--- title: Biostat 216 Homework 3 subtitle: 'Due Oct 23 @ 11:59pm' format: html: theme: cosmo embed-resources: true number-sections: true toc: true toc-depth: 4 toc-location: left code-fold: false jupyter: jupytext: formats: 'ipynb,qmd' text_representation: extension: .qmd format_name: quarto format_version: '1.0' jupytext_version: 1.15.2 kernelspec: display_name: Julia 1.9.3 language: julia name: julia-1.9 --- Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn. ## BV exercises 7.12, 7.13, 8.4, 8.5, 8.6, 10.9 (also describe $\mathbf{C}=\mathbf{A} \mathbf{D}$), 10.11, 10.19, 10.23, 10.36, 10.42, 10.44 ## Q1. Computational complexity of matrix multiplication Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$. Consider four ways of computing the matrix product $\mathbf{C} = \mathbf{A} \mathbf{B}$. Calculate the flop count in each of these four algorithms. 1. (Inner products) Evaluate entries $c_{ij} = \mathbf{a}_i' \mathbf{b}_j$ for all $i, j$. 2. (Matrix vector products) Evaluate columns $\mathbf{c}_j = \mathbf{A} \mathbf{b}_j$ for all $j$. 3. (Vector matrix products) Evaluate rows $\mathbf{c}_i' = \mathbf{a}_i' \mathbf{B}$ for all $i$. 4. (Vector outer products) Evaluate $\mathbf{C}$ as the sum of outer prodcuts $\mathbf{a}_1 \mathbf{b}_1' + \cdots + \mathbf{a}_n \mathbf{b}_n'$. ## Q2. Show the following three claims. 1. If $\mathcal{S}_1$ and $\mathcal{S}_2$ are two vector spaces of same order, then their **intersection** $\mathcal{S}_1 \cap \mathcal{S}_2$ is a vector space. 2. If $\mathcal{S}_1$ and $\mathcal{S}_2$ are two vector spaces of same order, then their **union** $\mathcal{S}_1 \cup \mathcal{S}_2$ is not necessarily a vector space. 3. The **span** of a set of $\mathbf{x}_1,\ldots,\mathbf{x}_k \in \mathbb{R}^n$, defined as the set of all possible linear combinations of $\mathbf{x}_i$s $$ \text{span} \{\mathbf{x}_1,\ldots,\mathbf{x}_k\} = \left\{\sum_{i=1}^k \alpha_i \mathbf{x}_i: \alpha_i \in \mathbb{R} \right\}, $$ is a vector space in $\mathbb{R}^n$. ## Q3. Let $$ \mathbf{A}_1 = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ 2 & 6 & -4 \end{pmatrix}, \quad \mathbf{A}_2 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}. $$ 1. Find the matrices $\mathbf{C}_1$ and $\mathbf{C}_2$ containing independent columns of $\mathbf{A}_1$ and $\mathbf{A}_2$. 2. Find a rank factorization $\mathbf{A} = \mathbf{C} \mathbf{R}$ of each of $\mathbf{A}_1$ and $\mathbf{A}_2$. 3. Produce a basis for the column spaces of $\mathbf{A}_1$ and $\mathbf{A}_2$. What are the dimensions of those column spaces (the number of independent vectors)? What are the ranks of $\mathbf{A}_1$ and $\mathbf{A}_2$? How many independent rows in $\mathbf{A}_1$ and $\mathbf{A}_2$? ## Q4. How is the null space of $\mathbf{C}$ related to the nullspaces of $\mathbf{A}$ and $\mathbf{B}$, if $$ \mathbf{C} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}. $$ ## Q5. In this exercise, we show the fact $$ \text{rank}(\mathbf{A} + \mathbf{B}) \le \text{rank}(\mathbf{A}) + \text{rank}(\mathbf{B}) $$ for any two matrices $\mathbf{A}$ and $\mathbf{B}$ of same size in steps. 1. Show that the sum of two vector spaces $\mathcal{S}_1$ and $\mathcal{S}_2$ of same order $$ \mathcal{S}_1 + \mathcal{S}_2 = \{\mathbf{x}_1 + \mathbf{x}_2: \mathbf{x}_1 \in \mathcal{S}_1, \mathbf{x}_2 \in \mathcal{S}_2\} $$ is a vector space. 2. Show that $\text{dim}(\mathcal{S}_1 + \mathcal{S}_2) \le \text{dim}(\mathcal{S}_1) + \text{dim}(\mathcal{S}_2)$. 3. Show that $\mathcal{C}(\mathbf{A} + \mathbf{B}) \subseteq \mathcal{C}(\mathbf{A}) + \mathcal{C}(\mathbf{B})$. 4. Conclude that $\text{rank}(\mathbf{A} + \mathbf{B}) \le \text{rank}(\mathbf{A}) + \text{rank}(\mathbf{B})$.