
The Road to Exascale and Legacy
Software

for Dense Linear Algebra

Jack Dongarra
University of Tennessee
Oak Ridge National Lab

University of Manchester

The Road to Exascale and Legacy
Software

for Dense Linear Algebra
(or What I’ve Been Doing for the Last 43 Years)

Jack Dongarra
University of Tennessee
Oak Ridge National Lab

University of Manchester

Outline for the Talk

• What was going on before
• What’s the current situation
• What’s planned for exascale

Software for Linear Algebra Targeting Exascale
Focused on Dense Linear Algebra Problems

Linear systems of equations Ax = b
Linear least squares min ‖ b – Ax ‖2

Singular value decomposition (SVD) A = UΣVT

Eigenvalue value problems (EVP) Ax = λx

Dense (square, rectangular)

Band

But first, let’s go back in time.

‘76 ‘77 ‘78 ‘79 ‘80 ’81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ’95 ‘96 ‘97 ‘98 ‘99

Linpack
released

(78)

Level 1
BLAS

started (74)

Linpack
Project
Started

(75)

’74 ‘75

‘76 ‘77 ‘78 ‘79 ‘80 ’81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ’95 ‘96 ‘97 ‘98 ‘99

Linpack
released

(78)

Level 1
BLAS

started (74)

Linpack
Project
Started

(75)

• 1974: Effort to standardize Basic
Linear Algebra Subprograms

• Basic LA vector operations
• Referred to now as Level 1 BLAS

• 1975: LINPACK Project started
• Effort to produce portable, efficient

linear algebra software for dense
matrix computations.

• 1976: Vector computers in use
• 1977: DEC VAX system in common

use

’74 ‘75

8As a Result of LINPACK, I Became an
Accidental Benchmarker

• Appendix B of the Linpack Users’ Guide
• Designed to help users extrapolate execution time for

Linpack software package
• First benchmark report from 1977;

Began in late 70’s
Time when floating point
operations were expensive
compared to other
operations and data
movement

MATLAB Trivia question: What does the function dongarra(i) do?

The Standard Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column
with Level 1
BLAS

Divide by
Pivot
row

Schur
complement
update
(Rank 1 update)

Main points
• Factorization column (zero) mostly sequential due to memory bottleneck
• Level 1 BLAS
• Divide pivot row has little parallelism
• OK on machines with excess memory bandwidth, but
• Too much data movement per step

Next Step

1984 - 1990
• Level 3 BLAS standardization started
• Level 2 BLAS standard published
• “Attack of the Killer Micros”, Brooks @ SC90
• Cache based & SMP machines
• Blocked partitioned algorithms was the way

to go
• Reduce data movement; today’s buzzword

“Communication avoiding”

‘76 ‘77 ‘78 ‘79 ‘80 ’81 ‘82 ‘83 ‘84 ‘85 ‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 ‘93 ‘94 ’95 ‘96 ‘97 ‘98 ‘99

Linpack
released

(78)

Unrolling
Loops
Paper
(79)

IJK Paper
Level 2 BLAS

started
EISPACK3

(84)

Netlib
MathWorks
Started (84)

IEEE 754
standard

(85)

Blocked
Partitioned
Algorithms

(89)

MPI started
(91)

Level 2
BLAS

Publish
(88)

Level 3
BLAS

Publish
(90)

LAPACK
Publish

(92)

Level 3 BLAS
started
LAPACK
started

(87)

ScaLAPACK
started

(93)

Level 1
BLAS

started (74)

Linpack
Project
Started

(75)

Level 1
BLAS

Published
(79)

Unrolling
Loops

Outer-level
(83)

• LAPACK Published
• ScaLAPACK started

’74 ‘75

What the inverse of the LAPACK matrix?

http://www-unix.mcs.anl.gov/mpi/images/mpi.gif
http://www-unix.mcs.anl.gov/mpi/images/mpi.gif

LAPACK Functionality

LAPACK Software
Jointly with UTK and UCB and Many Other Contributors
• First release in February 1992 (Silver Anniversary)
• Current: LAPACK Version 3.7.0 (Dec, 2017) ~2M LoC
• Public GITHub repository
• 4 Precisions: single, double, complex, double complex

• Considering 16-bit flpt version
• Multi-OS *nix, Mac OS/X, Windows
• Multi-build support (Make and Cmake)
• Used by MATLAB, R, Intel, Cray, Fujitsu, NEC,…
• LAPACKE: Standard C language APIs for LAPACK
• Prebuilt Libraries for Windows
• Extensive test suite
• LICENSE: Mod-BSD, freely-available software package - Thus, it can be included in commercial

software packages (and has been). We only ask that proper credit be given to the authors.
• Forum and User support: http://icl.cs.utk.edu/lapack-forum/
• Goal: bug free library – Since 2009, 165 bugs reported, only 11 pending correction

13

http://icl.cs.utk.edu/lapack-forum/

IEEE 754 Half Precision Floating Point Standard

14 / 57

Convolution operation:
• For every filter Fn and every channel, the computation for every

pixel value On,k is a tensor contraction:

• Plenty of parallelism; small operations that must be batched
• With data “reshape” the computation can be transformed

into a batched GEMM (and hence, efficiently implemented;
among other approaches)

Machine Learning
Need of Batched and/or Tensor contraction routines in machine learning

Dk

e.g., Convolutional Neural Networks (CNNs) used in computer vision
Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F

Data D

Fn

On

Output O

This problem may be able to get away
with 16 bit floating point.

=> Some vendors are now
implementing this in hardware.

API for Batching BLAS Operations
• We are proposing, as a community

standard, an API for Batched Basic
Linear Algebra Operations

• The focus is on multiple independent
BLAS operations
• Think “small” matrices (n<500) that are

operated on in a single routine.
• Goal to be more efficient and portable

for multi/manycore & accelerator
systems.

• We can show 2x speedup and 3x better
energy efficiency.

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

68 cores Intel Xeon Phi KNL, 1.3 GHz
The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

60.3 Gflop/s

35.1 Gflop/s

2100 Gflop/s

35x

Examples
Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]
[collaboration with Tim Davis at al., Texas A&M University]

 LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

 TRSMs, QRs, or LUs

 TRSMs, TRMMs

 Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

• Example matrix from Quantum chromodynamics
• Reordered and ready for sparse direct multifrontal solver

• Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations

Batched Computations CPU
1. Non-batched computation

loop over the matrices one by one and compute either:

• One call for each matrix.
• Sequentially wasting all the other cores, and attaining very poor

performance
• Or using multithread (note that for small matrices there is not

enough work for all cores so expect low efficiency as well as
threads contention can affect the performance)

for (i=0; i<batchount; i++)
dgemm(…)

Batched Computations CPU
2. Batched computation

loop over the matrices and assign a matrix to each core working on it
sequentially and independently

• Since matrices are very small, all the n_cores matrices will fit into L2
cache thus we do not increase L2 cache misses while performing in
parallel n_cores computations reaching the best of each core

for (i=cpu_id; i<batchcount; i+=n_cpu)
batched_dgemm(…)

68 cores Intel Xeon Phi KNL, 1.3 GHz
The theoretical peak double precision is 2662 Gflop/s

Compiled with icc and using Intel MKL 2017b1 20160506

Level 1, 2 and 3 BLAS
68 cores Intel Xeon Phi KNL, 1.3 GHz, Peak DP = 2662 Gflop/s

3x

100x

22

Next Evolution For Distributed Memory Computers

 LAPACK ScaLAPACK
 Explicit message passing required
 Library of software dealing with dense

& banded routines
 MPI used for message passing
 Data layout critical for performance

 Relies on LAPACK / BLAS and
BLACS / MPI

 Includes PBLAS (Parallel BLAS)

Performance Issues with ScaLAPACK

• The major problem with ScaLAPACK is the lack of overlap of
computation and communication .

• Each phase done separately, bulk synchronous.
• Computation phase then a communication phase.
• All (most) processes compute then a communication phase (broadcast)
• This is how the PBLAS operate.

• No overlap, resulting in performance issues

• Need an “new” interface which allows computation and
communication to take place simultaneously, in an asynchronous
fashion.

24

Since LAPACK and ScaLAPACK

• A lot has changed since then…
• Manycore and accelerators
• Data movement very expensive
• Use a different set of ideas to provide efficient use of underlying hardware

• PLASMA
• MAGMA

25

Peak Performance - Per Core

Floating point operations per cycle per core
 Most of the recent computers have FMA (Fused multiple add): (i.e.

x ←x + y*z in one cycle)

 Intel Xeon earlier models and AMD Opteron have SSE2
 2 flops/cycle DP & 4 flops/cycle SP

 Intel Xeon Nehalem (’09) & Westmere (’10) have SSE4
 4 flops/cycle DP & 8 flops/cycle SP

 Intel Xeon Sandy Bridge(’11) & Ivy Bridge (’12) have AVX
 8 flops/cycle DP & 16 flops/cycle SP

 Intel Xeon Haswell (’13) & (Broadwell (’14)) AVX2
 16 flops/cycle DP & 32 flops/cycle SP

 Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

 Intel Xeon Skylake (server) AVX 512
 32 flops/cycle DP & 64 flops/cycle SP

 Knight’s Landing

We
are
here

State of Supercomputing in 2017
• Pflops (> 1015 Flop/s) computing fully established

with 117 systems.
• Three technology architecture possibilities or

“swim lanes” are thriving.
• Commodity (e.g. Intel)
• Commodity + accelerator (e.g. GPUs) (88 systems)
• Lightweight cores (e.g. IBM BG, ARM, Knights Landing)

• Interest in supercomputing is now worldwide, and
growing in many new markets (~50% of Top500
computers are in industry).

• Exascale (1018 Flop/s) projects exist in many
countries and regions.

• Intel processors largest share, 92% followed by
AMD, 1%.

27

28

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org

Size

R
at

e

TPP performance

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Performance Development of HPC over the Last 24
Years from the Top500

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/s

93 PFlop/s

349 TFlop/s

672 PFlop/sSUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

My Laptop: 70 Gflop/s

My iPhone & iPad: 4 Gflop/s

PERFORMANCE DEVELOPMENT

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=100

1 Gflop/s

1 Tflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

N=10

Tflops (1012)
Achieved
ASCI Red
Sandia NL

Pflops (1015)
Achieved

RoadRunner
Los Alamos NL

Eflops (1018)
Achieved?

30 China says 2020
U.S. says 2021

November 2016: The TOP 10 Systems
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

GFlops/
Watt

1
National Super

Computer Center in
Wuxi

Sunway TaihuLight, SW26010
(260C) + Custom China 10,649,000 93.0 74 15.4 6.04

2
National Super

Computer Center in
Guangzhou

Tianhe-2 NUDT,
Xeon (12C) + IntelXeon Phi (57C)

+ Custom
China 3,120,000 33.9 62 17.8 1.91

3 DOE / OS
Oak Ridge Nat Lab

Titan, Cray XK7, AMD (16C) +
Nvidia Kepler GPU (14C) +

Custom
USA 560,640 17.6 65 8.21 2.14

4 DOE / NNSA
L Livermore Nat Lab

Sequoia, BlueGene/Q (16C)
+ custom USA 1,572,864 17.2 85 7.89 2.18

5 DOE / OS
L Berkeley Nat Lab

Cori, Cray XC40, Xeon Phi (68C)
+ Custom USA 622,336 14.0 50 3.94 3.55

6 Joint Center for
Advanced HPC

Oakforest-PACS, Fujitsu
Primergy CX1640, Xeon Phi (68C)

+ Omni-Path
Japan 558,144 13.6 54 2.72 4.98

7 RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64
VIIIfx (8C) + Custom Japan 705,024 10.5 93 12.7 .827

8 Swiss CSCS
Piz Daint, Cray XC50, Xeon
(12C) + Nvidia P100(56C) +

Custom
Swiss 206,720 9.78 61 1.31 7.45

9 DOE / OS
Argonne Nat Lab

Mira, BlueGene/Q (16C)
+ Custom USA 786,432 8.59 85 3.95 2.07

10 DOE / NNSA /
Los Alamos & Sandia

Trinity, Cray XC40,Xeon (16C) +
Custom USA 301,056 8.10 80 4.23 1.92

500 Internet company Inspur Intel (8C) + Nnvidia China 5440 .286 71

TaihuLight is 5.2 X Performance of Titan
TaihuLight is 1.1 X Sum of All DOE Systems

Countries Share

China has 1/3 of the systems,
while the number of systems in the
US has fallen to the lowest point
since the TOP500 list was created. 32

34

5

5

5

6

7

17

20

27

32

171

171

0 50 100 150 200

Others

India

Russia

Saudi Arabia

Italy

Poland

UK

France

Japan

Germany

China

US

Number of Systims on
Top500

Each rectangle represents one of the Top500 computers, area of rectangle reflects its performance.

Toward Exascale

 China plans for Exascale 2020
 Three separate developments in HPC; “Anything but from the US”
• Wuxi

• ShenWei O(100) Pflops all Chinese, June 2016
• National University for Defense Technonlogy

• Tianhe-2A O(100) Pflops will be Chinese ARM processor + accelerator, 2017
• Sugon - CAS ICT

• X86 based; collaboration with AMD

• US DOE - Exascale Computing Program – 7 Year Program
 Initial exascale system based on advanced architecture and delivered in

2021
 Enable capable exascale systems, based on ECP R&D, delivered in 2022

and deployed in 2023
07

33

http://tiny.cc/hpcg

Many Other Benchmarks
• TOP500
• Green 500
• Graph 500
• Sustained Petascale Performance
• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc
• Big Data Top100
• Livermore Loops
• EuroBen

• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone
• Whetstone
• I/O Benchmarks
• WRF
• Yellowstone
• Roofline
• Neptune

34

High Performance Linpack (HPL)
• Is a widely recognized and discussed metric for ranking high performance

computing systems
• When HPL gained prominence as a performance metric in the early 1990s

there was a strong correlation between its predictions of system
rankings and the ranking that full-scale applications would realize.

• Computer system vendors pursued designs that would increase their
HPL performance, which would in turn improve overall application
performance.

• Today HPL remains valuable as a measure of historical trends, and as a
stress test, especially for leadership class systems that are pushing the
boundaries of current technology.

35

The Problem
• HPL performance of computer systems are no longer so strongly correlated

to real application performance, especially for the broad set of HPC
applications governed by partial differential equations.

• Designing a system for good HPL performance can actually lead to
design choices that are wrong for the real application mix, or add
unnecessary components or complexity to the system.

36

HPCG
• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential computational

and communication patterns that are prevalent in a variety of methods
for discretization and numerical solution of PDEs

• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Sparse matrix:

• 27 nonzeros/row interior.
• 8 – 18 on boundary.
• Symmetric positive definite.

• Patterns:
• Dense and sparse computations.
• Dense and sparse collectives.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

37

hpcg-benchmark.org

HPCG Results, Nov 2016, 1-10
Site Computer Cores HPL

Pflops
HPCG
Pflops

% of
Peak

1 RIKEN Advanced Institute
for Computational Science

K computer, SPARC64 VIIIfx 2.0GHz,
Tofu interconnect

705,024 10.5 0.603 5.3%

2 NSCC / Guangzhou Tianhe-2 NUDT, Xeon 12C 2.2GHz +
Intel Xeon Phi 57C + Custom

3,120,000 33.8 0.580 1.1%

3 Joint Center for Advanced
HPC, Japan

Oakforest-PACS – PRIMERGY CX600
M1, Intel Xeon Phi

557,056 24.9 0.385 2.8%

4 National Supercomputing
Center in Wuxi, China

Sunway TaihuLight – Sunway MPP,
SW26010

10,649,600 93.0 0.3712 0.3%

5 DOE/SC/LBNL/NERSC
USA

Cori – XC40, Intel Xeon Phi
Cray

632,400 13.8 0.355 1.3%

6 DOE/NNSA/LLNL
USA

Sequoia – IBM BlueGene/Q,
IBM

1,572,864 17.1 0.330 1.6%

7 DOE/SC/Oak Ridge Nat Lab Titan - Cray XK7 , Opteron 6274 16C
2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

560,640 17.5 0.322 1.2%

8 DOE/NNSA/LANL/SNL Trinity - Cray XC40, Intel E5-2698v3,
Aries custom

301,056 8.10 0.182 1.6%

9 NASA / Mountain View Pleiades - SGI ICE X, Intel E5-2680,
E5-2680V2, E5-2680V3, Infiniband
FDR

243,008 5.90 0.175 2.5%

10 DOE/SC/Argonne National
Laboratory

Mira - BlueGene/Q, Power BQC 16C
1.60GHz, Custom

786,432 8.58 0.167 1.7%

Parallelization of Factorization

Parallelize the update:
• Easy and done in any reasonable software.
• This is the 2/3n3 term in the FLOPs count.
• Can be done efficiently with LAPACK+multithreaded BLAS

-

dgemm

39

-

qr()

dgeqf2 + dlarft

dlarfb

V

R

A(1)

A(2)
V

R

U
pd

at
e

of
 th

e
re

m
ai
ni

ng
 s

ub
m

at
rix

Pa
ne

l f
ac

to
riz

at
io

n

Fork - Join parallelism

Bulk Sync Processing

C
or

es

Time

Synchronization (in LAPACK)

 fork join
 bulk synchronous processing

40

41

A

C

A

B C

T TT

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Time
saved

PLASMA LU Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM
xGEMM

xGEMM
xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting

data dependences.

Objectives
 High utilization of each core
 Scaling to large number of cores
 Shared or distributed memory

Methodology
 Dynamic DAG scheduling
 Split phases task generation and execution
 Explicit parallelism/Implicit communication
 Fine granularity / block data layout

Arbitrary DAG with dynamic scheduling

43

Cholesky
4 x 4

Fork-join

parallelism

PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

DAG scheduled

parallelism

Time

Singular Value Decomposition
EISPACK, LINPACK, & LAPACK

First Stage 8/3 n3 Ops

Dual socket – 8 core
Intel Sandy Bridge 2.6 GHz
(8 Flops per core per cycle)

QR refers to the QR algorithm
for computing the eigenvalues

LAPACK QR (BLAS in ||, 16 cores)
LAPACK QR (using1 core)(1991)
LINPACK QR (1979)
EISPACK QR (1975)

3 Generations of software compared

Bottleneck in the Bidiagonalization
The Standard Bidiagonal Reduction: xGEBRD

Two Steps: Factor Panel & Update Tailing Matrix

Characteristics
• Total cost 8n3/3, (reduction to bi-diagonal)
• Too many Level 2 BLAS operations
• 4/3 n3 from GEMV and 4/3 n3 from GEMM
• Performance limited to 2* performance of GEMV
• Memory bound algorithm.

factor panel k then update factor panel k+1

Q*A*PH
Requires 2 GEMVs

Recent Work on 2-Stage Algorithm

Characteristics
• Stage 1:

• Fully Level 3 BLAS
• Dataflow Asynchronous execution

• Stage 2:
• Level “BLAS-1.5”
• Asynchronous execution
• Cache friendly kernel (reduced communication)

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

More Flops, original did 8/3 n3

25% More flops

Recent work on developing new 2-stage algorithm

Recent work on developing new 2-stage algorithm

First stage
To band

Second stage
Bulge chasing
To bi-diagonal

25% More flops and 1.8 – 6 times faster

16 Sandy Bridge cores 2.6 GHz

SLATE – Software for Linear Algebra Targeting Exascale

 Target Hardware DOE Exascale systems, as well as pre-Exascale
 Bring the best ideas of LAPACK, ScaLAPACK, PLASMA & MAGMA
 Goals

 Efficiency – to run as fast as possible (close to theoretical peak);
 Scalability – as the problem size and number of processors grow;
 Reliability – including error bounds and rigorous LAPACK-derived testing

suites;
 Portability – across all important parallel machines (as described above);
 Flexibility – so users can construct new routines from well-designed parts;
 Ease of use – by making the interfaces look as similar as possible to LAPACK

and ScaLAPACK.

49

Critical Issues at Peta & Exascale for
Algorithm and Software Design
• Synchronization-reducing algorithms

 Break Fork-Join model

• Communication-reducing algorithms
 Use methods which have lower bound on communication

• Mixed precision methods
 2x speed of ops and 2x speed for data movement

• Autotuning
 Today’s machines are too complicated, build “smarts” into

software to adapt to the hardware

• Fault resilient algorithms
 Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
 Today we can’t guarantee this. We understand the issues,

but some of our “colleagues” have a hard time with this.

Collaborators and Support
MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
Lawrence Livermore National Laboratory, Livermore, CA
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

	The Road to Exascale and Legacy Software�for Dense Linear Algebra�
	The Road to Exascale and Legacy Software�for Dense Linear Algebra�(or What I’ve Been Doing for the Last 43 Years)
	Outline for the Talk
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	As a Result of LINPACK, I Became an�Accidental Benchmarker
	The Standard Factorization LINPACK�1970’s HPC of the Day: Vector Architecture
	1984 - 1990
	Slide Number 11
	Slide Number 12
	LAPACK Software�Jointly with UTK and UCB and Many Other Contributors
	IEEE 754 Half Precision Floating Point Standard
	Machine Learning
	API for Batching BLAS Operations
	Slide Number 17
	Examples
	 Batched Computations CPU
	 Batched Computations CPU
	Slide Number 21
	Next Evolution For Distributed Memory Computers
	Performance Issues with ScaLAPACK
	Since LAPACK and ScaLAPACK
	Peak Performance - Per Core
	State of Supercomputing in 2017
	Slide Number 28
	Performance Development of HPC over the Last 24 Years from the Top500
	Performance Development
	November 2016: The TOP 10 Systems
	Countries Share
	Toward Exascale
	Many Other Benchmarks
	High Performance Linpack (HPL)
	The Problem
	HPCG
	HPCG Results, Nov 2016, 1-10
	Slide Number 39
	Synchronization (in LAPACK)
	Fork-Join vs. Dynamic Execution
	PLASMA LU Factorization�Dataflow Driven
	PLASMA: Parallel Linear Algebra s/w for Multicore Architectures
	Singular Value Decomposition�EISPACK, LINPACK, & LAPACK�
	Bottleneck in the Bidiagonalization�The Standard Bidiagonal Reduction: xGEBRD�Two Steps: Factor Panel & Update Tailing Matrix
	Slide Number 46
	Slide Number 47
	Slide Number 48
	SLATE – Software for Linear Algebra Targeting Exascale
	Critical Issues at Peta & Exascale for Algorithm and Software Design
	Collaborators and Support

