--- title: Sweep Operator subtitle: Biostat/Biomath M257 author: Dr. Hua Zhou @ UCLA date: today format: html: theme: cosmo embed-resources: true number-sections: true toc: true toc-depth: 4 toc-location: left code-fold: false jupyter: jupytext: formats: 'ipynb,qmd' text_representation: extension: .qmd format_name: quarto format_version: '1.0' jupytext_version: 1.14.5 kernelspec: display_name: Julia (8 threads) 1.8.5 language: julia name: julia-_8-threads_-1.8 --- System information (for reproducibility): ```{julia} versioninfo() ``` Load packages: ```{julia} using Pkg Pkg.activate(pwd()) Pkg.instantiate() Pkg.status() ``` ## Definition * We learnt Cholesky decomposition and QR decomposition approaches for solving linear regression. * The popular statistical software SAS uses sweep operator for linear regression and matrix inversion. * Assume $\mathbf{A}$ is symmetric and positive semidefinite. * **Sweep** on the $k$-th diagonal entry $a_{kk} \ne 0$ yields $\widehat A$ with entries $$ \begin{eqnarray*} \widehat a_{kk} &=& - \frac{1}{a_{kk}} \\ \widehat a_{ik} &=& \frac{a_{ik}}{a_{kk}} \\ \widehat a_{kj} &=& \frac{a_{kj}}{a_{kk}} \\ \widehat a_{ij} &=& a_{ij} - \frac{a_{ik} a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k. \end{eqnarray*} $$ $n^2$ flops (taking into account of symmetry). * **Inverse sweep** sends $\mathbf{A}$ to $\check A$ with entries $$ \begin{eqnarray*} \check a_{kk} &=& - \frac{1}{a_{kk}} \\ \check a_{ik} &=& - \frac{a_{ik}}{a_{kk}} \\ \check a_{kj} &=& - \frac{a_{kj}}{a_{kk}} \\ \check a_{ij} &=& a_{ij} - \frac{a_{ik}a_{kj}}{a_{kk}}, \quad i \ne k, j \ne k. \end{eqnarray*} $$ $n^2$ flops (taking into account of symmetry). * $\check{\hat{\mathbf{A}}} = \mathbf{A}$. * Successively sweeping all diagonal entries of $\mathbf{A}$ yields $- \mathbf{A}^{-1}$. * Exercise: invert a $2 \times 2$ matrix, say $$ \mathbf{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}, $$ on paper using sweep operator. * **Block form of sweep**: Let the symmetric matrix $\mathbf{A}$ be partitioned as $$ \mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}. $$ If possible, sweep on the diagonal entries of $\mathbf{A}_{11}$ yields $$ \begin{pmatrix} \, - \mathbf{A}_{11}^{-1} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\ \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \end{pmatrix}. $$ Order dose **not** matter. The block $\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ is recognized as the **Schur complement** of $\mathbf{A}_{11}$. * Pd and determinant: $\mathbf{A}$ is pd if and only if each diagonal entry can be swept in succession and is positive until it is swept. When a diagonal entry of a pd matrix $\mathbf{A}$ is swept, it becomes negative and remains negative thereafter. Taking the product of diagonal entries just before each is swept yields the determinant of $\mathbf{A}$. ## Applications ### Linear regression (as done in SAS) Sweep on the diagonal entries 1 to $p$ of the (augmented) Gram matrix $$ \begin{pmatrix} \mathbf{X}, \mathbf{y} \end{pmatrix}^T \begin{pmatrix} \mathbf{X}, \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{X}^T \mathbf{X} & \mathbf{X}^T \mathbf{y} \\ \mathbf{y}^T \mathbf{X} & \mathbf{y}^T \mathbf{y} \end{pmatrix} $$ yields $$ \begin{eqnarray*} \begin{pmatrix} \, - (\mathbf{X}^T \mathbf{X})^{-1} & (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \\ \mathbf{y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} & \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \end{pmatrix} = \begin{pmatrix} \, - \sigma^{-2} \text{Var}(\widehat{\beta}) & \widehat{\beta} \\ \widehat{\beta}^T & \|\mathbf{y} - \widehat{\mathbf{y}}\|_2^2 \end{pmatrix}. \end{eqnarray*} $$ In total $np^2 + p^3$ flops. ### Invert a matrix _in place_ $n^3$ flops. Recall that inversion by Cholesky costs $(1/3)n^3 + (4/3) n^3 = (5/3) n^3$ flops: `potrf` and `potri`. ### Conditional multivariate normal density calculation ### Stepwise regression ### MANOVA ## Implementation * [SweepOperator.jl](https://github.com/joshday/SweepOperator.jl) package (by Josh Day) implements the sweep operator. ```{julia} using SweepOperator A = [9. 2 -2; 2 1 0; -2 0 4] ``` ```{julia} B = copy(A) sweep!(B, 1) # sweep (1, 1) entry ``` ```{julia} sweep!(B, 2) # sweep (2, 2) entry ``` ```{julia} sweep!(B, 3) # sweep (3, 3) entry, we are left with -inv(B) ``` ```{julia} # check correctness inv(A) ``` ```{julia} using LinearAlgebra # sweep! function only changes the upper triangular part UpperTriangular(inv(A)) ≈ UpperTriangular(- B) ``` ```{julia} # inverse sweep to bring negative inverse back to original matrix sweep!(B, 1:3, true) ``` ## Further reading * Section 7.4-7.6 of [Numerical Analysis for Statisticians](http://ucla.worldcat.org/title/numerical-analysis-for-statisticians/oclc/793808354&referer=brief_results) by Kenneth Lange (2010). Probably the best place to read about sweep operator. * The paper [A tutorial on the SWEEP operator](http://www.jstor.org/stable/2683825) by James H. Goodnight (1979). Note this version (anti-symmetry matrix) is slightly different from ours.