD2UjOOy+WiE8Ca6euFo\nlfBWN1GcFFVVjHb+1yvORZWVZ+OtXevJKXDw0G3taR5UNrOEC1GVbDh9iHy1gG71ItCXcqRMTXWi\n2fOuvaIQVURMzVCeb9Wb+v7V+P70Qd7csZazeVZPhyWEEFckRVUVouVkU/DpPyHPhr7HyCJzUVkd\nefxz13ou2HMZ2Oh22teR2y2EuF4FqpN1p/bjozfQqd6tpe6n7d1Cwb8no6btdmN0QniXOv6BTG71\nF9rXbsix7HO8mvIVWzOPezosIW6a5ixAk8GIKh0pqqoSky9K3Ybo2vVF17yja3G+s4D5u38gI/c3\net0Sxd0hUR4MUgjvtfXscS7Yc+lQJ7zUo2VqqhPnT6shPxelRl03RyiEd/HRGxgdcSejI9qjaiof\n7PuRjw/+jN1Z4OnQhLghmiMf5xfzcX75Hpr8HVcqcpNnFaIYjOjvHUvh9GqFnKrKB3s3cDT7HO1q\nN2RAo1aeC1AIL6ZpGt+e2IeCQo/rGEZd27sFLmaii+6KEhjsxgiF8E6KonBnncY0Cghm4b6NbPj1\nEId/y6QPchJCeCFFB6oT7dgunN/+B/1f/lo44qvwem77LaqqypQpU4iNjWXkyJEcP170kv3//vc/\nBg0axODBg/noo4/cFYb4E+WyCd1UTeOjg1vYdf40zWrU46Hb2suEi6JCulY+WbduHYMGDSI2Npbl\ny5eXqs+qVauIjY0tsxgPXDxDuu08t9cMoaZvKSd6vHSVSm9A1/beMotFiMqorn81Jrf6C13r3cap\nnItltt28vDwmTJjAiBEjGDt2LFlZWcXWWbZsGQMHDmTo0KF8//33V+2XmprKkCFDGDZsGPPnz3dt\n4/XXXyc2NpZBgwa58pSoehSDEX3fx1DqNkbbuxn1+wTXvKHCu7mtqFq7di0Oh4OEhAQmTZrErFmz\nXG1Op5M5c+awePFiEhMT+e9//8uFC6WbjEyUnU+PbmPLmWM0Cgjm0ahO6HVypkRUTFfLJw6Hg1mz\nZvHhhx8SHx9PYmIi586du2qfPXv28Mknn5RpjN+e3AtAr1tKf/tsjTMHCq9SNe+EEhBUpvEIURkZ\ndXqG3XoHL7fuc+2VS2np0qVERkayZMkS+vXrx7vvvlukPTMzk/j4eBISEli0aBGzZ8/Gbrdfsd/U\nqVOZPXs2S5cuZceOHezdu5ctW7Zw4sQJEhIS+O9//8vChQvJzs4us2MQ3kUx+aLv/3cIvgU1dR3q\nli88HZIoA277Fp2SkkKnTp0AaNmyJbt27XK16fV6vvrqKywWC1lZWaiqitEoM6eXNfX4XrT83BLb\nvjmxl29P7qOuXyBxzbpWypmtReVxtXxy+PBhwsLCCAgIwGg00rp1a5KTk6/Y5/z588ydO5fnn3++\nzM4O/ppz0TXZb+PA0k9DkO9fAyWsKbo77imTOISoKspy/sSUlBQ6d+4MQKdOndi8eXOR9h07dhAT\nE4PRaMRisdCgQQP2799fYj+r1YrD4SA0tHBk3Y4dO7Jp0yZiYmKYPn26a5tOpxODQT53qzLF14Jh\nwBNQrRba6SNoMm2A13Pbv2ir1YrF8sctMHq9HlVV0f1+NUSn0/HNN9/wyiuv0K1bN/z8SjcRmSgd\nNX0fzpXzUOo2Rj/46SKzWm/OOMInR7dRw+TP4827YTH6eDBSIa7tavnEarUSEBDgajObzWRnZ5fY\nx26388ILLzB58mR8fMru737tyf0A9Lzl+ib7zQmsi6HbfWUWhxDi6pYvX17skYPg4GDMZjPwR/64\nnM1mK5ZjrFYrVqu1WD+bzVYk75jNZtLT0zGZTJhMJhwOB5MnT2bo0KHyvUegWKpjGPIM+AWg6PSe\nDkfcJLcVVRaLBZvN5np9eUF1yd13302vXr2YPHkyK1euZMCAAVfd5tatW90Sq7u37W5/jt3HlsWt\nqZ+hqCpHgyKxpaS42o47rfwv/yQ+6Oihq83R3fs4Wt4B/85b33OJu/xdLZ8EBAQUabPZbAQGBpbY\nZ9++fRw/fpxp06Zht9s5dOgQM2fO5Lnnnrvq/q/23uVqBWzKPUKAYsR57Axb0zKv69i89fcicZcv\nb40bKlbsgwcPZvDgwUWWTZgwwZUrLuWPy/05l1wqsi5ffqmf2Wwusq7VanVt7+LFizz++OO0a9eO\nsWPHXjNWd79vFen3cj0k7vIlcZee24qqmJgY1q9fzz333ENqaiqRkX+MhmW1Whk/fjyLFi3CZDLh\n5+dXrOAqSevWrd0S69atW922bXf7c+ya9TwFCYngtKPvPYYmUXe62g5dzOS7Xesw6PQ83qI74YG1\nPBEy4L3vucRd8rbd7Wr5pHHjxqSlpXHx4kX8/PxITk5mzJgxKIpSrE90dDSrV68G4OTJkzz55JPX\nLKjg6rlnddpOnMc17m0UzR3XMeofyN9TeZO4y5835J6YmBiSkpKIjo4mKSmJNm3aFGmPjo5m7ty5\n2O128vPzOXz4MBERESX2s1gsGI1G0tPTCQkJYePGjcTFxZGXl8fo0aMZM2YMffqU7nkwd/7OvfVv\nSuIuXxJ3ydu+ErcVVb169WLjxo2u0bVmzpzJ6tWrycnJYciQIfTt25cHH3wQg8FAkyZNeOCBB9wV\nSpWh2fMo+GweZGeh6zAA3WUF1UnbBd7Z8z1OTeVvTTt7tKAS4npdK59MnjyZMWPGoKoqgwYNonbt\n2iX2uZymaUVui70RdmcB608dwN9g5K66jW9qW0IIzxg2bBjPPvssw4cPx2QyMXv2bAAWL15MWFgY\n3bt3Z9SoUQwfPhxVVXnyyScxmUxX7Pfyyy8zadIknE4nHTt2JDo6msWLF3PixAkSExNJTEwECnNS\nSEiIx45bVFyaIx/tzHF0t9zm6VDEdXBbUaUoCi+//HKRZY0aNXL9PGTIEIYMGeKu3VdNegNK3YYo\n9W8t8uD72Twr83atJ6fAwcORd9Ii6BYPBinE9btWPunWrRvdunW7Zp/LhYSEkJCQcFNxbcw4jLUg\nn3tDm+GrL91gO+rxvSg1b0EpwwfthRA3ztfXl3nz5hVbPnr0aNfPJd02eKV+LVu2dBVOl2/r8u0J\ncTXOL99HO74H7o9D17C5p8MRpSRjaFciit6AvudD6LoNd52B/82ey7yd67hoz2Vo49a0q93oGlsR\nQpSGU1X59sQ+jDo93euX7rY/LT8X55fvUbDkVTRngZsjFEII4Y10Mb0AcH4xH/XYrmusLSoKKaoq\nGUVRUH5/Pi23wM5bu77nTJ6Ve0Ob0f06n/cQQlxZ8tk0zuXb6FAnnACTb6n6qCnfQJ4NXXQXFJnG\nQAghRAl0YVHoH5gAKFJYeREpqiopu7OA+bt/IN12ns51b+X+BtGeDkmISkPTNL5J34sOhV4hpRtG\nXcu1oqZ8C34B6G7v6eYIhRBCeDNdg2boH4jDVVj9esTTIYlrkKLKi6lpu9E7ik/u61RV3t/7I4d+\ny6RNzTCG3drmph/IF0L8Ydf5U5zMuUCbWmHU9LVcuwOgJn8F9jx0be9FKeWVLSGEEFVXYWE1AeXW\nGJRaYZ4OR1yD3H/ipdT0fTg/f5tG/kFo7Tq4iiZVU/nwwGZ2nT9F8xr1+GvknegUqZ2FKEtfp+8B\noHdos1Ktr+Xnou74Hiw10EV3dV9gQgghKhVdg6boGjT1dBiiFKSo8kLameM4v5gPmsavDdtR7feC\nStM0Eg5vJTkzjfDAWjwa1QmDzNAtRJk6dPEMh37LpEVQfW4xVy9VH8XHD0Psc2i2iyiG0o0SKIQQ\nQgjvIUWVl9EunKHgs3+CPR/9vWOxWv+4CrUybTs/nD5IiLk6cc26YJIH4YUoc1+f+P0qVcj1nTlU\naoag1JQ5aYQQQtw8TXWiyInzCkXuC/MiWp6Vgk/nQs5v6LoNQxd5h6vtq/TdfJ2+h9q+Fv7evBv+\nBpMHIxWicjppu8DOrFOEB9bk1mq1PR2OEEKIKkhz5ONc/ibObd95OhRxGbmU4U18/NE1bglGH/St\nursWrz+1n5XHthPk488TLXpQzeTnwSCFqLy+PF44rO1frvMqlRBCCFFmrBfQLpxB+34pOPLQ3XGv\nDEhWAciVKi+iKDp0XYaiu6ufa9n+goskHN5KoNGXiS26E+Rr9mCEQlRep2wXSTl7nDBLDaKDbvF0\nOEIIIaoopUYdDEOfgYAg1I2fof6QiKapng6rypOiyssoiuI6G7E18zhJ9l8xG0xMbNGdOn6BHo5O\niMprTfouNKBPWItSnRFUD2+j4KuFaNlZ7g9OCCFElaJUr4Nh6GQIro+6bS3Or/6F5izwdFhVmhRV\nXmpn1kkW7d+EAR1/b96t1KOQCSGu3ynbRX7JTCPUXLqrVJqzAOeGFWj7k8GRXw4RCiGEqGqUgCAM\nQ55FqX8raBro5Gu9J8kzVRWUpmmoKd+gi2yHYilaMO05f5r39mxApyj0NtWnYUCwh6IUompwXaVq\nUMqrVLt+hPMZ6Fp0QQmq5/4AhRBCVEmKrxn9gCdA0aHIvKQeJe9+BaX+/CVq0nKcaz8qsnz/hQwW\n7EkC4LGmXain9/dEeEJUKZeuUrUszVUqex7qli/A6IPuzvvLITohhBBVmWL0kTkQKwApqiogZ+o6\n1E0rITAYfc+RruWHLp5h/u7vUTWNcU07EVWjrgejFKLqKHyWqnnprlL9/GXhtAet/4Jirub+4IQQ\nQogSaKoMXlGe3Hb7n6qqTJs2jQMHDmA0Gpk+fTphYWGu9tWrV/PRRx+h1+uJiIhg2rRpMhwkhbcN\nqev/C/6BGAY8iWKpAcDR7LO8vft7CjSVR5t0pIWMPiZEuQkxV6dlcGkn7lWgWi10bf7i1piEEGUj\nLy+Pp59+mqysLMxmM7NmzSIoKKjIOsuWLSMxMRGDwcD48ePp2rXrFfulpqYyY8YM9Ho9HTp0IC4u\nDoC5c+eyefNmFEXhqaeeom3btp44XFFFaPm5OFe8ie72nuia3unpcKoEt12pWrt2LQ6Hg4SEBCZN\nmsSsWbNcbXl5ecybN4/4+HiWLl2K1Wpl/fr17grFa2gZaTi//Q/4WjAMfAqlRh0AjmWfY97O9eQ7\nnfxfZAda1Qz1cKRCVC2lHfEPQN9xAIZRr6AYfdwclRCiLCxdupTIyEiWLFlCv379ePfdd4u0Z2Zm\nEh8fT0JCAosWLWL27NnY7fYr9ps6dSqzZ89m6dKl7Nixg71797Jnzx527NjBsmXLmDNnDtOnT/fE\noYqq5EIG2sVMnP9bhHPz52ia5umIKj23FVUpKSl06tQJgJYtW7Jr1y5Xm4+PD4mJifj4FH7pKCgo\nwNfX112heI/aYejuegDDgCdQahZeiTqWfY5/7lxHnrOAhyPvpHWtsGtsRAhR1kp/laqQ3NsuhPdI\nSUmhc+fOAHTq1InNmzcXad+xYwcxMTEYjUYsFgsNGjRg//79JfazWq04HA5CQwtPfnbs2JFNmzbR\ntGlT/vWvfwFw8uRJAgNlChThXkqdhoVDrgfWRN2yCueX76HZ8zwdVqXmttv/rFYrFovF9Vqv16Oq\nKjqdDkVRXJfW4+Pjyc3N5a677nJXKF5DURT07fq4Xh/NPsu8netdBVXb2g09F5wQVZhObk0WolJY\nvnw5H31UdACo4OBgzGYzAGazmezs7CLtNpuNgIAA12uz2YzVasVqtRbrZ7PZinz3MZvNpKenA4Xf\ng+bOnUt8fDxTpkxxy/EJcTkluD6GYS/g/PJdtINbKTifUTgEu4+fp0OrlNxWVFksFmw2m+v1pYLq\n8tdvvPEGaWlpvP3226Xa5tatW8s8zvLY9o0448xlTf4JHKh0M9VDn36OrennSly3osVeWhJ3+fLW\nuIUQoqwMHjyYwYMHF1k2YcIE1/cVm81W7CrSn7/PXCqyLl9+qZ/ZbC6yrtVqLbK9J554grFjxzJ0\n6FBat27tuqJVEnfnbG/9TJC4b0DDrtR3GlE0lZM7d8N1nCiU97v03FZUxcTEsH79eu655x5SU1OJ\njIws0j5lyhR8fHx45513Sv2sQuvWrd0RKlu3bnXbtq9GU1WUEiZqO5p9lvid63Gg8XDkXVe9QuWp\n2G+WxF2+3Bm3tybcsqLlZKOdPYEuLMrToQghbkBMTAxJSUlER0eTlJREmzZtirRHR0czd+5c7HY7\n+fn5HD58mIiIiBL7WSwWjEYj6enphISEsHHjRuLi4tiyZQvffPMNU6ZMwWQyYTAYipxoLok7P2vk\ns6x8VYi472iLpqrUvY4JgitE3DfAU9953FZU9erVi40bNxIbGwvAzJkzWb16NTk5OTRv3pxPPvmE\nNm3aMGrUKAAeeughevbs6a5wKhz1xAGc6z7G8MDfUarVdC0/+Puw6flOp9zyJ4QXcG78DG1XEtwf\nhy68lafDEUJcp2HDhvHss88yfPhwTCYTs2fPBmDx4sWEhYXRvXt3Ro0axfDhw1FVlSeffBKTyXTF\nfi+//DKTJk3C6XTSsWNHoqOjUVWVr7/+mmHDhqGqKiNGjOCWW2QUX1G+SjqRL8qO24oqRVF4+eWX\niyxr1KiR6+e9e/e6a9cVnnriAM6V88BZgJZ12lVU7T3/Kwv2/ECBpvJIkw4yKIUQFZx68mBhQRV8\nC0rD5p4ORwhxA3x9fZk3b16x5aNHj3b9XNJtg1fq17JlSxITE4ss0+l0TJs2rUziFaIsaWdPArgG\nSBM3zm1FlSiZevKgq6DS9xmHrlELAHZmneS9PRsAGBfV6bpHGxNClC/NWYBzbTygoO85CkUv6VQI\nIYT30JwFFKxeANnn0fcchS6qvadD8mpyHbAcqen7cH72z8KC6r5H0YXfDsC2s+m8u2cDiqLwWLMu\nUlAJ4QXUX76GrFPoorugqx/u6XCEEEKI66LoDeg7DACdDufX/6Lgm8VojnxPh+W15NRqOdJOH/m9\noBqH7tbCgmpzxhE+OvATRr2euKZdiKhex8NRCiGuRXMWoO7ZDOZq6DoO8HQ4QgghxA3R3dYapWYI\nBWveR9v9IwWnDmK4ZyxKnQaeDs3rSFFVjnR33IPu1hiUoLoArD25j+VHUvA3mJjQrCuNA2teYwtC\nVE2qqjJt2jQOHDiA0Whk+vTphIX98czhunXrWLBgAQaDgYEDBzJ48OAr9tm7dy+vvfYaOp0Ok8nE\nP/7xD4KDg68rHkVvwDDiJTifgeLjX9aHK4QQQpQbpUYdDEOfQ930GerWb9DO/ypF1Q2Q2//KkaIo\nKEF10TSNlce2s/xICtVNfjwd3VMKKiGuYu3atTgcDhISEpg0aRKzZs1ytTkcDmbNmsWHH35IfHw8\niYmJnDt37op9ZsyYwUsvvUR8fDx33303CxcuvKGYFJOvfOgIIYSoFBSDEX3nIRhGTkPXpJ2nw/FK\ncqWqnKmaytJDv5D06yFq+1p4vEV3avpart1RiCosJSWFTp06AYUja+3atcvVdvjwYcLCwggICAAK\n53ZJTk4mNTW1xD5z5syhVq1aABQUFODj41OehyKEEEJUWEpNea7/RsmVKjdxbl+Pdj6jyDKH6mTh\nvo0k/XqIUHMNnm7ZSwoqIUrBarVisfzxb0Wv16OqqqvtUkEFYDabyc7OvmKfSwVVSkoKS5YsKTJs\nshBCCCGKUw9tQ7Oe93QYFZpcqSpjmqahbvwMNXkNWv1b0Q95FkVRsDryWbAnicO/ZXJbYG0ea9YZ\nP4PJ0+EK4RUsFgs2m831WlVVdL9PYhgQEFCkzWazERgYeNU+a9as4b333uODDz6gRo0apYpBPX0E\npVYoisFYFockhBBCeAXtYibONe+DwYS+8xCUZh1QFMXTYVU4UlSVIU1VcX73ceFkoNXroO/9fyiK\nQmaulbd3rycjN5s7ajXgoYj2GHV6T4crhNeIiYlh/fr13HPPPaSmphIZGelqa9y4MWlpaVy8eBE/\nPz+Sk5MZM2YMiqKU2Ofzzz9n2bJlxMfHU61atVLtf8fG9URsXUaeOYjDLftDGX6YbN26tcy2VZ4k\n7vLlrXGDd8cuhAACa6LrOgw1aRnObxej7N2EvsdIlKB6no6sQpGiqoxoBXacX/0L7VAK1A7D0H8i\nin8gx7LPMX/3D2Q78rg7JIr+DVuhk+peiOvSq1cvNm7cSGxsLAAzZ85k9erV5OTkMGTIECZPnsyY\nMWNQVZVBgwZRu3btEvs4nU5mzJhB/fr1iYuLA6Bt27ZMmDDhqvtvejIZzekgsP29tG7WpsyOa+vW\nrbRu3brMtldeJO7y5a1xg3tjl2JNiPKhKAr66C7oGrXAuf6/aIdTKfj4ZfR3/1UGtbiMFFVlRDu6\nE+1QCkpIJPr741B8/Nh2Np1/79+EQ1UZFt6GrvUjPB2mEF5JURRefvnlIssaNWrk+rlbt25069bt\nmn0Afvrpp+vev3byAMqtMShN77ruvu6Wn5/PPffcw7p165gxYwYPP/wwfn5+jPkFyK0AACAASURB\nVB49mqCgIBYtWuTpEK/ojTfeYMOGDQwcOBCr1cpjjz1W4nobNmzg9OnTDBkyhMTERAYOHIjBIB9f\nQghRnpSAIAz3x6Ee2oZzwwqUuo2u3akKkU+lMqK7rTXc+yhKeCvQG1hzfBefp+3ApNMzvmknWgbL\naCpCeC3/auh7jqzw95A///zzACQnJxMaGspbb73l4Yiu7n//+x9ffPEF/v5Xn+vr0iiOAO+//z79\n+/d3d2hCCCGuQHfr7SiNW6LoZLy7y0lRVYZ0kXdgdxbw0f5NJGemEeTjz9+adiHUUroH4YUQFZP+\n7tEofgEltq04so2Us8dvaLv59nw++flEseUxNcMY1Pj2K/az2WxMmjSJ7OxswsLCXMXeyJEjefHF\nF3nttdfIzMxk/vz5DBw4kClTppCXl4evry+vvvoqBQUFjB8/nurVq9OlSxc6derE9OnT0TSNGjVq\nMGPGDHbv3s3ChQsxmUykp6dz3333MW7cOI4dO8Yrr7yCn58fvr6+zJ07l8zMTF5//XWcTifnz59n\n2rRp3H777Tz33HMcP36cvLw8Ro0axQMPPOA6hvnz53PmzBkeffRRHnnkEVauXMmcOXO4++67ad26\nNUePHiU4OJi3336blStXcvToURo0aMDZs2d58skneeutt3jppZf49ddfyczMpHv37kycOJFvvvmG\nf/3rXxgMBmrXrs3cuXMrfDEshBDe5koFlWa9ACZfFJNvOUfkeVJUlaHz+Tm8uyeJNGsW4YG1GBfV\nicAq+EclRGWja9TC0yEUkZCQQGRkJBMnTmTHjh1s2bLF1WYymXjhhRdISEggLi6OiRMnMnLkSDp3\n7szmzZt58803eeKJJzh79iyfffYZBoOBIUOGMHPmTMLDw1mxYgULFy6kQ4cOnD59mlWrVpGfn0+n\nTp0YN24cr7/+Ov369eOvf/0r3333Hfv27eP8+fM8++yzREREsHr1aj799FMiIiL45ZdfWLZsGQAb\nN24scgxxcXF8+umnLFq0iG3btrmWnzhxgvj4eOrUqcOwYcPYuXNn4cTpisKgQYNYsGABc+bM4fTp\n07Rq1YrBgweTn59Ply5dmDhxIl9++SX/93//x913383KlSuLDbkvhBDCfZxrP0L79Si69n3RteiM\noq86pUbVOdIyoqkq6qaV6CLaoNQOcy0/dPEMH+zbyEV7LnfWacyIW++QEf6EqAIGNb79qleVruZG\nH+JPS0ujS5cuAERHR2M0/jHMu6ZpaJrmen3gwAHef/99Fi5cCOBaNyQkxPVc0pEjR5g2bRpQOCFy\nw4YNAYiIiECn07muSgEcO3aMESNGANCjRw8AfvnlFxYsWICvry82mw2LxYLZbOb555/npZdewmq1\ncv/995fq2GrUqEGdOnUAqFevHvn5+a7july1atXYuXMnP/30ExaLBbvdDsBzzz3H+++/T3x8PI0b\nN6Znz56l2q8QQoibo6kqSt1GaCf2o67/L2rKt+g79EeJaIOiVP5bBd1eVKmqyrRp0zhw4ABGo5Hp\n06cTFhZWZJ3c3Fz++te/MmPGDBo3buzukG6YlmfDueYDtLTdaBnHMAx8Ek3T+O7Ufj45UnimdXDj\nGHrUj5TbTYQQbhMeHk5qaio9evRgz549OByOq6778MMPc/vtt3PkyBGSk5MBXHN2QeGgH2+88QZ1\n69YlJSWFzMxMgBLzWHh4OIcPH6Zjx46sXLmSnJwcVqxYwRtvvEF4eDhvvfUWp06dIjMzk927dzN/\n/nzy8/Pp2rUr/fr1K7Lfklwrd+p0OlRV5dNPPyUwMJBXXnmFtLQ01xWxxMREJkyYQFBQEFOmTGHt\n2rX069fvqtsUVVteXh5PP/00WVlZmM1mZs2aRVBQUJF1li1bRmJiIgaDgfHjx9O1a9cr9ktNTWXG\njBno9Xo6dOjgGmkUCr/vxMbGMmnSpCLPCgpRGSg6Hfr2fdFFd0H9aTXqjh9wrvkAZWcS+oFPVfrv\nxm4vqtauXYvD4SAhIYHt27cza9YsFixY4GrfuXMnU6dO5cyZMxX6zdbOnaLgi/lw4QxKoxboez9C\nboGDjw5uIeVsOoFGX8ZGdeS2arU9HaoQopIbNmwYzzzzDMOHD6dx48b4+Pi42i7dKncpnz7zzDNM\nmzYNu91OXl4eL774omu9S6ZNm8bTTz+N0+lEURRmzJhBRkZGiTn5mWeeYcKECcyePZv27dvzxhtv\nYLfbmThxIoGBgdStW5cLFy5Qq1YtMjMziY2NRa/XM2bMmGIF1aXtXx7vlVxqb9OmDWPHjmXKlCk8\n9dRTpKamYjKZaNiwIRkZGURHR/Poo49iNpsxm83FRoUU4s+WLl1KZGQkcXFxrFmzhnfffZcXXnjB\n1Z6ZmUl8fDyffvop+fn5DBs2jLvuuuuK/aZOncr8+fMJDQ1l7Nix7N27l6ioKABeeeUVdDpdhf6+\nI8TNUvwD0Xcbju72Xjg3r0SpVqtK/M27vahKSUlxnY1p2bIlu3btKtLucDhYsGABTz/9tLtDuWHq\nwa04v/kQ7Hno7rgX3V39OJX7G+/vWkdG7m/cGliLsVEdqWby83SoQogqwGQy8c9//rPY8vj4eKDw\nylPbtm0BCA0NLXFY9YSEBNfPzZo1c/W9pEGDBq5tAPz4448AhIWFMWHCBNasWcOzzz5LtWrVGD16\nNKNHjy62j5KGtL/cd999BxTOFXZpX5f2AzBnzpxifWbNmuX6+fPPPy/WXqdOHSmkxHVJSUnhkUce\nAQpHmrz8xC/Ajh07iImJwWg0YjQaadCgAfv37y+xn9VqxeFwEBoaCkDHjh3ZtGkTUVFRLFq0iJiY\nmPI9OCE8SKleC8M9jxS7fbuycntRZbVasVgsrtd6vR5VVV1nLL0iwWgaaBr6e8eiRNzB96cPsuJI\nCgWaSq9boujfsCV6GVZSCFFFfPnll6SlpaGqqqdDEeK6LF++nI8++qjIsuDgYMxmMwBms5ns7Owi\n7TabrchgJ2azGavVitVqLdbv0jOFl6+bnp7O5s2bSUtL45VXXmHr1q1V5kumEFDybd2apuFc8z5K\naBS6pneiGEweiKxsub2oslgs2Gw21+vLC6rr5c7Z06++bQV961is2Ro/bP6C404bPujpbrqFhudV\nUs9vu0pf9/PWWeUl7vLlrXGLiufBBx+8oQE2hPC0wYMHM3jw4CLLJkyY4PqeYrPZCAwMLNL+5+8x\nl4qsy5df6mc2m4utGxgYyIoVKzh16hQjR47k6NGj7Nmzh1q1atGkSZMrxurunO2tnwkSd/lyV9w+\nOee57WAKugO/YE9aztn6LThXrylO09XnLSwtT7zfbi+qYmJiWL9+Pffccw+pqalERkbe8Lbc9SFe\nmhG49pw/zef7N/ObM48m1evw14g7qe5TNr/4m3Gjo4d5msRdvtwZt7d+UAghBBR+T0lKSiI6Opqk\npCTatGlTpD06Opq5c+dit9vJz8/n8OHDRERElNjPYrFgNBpJT08nJCSEH3/8kbi4OB5++GHX9p57\n7jnuu+++qxZU4L7vPCCfZeVN4i6Zdnsb1NR1GHZ8T920ZOqe2Iau9d3oOwy4qe166juP24uqXr16\nsXHjRmJjYwGYOXMmq1evJicnhyFDhrh799dFy7OhnTyILryVa1legYNPj6Xyw+mD6BUdAxq1otct\nUeiqwAN3QgghRGU3bNgwnn32WYYPH47JZGL27NkALF68mLCwMLp3786oUaMYPnw4qqry5JNPYjKZ\nrtjv5ZdfZtKkSTidTjp27Eh0dLQnD0+ICkuxVEffcQC6tvei7tmEun09+AVeu2MF5faiSlGUYg8r\nN2rUqNh6f35Iurypx3bh/GYx5GajPDgVJbg+e86fJv7gT2Tl51DfvxqjI+6kQUDQNbclhBBCCO/g\n6+vLvHnzii2/fPCVkm4bvFK/li1bkpiYeMX9zZw588aDFaISUky+6Ft1R9eyG6jOEtfRLmZCYHCF\nnu+qyk/+q9nzqH8wCWfSbtDp0bXvS25ADVYc2MLGjCPoULg3tBn3hjWXyXyFEEIIIYRwA0VRQF+8\nNNFUlYLE10GnQxfVHl3EHVAzpMIN016liyr19GGcX75PzewsCK6P/i9j+FlR+STlK35z5BFirs5D\nEe0Js8jVKSFE5fH2229Tq1YtYmNj+fjjjwkLC6N9+/Z8/vnnDB48mM8++4xq1arRvXt3T4cqhBCi\nqrPnoTRqjrY/GfXnNag/r4Ggeugi26Jr16fCFFdVuqhSLDXAkU9GaAz0GsTSY9s59FsmRp2eBxpE\n85eQpjJUuhCi0rn8A+jBBx8E4MSJE6xYsYLBgwfTv39/T4UmhBBCFKH4+mPoNRqt6zC0IztQDySj\nHd2JdnwvSvu+ng7PpWoXVQFB2Ee9ymc7fmTPju9Q0WgVHMLgxjHU9LVcewNCCAE4Fj1b4nLjmNev\nun6TfDuO1GXXXP/PrFYrL774ItnZ2Zw5c4Zhw4bx1VdfERUVxcGDB7FarcybN4/69esze/Zsdu/e\nzYULF4iMjHQ9z3GpsOrevTtff/017733HocOHeKdd95B0zRq1qxJbGwsr7zyCjt37sThcDBhwgR6\n9OjBxx9/zOuvF8bap08fRo0aVbo3SgghhLhBitEHJfIOdJF3oNnzwHaxxPX8sjNR9/+MEhqF4h9Q\n4jruUCWKKk3TwJ6LctkQ6HZnAetOHeB/J3aTU+Cgtl8AQxu3pnlQfQ9GKoQQ13b8+HHuu+8+evXq\nxZkzZ3jwwQepU6cOLVu25Pnnn2fu3LmsXr2a4cOHU61aNf7973+jqip9+vQhIyOjxG2OHz+egwcP\n8thjjzF//nwAvv32Wy5cuMDy5cv57bff+PDDD9Hr9WRmZrJs2TIKCgoYPnw47du3JyIiojzfAiGE\nEFWYYvIFk2+JbTUy9uHctqvwRe0wdA2aoYQ2QakXXtjPTSp9UaX+ehQ1aTnodOgHPoWKxuaMI6xK\n28kFey7+BhPtjLUYGdNdBqIQQtyQ0l5h+vP6O25wLo3g4GD+85//8M0332CxWCgoKAAgKioKgHr1\n6nH27Fl8fX05d+4cTz31FP7+/uTk5LjW/TNN04otO3r0KK1aFU4xERgYyOOPP86iRYtc8+sYDAZa\ntmzJoUOHpKgSQghRIZyr15TajSLQju9BO3kQ9cxxSP4Kfe8xKFF3um2/lbao0jLTcf70JdrBXwoX\nNG7JlpP7+OrXQ2TkZmPU6ekd2pS/hDRl7/adUlAJIbzGhx9+SKtWrRg2bBhbtmzh+++/L3G9pKQk\nfv31V+bOnUtWVhbffvutq3j6cxGl0+lQVbXIsvDwcL7++msAsrOzmThxIiNHjnTtz+FwsG3bNgYM\nuLmJGoUQQoiykm8ORt+6NbS9F82Rj3biANqJ/SghkSWu79yyCgxGlDoNUWqFoNzgI0CVsqgq+PYj\ntF1JAGh1GrAzqj3LHTbOH92GXtHRqe6t9AlrTvXLbgcUQghv0a1bN1577TXWrFlDQEAABoMBh8NR\nbASk6OhoFixYwIMPPoiiKISFhXHmzBmAYusGBwfjcDh488038fX1RVEUevTowebNmxk+fDhOp5O4\nuDg6derEF198QWxsLHa7nXvvvdd1hUwIIYSoSBSjD0qjFtCoRYntmqaipnwD+bl/LLTUQKkViv4v\nf0XxK/0zWZWyqFKq16KgTkNSwqP5xGnHas3EpNPTo34kPUOaEORj9nSIQghxw9q1a8eqVauu2B4b\nG+v6ecWKFcXaY2JiXD+vW7fO9fPKlSuLrfviiy8WWzZixIgbum1RCCGEqFgUDA9OQzt9BO1MGtrZ\nE2iZ6WjH98B1Xnzx6qJK07QiZ1s1TWPfhQw2+PmzLaQxqt2Kv8HIfaHN6X5LBBaj+x5OE0IIIYQQ\nQngPRVEgMBglMBgi73At1/JyUK7z0SCvK6o0TUPLOIa2dzPa6SPohz3Pufwcfj6TxpYzR8nI/Q2A\nEEt1utaLoG3thviUMDuzEEIIIYQQQvyZ4nv9jwh5VbXh/Gk16t4tcP5XAOy+Fj7+6XNSHIX3QRoU\nHe1rN6RzvdtoHFCzwsywLIQQQgghhKi8vKqoUjetxKnTc6h2KOsDa7AnMAjNkUtktTq0q92QmJqh\n+BlMng5TCCGEEEIIUYV4VVH1ccMmpFavTb7BSHhgTQYEh9CmVgNqyCh+QgghhBBCCA9xW1GlqirT\npk3jwIEDGI1Gpk+fTlhYmKt93bp1LFiwAIPBwMCBAxk8ePA1t+lo0p5hQbfQPKieDDohRBVyI/nk\nSn3S0tKYPHkyOp2O2267jalTp8qtwkJUYXl5eTz99NNkZWVhNpuZNWsWQUFBRdZZtmwZiYmJGAwG\nxo8fT9euXa/YLzU1lRkzZqDX6+nQoQNxcXEAjB8/ngsXLmAwGPDz8+ODDz7wxOEKIdxE564Nr127\nFofDQUJCApMmTWLWrFmuNofDwaxZs/jwww+Jj48nMTGRc+fOXXObY6M60r5OIymohKhibiSfXKnP\nzJkzefLJJ1myZAmapvHdd9956rCEEBXA0qVLiYyMZMmSJfTr14933323SHtmZibx8fEkJCSwaNEi\nZs+ejd1uv2K/qVOnMnv2bJYuXcqOHTvYu3cvAMePH2fp0qXEx8dLQSVEJeS2oiolJYVOnToB0LJl\nS3bt2uVqO3z4MGFhYQQEBGA0GmndujXJycnuCkUI4eVuJJ9cqc+ePXu4447CYVM7d+7Mpk2byvlo\nhBAVSUpKCp07dwagU6dObN68uUj7jh07iImJwWg0YrFYaNCgAfv37y+xn9VqxeFwEBoaCkDHjh3Z\ntGkT586d47fffmPcuHEMHz6c77//vlyPUQjhfm67/c9qtWKxWFyv9Xo9qqqi0+mwWq0EBPwxQ7HZ\nbCY7O9tdoQghvNyN5JOS+jidTjRNcy3z9/eX3CNEFbJ8+XI++uijIsuCg4Mxm81Ayd9HbDZbsRxj\ntVqxWq3F+tlstiJ5x2w2k56ejsPhYMyYMYwaNYoLFy4wbNgwoqOji91mKITwXm4rqiwWCzabzfX6\n0hcggICAgCJtNpuNatWquSsUIYSXu958EhgYWGIfvV7v6nf5ukKIqmHw4MHFnuGeMGGCK1eUlBP+\nnEsuFVmXL7/Uz2w2F1nXarUSGBhIzZo1GTp0KDqdjqCgIKKiojh69KgUVUJUIm4rqmJiYli/fj33\n3HMPqampREZGutoaN25MWloaFy9exM/Pj+TkZMaMGXPNbW7dutVd4bp12+7mrbFL3OXLW+OGG8sn\niqKU2CcqKoqff/6Ztm3bkpSUxJ133nnN/UvuKU7iLl/eGjdU/NhjYmJISkoiOjqapKQk2rRpU6Q9\nOjqauXPnYrfbyc/P5/Dhw0RERJTYz2KxYDQaSU9PJyQkhI0bNxIXF8emTZv4+OOP+eCDD7DZbBw8\neJDw8PCrxuXu962i/16uROIuXxJ36Sna5ffClCFN05g2bRr79+8HCh8O3717Nzk5OQwZMoT169fz\nzjvvoKoqgwYNYvjw4e4IQwhRCdxIPimpT6NGjTh27BgvvfQSDoeD8PBwXnvtNRn9T4gqLC8vj2ef\nfZbMzExMJhOzZ88mODiYxYsXExYWRvfu3Vm+fDmJiYmoqsr48ePp1avXFftt376dGTNm4HQ66dix\nIxMnTgRgxowZbN++HUVReOSRR+jRo4eHj1wIUZbcVlQJIYQQQgghRFXgttH/hBBCCCGEEKIqkKJK\nCCGEEEIIIW6CFFVCCCGEEEIIcROkqBJCCCGEEEKIm1Ali6r333+f2NhYBgwYwIoVK0hLS2PYsGGM\nGDGCadOmURHH7nA4HDz11FPExsYyYsQIjhw5UuHj3r59OyNHjgS4YqzLli1j4MCBDB06tMLMMH95\n3Hv37mXEiBGMHDmSMWPGcO7cOaBixg1FY79k1apVxMbGul5X1NirAsk95UNyT/mSvFOxeWPeAe/L\nPZJ3yl+Fyz1aFbNlyxbt0Ucf1TRN02w2m/b2229r48aN037++WdN0zRtypQp2rfffuvJEEv07bff\nao8//rimaZq2ceNGLS4urkLH/cEHH2h9+vTRhg4dqmmapj366KPFYj1z5ozWp08fzW63a9nZ2Vqf\nPn20/Px8T4ZdLO4HH3xQ27t3r6ZpmpaQkKDNnDlTy8zMrHBxa1rx2DVN03bv3q099NBDrmUV8T2v\nKiT3lA/JPeVL8k7F5q15R9O8K/dI3il/FTH3VLkrVRs3biQyMpK//e1vjBs3jq5du7J7927uuOMO\nADp37symTZs8HGVxjRo1wul0omka2dnZGI3GCh13gwYNmD9/vuvszJ49e4rFunPnTmJiYjAajVgs\nFho0aOCaU8hT/hz3nDlzaNKkCQAFBQX4+PiwY8eOChc3FI/9/PnzzJ07l+eff961rKLGXhVI7ikf\nknvKl+Sdis1b8w54V+6RvFP+KmLuMbhtyxVUVlYWp0+f5v333yc9PZ1x48YVuXzs7+9Pdna2ByMs\nmb+/PydPnqR3795cuHCB9957j+Tk5CLtFSnuu+++mxMnTrheX/4em81msrOzsVqtBAQEFFlutVrL\nNc4/+3PctWrVAiAlJYUlS5awZMkSNmzYUOHihqKxq6rKCy+8wOTJk/Hx8XGtUxHf86pCck/5kNxT\nviTvVGzemnfAu3KP5J3yVxFzT5UrqmrUqEF4eDgGg4FGjRrh4+PDmTNnXO02m43AwEAPRliyxYsX\n06lTJ5544gl+/fVXRo0aRUFBgau9osZ9iU73x0VRq9VKYGAgFosFm83mWl5Rj2HNmjW89957fPDB\nB9SoUcMr4t61axfHjx9n2rRp2O12Dh06xMyZM2nXrl2Fj72yktzjGZJ7yo/knYrHW/MOeHfukbxT\nvipK7qlyt/+1bt2aDRs2AJCRkUFeXh7t27fn559/BiApKYk2bdp4MsQSVatWDbPZDEBgYCAFBQU0\nbdq0wsd9SVRUVLFYo6Oj+eWXX7Db7WRnZ3P48GFuu+02D0da1Oeff86SJUuIj48nJCQEwCvijo6O\nZvXq1cTHxzNnzhxuvfVWnnvuOVq0aFHhY6+sJPd4huSe8iN5p+Lx1rwD3p17JO+Ur4qSe6rclaqu\nXbuSnJzMoEGDUFWVqVOncsstt/DSSy/hcDgIDw+nd+/eng6zmNGjR/P8888zYsQI14g4zZo1q/Bx\nK4oCwOTJk4vFqigKo0aNYvjw4aiqypNPPonJZPJwxIUURUFVVWbMmEH9+vWJi4sDoF27dsTFxVXY\nuOGP9/wSTdNcy2rVqlWhY6/MJPeUL8k95UvyTsXkrXkHvDP3SN4pfxUp9yiaVoHGoxRCCCGEEEII\nL1Plbv8TQgghhBBCiLIkRZUQQgghhBBC3AQpqoQQQgghhBDiJkhRJYQQQgghhBA3QYoqIYQQQggh\nhLgJUlQJIYQQQgghxE2QosqLnDhxgubNm9OvXz/69+9Pnz59ePjhh8nIyPBIPN27d+fUqVOlXv/r\nr79mwIABPPDAA/Tt25dFixZds8/IkSNdE+hdLiEhgYSEhOuK90aNHDmyXPYjREUkeecPkneEKD+S\ne/4gucc7VLnJf71d7dq1Wblypev1nDlzePXVV5k/f74Ho7q2jIwM/vGPf/DZZ59RrVo1cnJyePDB\nB2nUqBHdu3e/7u3Fxsa6IcqSJScnl9u+hKiIJO8UkrwjRPmS3FNIco93kCtVXq5169YcO3YMKDyL\n8sQTT9C7d2+ysrJYuXIlAwYMoF+/frzwwgvY7XYAVq1axX333UefPn148cUXUVWVs2fP8uijj3L/\n/fczYMAANmzYUGxfFy5c4JFHHqFv37488cQTru2pqsprr71Gnz596Nu3LwsXLizW9/z58zgcDnJz\ncwHw9/fn9ddf57bbbnPFfukM0E8//VTkTEliYiIDBgygf//+rjM4b7/9tiupfvzxxwwZMoS+ffty\n//33c/jwYQA2bdrkOkM0btw4rFYrTqeTmTNnus4eLV682LXPhx9+mMcee4zevXvz97//HYfDwWuv\nvQbA0KFDAUhKSmLw4MH079+fCRMmcOHChRv8zQnhvSTvSN4RwhMk90juqcikqPJiDoeDr776ipiY\nGNeyLl268PXXX3Pu3DmWL19OQkICK1euJCgoiEWLFpGRkcGsWbP497//zerVq8nNzWXDhg28+uqr\n3HnnnXzxxRfMmzeP559/nnPnzhXZ31tvvUXz5s1ZtWoVI0aM4OzZswAsXbqUjIwMVq1axfLly/nm\nm2/44YcfivRt0qQJPXr0oGfPngwePJg333wTp9NJaGjoNY/TbDbz6aefMmvWLJ555hnsdjuKogBg\ntVr57rvv+Pjjj1m1ahU9e/Zk6dKl2O12nn76aV5//XVWrVpFZGQkK1euZNmyZSiKwqeffsry5cv5\n7rvv+OWXXwDYtm0bU6ZM4auvvuL06dNs3LiRF198EShMcllZWcyZM4d///vffPbZZ3To0IE333zz\nxn+BQnghyTuSd4TwBMk9knsqOrn9z8ucOXOGfv36AWC322nZsiWTJk1ytUdHRwOFZyHS0tIYMmQI\nUJiMmjVrRmpqKjExMdSpUweA2bNnA/Dss88yffp0AEJDQ2nZsiXbt28vcpk6OTmZOXPmANCmTRtC\nQ0PRNI2ffvqJ/v37oygKvr6+9O3bl82bN9OlS5cisU+bNo2//e1v/Pjjj/z4448MHTqUN998k169\nel31mAcNGgRAZGQkQUFBHDlyxNVmsViYPXs2q1at4tixY/z4449ERUVx4MAB6tSpQ5MmTQB44okn\nAPj73//Ovn372LJlCwC5ubkcPHiQ8PBwIiIiXO9LeHh4sTMy27dv5/Tp064zSk6nk+rVq181diEq\nA8k7kneE8ATJPZJ7vIkUVV7mz/cX/5mvry9QeHm6d+/errMOOTk5OJ3OYg9AZmVlAaBpWpHlqqqi\nqmqx7TudTtfPer3e1ffy/qqqUlBQUKTfDz/8gM1m495772XAgAEMGDCAXhMRZQAAA1FJREFU5cuX\ns2LFCnr16oWiKK5t/Lnvpf1c2pfRaHS9vvQPfuTIkXTp0oVatWqxd+9eDIaif9pWqxWr1Yqqqjzz\nzDP07NkTKLxE7+/vT2pqKiaTybX+pbNCfz72mJgY3n33XaAwwVut1mLrCVHZSN6RvCOEJ0jukdzj\nTeT2v0qqbdu2rF27lqysLDRNY+rUqfznP/+hRYsWbN++nbNnz6JpGq+++io//PAD7dq1Y8WKFQCk\np6ezbds2WrVqVWSbd911F1988QUAO3bs4Pjx4wC0b9+elStXoqoqubm5rF69mvbt2xfp6+vry5w5\nczh58iRQmCgOHjxI06ZNAahRowYHDx4E4LvvvivSd9WqVQDs3LkTm81GgwYNXG27du2iQYMGPPTQ\nQ0RHR/PDDz/gdDpp3LgxWVlZrnuNFy5cSEJCAu3btycxMZGCggKsVivDhg1jx44dV30v9Xo9TqeT\nli1bkpqa6rqf+5133uGNN94oxW9DiKpB8o7kHSE8QXKP5J6KQK5UeZmSziaUpEmTJjz22GM89NBD\nqKpK06ZNGTt2LCaTiRdeeMF1puT++++nf//+dOjQgSlTpvDJJ5+gKArTp0+nZs2aRbY5YcIEnnvu\nOfr06UPjxo0JDQ1FURSGDh3K0aNHeeCBB3A4HDzwwAOusyKXtGvXjri4OMaNG4fD4QCgU6dOPPbY\nY65tv/baa8yfP5+OHTsWOc6cnBz69++PXq/nzTffLHJGpkOHDixdupT77rsPk8lEdHQ0hw4dwmQy\n8cYbb/DMM8/gcDho0KAB//jHPzAajRw7doz+/ftTUFDAoEGDuOOOO/j555+v+N726NGDfv368ckn\nnzBjxgwmTpyI0+mkXr16kmBElSB5R/KOEJ4guUdyjzdRtD9fAxVVwtdff83atWv5xz/+gU7nfRcs\nZ8yYQd26dXn44Yc9HYoQopQk7wghPEFyjygP3veXJW7a6dOn+eCDDzh9+nSxe3m9wcyZM1m7di3d\nunXzdChCiFKSvCOE8ATJPaK8yJUqIYQQQgghhLgJcqVKCCGEEEIIIW6CFFVCCCGEEEIIcROkqBJC\nCCGEEEKImyBFlRBCCCGEEELcBCmqhBBCCCGEEOImSFElhBBCCCGEEDfh/wFbP5VhapWs5wAAAABJ\nRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x11fc05190>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plotando graficos do inicio do periodo\n",
    "# plotando graficos do inicio do periodo\n",
    "l_prices = np.arange(50., 151., 1.)\n",
    "my_option.compare_to_analytical_solutions(l_prices, d_param['f_time'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Curiosamente, a melhorar foi marginal. A implementação que fiz também se mostrou inadequada, uma vez que quando criei um grid com $100$ passos no ativo, demorou 4 minutos e meio para realizar todos os cálculos."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Conclusão\n",
    "\n",
    "Neste trabalho o método de diferenças finitas explícito foi comparado à precificação de instrumentos com solução analítica. De maneira geral, o método conseguiu aproximar bem o preço das opções e se mostrou bastante flexível, precisando de poucos ajustes para precificar cada instrumento. Apesar de não testado aqui, provavelmente a inclusão de não linearidades nos contratos também não exigiria muitos ajustes, como a utilização de parâmetros incertos, ou mesmo exercício antecipado.\n",
    "\n",
    "\n",
    "## 6. Últimas Considerações\n",
    "\n",
    "A decisão de usar classes no lugar de um array dificultou a implementação. A aplicação do método criando um objeto para cada nó do Grid também se mostrou muito lenta. Porém, foi interessante notar que o simples aumento da discretização do grid não melhorou tanto a aderência aos valores calculados pelas soluções analíticas. Talvez a mudança do formato do grid mostrasse melhores resultados."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "_Style notebook and change matplotlib defaults_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>\n",
       "    @font-face {\n",
       "        font-family: \"Computer Modern\";\n",
       "        src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunss.otf');\n",
       "    }\n",
       "    @font-face {\n",
       "        font-family: \"Computer Modern\";\n",
       "        font-weight: bold;\n",
       "        src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunsx.otf');\n",
       "    }\n",
       "    @font-face {\n",
       "        font-family: \"Computer Modern\";\n",
       "        font-style: oblique;\n",
       "        src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunsi.otf');\n",
       "    }\n",
       "    @font-face {\n",
       "        font-family: \"Computer Modern\";\n",
       "        font-weight: bold;\n",
       "        font-style: oblique;\n",
       "        src: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunso.otf');\n",
       "    }\n",
       "    div.cell{\n",
       "        width:800px;\n",
       "        margin-left:16% !important;\n",
       "        margin-right:auto;\n",
       "    }\n",
       "    h1 {\n",
       "        font-family: Helvetica, serif;\n",
       "    }\n",
       "    h4{\n",
       "        margin-top:12px;\n",
       "        margin-bottom: 3px;\n",
       "       }\n",
       "    div.text_cell_render{\n",
       "        font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n",
       "        line-height: 145%;\n",
       "        font-size: 130%;\n",
       "        width:800px;\n",
       "        margin-left:auto;\n",
       "        margin-right:auto;\n",
       "    }\n",
       "    .CodeMirror{\n",
       "            font-family: \"Source Code Pro\", source-code-pro,Consolas, monospace;\n",
       "    }\n",
       "    .prompt{\n",
       "        display: None;\n",
       "    }\n",
       "    .text_cell_render h5 {\n",
       "        font-weight: 300;\n",
       "        font-size: 22pt;\n",
       "        color: #4057A1;\n",
       "        font-style: italic;\n",
       "        margin-bottom: .5em;\n",
       "        margin-top: 0.5em;\n",
       "        display: block;\n",
       "    }\n",
       "\n",
       "    .warning{\n",
       "        color: rgb( 240, 20, 20 )\n",
       "        }\n",
       "</style>\n",
       "\n",
       "\n",
       "\n",
       "<style>\n",
       "    table {\n",
       "        overflow:hidden;\n",
       "        font-family: Computer Modern, \"Helvetica Neue\", Arial, Helvetica, Geneva, sans-serif;\n",
       "        font-size: 12px;\n",
       "        margin: 10px;\n",
       "        width: 480px;\n",
       "        text-align: left;\n",
       "        border-collapse: collapse;\n",
       "        border: 1px solid #d3d3d3;\n",
       "        -moz-border-radius:5px; FF1+;\n",
       "        -webkit-border-radius:5px; Saf3-4;\n",
       "        border-radius:5px;\n",
       "        -moz-box-shadow: 0 0 4px rgba(0, 0, 0, 0.01);\n",
       "    }\n",
       "    th\n",
       "    {\n",
       "        padding: 12px 17px 12px 17px;\n",
       "        font-weight: normal;\n",
       "        font-size: 14px;\n",
       "        border-bottom: 1px dashed #69c;\n",
       "    }\n",
       "\n",
       "    td\n",
       "    {\n",
       "        padding: 7px 17px 7px 17px;\n",
       "\n",
       "    }\n",
       "\n",
       "    tbody tr:hover th\n",
       "    {\n",
       "\n",
       "        background:  #E9E9E9;\n",
       "    }\n",
       "\n",
       "    tbody tr:hover td\n",
       "    {\n",
       "\n",
       "        background:  #E9E9E9;\n",
       "    }\n",
       "\n",
       "</style>\n",
       "\n",
       "<script>\n",
       "    MathJax.Hub.Config({\n",
       "                        TeX: {\n",
       "                           extensions: [\"AMSmath.js\"]\n",
       "                           },\n",
       "                tex2jax: {\n",
       "                    inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n",
       "                    displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n",
       "                },\n",
       "                displayAlign: 'center', // Change this to 'center' to center equations.\n",
       "                \"HTML-CSS\": {\n",
       "                    styles: {'.MathJax_Display': {\"margin\": 4}}\n",
       "                }\n",
       "        });\n",
       "</script>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#loading style sheet\n",
    "from IPython.core.display import HTML\n",
    "HTML(open('ipython_style.css').read())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "#changing matplotlib defaults\n",
    "%matplotlib inline\n",
    "import seaborn as sns\n",
    "sns.set_palette(\"deep\", desat=.6)\n",
    "sns.set_context(rc={\"figure.figsize\": (8, 4)})\n",
    "sns.set_style(\"whitegrid\")\n",
    "sns.set_palette(sns.color_palette(\"Set2\", 10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}