--- title: "Exercise 6: Data Wrangling Pt 2" output: html_notebook: toc: yes toc_float: yes --- # Join tables Import a dataset with some (fake) genetic information about Penguins: ```{r chunk01} library(readr) genetics_tbl <- read_csv("./data/penguin_genetic_diversity.csv") genetics_tbl ``` \ We can join these columns to the Palmer Penguins dataset: ```{r chunk02} library(palmerpenguins) library(dplyr) penguins %>% left_join(genetics_tbl, by = "species") %>% head() ``` # Reshape Data We begin by importing the January 2050 projected daily minimum and maximum temperature for Sacramento: ```{r chunk03} sac_temps_tbl <- read_csv("./data/sacramento_daily_temp_jan2050.csv") sac_temps_tbl %>% head() ``` \ Convert from a long to wide format: ```{r chunk04} library(tidyr) sac_temps_tbl %>% pivot_wider(names_from = clim_var, values_from = temp_f) %>% head() ``` \ # Compute Daily Temperature Rnage Compute the daily temperature range: ```{r chunk05} sac_temps_tbl %>% pivot_wider(names_from = clim_var, values_from = temp_f) %>% mutate(diurnal_range_f = tasmax - tasmin) %>% head() ```