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High resolution biology

Diversity DynamicsX

• Developmental biology
• Stem cell biology

• Immunology
• Neurology • Oncology



Single cell technologies

Svensson, etc., 2018, Nature Protocols https://www.nature.com/articles/nprot.2017.149



Single cell technologies

Svensson, etc., 2018, Nature Protocols https://www.nature.com/articles/nprot.2017.149



High resolution biology

Zhu, etc., Nature Methods, 2020, https://www.nature.com/articles/s41592-019-0691-5



High resolution 
biology

• https://genomebiology.biome
dcentral.com/articles/10.1186/
s13059-021-02519-4



Designing Experiments

Beginning with the question of interest ( and working backwards )
• The final step of an analysis is comparisons between sample/conditions, 

which means the application of a model to each gene in your dataset.
Traditional statistical considerations and basic principals of statistical design of 
experiments apply.
• Control for effects of outside variables, avoid/consider possible biases, avoid 

confounding variables in sample preparation.
• Randomization of samples, plots, etc.
• Replication is essential (triplicates are THE minimum)

• You should know your final (DE) model and comparison contrasts before 
beginning your experiment.



How many cells to target?

• The number of cells to target can be estimated based on:
• The expected heterogeneity of all cells in a sample
• The minimum frequency expected of a particular cell type within the sample, and
• The minimum number of cells of each type desired in the resulting data set. 

• With this information, a negative binomial distribution can be used to 
estimate the number of cells likely to capture at least a set number of cells 
from your rarest cell type.
• For example, if we sequence a mixture of ∼10 cell types where the 

frequency of the rarest cell type is ∼0.03, then we would need to sequence 
∼2250 cells to have a 90% chance of capturing at least 50 of those rare 
cells.

www.satijalab.org/howmanycells

http://www.satijalab.org/howmanycells


General rules for preparing samples
• Prepare more samples then you are going to need, i.e. expect some will be of 

poor quality, or fail 
• Preparation stages should occur across all samples at the same time (or as 

close as possible) and by the same person
• Spend time practicing a new technique to produce the highest quality product 

you can, reliably
• If cells clumps or cell debris are observed, filter cells using a cell strainer with 

an appropriate pore size
• Determine the cell concentration using a Countess® II Automated Cell Counter 

or other cell counting device
• Initial cell count depends on the target, however, expect at least 50% loss in 

the final stages and loss during cleanup
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Figure 1. Gene expression variation 
between biological replicates.

A. Scatter plot showing the 
correlation of average gene 
expression levels between the 
replicates on a log10 scale.

B. Merged (left panel) and split 
(right panel) tSNE clustering for 
the biological replicates.

C. Expression profiles for known 
neuronal marker genes Fut9 
(Inhibitory Neurons), Stmn2 
(Excitatory Neurons), Aldoc 
(Astrocytes), and Slc1a2 (Radial 
Glia).
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Figure 2. Gene expression variation 
when the same library is sequenced 
on two separate flowcells.

A. Scatter plot showing the 
correlation of average gene 
expression levels between the 
replicates on a log10 scale.

B. Merged (left panel) and split 
(right panel) tSNE clustering for 
the technical replicates.

C. Expression profiles for known 
neuronal marker genes Fut9 
(Inhibitory Neurons), Stmn2 
(Excitatory Neurons), Aldoc 
(Astrocytes), and Slc1a2 (Radial 
Glia).
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Figure 3. Gene expression variation 
when the same sample is run on 
two separate chips.

A. Scatter plot showing the 
correlation of average gene 
expression levels between the 
replicates on a log10 scale.

B. Merged (left panel) and split 
(right panel) tSNE clustering for 
the technical replicates.

C. Expression profiles for known 
neuronal marker genes Fut9 
(Inhibitory Neurons), Stmn2 
(Excitatory Neurons), Aldoc 
(Astrocytes), and Slc1a2 (Radial 
Glia).
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Figure 4. Gene expression variation 
when the same sample is run on 
di!erent sample input wells of the 
same chip.

A. Scatter plot showing the 
correlation of average gene 
expression levels between 
wells 1 and 8 on a log10 scale.

B. Merged (left panel) and split 
(right panel) tSNE clustering 
for the 8 technical replicates.

C. Expression profiles for known 
neuronal marker genes Fut9 
(Inhibitory Neurons), Stmn2 
(Excitatory Neurons), Aldoc 
(Astrocytes), and Slc1a2 
(Radial Glia).
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https://cdn.10xgenomics.com/image/upload/v1660261285/support-documents/CG000170_TechNote_BiologicalandTechnicalVariationinSingleCell3_GeneExpressionExperiments_RevA_.pdf



Multiplexing – cell hashing
MULTIseq - https://www.nature.com/articles/s41592-019-0433-8

https://satijalab.org/costpercell

https://www.nature.com/articles/s41592-019-0433-8
https://satijalab.org/costpercell


Multiplexing –
cell hashing
• Parse Biosciences



Sequencing Depth

• Coverage is determined differently for “Counting” based experiments 
(RNAseq, amplicons, etc.) where an expected number of reads per cell is 
typically more suitable.
• The first and most basic question is how many reads per cell will I get

Factors to consider are (per lane): 
1. Number of reads being sequenced
2. Number of cells being sequenced (estimates)
3. Expected percentage of usable data

𝑟𝑒𝑎𝑑𝑠
𝑐𝑒𝑙𝑙 =

𝑟𝑒𝑎𝑑𝑠. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑑 ∗ 0.8
𝑐𝑒𝑙𝑙𝑠. 𝑝𝑜𝑜𝑙𝑒𝑑

• Read length, or SE vs PE, does not factor into sequencing depth.



Sequencing - Characterization of transcripts, 
or differential gene expression

• Read length needed depends on likelihood of mapping uniqueness, but generally longer 
is better and paired-end is better than single-end (except when its not) ( 75bp or greater 
is best ).

• Complexity of sample: the higher the complexity, the higher the depth.
• Interest in detecting genes expressed at low levels: the lower the level, the higher the  

depth. 
• The fold change you want to be able to detect ( smaller fold change requires more 

replicates and higher depth).
• Detection of novel transcripts, or quantification of isoforms (full-length libraries) requires 

>> sequencing depth. [NON 3’ based methods]

The amount of sequencing needed for a given experiment is best determined by 
the goals of the experiment and the nature of the sample.



Read length matters (10x slide)



Doublet detection

Xi, etc., Cell Systems, 2021, 
https://www.sciencedirect.com/science/article/
pii/S2405471220304592



Sequencing, V3

Sequence Read Minimum Length Read Description

Read 1 28bp (16bp bc, 12bp UMI) barcode and UMI

I7 Index 8bp Sample Index Read

Read2 100bp Transcript Tag

Validated on 
• Novaseq
• HiSeq 4000
• HiSeq 2500 Rapid Run
• NextSeq
• MiSeq

sequencing run, with 3 reads, V3 kits

Recommendation
• 20,000* raw reads per cell is the recommended sequencing depth for ‘typical’ samples. 
• Given variability in cell counting/loading, extra sequencing may be required if the cell count is higher than 

anticipated. 
*Adjust sequencing depth for the required performance or application. The Sequencing Saturation metric and 
curve in the Cell Ranger run summary can be used to optimize sequencing depth for specific sample types.

@ full capacity 10,000 cells per sample and 20K reads per cell = 200M reads or ~0.5 lanes/sample

**Shorter transcript reads may lead to reduced transcriptome alignment rates. Cell barcode, 
UMI and Sample index reads must not be shorter than indicated. Any read can be longer than 
recommended.



Cost Estimation

• Cell Isolation
• Library preparation (Per sample/pool)
• Sequencing (Number of lanes)
• Bioinformatics

General rule is to estimate the same dollar amount as data generation, i.e. 
double your budget

http://dnatech.genomecenter.ucdavis.edu/prices/
https://bioinformatics.ucdavis.edu/rates

http://dnatech.genomecenter.ucdavis.edu/prices/
https://bioinformatics.ucdavis.edu/rates


Be Consistent

BE CONSISTENT ACROSS ALL SAMPLES!!! 



Single Cell RNASeq Analysis



Genomics and Bioinformatics

Following data science principles, 2 stages in bioinformatics
• Data reduction

Sequence data (raw data) to summarized form.
* Command line, shell scripting, and programming.
* Requires an understanding of the technology, molecular biology.
* Removing technical noise from data.

• Data analysis
Summarized data to biological interpretation
* R/Python statistical programming
* Requires an understanding of the biological question, statistics.



Summary:

Data science (Bioinformatics) is both a science and an 
art.

Spend the time (and money) planning and producing 
good quality, accurate and sufficient data.

Get to know to the data, develop and test 
expectations, explore and identify patterns.

Result, spend much less time (and less money) 
extracting biological significance and results with 
fewer failures and reproducible research. 



Example 1: multiplex 11 samples, >5K cells



Example 2: multiplex 6 samples, >100K cells


