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Abstract

In this project, we are working on the problem of secure data access in the edge computing

environment. Specifically, we are interested in the methods for resource discovery in edge

while preserving the data privacy. We study how Distributed Hash Tables (DHTs) and

Learned Index Structures have been used by researchers to solve similar problems in other

domains. In our work, we are considering using the XOR based routing algorithm used in

Kademlia, a kind of Distributed Hash Table. Though Kademlia is generally used for the

storage and retrieval of data, we are considering using only the routing algorithm used in

Kademlia. For retrieval itself, we are interested in Learned Index Structures (LIS), which

have been gaining popularity lately.
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Chapter 1

Introduction

1.1 Edge computing

Edge computing is a newer computation paradigm as compared to cloud computing. The

difference between them is that edge computing brings computation closer to the edge of

the network. As more of the data is being generated near the edge of the network, edge

computing enables the data to be processed near the data source. [17]

1.1.1 Why use edge computing in place of cloud computing?

The most important reason for using edge computing is that it reduces the latency as

the data has to travel a shorter distance. [17] In addition to this, with the emergence of

Internet of Things, the data generated at the edge is expected to grow rapidly. For example,

it is expected that the autonomous vehicles will generate data in the order of 1Tb per

second. In such a case, it may not be possible for the cloud to keep pace with the data

generated at the edge. Edge computing can help in this situation as it can process the data

at the edge itself.

1.1.2 Challenges with edge computing

One of the major challenges with edge computing is that the edge devices are resource

constrained. They have limited processing power, memory and storage. Often, this

problem is solving using offloading. A node that is low on resources may enlist the other

nodes for help. For example, if a node is low on storage space, then the data generated on

this node or the data this node was supported to store may be offloaded to other nodes in

the network. Similarly, data processing can be offloaded to other nodes.
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The other challenge is that, no node in the edge network has complete knowledge

of the edge network. This is in contrast with cloud computing where a central node is

responsible for all the processing and does not need to coordinator with others. As such, it

can become difficult to do any computation on the edge as the nodes may not be having

all the information required for the computation.

1.1.3 Edge computing for vehicles

Researchers have been working on using edge computing for vehicles for a while now. In

autonomous vehicles, the decision must be taken quickly as there is very low tolerance for

latency. Further, the data that a vehicle generate is rarely needed outside the geographical

vicinity in which the vehicle is present. Using edge computing makes the common use-

case faster. As such, edge computing can be used to improve the performance of the

autonomous vehicles.

Fig. 1.1 Vehicular edge network architecture
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Vehicular edge networks usually consists of a central cloud to which a number of gate-

way devices called roadside units (RSUs) are connected. The RSUs are further connected

to the vehicles. Vehicular edge networks are highly dynamic and vehicles change their

position quite often. Because of this, hand-offs may be needed very frequently.

1.2 Problem statement

Because of the issues described above, we need to have some kind of method to enable

nodes to find out where the required data may be present in the edge network.

We are trying to come up with a method for answering resource queries in edge net-

works while keeping in mind the constraints on resources that come with edge computing.

Requirements for the solution:

• Data privacy is maintained and the data itself should not be used for indexing or

querying

• The solution should be scalable

• The algorithm should preferably be online – it should be able to index or answer

queries for the data that is being generated

Further, it is not possible to simply boardcast the query to all the nodes in the network,

as it would very inefficient. Doing so will lead to privacy issues, as the queries would be

known to every node in the network. Also, caching the data on other nodes should be

avoided because of the privacy issues.

Use cases

The problem of resource or data discovery is by no mean unique to edge computing or IoT.

Even in the computer architecture, Flat Cache-Only Memory Architecture (COMA) faces

the similar problem. In Flat COMA, memory lines can freely migrate. Whenever there is a

cache miss, the memory line must be located in the network and migrated to where it is

needed. [6]

But in our work, we are trying to solve this problem in the context of edge computing,

where the nodes may be static or dynamic. Weather crowd-sensing would need only static

nodes, but in vehicular edge networks, the nodes are dynamic.





Chapter 2

Literature review

Numerous surveys have been done on edge computing as well as data access in IoT or

distributed systems. These include surveys by Zineddine Kouahla et al. [20] and Yasmin

Fathy et al. [18].

Yasmin Fathy et al. [18] prescribes the following taxonomy for queries in IoT:

• Data queries: Here, we are only interested in the data, regardless of its source. They

may be indexed by:

– Spatial features: The data may be indexed using spatial attributes, e.g. geo-

coordinates. Space filling curves may be used to reduce dimensionality.

– Thematic features: data is indexed based on the keywords or its attributes.

– Temporal features: data is indexed based on the time at which it was generated.

• Resource queries: Rather than finding the data stored on the node, the nodes are

only interested in finding a physical resource on the network.

• Higher-level abstractions: the queries are based on higher-level abstractions like

events, activities and patterns which require data from several nodes to be combined

and processed.

Zineddine Kouahla et al. [20] also classifies indexing techniques as below:

• Indexing structures in a Multidimensional Space

– Hashing-based techniques

– Tree-based techniques

– Bitmap-based techniques
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• Indexing structures in a Metric Space

– Tree-based techniques

In this work, the focus is on resource queries. The advantage of focusing on resource

queries over data queries is that the data queries can be trivially answered once the

resource queries are answered. Further, it allows the nodes to implement some kind of

authentication mechanism to ensure that the data is not publically available.

In 2012, Federica Paganelli and David Parlanti [5] proposed a scheme that used DHTs

for service discovery in Internet of Things. Their method allowed multi-attribute queries

as well as range queries. The method consists of three layers. They first used a space-filling

curve to linearize and map the multidimensional domain into a one-dimensional one.

Then a Prefix-Hash Table is used on top of a generic DHT with standard interface for get

and put. At the end, the DHT is an implementation based on the Kademlia algorithm.

Federica Paganelli and David Parlanti [5], however, did not apply DHTs to edge networks.

Researchers have also attempted to use Gaussian Mixture Models (GMM) for searching

and indexing in edge computing.

2.1 Distributed Hash Tables

The Distributed Hash Tables (DHTs) are similar to the conventional hash tables, except

that the key-value pairs are stored across multiple nodes in the network. Distributed

hash tables are highly scalable and fault-tolerant. Like traditional hash-tables, DHTs

also support “get” and “put” operations. They are commonly used in the peer-to-peer

networks. There exist multiple variants of DHTs including Chord [1], Tapestry [19] and

Kademlia [14].

In DHTs, the data is placed deterministically on the nodes in the network. DHTs are

self-organizing and self-healing.

Of these DHTs, Kademlia is the most widely used. It is used in BitTorrent [4] as well as

in Ethereum. Every key-value pair is stored with multiple nodes in the network. This is

done to ensure that the network is robust to node failures. Kademlia is not affected if a

node leaves or joins the network. Each node joining the Kademlia randomly generates a

160-bit identifier. [14]

2.1.1 How does Kademlia work?

Whenever a key-value pair is to be stored in the network, a 160 bit hash of the key is

calculated. Then, nodes with the identifier closest to the hash are selected for storing the
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key-value pair. For measuring the distance and finding the closest nodes to a given key,

Kademlia uses XOR metric. Even though it is non-euclidean, the XOR metric satisfies all

four properties of a distance metric. [3]

Similarly, when finding the value for a given key, the nodes with the identifier closest

to the hash of the key are selected. An attempt is then made to retrieve the corresponding

values from these nodes.

The authors also propose an XOR based routing algorithm for finding the node with

the identifier closest to a given key. With the algorithm proposed, in each iteration, we get

one bit closer to the target node. Thus, if the network size if n, then the algorithm takes

O(log (n)) iterations to find the target node.

Nodes in Kademlia can be visualized as leaves in a binary tree, where the position

of each of the nodes is given by its identifier. In the algorithm, each node is required

to maintain a routing table. Each of the node is expected to store information about k

nodes from each of the maximal tree which it is not a part of in its routing table. The

information includes the identifier, IP address and the port number. The requirement of

storing information about k nodes from each is to bring redundancy and to ensure that

the network is robust to node failures.

Fig. 2.1 The node with identifier 0011 stores information about nodes in four subtrees,
which are encircled. [14]
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2.2 Learned indexes

Kraska et al. [10] proposed that machine learning models may be used along with tradi-

tional data structures to improve performance. For example, in a sorted array, instead of

using binary search or an index, a machine learning model may be used to predict the

appropriate index of the element. This can be applied to many structures like B-trees,

bloom filters, etc.

Several learned indexes have been proposed – Learned Spatial Index [13] for answering

spatial range queries, Learned Secondary Index [9] for unsorted data, RadixSpline [8], an

index that can be built in a single pass and Practical Learned Index (PLEX) [15] which

was introduced to make the learned index more practical by reducing the number of

hyperparameters to just one.

Learned indices have recently been gaining popularity in the database community re-

cently. The idea of using machine learning models has been so influential that researchers

are applying the same approach to even the sorting algorithms. [11]

Kraska et al. [10] also proposed a Recursive Model Index which is hierarchical in nature.

They are similar to B-trees except, a machine learning model is used in each stage. In each

stage, the model predicts another model until the leaf node is reached where the data is

stored. It can also be viewed as each node picking a better expert to answer the query.

Fig. 2.2 The Recursive Model Index. [10]
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Proposed Methodology

3.1 Using Distributed Hash Tables for Edge Computing

We tried to extend DHTs and learned indices to edge networks. We intend to use Kademlia

not for content discovery, but only the XOR based routing algorithm proposed by Petar

Maymounkov and David Mazières [14] for routing, once the target node is determined

using the learned index.

Junjie Xie et al. [7] observed that DHTs may use a longer path than the shortest possible

path between two nodes. This happens because the nodes which may be logically close to

each as determined by XOR metric on node identifier may, in fact, be far apart physically.

One possible way of solving this problem is to modify the node identifier used by Kademlia

so that it is based on the location of the node. Meng Wei and Guoqing Dong [12] did this

by using the IP address of the nodes as the prefix in the node identifier. While this should

make the routing in Kademlia more efficient, this method suffers from the drawback that

the IP address of the node may change.

The another way in which node identifiers can be modified is to encode the services

offered by a node into its identifier. For example, if a node is offering weather sensing

service, its identifier may be prefixed by “10” or if it is offering road-traffic information, its

identifier may be prefixed by “01”. Similarly, if both the services are offered by the node,

its identifier may start with “11”. Because of how routing works in Kademlia, it would be

trivial to search for nodes offering a particular service if this scheme is used. While we

could not find any work that has done this, we believe that this too will have limitations.

We used an open-source Python library to test if Kademlia would be appropriate for

this use case. [2]
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3.2 Using Learned Indices for Edge Computing

While Kraska et al. [10] proposed that the model should be trained only once, we believe it

would be better if the model is updated periodically so that it can serve the queries better.

To test the performance of learned indexes, we simulated an edge network using

Python. Inside each edge node, we put five key value pairs. The keys were randomly

generated strings and the values were randomly generated integers. First, keys were

encoded using ordinal encoding. Then a one-vs-rest multi-class classifier was used to

predict the location in which the key-value pairs might be stored. Though the results were

not conclusive, using a real world dataset by Taxi & Limousine Commission [16] should

give conclusive results. This is because random data carrier the most amount of entropy,

it is the most difficult to compress, and real world data usually has a lot of redundancy

and patterns which the model can learn.

3.3 Conclusion

We believe learned indexes can be a good fit for this problem. Along with learned indexes,

the routing algorithm proposed in Kademlia can be used to routing after modifying it so

that it favors the shortest path between the nodes based on the scheme proposed by Meng

Wei and Guoqing Dong [12].
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