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Outline for the Talk

 What was going on before
e What’s the current situation

 What’s planned for exascale
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 Software for Linear Algebra Targeting Exascale
Focused on Dense Linear Algebra Problems

¢ Linear systems of equations Ax=Db

¢ Linear least squares min || b - Ax ||,
¢ Singular value decomposition (SVD) A=0zV!

¢ Eigenvalue value problems (EVP) Ax = Ax

¢ Dense (square, rectangular)

¢« Band
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But first, let’s go back in time.




Level 1
BLAS
started (74)

7475 ‘76 ‘77 ‘78

Linpack Linpack

Project released
Started (78)

(75)




Level 1 e 1974: Effort to standardize Basic

o , ACM SIGNUM Newsletter
started (74 Linear Algebra Subprograms Volume 8 lssue 4, October 1973
e Basic LA vector operations |
e Referred to now as Level 1 BLAS Published in:
e 1975: LINPACK Project started ‘ﬂéﬂ"}ﬁﬂw Newsletter srchive
 Effort to produce portable, efficient =~ ACM New Yark, NY, USA

table of contents ISSN:0163-5778

linear algebra software for dense

74775 76 77 78 79 matrlx CompUtatlonS' IMPROVING THE EFFICIENCY OF PORTABLE
5 TWARE FOR LINEAR ALGEBRA
* 1976: Vector computers in use R. 7. Hanson

{Washington State Univ.)
F. T. Krogh

* 1977: DEC VAX system in common e T Lawson

Linpack (Tet Propulsion Lab)

‘ Linpack
Project released u S e
Started (78)
(75)

In algorithms for linear algebraic computations
there are a fairly small number of basic operations
which are generally responsible for a significant
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S a Result o ,
Accidental Benchmarker

- Appendix B of the Linpack Users’ Guide
Designed to help users extrapolate execution

ecaime an

r
Linpack software package ==f== .
SRR P e R e
L0 1/3 100%%3 + 100%%2
N MATLAB Trivia questlon What does the function dongarra(i) do? )
TITIC UNLT
ﬁf‘ t "'"'"-"I_Tacility Jj H=100 micro- Computer Type
EBCE. E8CE.
KCAR 1405 049 0.14 CRAY-] 5
LASL Y4 148 0.43  CDC 7600 g
NCAR 3,5%.192 0.56 CRAY-1 S
LAEL 327 210 0.61 coc. 7¥e00 5
Argunne .3 297 0.86 IBM 3707195 D
RCAR A8l (359 1.05 CDC: 7600 5
Arganme A3 ? .388  1.33 = 1IBM 3033 b}
HNASA Langley  1.50 489 1.42 CDC Cyber 175 5
T. I11. Urbana \%& ,506 1.47 CDC Cyber 175 5
LLL 14,554 1.61 CDC 7600 s
SLAC ing .579 1.69 IBM 370/1¢68 D
Michipgan j©9.631 1.84 amdahl 470/Vé D
Toronto W73 690 2.59  IBM 370/165 D
Northweatern ,4?;1.&4 4.20 - CDC 6600 5
Texas +5(¢ 1.93% 5.63 CDC 6600 s
China Lake +9541.95% 5.69 Univae 1110 5
Yale 52,59  7.53 TDEC KL-200 TS
Bell Labs 497 3.456 10.1 Honeywell 6080 3
Wisconsin Eﬂ'?.’i.&g‘ 10.1 . Uniwvae 1110 ]
Iowa State ; -2 S Itel AS/5 modI "D
U, I11. Fhicagn gs 10 119 IBM 370,158 i
Furdue H 5. 69 16.6 CDC 6500 S
U, C, 8an chgoﬂﬁrﬂB 1 38.2 Burroughs 6700 8
Yale- (W@l7.1¥F 49.9 DEC Ka-10 S

* TIME(L00)

V
“F
¥
v
H

CFT, Assembly BLAS
FIN, Asgembly BLAS

Ext. 4.6

CHAT, He optimize
H Ext., Fast mult.
H

H Ext. ,
FTH
RN

20

Fast mult.

H
F40

= (LCO/75)#*3 SGEFA(75) + (100/75)%*2 SGESL(75)




The Standard Factorization LINPACK

1970’s HPC of the Day

Vector Architecture

bbbttt

+.

A B

Next Step

Schur

Divide by
Pivot
row

Factor column
with Level 1
BLAS

complement

update

(Rank 1 update)

Main points

Factorization column (zero) mostly sequential due to memory bottleneck

Level 1 BLAS

Divide pivot row has little parallelism

but

OK on machines with excess memory bandwidth

Too much data movement per step



Why Higher Level BLAS?

1 9 8 4 -— 1 9 9 O ' can iny do u HWE-EIH 30 b MHc, 0G0 Ml Peak-
arithmetic on data —  ——tevsl3BLAS

at the top of the

e Level 3 BLAS standardization started s

+ Higher level BLAS e
lets us do this i ' '

 Level 2 BLAS standard published e

BLAG M am ary |Flaps Flopsi

Roalz M oamary 'IIII'. " De?e’ﬂpment Of

R sl o

o “Attack of the Killer Micros”, Brooks @ SCO0 it [\ hooxes aigorithms
Bk ™ ™ performance »
e Cache based & SMP machines
* Blocked partitioned algorithms was the way | om——_
to go g |
e Reduce data movement; today’s buzzword
“Communication avoiding”
¢ /f
.g : 7 /;féf/;’ ?f”{é féy
2 7 . .
Factor panel Triangular Schur complement  Next Step -
(Level 1,2 BLAS) Update update Lefi-looking L1 Right-looking I.U Crout LU

(Level 3 BLAS) (Level 3 BLAS)



Level 1 :
BLAS -
started (74 L Pl
(74) 11/780 9
(77)
: Q
Linpack o
Project d
Started
(75)
O0p

IEEE 754
standard
(85)
Netlib
MathWorks
Started (84)
10 S S S oI 3 36 3 3
D ape h
ed
0 = d U
00Dp APA
. O

What the inverse of the LAPACK matrix?

Ir'r'r'r'r'r'
PRPBBBDP

P
P
P
P
-P
P

b- -0 -5 - - -
0000600

I o« ScaLAPACK started

-
3 20 F '_"I Il.
Lo} i =
4
. 3
£
0 0/ 0 ofa 0 0Q 00
Co:mpletecl: partof U
N g /}A(ib:end, ibzend)
i < oy
b g e A(ib:end, end+1:n)
b LL™ g
end|. ... A—— b
2
=9 —
E 2
@
~ 2
7 | Alend+1:n, end+1:n)
o
A A =
&
ed <

SCALAFALK Users ouioe

e LAPACK Published T T



http://www-unix.mcs.anl.gov/mpi/images/mpi.gif
http://www-unix.mcs.anl.gov/mpi/images/mpi.gif

LAPACK Functionality

Type of Problem Acronyms ____

Linear system of equations

Linear least squares problems

Linear equality-constrained least squares problem
General linear model problem

Symmetric eigenproblems

Nonsymmetric eigenproblems

Singular value decomposition

Generalized symmetric definite eigenproblems
Generalized nonsymmetric eigenproblems

Generalized (or quotient) singular value decomposition

SV

LLS

LSE

GLM

SEP

NEP

SVD

GSEP

GNEP

GSVD (QSVD)
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J‘\ LAPACK Software

Jointly with UTK and UCB and Many Other Contributors

First release in February 1992 (Silver Anniversary)
Current: LAPACK Version 3.7.0 (Dec, 2017) ~2M LoC
Public GITHub repository

4 Precisions: single, double, complex, double complex
» Considering 16-bit flpt version

Multi-OS *nix, Mac 0S/X, Windows

Multi-build support (Make and Cmake)

Used by MATLAB, R, Intel, Cray, Fujitsu, NEC,...
LAPACKE: Standard C language APIs for LAPACK
Prebuilt Libraries for Windows

Extensive test suite

L AP A CK
L-A P-A C-K
LAP A-C-K
L-A P-A -C K

L A-P-A C K
L-A-P A C-K
Users’ Guide

siam

FOrTwaAaRK- EKVIROXK

Third Editlon

I Arcwswsy, I AR U M S IRsonl J Dl 3 Do,
5 Cha-Cnsd, A Groonarn, 5 Harrnaningl A Mooty ard T Seer e

MENTS=:TODLS

LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in commercial
software packages (and has been). We only ask that proper credit be given to the authors.

Forum and User support: http://icl.cs.utk.edu/lapack-forum/
Goal: bug free library — Since 2009, 165 bugs reported, only 11 pending correction

£LiIcL

THE UNIVEREITY OF

m ke


http://icl.cs.utk.edu/lapack-forum/
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< |EEE 754 Half Precision Floating Point Standard

et |

TESLA P100

TATTFH -2 3TFiF . £ 775007
1 Hew Dioep Learicg Insrusiions
_ E:-::pnr'ller'lt fra::l:u.:r'l MOST ADYANCED DATA CENTER GPU ore elsar & G eper o
sign (5 bit) (10 bit) FOR MIXED-APP HPC - nv' DlA
CLrwinis it 1 HLAD =

. 220002 L=

R oa 730 GE/%C Rorcwsdeh
Uz Lo 18 GE Wy ©apencig
Lo mik L= Tama e b Lapacits

PAGE MIGRATEIN ERGIKE

—
Boa
i Singven Farnille. Mena

Wkl Lrbmiked deta
Fzr'onranzc w dota lemlice
Urifed Yamcry

=

AMD Radeon Instinct A M D
[ [ |

Memory Type 16GE GDDR5S 4GE HEM "High Bandwidth Cache
and Controller”

Memory Bandwidth 224GB/sec 512GB/sec ?
RN SIS P R Single Precision 57 10 opo S2dELOPS 125 TFLOPS

(FP32

Half Precision 5.7 TFLOPS 8.2 TFLOPS 25 TFLOPS
(FP16)

INTEL XEON PHl RESULTS

RUV16 TOPS0D LIST

TDP <150W <175W =200

Cooling Passive Passive Passive
(SFF)

GPU Polaris 10 Fiji Vega

Manufacturing GloFo 14nm TSMC 28nm ?

Process



Machine Learning

Need of Batched and/or Tensor contraction routines in machine learning —

e.g., Convolutional Neural Networks (CNNs) used in computer vision
Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Convolution Pooling Fully Fully Output Predictions
Connected Connected

====pmc . dog(0.01)
cat (0.04)
boat (0.94)
bird (0.02)
| D L] F’

Convolution operation:
» Forevery filter F, and every channel, the computation for every
pixel value O, is a tensor contraction:

0,.=2D.F.

with 16 bit floating point.
=> Some vendors are now
Implementing this in hardware.

This problem may be able to get away
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- API for Batching BLAS Operations

- We are proposing, as a community
standard, an APTI for Batched Basic
Linear Algebra Operations

- The focus is on multiple independent
BLAS operations
e Think "small” matrices (n<500) that are
operated on in a single routine.
» Goal to be more efficient and portable
for multi/manycore & accelerator
systems.

- We can show 2x speedup and 3x better
energy efficiency.
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68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s™

Level 1, 2 and 3 BLAS

2400

2200

2000

1800

1600

1400

—e—dgemm BLAS Level 3
—O—dgemv BLAS Level 2
->¢-daxpy BLAS Level 1

6

' ' IC=C+A*B
- —

o

k 10k

e‘

+

35X

y=y+A*X

y= o*x+y

12k

14k

Matrix size (N), vector size (NxN)

68 cores Intel Xeon Phi KNL, 1.3 GHz

The theoretical peak double precision is 2662 Gflop/s
Compiled with icc and using Intel MKL 2017b1 20160506
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<« Examples
Need of Batched routines for Numerical LA

[ e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.; |
[ collaboration with Tim Davis at al., Texas A&M University]

To capture main LA patterns needed in a

Sparse / Dense Matrix DAG-based factorization numerical library for Batched LA
System — ®* LU, QR, or Cholesky

— —_ on small diagonal matrices
Ay, A A Ay |:> ® TRSMs, QRs, or LUs

A, = e TRSMs, TRMMs

A, Updates (Schur complement)
GEMMs, SYRKSs, TRMMs
Ay
;f; \:i «  Example matrix from Quantum chromodynamics
w ™o %« Reordered and ready for sparse direct multifrontal solver
N ~:1 = Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations _ =
eem T W cme eeme

i o
i g | - .-. : ) ) .'--. . -- L L]
D KO T
T i . 1y = s -
1 119 233 348 464 589 707 837 950 - - -
nz=6716 L




Batched Computations

1. Non-batched computation
loop over the matrices one by one and compute either:

One call for each matrix.

Sequentially wasting all the other cores, and attaining very poor
performance

Or using multithread (note that for small matrices there is not

enough work for all cores so expect low efficiency as well as
threads contention can affect the performance)

for (i=0; i<batchount; i++)
dgemm(...)

Upto 72 cores
(36 Tiles)

HCOREH
PCH ] 5 |
IR

PLleGend
%36 (KNL)
x4 [KNL-F)

\, o UNIVERSITYor
icLdor AR
IwmﬂTIVE BPepartment of Llectrice] Lnginsering
CORMPUTING LADRDRATORY and Computar Scienoa




Batched Computations

2. Batched computation

loop over the matrices and assign a matrix to each core working on it
sequentially and independently

Since matrices are very small, all the n_cores matrices will fit into L2
cache thus we do not increase L2 cache misses while performing in
parallel n_cores computations reaching the best of each core

for (i=cpu_lid; i<batchcount; i+=n_cpu)
batched_dgemm(...)

Upto 72 cores
(36 Tiles)

PLleGend
%36 (KNL)
x4 [KNL-F)

\, o UNIVERSITYor
icLdor AR
IwmﬁTIUE BPepartment of Llectrice] Lnginsering
CORMPUTING LADRDRATORY and Computar Scienoa
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Byt Level 1, 2 and 3 BLAS

68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/

1600

T T T T T T T T T [
—e—Batched dgemm BLAS 3 C=C+A*B

—>¢-Standard dgemm BLAS 3
1400 i

1200

1000

800

Gflop/s

600

400

200

| | | | | |
0 32 64 96 128 160 192 224 256 384
4000 matrices of size

68 cores Intel Xeon Phi KNL, 1.3 GHz

|
512

The theoretical peak double precision is 2662 Gflop/s
Compiled with icc and using Intel MKL 2017b1 20160506
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Next Evolution For Distributed Memory Computers

= LAPACK = Scal APACK

Explicit message passing required
Library of software dealing with dense
& banded routines

MPTI used for message passing

Data layout critical for performance

= Relies on LAPACK / BLAS and
BLACS / MPI

= Includes PBLAS (Parallel BLAS)

22



j«* Performance Issues with ScaLAPACK
 The major problem with ScalLAPACK is the lack of overlap of
computation and communication .

 Each phase done separately, bulk synchronous.
« Computation phase then a communication phase.
» All (most) processes compute then a communication phase (broadcast)
e This is how the PBLAS operate.

 No overlap, resulting in performance issues g
=
=

 Need an “new” interface which allows computation and E

communication to take place simultaneously, in an asynchronous ;
fashion. r

LICL



fFSm ce LAPACK and ScaLAPACK

* A lot has changed since then...

 Manycore and accelerators

« Data movement very expensive
» Use a different set of ideas to provide efficient use of underlying hardware

« PLASMA

« MAGMA

LICL  EETERESEE




Peak Performance - Per Core .

FLOPS = cores x clock x

cycle

Floating point operations per cycle per core

+ Most of the recent computers have FMA (Fused multiple add): (i.e.
X <X + y*z in one cycle)

+ Intel Xeon earlier models and AMD Opteron have SSE2
+ 2 flops/cycle DP & 4 flops/cycle SP
+ Intel Xeon Nehalem (‘og9) & Westmere ('10) have SSE4
+ 4 flops/cycle DP & 8 flops/cycle SP
Intel Xeon Sandy Bridge('11) & Ivy Bridge ('12) have AVX
+ 8 flops/cycle DP & 16 flops/cycle SP ol o
Intel Xeon Haswell ("13) & (Broadwell ("14)) AVX2
+ 16 flops/cycle DP & 32 flops/cycle SP
+ Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
Intel Xeon Skylake (server) AVX 512
+ 32 flops/cycle DP & 64 flops/cycle SP
+ Knight's Landing




N

< State of Supercomputing in 2017

Pflops (> 10*° Flop/s) computing fully established
with 117 systems.

Three technology architecture possibilities or
“swim lanes” are thriving.

« Commodity (e.g. Intel)

« Commodity + accelerator (e.g. GPUs) (88 systems)

» Lightweight cores (e.g. IBM BG, ARM, Knights Landing)

Interest in supercomputing is now worldwide, and
growing in many new markets (~50% of Top500
computers are in industry).

Exascale (1018 Flop/s) projects exist in many
countries and regions.

Intel processors largest share, 92% followed by
AMD, 1%.

27



TOPSOO

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World
- Yardstick: Rmax from LINPACK MPP

AX:b, dense problem TPP performance

- Updated twice a year (
SC*xy In the States in November
Meeting in Germany in June

Rate

- All data available from www.top500.0rg

28



. Performance Development of HPC over the Last 24
" Years from the Top500
1 Eflop/s SUM_ 622 PFlop/s
100 Pflop/s N=1 PFlop/s
10 Pflop/s
1 Pflop/s
100 Tflop/s ) —==="" 349 TFlop/s
10 Tflop/s
1 Tflop/s
100 Gflop/s My Laptop: 70 Gflop/s
5 +
10 Gflop/s
My iPhone & iPad: 4 Gﬂop/g.,
1 Gflop/s

100 Mflop/s

gA
rg

/‘/
“~400 MFlop, s

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016



PERFORMANCE DEVELOPMENT 500
1 Eflop/s
100 Pflop/s M=

1 Pflop/s , ‘ BIVIF_ ¥

100 Tflop/s K
e

10 Tflop/s
1 Tflop/s |
100 Gflop/s

10 Gflop/s
1 Gflop/s

1994 1996 1998 2000 2002 2004 2006 20?08 2010 2012 2014 2016 2018 2020
Tflops (1012) Pflops (10%°) Eflops (10'8)
Achieved Achieved Achieved?
30 ASCI Red RoadRunner China says 2020

Sandia NL Los Alamos NL U.S. says 2021
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November 2016: The TOP 10 Systems

Rank

Site

Computer

National Super
Computer Center in
Wuxi

Sunway TaihuLight, SW26010
(260C) + Custom

National Super

Tianhe-2 NUDT,

2 | Computer Center in \(Xeon (12C) + IntelXeon Phi (57C
Guangzhou + Custom
Titan, Cray XK7, AMD (16C) +
3 DOE / 05 Nvidia Kepler GPU (14C) +

Oak Ridge Nat Lab

Rmax

[Pflops]

7% of

Power

GFlops/—
Watt

Custom

_IaihuLight IS 5.2 X Performance of Titarf
J’alhunght IS 1.1 X Sum of All DOE Systems

3,120,000 33.9 62 | 17.8 | 1.91
560,640 | 17.6 65 | 8.21 | 2.14
2.18

Frimergy CX164U, Xeon Fhi (65C 208,144 15.6 04 £./Z | 4.95
Advanced HPC + Omni-Path )‘ " ‘ J

RIKEN Advanced K computer Fujitsu SPARC64

/ Inst for Comp Sci VIIIfx (8C) + Custom el e = S || SR
Piz Daint, Cray XC50, Xeon

8 Swiss CSCS (12C) + Nvidia P100(56C) + 206,720 9.78 61 1.31 | 7.45

Custom
DOE / Os Mira, BlueGene/Q (16C)

9 Argonne Nat Lab + Custom 786,432 8.59 85 3.95  2.07
DOE / NNSA / | Trinity, Cray XC40,Xeon (16C)

it Los Alamos & Sandia Custom SOk e St <t e || o

500 Internet company Inspur Intel (8C) + Nnvidia China 5440 .286 71



cﬁ‘) -
- Countries Share

Number of Systims on
Top500

US I 171
China IS 171
Germany HE 32
Japan HH 27
France M 20
UK m 17
Poland 1 7
Italy 16
Saudi Arabia 15
Russia 15
India 15
Others H 34

0] 50 100 150 200
China has 1/3 of the systems,
i 1 . while the number of systems in the
|_|—| |_|—| . _i"—T""'T s —— U_S has fallen to thg lowest point
! |—| I‘l—l - since the TOP500 list was created.

i
ues %H T
Each rectangle represents one of the Top500 computers, area of rectangle reflects its performance.
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Toward Exascale

07

= China plans for Exascale 2020

= Three separate developments in HPC; “"Anything but from the US”
* Wuxi
« ShenWei O(100) Pflops all Chinese, June 2016
* National University for Defense Technonlogy
« Tianhe-2A O(100) Pflops will be Chinese ARM processor + accelerator, 2017

e Sugon - CAS ICT
« X86 based; collaboration with AMD

- US DOE - Exascale Computing Program - 7 Year Program

» Initial exascale system based on advanced architecture and delivered in
2021

> Enable capable exascale systems, based on ECP R&D, delivered in 2022
and deployed in 2023

33



http://tiny.cc/hpcg

Many Other Benchmarks

- TOP500 - NAS Parallel Benchmarks
- Green 500 - Genesis

- Graph 500 - RAPS

- Sustained Petascale Performance - SHOC

- HPC Challenge - LAMMPS

- Perfect - Dhrystone

- ParkBench - Whetstone

- SPEC-hpc - 1/0 Benchmarks
- Big Data Top100 - WRF

- Livermore Loops - Yellowstone

- EuroBen - Roofline

- Neptune



High Performance Linpack (HPL)

- Isawidely recognized and discussed metric for ranking high performance
computing systems

- When HPL gained prominence as a performance metric in the early 1990s
there was a strong correlation between its predictions of system
rankings and the ranking that full-scale applications would realize.

- Computer system vendors pursued designs that would increase their
HPL performance, which would in turn improve overall application
performance.

- Today HPL remains valuable as a measure of historical trends, and as a
stress test, especially for leadership class systems that are pushing the
boundaries of current technology.



The Problem

- HPL performance of computer systems are no longer so strongly correlated
to real application performance, especially for the broad set of HPC
applications governed by partial differential equations.

- Designing a system for good HPL performance can actually lead to
design choices that are wrong for the real application mix, or add
unnecessary components or complexity to the system.



hpcg-benchmark.org

HPCG

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=Db, A large, sparse, b known, x computed.

- An optimized implementation of PCG contains essential computational
and communication patterns that are prevalent in a variety of methods
for discretization and numerical solution of PDEs

- Synthetic discretized 3D PDE (FEM, FVM, FDM).

- Sparse matrix:
- 27 nonzeros/row interior.
- 8 — 18 on boundary.
- Symmetric positive definite.

- Patterns:
- Dense and sparse computations.
- Dense and sparse collectives. 27-point stencil operator
- Multi-scale execution of kernels via MG (truncated) V cycle.
- Data-driven parallelism (unstructured sparse triangular solves).

- Strong verification (via spectral properties of PCG).




HPCG Results, Nov 2016, 1-10

Computer Cores
Pflops

RIKEN Advanced Institute K computer, SPARC64 VIIIfx 2.0GHz, 705,024 10.5 0.603 5.3%

for Computational Science Tofu interconnect

2 NSCC/ Guangzhou Tianhe-2 NUDT, Xeon 12C 2.2GHz + 3,120,000 33.8 0.580 1.1%
Intel Xeon Phi 57C + Custom

3 Joint Center for Advanced Oakforest-PACS — PRIMERGY CX600 557,056 249 0.385 2.8%

HPC, Japan M1, Intel Xeon Phi

4 National Supercomputing  Sunway TaihuLight — Sunway MPP, 10,649,600 93.0 0.3712 § 0.3%
Center in Wuxi, China SW26010

5 DOE/SC/LBNL/NERSC Cori — XC40, Intel Xeon Phi 632,400 13.8 0.355 1.3%
USA Cray

6 DOE/NNSA/LLNL Sequoia — IBM BlueGene/Q, 1,572,864 17.1 0.330 1.6%
USA IBM

7 DOE/SC/Oak Ridge Nat Lab Titan - Cray XK7 , Opteron 6274 16C 560,640 17.5 0.322 1.2%
2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

8 DOE/NNSA/LANL/SNL Trinity - Cray XC40, Intel E5-2698v3, 301,056  8.10 0.182 1.6%
Aries custom
9 NASA / Mountain View Pleiades - SGI ICE X, Intel E5-2680, 243,008 590 0.175 2.5%
E5-2680V2, E5-2680V3, Infiniband
FDR
10 DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C 786,432 8,58 0.167 1.7%
Laboratory 1.60GHz, Custom




Parallelization of Factorization

Parallelize the update: dgemm
e Easy and done in any reasonable software. —
* This is the 2/3n3 term in the FLOPs count. - - B I
e Can be done efficiently with LAPACK+multithreaded BLAS
NN\ | /S
ANV

dgeqf2 + dlarft

I<— ‘ll'(l) l

Update of the remaining submatriiPanel factorization

AN

PILEL o o
Wil
ANV

dlarfb
=-001 0

39




Synchronization (in LAPACK)

» bulk synchronous processing

» fork join

NVeVaus
A AN\ [
AN\ L
QN ay/ans
(N L

TN /




ICLUOT™

Fork-Join vs. Dynamic Execution

A K K iI

—)
—)
—)
—

i

1111

Fork-Join — parallel BLAS

'ENNENEN NENNNEN NENENEN NENNEEN NENEEEN EENENEN NNSEEEN EEEEEEE
IEEEEENE NENEEEE EEENEEE DNEENEE NENEEEE ENNEEEE EEEDNEE NEEEEER
EEEEENEE EEESEESE IEEEEEE DESENSE NENENES OENEENEE EENEEEE DEEEEER
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DAG-based — dynamic scheduling
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e PLASMA LU Factorization

. DatafIOW Driven Numerical program generates tasks and

run time system executes tasks respecting—
data dependences.

XGEMM

GNNND.I ‘m

Sparse / Dense Matrix DAG-based factorization Batched LA

System ms) [ LU,QR, or Cholesky
on small diagonal matrices

- [ TRSMs, QRs, or LUs

All Al 2 Al 3 Al4

A, )| == [ TRSMs, TRMMs

A, (et ’ ‘. == [| Updates (Schur complement)
NS XA T GEMMSs, SYRKs, TRMMs

A41

And many other BLAS/LAPACK, e.g., for application
specific solvers, preconditioners, and matrices

XGETF2
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PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

»Objectives
> High utilization of each core Cholesky
> Scaling to large number of cores 4x 4
> Shared or distributed memory
>Methodology

> Dynamic DAG scheduling

> Split phases task generation and execution
> Explicit parallelism/Implicit communication
> Fine granularity / block data layout

»>Arbitrary DAG with dynamic scheduling

I = F:: l-%ﬂ* | % = - E-? h E__i = = Fork-join
-.:=': ; ! r l - - - -E-:-_ — parallelism
i e - o ' : - = =F--':

DAG scheduled

o

() (amac) (om)

- parallelism
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Singular Value Decomposition
EISPACK, LINPACK, & LAPACK

3 Generations of software compared
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EISPACK QR (1975)
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for computing the eigenvalues
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Bottleneck in the Bidiagonalization

The Standard Bidiagonal Reduction: xGEBRD
Two Steps: Factor Panel & Update Tailing Matrix

then update =» factor panel k+1

Requires 2 GEMVs

.. * A\ *DH
¥ Characteristics AP

 Total cost 8n3/3, (reduction to bi-diagonal)

 Too many Level 2 BLAS operations . .
- 4/3 n3from GEMV and 4/3 n® from ( =¥ ais] s oo [
 Performance limited to 2* performal 3 |
« =>Memory bound algorithm. 3—
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Recent Work on 2-Stage Algorithm

Second stage
Bulge chasing
To bi-diagonal

First stage
To band

° dlaye L.
* Fully Level 3 BLAS
» Dataflow Asynchronous execution

« Stage 2:
* Level “BLAS-1.5”
« Asynchronous execution
» Cache friendly kernel (reduced communication)




Recent work on developing new 2-stage algorithm

Second stage
Bulge chasing
To bi-diagonal "~

First stage
To band

nz = 3600

n—nb

~ Y o3 3 103 3
flops =~ Zl 2n; + (nt —s)3n;, + (nt —s) 30y +(nt —s) x (nt —s)5n;
S—=

Il—llb

Y a3 3 10,3 3
+ ¥ 2n;+(nt—s—1)3n; + (nt —s—1)3n;+(nt —s) x (nt —s—1)5n;

s—1

1() 3_|_10nb 2+2nb 3

22

10 .3 _ 2
3 I (gemm) gt stage flops =6 Xxn, xn (gem")second stage

22

More Flops, original did 8/3 n3
25% More flops



Recent work on developing new 2-stage algorithm

Second stage
Bulge chasing
To bi-diagonal "~

First stage
To band

20
— )
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nz = 3600

T T T T T
|| —&—2-stages / MKL (DGEBRD)

__ time of one-stage B AT 1
~ time of two-stage

speedup

4n3 /3Pgemv + 4n3 /3Pgemm
10n3 / 3Pgemm +6ny, n2 / Pgemv ’

84 84
— 7 < Speedup < 15

:> 1 8 < Speedup < 7 2‘k 4‘k (;k 8‘k 16k 1‘2k 14‘Ik 1ék 1ék 26k 22‘k 24‘1k Zék
16 Sandy Bridge cores 2.6 GHz

if Py is about 22x Py, and 120 < n;, < 240.

25% More flops and 1.8 — 6 times faster £
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“ SLATE — Software for Linear Algebra Targeting Exascale

> Target Hardware DOE Exascale systems, as well as pre-Exascale
> Bring the best ideas of LAPACK, ScaLAPACK, PLASMA & MAGMA

> Goals

> Efficiency - to run as fast as possible (close to theoretical peak);
> Scalability - as the problem size and number of processors grow:

> Reliability - including error bounds and rigorous LAPACK-derived testing
suites;

> Portability - across all important parallel machines (as described above):
> Flexibility - so users can construct new routines from well-designed parts:

> Ease of use - by making the interfaces look as similar as possible to LAPACK
and ScalLAPACK.
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Critical Issues at Peta & Exascale for
Algorithm and Software Design

« Synchronization-reducing algorithms
= Break Fork-Join model

Communication-reducing algorithms
= Use methods which have lower bound on communication

Mixed precision methods
= 2X speed of ops and 2x speed for data movement

Autotuning

» Today’s machines are too complicated, build ““smarts’ into
software to adapt to the hardware

Fault resilient algorithms
» |Implement algorithms that can recover from failures/bit flips

Reproducibility of results

» Today we can’t guarantee this. We understand the issues,
but some of our ““colleagues’” have a hard time with this.



Collaborators and Supbport

MAGMA team - 5
http://icl.cs.utk.edu/magma ( l n tel @ NVIDIA.

PLASMA team
http://icl.cs.utk.edu/plasma
‘l The MathWorks Ll

Collaborating partners
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