--- title: Biostat 216 Homework 2 subtitle: 'Due Oct 11 @ 11:59pm' format: html: theme: cosmo embed-resources: true number-sections: true toc: true toc-depth: 4 toc-location: left code-fold: false jupyter: jupytext: formats: 'ipynb,qmd' text_representation: extension: .qmd format_name: quarto format_version: '1.0' jupytext_version: 1.15.2 kernelspec: display_name: Julia 1.10.5 language: julia name: julia-1.10 --- Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn. ## Q1. Sub-multiplicity of Frobenius norm Show the matrix norm property $$ \|\mathbf{A} \mathbf{B}\|_{\text{F}} \le \|\mathbf{A}\|_{\text{F}} \|\mathbf{B}\|_{\text{F}} $$ for the Frobenius norm. Hint: Cauchy-Schwartz inequality. BV exercise 6.14 is a special case of this result. ## Q2. Induced matrix norm For any vector norm $\|\mathbf{x}\|$ on $\mathbb{R}^m$ and $\mathbb{R}^n$, there is an induced matrix norm $\|\mathbf{A}\|$ on $m \times n$ matrices defined by $$ \|\mathbf{A}\| = \sup_{\mathbf{x} \ne \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} = \sup_{\|\mathbf{x}\|=1} \|\mathbf{A} \mathbf{x}\|. $$ 1. Show the second equality in the above equation. 2. Show the four properties (positive definiteness, homogeneity, triangle inequality, sub-multiplicity) for the induced matrix norm. 3. Show that the Frobenius norm is different from the induced matrix-2 norm. ## BV exercises 5.1, 5.2, 5.4, 5.6, 5.8, 5.9, 6.3, 6.11, 6.17, 6.21, 6.22