{ "cells": [ { "cell_type": "raw", "metadata": {}, "source": [ "---\n", "title: Biostat 216 Homework 5\n", "subtitle: 'Due Nov 17 @ 11:59pm'\n", "format:\n", " html:\n", " theme: cosmo\n", " embed-resources: true\n", " number-sections: false\n", " toc: true\n", " toc-depth: 4\n", " toc-location: left\n", " code-fold: false\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## BV exercises\n", "\n", "BV 11.5, 11.12, 11.18 11.28" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q1\n", "\n", "Let $\\mathbf{A} \\in \\mathbb{R}^{n \\times n}$ be a symmetric matrix. Prove that $\\langle \\mathbf{A} \\mathbf{x}, \\mathbf{y} \\rangle = \\langle \\mathbf{x}, \\mathbf{A} \\mathbf{y} \\rangle$ for all $\\mathbf{x}, \\mathbf{y} \\in \\mathbb{R}^n$. Give an example that it is not necessary true if $\\mathbf{A}$ is not symmetric." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q2 \n", "\n", "Find the orthogonal projector into the plane spanned by the vectors $\\begin{pmatrix} 1 \\\\ 1 \\\\ 0 \\end{pmatrix}$ and $\\begin{pmatrix} -2 \\\\ 2 \\\\ 1 \\end{pmatrix}$. \n", "\n", "Find the orthogonal projection of the point $\\mathbf{1}_3$ into the plane spanned by the vectors $\\begin{pmatrix} 1 \\\\ 1 \\\\ 0 \\end{pmatrix}$ and $\\begin{pmatrix} -2 \\\\ 2 \\\\ 1 \\end{pmatrix}$. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q3 \n", "\n", "Matrices that satisfy $\\mathbf{A}' \\mathbf{A} = \\mathbf{A} \\mathbf{A}'$ are said to be _normal_. Give an example of asymmetric (not symmetric), normal matrix. If $\\mathbf{A}$ is normal, then prove that every vector in $\\mathcal{C}(\\mathbf{A})$ is orthogonal to every vector in $\\mathcal{N}(\\mathbf{A})$. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q4 \n", "\n", "Let $\\mathbf{A}$ be a symmetric matrix. Show that the system $\\mathbf{A} \\mathbf{x} = \\mathbf{b}$ has a solution if and only if $\\mathbf{b}$ is orthogonal to $\\mathcal{N}(\\mathbf{A})$. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q5 \n", "\n", "Determinant.\n", "\n", "1. Find the determinant of the following two matrices without doing any computations:\n", "$$\n", "\\begin{pmatrix}\n", "0 & 0 & 1\\\\\n", "0 & 1 & 0 \\\\\n", "1 & 0 & 0\n", "\\end{pmatrix}, \\quad \\begin{pmatrix}\n", "0 & 0 & 1 & 0 \\\\\n", "0 & 1 & 0 & 0 \\\\\n", "1 & 0 & 0 & 0 \\\\\n", "0 & 0 & 0 & 1\n", "\\end{pmatrix}.\n", "$$ \n", "\n", "2. Let $\\mathbf{A} \\in \\mathbb{R}^{5 \\times 5}$ with $\\det(\\mathbf{A}) = -3$. Find $\\det(\\mathbf{A}^3)$, $\\det(\\mathbf{A}^{-1})$, and $\\det(2\\mathbf{A})$. \n", " \n", "3. Find the determinant of the matrix\n", "$\\begin{pmatrix}\n", "0 & 0 & 1 \\\\\n", "2 & 3 & 4 \\\\\n", "0 & 5 & 6\n", "\\end{pmatrix}$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q6\n", "\n", "Prove the following facts about triangular and orthogonal matrices.\n", "\n", "1. The product of two upper (lower) triangular matrices is upper (lower) triangular.\n", " \n", "2. The inverse of an upper (lower) triangular matrix is upper (lower) triangular.\n", " \n", "3. The product of two unit upper (lower) triangular matrices is unit upper (lower) triangular.\n", " \n", "4. The inverse of a unit upper (lower) triangular matrix is unit upper (lower) triangular.\n", " \n", "5. An orthogonal upper (lower) triangular matrix is diagonal." ] } ], "metadata": { "@webio": { "lastCommId": null, "lastKernelId": null }, "hide_input": false, "jupytext": { "formats": "ipynb,qmd" }, "kernelspec": { "display_name": "Julia 1.9.3", "language": "julia", "name": "julia-1.9" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.9.3" }, "toc": { "colors": { "hover_highlight": "#DAA520", "running_highlight": "#FF0000", "selected_highlight": "#FFD700" }, "moveMenuLeft": true, "nav_menu": { "height": "87px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "skip_h1_title": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 4 }