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High resolution biology

* |Immunology )A\.Developmental biology

* Neurology * Oncology  Stem cell biology
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High resolution biology
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Zhu, etc., Nature Methods, 2020, https://www.nature.com/articles/s41592-019-0691-5
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Designing Experiments

Beginning with the question of interest ( and working backwards )

* The final step of an analysis is comparisons between sample/conditions,
which means the application of a model to each gene in your dataset.

Traditional statistical considerations and basic principals of statistical design of
experiments apply.

* Control for effects of outside variables, avoid/consider possible biases, avoid
confounding variables in sample preparation.

* Randomization of samples, plots, etc.
* Replication is essential (triplicates are THE minimum)

* You should know your final (DE) model and comparison contrasts before
beginning your experiment.
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How many cells to target?

* The number of cells to target can be estimated based on:
* The expected heterogeneity of all cells in a sample
* The minimum frequency expected of a particular cell type within the sample, and
* The minimum number of cells of each type desired in the resulting data set.

* With this information, a negative binomial distribution can be used to
estimate the number of cells likely to capture at least a set number of cells
from your rarest cell type.

* For example, if we sequence a mixture of ~10 cell types where the
frequency of the rarest cell type is ~0.03, then we would need to sequence
~2250 cells to have a 90% chance of capturing at least 50 of those rare
cells.
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http://www.satijalab.org/howmanycells

General rules for preparing samples

* Prepare more samples then you are going to need, i.e. expect some will be of
poor quality, or fail

* Preparation stages should occur across all samples at the same time (or as
close as possible) and by the same person

* Spend time practicing a new technique to produce the highest quality product
you can, reliably

* |If cells clumps or cell debris are observed, filter cells using a cell strainer with
an appropriate pore size

* Determine the cell concentration using a Countess® Il Automated Cell Counter
or other cell counting device

* Initial cell count depends on the target, however, expect at least 50% loss in
the final stages and loss during cleanup
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Biological Replicate 2 (log10(UMIs))

Pearson correlation: 0.968

] R?%:0.938

Biological Replicate 1 (log10(UMils))

Technical Replicate 2 (log10(UMIls))

Pearson correlation: 0.995
R2 0.991

1 2 3 4 5

Pearson correlation: 0.999
R% 0.999

Technical Replicate 2 (log10(UMIs))

Technical Replicate 1 (log10(UMIs))

Pearson correlation: 0.999
R20.999

1 2 3 4 5

Technical Replicate 2 (Channel 8) (log10(UMIs))

Technical Replicate 1 (log10(UMIs)) Technical Replicate 1 (Channel 1) (log10(UMIs))
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https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_GeneExpressionExperiments_RevA_.pdf




g MULTIseq - https://www.nature.com/articles/s41592-019-0433-8
. . . https://satijalab.org/costpercell
O Multiplexing — cell hashin
U a MULTI-seq design € Cell types d Sample IDs € —— TGFBI enrichment ——
Hybrid Aflaarrsss HEK @LEP ®MEP ®HEK ® HMEC @ Doublet ® HMEC
Ol— . ® HMEC + TGF-p
i 5T I 1 Ambiguous ® HMEC +TGF-f  ® Negative +1GF
Ry
(@) 2
E Barcode- & o g
D d c
LMO Ao g u <
[77] @D w
L [e} p - [G]
3 =
O Ri= ;‘51952 2
o cMo
S Re= ,é’\ul(vm R, = R, = cholesterol
* mum b Hekaos
O Fragmentation
O 1. Pool 1.RT and library prep
© mmmm . 2 and library prep.
HMEC 2. GEM 2. GEM 3
m isolation clean-up Transcript nas
cDNA
O J p— —
3.cDNA )
HMEC + TGF-§ amplification Library prep
— NGS space
m Emulsion droplet Sampgi‘t/:arcode
f snRNA-seq classification accuracy g Sample IDs: time points h ——— T-cell activation time point markers
® Jurkat ® HEK @ MEF 0 30 2h 6h i
@ Doublet @ Negative 15’ 60" 4h ®24h %
100 e
0 : -
s N4
g REINES 66 &30
‘D@
E-S 50 o g So :
° g w §, - 4
O i ] 22229
ea 25 = &}
& Oie—m————— < il > O £B
L=l 22
Doublet HEK Jurkat MEF o 0
Cell type (RNA) o 15 30 1h 2h 4h 6h 24h


https://www.nature.com/articles/s41592-019-0433-8
https://satijalab.org/costpercell

In the first round of barcoding, fixed cell samples are distributed The third-round barcode is appended with another
into 48 wells, and cDNA is generated with an in-cell reverse round of in-cell ligation.
transcription (RT) reaction using well-specific barcoded primers.

Cells from sample

(Ligation)

Multiplexing — o N
cell hashing =

I Cells from each well are pooled back together.

* Parse Biosciences o l '

Pool

T After three rounds of barcoding, the cells are pooled and split into
\ 8 distinct populations we term sublibraries. The user can choose
N the number of cells in each sublibrary to control the depth of
S sequencing. Cells will not be pooled again after this step. After this

final split cells are lysed and the barcoded cDNA is isolated. A
fourth sublibrary-specific barcode is introduced by PCR to each
cDNA molecule.

Cells are then distributed into 96 wells, and an in-cell ligation

reaction appends a second well-specific barcode to the cDNA.

o Split
Spllt / \ (Lysis + PCR) / / l
(Ligation) izgs l \ > ' ' / VJ

J

After sequencing, each single cell transcriptome is assembled by
combining reads containing the same four-barcode combination.

Barcodes
e/-\ Genes 123 4

Pool /I\ Sequence [coeci —mmmm Cell1
A = ©
r,/_/ . [
: > (d:lfg —m——— Cell2
Gene E  e—mmam-am—--
Source: Parse Biosciences &t —==== celts
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Sequencing Depth

* Coverage is determined differently for “Counting” based experiments
(RNAseq, amplicons, etc.) where an expected number of reads per cell is
typically more suitable.

* The first and most basic question is how many reads per cell will | get
Factors to consider are (per lane):
1. Number of reads being sequenced
2. Number of cells being sequenced (estimates)
3. Expected percentage of usable data

reads reads.sequenced * 0.8

cell cells.pooled

* Read length, or SE vs PE, does not factor into sequencing depth.
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Sequencing - Characterization of transcripts,
or differential gene expression

Read length needed depends on likelihood of mapping unigueness, but generally longer
is better and paired-end is better than single-end (except when its not) ( 75bp or greater
is best ).

Complexity of sample: the higher the complexity, the higher the depth.

Interest in detecting genes expressed at low levels: the lower the level, the higher the
depth.

The fold change you want to be able to detect ( smaller fold change requires more
replicates and higher depth).

Detection of novel transcripts, or quantification of isoforms (full-length libraries) requires
>> sequencing depth. [NON 3’ based methods]

The amount of sequencing needed for a given experiment is best determined by
the goals of the experiment and the nature of the sample.

Median Genes
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Read length matters (10x slide)
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Validated on
. * Novaseq
Sequencing, V3 . Hiseq 4000
* HiSeq 2500 Rapid Run

] * NextSeq
Recommendation « MiSeq

* 20,000* raw reads per cell is the recommended sequencing depth for ‘typical’ samples.

* Given variability in cell counting/loading, extra sequencing may be required if the cell count is higher than
anticipated.

*Adjust sequencing depth for the required performance or application. The Sequencing Saturation metric and

curve in the Cell Ranger run summary can be used to optimize sequencing depth for specific sample types.

sequencing run, with 3 reads, V3 kits

Sequence Read Minimum Length Read Description

Read 1 28bp (16bp bc, 12bp UMI) barcode and UMI
17 Index 8bp Sample Index Read
Read?2 100bp Transcript Tag

**Shorter transcript reads may lead to reduced transcriptome alignment rates. Cell barcode,
UMI and Sample index reads must not be shorter than indicated. Any read can be longer than

recommended.
@ full capacity 10,000 cells per sample and 20K reads per cell = 200M reads or ~0.5 lanes/sample
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Cost Estimation

* Cell Isolation
e Library preparation (Per sample/pool)
e Sequencing (Number of lanes)

* Bioinformatics

General rule is to estimate the same dollar amount as data generation, i.e.
double your budget

http://dnatech.genomecenter.ucdavis.edu/prices/

https://bioinformatics.ucdavis.edu/rates
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Be Consistent

BE CONSISTENT ACROSS ALL SAMPLES!!!
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Single Cell RNASeq Analysis

Fragment/Read QC Network

Cell QC

Preprocessing Analysis

Extract Read Elements

Preprocess Filter Cells

Differential
Expression

Alignment Normalization
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TMM
CPM

Map to
Genome/Transcriptome

Confounders

Mapping QC Clustering

Amount of reads mapping to rRNA/tRNAs
Proportion of uniquely mapping reads Batch Effects
Multi-mappers, UMI, Etc.




Genomics and Bioinformatics

Following data science principles, 2 stages in bioinformatics
e Data reduction

Sequence data (raw data) to summarized form.

* Command line, shell scripting, and programming.
* Requires an understanding of the technology, molecular biology.

* Removing technical noise from data.

* Data analysis

Summarized data to biological interpretation
* R/Python statistical programming
* Requires an understanding of the biological question, statistics.
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Summary:
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UMAP 1

Example 1: multiplex 11 samples, >5K cells
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UMAP 1

multiplex 6 samples, >100K cells

Example 2
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