--- title: Biostat 216 Homework 1 subtitle: 'Due Oct 4 @ 11:59pm' format: html: theme: cosmo embed-resources: true number-sections: true toc: true toc-depth: 4 toc-location: left code-fold: false jupyter: jupytext: formats: 'ipynb,qmd' text_representation: extension: .qmd format_name: quarto format_version: '1.0' jupytext_version: 1.15.2 kernelspec: display_name: Julia 1.10.5 language: julia name: julia-1.10 --- Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn. ## Q1. Average and norm Use the Cauchy-Schwarz inequality to prove that $$ - \frac{1}{\sqrt{n}} \|\mathbf{x}\| \le \frac{1}{n} \sum_{i=1}^n x_i \le \frac{1}{\sqrt{n}} \|\mathbf{x}\| $$ for any $\mathbf{x} \in \mathbb{R}^n$. In other words, $-\operatorname{rms}(\mathbf{x}) \le \operatorname{avg}(\mathbf{x}) \le \operatorname{rms}(\mathbf{x})$. What are the conditions on $\mathbf{x}$ to have equality in the upper bound? When do we have equality in the lower bound? ## Q2. AM-HM inequality Use the Cauchy-Schwartz inequality to prove that $$ \frac{1}{n} \sum_{i=1}^n x_i \ge \left( \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i} \right)^{-1} $$ for any $\mathbf{x} \in \mathbb{R}^n$ with positive entries $x_i$. The left hand side is called the arithmetic mean (AM) and the right hand side is called the harmonic mean (HM). You may wonder what can be a practical use of such a simple inequality. See this [paper](http://hua-zhou.github.io/media/pdf/LangeZhou14GP.pdf), which uses the AM-HM inequality to derive a class of optimization algorithms for geometric and signomial programming. ## Q3. Bias-variance tradeoff Prove the formula $$ \operatorname{avg}(\mathbf{x})^2 + \operatorname{std}(\mathbf{x})^2 = \operatorname{rms}(\mathbf{x})^2 $$ using the vector notation and do BV 3.15. ## BV exercises 1.7, 1.9, 1.13, 1.16, 1.20, 3.4, 3.5, 3.12.