########################################### # Suppress matplotlib user warnings # Necessary for newer version of matplotlib import warnings warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib") # # Display inline matplotlib plots with IPython from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') ########################################### import matplotlib.pyplot as pl import numpy as np from sklearn.model_selection import learning_curve from sklearn.model_selection import validation_curve from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import ShuffleSplit, train_test_split def ModelLearning(X, y): """ Calculates the performance of several models with varying sizes of training data. The learning and testing scores for each model are then plotted. """ # Create 10 cross-validation sets for training and testing cv = ShuffleSplit(n_splits = 10, test_size = 0.2, random_state = 0) # Generate the training set sizes increasing by 50 train_sizes = np.rint(np.linspace(1, X.shape[0]*0.8 - 1, 9)).astype(int) # Create the figure window fig = pl.figure(figsize=(10,7)) # Create three different models based on max_depth for k, depth in enumerate([1,3,6,10]): # Create a Decision tree regressor at max_depth = depth regressor = DecisionTreeRegressor(max_depth = depth) # Calculate the training and testing scores sizes, train_scores, test_scores = learning_curve(regressor, X, y, \ cv = cv, train_sizes = train_sizes, scoring = 'r2') # Find the mean and standard deviation for smoothing train_std = np.std(train_scores, axis = 1) train_mean = np.mean(train_scores, axis = 1) test_std = np.std(test_scores, axis = 1) test_mean = np.mean(test_scores, axis = 1) # Subplot the learning curve ax = fig.add_subplot(2, 2, k+1) ax.plot(sizes, train_mean, 'o-', color = 'r', label = 'Training Score') ax.plot(sizes, test_mean, 'o-', color = 'g', label = 'Testing Score') ax.fill_between(sizes, train_mean - train_std, \ train_mean + train_std, alpha = 0.15, color = 'r') ax.fill_between(sizes, test_mean - test_std, \ test_mean + test_std, alpha = 0.15, color = 'g') # Labels ax.set_title('max_depth = %s'%(depth)) ax.set_xlabel('Number of Training Points') ax.set_ylabel('Score') ax.set_xlim([0, X.shape[0]*0.8]) ax.set_ylim([-0.05, 1.05]) # Visual aesthetics ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad = 0.) fig.suptitle('Decision Tree Regressor Learning Performances', fontsize = 16, y = 1.03) fig.tight_layout() fig.show() def ModelComplexity(X, y): """ Calculates the performance of the model as model complexity increases. The learning and testing errors rates are then plotted. """ # Create 10 cross-validation sets for training and testing cv = ShuffleSplit(n_splits = 10, test_size = 0.2, random_state = 0) # Vary the max_depth parameter from 1 to 10 max_depth = np.arange(1,11) # Calculate the training and testing scores train_scores, test_scores = validation_curve(DecisionTreeRegressor(), X, y, \ param_name = "max_depth", param_range = max_depth, cv = cv, scoring = 'r2') # Find the mean and standard deviation for smoothing train_mean = np.mean(train_scores, axis=1) train_std = np.std(train_scores, axis=1) test_mean = np.mean(test_scores, axis=1) test_std = np.std(test_scores, axis=1) # Plot the validation curve pl.figure(figsize=(7, 5)) pl.title('Decision Tree Regressor Complexity Performance') pl.plot(max_depth, train_mean, 'o-', color = 'r', label = 'Training Score') pl.plot(max_depth, test_mean, 'o-', color = 'g', label = 'Validation Score') pl.fill_between(max_depth, train_mean - train_std, \ train_mean + train_std, alpha = 0.15, color = 'r') pl.fill_between(max_depth, test_mean - test_std, \ test_mean + test_std, alpha = 0.15, color = 'g') # Visual aesthetics pl.legend(loc = 'lower right') pl.xlabel('Maximum Depth') pl.ylabel('Score') pl.ylim([-0.05,1.05]) pl.show() def PredictTrials(X, y, fitter, data): """ Performs trials of fitting and predicting data. """ # Store the predicted prices prices = [] for k in range(10): # Split the data X_train, X_test, y_train, y_test = train_test_split(X, y, \ test_size = 0.2, random_state = k) # Fit the data reg = fitter(X_train, y_train) # Make a prediction pred = reg.predict([data[0]])[0] prices.append(pred) # Result print("Trial {}: ${:,.2f}".format(k+1, pred)) # Display price range print("\nRange in prices: ${:,.2f}".format(max(prices) - min(prices)))