Samsi Workshop on the Interface of Statistics and Optimization (WISO)

The Road to Exascale and Legacy Software for Dense Linear Algebra

Jack Dongarra University of Tennessee Oak Ridge National Lab University of Manchester

VERSITY OF

Samsi Workshop on the Interface of Statistics and Optimization (WISO)

The Road to Exascale and Legacy Software for Dense Linear Algebra (or What I've Been Doing for the Last 43 Years)

Jack Dongarra University of Tennessee Oak Ridge National Lab University of Manchester

Outline for the Talk

- What was going on before
- What's the current situation
- What's planned for exascale

Software for Linear Algebra Targeting Exascale Focused on Dense Linear Algebra Problems

- Linear systems of equations Ax = b
- Linear least squares $\min \| \mathbf{b} \mathbf{Ax} \|_2$
- Singular value decomposition (SVD)
- Eigenvalue value problems (EVP)

$$A = U\Sigma V^{T}$$

$$Ax = \lambda x$$

- Dense (square, rectangular)
- Band

But first, let's go back in time.

- 1974: Effort to standardize Basic Linear Algebra Subprograms
 - Basic LA vector operations
 - Referred to now as Level 1 BLAS
- 1975: LINPACK Project started
 - Effort to produce portable, efficient linear algebra software for dense matrix computations.
- 1976: Vector computers in use
- 1977: DEC VAX system in common

ACM SIGNUM Newsletter

Volume 8 Issue 4, October 1973

Published in:

Newsletter

ACM SIGNUM Newsletter archive

ACM New York, NY, USA

table of contents ISSN:0163-5778

IMPROVING THE EFFICIENCY OF PORTABLE SOFTWARE FOR LINEAR ALGEBRA

R. J. Hanson (Washington State Univ.) F. T. Krogh (Jet Propulsion Lab) C. L. Lawson (Jet Propulsion Lab)

In algorithms for linear algebraic computations there are a fairly small number of basic operations which are generally responsible for a significant

use

As a Result of LINPACK, I Became an Accidental Benchmarker

- Appendix B of the Linpack Users' Guide
 - Designed to help users extrapolate execution Linpack software package

/(1/3 100**3 + 100**2)

	<u>U</u>			DUTT			
- 15	Facility	Ju	N=100	micro-	Computer	Type	Compiler
		-41	secs.	secs.		-71-	1
					1.4 \$ 1.1		
	NCAR	6,41	.049	0.14	CRAY-1	S	CFT, Assembly BLAS
	LASL	10. 14.69	. 148	0.43	CDC 7600	S	FTN, Assembly BLAS
	NCAR	: :3,5	%.192	0.56	CRAY-1	S	CFT
	LASL	5,27	.210	0.61	CDC 7600	S	FTN
	Argonne	2.31	. 297	0.86	IBM 370/195	D	H
	NCAR	1.91	.359	1.05	CDG 7600	S	Local
	Argonne	2 (1977	.388	1.33	IBM 3033	D	H
	NASA Langle	y .:\\≤%	.489	1.42	CDC Cyber 175	S	FTN
	U. Ill. Urb	ana 1.8	.506	1.47	CDC Cyber 175	S	Ext. 4.6
	LLL	14	.554	1.61	CDC 7600	S	CHAT, No optimize
	SLAC	. 1.19	.579	1.69	IBM 370/168	D	H Ext., Fast mult.
	Michigan	1.0	7.631	1.84	Amdah1 470/V6	Ď	Н
	Toronto	. 77	2.890	2.59	IBM 370/165	D	H Ext., Fast mult.
	Northwester	n ,47	11.44	4.20	CDC 6600	S	FTN
	Texas	351	1.93	5.63	CDC 6600	S	RUN
	China Lake	, 35,	21.95*	5.69	Univac 1110	S	v
	Yale	- 26	52.59	7.53	DEC KL-20	S	F20
	Bell Labs	.191	3.46	10.1	Honeywell 6080	S	Y
	Wisconsin	19	3.49	10.1	Univac 1110	S	V
	Iowa State	19	3.54	10.2	Itel AS/5 mod:	D	HILLS
	U. 111. Chi	cago 🛲	\$4.10	11.9-	-IBM 370/158	D	G1
	Purdue	.93	\$5.69	16.6	CDC 6500	S	FUN
	U, C, San D	iego 🚳	# 13.1	38.2	Burroughs 6700) S	H
	Yale/	- N/64	n17,1*	49.9	DEC KA-10	S	F40
	* TIME (10	(0) = (100/75) ***3 SCE	FA(75) + (100/3)	751**2	SGESL(75)
		~ (A	, <u> </u>	TT(13) (TOO)	-	

The Standard Factorization LINPACK 1970's HPC of the Day: Vector Architecture

Main points

- Factorization column (zero) mostly sequential due to memory bottleneck
- Level 1 BLAS
- Divide pivot row has little parallelism
- OK on machines with excess memory bandwidth, but
- Too much data movement per step

1984 - 1990

- Level 3 BLAS standardization started
- Level 2 BLAS standard published
- "Attack of the Killer Micros", Brooks @ SC90
- Cache based & SMP machines
- Blocked partitioned algorithms was the way to go
 - Reduce data movement; today's buzzword "Communication avoiding"

LAPACK Functionality

Type of Problem	Acronyms
Linear system of equations	SV
Linear least squares problems	LLS
Linear equality-constrained least squares problem	LSE
General linear model problem	GLM
Symmetric eigenproblems	SEP
Nonsymmetric eigenproblems	NEP
Singular value decomposition	SVD
Generalized symmetric definite eigenproblems	GSEP
Generalized nonsymmetric eigenproblems	GNEP
Generalized (or quotient) singular value decomposition	GSVD (QSVD)

LAPACK Software

Jointly with UTK and UCB and Many Other Contributors

- First release in February 1992 (Silver Anniversary)
- Current: LAPACK Version 3.7.0 (Dec, 2017) ~2M LoC
- Public GITHub repository
- 4 Precisions: single, double, complex, double complex
 - Considering 16-bit flpt version
- Multi-OS *nix, Mac OS/X, Windows
- Multi-build support (Make and Cmake)
- Used by MATLAB, R, Intel, Cray, Fujitsu, NEC,...
- LAPACKE: Standard C language APIs for LAPACK
- Prebuilt Libraries for Windows
- Extensive test suite
- LICENSE: Mod-BSD, freely-available software package Thus, it can be included in commercial software packages (and has been). We only ask that proper credit be given to the authors.
- Forum and User support: http://icl.cs.utk.edu/lapack-forum/
- Goal: bug free library Since 2009, 165 bugs reported, only 11 pending correction

E.A.	volences, Z. R Data, A. Grech	Thir is C. Bactel own S. Har	d Edition	Demmet J. Dic	ngaria. Soenami
	U	sers	í Gu	ide	
L	-A	-P	A	C	-K
L	A	-P	- A	C	K
L	-A	P	-A	-C	K
L	A	P	A	-C	-K
L	- A	Р	- A	С	-K
L	A	P	A	C	K

IEEE 754 Half Precision Floating Point Standard

Machine Learning

Need of Batched and/or Tensor contraction routines in machine learning -

e.g., Convolutional Neural Networks (CNNs) used in computer vision Key computation is convolution of Filter Fi (feature detector) and input image D (data):

API for Batching BLAS Operations

- We are proposing, as a community standard, an API for Batched Basic Linear Algebra Operations
- The focus is on multiple independent BLAS operations
 - Think "small" matrices (n<500) that are operated on in a single routine.
- Goal to be more efficient and portable for multi/manycore & accelerator systems.
- We can show 2x speedup and 3x better energy efficiency.

Level 1, 2 and 3 BLAS

(intel)

Knights Landh

68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

ICL UT

Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;] [collaboration with Tim Davis at al., Texas A&M University]

Batched Computations CPU

1. Non-batched computation

HEDRAH MEDRAM MEDRAM

PCIe Gen3 x36 (KNL) x4 (KNL-F)

loop over the matrices one by one and compute either:

- One call for each matrix.
- Sequentially wasting all the other cores, and attaining very poor performance
- Or using multithread (note that for small matrices there is not enough work for all cores so expect low efficiency as well as threads contention can affect the performance)

Batched Computations CPU

2. Batched computation

loop over the matrices and assign a matrix to each core working on it sequentially and independently

 Since matrices are very small, all the n_cores matrices will fit into L2 cache thus we do not increase L2 cache misses while performing in parallel n_cores computations reaching the best of each core

for (i=cpu_id; i<batchcount; i+=n_cpu)
batched_dgemm(...)</pre>

Level 1, 2 and 3 BLAS

ICL UT

(intel)

68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/

Next Evolution For Distributed Memory Computers

- Explicit message passing required
- Library of software dealing with dense & banded routines
- MPI used for message passing
- Data layout critical for performance

- Relies on LAPACK / BLAS and BLACS / MPI
- Includes PBLAS (Parallel BLAS)

0	1	2	3	0	1	2	3

Performance Issues with ScaLAPACK

- The major problem with ScaLAPACK is the lack of overlap of computation and communication .
- Each phase done separately, bulk synchronous.
 - Computation phase then a communication phase.
 - All (most) processes compute then a communication phase (broadcast)
 - This is how the PBLAS operate.
- No overlap, resulting in performance issues
- Need an "new" interface which allows computation and communication to take place simultaneously, in an asynchronous fashion.

Since LAPACK and ScaLAPACK

• A lot has changed since then...

- Manycore and accelerators
- Data movement very expensive
- Use a different set of ideas to provide efficient use of underlying hardware
 - PLASMA
 - MAGMA

Peak Performance - Per Core

 $FLOPS = cores \times clock \times \frac{FLOPs}{cvcle}$

Floating point operations per cycle per core

- + Most of the recent computers have FMA (Fused multiple add): (i.e. x ← x + y*z in one cycle)
- + Intel Xeon earlier models and AMD Opteron have SSE2
 - + 2 flops/cycle DP & 4 flops/cycle SP
- + Intel Xeon Nehalem ('09) & Westmere ('10) have SSE4
 - + 4 flops/cycle DP & 8 flops/cycle SP
- + Intel Xeon Sandy Bridge('11) & Ivy Bridge ('12) have AVX
 - + 8 flops/cycle DP & 16 flops/cycle SP
- + Intel Xeon Haswell ('13) & (Broadwell ('14)) AVX2
 - + 16 flops/cycle DP & 32 flops/cycle SP
 - + Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
 - Intel Xeon Skylake (server) AVX 512
 - + 32 flops/cycle DP & 64 flops/cycle SP
 - + Knight's Landing

We

are here

State of Supercomputing in 2017

- Pflops (> 10¹⁵ Flop/s) computing fully established with 117 systems.
- Three technology architecture possibilities or "swim lanes" are thriving.
 - Commodity (e.g. Intel)
 - Commodity + accelerator (e.g. GPUs) (88 systems)
 - Lightweight cores (e.g. IBM BG, ARM, Knights Landing)
- Interest in supercomputing is now worldwide, and growing in many new markets (~50% of Top500 computers are in industry).
- Exascale (10¹⁸ Flop/s) projects exist in many countries and regions.
- Intel processors largest share, 92% followed by AMD, 1%.

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem

- Updated twice a year

- SC'xy in the States in November Meeting in Germany in June
- All data available from www.top500.org

Performance Development of HPC over the Last 24 Years from the Top500

PERFORMANCE DEVELOPMENT

November 2016: The TOP 10 Systems

Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt						
1	National Super Computer Center in Wuxi	Sunway TaihuLight, SW26010 (260C) + Custom	China	10,649,000	93.0	74	15.4	6.04						
2	National Super Computer Center in Guangzhou	Tianhe-2 NUDT, Xeon (12C) + <mark>IntelXeon Phi (57C</mark> , + Custom	China	3,120,000	33.9	62	17.8	1.91						
3	DOE / OS Oak Ridge Nat Lab	Titan, Cray XK7, AMD (16C) + Nvidia Kepler GPU (14C) + Custom	USA	560,640	17.6	65	8.21	2.14						
TaihuLight is 5.2 X Performance of Titar ¹⁹ ^{2.18}														
					Taihul ight is 1.1 X Sum of All DOF Systems									
Ta	ihul iaht	is $1.1 \times Sur$	n of <i>i</i>			Sv	ste	ms						
Та	ihuLight	is 1.1 X Sur	n of <i>i</i>		OE	Sy	ste	ems						
Ţa	aihuLight Advanced HPC	rrimergy CX104U, Xeon FRI (08C, + Omni-Path	n of <i>i</i>	AII D 558,144	0E	Sy	ste	ems 4.98						
Ta 7	Advanced HPC RIKEN Advanced Inst for Comp Sci	rimergy CX104U, Xeon FNI (08C, + Omni-Path K computer Fujitsu SPARC64 VIIIfx (8C) + Custom	n of /	AII D 558,144 705,024	0E 13.0 10.5	Sy 54 93	ste 2.72 12.7	ems 4.98 .827						
Ta 7 8	Advanced HPC RIKEN Advanced Inst for Comp Sci Swiss CSCS	rrimergy CX1040, Xeon FRI (08C, + Omni-Path K computer Fujitsu SPARC64 VIIIfx (8C) + Custom Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100(56C) + Custom	n of / Japan Swiss	AII D 558,144 705,024 206,720	OE 13.6 10.5 9.78	Sy 24 93 61	2.72 12.7 1.31	.827 7.45						
7 8 9	Advanced HPC Advanced HPC RIKEN Advanced Inst for Comp Sci Swiss CSCS DOE / OS Argonne Nat Lab	is 1.1 X Sur Frimergy CXI 640, Xeon Frii (680, + Omni-Path K computer Fujitsu SPARC64 VIIIfx (8C) + Custom Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100(56C) + Custom Mira, BlueGene/Q (16C) + Custom	n of / Japan Swiss	AII D 558,144 705,024 206,720 786,432	OE 13.6 10.5 9.78 8.59	Sy 93 61 85	2.72 12.7 1.31 3.95	ems 4.98 .827 7.45 2.07						
7 8 9 10	Advanced HPC Advanced HPC RIKEN Advanced Inst for Comp Sci Swiss CSCS DOE / OS Argonne Nat Lab DOE / NNSA / Los Alamos & Sandia	is 1.1 X Sur Frimergy CXI 640, Xeon Frii (680, + Omni-Path K computer Fujitsu SPARC64 VIIIfx (8C) + Custom Piz Daint, Cray XC50, Xeon (12C) + Nvidia P100(56C) + Custom Mira, BlueGene/Q (16C) + Custom Trinity, Cray XC40, Xeon (16C) + Custom	n of / Japan Swiss	AII D 258,144 705,024 206,720 786,432 301,056	OE 13.6 10.5 9.78 8.59 8.10	Sy 93 61 85 80	2.72 12.7 1.31 3.95 4.23	4.98 .827 7.45 2.07 1.92						

500 internet company

Inspur Inter (oc) + Innviaia

Crima

.200 11

Countries Share

Each rectangle represents one of the Top500 computers, area of rectangle reflects its performance.

- China plans for Exascale 2020
 - Three separate developments in HPC; "Anything but from the US"
 - Wuxi
 - ShenWei O(100) Pflops all Chinese, June 2016
 - National University for Defense Technonlogy
 - Tianhe-2A O(100) Pflops will be Chinese ARM processor + accelerator, 2017
 - Sugon CAS ICT
 - X86 based; collaboration with AMD
- US DOE Exascale Computing Program 7 Year Program
 - Initial exascale system based on advanced architecture and delivered in 2021
 - Enable capable exascale systems, based on ECP R&D, delivered in 2022 and deployed in 2023

Many Other Benchmarks

- TOP500
- Green 500
- Graph 500
- Sustained Petascale Performance
- HPC Challenge
- Perfect
- ParkBench
- SPEC-hpc
- Big Data Top100
- Livermore Loops
- EuroBen

- NAS Parallel Benchmarks
- Genesis
- RAPS
- SHOC
- LAMMPS
- Dhrystone
- Whetstone
- I/O Benchmarks
- WRF
- Yellowstone
- Roofline
- Neptune

High Performance Linpack (HPL)

- Is a widely recognized and discussed metric for ranking high performance computing systems
- When HPL gained prominence as a performance metric in the early 1990s there was a strong correlation between its predictions of system rankings and the ranking that full-scale applications would realize.
- Computer system vendors pursued designs that would increase their HPL performance, which would in turn improve overall application performance.
- Today HPL remains valuable as a measure of historical trends, and as a stress test, especially for leadership class systems that are pushing the boundaries of current technology.

The Problem

- HPL performance of computer systems are no longer so strongly correlated to real application performance, especially for the broad set of HPC applications governed by partial differential equations.
- Designing a system for good HPL performance can actually lead to design choices that are wrong for the real application mix, or add unnecessary components or complexity to the system.

hpcg-benchmark.org

HPCG

- High Performance Conjugate Gradients (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Sparse matrix:
 - 27 nonzeros/row interior.
 - 8 18 on boundary.
 - Symmetric positive definite.
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collectives.
 - Multi-scale execution of kernels via MG (truncated) V cycle.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification (via spectral properties of PCG).

27-point stencil operator

HPCG Results, Nov 2016, 1-10

#	Site	Computer	Cores	HPL Pflops	HPCG Pflops	% of Peak
1	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	705,024	10.5	0.603	5.3%
2	NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.8	0.580	1.1%
3	Joint Center for Advanced HPC, Japan	Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi	557,056	24.9	0.385	2.8%
4	National Supercomputing Center in Wuxi, China	Sunway TaihuLight – Sunway MPP, SW26010	10,649,600	93.0	0.3712	0.3%
5	DOE/SC/LBNL/NERSC USA	Cori – XC40, Intel Xeon Phi Cray	632,400	13.8	0.355	1.3%
6	DOE/NNSA/LLNL USA	Sequoia – IBM BlueGene/Q, IBM	1,572,864	17.1	0.330	1.6%
7	DOE/SC/Oak Ridge Nat Lab	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x	560,640	17.5	0.322	1.2%
8	DOE/NNSA/LANL/SNL	Trinity - Cray XC40, Intel E5-2698v3, Aries custom	301,056	8.10	0.182	1.6%
9	NASA / Mountain View	Pleiades - SGI ICE X, Intel E5-2680, E5-2680V2, E5-2680V3, Infiniband FDR	243,008	5.90	0.175	2.5%
10	DOE/SC/Argonne National Laboratory	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom	786,432	8.58	0.167	1.7%

Synchronization (in LAPACK)

Α

Fork-Join vs. Dynamic Execution

DAG-based – dynamic scheduling

PLASMA LU Factorization

×GEMM

×GEMM

PLASMA: Parallel Linear Algebra s/w

for Multicore Architectures

>Objectives

- > High utilization of each core
- Scaling to large number of cores
- > Shared or distributed memory

Methodology

- > Dynamic DAG scheduling
- > Split phases task generation and execution true
- > Explicit parallelism/Implicit communication
- Fine granularity / block data layout
- >Arbitrary DAG with dynamic scheduling

Bottleneck in the Bidiagonalization The Standard Bidiagonal Reduction: xGEBRD Two Steps: Factor Panel & Update Tailing Matrix

*****Characteristics

- Total cost $8n^3/3$, (reduction to bi-diagonal)
- Too many Level 2 BLAS operations
- $4/3 n^3$ from GEMV and $4/3 n^3$ from (
- Performance limited to 2* performan
- → Memory bound algorithm.

Recent Work on 2-Stage Algorithm

- Stage 1:
 - Fully Level 3 BLAS
 - Dataflow Asynchronous execution
- Stage 2:
 - Level "BLAS-1.5"
 - Asynchronous execution
 - Cache friendly kernel (reduced communication)

Recent work on developing new 2-stage algorithm

$$\begin{split} \text{flops} &\approx \sum_{\substack{s=1\\s=1}}^{\frac{n-n_b}{n_b}} 2n_b^3 + (nt-s)3n_b^3 + (nt-s)\frac{10}{3}n_b^3 + (nt-s)\times(nt-s)5n_b^3 \\ &+ \sum_{s=1}^{\frac{n-n_b}{n_b}} 2n_b^3 + (nt-s-1)3n_b^3 + (nt-s-1)\frac{10}{3}n_b^3 + (nt-s)\times(nt-s-1)5n_b^3 \\ &\approx \frac{10}{3}n^3 + \frac{10n_b}{3}n^2 + \frac{2n_b}{3}n^3 \\ &\approx \frac{10}{3}n^3(\text{gemm})_{\text{first stage}} \end{split}$$

More Flops, original did 8/3 n³ 25% More flops

Recent work on developing new 2-stage algorithm

SLATE – Software for Linear Algebra Targeting Exascale

- > Target Hardware DOE Exascale systems, as well as pre-Exascale
- > Bring the best ideas of LAPACK, ScaLAPACK, PLASMA & MAGMA
- > Goals
 - > Efficiency to run as fast as possible (close to theoretical peak);
 - > Scalability as the problem size and number of processors grow;
 - Reliability including error bounds and rigorous LAPACK-derived testing suites;
 - > Portability across all important parallel machines (as described above);
 - > Flexibility so users can construct new routines from well-designed parts;
 - Ease of use by making the interfaces look as similar as possible to LAPACK and ScaLAPACK.

Critical Issues at Peta & Exascale for Algorithm and Software Design

- Synchronization-reducing algorithms
 - Break Fork-Join model
- Communication-reducing algorithms
 - Use methods which have lower bound on communication
- Mixed precision methods
 - 2x speed of ops and 2x speed for data movement
- Autotuning
 - Today's machines are too complicated, build "smarts" into software to adapt to the hardware
- Fault resilient algorithms
 - Implement algorithms that can recover from failures/bit flips
- Reproducibility of results
 - Today we can't guarantee this. We understand the issues, but some of our "colleagues" have a hard time with this.

Collaborators and Support

MAGMA team

http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

University of Tennessee, Knoxville Lawrence Livermore National Laboratory, Livermore, CA University of California, Berkeley University of Colorado, Denver INRIA, France (StarPU team) KAUST, Saudi Arabia

cilities Council

Laboratory

Umeå University

Rutherford Appleton

University of Manchester

/intel/

📀 NVIDIA.

The MathWorks

