{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAHMCAYAAABvOZX3AAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWXMAAB2HAAAdhwGP5fFlAACAAElEQVR42qz9d7xlx3EfiH/r3DtvcsIgDNIgExmMAAEGgVESkyQqkgoWLcuWLK1lW07rdVzv57f+2XK2dy3ZCqYCLVGiRDFHEYQYkUgiY5AGcZBmMDm89+6p/eN0d32rus99D9q95ODde06f7urqCt+qDkd+9Ef+lUIVACCqAAQKBVQBHX5huJ2+KyACdc8AogCGJwFVCPyzwHCNf/PzgAI9/CffE031p3rKZXtAyn+10CF0pdADelbTc2J1SH5WPSm5LwK4+ks/XD2ZQKH+SaFdRSBQiKZ6pDxa+i18IY2DlF725Zvvk/p6RCEqhU4RGq/QpkCGNksd9F8xXuYx6ajDIsSD9KXjcSH+FjlIny7yjMvRwyq+DBz99KxY/5gmoXES8f0XUSoX22cOcfvq6jZS29cz70TydZN/K2O61FFfkGRFqG0I0CnzrG/wEJA+tSVJpjNftA+8Sc+qyXnn6lP7q8RLEI1UvnP6qkURrR8KNg+SlF96GlfVQnP+24E6XVS9GCgeLqpd1f2VzEQaJDNOVH8wAmBjRfeUmEJVZwKDSXIV2n+LzSUGMUkaHtNAhtgN7rtWDwYJ4R+uaIN/zY8Nbv7XUkymRkN/TFaEe232nwsFWbVrahW733FstdzT8NvkhDmTpUMCK+JY2vhpkI98s9xrjIgS/1oVO/JUoCokW2HI1CTON2TcVX64KV/M6JokyWNNTtGVEz+W7AhqHkcpkcHiQ1EJywg9QTTcNcFf4OP6grEfK36mSLw0q+atqEdZrBXqLGEkrOpYHG1tfU/sJcUqTItGVE2EBDVjRcbaY0Z5s1eQlaC6nh8RV5WE+hVMjau3fPdCK/S4ZC9U8UzjBddWLbeaBDR5aapTJBoKj5wqbuZ+SWwDTSSYqyjU5TK52yLOgZSmRb1hLoPf8J6BNi1oSTwvHau4X6EzDA2TMpSS1Rg0iAkyw33OtJVmtNXuUCcjFs3frXONvrc+Qk66SWbDXgWEnH+UMWM+hPr/whZs5U81hACmxVhFD0AD1fTM5XvDawQEoaopRIjIyZ5V+p0Nh7qK5xtIviDN79YHob4KS1sSfvRtY9Py8vVN87Qq1QMVMUUwc3VaSVMpk/lRQgVt1+8MkIaBdwpoAe4oigtWuzwl9bg3MNJgKFihtfdmo/IK0axkLzGOZsWE2Fci1jd1pAyhsnmLBhERJDt7NdTZJ5npyv1ohBPpbFCDDrTGr7pWgYVQpJDvR1HC7erDNlzD7xGy5tmmzOP2s9Ls91iTvv9W6bSNjtS8QmYWGxCHuhqMDfUUrxOYn41URYIboKSE5r6MO9EgNaWrNRJRaDxy5Muc+2jW3UCUxQDU+mMXZVxuVY1mCc+Jb9Zwoo4Jk7Z1nXlZcYskj5xI5IAz6gZO6vZjrq1uEIaUzFLkep19Zm+/YkjEFzXRJ96QEX8dQnKVSeGLOdM0Hi3IQuMUILkHTFqqh+nEwC3OI0LHPOjYMLbNgITrFTgaUYlYXcV2RZ2HzbW3SHF64XNfjRrcp4SERflDfooC+fK7IiwYqlGD4x5T18woHYxBVB0C8XWyYVHkJGkxuAGv+Txb5npjJApbQ3vVII6PSi0msbnWs0GwaPQMJfgxaA1wi2QGFhKeMUdV86sJ1fKNjFCVLFcJcfsGZUy7UN/UteXdBfWTNVXM5HRW0oFAZxiiDxMtPLWpDddkYB51PXgDRz/nLavum1yLq3c8pAPVa6F1VWXtOQhe5gmfUWwzSm/dTPt6RpHjhXyIudrPUGHnjA0nSRUD5nWhom9Fc/KSqvDZzvSP6igWmZmT2i6zKq4Zl8kqDzSjLdYhqJMXri0/78OjRJdayKghTHa94AQ04LHwCPQNlTT6FcpoKKIDTRIT+IFfWrPL1ePs3DzPGT8NclWNruxwiiiV8mJ0unDct8YIVfNsVRahBi2liZRBj4aXvwmkqksb/HBMImdXyTnzu+pvrrtO/NWzzw3HSXydNzBaP1b/pdIq/gGbzCIMPy9fJlx9mPAI8mbjMlafC5JbA9e80Y3cbQusjN+rPIXOMdFUHf8rzwka0+48GKFXjllaOxj2WVloR/vCUiyVkrYQDDtTrQS+VpBCirb+NfimroGioK2QMs6aNTUdlg/Lhll51k3b/TRj3eBEg0e+30KCbKPiu2h9NMxkVqadOoCrN/OmHk/v8v2MKMoyHfax3hD5xpXKNOtsfbgJ9QXJNpYf2WgV59pyQiMfoYZc3R6sUn3j49kmsnXPljuNMcBLXu266k7457uxigG4dTBcAyfzXGKP3Yd7rGCn0Y5YWV9HqMaVL53Nc8GSCsnwI3pZe1aKUghLEQvQSG6ihhi5BU3orB54aQhbjWwinIJpReXTQ+Nq7cQwEWN1N0SlNCV+2r/0w2C0GUyHAIkWp9VmEKECqEB78XyIhoEnZOi6ht8eaXreed3J8ECqIRzEpxGgB8PsDZQ0yzhPGBjI66zMoBC/Wp/Urca0gIWkxRi3a+GeidZ1u4431EGq2gy1lnpkXL/d0hV2Di/hk2ufRitvNiGudGLPG5W2MtflSc5LqRN4HoEADN1XpeKZ4Rbn5+rqhF+mogVLG4aByJKc/6pZD85x5IRhe+Y9JJsdaogRZMFpKwybzXgx10q+SbxgN8U3Tbkb2pNyrdTI0qo2mn5GOX+qbKsfX5+7h9MCDcn6MfjK4yRS3Uo2Fl4gfC6llI/rDHj6MHSn1Btoq3g7Oo0eWMK5G+pAQbVi1UgxYtLmC0g/ackGp+lizpt1t9EtGhQ/7lVXCsto0SvL00jc4kVsPoSJT+epiClbb2FBjQ05o0AS3xwfz8Aoq/6GmldqICjVtBra2R31hNWjaX+dZJPxkLFBm8/M7Mcq+1z6pG7cc331GDTcfINRpgs1OqoVmun3giP8hceyLA5tCVqgnBWfe1cQSnB+df6dNEqozxJEI3c6aI0Cw4yZONryL15DZzmtCGUZkRAPsgjyPQlDEg1cEBLH0zLLCi9/DSRSJfljvWyEHUsIjUqjvpbY1WS3CzU+EvSw5dDh2Ecy4WzLSs55/P60NalQPdMAVDWAZuWYY8wat8bCsiJ0I3TMBySV1fCeuMnweYw0Ilz+wZFrkN93Nqm4qONSRJUyDypnZQxjlafYBaTEzcWPadmAitvmYoA3VBxRY8Wa6NgI8YpfxuB8+jxHU6EOb9SE+mezhIS2s6cX37Yw7xraHG1idYPHW8SjJB6IaATLAFHihO1nnC5ryrmWca23XjFw0BFLZANX+u/GdiVU77vk2FehTkcyVKLjz/SuZKzGr061JYSU/OTwyYUfMFnyMJeSfNEQzRH4mtyAKHR1DC4OsHID6gSCvRSLrkFb9uBKz5HJaSBSlDqJ5gCxvQJ7JCrWUFUj2xS3MkitTeZfy7jlQWuBs/ZU8zwkjWGanJDNeKjkh8IvPPeaOoxhC/dGgtOY8RCLhvCw0dESZhnvh21MRlhBkSU1IsTnEBLRkLWiY0OMLfqJxdJWVx8yRwMXUEwAf/xsvKbpxmj+jOlk9Fo+q0ljRN6v/kaLF9O6iLM+Vb3+KluAAINDmVjbeKRrZaMzrCmKg+eNQNW3oJFVLogqM280stF5lKZGx9QXHn1+jgEsgh9yX0I1RAjeAExGf2mbYc248CmkbPMBDDTwbgUzzlo3xH2NeavK61FhRlkNhc2TIz5MFdeXOkembYZUnGqgMGcMY3xtVcecnIRmyoLT2FyMVMWYOLDJt1nJ34hczgsTR6S44oK4v2Lh/pi6hVqyoV8NcBmjsGPM7yeaZbQPJlq0IjfDmqr9YahkpI65PHRtrdCbKgSp72deRS+xmp0SClOLIquECFY98REIMK/HN2gcXPkW/rS8xtiSBseeXF+ZwZOKpnzbV6XO7rbqKksKQsFqlrQn2spzuQ0JNDAyNuRf+ttYk2ZLS+LAjOQeucOu/sAD8ayrxsLZaakraDQdNaE9s4lm6Xat7RLNlHMp3lD0MW+HAVVzn91adQOi7ejvJQCy1oNToGXtQ6DLVt0pWzAnYTtHgZshWVkgNiOWVrvEkCrRzTQ4ugJsClPdMRFe4HLThaprJ+64i4lmfy9/cabF+ON2BPP9kCOLI11YG2KK4AYtHFTjuXP9FhC7PDhsqBkt5O06LaDTYoDx13JrtvJcKJEc+gctW2PGxrtaKc0QOax+57qb41VQGvyMIOcU6H4UNXX5uoYbdsMU2g4JoVGg56410PqcTx09NCttPDFSVNo3Vkzkx0eDbqzYBAbn1hVL6JCQl4b6EA9DHO0mS4FiNF7KJGapRUlZmiWIrrQISUAGOPwzE5QFWEtD6pa+j3kqLf1xSikWPrJQxjSMuhtUF3wuRFrthn6b8DZccBmCrI15d1ojC8ggZQw5hMKqc0Y/6q6SscqTD2P8ba7GpMsa86OEpCritTYUjeU3fJQRA8aKAOOoffKRSmMQm0PiFrSbg54yRboaHs9Bc/ONVcs8qb8p8Y7Wyf9WuyOTGy/l0ypfclg2G89GSxsKRMo259rAKPaz2h603Dmt12p50OAP/mJhVbAqSiU8/n6qk9wkb2ZtsmveffVYItNboUbHxyBxpb+EAbRuj7Efg9lx4ZGq77x9humNC1nZsFcIhIfBoVAbT4fQGJaNQLSoWBpqbwJgIspxLyEft75MOYfSgibqichDI+YAs0w3nhwBHo6Lda6y7O+L0YrMrTguLwhJST8rSgPaaAEcvbiclzbqnjteY3I4UsHox3i2QtLdlMdoJdHNSNtxioxOhKulhMItMUJDXmkVszdKGNESr/DOWLW6r9q6GHteysaEaUV3EzWTwCsZW1ttSWyrN5Ab/9oDWwlIKsqhKofNPgldH3Pn7zexFw+NtxGhZD7upiSJW0ORlSi2o0QPT+81x98MkQ+HKsjBHjgzKowVPe3y2BTCtlkSDERok+mICFsZdZsbFtUSWvK6tebAcyqlFWo2WZGhyHhX4mdu/1fxsfDfZbpX/zx/pxOOwyyhVn/GI1o2cOMHhrUXJHo5snFnwQfVj8LwWik9goqobB7ubh0DU+fhar6I1niLj+HJZZpTKKrt70R/7fxNAbwgeV8ZAYI/DC5XEbingWfRM1O3KgRVk1eAQx7EygvPOSOs7IqQ6o6jt7oWapKR+iu2Fn4I9atltIOBjIaqSQ3c+LI823iRKmceNlbyEzRM/x9bihByryLpZJpxGD6OjML9KjR8KZ/M6XpBc7Nog67Ml6kvSGt32OMzoqr0WMNfP1gu6adRgWI4x7jVew2HACisKWUrw8CsbW+IHh5llEahg6sb7nptFMeQXWZ2rqYeDU+XXzpQqZQjgEOhmifiTJMt6zQHH7cUOQhUjwEHEbVldDyoloQI1UCdKb2T2EzYFp2cIsTzsLnmiuqZ79EjGhOrs9QvLqQq0EcjWsq8ErRnA9qtF52gbH6cj6kfYJ552SsnnQY+eGlY7Yf1Ys4nyGPr9iqbcpGwu01yOHUei0pWoZ+Tq2CcxgwNN18hC3tmbkpefe6qPtIiV8JRuQl1e+y1CXzi9peiUPldF4w+HN0egVXITpmf6opUYY0zRsNz4hBnPJuriUNGrxfZGAM6zmBIc1ycMfYMNDEPdpzpYoOGhmFT+i8j7IL0Sk7NaXEjClXqQzZEdcGC9oVxaUD/rTxR88MS541XFXa3FmEHumqdY8fJwVYDmowAq4atG6G/gfTg0xCNR8gpAu1TW4yBNRnzc15TZpwrF8q3jVX6Tgfct/hQQiiNiXPU7QIQbRChrbKti+qMT3vQG98jOaplDyNdbNPDFwKyaxaOCJHrDsoQz4DPY8Ei41Fq/uMVk/falWdcpp0Ok4vEthSUpJ7TRc1cWGW8WDut324TcB4eqcfYJ4rDoXsNS1wQEzgkjRjfO1ZvrNhSkqWu5Mf6NYK53bPGggaDq0vzYFeiuYo7qU91aLDCh/LX6ZfMMYSjS0byeLe8RObTCvTwrofpmD9oNVzCAbpYhIZXFoNzUl7hatLjJtW28WjlHdkfsgI3Nwq7rz5EzM4+FvTwvGU42kbP+emYC2NU6fYQlc5W4HVwVJwo18oj23epUhlO8MaEtjEt3wphTVgb0qIY2V5C4WcwQA7xuTTVyBjO47XrpBBqog6PQkxPPxsrMywVrGSu27iWvjZIFrhwMiJ7Q3sNHqZv5Qz5UEhJqL2+rHCK6dhnFIVlfas72HwkCEV2No6dc4jzISH3qzBsDCmt2I8GLEcdmjmlz3ghePw5dfrrWYHZ+0kR+rgNt4LQjaFw7cVV2+FWE8JTqIPcO4LTXIFDJdpQwFyveitUp9g9Gpg3RnEM8m9BbEOayydYKRVa3i04XCjx2hy+UrjN9oQnAIRQuYdv1T5jz/x2B2tEKtVzNk6SDJW0DXxE3ZIdEFbH+7HxIL0eO/7bWFHFDuO8WalpZyBb6LgGBbFs0w82Y+r4maeL9adzKawAIpTrDNQ4Bw60XIKnqfGTQXmuI29/GO40zV9bIsSuVY6QajNDVjN9LvNdrzOz7J8jKcJWbbelfK1Js8B1rCKFBi1eymSOD0MpaAuH60aUKi4nk2qjmviMI4i6yIswizejA/6qf4y4agVp/uDUAyl7o+uJxFh3prklG41IoLHvRZtPwxCqK5BOXxv3oaPX1dUr88tH2vxAzY2wWFpbvJ+fefJlRmLmVX26yrT7mpsXihoVy9NoPeI8IYY2GeehdTuJmlqWhgUtgqnlnyenhZXJZMgQdo3ykmWhsuS+Sn+Kg7pOtdSuPoGRjZRX3kZz7dvCtGaBDMZAfDtcwhpohYotOqwufmPxcMH/1up6/m4U2HqkSNGYYWNkOFf9rB7xuU7PyEBP+R770eKPNtyMt2Yv6SUMbpw4IKf25wntCnekOqGXCynmghHMSY+NObKaHeEzzpxO3Tu76+4UxkgSykYZZqwTnWK0vNhVx6myDXJtJJEQqVtkoyBWgQqbrDGREUebI0SZdvrS0rEmS/3AZDKbK+Ub8t7CYB4yeVTVRop8X+tbbpDU5ZW8Arepan1Ea2U3+tiY1Eqft9x4JTQT0fTe3C2xeiVbA6cQvna7EYyf1qXahseOD7L+t7kkSm96CsZfMG64HAWMxPKkQJh9m3s0UPg6D23WN0Y+Eos1bMbIZ0VpmlNgGoFVa8B8XVL+O+/Tum85ZnVm2acoeHEZZaBc8jtnRvNftu/jaERSbmIV+ucGMKZoxr0jK2PmEyc8GVvFNVcjoxUiDy8WUZX4HCe70lqDw3mzsfrG7ihQJZarp8sFRgBZunrH13zUtNGMkfVE479LJlRYjvK9YPIUYbbdxqt1xefY6U6ow3ZsGlMiG+bxtf1RX1F5Pbi130Q3sY28VWm0jXkkZJ2bV05XrOovGAW6j1vWYB1vGKVsY+YtOQj5lIFBQePsZiibv4t76/PghZgLAW1p9aXJoMEJ2HsKeSaqQ1IakiC3NIK+e5b4t1G3UUk0pjW5tfEYMQDUKuf/qnVCEVLJeL0eztsaKeHCinp1ezaFOoSADqQ7GjQ0rFQD/aUTGlozZDXOCuua6tv2dMsyOJHKnpTGO/DMk6COQfVK8tWZotWXrBPT46vd5z/fMm6VM3pJdPjclCLoSiunPprwmsOJNAidE6iG4XEVq4/Nzf7o+DNUd023jHgfemN0g3LbGsNE0/vhrObhDmFeO9eJ37CbiRtLWrYNjZFAkL+c2cQ8oQxI0a/WKNpIhuDaPeNfcppOmihjEOIUodNPtbZrZU9iOMmAT3BoRv+BIe0wQMvG9uFePggrGwYlPo3npvi/1rgT2EATylibRW8j70qOtOVAtHqC+2/jGnOnilYNPDzWvK5cUAPI8eJP5aXck1alrmvR0Y4ZDd6xGupY4aNzfr3Uz7S6EtdT0S8HnLVVxjNkrOviagwdCULCsDzLnlcCFI8nzQRxQHXOISdVyEUkhG4jENpPkatvp+qkhidZ6OZ5q3iHykisFxQK1TUYGiMHIRG3SDu3KvluTZF7/Txpn4g5CX/OWB6DbGRZBgIvWnMkTR45qSypSSFl5dCwzow1uF1SnFwnWfAclVUWUryClIZl/nn9pRUdvTe2bk/G6mmF6s0mTOLLC4RjvY26eFjLko6qzuo92vbwvM+c+9MKvbXC84o52rhWlx211WPhcBWa+l6UPLlLOrMXj0MA6FgYqlrnkHprv1oLpeEFX+oT2rZbLw9kQEYjg8Br21YaLbO59Xoyb8iyhEUJ1aLRTaPpyjPa9Mcn5nEobbb2+eRZv6K0Dk4g5vWGujIKniNXzVyWjmgT/cyOLvBZXEVNeDPQqpxzZEPtnYDn6UvJ2gR4G15OEeeAVqqqMlShidH2W6TTtdbYtDc0i2dHiEFbPtcVqAgeJLDjMsq1NSrRFctQe/PKNlcMo8wGVrhjhUEqhqxObFnYFxTGssZ2Lc8eu6WmaidglmcZ3blkcoPnK3x43Vn9SCOMaSQW3VuyC/2BxhDtjk3JN5sSroMaC3LleMT3y5KFfvgnvY2B2P3IT+sj9UdpiYEL9cL4jnz3izf8/SbiR5+QRx+uh5+jaiOmB80xHPmoL2/YZ2yQ4uUG3pZ5z7Xi/gBRCqCQFetx0rVKkCUryKQAmGq4wCGSo1vnKZbx2Dae5y951kfBhkrBXSP/ls4F4kP1/DYUDs59wnZAiNELeljPxkfpunmlxiJQG7Em+uIwoLaZYwGIR11+PX4l4rA4LiK3RuyUL9VOr0aaNMZ+JbMPX40fibbEM1tRQteRw+toDKJAWljYTrS3+pVzj56rRTay4UhhZzlLieSltVFFeAxKlMn0CtHJmrACJHQz2DS6VZQR0G1jb2Fs2dHaKDsnwpxzI/BgtD8oUcaofANQlZrTI3Wzxo6ROK2hsPhH1cTK8SICHwfBPbzMIVGEgawQzhDoHMEOtBUjERPxVHnxC0qCnbdUaDAWqm68fcjmjYyVbWWP1Pd/9EM0KiCtWLk1MxsMsh0/bOPBetdyhPEcq9ZYxpBrUOzaSDpsTItAhcYi5vtszL0BbfXBh13qiK4Rtn3XNOXnFuc2jE50oKU5kpHWKOdL0iChrXg2u9fcd9mMlYKBbH20fcHRUIkR33WCbX6wtd+19IPHov2p+TEf1Y9wuDxvr6rXmlGDdTQjUZYCOMWPDam7HhGN57nnYOvlA0Wgg9IaXRFR5XqysTUjyKKYE8MF6jZkwS8S5Q3Tuc2xqWWl9nwyhf1sXITKCWi7J3Xd4XollMFRdq3nxgBMqSPtz0zWQCXt43KHNWVEQ5WFMK1GVspNGBLP/WZCmOSwUc9FpaW8kDES+xsdoAZjof5xh6KUTsPPeaxEQH4xR53DCpzlkzBiuZajkDmGqfXRVV6b+1kZlmVcmqnjXHTL4A+/Godk/gUJFVVeOGqDHFMUFVx10BXIc+Dzz7VCGNDa0OSksaU+xjwNJ72DkktGThrqCHUVY1VV3W7TGSuPqzh0DSz2YQazQetBzkjRsysgyshDEOLhs7Lc7oAWMmuYwvRcVk4+IUJsgAJflAxVvt42WCEoSghmTGBX0sIW0qGIIGwH8ieLElqiN0ub44TPC1ajmiZgRvNHqI6BktxGQI3tKrRVI9EasVG9ZrKc0ECYop0cf8mWLTxRh5EtZDlvwTW5FoxznZ0vaMyoEnepgfxqNfBPOW/FBAdPJLXalk7WzOE2xbXJz1ut4tqRumdmuDKAiD11HW1xgfugdK1+vryDSNxQ+8CogKAI+bgg93YkjFRFM1E7H8VboepFfA3rntZ6Ddd62FabIcnOa69y0t2YHesMaEzoel4Y5pjK6Fsb9HjDqYk+8NXs2Pi16gU9cUlQqOuHJI+rm+WmwWwlXZjF0XLVIzaOehqEFKPB17OcjOtwe2XgSld05Pr8Lkjz1ihmoM80l2DvbgilmXVzHqImQZpnnudC2Rk3fX5AXGPIrqzy1ew3swcKolGm6QnuOuMhdsxu6UTA69lA8dEnFWNj4lGI0pUGL1ynLrSeFQl6Hj0597gCw61V2Z5FEvkVCg71ZgJDTpERMHpUs5WxToabsdP017UJlAPdPC3iKtXQlkTmFjSZjVDj/PkkU34ZScttpsyeeKLb57XSkyMgbc7wVHeiHfBIK+tF+9mBZtQh81i7KbruMCJ+ldBRRa3KV9dJV/3UHWSXk5PZSTkP5rnsz0L3DRsIV4PClCeqaWND4sPS2Bdv3EC5jWicEARNoU0DlkxvvSAq6JZXCGeulP2T76RtAZIR4ZznV9q5jBLxOTkzY9JqKSKxyKlWUscLo7q/kq0mGxzJiCWEgzHP5Sr3/bNtMZkGoytiab7eXmHe0IoiAmI0MtoN/JPqC/M7IesVlM2N10qfMBT+tXuNeh1x44s+K26vcAJD3QY93exvJZBttjU+q6NkqHnqYnudr7T1FC0oXMhltXo27s1qUSLcBI1u8l1oKn04FzrqQOUPndBwilsLQIv+WbitaC2rrop/LvJOWnQwX/l2LRyZhK6qPBWtTrWwNsvIRcOk1mI1tqmMhLqkvLSWOWihmS1paKGvxuDTt1oPvCOQEUGqjjpu3jd36FbpxzEt08mU2mjRxvyrwtWOvtt9oUvjn9FkwZyyLSfjueyCU008kfk4UKpf2i6gaPYrXjL94ohpnB3x3hRqeRXTg4ysygX/p7WWacRY8Y941nrsb77AyxsikCoV1dW/hI8f4HgeVdx6Q2k463V21g1DFj1iZUhzhU4X56GfwhjEVfNeT7RaTzUCZIjZRIRb/+AR1WAsmCbbXmOIqicnom4co0chN+n60d7Uy6GNRxHDGJiRz7O5rovN8U/GKGSC2yvXPeKSNIb8Nu24NcXsnYeHY1uOyhC0haBGv0UfGqhntWgO44biJT0cAc5YaNisoBlyNekTpLfmOFVJTCiWsDJE0VhQmSpeq5nLMzCj3Zln/OZFTk3U0v7L6MCf3W8K1CV6edtNm6HUT67H2YOASiPt3L98PC8rZ1SsBvy312m1Q0IDU62XxcYxI+NLeyyHvz3YkA2U9OlXPjqGFkhiJKfZMurSuMY/hG2f5Z44mR7rdwg8pzRoTD0C4LHMCGtFSOSZXBrjwI7HNw5KYIeEuriI+MebvHoJn5V6tsqeY75irvDMKhrIdEzdQWRxj15SvCIcVf2tt+CMoawakUjVZsJ64vShDj1ACqvte2OGCiyotNg08sxW16/kJbxRjpFBRBI+YdKoO3inKgJiKNoIA4TNg1IFQnTkCMXiROJb6EBGdcJ8jcsV4lmlCbELk+GNtOtmiLe4z9W4xB8V2qT1fqE8j7V7qzmx3eaW20TQWZFjDbgb/E7I6rMKXQ6da4eUI+B4lG8rNh5L+rdcNlEdM2iOe4qsc4CsVOGjDf5MGR35t9Mo5cmTQOtgcEzYuWIyPM0zs1Z1aC2Fm/BKXYVt+UB6H5YMRUfOGtVADym/M05OCdjLDt9MgVEwflFKZ1Cs+azAvOm38FEMecZzubK4NDhl/ltQzbwOA9/gsdoaIkbRprAUTgon8jN6ykbKeG7JdRqPkTyb5Dbt5YLunv8vShnejuOdTMBW7Dhb4UnpaDxUsbaYPqLjALBlAAwW8eu2Kty3WigUw9E4KTRilHxvvOJ7W9IKS8Y+DWP1UvoSqIxrsl6K3bMXqap/hZfSX35DCui7X9jpc2BeXtuoazRMj9eYR/6ldavnUy5f3lTTUWokW+a4JGMo6VXI467i0YmeFjKLB8Ll00+zca2OjCkelWAKkdF6zZdf0e4Znr2ky3dVtGlh+IAkGg6Bz16X7GDoxAwOJbP8tIaptV8oQKsx45ARUnGmmRFqvXVsjPYqO2jOb8UV7OPmsxqjKBtMZ8t/2aWKsKazbDVZNS0t/fZaz9JsitwoIw1iAg2FjfKStNA3zayJofIIKp3a9hQiuDKiHpnUrKxDQj7Rs1VP+yys2rCZwCfxHDvmlQyGvZrKTwpXglj2TOXRDrjbnW/EPVHPdGJ2ace5O3VyWV52EeNHl5+BoVLxxSCg1dp+aGIei/M9KHWFcSkbmbPxrNdXWRKdjFg6xcCMFVdah6sA4iEE1UeaFxrC20KPAudwKr0b845V+Cjt68KV5tgwVERWxIWCWtc3lkeb/xkPuQoJK4GmFapwW9UkXK/KvkR6G23X/R/nxjQWsd350YjYX1YoI8AMH0P38k7LeFxyhbqSIkRUNpo8RykvZeCV6vJl6uf5EDkONNTzoIUSS0kLb6pDRLSlYCa8ORcSDbCJuhRD0PLEHjIra4G72VSGoDiC4WywPHtp66CYZ7ZK3O4peH1WzEU0oVH+Kg0hjUotZRRKGMttaPwObxAZLRTw10Q66b8NY8p/3abv1ShqdgRsRVrPytyfoUP2XaU1ozpOXzsMG+mIQzzSNlZz6Bw1wlU1LTSnIw/qYLDMieVmWEEyojCTqzzLRHbFPFoQrmB7XBK3SFpKtouWTdcu/GRDQ8wuK5XVwrN4OFyLGSXvojRwjk8ezUUDEfc9WlfNQLb11Sejbbz8IJXZNhnq7KgOCYpvexs16J2HFqzsxcBywl3I8DtElRFdnglU1w8PHzXZHhPEKgwBr6wz41XQoZiCc76rDrzm5EVzFR52+r/jj1o4nhfnUcO2xatV4WqtT7vI6Es90jB3+YCAlxiHFX6vqu/k8HTlZ1bdwaBi1Zldq3AC/ojkLPiFI+Rlo9V2Zby3rhtnBSDkBTMymTsFF8RNzamRkvhnxOZOKu0buYwQv1WnUtSvuS/1Z+/CxrNiLLVWrafK4VaD/408TnMNFQZj7k5bBDIzwpA2Rj68JIKNlJVvoCdYQl0b5Zzj4AZ4gOt4iw5KRBRZtIyAYMwkeBmtIhiAjGA9YtJ8KtccQ2r/MCcXqlCSxyCGo2NKKbHemt768frXmG15aWFnqD3TNYK0YmbDX18NMss16Irlpwz32Jl4M85cH7SvyiVVMJQp91tkKk/JIZuaZx8cdjA2gEv286kMhUpVp/hwjKO/jXDPbzky3sQzvtp8b9RdSXyI52PfKtpi+GS8qcNf/4lIy9BMaIs2C5uQ2dmc/iWnnp8map7eBnNcm6piuckVw0jqiVsflseIsZaM15WvcSARkFJrK5DP5zRNWN06M+UlvDV1JaMS4p+V6UAwKGPtVMaoEW7qeH0xxIxOpWHKqxpWY1CnMfktRUlbxNZhU/mr4S/9Metr+Q73GKGe5syjxW0oHpVmN4v/D8sc2ICBrsYlGXWuyiyJqqKaYi2/R/oJ+MR/ZqlQ2OjZUBsXCt0cyxvunsNWadxj3YxhXpnlq1BWojNbRrWQs0mHGg01M4L1jZ0pxssjrhIqVu2J0VUPSgO1hjrIqjQu1R+tg8BMmdhAt/nhKq1V9S8SbhXRW8WzqzaV1bFGI4h19RTGnmI8hJcq2jDD61udxplrfyxxDmeCQieOlVyGk3N1jfmXHfgQLho4e3twCw2FkKXQF0KWVB9bex/yUb0VQokGyJcrvmJs72TqmltPlRkuGnRsJGSIISEprdB9c/qjImBlU25J4EM7oXG0lfNhSYtniGfVCBoaU0LeB+j2BJK14DBunh93rMxvpUmeYZB9y4P5vuQooSLO+CyClFANNAjiaPj+8OkHje7xBUWzzKhRSDfGAlhfcOQjUWbahtTd5VC1hIYjlaMIv9mRZlFigNPXlT/TIY8akFFAHHYkthkTO9EzF/OLTp3xahKlVZ0RPbnkeXgFUUZTEgyZ1UnXmjiZhJkMVDY2vn2rLSLA+JVDOg6vuGhEPR7twSEy/xkxqOnBGOq5kzOFlyaEsQb1mXkXFKvtN0lQQzlJ7XJFRUU0Cr7Q5nOpV5SXtpCO6TLuWmKetzLFJ7VFXWggjYr6dziLu8/jJDQKWqPLagzZiOYigo6PyGHL4MZ2nilS2IRJa4zmfeY7PD6TnY1VPX6Bv6Hv85aNt3bQ2Gh76qfQ3j9FDXIo59ovyxni1hxvzNC450M2b3DKupQShnEuSpP3ZA2yqXYWndInZjxCsjyiIxKULPqd1uJdG604/I2kvMbBQPHojiWhzNgEF4dmPm9gvHRj4HJUVpadTSJpfqjlKElDIixa7I7r8rUxkfR/ziH5b/VSBB4R39agUHkzTI0aMkJu5m8Kb0ei3tp6hjGq45lcq2LYl9oQAaItj0vbvGT6RyLxFT8vKfIsQ96gZlVxYXB2q2x8NSHoNJ9/BSAYjzS8RbEJBSihrhxOsAGIb3Zx1/i3usECt6V12QqN0SJW21sYe0D1BNpQ3fPl7RDDWiyy4QrqYz/cBX/ooVZ0aF05kBZwEjoplXgDVYxWCIEsjLU8lYQSTHK92De1QJpVhwP+fT85FMvoqvzmLUzUaMEw2QALhZRhD0cxjkX4/P22T/bWwYXZCcpKuW//LB+YjKoLD7PEkXkNY8WEWPhOsoNs7BryOO4f3CUPIqjtlieMBkRbN6gtaVczLgcm1+XFHVKP96DeTULI/7Qs3FB2Kj0FQBwalWNus46EcKO0ELx73K8H+Pvg9U1hvVRJoNehoQ1kTzN50XjFMI4MXDBGXhZafioiQ/bSIwYsVMfinfOB5UUH7pm6Pks4W9/cqQkxV8IhX6nYHEIfkpqV8tAdn9nwRqCAaynNttGUAF3BNHbL0IjHCxYGSqiOQ848a9lS2TFUKIUXdQiZ6xJ0kJJa8XgrfacXckDod8zFBT/UUuyWOvI4FAM6iuRJrR3NdnseZ1YNy1plR2NTwq8hgT8OyuYQQkCKP1NbNuDDOa+cSnpvYZMd+s+GiwgZQRED0/pwbxxBlZbzkgdeo0X3iEJDXI6e8AzTUzFWq0GX1v43V0cN+/PdgoaoUm7L+27mkyadM4NsewZJMMrheVZfuas1TREDs/BndRhCrMHKDt8b3RerhfklsUD4LfRtQFW8zCEGbmMqPnY/mGHNCCmaX365hiS5HgySp5+MFV8OoV3sppcvj4A8GtTq2flGpQG7wp1q+9VofTr3UulDI0Bq57DGW/Eh9pxtdlXEYXI+tfxUnNHLuuJRShVeURg3f7kA3/PPMRe8kWQuqT/LPF3j0IcNnMb2YAbAb9hsM9qMQLxmvlohBdLne9Z3FCX3KI0MftM9Mn9y3zxKKUiKXhprNFF9NGy+idCgSjOiGCD9SFal6TY1AievWwU1SjESA6IiM5fhW7GOLT8dGw/oiRrnk8Wk+bwYuqPlFSWyQD4nwhu3gnGc7WA582PffstOiZHsOYZ5c42MNDniOWPaJK1m6x9jElIVK4cQrCwU7YqKbLbXe3ngbqG7Ow/LTtdkVBOFgBEYI6l63VMlQG45QzBWhCCcfWQFbx3hbJSSJxkzQlZGSZA00OCeSa7E24BoeOOAtVxUK9nrDWkmztCOn7V0J7EKaBkIcd8JIlBdHskPtDBK6WK2L/yEqGuKOeidgYRWMoJphX58Uqf1OCIUWmBCFbQQVwPziRmhbCB80lyq72oPUk1sZBtyGS2Ezw8YfbTHsNY1Gg9GNC0oW4WP8yzeChCuFUsWehFkTFdXJ9cxr7hTqbrAlFFVWSFOSl/4HmYGVUOlRVdD3soZt4zcRpbgU52ZjjI287yNIyF63mi9PZSwrjY2GavjAH1aZ1A2pcjdV9j2mrLROJd2e+fSs2zACi/NqVQhR2UnpcE3aX71yja+lsrl74KXnZuvKftxWNE5DKyDSTQQT/WrCCP/TvzUkcCS2jSsZGEfvyJuQMnRYlcxPVzjDT6sLMepXAi1CovHgEsYt1KJYwbGDQTpedaWlTASRsvxG4bafV+VPs+5Po3hWZy0cIQpG5xAAa8daeSu6kQ7E2fKGu0gC1nZFE1lvAemB9Wrs4FPRjXRQwDDtqMQDjrsHVCUtIo10vIxZgR707yhNfLN0BPji3j6B+Ovsr3QwR+ijPMnsYvcl6w4o9LLo6hmjxw7SeHLZeNzWWyJmDPiUeHRZWQVNLsYCil2msPy+L20VkLSgLCEv3sDFnoy+vEuLMIvb+gJiFcsXg1ueamfKuQCnN42DRLxVbgg/I8Yquaca1Un68QqLKUiJd1HLZ4Lr9T9tjwKP2tlTL+zYispTu/qce2U5327vLDRmNFawZ7rE1qhXzMyC5zf2chj5r2FtiYVSre1hBoemZpRq5+rv8ejoBnJ2pHDOS8RzH5CE3kdsCfRuOTeOQE2CHXw1Z52Z6ukpW8S+mrIMddpKKWTjsLCaBXbUqvURvXqq8rSRjrTSFPol18iIZVEMKRjHrtXTlTg1NHjyGLjF3hJ3jjmfx3dWP2nhULr51vhdB6fEShW+DFmWRh5+0smZ80dnxVlUgtwekaHI5KzMJjB8w/4MLERr+cLGhmWSHAxZG/GDvl6CHeQZv0K7xQ+AZ+7FmgECbbUdMRIoh48Hmg7XSKOQ4sBlunwqImPYLE8sq0dyxVXCzqVr6XSpTg9rZ4SjUdAOiAS0Yvz841r6QrH5hzRlQZiLdEYmjKIdBDpQkXSoGEgvPLoebQltJbXbEkeu4zeqsC5oCo+7NAZIoKWtGGnGu3qDDRmQjBa7oW9sazrJSOvGvHIWBWhnLtaRQExQsiyNAfLOVTjTfSY5IzVI/7BRqd09Pc0IhvDIj4BXwaooAmE67FD+WzyiLAye9S1kzfi2ixaDDHp2VyvM4TUuQp32vVijjjdUI0tW4EolHYmenz7jKA38XZK7JEgbzRuH1dTUQP26po7gvyumkiy+Asx6k1lfBiinjnlQD+r0r+kQqtTT33YZciCw646qyRw56flViS+JoKUtrENSD0FJBvimiq4SqKeJF4nWgcW5NnBqJz0lENtWZcIZjrUnx/wsTifZeJujMiDs6Fl2FojgarGbh5cYwCl86prz1Ay1U1Q2SKrAp3+Qtn1kj7TuCHWZDJsi8m+n4wEGzQ/CBzuRSOV79vroLiM28uG+jvTwAi2fpUUr8ZHLmQDXGHT+PKLmnlAFkql72ZWMqJyZ6dzPXzel++RwwJF6xthnbejjDDGpCCGqYNS8hgqcj4prJBX+CigHOZITkvoVkUuGSoRAB2hl4wSySAIKV5BKD6Dx6ir/vh+u21Nhc5opihLVrQsnoZl2Kag3obytXBHgykjn9bLXVfoo0tWttuUke+ltHssOLqq5fnhqTZ4MtzQNnUavo9UzremWnx0UkSxsNDH1T7UGVB4iDVpTdfQ/1Yd2TByqObDvHgUb72vMD8HiyjCzKOPmP21GuC3vqu70HpTsKEp4ks1Cu0RMmNqTzlxGHb4JqMvZL+kXXW5ziGFUeqWIThjxX8J06jZTGk04346Sx8LmMKzEZC0ViLuHnShj3PT4tqpMpmFLY2ZQXeEtaEr/yovxsCZ2d5YNYE7X2hujwHp1PyPtx0hPOT/NEM3b478uI410qJg5E6j7cqANbpuV+YxQFegyW5OgeVCkKj6+htThj656hFDNFCVsarQU3ieURcM5eVn2FDk9ovmR+SHRqgDUCjQQlTE3xKaeraboTKUUZ2S4Mipz7MSSCGrHm/y0RQueEQVH2KFsvxKGU7BkNtyNBiQA0CTI/QM9TP3xPEolSknoeYjWkqOKFOUCkuXjG/2MsFINPnB59tnIexIhqzv3B8QTaWFxrRnfZSNjejYMcj1FZP/fMcrcprAYX8UKDH7lK1blI56VrJ+R8IYjYp4w9A280Hgd6DUoxE63my/hcTKvs2q44hDmZyZ1cnFp4plxLPJI7RtoRWOTXx5b4ENkVnIWSfdc+lwjpUzNjRzxu2x1XEOjn5XR3qgfmNNYl6NJiwEKMgT1gZ/zxW3HKB1I4iZusbIaKmfsRRHTqic/CmhKm7cT6QpYo7I+8ABLXTSFtJB7yk0gqE5y1/l3FWHMhunvGo8GzEKt3hMaqswlJFa2iVqH4WPQykpfRRae5UBg8hYo+EvM2mF8KU2pf4jrjydA+aYYO58xYP+Vro/99nUZklFtAXYUGkbLc3DUXl2v3otmDJLV4ahU9GTntuBhOJrirL6HEJ9hjsxeaDUrsR8VkBg5mV8GJpXANfISJ0sAShvlvZGtB4fRtyjB85xPzUqrxko6zCLa5TtelbP1CjkXhAQEVXWAr7D9XC6KOHfSg+EOKOsEGq8qcIKdQwR5lvmRw7xaMmCZGQ1DA4ZKD9TWCQrvvZbM5fEIrVkZEoCIuUz/T5kWzXvwj9FSqx7XhRtsta8fw/Gyjv4geaWMo/ZN4fFvPVy+tXEUB4s+1RB6tMgJ0FQxNfDKpvXAHaZJ/NmDBufQfr6eLHRi5pHBZcF/BEBigKYCpYD5dx3ce2Z8jYMenRugWADi1yIISIZsKRhZXBaC1Hz85GMaEQA1+nIwHHHND8nJaUxaljFC3miu2/UIBDakB5nxMy4ga4ZB1vinNmn9vqnsGy6HNOsjouD8mcE7FBHFCxtKkyqJN0zZOVNfv6dlxGGPYTerNjRPkKmmLo+ksYt/SljqBiWUhSEFUC5INDJffPXogw5H9BwWK0xqutxDTae8SapdahkLSNehZ16Sd1Co6maYP4xzvoVP+2QMEcHvi2WtczeKXS5yk00Qw9Hp3/nIOh6RV3AyKIR+tWnKkRDMRh8RmcsYm0EVbdgRaM9rn1UXJCarrm+shC1hFko8DWkWNdqdHFwHMNCofzI2AsxSmK+KPvQTq8+bOopzOXJjLzEQjo/51p+FZvhJxwKlnKrxsM/TcZKk2Gi0z0hUhTeGfx6ZE2mo+yVKM/fkDiSFg26ev33FkKOg82JfM+rWI9HXg3ZYmhRtiPxZJj/2C4EqpdiLXYi6nK8rV5au4ZyQpuZPOEYy1MXw7zxT4zA6IFGhBd1c6q6PFJvtPLWnrNBasNUi1k+H4eoIWM6/Nba8KkpT/b4RkX0KYEBgTUdxiJjm09q+dYiWDlUanC0nG2p6sQ8r5MqIqoSnvJVKQaDHAPKIhrqe9p8lZqY3JdwyQgoPehSQrdX2HE5GtfnzJE4AfElXRJvrNjgKASihLaaRo0HNODh4n0Fjqmjz5BB0NZ6K0JFbImcnbEn5s6UlsGyMLYth/M2anuWMyiwvgjslBEyGCuGbVqTOjLCcZdTk2HVTX90QN1KdoNV1OuKOHut0cD754YjkkOI4Goiihm9oUFAC+35vXdsICL243oaswmNj8MpWtds7LILNchv1Vl7mPp8ZSmzgL6oOOHzOubvmTGyci1k6HN49Wfgly19GHI6ORfmj4eexTO9KGzt5mx6LuiSEEo5cI+XLrh1VhwW1v/8sTJDSN1yIbw4M0YnRXZSGTZGndatxvHzM3e0dSmG/9WPaDxpdpaLjg9anYCuu2Xj6+62y0Uyc8kOK38cKBgLDcc+o+Vj5NJg40p3Qt1TnTEH4WC/5259wD8bquwEWQiU/sNLDAanSI1VQ523p3iPGaP0Mn+pdl1agh1onW8HWSDqM75ckbwNRDFqTrz8G0bKv/0BrTlUk+phDcphedFUJyNXMUNlQ9uDX0nlNoKTEmaj2T4HS0ukWf4F/lq4xHfa/yzRnp4hq8LgJUIaCVrl90Gmv8r0jI31Clts5j4/pqU+pGy+ACUwjJto1coyP25IYlKC7jBgHWWHd5wVmSPPtNRjTnHkiZX5elhjthIS9j0nt1GEvq8KZ7apyxE5RmdFYMUjxfSOnUIbIQPpNDyGYJFZdYigjeGWRh3ea1rS2fl4jkYc15O1UAfQ61Cv3KDzOJVoVN9di+DUtVv4mscjhdGeLMsz1e8xN16a4e5pcKUSDHYAbJwMG0Uj4aBOftKHf2GVOw2+H6GG1mbD0t6szfEprdPTWoUrM1xCysYnhCtESC1Q8y+V51YIGpoFXJOON2Ph5TxDyoa+8fScCGqlq83PSPTrAIT6iz5C8p+pPZSWaXI8mT1agFbVW4lCI6Xv1fouY1R8Jp4GIzy9nf/kAW8MiPMKFVJcAYBW53P5hEIhreSSMsLj0I6NT1LaeEQNipm139mAaYb+FBgzTE9fWNWNCgsbCuoSVBMVHGpHw2RN0GYV8Q2KQ0G2SLSMISQNUgoF3TKGOjDLhFS4wCxvCZ2MOqCK5UBGysmoEmXiSreVsJaOeWuD2ggqnIK7is9YWJjvSVVa2zajscynqrE6cXc+G8ZpG+tfpk8Cc2r9KqvnCwKaj7kE2WCx10dGV+INQ1EeGfId4PRLXhwqVQMebpMy5l9hzxyfVmpGIaIvM3LFaEa5cha7FVaGe8xfoq824DBIK/Y9V17qV1MM5cGIqIq7lo1WIqi8NZr6jEBTn8orEdxCno6BqWzXUIU8JJafqityUVrTKCH8bhgqQlKsQD7st2IgSaiTsh49+JxNNtJCW7haH6ozK9CcUCfT4UJKcgZ+fR3XHYfD96U+Kx2G9Brx1woRb+XcI7opbfKQjSEsvrdakNWyVfPi33xjZC/T1E+1c65E4b+JU7a+NNYKEY2SPEPmwz8rVT3r1tDwqw0CNAjQLholaEM2QAtfS7hl/HHhryIdCdL2scoDXRkq+s7tAOBZizwzGOyIz00ZvEOc8Shj0Q/fyoaVllKS4gu9faflbhk55d8dhYWlzKhx6tK9kaS7+opcS0ERIoJZIRqbP1kT+FwuOyPRTnC321NXKubWWk/5c9VQQvnmLF20LKOOaN5H3HM1YnPg0D8TSwWDOR4uttrODqeO/ay7FDO0QjYAU1KfYD2lbj+WadzmL4x8lIjviJBiXBgpCYNxny/J055Wt7mH7O0YibSGxvbWWczXcgLRWJntMIrcgoZirOJJXX6sfaI9laHMqBOXaIWpVuctdViqwG0SiEFcXqL8zsAc3kHSTKHlrSBBmZy7DartjJ8k1loWS+fGIvRcCzJzfBwNbDZmI96/9aKDWtlWsATzpsfjpXjPlWvDCkaWykorQS2Z1qqfKMuMMviQRrsW/ZjMzgE1gTu8rGJeeR1ngcPJdRTnTF5oY5qnwKtpzaL+fFqPmPqF8M9+1IJhVQ4C20MhvVXBoZfZIAoKRVotpSviKDPDVXOK67eOepDsnFmhz4yaR8XRgwQq8+3MslTWOwitIm8WK07j1SteOHTVWpHJ+DtBksyxzN8BUXUi1dIGGfln9+lq5mky6B1di7jFvKi6rTKSCW8ovcQKJNJRtUASEXjj8LTWdwj6OyMBoMHqRv2VNIyR58rLijVTaQdFuGqtZDAaq/mfeZaoda8OfxtbPuf2f7WfaZ5W9oeUSbtetSEe64jSdzvoroHiGnwZPISTEo+kAJfoL7/JYOSD5vwpB5FTDcguqIxwOSOQysXqqmUUObwgAzVcVpfzGwwZmRytvZIzZuIpsPbU7/kNIEZTR0o4SGGXhXreWAlqdOUXYJp6+XlVLuFcTj3mI0IbZ6HHPrKKa4EtdH0O2pI40uKkxklIsw8hBAHg15y0P3lUWyZ0vM9tI+R+1wCmzVx3zetIC/DGh0dpaINBrDzCFGKTEkz5GJHWFG5NeqrEndHepiMmf1mAfDLbwpJ8IlZ5R1y1sMszIM/c+YWNY5KRwhSVku8BUojqHYQ3ejBDGfvjME/MSfVeSLIxz9f6CmWNHNRffTzSCiBx7ixQ3tIhCWmJDOcpFGNFiXZ/wiiHkTyaue/5ibCQtDUG4DCNTEDtqD2YCIIk/mdQVJ2jxS2KmLXaFGuH2nV+PVmn2sFQ+7e450bCxipfsLLizys7XkPrzktBaX8BEt1IDnoq4oV7KiJhdixiCsIQDeSw0scpcPrvYGi8IeTBKOFOQSskxZWbaPidrGdS6XJ5oqdYvxdDBEJt2eJKoaS5HwS3sV2zMVb6nZmvJclekuqay2qraq+I6hsrzscz1203yY9wOJ6f7UTQdYys4jYWTfadFwE4nAaHqsrK+iB+bhYRKVQkvvAIhjweD+08JYmIGzS2skL5+o6jfrzBqInB8pgj8aYrhrXlkdoalfV38z+rtQi6ihqyLMp4Idfcqi1Rk5qqlaortZ2ZSguNRJRUarOrnPdyrUndTr0soREaOgvGu/ZJgUVX7KgzUJmcVsgf4n8NIsXArvLAtJ7CkuYo6MnSBlrCPvtN5WEGq0JrEW3l9kL9hSjhr1LCuWJi8m/xaCobLDvsxQyiGQ0tY1LyebT+ik+B45xWXP0Ugy1/BPMKwp8VXLQk7/PzkirLMhkRTDWG7aoLmx1PVZwwVG/eo4fd8oBUGZ/9Vm3tDuMZHWukjWUjXkG8Qt7D10FHncfGVkRhUh9Z0/yI04V5fHe/dSwYts+UGcwhWenoqJHhN9zMoYKvxzyXSHp5KyjPKvZ+vhge5K+0JiH4ZDNQkbHZK4p5+YpmOnyvrNIf20ZAoR2jTlvAmdBU34fHwjHS8Kir0CZWPiOrehV/TqCDpJLXlyeeiAVoGU11AkyKwcr6GGnLH9/G3EAnwNo81k3HGGO6WFdLiBQ+4g+aLjJe1uxOXuPmQ978g1MVfjHvPMxWoyeeyapC91bXI2KjfmTL7oAYKahbmhHGqMlNHRvHSF3KkfZ2zdxOjMbGhq1hZM3nNygYGWekhaPVYJVNgXUHqRu1K8DYXI35JTZWzghV9XpJG8bfTi/ohOXCmBaP1c7RV6R57jrkOo51XpT8Ta7Voace2QCrK1/KgQ1bbsaYmXNbFi6oM9IWSmQXk/lLs3zlBNC8Ih0pBOzQdYa2mAv5JFGL4LQt9MJfpIR9Wo5GaYTppUpCK43wOkpOu5LWdbrB+hGe0cRPV9wgPI+U7yrb5Dli00RDjWejIQysqZhtMtA3EVPT5hdHF2+S7giDEraExpP4nGtvJRhVfch6x2d53EbqpDc/M1nZH6u73klWMCG0bCvFNcBA72SkMeDqBontBEtzWTMJm0Eqq+15v2L6zmcSVQDEWi49tJX65D9inJ4XsboQQMH8GwyUIa18rfylOt0K9/xcppeQTOF9XPuQYFMJ/5DPSrfxKeEf1EI/GfJXbhwELLWVAogvWDHUB9NGe5RFRz5WkvUcA8LJ55ySeZi8020UFgevTUkNsEgWhqqFoW4evKDcKQ0Qg+GCGBr64JyoDmFvsXUBFFT7Wt2YZJr9yjPrRtMievYSUvcSaHW1QtDWOe7xWUdPXXWzXFxoO7UCpphjcWxWKI0QX9vlY44iHoFqx9xWDTloVARJiLxsxDQKG9elvj+8742lSFmJtFKSoQgxvgidGadcXebl0LQ/MYG7BdTPWX3Gn2zceknrx4txMn4J/bXNypyfYuNmPLDnzKi2BTIOkdDGdrs6jEEr5vFBhFsoUIyvx9nGbBaIGrEw3wy1i+/E3ChTDY0ghMQJfuTcSvX+wADpVzTCCqxq7SzJyFiYRsytn0vyOpYWjEuH7NFgdHxHXyKYGvcyI83XvdRap6eGpEbSXXEUiiLlODS+VIGssQBxBXe5kQe5oCLupKBAqRDrGpqD036HTCjbzhuuPRMzYtKaLuVu87lXRndcre6XZhhp9SJDPuO+NhJOKJISlm0xCQF2HQXfpADZSEGG18FnNNVlY9bRwcVmu6gxCgGlGrV2XFiUdkR2iEfR+TACdvuciBF5ljiGau3P6jccx56XvnLUkGrsgqradLv1w7s0NDQqBmZaG/cRkyBwkjf8N4dyUcBIkDyvRzpetWTQx4Idj3LmMLA5Ik3LwiCA3wZcaA7PJaWaqs4RgorfgbKMnBm5FMSStdWMQHypSdUHQjtxiNrewnvigUQv8Ej5il7hEn05sc3PmKEb7nXB2ysrtaYV+zmsLPzhAVfqvoW/Fh5q1ZsOQL2Pzy87yEaJgeOQv4KtraLvbjMzQHsJR8K2Eh83XtZAfeVjZZqRhOuZWDWs626qr/VEi8CxS4yDGkiZ6K8QKssL3IIWoygSxSiosj0aIlqK8XgvZ/VpHMU0l6/5Zu8vy8hP1bFicz/j9K700RXv2CSCR0ct+qYaBtTDNRdNoilVoVcmB2k7RjYGBTQZsgp+ywty6olPlNcCandqxpSjixvhWC/akmn/wpZkkhx/uG7Jxip4pWKwmRb/F6GezDMRf4pCCQHzwOZwLBFrRihtN07GKe4JzKFYNjFStJT+Emgqa61yKFkG0Upki1+WuKTEu5Mlfr4lM6tSGT7oj2QlI7amNjc13LXojyEy4tzx3Kug0BxqjfC08a35rIz1wxM+koay7hKbVg7tG/S0QtYVyGoj2xXQSVWtn9nWkTqnHnUF61YtPY40tOY6qHqhgLNsISGw7eJ0SWtsfM15g65LgmfPn4REaRTNi9KsJCPAMFCmVPZcM02Q2ogTCw5RaWA0oSvnyVOfslHvsiEqPAuD6LbMDHfLM2nt02DoCEmJ4Z/8Lj7H/sKWHHfXw9wec9Zicf84tFrNkseVhLmMY2v+u1kPvRZK6yKVMs4lUOyh6Hl4gZ5LZ/gKR40LPTs/LGtfb6UZxrji0ONY1wOhTvTZ2Y+FdyOf+ca+kb8uzxjK9Y8ops5mhKyFEYmkeH6HtcSWqos865VgdoHeKElz2/xqg8IoI+46j6yN0/M5DGwkhEa8hzYHqbg0CGzKO9em5Z59bw9QVJJhK5CFSCz/nFB3KCcZrU6sDCMr8PWCtpJhjAe7kaGyZ0GhI6My3wtFNpq2edpyHeLbCWJYh4y2HKM6jUE9ikVpa14+JYSEUZLVtx/PmBsmSmhd/0r5HyrAVZfnK+sYcjIkf+TdiOzs2GD3SAOLzjTSC20JtBSLNu7yAHmDHz14K5oZHxPfYeaL2C0+ZqdcFi+vCkyBzq22LlUXI+PDmIjCalY1fGs2VsX4aX2Nh53jbBbk4LGE/iOurFQC5UMI64uMqRaHHpnmMGRenv12X/KHzUFmo2TdCKEfzCjltVO5rM38BQRWngEJO18DnOklA9WCH7GPftuAf6V7ZHn9iUZkZN1eTA0UpitMqqPKaTnw0NM/fnhji7QcCdQyjFpPQ6qihd6LJIxM2TEiLF0r9+xoouZLuDWVaXXK8Wk+YlsBao5/dPTH/F9N5EkGew5JU80Sm2rS9NdNsY8B/CBYA2LyIhhz4MMD2Vh15RiPvrUaOnVMyfp6Bz0n6ielz2UdHxyUbz07znCrmVFKg/Z8vayx4vPuOQrLaIvRkhlOv8jT1lS1yC7HGGdYncPBUmeml96WLLThOYRN7viYdIUyYY2ZLmNANEf86gs3cmVpQc11j3hHxmxECAYJmzOuc0BJZairsLBR4dxzZ0JIR350fuDU6pUDQ1X9dXCXvyb0NMY2bddZY9W6AjfSjFznMXiFwZDGrSlDSn9mEXVOPSwvtUUU2xovlktEZUj/LaFO9AeGgdxzWke/bAjGeCCgXvJKezIkqbJyv6J51EL2RCmHpOKeFdduRFi21ipXUOeibAaQl0SwQcrGkQ1UMVK56mIIPXKMX/h4Pzfw5bXu4RHwsxFPUdkRuNO+rPPvN/atufTDivVHvKdFUiTmNFdRkb8VjHL1+EheiFI0XE/McrREsUVaTl7YCGj7ofkWbC4Wsxz1KvNcraItR0DkTLV3JZGTwfmaWgFfv7bYSV1kJ2RVe/jM0UXJ6ViStb2G1WqI75Bz7QYmlB4xIggoJfK7JP4NgPpRK0fg5OrY8FnIppRQK4gmIJCuPML5qa5UZcsdjNOVscprVwS0PzAPli1pKKBaHKnEJwoHKVTR/N7A8nA2XjUvS8tqRrfStqDWXGaeiSrKp4A0kHORN5nTZGmnjeybIheLNEKbUTvGYhfkqLlWKTHDSUlw/shIJveF9Kxpralr88yKjO0SmPMpWik6B11FpJrk3UKpcV6mDk9nfRb8off5HXvmH+3kKJ81aJ/jAGB0diRkccJpCpb/ydYwh0R0Aku7TZZ2h+byDylGYoxmXsCaJwOisar6JNQ2GS2Uti1nZ29GtnJmL2w2MKMzn3xHeI5zZeEIPRFHpy2LUIes8j2u36m+ciGPqKo8VbBGFSINAxWzV+X3S1SS9odTGdFhJy9IRiv7APGa0ajW5NL3x4/NXNgT6jOOhZeeCLeZGY6aPyuyawS5iZ+6aL2a3v5yyXkxdIs/zJxMvzG/QvTZaI3KgWKqfdqs6/IcHDoN/8nK4LbuaigLeMZHgksZMpL5iWJhnRUDkeAbaA2KZlRjhspAiQXbplYtrxbRhvGyniagJG8M/dAVJnTCbxnmEM9+g38zIuQ6aXyGazaDVL2Sy/3LY8vJoDp7YpMiZFQI8bQWinJYGytsOxW6lIeexkJGyuYiYwgmtiMsL+0inkpnicfzmrF9l4+ifM54WIbxNviZpt3zz1Us0vk2zNmLMfsyJ1R3I+2OkE6vCBzhd9ULgYuOVhxT0t1pfuOKCtCplCOGJRaG5UwYwg7RgF+f5IddiTG1B2YoKKG1iqvB+1g6iFBZ7psmeJoBAgmT7xfR7GBpe0MnGzN3FA2NdkcFPWqyIY+ePRqo/L3kqooRU6ozGLfchhg6HIwVGeuGoWoKVTB5zbGzLtu9skwl7+/Mg2Ian9nsuMahIDuLhpLVVgNt2tAyTiy3ocAcZc29Z6TRClbrx01jzBlzwNt4d6e2eF0buSYbxm3hUEuwyXXYNd7eWLsrfcr4anzaa3wdg8VaytacQVJm6F04IlZuWKjIa6Yo6ZtPcMinFeT7jgxFmRHMyjx0pM5WlCvxRQANwbIFZqQ11R7CGJpQVRoWatiNipHxNRc+rIOjoYNQ9DEyvELBkTNo6uuWwXDZHqv0142Vf5moZGMN+wuqz/FUmcYoJu1j+Gphkjm/7ScrpNMUGX3SjyNdaZ1nxfkTF1kEQxHSgURSO56rnHQgP9IfkVQkpf6lVrzKA61gheYwbuWRYdSd+aY1j+IzLhU1JxQMfZDqykvr0tSf75RCyLQvyVZM6zAHxiuOk/LYVhsfGpQd7sny5WNXytiIVkS5v1VvzIDkpQ4GT2vlyEfOR2+eGSyuLlTMNDXVqomYM6qOKQ4oyskDoYcOft6G27Ez161GFxZKrstm/ko+SxiR1djfGSEXJeaxYloakjginAWlVgX9KvjK8YwiHXNhzYU1wZlVqbVUb51dC/v1Ghodo4VyWwEZ0eQ6z6n193CpOVeRaXbHnRixfr3ZnPobw+YBatBB5ZIrVBZKtCIR5UKNcNsWuAxU1XUoIg3TfIRvLUypM3Te1bDS2gtPUZ5mZznECh1VEzT4J8ZSS8iSpFEnWgaeks+G8jh35svl9xSa4UihbJ6p45XsbjwN7o9tw4iLXcs/qY1ivm6IC+5e+Z5+dOLrbW+sdV6miIJ1JT9RLyKpsVXsXLgV9jppo3aC3J4812aUm3pLlHJP8tYpVBIY2lBrWkZ7VT/XmPqyYEG98Uky2qw3AKrA5PaYcX3cXaLB93U8lAuEN/gcSArIND/S5ltb38twNzpbI2d17cTPtNceefOqlrVE1ErunxpaKk2nUKVrCjjcuozaT5jhLfmEEUqdcoUe1gaE9UAofULhV6OVfIKpSYTlyIQrhSlJRqA5zCmhGhu+UnEI85AW57rQr5FwJ8PF6KpVzv6wgcpfTaPqDQBKVKHkwOx+HNnwcW3X5arz00Y/Ro20b7Wa9X3kr3MM0kjTNSVFUOYHMC8prxPAUDvX7y801SMuBeB0S3zzUfVwrWPjzmk1wVsuZ2VrEAEH8cpWLo31eGfNHwsJ2XrkhxurmPOqrAK3kyHrxA7lKMiGGdtkRj2dO7ZXzC/qG8HRebBK38OABzQiQRg9uqCNtK7l4YQkplGSgBh6Et+WUO0UqvH2HDN2pihCdDujFY0VQMf+BoFsSLqfLTfzGle5+z6OiC0ZQlNycaZHxoauESrE9lsoaUyYy5iG8o629Ks4szmf/AyT6e2uoCXDw3hJgUERgErdCEbtygjrrOiYMSEoVORxvMPN3U4jTOEXCK/ozKq7wVo3jFXrSq5jmuN5AECvBXraUIBQRGAwSdJM/TEnZVsJAH8qo1RoqiAbZ3GtbXcGfEo+sy0tAjWY7VJvy8I3rT4rC/XLFMM2fcdMChutwhbXDq04l/gM/DVephB4xeCWy+R73kBnjgaDXY1dCxnXuSIZ+Z6vVDmvmJsJzqOCxCF89eNgENxV6SJKj+Bb9Eq0DHOOCy4iJCiyy6mRunyqN/+RmqbKCs07yqFlrFphpnIeyB5k8l2YzN0PXfGi4ZWrLqdzwsLA/D48vOJnPpqbcm4nM1JTR81CZ0/Jb7ihlBkLT14kKfYyVO9hxbVXTEGVzzBBKQNMAxcNi/+ic2Wh4STtZ1aSWDcIPRGhNtlg9HFuSoLIcjulTMhldalARFjDXzKursKo/I1BF28HsnbZ9hxpKpITZmlVK/WNMtZEZ/lN+IvD06LsHCZ7jMse3RQzaKIbS7DN84Pe2Czt6g1bLbxhDnXRg47znuHEmtiTxqcJxVpGQlH13xk41uWqukZtak4ni0QMNRC+jwQ9K37G7FNjqROQXvPVF8NA3VNbcZ1Pc7AZEsBWxbtuJjs3HMSr6NHlmacGKmVhkUykcG01/Dc0NdJJCV+rQaeLhF58qWQswgkN5b9i09w2Y0h8QTzzPqIjj7i8MNZBUea7P8SuerQ9e1S0j4S2DTOre5G8BrnEVf/2Hs3840WzDinXRsuQFa3hYpHNZCYgPXYyRMuwRvmqJSJAj1FB840KgoxWSecWNCJeVHBKRtqVCu0Ml03g6/RFrj+g23zk0JgHCs2OidRK117Sp4EkWktMOnW3smHqoVD02qPX3q2WVwA97JoZs/Svz3+HMr1qqiMfcAfkmcnhXnr7Gxm/oUoTAw1yUIYgffFDEuI5NpDRHKzk2BI8jFtdzKywV26EPEmpJNbLMZOL4aWy0J5EKQrPPCltryKx7cPRwI+RWTv3USFjTLyunmHtCjcDGmw57NHmV1N2xUHWRjli8eiTid65Z5yPBNTaKFFt4ie+aruvdfk5Y07RirYsT6OTFeDMOibzx0ZWuh4dxSoHPd6a5vVRvj6jTrPWDXEi9YMH3aarBxSd351m/kfTbGSX9yam+krcT0Em5zzcgr2Amoq4a7hYlHre0a3hkdxfmSsCPsKp2Mp4fDWjm7wd8cHFFeJ/DnbOPCnbA86ZzLVbFZgyZFfQRg1Nax44dz4SrjiUwh3yheIZ9kAOrUe6QHP6rYjEby6O4ePIYFa/G3CzvAUaJustToUhjN1uh5bh+QYJNYrRqhGOQFW0PYo6T0Da5Kz4xDy0u9KzBATjqwXjp4MmRFUBhMYrqhxaImTUa1EalHuAFoSmBY3N+h6zjKwq5AW40yPUEeS/FtJslqscd1Y9l4zmCBMkfm8VLIjNpGk8q0BISRqNUA6ltnU57OTnaEQ5BGwSOuIyw+79ppEozqUxBgoz/wSFXWt53Fcy3PoSf7fGKlvwkXU/Wl2RuZa8xnqwsGmMppeyWVvGy68ceIa+r6IWw4BjcH0cR9YyrasaIlFdgWcGclrRcFNVwmfa97NUSri+9JetdniRaGis91WUdVsCoNc+PWJ5GKWpb4HQK8NyzF+sZNL/RAu/eoeRYdElv5FEwbkoO9zOoSquoqAVX4uw8pbSbLL877mM13nDn41v2HLEXnvsoDgeF4owfTv1+WIx8xG/OrrdBrxoQEfOdorZb5KGaE/HEUQ9VkWx4g5kaSm7tvtUcaf1O0sqoxfLi81NUcXhbZSZm4sDIFRZy++t9hSHFhod5Ue9+XbFRzynmMC6UGt5x2re2djN+llCQX3aPhMnwzM6IajmLGhGWj36PtdhBa3OAT5ldJaRV99bLqugMWioR6hd859RuIp48Xk07n5ANaUu+zeEwOJe2FovrUehT6OFCJCW9NOflVXcTEA0rp+wtuKYO3ChngRXm3dArWivwa66vfI3viOQ/46FwqEBibWtQICOX9TmTW4r/Yf833jRdpLH1tVpcyyyfEe3I8RYL3IRhaQyI+PcSj74H+L7yHTpKvjbqLs8patDV47dY4VaC/1WR1r5TPs+bXiWDnndT5deHYmcXyhH/Ga0MdzTwtEcxqQD/0QotLGZIDd0LsZmxVV6RVXjMLCmmzDE7fJdifa4ZguOHnG5ZqFCsSkWuogEKnQRH06Kw3k43sOosWgGBNWeS82pryqWNV421nzRBRYqW2w64uILM4lozs846jPjmMAGbskOSOCPMA4aP2+p0tjHlvI1UHEhZcTzE3kVQmuhGI5rGuNRlLFKnIVyjcvNsWABGQOMq1R+J+usH2V1wHhlY6GqxWPzWWzPNODzCvBt2i8vAyKYTIYB0GRIOrcIgyesA9dSGT5SubwqK8hrTNlLOs5Ge2KSDOFlRwNi/yxUzM8WpYtykw1lFIgWHuawptSX+23XuaKhbg6ZR5zKiDzH4XODzb4+hw1h4BCEahTZI725uKn8vJxy0NTSX8lPBwtXkwFoXukfQ0uTD0joYSUbgW6ml1FSYGgJxVshJV1bTbhRnHHWuUa/4zn1K35aMVxz8/RKb63W5lejvNG/EImvOvobM+yj9pmtc7O4J3y1RrpR23R5aWlAQX2PbtINSKvs/8j5ji559ZyXsrxNRqyehvrtta0xM/mzdwuaPNpWmZzc71j2+UWolPOyvZAkdUpGpikK/rXhquadnYKBFCQbaon01sNVBY18rIwLY1F7N/Ht0xPht/2oA1j67RBEgyMVMqrNMecbzalkx2X3CtorcFJC/1rxgRiCBLwcFXKIZwWlaVA0T3kXlcP53XziRQjpbcDAZ9+PC7e2L7UW9Ta6v5LR4fARJHfDzxq5MepfPVDlY5/a/WzRWThHtqu2qw1Dvar8mz03XV5aTidiKrQXSNeh6zpo16GT/G6p3nNOuiKK7Yq9EhrM1oKMukB8PjImM4tfvpBZP4PSLr4xT6fegIbFn+0FpWHD7ag7rjdCxNAwMrg0RZdsyp4OdkPt0d0uAQrFAXYatVczr+DHxYlu5j+fcRa7Uk7V45AwVxEQVTYkSg6gLA6NSC00g5HrinwQW+ihj7X82JEzxLxPG+VUhGWHmn9mR9lC7OrrHaWBTwYZKTQCapttFhtedYlRj/gUwJykumuWkW65aLLHIuaOuxslPt1RONmfOyz0mc4Wl9B3HSaq0EkH6RQ6UUjfQ7sJJpPOVlpLF0SkL7mRLJrVG2gcBLaXjpbzteIgSt68XLCa42k2nQLKf4g3IuzNW2MS4ay0BBXtZ+eqQYSb6Sc7/tZLTaVV8xyJbR1cl8tySOxvM68DX8kIqUMTjCbh0Ff9Eq9ad/0r2OH+a/0ITi4/l9uoNlfDa1MjfKkW1DfoMyc68CpL5+gwuzPL52lVG/k2jXIjTF/Z0IJOv1AjpQlYJTLMOVw/xu0PP25out0XEL//v/2Yq53O+h7oh/VS034CmUyG8LDrgIkCmFhSXhQiHTrpK04Lw/TYlJuGouNzhwdTuexxkujQvp/saG2bEEoI2aWQr1dvAJQWu4KuG4NT6BHj/2AovGK2IC09E8K5gqIYsZW/g8bY9h4bFN7w7JqOmLbh5SU8qGwgK+WuXKcFcdmAFYMuzsM2p+JLyBJPYrXCLRTLp0UUZ0Pmo3QzhHxzPfgIeZURd9vBRpAT4v1VaCXb4qrO4CCt8/VRMy4soMfCJXbyowtuYXpTE/dSHHmMrcYii/br6Km7TSrbC75TSDhLKzV1eVDwbtZDJx00GS5VRdclYzWxULDLCElZfEzQTegoLISWlJJIenlqCf9I1WmfIm+qjknRHoph36K6M5wEsNAz7/tTLxsKdRC2jgJNmM37yqgmxCNfavRChCfjKy2tJ2PFulmQ/JhAsjJnhFJ4Z30caNXx56u4OYZ1JIJBEX2w2ugUoxr/g+oTV3UW4coqa3wuKnUdnDTsvwv75iMbXflyCMHHeSygBFldkc6tpfnxDqK1Ho4P6hxlU1WrzuNLAKTu/DBFOZOLKag2UUu70jGypsuq5dRKnc3QiWCS1kcN4aAO+axJB9Ee3WQCSIc+Lz0AhlwXQKghBSdsiJJByetChNlKxmg4u9xehlEvTfFopEePjIMYJWfk0sOrXY4VynILmLxb9TmWEa9ceRD5qJF2HFd4H1eU13A8txnEU+FnQaOMNUc0II+RyDGHFE2VLqF44wQyflNEMKRljyUtcPRLVCVWxiLTGl6idyjoDpdMORB+RVybFyM8yNcDwokFHKCLyKfRptNHHdXH+icBH+cQtDHeYc9nIZ1CQAufmYhUMO//JR60/XA7moi5p3kGba4TaKFYbagVfaYqQz4pd0Qh0Jmi63to32HST6CTYVNzl/JZXTcgpa6bAJ2klez5f4DPn2S/m5GQeAtcUAOFlEJM5LpKbmP49OxJQk8532EnhFLei/IcjoHOcwc3Lg0lzs3TDx962l459zZtN0p8trwJS9MeehQ/OuCtEa8ByLgrF6cl4+jSI76WNnPIOwb0WxeSi1FSyIyMa1jWZgQaCG5OuFTfj0t5GiFSuFUA6ny4FuLPuo6mkRzrshKKBlp+ZS6vIlidS3pElCtAwKgn5cE525rmtT/tE5LJyGhGK1t1Nmzb0b5PifkJOlVgosPRvxgWmQ7rtwSddOjFUC9PoWe/m9+0a30NC1HzAPCYUdLVdYhX4QbmcThqiwgFMxnMXBdCSM8wO2KW5wVFx4fT6YX4ujzh0tYljgxIYpX+M3ezrNTPRmmqFCmPDzG+cEVSAp76JNWDHklJWjAsHB8TTU54s0KNTum1EFILCtDAu5BZfPNNraT8TTYWjiGtkHX+x4dQLOXzkQjmja0rt8pAMTreSofE3W+fc9ZqiTymxuv1w3OizRGjNb9/U005nj7hlYnm87HSQcAzDNPeKWybaAftO0jXQScKTADpBiHtEyO6IXkU4GNAFxGFhcEwWK0urMvPcvdsDRALmjqGDWzuy+8eKDNQ2aD2ml56CnWKVeaQsodXu+lfIiu1PLHx4rQNfTd5TcE0e8umJazfAcmpkEHntC3cHKY20KgTNmf3aq1qhVnRy/swKRgRzDum2LunTIKQoLfIap4IryPViwAaJ5BG46N2p5ll43DRM1ZNygUaeG+NN/Gq6nz0FmlfETJxsZaszKlrBdtZ8tWrKFs/0y48tWnfAVXMMKyRyjmgmfboVTAZuDW02yu6LuFQHQxW13XoOkC6Dr0oOqVzz0u+hDTAoEPpvMM7wsXUKRczsjqIVhuxt1joqCTlPEjZKPYkdV3JdwE2m2f1d2RYFEDH5ktIiIUHjV0Pv5zW6BK0BMifkz70RUuVtX5JLXDE3qYAGofp+YahkmhoqIz4hvIJou1PQwMaYVmQjJHAk0q5zdBj7QLz5h4qNDpP4bKchpltGe1LQL6RdalolaGI7PXqM/4ZNaQNh9vopFRfRtpdrZ+YE1fOM1YAMJWQqFMZEFanMOMlOix9EAGWh+IzEaxZuyY12Q2zfukt0l3XoddhaYQjrSRkxQRZUzjaJUUtyxZQZiknk4mhjnQsTTfprLON3BJHb5JQYzl3vRRIcKSjtWMeKROiSoqap59hJ1QUhJcVWXI/DHGZndKgcPNdD++XrqKsoLLspA0d2QsyCoIrT7a+ZXLYNdJfRonlTjagFUlJkcE6UsJkf7qHET42MzUUacXTjjzb/ypGW7YgqnmyiHhOY9+031mOPBx2HDBnw+GSjy5KlTnqdFCax6vievlehbcrfubh4JVmRlu1iKd7hFf+p1b1zDtwpFFV+XRTHWblRIdQLitnL8BMFL3oECJiOE1huZ/h/MsuwHVveg2mkwlmy8vol2foZ30xJvnEUlU7iQEIIVsS2p3n7sR7fvLd2HnOzhKuZMN27kXn4jXf9WqsW7+2JOMvufoSXHXd1egmE1pJTyeecmiYbRI4T6ZFQDdv34LNp2wxI4l8bld6jkIPDW2U01IJ0fG5XiAlZjBZhk5znXzfD5FbvkZIuPpofV2j5FhBZo2diqGhOE9ZSa04LnXE7StCfa0TIhjt+v5qxShmBDkVrYlWX70bQ6N3GOA5wIs6adfHFLu5LovEvFDZGAMuK1pX0yZmXlhO70qYV5c0miq8YYLbi1Tmf6KJGudz0a4xvjc+XScdJiqYqKQQxz8xw2CwZkm5+l7x9h98K37pf/9FbNy8EbNkrGZLy/Z9NivoyB32V4zWQOGahTV494+/Ey+75hIcO3JsQEp5KYQCr33La/Gz//CvYOuObYAqum6Cd7z/Hfixv/6jWLturdONKN/WJooRyrrZq2K6sAbv/5s/iR//2z+FNWsXyHjYIXRKdXG92bh4I5YNnlETZbS9RANOwVrC1fRT6cxaj2CygCXEx6Cx5Q3NZ4c8EP1tYf4Qk0n5Z4XtSF0lhSUH0Oz0iJhHEhuRJFVc8V+DUiiXHbc1rlKNTGp+wpGK5hW8kYjGO/jxCB6d9Ql+yOu6VFWWsu7CiFFpObax2bxRixRuyHi5ZqipOvLg8Hu6ZjLBrM8ng+bkOgqqGmRfhkWaiZ7JmulgMFTR9z26fkjZ65ICvaKbdqWN4VDkDv0sLUBNs4t93+OcC87Bpq2b8If//Y9x8MVDmHSeyOmaCRbWLpTN2CKDkcuhaO5ghtC9alkTVitJ9hjDZzabYe9jT6ObTAZ02Oe+AvndRF0JNS221J43ynohzOvM+B2EuYz0KRQQCcpaT/qXY2fKMT05xlPbdiKwt7owomsJAgt5sYGa4ye0LIAPD+cJnr0HsqxzK51I4SgziTelc6wcSRkNvxzXS1NsYFqzoc6tS/XVlVXrFXjiwo+WkR95ZdlGdba0FeYh3HfsVvh5k5Xyj41yrf3GZUV8PZTk+MgczoFLCrOn3JZgjshEPrq2x8oP/51O1kzRFVSU0VRfiGGD1+ckbzkYDNAemC3PsHb9WmzashEnjp/E8vLMZg1FsXbjWmzYuB4njp7AbHlWkoyHDhzCn/zmn+KpR59MG7BpUIPHZ+Qw3Bd0Akym06H9dQtYWLuAY4ePYdbPIBB03fCvn/VYv2kjtFecOHocEGB5aRmf+t1PAgCWTi5CJh06GQzZhk0bIACOHzkGhaTV8gMNGzZvwmx5GUsnFzGdTkooDFVoJ9iwaQMmkwlOHjsOnQ2LWteuX4uFdWtx4sgx9Msz5HW2WZFUTER8MNd4tYV44baDf5SeanjpfI21uYWqch5OqcFKcLKmNjSIQkhJOaPhsn9FV/VcMCLegCfuNJMe2hT0nLzNvB1TCM4tjm8hGCqUmMiX0F40hNSJanvm/6vPUEl7G1EdZzNwmjfDaK81GzmupvVhPxDe+DMGhKt7c8Nh74ymIoBMhkWdPRQddEADqphlXKUwhAVTo157zPoZdl18Pn7iF9+Pi6+8CE8++hR+/9c+jD27H8Nkqrjmuqvxgx94L07beSq+/Y078Ye//hEsnVjENdddjXf82Pdi6/bNuP0r38LnPvx5nDh+Anle05Ao22oTWu17nH72GXj3T70bex7Yg6uuuxpnnrsTt3zpFnz6Q5/C8SPHcdV11+DV3/Vq7H1sL67/7hvQz2b42G9+FHffcjemC1O886fejdnSMj71u5/ANTe8AldcewWef/p5vOZN12KyZorPfuiTuOOmW9GrYmFhAd/1/W/G69/1Xdi39wU8sXsP1m1cj8/89sdw/MgxbNi8EW/4vjfjFTe+GuiBT/7GR7D7jntx8TWX4q3vfydO2bkDe+55GF/80Cdw4Nn9BWmaS4/eLIhLRCZhSN1eTK46y5CYgePnpNRpyXBWqtrIGLKU1jXSIgN+nl7uQa0YmobZi7ftN2zngMZEvQojlfgyUkkmuRg7QukSG2+80GE8MU4ErOLjjDbzaczoCVBm+sZt6winMGr8x6wXa+b8zJU4w7kS+uJ2Y7luMpmim3ToJhNMphN0XYdJ+jf8b1iPNfz1Qzzre6zftAF/7R/+LC647Hx84vc+hXMvPAd/9e//DDZuWo8t27bgL//yT2My6fDxD30Sj+5+FIuLizhz15n4wC//FA7sexHf/sadeM9PvAuvesMrC1KBWMg1wloogA2bNuDGd9+I7/vp78cTDz2OvY/vxXv/yntxxauvwGw2w6k7T8X3vv8deMM734i7b7kLW3dsw4//rZ/E9tO2Q0Rw1XVX4/LXXAkRwelnn453/tR78Jo3X4dvf/VbWL9xPX7kF96H7aefgtnyDNe8/hX4wZ//UTz50OM4uO8A3v0z78XVN7wck+kEk8kEb33fO/A9P/UePHr3Q7jtC1/HgedfxI6dp+GH/tZPYrJmils+/VVc+bpX4G0/+R5M10xRBFeE8j1enH3agUKt6K0NBDS41VDGkpHxoYHDcyP8d+oaZxRKsi48EUM2IlaojDcF9qsIOPd9JAHjF+2GgmPKGFRIuR4+nihU1RqKgQZJMtzgheN4IIVCex5TrRpt57RWZQfH2BHQdJW61MZ1xEIrmCGtvlCwPfJIuDWVrgM0bVnpgL4XSC9DTgeD4BRDUuL7gbBZ3+PSa16GV73+lfg3f//f4bMf+RyOHj6Cv/uv/jYuuvwiHD18FOecfzb+y7/4VXzxY3+GtevWQiC49sZXo5tM8Ae/9oc4cvAIrnzV5Xj1ja/CN/7sm+hnvc95pD+8QTp/+tkQut71zTvxx7/+xzj3onNx1WuvwoVXXIRbv3QrlpeXISK4+eM34TO//xns3fM0fv6f/3VcfPXF+PZXvuVOflheXob2Pb74R5/DVz55M44dPoq/9Pf+Mk4/+wwceP5FvO4db8Qzj+/FH/zH34Wq4oIrLsTC2gXMlmc4fddOvOH73oSvfeLL+NNf/XDZk/nG974VO848DX/4bz+IR+96EBu3bsIN77kRN//R5/DcY09jknjPJ5d2iB9KEDTkIa5UL38Epc4oSu78CQliWuJOH6q5l0NTHdULO9LCRgONBPFcn4TQ4FjCimhoQTJa+JtveqOiZbnE3O0yoT6+1ByL1qN0O69da61rcsewuL6ncUo52Spkkoa5iyA8JOicyMyHtXRDbYxXMIDsm2SlksW5Uv0rPld/uoyuum4y5IUIbU2mE0y7CSbdBBPpMBGpBv3Cyy/A8tIyHnngUXTdBI/c/ygWF5dw3iW7sP/5/dj//H58zw+9DbsuOhf9bIbJtMNFV1yE2fIyzn/Z+bjiVZdDJh1OP+s0rFm7pj5LC6RgYYU7ZMif7X1sL/pZj+NHjuHksZPYsHlDOhJHcOLYCTy952mICB7b/RiOHz2Bs84/u+KUiOD40eN4/unn0HWCQy8eAgCsXb8WG7ZsxFkXnI1H73kYx44cw+Lxk9j3zAuFxF2XXoD1Gzfgnq9/Z+jjZIJuOsG5Lzsfh/cdxP69L0BE8MTuPVi/cT12nHU6Tbe3Q4QWLmqLS3ieU0tkf1pVudxg5nKBe2Mg37toQVhKwsrfQEHVCZlxuFsIQKtqrAcKLzPKaiBwmj4WSjoHOR6yaUMOx1BbWaC8kpEMfJhnI1oTBPVD/Ko1s0zaqD+LHp+mW08gjLA+XLXlKPOSZNk558Shyd5qP510yUhN07/JpMzmDX+7EiZ2IphIV2bPOumw47QdWFpawrGjxwEojh05hqXFJWw/dTuee/p5fPDf/w7Ov+Q8/JP/+A9xxSsuh4hgy/bNOPeic/C+n/8RvP8X34et27fgqT1Pp7fu5PnJ8aEbFp7a8TVxuwL7SL6/eOIklhYXsWnrpjrklIy2a4+4bv06bNi8EUcOHAb68Bp6AU45/RQsLy3hyIFDyKv6u67D5h1bcfL4CSwvDefmHz9yDBBg45ZNCa2qCXfOrXAfSoSV3yQ0fzDdRvFWQp3/kS67qA6NRD+C8cgEs3RTJ/wsaKJb5yhmyW8YE1wY6B5UcFikVoUpmSKtLWwwKcTc1g5LF0Z4XYdiYyhDeDB99fPHkOiK1+Y9nsNYi3D9yI0au9xGFVo2grUYjkZmrDY/V+ibV7ZtwaddNxwhI103vCuwH1Zsa3pdoYqWLSB5/12Z7Bdglo5YnnTpZNJuOBN+6eQidNbjy5+6GfuffxG/9H/8Iv7qP/gZ/Mu/8yuYLc9w16334D/90/+CfjbMKC4vzXDi2HGUI2h0WPPFxwTnRaV5RtP1H/4E0+gpIFJoW15aHvfaacR5/PpZj9nyDJM1U/NeNHCzWXqrdecDutnS8tBmWsU/hICC2fJyCcVcZBDIyUKfy/qD/QYLmw3P+FHJXvhKm43QyqJAmxUdbmVqtFFvCAddDGmxRT6TrOwFpDC4nPnecCIBKDgGadTsQJMLa8ixe2bYUUYllyYt+eEmNBJiXZWRZ0bhXU197H6zkIz8DB7GF52z9SYaMBeywyzh6IzCSgaI6Xd5DH+rIQZFF5BSJiKGpLpJh66TYZo/hTZDmJh+TzqsW78WJ0+cxGxphmefehZr163D1lO2otce23Zsw9r1a7H38WfQz3r0sx7f+tq38Lv/6UM496JzcfqZp+GZJ57Bxs0bceTQETy393m88MwLOHTgUHmv4YAmehzcfxDThTXYuHUTtFdM10yxZdsWHHjhAJYWlyyv1RL0dGkyHdZyad9j89ZNWFi3Fi8884JDUs6b+aQOpAOOHjmKg/sOYOeuMzFdM4TOa9evK2X2PfM8Ftatxalnnw7te0AVs+Vl7H/mBWzcuglr16+D9oqtp23HrJ/h4PMvuji+Ep7WR+iPJhSRhrP1AgLrT5QI+lNyCl7YKjPHqIolS619fv+2PcmwMaMt7zl94GkQKSJKc/qhQz2qMMQvUG7BHPvZRPIE5ga9VfsxZ2yaF6mfpushwd8mr77KhpBpbNBRDXuIjueSnu/J/PujdWijhHqn6iXOuMDpjCLoVLbzXE0oxBmv9G86wcbNG3D+y87H1ddehSf3PI0Tx07gwbsfwskTJ/G6t12PrVu34Pq3XIejh47i/u88gIV1C9i2YxvWrV+H9RvXY/HkIo4eOoJvff3bOOu8M3Hdm67F2nUL2LB5AxbWrhleY9/P0Pc9elU8ct+j6Gc9bnjb9di6YyuuuvYqnHvxObjvjvuwtLRcjMuAPoR+2+GC6zeuxzWvezm27diGV77x1VBV7Lnv0fTuwwbXS97H6jpx5Bjuu+1uXP6aK3D1Da/AZa+6AhdedXE56+qJB/bg4AsH8MbvfwtOO/sMrNu4HpPJBA9/5wFs3LIRl7zqcmzathlXXP9yPP/4M3juib0QXuBaxm0YuGwAoi1mJKbJYjHabWcEzEDMdf58ZHEOqUalklRMo+C1hDyHvh5l5JeOaFDumLyy46493OLJhnozdgxpagPmzUars2E9/hgqH+NRBFUafhCM05FKm1tjWsZqYFQgIjytCmcP3HN18yulIPgR25Tf8pBK9UlJvxSUHMqPyjAUUyPfHuy6rrwvUNNews2bN+Nn/94H8IrrX451G9bit/7dBzGbzfD4w0/gY7/7cXzfT74br7jhFTjz3J34yG/+CR576HFccuXF+Ov/5Ocwm82w66Jz8dXPfg2PP/Q49j7xDL7xxW/gZ/7OB/Dmd98IAPjk//w0brv5NmDSAf1Aw54HHsUX/uSLePsPvg1XvuZKbN2xFQ/e9RC++cVvDhT3ipPHT2K2PCv9WjyxiOWl5WK0lpeW8fIbXoGLr7oEZ+7aiZs/8WU88dDjmEw6LC0uYXlxCRCgn82weOLkkKOCQGc9Fo8vlvD0zz92Ey6++lL85X/8c3j28b1YPDHc67oO+/e+gM/89sfwA3/9R/GL//bv4sVn9+Fzv/NxPHD7vfjOl2/Hu372h/C697wJW0/bjk/82odx5MCh9N7HIDwuTMpJUCUjGv7mTjeT6lqhuPI9RzHzD//2sZG2y9sbcgys5VAs5kUMyA0/ctghZHiZ4LIhmpZQu/AtKluhB9xYHQKXGC7x1sXlNSpTpoVJrBgrlZZzGF4zuepyUFDUdYUBrQCWA7BknLWuu2mwheUD1fX5n1XkpOaWc7C7eXdy9qbz/3lUgpK8LVtiBF03IKzHH3ocH/7vf4TvfOPOJNeK3XfuxuMPP4GTx0/gk7//aXzp4zdhtrSM5cVlHD9+AidPnMRNn7gJn/jQp3Ds8FEsnlzE3bfdg72P78XS4iJ23/0g7vv2fTh25FgJ8wTDqvMH73oQj+3eg8MHjuDWm27Dpz70Kbz4/IuQTrC0uITHHnwMD939EI4fOY5+NsPTe57Gg9/ZjYP7D+C8yy7AVdddjT/+b3+E5558Brf82S3484/dhJMnTqID8MLTz+OBbz+AF5/fj2OHjuLhux/Ekw89jtnyMhaPn8Cj9z6Mx+9/FEsnF3Hs0FHcd+vd2HPvI7jti9/A6eecgbXr1+Gbn/4KlpeW8PQjT+KRux7EiSPH8exje/H4vQ/jyIuH8ehdD+LgCy/i6IHDuPmPPosHbru7IDNLgGsxTpwQj3mrFoLi12d5REQvgqD8DZ99nx8teSR6t6Pkxktei7JXtGVJqCKbARL6L9EA67Ojj+5bddwvnznL5e13PXsdwxku42jOSyMcL7xBcnwkvlX005gyHcr05AjAEWvXjEYN9HsaYnQsMGMWc1aOTuKlK0/tujqlRUMweg35821y+dygpTIiL0s/KRwokvXanW9SsIFiIpI3zEe9DDmpmc3KJZivfU8ox45BVmhJjgsw5MO6IUeWvf9kkgziZFLCz2HbjZQwT9S+T1KZXGc/69MsZsqG9MNpqNr3+K733IgP/IO/jF/5pX+F+26/F5NJV+rpRErOrJt0QK/pSJxkOlLeouuGMBmpn33fY+Pmjfjb//F/xeH9h/DreeIA+az3wSB0k+EEVu0VwyFxA3tzvwA6h54GVQB0UUiknIdIQks5o5TEdEFmLF+2NJHCOsE0deVF+EXMSDJFvAnpcm/Ei15GOlY/Gyk6/70Ys2Dg3BorOl8/KKITelIenijrSgjNBkudwQLXKbUyGV1eEbPTQTrokl/GIMjDQ4ZDON/n6ZfSrt+iVRmLglRNfgYw6kMqSYdWCtUjVB7cbwFEexIhendBbzR00hfKuoJSY7hN/Uhb/ZAPBRVN4akWVouqfy61yQuMRYGpOqbySOcXFaTzsNBh2gn6aTecxJAqy7OKebZRVYE+n5qpSC+NHipOR1jlNrsuCXEyQNn4STdB2WHfeWXKx9xk8R3OxbJ9jvn0U9M1KYZwMpmQ4AkmE9rUNxnW9bMhyQhSVbFtxzbsOPM0HDlwCFdcexXOufg8fPRX/wCz5WV0YkY2MzsrQJdX5LICFQVGac8pBCuo2CAW8S2DXVkW5K1NbVTNeD/cohmhKkKS+Ii6m+VX3mvKZTO8oK1F4tqMfSDCmgk3aV8PEexY7/3v+gEOmzMTVntWAxcaTdF7NNB4lO41iin9J24g1pG6nZOI4V+sfCRaGz8LDKMi1ayjSZnOL0fgaQpkQTOL1TzJMoVqE0mGrxt6l5c9ZAM2eKx8rhQlSbMSKdJ7wyUZvOQVhkXfwzkJ2qPLitAP/xmOLu6B3tZgiaCgr0yj6rAfEgBOHj+J/c/uLzOK1n+PKFlUXCiigwHs+x7nXXYhfuRv/Di6aYeFhQXc9oVv4I4/+2YyVlaNhStBcEiDNUlXx1otXDBKjjiDkqktoVxrJqklLTm53ryPdh2ueG292Htn2qtEcTZMrbqQD9VrtTHPKCf5kvq0izG9MPtYG0m/Yl8dKW1GjSt+la1Ra8MXj2MdMWMjH5ajnszrikarzzCtH9B6CUzW/fDR8HdVHxl/QOsL7fO2mh51KH/dGTdq9oJ5x3qccaseVDNS2SipKnTWl0WC5QQDZYFOXRI2MkmWO1snNYRNXUFgJTxM5RnRZMPT0dadjHQ2bt6A7adux/5n92Px5EmC1ZJCPy8mhuRqdm3YuB5nXXAOtpyyBYdeOICnH3kSiydOurDGEJHVZaeVoqq3EwtvXB0YD3EY2sOV4VCgtZDW1+MlKEN1G+/orM2Q5zCwlg/Js1R8XfL6KylOz2qhsNC1z6EyyQn3wyXv4fjMYVvhdeFxihjoRboppiEXkJQ+OJ4yriXs4nHLtKRn1RsGl0sSRshJEeEdWA4PS6SCHHB4cxhTCiYHw9/OyXOOHnJIRs9mfqmFeyWMFUD6IgjoEELC0j47rTokFIgL/Yq6ZaBTeJM+OSRMIaeoYtr26Ia68ltuLHcgw1HAeV3/kOAaaqFTQPN6pHjgHY0wCZgUwrNz1X6Gcpxt19mQqABdP6gYJa+L6iWUBQGOHDqKI4eOYpIMoQm+nfSZFVEC2rLXbA21nzh6HA/fuRsKRZfDv7kYWB1Lo89gtR0rwxdbE3o84L5iQwFVKEeJ9FI/0vHOeQii2+ayZDRt9k4IeLExgF++RHsHczt22+8JzE7UTqGYH3DELrWOXslhusEej5Za52ip6PxhBg+zNw75u6lofKNORSIqofFXQhCOSmik/CNH6O5pVPUQ4P+/+FTgM9qVANk061lbUSxDZdHZsKyhk2JczEgR68kwAFlRZMgvqQAq0GS0CvqSiX1Pea2SXO1gkN7HOS4ezlPmwxuikdBVcgIynDEvUHTJj2RYP7w8wpK9fARyTNcqhvBTYC+iKOSIGS6IQCYSputtAPK5T/Yqv9yDAoBiNBVG2pSmY6jmopMsgDmUirakVkKJ96J0ljayoSFe1Ye3WzkgvQpNymW2le69PspU5NX5yUwFhrjQzNHqjZs9YAgJ8V78ROb7k/9W+anjJL+MIvPPh0a532NGwZmvZOk1FhgNzTyqGefCeARRNmq3Pev/dx96F+lYh2y9Xn1/mkqkyiyW14yceG9M6UCGxYRadIIcGiIZqOF62u+XYOjQjH++6wwVkZsvxrNyOoKUqxoMU58RVxqPwfAohsQYr2saKuphpyLkfHAfd5GTdCnzKBMh5sPK/BUtRHLTz2Hcx1JEOS9XC7V6WlB7fcZUjGzE1UUWwCxyFT5F41Pq5de7aHjAVZKNnfWkHJSnsYERFSaYxDzmAsV4tcHGCp8KDkQg6a5Ffjgnk0NCxXC0TOlf4FORC2JgtuncjnPaeZz8K/JcX8N41JxiOZBiNDwfdeWHG/aluXq9CKDRXtOprGyeCY4ehpmCqYgwUqdtCNlLmlLnVoU7l9GEmOcX0eEV8oWrOW4mxILG2plcexZAOuUxLwisAGaCRr30aYaQaU2YiYxgvlnedUghUEZPUXiKjPGMlrru2Xhonl1te7LYXzf0td63pWSssgAYpCXVDUsnje8OGTY+wR7FpxoH5IUHikES+65JhuJZNkxHoL+E7mQR2ZFG6kbHhG251Jcx7xmutzTiGTca9vFdhyTz9iKpnw/gNeeaGMk7Qywjzc4jKTaahzAYrtJdRuqV93NKOUcn1IeIJAqZJ9Oydy411vIymsI59+JPSqBmBvFRtF0662kwNFqMSzFqbmzJKggLX2pfqW6QUSAG9aqQXoA8a0ehhGjnaOf1UkBabZGNdRr64fRV40WHHPYK9ZeVgOlrOOMVBivmo/IUtYxIm/PAQmKtdsb96CwbG4IglCW6yf0YgXKtfliCmJC3uyn2t+hoRoTZ6Q1ayORFUFKjIjZywWaMoi8Osr3R9mUFqExHQCNV5W04Iq0LShWI/YzO0Kj2dVeGrHrEG4v6Mx8RjoYGjU8BEK07RWdaUFBTJETrvmAJek6LTMvMTXrBQlmDVTUZpiA15DC4+3kWMAuwKr2gVD1jS3iVkR2jNSonRMHYlhI1VEjEJKMlVR8yg4ZTKMxo5VmkjMIYMeVNuXnpQjiefVTZnWGjCJ7sqh/DpsTUoQoaz5rstSeNo7DUIWr6r3fZQ43sUhm5jki377cTnlrb3MkJ9nCeEGh1ZuCd+pNGGbhh5Bniu/MJ8yCx41J4v6Sawq40hpnr0irpjBWDiRCqjjiT+rVjSi2uhPR8DyvqBZzmXNXHPc/IMFxnA92S2iwTU+3zu/pSp4qJt9pLRbyWSTCgGWZU0FBeYe3rt/CpkJoPgSuLD8WFthk19SXkGuroJL1vOXWUtxVlY2PrtvJ3Q2xO8SRBnC0AAIAASURBVGWYWs7tuW0M+TeFDZ0I+tT3cmoEWx/1AgdJZ+MXJGED1Qf2eQilZhyQMnvZYynK9zJpQBFYMRvRMo4IqYolXzWcM5/t/3BtYIK9abtliqPwkyUpU+Ns7OyMTp6ZNu/Lzqai3L6T1vOyGqayIJUMQPIKc1XP99IBzstlxzbGSQ0EBgcVEHi+y7wsPA7UJxhe8bbQPWbU8dI+NvEWGhor7/o0x6Ilqy6U07YdB+1m+Bz/6Xe/961ksHoapyCsFLJ5+gkyc2xbHYSnLj+Wk+G2XstfZxrauZ3QqUITr3+xK/kht+6HKw8DlBW/hR2YFRHVmLGkTbi0LYb5ytssslgOdZgDMcNKClXKGs+Mhtq7cn02YsN1s4f5nlB4zH3m0ILVXuCbjYbKQ52BBVF6Mi8NXTv7SjFhJdD8Rh2logBcQlh9bsTa19V/J2Pt2tEQ6iAct5NtSc5PNcqXv+SUrF+ellK32ne3hEF7N/aGwLWMed5K42SmyIEBB+NfT/V1xUJJOTVQgX4WB2fEzunctAlfEudgBdMt27c4gv1aEVpHJWYKTAeVx9A1pNlbMNzLyxzywKR7ZsjspaRmuCjxHmLa2qgKTHazoNRG1h00xwMdmBnhs80KEkPpir9e89K33zAwdN0n7cnwELPz8cT8rBf+1G5BqkSP1gojgZxYLqLCVsg5OEMyLvPeKsOr1N1q91AvIUYHprg+5kvlVE3hHB/zuERE5cp4WTEUCkJlAV1o3oVBBFZel2kWA4Y19HJ95j2AEZELj2kD4dlSCdI3RLnSWjYUyPths66yPhu/otFuEkN4c84nBCtFx244++1a+KhDYOG8a14ACmnHzJlZtDI+bmrlgWfr7pBLTjY31mCwIcoPdHkxV6Kr43atcdvfl+rJv7oc52WDmBFTakTCM3y966zOvGbKn74AOj6GQmrqr4WZqJBdRz+yEfKr4NuIqqy4zjfJs5dnwyBGI+t1qs5PumfDhuZ8zbjMpyRlK5LXbSWe53Cd2nPrtMJzUrXvKYg7DvKnK6G4l0vmLzs2nxym1Xtcr9ii6q6Bov1427h0TcNYj2WHHjZtnVaui00G+RXqtrgyGw+jhTY9Eyp0jqpcp1XsAaFy2CylTG/RAm8fy+syQavYVcmIq7vfkkOootOU6EigcZqFoyiY0uwbNK0ryYbEFpZmQ5H5XBTaKR+7AcsPxW0LBMHMYnOsoLCXj7JQpxeP8badIvpuoWs2XlQH7T/kZ51hoPCkrMinuus8lzihAD1fGSxnjDLv1fWbt6e4gQQ968xLHpcY+kjjO3lqhPFoPZPoA/XHC1iNpFqAovzu4ITXm7c07A2kBOJJuBDKmMWWRjmpygKjuYaRn1JdMyjUxpW0pMdhaA614wvO4NBl3Bso7WbCpZH+ycgDq/6YnDXTJq5Jyq9wFOCu52vi66DPlNc35UWiXdKaIXzr4RVDKqYxdUphWAnLsrznnrkBsucVtMob2bmwFzCDoOqNUoXucv3Fq8buK9239lw7dM2jRjhB9+gNvtyKH19Q+Vn1xmc0sWk2aFwBQx6JpjZWpgfwjUcZG+2r4atmEzIimlLTRj4ts6YYbQ28dyLPdEsokw13sw/mOQq/JCDY+UPpxiBHKC4E4xbKVrdxfspY7Y180Kpm8jjm8naz8Xw0kr5A0Uu6V4eJTKyO1u8Nmv9Mte9heLgre+TytoyJTCzv5CqSwCweBM73pG0rpRMMkvOWHxZQ80HFYJVw0G8PGjMQPixx/7FnGb0QeirwmWcTXRttwxdG01+dY7yqle065xmhPJTm3yjr3PL1/Bb5wtfYAOWLyg4DbTiI5BT8jJGmdjMD6+WNJRlfHKGl52sT1ugwLVOIO/BafBeaOWYqnFywUwUgo3WmwnnjcaFFCm/nDM+IVDARjVPkV3ButQtpFGjkrCxAaTimaLznkhONSTQoWv7J2DMCoDfKJD7fBIGeXwJg2s/68kqvlMFK50L5EMheOmoziX5FqlTCbm1q+du3cgFFuFpDHJKx0TZQLjPTac9QmCFebHJ7fqB8Hxh5WQm7JxV9oGdX96HdPJURdnk+KmdERWXnpHq+3HKX2nTmLmcrNnSuCa46I2repOwkj05dcEcd29/i5IXVK/G1Ycl9KwNT8iRNbkyZacy/xLfs+V06XZn/jVmsRhhW8c8prFijTQvFzOYEbRgYXVmeZJUXxwCgNGm0BL0E2+PraywGbS1UTWMsjRx1k0ka4dHwGRBWbrLLAtGbQtIapvxwfFXj0KaS0TJu27orQX7pgKSYrhCk2VjFRGfYcE0dK8IXQzpKrLNomwFSW49F3tLyVx2FrX4CwQytLbaNouBAGBvXIN02OcQK7PuY9VgdnR415oWCA/skIB4Y4iIZqVACh4uN9Ff8CD3EmDiWIpPU0MM6id48k8rd90sYVKz/fhdGG0HFcMwFMK7DCUWq72usR/JAUkfYmPOfVhjV5pVne6yr5RxbH22UWemAQ15yZBxv3B9tqUFXUpPR94yWsKBVFc1qCqAq2WB16NEnaN2hT6d2dvkcAz7DmZPVbpoU6SgOGrloOaUWo/jWXovMcujhwzWuq3MIqDGjlUmnkC8b35grE24n/0YwaoQ4AWszOESjoYVYEIVRvK1qCK31kXjKyuSsE9yMV2ULcxOCyrDVjaL5mR/ueuvnQ8ERlBJpIZ4hPecXleQrzWDHao48YxMaNZ/kzehrWIgW83gB9MjbW+fuOggfl1ur74JlpObbPMPQClXHjGiDn8QX16arxjsE/8KQmh6uvhJBdbchUExnsxk6HRaDDQfbKYAO6AYjBqAcqOfVNA1EPl2UrxfX1BDDsq+Qc1eZ4L4aWIfGhMIwsBiMGKuMmoTqghkfv76GaiIDGNf0DEgxhTjBX881CA0BcDwjj66l3UEBYtgSQyfz8kTACgLgBcF/KgWY45p9+NVMk1vDzaX8FEqVkD5JRZo15VOIOB1RsCmRF2duY8c9Aqrxkwvr2rGSv0ZFKhaVe61NOPSrceZWNbHF9LNPaI2mO/kkSXewvUM9xBedJ6utT0z/RIhE6JWvVfGtl9WKoOLRhhJTVcVs1mOSBqhXoXVAgl4UUHtxhFt7k4TDXlw5EBBjT79qOsQn1DVXtjA7HSNTrRiXMnpaNNz7YctHmdUSq8AoqpATCUMM5SiL0lRsot15tfi7PG83KqTo4kuSqIZHcwLYtFBByktIGvrbkC+N8Wx4ps4EpropYR2NhwvvArk1CgBZ6zqzkZPuVUU83m6BI00IxSecolgr1ULS4mUzdG5spI7R/tgn73d1HNSRR7UtX/E+dSoE5zRUSUscnW2E79qvrJvWZVofSfx1Ti4UySF+/h50cspGOVfQ9z06VWjXpf1yaS9XOrZY7M0SFYoZrLmtkHe5p+CNTRiyffZJy3KgYOpoDh1cn7My8KK1gHQ888MwEPpK2NLY6CMJPyTlzC6PFAamS9Xl/DJQnn1kTOJV2mbZmlITYZ0otU7dIkVlNGGQvs2LChsV6YnPeLUX6lW0K2XvY9UJ32/jRF4DqF6GHK3qvnvZTspYAHP25HkfWwSObfNQOZWKfi1M8ssrglWZ84ldkTlPxRyjVjWtLsST8PS8ZQy52vJGn2YTI0jUOdYV9l+mtrItipgdoHVY/Ww2GJ5ueHtML4BgONWz67phxXsH9L3A3qMH5BWdZR8YjVFejJoNjpJ3MIPOsTGFOmqIR1XtFFF3QA4L3jDMwzEzqc5kXHM7Npsl9lwx2H5qPJNm4VhUFsAnITP6s+UeeYA84xUt1bc+scpWUabVoArlVzIJyqvOXN9M2mhLkAm2Uyn1fWjgzRUF1W3LqQyNfW+Hjm1+1IY4fxd4Q0phSDZiVXhODPOddzK1IoqZQ+9Qf+RLOyclI/Vp49tYUyt9XNlo08igNCPgjIqa9TXCwGZo2azU7mqUcxqj8Jk6z64AesVMZ8O55egA6YbXanUC0b6EX52kV9iHgSnvHSTSLBTNkmY70yPjx6Bg8eVZqcNDOQ9w2pmnYfPWTVAo9j+7H0cOHAYSCjQ0SWeYO1g/x5i0Iw7nHktIW7x6y8u6+JJOP2joUGvMZRij9Vs24rRdZ2HLqduhfY+Dz+3DC489haWTJzH2KZ67wd9cYrT/o5WOGL9GWOqwVAnRyemQHGejMz8YZcGOiXny2Kkdew3WGF0YaZCVKyPrekhXRB6rsjKG9Jt4KT6vrR+rRFqanYuO09WoRsLfdkiY+W8ItF2pUJlAt7KoDvem0pnn5ThGMbykVPJ+qV4wXTPFeRefg10X78Kpp5+KLds3Y82aNVheWsaBfQfw9GN78fjDT+Dg/oODAnYtiOw9PG9LKfckqDiHNkFSOLicTCb44Z/7YbzxnW/E0uIifuff/Q7+7CNfgEy6dECcrSlxHkyQlmQEZpL2xRwUr52Jm1Z9DsOjnqoLpV5OOCdMVhAk7S4QwctueCW+68fehV1XXoJ1G9cDAPY//Rw+9E//HZ649yFMOgtseW1RJMlhn6B0bl5rJFnueuyOWyFOOh6k6wGJt8KPVlPCpLgBybkHbci8t4J8VEk9YpwL8wt0fdFWjoBD++IZ6TGhZ7mvMajzdTtdmTcEjnlzrAzzm2f/K6PiUaGdmjD2N9M1Eho2L0kor3WZ0M/p8ALUdFeHVen5rJ98JExm9vptm/C//JOfx2ve+GpMpxNMppOyWHO2PMPRI8fw6AN78IU/+TPc9Kk/x9HDR5Py5FBOCpIoh+JlWRKD7wxTC+Yp23JioJLDxuH3pq2bsO3UbVheXsa69etGWeaUmM9byuvJnBWqFcEqZiMcVxHFvX6YI2xBABgNJEFQKC6/4VX44X/w13DqOTuhqsmpDM7hxJFjfklDQ4bcRCKXK+Go52sMk2uq1RuSxKvczbIBl4Bs9fHdrMM3ziPUeDy1xwY2GDMXTJtrrsdjrKced9ZTCNkQxsSGdXDom3oeNFCFa0la4VLglyMz86Mt7VYmUlanHOYBwbKdjxJq/s3PEV15VrqwT71hRxx/tcXFAmDaTaeDoUqvbS8ZbceHHJsKtmzfgnXr10JVcezocRw9fBRd12HTlo3Ysm0zXnH9NbjsmpfhwssvwG/9u9/BkYNHhtfPgzViIMe9KouWQvAqa7d8NF9M68X8AkGtjJkGsYn33Lqvco24xlCZVmmzEooE6YlusIESXNmVkHvRO8W2007BW3/6vYOx6hUPf+sefOuzN2Pp5CJUexx+4UXPg3mC3QoJg9HyiIDD2+CZCbIX4aIxBEyhbT6C5Uwa+RMOvTzyMb76kLuE99T34Ss7PW8cuIYc0pfuNELDfNify9k6++idm0OwdC3m1ri5eOKqH0OuiI0Tt5tDvTDmQZ7Y+NWoPxyNVIiO22rQluEKkfGv+llz+xweZrpNy6eTSYe+1+Hdf9qXl6NWL6NQOGN24vhJ/Lf//2/g1ptvw5q1a3DO+efg7e99C1731uuxbsM6vOt934sn9zyNP/mtj6LvZ2VluTgmEyqRwahlT2mH8JMgKLB1+1as37geL+x9PoSyfmV8/amhDRstf4Jk2LIB0FoZ27ZRZFWMR5aw5o3dLatVD7QhyLghdxiLC195BXZdeQkA4PnHn8JH/+1v4Il7dw+87aS8rqwyKLFdiy4rIRvfDt22vKqcC0RRwlqIWVtrAeZArD2GHPx7vjLvORzLkzHRl1QRHv8lpdfR8pwbGKIHt7sGKHR53kV0WP+KSDWOn6mvmnK3OtSsnUPUsXAwCmVCx2wAs/y49ZZaiC0kjUSnbdqaUha6JJhKN0mJ80F5e+nLLFsJCVXR5/Pe09PLy8vYffdDeODO3ZhMJ7jvW/fjjq/egV/4xz+Hd73vHVi7bi2+54fehj//zFfw7JPPoptM0vqumiR3rDFJJI/dqTt34LVvey1e/92vw6MP7MEHf+WDmC0vW4dGQq1WGDn0jcKVliEj5Vekl1DMkQmD8OreQl3uysjDK8VIqdVuMsGuKy7G2hTmPnjbXdj70B50k4nzhD7k8AfrNgDDqB2tbGr0ujH14E+xQzEkAK2uqKe1nWOIMCsQkndSmJkSG3v3ZHJ60TiG9Vp+oXPkTnJmYPlpDRalNQKqKcaNoaYmY9E8jTAboHRdw6RURP2ODEn8MSvRMpOeQ9FIaW28ym/1OpOXOATDV55ssjSgW+o6c9jz0Bv5zvbVdcOShskEMu3QTdK/riszfzHamEwEMukG7z7psO+5/fjwr38Eex9/BgCw68JzcMlVF2PW99C+R9/P0Kui1778y9PzfTw4UI18VcX1b3stfu4f/zW86o2vwuYtm0pnymvvBc38Fu8F7FzZlrIYSlvJI+f2eBV9B0nGylfA+xDLb6JBsow6t2TrjxSK6cIUp5x5GoBhMuS5PU9heWmZRKYlyFIqrjhTS4Zbi5cBNUVTTrS5ZAHfTs4ZHccnq1RKHmnrv9L3jLYLUX1pcDj+KJ3uVo4GHspo+lvfU98WlP4HQ4mhpy7sakREw/BJdb2QztdTX6LSSqiRpXEeWNHYCN+pB82kpoxVMF6NxoQHzgkITW2M0FBNaeVhrpjVMLFU3/DWHNr/MMDbpOSqULH3C3ZdVy/OU2Nr1wmeeOQJPHDXbpx9/llYt34dzr3wHACKvp+VHELX5bczp/cJBjQjMbekioW1C5iu8e99HTyCGSsH14FizAQooW7ZIN0FDJRhbv6RuZ8HtGznl2L4sqFxhk1zakHNoCkG45x45HJyPChD7Ak/zTy0LV2HhYSu+tkMRw8eTi+rNW9nARA9m0N8IPVZXO6kxB1ZDgsCsNBj4B3KbgeniEL1BM9efyhmjJqaw6tSMu988GGSlgeSKS9hOM/q5ftiv93gsIoFY57Kt9AmMYhH3G4JU7aKSC1yJ+3PzWRagNw2VS0+myQwf8PzBblpu1L4GV9/rpWGf35kBrmZHwe2sCW3bfVk0TTlnBrvTe3suNOurJfBDOimU88iGZSA58kXTy7hmSefHX52gs1bNkFEMFkzxWTSDZurZz365RlE7CibbEzWrFmDbjJkY2azGabT6YDmkrECgMl0gnXr16KfDdeWl5YxW561xUIVC+vW4dSdO7Bh80acOHoc+/a+gJMnTgBd5+25w94DW7fu2IJTTj8F0zVTHDlwGC8+tx/Li0vF4LkTJTrBwtoFdJ2gn/VYXlyCKrBxy0ZsP/0UrFm7gGMHD+PAc/sxW1pqhKpKxnKgvZt0mKxZwNr169BNJo5XCxvWoZt00H6G2eIyafdgpNauX4etZ+zAug3rsXjiBA49tw8njhxN6+uoz0mCJtMppOsgqpgtL0N7xXRhDbadeTom0yn2PfH0QLcjmURP8stgA/QngSnAmWPXFO6Zglr/C/JjG6+wehI/8s1sgjjkcW+sto1ncCvzo/rPi6dA7fKarEgny5Xa8Fb3iiGndYCt/EMhNcRbGgv43oymMBxcJMIZEBCCcuPi6vJhcRlT6kucIa762WRwQPQKTCW/JosGMVszTbNxqgqZTIYV75wDyOHiZHiLRh66IVRJZVL5N7/rRnzXO96Arutw92334E/+x0exvLQ8nL+VBmHL9q348V98P3aecwYOvXgIf/rBj+G73vlGXHTlRdh5zhmlrmuuvxp/99/+3WFav5/h0x/6NO64+XZEm62qOO+yC/B9H/h+XHndldi4eSOOHz2Be265Cx//H3+KJx58rGyC9m+AUWzcshmve+cb8bp3vhFnnn8WJtMJDu0/hHu+eSe++AefxtMPP1EQYw5bt556Ct77C+/DKTt34IHb78GXfv8zuPr1r8Qb3vtWnHXRuVizsAZHDhzCnTffji/9z0/iwDMvDAY/CEMe3L5XnP2yXXj7z/wQ1m/agHMuvQDAYFi+633vwcvf+jpI12Hvg3vwxd/6Q5w8dhxQoJt0uOTVV+O6H3g7zr3iZVi3aQMWj5/A3t2P4pY//Rx2f/129MuzIpyKwVG8/v3fh3OvvBRH9r2IL/3mH0C6Dm/4iR/AZW98LQ49vw8f/if/GoeefQF2XjX784QEszGCba2pcUzDv6qVLWmf1ITl0vm4IqvKLcPiv5WSUocrL9UwVlmh2Ail/lUblsmY+P2TpnUyx/iV/FELlrHxGoevofBK9z39SmewV+FhaZuNF58Zn8dqrG0yxhnBU+vsG2z3QhtZTitjJQgKPBzFUkIcIqLrJkPOS9IB3QkRbN66uZQ6ceLEsLl6OsHr334DFtYu4PSzTsMXPvpF7HtuPyai0B7o+xnOPHcn3voDb8b2U7fjgTt3Yzab4YpXX4FXvv4VjujTzz4dp599OoAh+X/7zXeg732srr3ivEvPx43vuRFXXndVub51B7Bz106ccsYO/Nd/9J+x75kX0HWZcUMfNm/bjB/5Gz+Ot/zQ27F2/Vr0/RAWb92xDedcfC4uvOpifPD/99+w5+6HoITS1iws4GWvvgJnXXgOJpMJoMD3fuAHsHn7ltL+lh3bsPP8s7HllK34w1/5DRw7fNTWpKWxNY+t2LR9K654/auxftOGUkc36XDuFRfjXFwMAFi3cf2AQFUhkw6v/J4b8Y5f/Els33n6EA72PTZu24JTzjoDu656GT73a7+LWz/2BeisL3IhXYdzr7wUV775dTj0wn7ce/M38ap3vw1Xv21wMksnT6KTScnR5NDMomehPBjnE1uol7M1uSZFJcoGPJz8Vu8DCLDGhySM5LIlE09KubLKIE7MHHHKp4W0qq7zrZJcz/ek6lu1di0b6FKEg2TuZ/6q1lTTmGnog3JT5X5J6OdkZQtJRtbFJDtRzLa4C8aJYpaq6qnEVpQGhKM/Bbpu4irp0j7DYfHpYH03b9mMXRefCwBYPLmIZ554Ftr32H33g9j//IvYec4ZOOPs4d8Lz+wbvGYS+rPOPwsbN28EADxy3yN44ZkX8I0vfhNP7XkKF1x6Pq549RUQETz+0BO4+5a7izI+/uDjQzhC3mEyneBN3/cmKBRf+8xX8dQjT+G8y87HK17/CiysXcDV11+D67/ndfjkb3/MTlMFMOk6vPmH3o63/sh3Y2HtAp546HF85WM34eTxE3jt97wel73qCrzsFZfhvT//o/j1f/p/4ciLh8pShuWlJSydXAQA7Lr8Qpx3xUUAgK997Es48Px+XPLKy3HRyy9FN5nglW+9Hnf9+W24/bNfBSZhFPIYdIIDz+3DN/70C1i3cT0ufe3LccqZp2M2m+GhW+/C8088jcmkw3OPPYXlxSVAFedffRm+++fej+07T8exQ4fx7c/ejKd3P4rzrrkM17z19dh86il4y8+8D889+hQe/dbd5cUgOYTNvHvN9303LnvjtRARnDx2HMcOHEI/681QUdK2IA+nMyR2QY7KAyHWy6PQSsg7YBQTTHNf9cwzpWQQaE0Y+/qYvYoq7puiTKCIf6qh1Brpi7OAEf3FLUC5gfKlcaKDa3POkcXlME1+NBuvmONSWxgaYOUoqErl3USOwg4GKG3WrsJHw85TYVpuBs5klFUqlVBOBgM26Sbo0vae2azHVa+5EhcnRd3//It46N6HMZlM8NzTz2PP7sew85wzsHnrJlzwsvNx7x33lgonkwnOu3gXFtYuYHl5GQ/e9SCOHDqCP/3gnwIKvPdnfgCXv+pyiAjuu+M+/Nr/8WslrNFe3f5FYJggWFi3gD/61T/ER3/jT3D86DFsO2Urfvaf/By+6z03Yrpmile84ZX44kc+j+NphXjfK3Zdsgtv+eG3Y2HtAvY98wJ++1/+Br7957cDqrj7G3fiF//V38YFV1yEq254Ba55/Svx1Y/fBE3Gcnk559KAzdu34PiRY/ijf/87+MpHv4jlxUWccd5Z+MD//ot42auvxPpNG3DFDa/EnTfdkvJ5lATOU8YieG7Pk/jov/8trNuwHj/9L/8OTjnzdPRLy/jmn34B3/rczZhMhhNS+77H2g3rcf0Pfi9OPedMzJZn+OqHP4k/+80/xOLx4/jO527G8slFXP9D78D2M0/Htd//djx134NYOjEYWO21GNv1mzfhsjdeBxHgzs/djG996ia8+PQzOJqMc0ybGtSHtyiMuijMs+0/tgjXLVEQWpFeQiwXZDn99MfqVCamnZ6KRq/1PcWWeSKi5HOrkNPSAkP3a/7MyydVn9jB2KOQ5rPVq+q1nY2bGyRz7GWSBXkNpJWxdY7eAOc6BwOU+ameJtAjMYROAyCpL/NfmOERZ2er27VZrBwfA/gksSaKCrwXXHT5BXj/z/0otqYQ6JabbsNTjz6N6Zo1OH70BO6/czdUFWsW1uDiKy/CmjVrkJPW69atxa5LdgEAjhw8gkfue6Qo4vLyslvyMGxJmWE2m6Ffnvl71IdH7n0En/2Dz+DooaMABgN68ye+jONHjwMAdp53JraesrXMggHAK974Kuw870wAwLduvh33fPPOYUnEpMPju/fgKx//MmazGdZtWIdXveU6rN2wbjg1AQOt/czefnv/rXfjG5/88mAIRPDsnqdwxxe+XozazgvOxrqNG5BfHhvHLbO4n/UpLGUe9OhnPWazYbmI9j3OuOg8XHzdNQCGhaW3f/JLWDxxApPpFMcPH8WtH/sCDj63DwBw0Wuuwam7zh7W1yFvrxpyj91kgunCGtz5+a/gY//613Dfzd/Esw8/juWlpbR1y1Kx9Ma74XuWByWjlX5reUuwqYwq0KdXyw084DphdZKc1fFIe7FpdMajRkNRlKcoNn0kVhiy/mMnVzWJGf20sNBqXlih8SEUA+MS5mRFFMVEZUMF/kfrWdySB7fUBP7Z0D5HLX0LiZXfnJASaofNvdXflUvaF8VrMigwqpt0OHXnqdh57hm46PIL8a73vQN//1/9Ml5x/aAwD937CD7+oU9haXEJ08kUUOCB7+zGsWQsLrj0fGxKM4giw5afs3adBQDY+/gz2Pv4M2kZhYTcWaQvDYfWg3v/Hfdh/7P7U2J7MLx79zyNQy8eAgBs2LQRm7ZuKgxev3E9rnjNVZhMJlg8cRJ3f+NOnDxxsnReVXH/7ffg8P7h+fMvvxCnnLHDxrPXwbBgMF6777h3QG+0hGLvo09i8cRwosKGLZuwdsNa5ARmcH7zpLRcSwtKABGcd9Wl2LxjOwDgiXsexIt7n4fkvaLS4bk9T2Lvg48CADafuh1nX36xCVUPLC/aZMnBZ1/A1//gkziy/wBkMpxAW4VIisEQIRiTZFw0v+NSWR0EPfnIEOGk7yx06V9cOCbBeI1+dNQhsKkt6sEHTlGWhFWoORIjYewwGRXQR+YbGXDrUzCQzkimUK58jcaqFVgFXvBIZPoa1mRYXtHX9ehYzXC0tSkYxtG/v9NycFpXWP2clhMCylqsHI4M1eSp2+jF1q1fi5/9ez+No0eOYf3G9di+YysW1i5AVfHoA3vw6//6t/Do/XuGqXIIptMpnnj4CTz31PO44NLzcNZ5Z+G0M0/D0YMD+jnjrDNw6s4dAIBH738Uhw8eoUWfDcFsTLlwqb7v8fzeF9D3s7SXcejjiWMncOLYCQDDuqLJdFqYvfWUrTjz/MFoHj10FHsffcrxous67HvmBex75gVsO207tuzYhtPPOQN7H3kSHR0hDQDLi0vY9/TzZeV7JvD44WMlV5QX5jaG3sSPBrW2Y9biZM0anHnJ+ZhMJtC+HxDR4pItlAVw8tgJPPvIE7j8DddiumYNzrhwF7rpJKEs/3n6gUfw7COPQ7oJOXGxXJPTa8u2l5VDc3WH4oAY/pR6pbZFVfjmBbp5gAOXiNGhy6clNMHPOzojPRaD5FDKzE34Vuv8UL70JcfLo6agMKfklhqhlN9exvysXg3jVrQPzXv0ZOVj9FKHh2XChPpQOYc8OxNSafGrVW1I0NoApihnQ+WYdjhXvQPI69dEdF2H0848Fael38vLMzz/zAu4/c+/hY/97iex++6HirJAh/IvvnAQj9z/KC649DxsO2Urdl14Lh574DEAgnMuPAcbN28c8ld3P4TZ0nJR5l76UZBhUYFnb9/3A5IpeqHp+qygoPjZdur2MqN35OARHD54KJ02YUbr5NETOPjCiwCAhbULOOX0Hc1Fq/2sx8njJ8LAArPlGbRvKKuXkiBzUhXTIEhr1i5g2xmnDmOxtIwDz+2D9gqZ5LVRAp31OPDsC+hnM3STCbaefiq6NWvQ5zwWtbHvyb1YTNdr5nMeKz/oU9dQo1qdfQpGhjxsR2OazyH3BiO1yZs5oxHJWYr8hRLY7HSlUpa88FSoW0pJYp+XAjBMLITlDVKMAbOncSSjEllMvpPpwPZstNSf/FVbgRa2oRxV6Lk72z2GkIWtSvfg85JK/KvobSTPw6fyWZk3kY+aVrqzd0SytnnJfpfX3IQN0UuLS/j6n92K5556DouLS3j2yWfx4D0P47EHH8eJ4yeG5zLzU4OLJ07ige88gDe9+41Yt2EdLrz8Anztc1+HiGDXxcM6pRdfOIA99+8Bb6vpQkiY1051qQzv/K9USwTV/rEWfMewwHNhYQ0A4PjRY1g6sWghqQzPzpaXcfTwgAq7SYcNWzYivzG7WsunnI0JMXnrI75kvhYhO6vegOoV04UFrEtLH2bLMxw/fLT4fatVcOzgEcyWB4O1dtMGTKZTLOli2d2QPyeOHB82xTPv6LutwW54EgUdS5MtSAtm+DB+sElBYxtGfN4nFs+/i/Fjw9d4Cayvo22QV9UwHSq44schy1BnYWgoGAu1Ol1QlNKN4tLLNdN+ylUVox9ftdXK6dU//QJg25OZt5wKW6ZMZz44IPsloEKR05oZQhaTXrAUEvOLJxfx8d/7FG77yh3opEPf98N+OpFirGJ3VBW7734Ihw8cxrYd23DBZRdg7fq1EAC7LhqWQjzzxDPDZumUvzKG+Qo7kQEZCgY8KDn0snJdfl0ZTzkHw9Kl+woMq+rTbONsaXlAYoKC9CTxIId0gmERZ3lb9ipls/2j9XbeHKq0PzYcaU3cNG1d6vuUj8oZmnTGlyKtvh8eLGvogtcHhu0/vMfS3S8eL4R/ajJjSmOhDCsO26Q6RAMs0Gjz0KhSM34uaosBGgO0wVi5o7L9UJTCHsVEWDearDGyiHXOpmQnnKfa8ljrPDnSrNel0YK1VN1MHWt72ZJWOMIGjGhgoeJr1M8SQWcnFPf/Wvajtq/VdytQbI42yiI7MrWXUJRmKqHU4okqW51mqmRiSg1vM1LZhDQ6wd7HnsFTe/Zi245tOPv8s7B1+xb0qti5aycA4JH7HsXhg4cDLo4brzOiETJA0tigLcVo5Zo6V0DKWrLhZ7jXpefpXlchthJtND8c8owZHj/efgA0DWZttGljLK0iZqLyeJXTVBvO2W++CAmQ3LG8H5MGX4RyQk5myTSpVuFC2SMIfi+AX5CcKRnlnFg7w/MtlzbnTYCiADq3Qr59VHU0UgqvL8F4tU4oDPpU2uD8UYGBnsn8noFylEsDCNT94+v0l3ezU9zlTxMlxJaiLHFdzMKoVh3zw71bNPc1kkrvlWSASEJasTl9hjdoZdtL1tFtQ81aE1mlKLNzwywjnaXl+JfrFxw6cAgP3fMQAODUM3Zg57k7cdqZp2LH6aeU9VdLCcE4aBoHKesSX5KuolGK4RneAFRthSmocMjx5PzSmoUpptPpcHa9DDm9wbhNsLB2oZC3vLTURG5G1hzY5bpFIQnJlGpd1pyHYQ1eUtFJh2kKbSNCmy4sFAM9W14eVruP0ViWJHg0l++Z/KcMR5KHPsmAncyhmPU9ZtpXtPuDeKTud8Wd1rWQIWpGUGTUlQyrWljNZX2AGP9qCffnOYGKXrV8kcbq6Qnff3UeId5zfp06WHSWpmm1cMH/M531xk1Dm+w8cy98TRkYcBoB1f5JZRqp72PHbRaEjPxKGVqVKgUyeE74Iyi4ody54aiPvDxCw7qh/FlaXML9396NxZOLWL9pPXZdfC7Ou2QXNm7eiEMvHsaeB/YktCjm6tCoitaT1LF6ILF48hBbg3JcIjh25Ggxlus3bsS6devszTOJJ9M1U2xIx9vMZjMcOXA4CHv7M4J0C+k2VZ3DuLoPVZ0kSEsnl3D8SMqtTSdYt3mjIbMst9Jhw9bNZRP1sUNHsbyUN41LTRdISEng8zIBKJJRyn/VGaeejJcS0QKUt3YPldqxP1nk+OidXJBDQN4aU/AVHVHsogXXLwtvNMiNrUvKjthX4PpRDYcZzVbD44sjjR4v5N5DqRHs+xF0MF/ixaBRf7Xou/eInFJSumY10LKFDFRySyVPBaJhPPTgeqMDwehTZR2WQffSGTdcjbM8SYgLE9QYkgU7n3tlK/sFj9z3CPY//yImkwnOv/R8XHzlxZhMJ9j7eMpfSQcUQV/BEowZKsecrDh2zAs/nxHhwX0HcfjAYQDD2fCbT9mKHl7A129aj22nbgcAnDx+AvueeSEYzqp280AkEF4Y24lrEyWpDHaeFMn1L544iQPPDotCpwtrsH3nacirtPOj3WSC7WeePmxWB/Di088NpzzAFoNaA4ygjI9lTVMa24KkesVMe8x6+82LB00MDcb7XBRcqTba4QL0syXkQTYNcYQBaDxrpzzQwHMZghWEU9LDIwoajR9qcTFjqOVvTBGN4xAzXF4yxu+zvrfoZIfH9lJV0RM99vYdj4b4dzCvjkI6o6Ia5pAZSivd0wUORTKs9p1uDYYxxryxOqNlCGyAt88+/Rwef+hxAMBFV1yIi68aFjA+ct8jOHzwCFaS0IV1C8ORzsGfVUpNjLFZTl+mTwoGAAf3H8Czj+8FAGzYshFnXXiOybgMxm7HWafjlLRebP8z+/D8k88lw6BoLpbIiwMZCbRFrfo3qA4ta2zJX4Ijy0vLePrBxzCbDdt8zrz4PCysWzuITspFrd24AWekyY3FEyfx9O7HwhIPqRqwkH/4l/k1S0ap57+USzP/JeV/WaaEr5WstAYUUmlqqY95li0fn61vnrtWWZZTf8M47VIgDU/k7B7pu/utyrdcnBJHufquni6/QZw76T1l5oyhsdo4GS7yvGbD5arONQQD3WeloHQPJ5NiHitysXJUuR9Ne291d9rPCB3FAXaSgnZVcTaGUBaHAyVOFhw9fBQPfGfYpnPBZefjgkvPw9LiEh749gNYWlxqJktPHD+BfjYo1/bTtmPt2oXixauVv47RSsIzjthEBMePHMf9t9+HftZjzcIaXHXDy8tpDZrOvb/82quwadtwGsVD33kAB8uLH2IIwt6xPoyWx0m9fNm9OeCxiCg999hdu3Fk30EAwK6rLsGp55410K7DurCdF+7CWZecDwDY/9SzePL+R5zBiONc+NonpNwP4d+sH7YKzXTYP5qRVjbOCnEGBMgRPiN1UjIPvEi2PPzhYNkMHxEbsrTFeI5zPvwDvJkhz81ax0noImcsdWy8uPUaAjgDFRFHapcNgCAivxGjx7Ao/ovCpYmvhJ5djk/T7oT824/O8EvZrHBoHh0Et5vpidnI1md4ruv7YV9eP+vhNYf6nBnZMlzhUoGC0iAaQ55rNpvh/u/sxrEjx7Fu/TqsXbcW+59/EQ/f9wgNmz2tqtj3zD4sps25F1x2AV5946uxccsmrN+4oWy+9oITaavRVexG3yu+/ed34LknhyOer3n9K/Cat74W3bRDr4oLr74EN7zrjei6Dof2H8RtX/gGFk8u2fg3Kq3ySBEFal1Wg4FrRTLDs9lQDunIvQ8/gQdvuxsAsOPsM/C6H/4ebNy6BdorNp26HTf80Nuxecc2aK+458u3Yv/TGR020GlCU7M+5aRmfTFUOWcV0VdWblOuGuJXMUI1seaNVLMCrb0zIyolVBsRi5MsNhQVD1i5A/OzYudZvVKMEUxEOGGwqVrvRhvEgnQvhnBpAMR5PEU+7in3IyMoyfQz8oItKa0BgJUcxt3jszqs99MVLu9PmftKXcbWcpiFBgBM+9lsOGVShtkiEcFwABa9gj53pKHxFXLIie2cwSdsWOYQRPDYg4/huaefwwWXng8A2LP7MTz75LN0RJC9OUZE8PjDT+CZJ57BhZdfiC3bt+Bn/7efxfe+73vxzBPP4IO/8j9w4PkX0wyfVgQ2Z928/A1TyJ3giYcew5c+8kX88C/+GLacshXv/zs/jZe98nIcP3IML3/jq3D2RediNpvha5+8GQ/cfi8Bq7jBUwwAldxebl8CfWonAbBg0+ukmuPoZGRYhf+1j3wOF7z8Muw4+3S89vvegq2nbcfTu/fgnMsvwqXXv3zg/d27ccvHvoTlpeWy1q2H580Q6vXIyyO8OCp4iOd98oJbKd+zM6NaJec/6sEphoUS8lmX83kiuUw4xNQ9WwCYZgVoGNO6mfACXd5+EwoWogxFOfSXryr8eilXRuHWQ4m/51dNJAOUOuW215ChEY0vpggH93Hg15j59Cgqhd+qflyBtOKfJ1IS3xlJw3Sh4nfmHQuhFFErfJjq4EqTt0ibjfOWgzInSQKWvWfRGKX6G4bKEWDx7sH9B/H0Y3txwaXno5/1uPuWe3D08DF3PrcNMPDcU8/ikx/6FP7SL/8lbN2+BdtP247tp23Hjp07sGHTBrz43H7HAju7nJO/XlAk3AeGVeKf//BnsO307XjzD74NO3aeiu/+8XeW+4snF/GNT38Fn/iNP8GJYyeGZRJlxtIrglZtKrMBRYsRipAlMkQgHrmEFf65rke+fT8+/au/j3f+9ffjlLNOwzVvuR7XvOX6oepe8cS9D+Pj/+G38eyjTxYBiu+oK7xQ9UMvwRCkv35mCAU1dSQrbFxthDyS5sDJnWUujWUGZIGKEibPndfl+RlGIcKzJmSYJNRGljxr3/rs3wRUwhkJdFVDGYyNajCuvDYtm2KUtVfWP5Mq9720S5itlWMgicwr/83WEpqsJNYMd15m7I4GB9wx1Mr0UbVjvo0nOUh7HS+zHZ/mFepFMDqB6LBSvbxsIa3bOXn8JL70iZvxwJ0P4sTxE3j2qedMioH62FgmKijmmoU12JC2khzYdwB33XIXVHtI2ERcGNcrvviRL+LA8y/i2jdfhx1nnALtFY89+BiOHj4GiKDvFXf8+R04cmjYfrLn/j3VkB0/dhw3f/zLuPe2e3D8yDHse3b/kFBPyedOBIdfPITf/w+/i0fveRiv/e4bcMa5OwERPP/Uc7jjS7fgm5/9Kg7ns6GKgR6M2S2f+xoeu/8RLJ1YxPNPPQdA0BeDIDi0/yBu/qPPY/3mjTj0wv50FlfssRcGxbAl6K6bbsMLTz6L2dIynnts73ASAxsLGXJVt37yZux/+nlc++4bcc5lF2Lt+rU4evAwHr79Xtz6iZuw96HHPG8T9Nt9y10JBfbYc9fuqH9VSj7b22wkxIubf07YEHnklX9Xz5TeB+1hutsA1BBSadMjoDrnGDpXiBiMWj7FoXMFUOr1Lw4ZqcrHeFXOzd4zmJGWkqYzQvKoaOAfvRXIJdCpziKHGuyJGT3bckU8Ci9H5FyVVG93JmBTtmQZIo9yZPtwyZCyH7CeDvS/YusNxQbaynFJYWIiqsu/xbbMBOGoj4ERB874mX42w6tf/yr8o//8v2Lbjq34+he+iX/9y/8Gx44cs4P4QuxmyFuxZs0arFlYA0CxtLg0HOSXWSmmICi8NhiQabVmyIqT0uXBXb9pAzZt3QQR4NihYzh+5NjAq/ACC0Y/kjxRGSBzPmWQOhoQN4CMpDjyEFu7xPC6zv8MkqG9Ys3aNdiwdTPWLKzByWMncPTgYfTLy4BjMa9Gz/zTSpkZDAqMf0VuIg+Q3s8oWSjV5ITLJiZGNGaozMIkO+GAFBw5xKKwksc68BQQ2u1gLxKx1fbOrNI4eEMbx6djdBgiRntOyb8p6Qb1rzzH/aG+WrYJbo9CMljCoR0U3bzEfBl3b1iLI8inxhZkNfyeiI1551CQ2mGLvbXDMtpRSFjGnOSvLK4lQ5brhqbTGpj7RYH7PjmkFCKmHM+AgrJxIuli6JdPf+B3tKntM1u/YR3e8v1vwrYdW7F4chFf//w30ivvmXU06Bni68Co2fJyOWyOhcKFSMlI+sV0SPo8TMtn1JMXSHDiOFd6/OixdO46XL+1Vy+NasEEFOjJSGkw2EMS1JQo88zuc+dZvurkAvla8/SJpsWTSzj57D7LoWTB76mJ4qEz0vJtS4MUPzaNbTWEntx98YoetzS5MJC66Xbt51xVWI7Telmu1RFzTxQW8piQwY7BaUUT8a6Mg1C1bHALkTVVrZeZMk0mQBRmSZ9K9hZK0iw/h5ecoyLAWIyEcjdSW3y8tY2L9amMbUBo6v9jHB9NdtoYOAQ6glQFimkhRKjitLYmr3rPu+ilN6RVTjDoOhqTLPxhwzHMeKgqrn3TtXjd24e8ykP3PIzb//x2oqymdthTFWITJ6R8NEhmgIldeWszGwhIGWhtMJN9cD6ALw9uPge9DD4MSjuB9sMNBa3wFioX2tfRHz5CcKud1YbfTUnDvK1LfYwkK5z/idA8G+YADRl1dAk2lGu5DjFvndG3zxsBfguKlo4q09iwHq299mPmyxypdYRzpREVV5wnC6pjbRH6zIpWu2E7OG9IpdWGxQaFkVFfDJlpWEROyVgRGnWD3Fwjlv8jfswJhVr+yvpvO0G0yCQbH7bT/FdYeCpEL6Euo35aYnRSuYI0EtDNlnR4bf3wQtSS30pMH0JFe/1TX2YUkmHTYenBZS+/FD/xi+/D1lO24uSJRXz+j7+I58vrrtpiZkfCkFYCRDPDmeRfxEfjYchKvSU2jghH2Pvl3/D1ZUMfvHBWWi8NVLUXW/+K7zygSXlsA6wJm+uXqpO4sqylzEzS2460pdgxvKGpg4Cw2FjZXxNocfxgCxgcQHbPlTjyuHrjXB9glY1OJrQWemkwPquaGX3CXSWJLo6mem7QvX4CJJBZdFzF3IZT5vJ0cqElyZ5bsDFnw2R5qZ6Mh1+y4IxAWUaggZ5aP0D3OKSeCN+jSMxB/dosl2FKctuFelqPDAWMfrZpU0CKUHtsaF1TN8BDR/ocGqZ9YL32kC4plwK8SFB1OGH3ytdcgZ//h38Vl6SV7bfdfDv+/NNfQd/36Z2H7f6axMfkwAiDnJUIiwtLORLnaKuKANTHi8T1ZRYG1alm4QrprhtbSoDmwRmQn5lHIeMDsDBnq+Yp98javFXFjwZc8bM/6vpbUBMZoQn12+XqCFG5RHsRLamk1iVlWelL2AeyCJGZ9ID6JqrxZ8NVUHLAx4pKloo9KyeE+qIFuRd9SvUFAxh57mgr7cbjibX+pzRDargaOY9V5CfJjh1sWAbG0GZ2OGo8ixvyJFASu+B6WXgVCtL4ldMaohGDn7k2PZW0rIEoyibKVip7JS/Xim6YpdXelDe/EaXrhjc9v+yVl+GX/8+/iYsuuwAA8NC9D+N3/vPvYd9z+4Yyfe+T3qQcWYFF+F5mtutp+8OCTvG0pAGrUEc0ShEINH4XJESwwL6mMCl9VRKKCMTs6FotoVkePDakw6d3KIERRV5t4dlABk3qTlRT1c4YkQESOlQxIFFn2MgAss4W9Fu+Z/4Zs8vR3bk+msluDXDJkeb35zHwIcNVUCn3nJWmWMVsybJSiZ8IyL3OoaSr0fSCERXTglC+GgvJ4WtuxNCV36KjZQGrC+UByvAkqdEQZIU1UflHnH5wBjHMQEoekxZ2YOPHosf1eYA6ikOy/E6HV52be3en0BLELw+RwoEGUFkTySj0s2GP2ZFDR4rQPnjPQ/i//8Wv4r5v3z+gtX6WBN9mGkVMWKQ03CE4t8SYhAKdEtJpRrl76vvizhuKzGGQVoYvD3wIYFJ3y8nHFGIOl3ozB6qedhKclvBkwaoXDVqRMttEz1giOr9RWAqvokezsI6uM5ilMcn5IjNMSZQkGz2WjegMtDIQ+aqhUUMNrXFxiAeWqZSqDPEpGUYXvcQQB2w47R2XbkGjm5hi5A7ThWzcIjiq5Emt3ihwHALm3FBKvIuO88d2HpBBiaFb/kYoiw1TprvL40cyCPdVqcOhn0U+0uwwOeXOSVmICiLiFpbRoWFLugfLmxeNeqYMXodnzJyIBOkq0+UCPLXnKfzZx2/CYw89gd/7z7+H++/cnU7qTP9oVjJ/Sp4sWQORPtzP74xNnsLlc8jQRSNHyfnsyXvYAOWB75AT89xJdge0yFUN4ma0w2faazJajLwqGc6DytOHrOTUVxReEVr03HeMYMNtFZCRYQNFQhKdSDRWjKg4ihoHvRHZsfCCFGleeoIXF+fcT2a0kMenl+sGY8FGnHntlKaEizapU6qpZv2IVvboXH+JFuI4NcasCgFtAE2WKZ9VbXexVAOLk+Wns4Gy3GNxPnlMU7rBO18tXPXvETFLYcg7R0khjOCHeWxKfb6HLhJ55dYbtABcwrZ5htDCouC1GiIoXVdO+Gx5gK2nbEXf9zh84FA6RtniZpBy+CYbYUoqkxW7tJbqWLdhHdauXQBEsHh8ESdPnCwwuvXaMHagsa3c5y7FQmy8LXw1Q75uw3qsWZhCdNiwvXxykUbK84zXBmXpYtrc6ahQTCYd1m/agIyKTxw5Vg7t4wV43mDbu9wUAJ9fyMYlr50ChrwUyrNmEMvMcK4z9oOUI/IpixavNRrqzcqjhRZU48AV5nVHWtorv3P9YuVsRo0MfQk/UY7HLmOc6XD9MCRQnCDRZoabFdYbACDwjCIC7rtoTyi1t/vlWR8OmvGxvbS8nMHHHBZid2oyk+nqRIbrpV9miroRwylMA/HCZhStHoGi45XOPB7E5bwK32RACrKcqusOMd1hsdShTrBl+1acesYObNuxDZu2bMR0OsXy0jIOvngQLzzzAvY9t394W410ldE7mN4HKOHVVuw1a3vo08WZSYphrVOZncpGTwRv/5Hvxlu+/81QBT7z+5/GZ//gM0XZoFLyL2XrUXE9FEYGSNJnOO48ji3+U+2xsLCAH/j5H8FV11+DpZNL+OivfRjfvunWdGCelj446cnCnaMD1eFVXcDwskDyblt2bMP7/sFfwWnn7MShfQfw4V/5Tex95IlyvlVWzsl0Ul7WasMrpMw84oycxCtefiZpUydoOBQbJ2eAzZW6Mi7JImT2CQX4/Xuw9WHJgJZQgVyvRVZis30VarPnXLqgLFOoV9VbRGiIStQMjEOE3N0ytiTd6mlwGxwLXyw5Lo5XZixCcEehn8KdHxtf/lEMcVitjuyEBO4Nzvmvqi27oMXKlsOSQiIbLV8L4GWhcauRgjFNG3g0dQIcoEZOZOa6Nm7ehF/6Z7+A177pWqzfuB5rFtag64YtMSdPnMS+5/bj7tvuwef/5Au485a7sJxewZ6r7Shmd9PfUsCjCUWzFyGE0GTOypnlg9c6/ewzcNkrLwcA3PblWzHrZ5h0HfJrmWaJlpzTMhpz4pZjbWvahQMN8qQTnHnB2bj4mkuxtLiELadsRa9lcYivrxE3iQguvOoSvPEH3oLjR4/jy3/4WTz/5LNlXKZrpjjv8ouw84KzcfD5F7Fuw3qY+CnWbVyPG77vLdh15UW45yt34Ntf/IbtAiDmVugF2ZhxDorDQKlQh9Vnntd6aUneooAufDCF6sp9E9DqJTseyI7leMkAgeiRgrh4DK0JWyZSDFmWq6r+GKZGubQ2xDdS0GX5nss1tui4Ux08i7NJq+SSbVttcjLVYiGe2DgKTzzl0JVSEMF3FxthaxkzAje0VriUx1X48Rr9VemK7AiYBwCm+bjcemkDhV/Jqq5ZmOKCS8/HGWefDmA4Inh5cRndpMOWbZux7ZStuPDS8/G6t74WH/rVD+Ojv/2xdCSMlC03LNpllq54MG+XXViWR0RBi+zaq5D5DdbZO+dZKF7FO/DEr7JhYWrYFDcaASS1ZCSEBTk0qsNDVWDDpvV4z8//CF7zthvKyRN//J9+bzhuulSfEQWFuBiOgrn0uqvx/b/0k9i4dRMufc1VeHbPU3jy/kfsJRtZQBOdJcwDjXOcGczGosQ5hHiVx0eDoaBp9mRomBOlTGK0pvay43F8VvoBFAPHmSwHefioZAnVBRoBmtmNSR8vFW53gp84qI2bItPo5SiHPAXJhOy8IcxkmjTUSos+JcnBELJFZ5A7SzO19JdDNvD3ggVyK2Hxq3qeCD3LIVzbpbQdQXTn/HQA5PZewrw3DhQOmMkOsB7AyROL+Mj/+Cju/OZdmC5Mcd7Fu/DG73k9XnbVxTjtzNPwgb/1U9j/3H588WNfqsOIMvAWyzHKyZ3mnIAy1Y3u55Idrf8q7Ct5L5qaLh6mZjWHGtFkiVM8jS35mUrWI0ev+ALp+8L6dTj1zMEZSCc45czT0E06zPqe0I7vP+vMtjN2YN2mAXVt2r4Fm7dtqcI8pA3m67dswPKJRcyWl80zdl3xluPG2i8KjWGUCZo5gpJorkLGVFY9jyLbQzBdpNjCNYZdlg8rkKk0GwxAybUy9BKbOBEyPBU9NWLq4R3C8OoxcSiq0AzLsfnXpMGVZalhhG/mZLiTQ0FrSih9YUIfDUxeemB1m7Hi9xQ6n6Gwo2bcDDOBHeK5oU6l0B3Ft/C4Ol1vqOC0vASUBrGUydcLQjHSlhYX8bXPfx3fuOmW8j6/L33iy/ilf/4LuP7N12Hr9i34/p98D771te/gxRdepLfVGHvMeAWDRowtq4B5RqzuRyPZa9fZWOXBE/pta4zMI421Y7wd+pBeO0THeYT2qTzNm1RwWCA4dugI7rv1Lpx54dlYPH4SD9x6N2ZLy64wC45blybAk/c9gmcffQqn7zoTj93zEF54Yq/NtAKYTCY444JduOKNr8aZF+/CZ//r72P/U8/SWOekOqNsblNrZKGsTGPLEUwDM6r14k2LZ8XfETWelR01+Tvst7g1eUJKRtZQbflFRi+9eMPqbZ2fyOBJmWHcLNzJOa6yZqvQ750S91FdmcYY04/clxKqectLJewKbzQvqCrLvhsj2wBfUBxZsbbj4vWAjLDyIIVozZFKsT0NESPH0K0yDpbD4hvREuRZsM5HqJPpFGsW1gxJYlU8unsPfvf/+n1ccuVF2HH6Dlxy1cW45KqL8c0v3YIOnWuAZ+28AjRm8QJjmt9L6BJQDg+exPoMfUlsTdBoSRtXeHV4e2i5TS8oPmRYOrmET/y3P8LuW+/BiWPH8fB37i/G1bxeqDcZmm4ywRP3PowP/qP/gNPO2YknH3gUB57dl7ZMAegVp5x1On7iX/wN7LrqEux78llM16xBtnZZsJu0U8iUQza/XDTxIlqqkE/K/c9hIIeNZRAzwnOviHeZpuFX6x2AqXKVUH9yCNWbn5O8Kcui6xCXtU7aWkBbu5W7UZYDuOQwy02dDnBNlpDW57M0oUM7BbR2CgE8giOKOCMYUX/e5yveQhbeZ8Ns6MyjNd8hb6xyN2z2NuIxz4FopI1eySEhtSoIiMewjoTtM9IJRDpAOnSiEOnw4D0PYfddD+GGt+7Axk0bcMGl5+OWm25znemEScgdGhBc13VFEOJqe5sPMGGNKCi+d1CKQlJdGcqScassu2N2TwiMjI9p34ofTjTmt/4yis0sObz/IG7//NcAAN2kK4Y298MLpb1TEQC07/H43Q/h8bsfshfEJvSloli7fi22nrHDh/ssQJpwhvC4pLai3lZoxMaLvT8vF2njCKrHlYjbNtioNSqUqkqSX0ttqJBBKPdi0plRNgUpZOcyMsub4WPuK4y++zZi093VHgXzDe33ZFrI+nO3yQ2TIwzrrFwIWDwQ5ayKIFCd6vSsy44luC2HxhsDY4dOeHTWsG90i8ECLRy1wbXv7Hla65cGC96VV8SLACePL+Kpx54GMCjc9h3b0jR9QAdZCXU4t2nj5o1YPLGIk8dPFHhfvJcINmzcgHUb1qKf9Th2+NjwsgpBWXyaGdERkiq0o4N0go2bNmBh3VosLy3h+OFjpHAcCibm9sNxOuvWr8PaDWvRSYelxUWcOHocs9kMk86WKrAuuS6mgZCuw4ZNG7CwsAaLJ04OZ2rNQYJIyxTsTdZDRR1huVKenhNI2c8p3H+GT0HJy9IOvkc5i6zwWa0LwlKuKok1ofxQnYVBId4Rvh+EtkYQio6etLkXW7CrElTYbUIkxci5JXJ+MTtl5owMhxrdpW00wqwwk6zCjsEruRuWIlK8al0tiuI6G9auGCgYau4KbXSCrNsQTahNqYFAY5HPsrA8jlk9CcYq0o5cMoKsZae2/2Kvqnf30iCXxZ2Oyd4yVg33ihPHTpYik8mkLH0454Kz8eZ334i16xZwz+334dYv34aLLrsA73jf9+JlV1+Cz/7R5/Hp//lp8hyKHafvwBu+9/V49Xe9GjvO2IGlk4vY88BjuPmTX8Y9t95T3qQzbBkZaHZvgFZg6ylbcON73oRr33Ittp26HUcOHsHtN92Gmz76Zzj04sHBQ+bEqg7v9bvgsgvx8je8EhdddTG2n34KptMJjhw8gofvehBf/eTNePyBR9NgZiFseFcFTj3zNNz4Q2/Hlddfg41bNuLA8y/i1s9+Dbd87qs4efT4ELLRI1e97uW49NVXQqF48PZ7cd837yxSEw1cRlFd2ji4adtWXPeeG7Fx62YcP3QEt37yyzi87wAuec3VuPwNr8Sm7VuxLp3yumHrZrzlp38ARw8eRtd1eOahx3Hn57+GK2+8FjsvPncI8e+4Fw9+8zu0dXQIG7aevgOvfOeNWLdxPY7sO4BvfeomHD901MmG5UTMcHOKyhLalWw7e8ML3p2xVkBo47jVl9eNmToK08MOW/LeQxPmsgQiFyHjHXNiApMbPzLaUGaveCWXloxZ5pkz8ozsYPwyQ2p05wMhY65q+G57N5nFmirjMLAFLBLF3oBkP9fqIxsp8YjQ9u7WqFPn8SzrpgmCkuWU5hMxb8FxcGFiJ1i/cV25s7i4lGJv4PSzTseP/dyPYNOWjfjEhz6FY4eP4hf+2c/j0mteBgC4/eY7IGnBqfaKXRfvws/8vQ/g2je9Jp0wOnyufM2VuO4t1+IP/ssf4PN/9HksLy8bBCZ0oarYuGUjfvxv/iS+9/3fW14xDwBXXnslzr7wbPzuv/kgjh467MKZ8y49H3/jV34ZZ19wdmUkrr7h5Xjlja/BB//P/457vvGdMrMWYyZVxSk7T8VP/W9/Fdd9z+swSctHAOCy11yJHWedik//xh9jeXHZhUyXX/9yvOtnfwgA8Olf/wge+OZdgxAVJGu85y0z2is2bduEN/34u7Dj7DOwf+/zuP/r38bB5/bjvKsvwVs/8F7Xlw1bNuH6H3x7+X33l76Ju77wdZx9+YV48wfeCwC441M345E77sXSycWy5EB7xVmXXYi3/dUfxdqN67H769/CHZ+8yZ9yMyLAfKG17qZe1MpGJJfLGhQVAdFq0IZ0Kxglm+1XNiA2W+036LJhKmvTGh3kPY4ZOghs+cRgXIUjMqK5tFoMiDPIRK+lJiifRLkqISNWD0U4nqjBF37eoXlnvHhBcnt7UI2suNkaMY2FliLAtOSD3FKDdgcq6+tczeBG129Yj7N2nQUAWF5axgvPvID8RprlpeVydvppZ56GH/9f3o9Lr3kZVBXLS8uYLc/SVgnFth1b8VN/6ydxw9uvh6pi9527cd+37scZZ5+Bl7/u5TjtzNPw/l96P55/5gXc9qVbS+4q53oyL17z5mux/bTt2P/sfjz96FM4Y9dOnHnemVizsAZv/oG34PEH9uAzH/oUdUNw7NBRLJ1cxFOPPImH7nwQB/cdwPbTtuPK116NHTtPxfmXXYD3/vyP4ulHnsTB5/eXkJRDgq7r8MYfeAtOPft07H3kKex/dh/OvugcnLLzVKzftAHf/RPvxpP3P4pvfelWL3CR72IeaTRF0hAIvrz/6efw4C13Ye2G9Tjr0vOxJoWmT+9+DIsnTqDrJnj6wcewtLiIx+7cjcXjJ7Cwfh1Ov+BsbNi6GQef3WdpIxGcdsE5WLN+LQDgqfsewYnDx0w8nZemI3qyT2TnRqHmiMB5FJ+2Z7ABySKfv5RURhWq5BaDkeHV58mw9YAt7CxWmNIjFcul0g2lRGBcaMOLMon0smawT4Uk3DfrGRxWUubynivxRiKeCGdI13ip4ZloBhyK9OEYfR2MsyGlHD76TmS+RtDrqqZnmHtTRy0vaYjyglGdMBHoFRdcej4uvvJCAMChA4fx6P17imdfWlzC8tJwtPEVr7oca9ct4MjBI/jq576Ou265Gw/e/VCKkQWv++7X4fq3XgcRwZ3fvAv/9z/7r3jqkSexcfNG/Ngv/Bi+/wPfhx1n7MC7fuKdePDbD+DwgcNl/VChqpP/h7L/jrPrOM/D8WfmnNu2d+wu2qIDRGEB2HsvIkVRvVjVsizbkuPYsZ3kaydOtZzEsaw4ViRLtiSr2aIkqlIUeydBkATRO7DYxfZebznnzO+PmXfmnXMvlPwuP0vces6U933mecu8g1XrV+Hwa4fxtb/4ewycPI/uNd34yB9+DFfctBu5Qg63vOM2vPbkq5gcnTBml8TU6CS++d+/hsnhcYwNjCKKIoRhgN23XoVP/OlvorWrDZsv24qtu7fjlV887/Y0slkNMyF6163Ca4+/hO//r29henQS67ZvxAf+6BPou2QDGtuacf2Dt+H4a4dRXlquGnsuKFwufhVm1ZwZKXDomb04+uIb6N6wGp/4yz9Gc2cb5idm8IM//zLG+od0eZ8oQlSJMHzqPGbHptC5thct3R1o7V2B6eEJs1NAIciE6Fq3ClJKlJdLGDh8CpUoQhDImuVsHJikaARf6xj6CKRNLGEFkbmsHMMS5MvyvU3OJ8lfcS3wIMQ+S6CsP1Qx5XZ+oJTyMgem5wETcDltdH/hm5csuGiVl28BqnKxsR6Qb9JrF2ub6x6Zmwrcr8YzAi0ThHIAyD7nvt0abiVzFxp/Y//X9DWlRrwGLaclzks+Za4BmaZwfu4EC8bXctEo7dNQiT4BuK2zFe/86NvRsUIf5X7wtcM4d/K8jS7GsT5EFQAamxsQRzG+/b//CX/7Z/8Hjz/8BPpP9EMBaGptxI333YBcPoflxWX8/FuP4vxJfbT9/Mw8Hv3Oozh/egAAsO2Kbdi4c6OX3c4fs1OzePiL/4zjbx5FaWkZZw+fxg++/DCmx/WxYKs3rcGGHRttv4UAokoFb73wBi6cHkBUqUBAs8U3nnkNB158EwCQr8tjw85NCMLA8yVxJRnpH8KPv/Q9DJ8eRGmpiGN7D+KX3/gJSktFAMD6XZvR09cLKCd4nizYYWf/r1rdUqtwen6gT/NZmltEcWHZlhJKkgTLC0tYnlvA0twCysslQAjMjE7YU3UKDfXoNkfb01zn6+vQaRj0/OQ0hk/3e2DCncZcpmhjru2YxyeF/S/tq7JJklW5Sr5MkgHn0uHSPIibcDzvUH89gbKHwyZMnW0rDXEXqUmwLmtvKgTcMe76TykgUTpbng4kTSCQgM6A1OcM2HbYawsTSDDQIchPy8eM7VYgVVfuLzF7YO0Ysbmpkh5Gz7xS6Ewo0zmPNkAg3NUVv+avelQtcvQ/yhTwP5dWmBJlhZkExNb9MVdhVj2EAPKFHAr1BbS0NeGyq3fis3/2W7j5vhsghMDY0Dh+8q2f2TpYAgJxJfY25b7+wpt47HuPo1QsacWXEkgUVq9fhfXb1gEAhvqHcXz/cQTs1J6xC2M4su8IAKChuQHbr9yOIAzgpQiYx6mDJ3Fi/zEEQaB/HwY4c/g0Tuw/rpWyvoCNOzfp4IAQkNBOexkEOq3AROoCKRBVKug/fs6atV0ru5DLZS8SQQWO7j2I4TMDCAKpAU1IHNt7EENn9JmATW3NWLWlLyVEF5vPGnlPcFG7qgMkuDZaOpNyEglPCyEgUFoqov/gSSRJgiATomdzH2QY6KPp4wQN7S1o7ekEAIydHcTs6CQoO9ydvm1MG6soNZw1cPd3CbBu9hT7I21L5+Z6CshNOF/8UW3fuLFTSgNEoriyOfMv7cXhxq6yY5v6s2NKZ9y4s24SA1x0enac6L2tMZQ9VVmBHQ3PGk3ySaksJHfpyDj1gcDPjT333vvj5JuYvt+K5ibtz1Wp/3MSV/M2/y8Pzyas9r2Figx2+kDBRBVgaLeLYPDr5Qt5fPR3P4T7338vmloasWrdSrR2tEAIganxaXzjC9/G/lcOeHlRiUrs9SrlCvY+vQ8Ls/PWIU0kcM3mtWhoagAADJ4ZxNz0rFMqw4DOHj2DqBLpDcGb+5Av5FFcNgebsoG9cPYCisslO9hSaKU8fegUrrrjGggh0LtuJXL5HMrFEh147TEbGMVL4gRzU7Pa15aVyNcXEAYhIlTYtOtHHMe4cOq83WtJl5ufnsXgiXNYt2MjwmwG3X0rdTWHWoko3FZg82Pf4YyAzJiLSMlFEvGtyUMfJUrh/KGTKM4voq65Ed0b1iDbUMDSzDygFNpXdaOuuVHPzdEzKC4um+tw1XI31SDi5s59p9oTRKiTWJ+S83UI1lhbnTTlPnHy61+XKyCXaXpu/WK8RdxE9RxmKXOS+02qu+L+5SarBUdqi78/0+KrcFvNLEixcUybpyp1c4/lCv+pYr8lsOJHeblcSTbWqRW5egF1v+HD4aVxUOfYXtgquQED4BTuhCpJ2IALN2IQ5kRoarBwJTWhS5hsu2yLa6zSFRuOHziJ7//9I3j5yVeRxIkHWHx7zdLCMgbPXnBNMaavDCR6Vq9AmNEpYuND4yiXKlUt1++XEWZCtK9oR6G+gKIxtfi4FheLoMNi6f1EJRgbHEWlXEE2l0VLRyuy+RzKxbK/CKkEYSaD5o4WdK3sQktHCzZfvtUpIC7+UHGC4tKynwVtWOb44KiNYLWsaEcQBvrY+BoC4PmAVPXnTD6r2wDnQNav/eWP2pakHLwjZwYwMTiKNc2NaF+1As1d7ViYmoWUEl3rVyFbyKG0XMT5wyc1eAcujYT7W6sTkNm6mVI0AiQFprRpB6oCeORPcLn1bs5uAjcAzmT0PEk++bKmVsrJbg9TFcwFJtxNma+KLzKc/emxdvNATeHdcP0nRkVgpe/ngUyVJLB78dI1KelQYOcMCvg1sKhvwgUq7Bh6vkS+OKYSQfm88lunvuJFWpl6p/1vvPmh9v3UWjGU7YEyiTSJim0joyjCyUOnMTs9h0q5gtELozj8+lEc2HsIk2OTLotcgSWhuvuUS2V73p9rlIIMAjS1NevJTRLMTs2ZQyr8KZqfXUC5WEZdQx3qGuuQK+QcG2SDkiRxalXUAz03PYeoHCGbyyJfl0eYDWErF5nN4Osu2Yjr33YTtl+9C50ru5CvyyMIAy87/leZcipOqt9LEsxNapYWZkIU6gsasMoVXe+96jpO8JMqxGK+CeVnhgOwppnnZ4H/OZ1K7VZ7nW0/ePQM1mzfiPrWJqxYtwqDR88gyIRYsW41hBCYG5/G6JkBry1ph0Pa/+mqgQg7Dz5ZcfSC+0fYgszcX7WcqgxIOCmi/yt/PH0vGjODGNhyX5YGLf9edhHmW3YU+djY+CvUMNHMpZjfTppOSgHLrtKOdEZ+uOq4htldFbx2lQMPupaLKrLSQqI2+DiSVVviHc1JLYqsb76BS1PtO/j/bw97CIVdtYwguzRtJz0JY1il5RL+4fP/iNdffBNSCB0BNGkJ9qxC7txTyjjGzaqeJIiiyFFy83UpJbIm50opZcrTmDWBjUWlVLYO/CCQCMKwdg9tE+zSAQGgXCxrMINmddK0WUFHwm68/2a84zffjZ612sG8MLuA4XNDCDMButf0QgTCu0XNwRbOT+KcoZqJUskYGejk3JRlbq+rUsKdvr79LxXj56Fz549Mgblx9rpz/YQZ2wrOHjiOqx68Ddl8Dr2b+/D6o88j31CPzrU9AICxswOYGZ30/E9kWrgrpVIxmFJZf5MZGyvYaZDh4yt8U0F5LIxH0FKLieIwxRJFVXpXAGsf7bYQDki1KjCbTaS4hTIpCXRn5fvxlEpsO4S9pr8JyG23gjHNhJdTJVMoxbgaCKxE6l0nL45B8e07fC+W4GkebOLseKZ9Q97IV+sC/yStI05ma+1MrX4IUHmZqosLug7AQEwlzgellMLy0rL2QYWBzYqnJYboN1HsRCXWWW0HIUkQJ7FFWgI2nyUktkVuMISnhE7IzAbOi9FQRkFqO6n148rbr8YH/+AjaOloxdzULJ7/8TPY9+QrGDk/gu1X78Qn/+y3ka/Le/dU0MLJHxoQyCxWZhyUNw4UxdErdK3161dMpKoGJK495EyGSqBUgkT5dbXo3jZUbBYppRQGj57GwtQsWla0o2dTHzL5LBo7W63DfeDIaZSWimB4BR/2aJ440/H3pBFqOS7jm1POl5H2iXD/C7uncGCVBqk0eFql9doP65qorZDujk5e3Xf5IkGmX6ISKxfOzGS9UcLlEHrMKuWp4f1PmYD22kZ3uAoppDYtC+b5AYGiG37PFLd4LyAMFCdwJbf9ueZi6S8K3q6DlH5bPnQx2uYTNoTS5Ne4kRRu5fu/gR4DJqc4YHsLaVJ1JnYaJAjEyHxUSiGKI0SRq1MeZkJzCrUym5AFlEoQhKF11idJgjhKXBiX0227KLD3Es2iqPpEHMWI4xhJkqCjpxP3ffgBtHS0YmlhCf/8v76Npx5+HFGpjDhO0Ld1nb0WKbwGIGHD4u7eigGCW/PDbGhXlziK9dgA/gG/bordWFcxMAeW1mRUqc/NNRK2OPKr23+5zSgEJgZHMXp2EC0r2tHV14vG9hZ0rtYO99JSEQNHTkElCWQQ+BngnGEZ+eCVFRzDYP0iBeLFAb2oq++yIFOsllWYeE5sZwaSUlqFZVelPa22NLG9rWdQee3QYybsPZ3K6DmPlZ4RF3hg92IPx6YIrNxzd0fl3ddvlap6P91i98d9YJxdOhBJDyndg5JZaU2pDVSpURLVZjf5xrxN/f8P7IoeIQmHXcNSHk/GuAFiUXzSzA2dJ0xYJy4xLN1XosQ1lJ01vFJRWJib15Mp9aELiUqgYkfnVZIgX59HaEzH5cUilpaWq9kGtdMsgwnohByFuoY6nQoBYGlhCaViGXGSYMOuTejbphNfj+47jOd+/IzdmsJTAOiRJMr19yL2PQk0PeoaG0CVXhfnFlCpRB4tdw/GBi9yXRKkROm2eJyTANzzXfqA6hYRP6N+eW4B/YdOYss1l6KpoxVda3p1xDCfw3j/EMbPXLDhdJ/E8lNt/IJ0Xr+4SXOR1VrhokNS9U0O1sqegeQubB28abaRvo9icMrNJ+Fy7Ci5lNqfGHbjGJUz/ex2N9sQZ2pKCEjpDqN1viphx04IPmsGjBUBAV/hXHoHXZ8PGYGgnWnbJOUBDS2c/vYgX26sFZkSS44V1Z8Jl32gqtOP/l8fobtgiqoi7Y8QzNdBn0uryISebt6F/T8Ay774IzFHe/Hid1EUYWxo3J4G3dHdDhHobT3ExJI4QXNHM3J5vTdwcnQSi/ML2ryEr+CZbGjukdgJUQpo7Wqz+xOnRiZRXCpCCIHVG9cgZ7adnD50Cotzi8zXwp2mXEyqkxuFEAizWa+/OgoaoK27w0bWJofHEZsIYS2nOM9tooRCK0jMnNRgparuR/lRSZrhmvcJMAQTXAiBOI5x7uAJlJaLyNUVsHLrevRu7gMAjJ4ZwOzEFLxN5vy+3J9S9R1f/EWNf604s0Hx/C7sSjxNgF/fru5GplmA2jMtCZm4u8H5d9jqr4RJtzAWhXDgoU3vhPljuXIL77mAPvadwJ58VNYtJqp9PbRQ08LoQljO6CXzVFhWQ+kJbm9h9ThTq9iKJmDBP+2gsH43M3jp1BJ7XWKzfD5pHjxr7mLMivkJU1+hushVd/VyZww/TdNZR82lLrFsnuskSWGKx/G/1G1SbE1Bg9j5UwMoLuuKDyv7VqKuoc5uLSCf0JqNa+xm5v6T/VhaXDLmYOIBR9eqbgSZQGfZJ3r1CzMB1mxai8AkRJ4/1Y9yqQwhBeqa6jXjTBIsLy6xa+m2FuoLlh3xAaPoIilYmAnRvbYHQRB6np18XR6961cBgN7Pd3oQcZzojOfU/CgFxIlCkjifW5rNsDhGtelLgOcxLDPxYQAZBpZFpMQLQggMn+zH7OgkgjDAusu2onu9znofOHoa5aWiBX/m8tU9lQKZXA75hnoIKcD9fFAOSKvdDgyo4AMILds2IRIEEgnzUqXAzXNN+JzEb7NnNHnpN97vyCpQClGiECUJIqX/EpXoTHXKi7NtIXbmEj4DIREKgcC89tXKh2S74Kg0g1dV/XCg7vphAUT481vrwY+yt3445WTPN0x9gfIYU/o0dc5q6XsXSxhMj0GqsdKiX5X3sZpxqfRFDbuiswillLaonzCZ3b4MVhPBlOEJISTOHj+LkYERAMCajavRt6XP+nlUotDU2oTte7YD0Obc4X2HdQa9MWdDFjHcfOlm9K5biTiOoZRCHMdo6+7Aliu2AtAm2cm3TugsfyUQlUwSqJRobmuxUTxAH7/Vt3UdsnmfOdFkShl40cptV+5AS1cb4jgxLCdB74bVWLOlDwAwNTqJ/mNnDFDrzy/qpzLKkt5MoZRz7FZvX1GMvSokUYw40ns583V51Dc1+IjDBUNKzI5NYehkPwBgw+7t6FjTg+LiEgYOnbJlfRxr09K9+drL8dC//hQ++Oe/j7s/8yFk6wssF82DYxDz4ezcLoJc4AT1BVAJLKOx/ebQY8CBb13xJC6tJ9ZqTNUkEAJQwo57bO4ZJ0qDVBKjHCeoxIkBr2oAlJIifhKhlAjMn5RklbDNy9RVxqgVAz8/D5+DlW+q8Sij9PpVpXTgg2z9oIqNNd2pht+v1uVY16s/F7V/W9uJYkbFK3tt5FI5GHVCpdgPGbOSovqWfPVyE+9+7+13Ev7QWXPSMjUNeuPDE3j9+TeglEJLewvuec/daGxpRGyODbv2jmttSZpTh07h6JtHvUz2TM6Voula2YV7P3gfGlsbkSQJ8nUF3PGuO7Fm4xoAwMkDJ3H26FkIKZAkCYbPD6NS1qB1yZU70NnbhbgSIY4TrN22Hrtvu8q1X/rbFaSUCLMOsNZuW48bHrwVmVwWcRShoaURt7znLrR0tQEAjrxyAKPnR9zU1WRIbIVNm6MpsFLVaMemUmB5YQkLM9o/WGhswLbrLkeuLu+2IVHunJnT0tIyzh04gSRJ0NjWjGw+h+mhcQyfPs+m3LEPGYa4/N4bcf3734Zdd1wHGQYoLxU9ieMuYu7bIWVLf5ec2Bo0EsSkwsw8po3NQkjnq6J7pW1Ixib54SRIybFjGfz+BFYapOIkMQw4sUpOMi+FNNtoJEIhERhmFTCgYpTEU18yLRO2WFn3CkWUmaxok08gnRIhUuxN+C/sE2WuqxLFQKvWV2szn5pcifGgiwGdqnmFi3u2BFjiqF83CC4NC6hZkZYGwJpBnifOUVF6Zcv41mgEv7oQeqPx4z94AlfdeiXWblyDm++/CSpJ8Npzr6N7dTfu/+B9qGuow/zsPH7+7Z9jetwdciGksKbi0sISpkYncftDt6OhsR7H3zqOvs19uP7eGxBmQizMzuPJhx/H/PScNl2Q4PibxzByfgSrN67Ghh0b8eE/+jhe+vnzqGuow63vvhOdvV2oVCrIZHQte1vnXul7UyBgdnIGpeUS7v/1h9De3Y7hsxew+YpLcPmtV0IIgfELY3j+kaf0PkopL7K1hgFR4pu6VrCVE/KLS49mrouzC7hwsh99O/Sm7Vs++DasWLcSC9NzeP1nz+LM/uMahM1UJrHeprM8v4h6sx1n4OhpzI5PsSRQc1ulkKvPo23VCgBAaamIU6++hahcgY1E85wjL39LcJywkTU/NYFhDc+fEk5Z9etaPiD2W/D87TS/Z2QRyjrTE6VNdsojtOkiVjH1+YraJwVr+kkhEUhhQOri5YEImIXtqf7zTnkGUzNPe2gsFDu6qzad4Um4PNUEfLG7mCPda8nF8qYcJXYLRy2N99PI1cWuVwN0QpssCuYHE5p6uw+oM24bDyXU6fwePTkETs4x7CbVMixiQlIwhiXc94WADATOHD2Db37hW/jUv/kkOns6cfd778Zt77gNQRAgCAMszi/iB1/5AV785YssPKoTMclkm5mYwQ+/+kO8+zffg1sevBU3P3CL9c8Vl0t49FuP4rWn97I+SQydvYDHvv1zfPBffhh1jXW49p7rsefWqxCEAcrFEp56+HHsvO5SrN64Bplc1h7AYe9tHO3D5y7glUdfwDt/5wO484Nv0yanuff8zBx++pXv49T+Y24XgFGSFAXVuVPkw3YOJ5YcSeNsrs9yegQvsQwgKpWx96fPYutVu9C+sguNbc246m03I6pEGDp2FqffOArIwE6blALj54cwMzKB+uZGROUKTu07jPJyCUF6O45SaOxoQ1uvPqZs4vwQBg6d8vpi+VSKaYP6YqJrtLR5B27y5ZqUwbM1aGyMQgiWL2TdEkZGUspISasKCdt9pn1SAnC+KQNYBKOSzYUQAoF022kCadiUNadIyJg/yOoHATTlyRnAYiyFGJXN0GfX1XlVzlJhdi5s2gCJFt2fLQbcMKt22FQ5gtyg0uJhp0eYBSQ1vt7VqoHp4pwq5SRTQKj00cQWLJRS9iAIk1RF6buolCo4vO8IlheWsbiwhJnJGdt5yqdKvDPcmEmpgOXFZRzYexBD/RcwNTZtInMElMKP7Cvg2Z89h4XZRTzwa2/D5p2bUKgvYLG0iPOnBvDL7/0Sz//8OZSLZWMK0B0F+k/0Y3/rfgydG8IrT7yC2alZvPOT78SqDXpbydiFMTz9wyfx5MOPo2Q2RpNcx3GMJ773GOI4wu3vvgsrVq/Qvzk9hqe+/zheeexFRJUKZsamMHRuyK7E9NtTB0+guLyMk/uP4bkfPY1yuYI7338fOld2IokTDJ0dxOPfeRSv/uJ57U/izFYBQ2cHceCFNwClMHRm0Cmt0PXyj+87hMnhMcxPzWJ5YdHu2ocQKC+XceK1QxjrH8bsxDSKi8t+pFcInHj1IL7zn/8Prn/nnVixbqUG/5l5zE3N+G3x5lC/mBmdwLm3jhGcGIwQFi9XrFuFhtZmAMDp1w5idmzSlhZyJh+8BYrYIflu6Noe62EKTwqYrilOom2PjPX6wX2kNcxTBe9UGjI5Y+XMT8rvIpULDDBBwEb9yOzjLIvfzaUduEifyx5XXr+5smtmZd34th8ScKkKXsVbtw/QHaBSi3yz/D9fZR3V/FWPtKwofvKzlz5q+8I40f/lUfve4rKma5T1I9HFSAkYdyT/Ui6f1dE1laBSrFigsiwKfijb1e8BAimRK+RtDfJSsaz32zHfWhrpVaLQ2NyAntXdaGhuQHGpiNHBUcxMzvhKQBMlgGwuizAMkCQK5WIJSim0dbZhxeoVkFJiYmgMkyOTNnWCBshm5Zv327vb0NnbBQGBiWH3m3w+BxkGUEmCcrFkM9el1OxOF8SLUS6VIYVAe08HOno6EccxxgZGMDMxrSeXEmaN0AohkMmECLMZCABJpE/WBpQ1e7KFrBk/vT0pSRIK9UJKgVw+byNzlaL+3MY0hRPOXH0e9U2NCAKpD8aYW7BnINLYJ3GCy++8Fh/5899HvqEOe3/8FL77Z3+j89LY/JJy3PfZX8Ndv/k+LM3O4x//6L/j+Auv68RSOBPEI5DEoshOseDszD2aY3e8uks65HLjX9/tiyOZIPCg0D/AtqKBfDcU5UuMKaif03d44iUBlI6Gw0T9pHmPtR2KRd+U60OK4dB4uFwpBe98SNPvAAqBaUcgnBksweHKnTolOPsm8y8FCEK5fDnpYRBjc3BMSjJLgJ8gzf8oZ4TGwMoeY8025YTPPfO0CSSOLJpbhtYHkxIou7Ir170kibG8tOyBkRUPWoiFgBKJt5IlSjvLk0QhWlh0Ey+Ey+5OQy5dWwoszC7g+MwJJrzSdtbu3mf2eWm5hJIxEYi2T45OYmJk3IGoMUmtyWUEnK4VJzHGBkcxaqKVkjnYl5aW3Fixdqs4wdJCZJtPfR4ZGMZw/5B1inJnPc9BUwqIyhHicuTuCSb9ULrQnqc8buKUUijZ+XFMl5vo9LvSYhGlhWX7W0nzaV0CCfINBVxx743IN9ShtLSMg8/sRXm5ZPx2zBECoNBYh9XbNwIABg6fwuDhU+40cdJXKLsGOn8cmSukNIyFcWbGTcAqUyW9uLr3ecQxccMA6x8kBgUXcaRgBoEpjY2JP1qwCMkElAIhOdOdxjrjUTGfjX3u/iXQcb3y2QXdXwogYG3gSp8eD98XZofZsTxRQ+VSL+y+Qwt8Tjc5ONrv1lBjJ1AOqFSNO/p9F6ln7gshrcZp04EccR7jYS98ak1lZQ1dh96O4zLoGQCSL0uB+b2UdShyRXb3UO53dEeirKatNe1j7hxlkqygc5toBXMgXWOyzMySjwW2j6na4TQv9nrC73NQK0pqkgHJvDDv8ef6SsITTn9PWlrqfBrut4jGlgmegDfP9KFSwI6br8QlN+wGAJw7cAKnXjtk6o1Vy2Rb7wp0b1iDOIpw8MlXsDSrD/Ygx7UVyFpMCrw9POtbpLSAR9ecULsxcmyPsy63sDOzk1IGTJTVgZXzIykwh74BqcAsltL4rMgEpPu5hZPtzGBCouCc7w5j06rq3tNszmTFA969BB8KXkbCFwD//tUfVy28/gd+W7iPTKR/r+DjBTExL5Ik/Jlj901nx9d6hLVOSgY0s7HV5JVb5VTijly3LWQtd20jTzEdQkDKQTOlnZluv6HyDmh0Mqw/lwYAlH2PbnOR/WfmHk582SCBUfxao6IcCNNFnIWsqq7lfsRpKjuMUwhwMOVR0yCV7uEDkxtm/4UbcwJ6r19MAnnf+RpeBV5MmFWcYO2OTbjrk+9GXVMDSktFvPqjpzA/OWOjiLxvUAprdm5Gc1cbLhw7gyPP79OVPVg2uO1GGoPMtXhqS3rx8UFNeXPqlJbG3lv7LYMlEyw2zMmWegHPYfMVUwpt5gcGPB1AmWx1yQCW+aFi5v/xM/Ad4yITz++g72TWAOVyqmSNsbPrtiePPkDCjIO/VYmNUkoJqsAwNQvW9HPEv/aDE46qjwSXZhArtL8gE9LeUb8IOQuqbZUJv4NU64JsVEaBrZVQo5OkEM6Uo/ec+eg2kap0O/XuMAtelBLnw5GDIdI8n0GIlBKkyJHXLzuxjHHwcXIBgpqQZ+/mIlPmcFTyv0A4vwNvTHq58+SQCZdyysBZBn2Nn3Tq3LVuzqr3nbl7rt2xCe/8o1/Hqq16T+WRF17HoWf2en2z65UCgjBEJp/F/l++iDd/8TwmLox4A8YszbRwwZptdlxYd0X1bxXNKcAiY9R3ZacvHa4nM48AyzEsHvVzNajoEFvyUwWCIn/wPqfx1SdKO9BzOsGcMJyZ0ELNBFCwoQmgQVFIw6z4+HmpGzWAymi6i3im76vfuxhBr8XcHYi56CUXBytOytcLBe6IT1+UgZJnCfFr8PcVxJVdNyseiaLJ9ZQxtYzz2lneANQIV9NDm3+MrXldqvq6vQ/vjE9HJQQTZWkgXzjRZSzAXN32gx9F7jM2n+lUMzPeLm526NfufvzMQP4Z7ca3v1W1rutBY/X3hS+kwiwAskZzuXB5fePvmBVcJQqbr9qJ9/7b38CqreshhMCFE+fwrT/5AvoPnjAZ2j4hoFUxk88iiWNUSmVvLGkBIxalK2iSTDh2n1YCW0iOkxB2HRpbbjbzKGN6D6aASTxNEvCKDpJd326dkZSlTgmfup0UDZTeZJCfyEUSfTBRrH8GGOEzdfpM+6jA7kWyoux+Q8nBh8mKYKYXbcQnWaHvVjvmq007ydpJTNrmeDHQsqEqpdyCwR3qZiQkFKQlAcqetu0BIyWvp2S1ykkPZQ5SJVPMmj1c5BiT4jJe5SshyfT5GoEaN9v4w0tYrbqm/z1491IWoLgDmAMVZwFCuAFRvD9pnmRXaxI44QbYNaZqomHCzOwXdiJ5gODijAxVphM1QQkqUyM8weS/44YSBy+V7o2Z4MQKLWdmOvmzfVU3hBAYOTOAR/7HP6D/0AnGWoSrq8USPKNFPxDB+y2gI8SgezLzrTa7910NNL4WpJg8EFNPWOk8tzMgMfv+YntNXnqImhEY7QmMA903/fRrB7gAqNSRADMlfXcDz5fyBTlFJhhDlEJZENesqtpX6VSfLWxMJnihRru2MQbqkxbSBtaWKrBiQGUBKz1F3qptO1lT0lOkxsu18zqZShbmJiEHAEmCyRsm2A+FG/F0trMDEKa4HkvijMcNXC0fmt9HzmjIHHTCywGVbiNpbfDGMm1CXmQgSeEMcjjHqLDKY1cExWgv90Ux4KNFIC14F7P9BfSiI5CY25g9bVQ2xfj+XFkbYhiuyI9b1FyxFZFuROohpcTZ/cdxat8h5OsL+OnffBun9h2CC17ojpA/hLNUezsm1LYkSwp4uGoL23bef64ZduZTUU9mThnAsqae0ttmlHkvZrsxSIQtMAjGpiSlK0ibBOqBJAgQzf2V75NSNoiTYuQk89atq7x2BPAz5JGSt2qw8W1IW76I/LbW4c/hRLnBY6CV9iRxnRPEniwPEVam0i4Rt8j6ZMHNNPdPER/2/bHegHlIwj66qudW5a3BKfagUkiZzhtK71/jIGWVm7fDCqqPWpoV6EQ3q/g+8apatXlIN+1A90CxVmTDGxQOfjQvIvXddB+Mmjk7LaWobLwouKBUVZud8Q/WxhqVRxn78vwZTI5k1bX1I614dp6YcBFVhwB6NqzC8vwSpofHwUGKjlx38+zPedpcc2VTBHhOFPel8QXHO7nYAzkGYjTaBiwSJFCx3oxMaQjaT6VhjADG+qcsEAm7bUZKt4UmkLQPkBYZAZcQweXV1UAjk1CLGstpsrNh+mzaL435J4VOOg1tsMFFEKUFc59JcVOO5MIDA8D6XQVdx1tEzPWtS4d0xzdXdQoH/61wgM+qAHOm5clWypTTt3Iy4e3OSJl+7hpmnm2/TT0sjpZcMOyeLc9n5VZ8pXSSZqEujyAIEFViFJeLiMoVIxgux4uvxWlU1xFCEg7JHJWk9BwkfGXVAyq99wAGmkTbjZCSza10zRYI2vRrvuwNmPCv57M5DoJVxLhqhaM9l3GsjZJASifEqfQRm1Bp2+8vWEr4dyOWx1c5znAd0Dup5tU1/TI0CgOmgoSXYkL98XxLfgoCd377k+GPl+XajMHy8RdSuJgBsQi4TvJcqaauNuy4/QaE+SxmxyfxxmPPoLy46OYlBVTEqKxfSpIzXVqT0CoZMzur9vrRnAnnt/JdAB4PtPJAuVSBdIuMMwvBrsPmisliWsYIMj3HtmVEfAJUirWmFcZ9TBn86UXRSKYdV8rAT92lVkPTTy7WhKqH91NBJiGFXZA6QskqPf9XF4Pr6u3E1TfvwWXXXIqeVSuQzWWxuLCEC+eGcGDvQbzy9GvmVBymWDWc7VaZ6XPmVBZ2gOBfw5p96fGsNveqWZfQZWIuWYu2zjacO3YWU2OTNZggZ4kMlNjztEuKzAPLnM1YEQnL1xewYecmRJUIZw6dRHm56C0IJIRc6a1JyACQooAXMW49dkctU0bqLSNO/AXDi3C5D9KDB26m2FLYVZ6oGtrlZI4xOwZ8jM7a9ApmflE+nTX5VIwoitDd2YY7fvMDqG9pxsDRkzj0wqtYnF+wUTxKEibQInMvkKw+lX3uA266pAvd37Iq2w1hdYeDsvUPCRovyuXSzMr3DXGfFzMtOXKl5MSNE/dp1Rp7RgAMmFnsImYHWtxq+JRqXYdPs2dt1liwmGAaou5IkqrW8YvdFgoIQfvwJFBT3QVfJfR3rrp5Nz762Q9ixxXbbGUE+7hpN6647lKcOHQKi3MLHtjRAHnSS50UMHE/YkM+cHDaSSsOrWZ+VLO2Pe6QOsGOK3fgd/7zZ9HZ24GXHnsJX/6PX8TCzLwFD2+kuNKbt5wbQNV87V3BMBcZBLj3I2/Hg598F6JKhO/81dfxxHcfdWcC0oKR7gP1Lz01KbD0sv0J4qx/h7qeeAuEAzISYjf2VQEH44C2rgwClqoQe+oVkx+PFVozyPSR+uA5jZX1n6X39cVJjEqlgkocV93T3EAXkpQuLUFKUzjP1qaqPjXZ3ZmXcHGAKVJKy9mhO0DFdxjbvC0Bu3VHCmXsghrOeSsCKQCsAiuVajetlLVZruDXT+mHZXfeAkTy5y7Lr2wPsuDtFaw56QakwJwYGmeW/LdKKHdMqumTdbpbZOc6yk04AahEYfcNl+MP/vNnsWb9KiilMD+3gNELYyiXymhqaUJXbyeGB0YwNTYFWwOerwSxjq5Iqipg+WtqZfBk31/Fq0s1C2+AlGEP3iGu7Ls7rt6J1Rt19cxd116Kju5OzE/Pc3cU17aUGBMxZvczDIV8VdQ3EjKlFOqbG3D5zXvQYMq0XHrd5Xj2+4+jVCqbMXcQbR25F3GQp9/nqznPsNZCkVgQTFN4aruNtXomMQEKy5HyTJUa5nAKRNMCaw8e4D5KM9ZKaEDlcKXNZ72xPgbPSk+sSZgov06rY0zSMqfA81FJ56diAZW0AQf4gMVVjRhTOlnTsRzuRHcgFQhnBvpmVxp43BXTlpU7qVrw5jj+7VkogM5F5O1OyxIzRQHw/YsaDoS/6Cj2Q2/BFlW4Af6SL1uKmaye0pkb1MAA+nrNTHfXAGEFM0kStK9ox4c/8wELVvtfOYh/+rvv48Shk6hUIjQ21eOSK7ahUqpgaWnZMQehQ+FhEKKnrwfbLtuMg3sPY/TCKNzeY9dQl+ynO8NwR0+iEvBwhX0qgwBdqzux9fJtOL7/GIbPDflmW5JgemIalVIZmVwW89NzWDYheSsMyoGgg0naqOvzD/pGrpBD39b16Oztwr6nX0VpuchlCpVyBbMTM7YdMxPTiOPYUnHbPsr4Z/OiRLqXivl4tKBa05M3mpkWPHzMzVonY8IoUxq0qoWn+qVRLWbO8DvQdS3lcK3yIm0q4cX5lHWk60J5CfsVkxNPLzQghUGg2ZRhWIFhVhQNlMyaoGAC+am4/UGMyfPTMGblhlpZPaFh8BiVFF5lBf09ngdl2LGX7Ovk228X05f0XKTkBIDRLx9crflHpignwOYSBFQ++XTCIFL9TTXOjJFbKG3zFFCjkGj1g/fPQoNA6H7l+B13YRNNV0rh8msvxY7dlwAAzp7oxxf+4xdx/MBJyyimx6cxcGYQMgj0Fh7mtK2rr8N7f+NduP2BW5Cvz+Pff/o/Y3hgGFTZgRzinj+L+Q3sOiKcP8fbbKIUcvkc3v6xB3H7Q7ejua0Zn/vdz2HwzICupknfFMBLv3gBbV1tWNm3Ei/8/DmMXRjVQkv8lwQWbqCqebv5fqKwcv0qvOczH8TlN+zGwKnz2P/i6ygtMfNKCBQXl/HIl/8ZS/MLKC2X8Itv/RSRqaDKxzm986DWPjCrIwBgdgrY8xjTScBg9Ylq+Ph0tQoWvfEk1/lGlBHYNOlLZ9HD+Gr8qKsPbVCweVI0yonSx6zFBrSgFKI4tq2g0D0xPWnPCeB2MRDIQJcjDgLDsPR3w0BamRL8mnbKDUu2vVbeSLiFxedixLsFtEFB5p9NMoW/rYYDYMqISIEV2zx9kYe7HvmhhDXvaT5p/jmTAnvu1hBzV2+u2H34kxqNYkNzESRy+GLvmSZh3rfTvlGtu+4g1TTscQYogEw2g517tqNQl4dSCi/88mWcPnLGHd3OtUkpt1PfgFBDUz1uue9GrNm4GtOMaVR3PDVgltU4k8f31+gJUkohV5fH9Xdfj74tfViYW2BCxx17AtMT0/j2X38TYRiYcsipnI9UasfFxEVAK15P30pce/cNKNQXMHhmwLsaTaQQAifePIozh09p1kCnALExS08urfq+KaeAxLXY8mHhxsvLWzNPuKOb+ysALrQp85JERTmB9xcUNxKWtVkF4rKkkFi6oOzCRM5zpfQZlSrRvinuu3LTIey2MGq7MGyKbiSFQCYIEMhAH/RgfFVurTFgyUEnJbeeZyLNBEyIna0W+r7QTMbVxDJsL73OeQyUcSjmqyGzj38z/YIzX09Gvfd4tJPGjdfbYgtA2tpjS2UNpwqcXrm5sfrFXBvulB8rhPYg1TQsVmMdmZt+A0MvF8cag9BLAkWOlEA2m0VndwcAXcL4Qv8Q4jjRZYJNQ32Acc2J4xhxklqTzIELifE3UTiZHokpCZwu9kb1q7iJo+j7SeJ1LkkSc1iCMS1tuROBOIosaASBdPJgo2XC+lSkdAfBSunOZlSJQhLTidap+ybKZpVTJFYpXZ9LDxeJhc9meDE/peIU64QHCG5sdIkc6ztLEl0R1GaX++CUdgAooynWVOBKpVxViticIanTVXQEVEoJEfjakxizHSox86vNXAUNTFEUQRmGkxgWpQTzBXLFYukpSJROT5Ds8FHpx4oDIZCREjKQtg6bnVZiQ2T+MX+Pk1a+iPiDlZApxNiSNvt00mkA57NypJyfzeg5ney9FX+PDMBaUVs7f6pqPunyno8QnFlVFwf0eYZg4KV8BuTbhTVYoar6nt9y5ZJPRYqNpR56WFKLCHuE1HJfiLmhbp5KV2FASol8Ie+csUz1eCqEShRa21vQvbob7Z2tyJvz/sIwxIZL1kMGEkEgsbiwhMHTg4iiCFAK2WwWPWu6sX7rOnSv7kYun8PS/CLOHj+HEwdOYMFEH2mSGlsa0dvXg6aWJhTq6wAAQRigb0sfysUSZBCguFTE4OkBVMoVFOrz6F3bizATolwsY6R/CBVTgwpGcYIwwOot67D18q1oW9GOqFzBhXMXcPKt45ganQSUQndfD5ramrFm01pIqcvk1TXWY8vl27A0vwQh9Mk4YxdGIRKFtq52tJoDKGYnZjAxPAbP/0GCmijIQKKtpwM9fSvR2NaMuBJhbGAEw+cG9cEOBgAzmQxWb+7Dpsu2orWrHVGlguEzgzhz8ARmxiYNiPuS5PLuUqs9Mw24OS4E0NjeglVb+tCzYQ0aW5uhkgSTF8bQf/A4Js4PudOrrQwnKDTWo6tvJUQgMTMyjrGBYdS1NGLzZdvQu7kPMgwwcnYAx155E9OjE9V5byySmM1lsW7nVqy/7BLk6+swNTiM03v3uyJ2RvR0ZNCBVWJLU5sVm8xAA1jEJXyLPzUfNRRSCLh6WGQCcuYjfJCo1m9hwZnfkbsB0guL8ykxsGLMSaZeC3DAonax9BjWKK7H3hywxpPFVNW4lN/LWtRpFijSffJHu+oz4V8HCggdLWaN9S6s36+UI0xNTAPQYLD10i3IF/Iol8uus2yV1itwgsuuvRSf/fefRjaXRV1DAQDQ0FSP3/qTTyGOYgSBxOHXj+LPf/+/YW5qDi1tLXj/p9+L6++5Dp3dHchkM9CF8BIszi1i33Ov45tf+BbOnzpv3996+Vb83p//C+QLeRTq9T3yhTw+9ocfRxzFkIHEmaNn8LnP/FdMDI9j1frV+KPP/zGa21tw7vhZ/I/f+wtMjkzownQJUN9Yj/t+7QHc/f570LmyC2EYanZUKuPYG0fwt//fFzDSP4T7Pvx23PGeuyCkqyO/dksf/uCv/41RDImfff0RfPt/fg1xonD9AzfjXb/1AUgh8Og3f4Jv/8+vIYljT0iSOEFHTyfueO+9uO6+m7BiTQ+yuSyUUpibmsU3/+IreO6HjwNKoaGlCfd+9B247b33oqO3EwG1s6hLKf/9n/41RvuHICTYmlwtKHaWicWSjJjV+tLbrsbdn3w3Vm1Zh3xDnT1UIqpUMN4/hCe/9kO8+uOnEFciWKd5kmB130p87L//ERpam/HEFZoNJAAAgABJREFUN36A137+DB783Y9h+w27kTcLS6VUxvHX3sI/fe6LOHvgmDbhzH2l1Bnn9c0NuONj78WN73sbmjrbIaVEpVTGiZffwOGnX/Z2W1A/3OnjyimkSps5aQXhlgGP+jl/JOV31Y4A+tF266O21ouzYrgj3VXOoGRURgB4x5A26xhoKR+cvMNZDcP1Fyjum4NtWxpg7fvKa4YvQ3wBtF6VWqDrfcWzntKuKGdG+mwvTJIkdWEBfvosXbRcLmP/qwdw9ztvR6Euj6tuugJ7brwcLz7xKmqrg+Z+MpDIZDMWeOiamTDUWyICiTATgAyRTC6DS6/dhZ7VPZiZnMbc9DxyhRw6utrR2NKIWx64GWEmxBf+v/+F2akZwAhRmAkRZkM3CEIfZkorLp1VqKABt7m9GU2tTWhsboQQ+tQaJAmCMMDbPvJ2vO8zH0C+kMfy4jJG+ocRZEJ0dHcgX5fH8uISEpXYvnm9Nm1RSj8XUugKAUmCbD6HlvYWAPpcwDiJkSSxW/FUglXr1+ATf/pp7LntWnMdhagSIQgkGlubUS6VoBKFXCGPt33iXXjot96PbD6H5cUlTJ8fRpgJ0dbdiXxdHqXlYi2yXLUY8U+4qUlC2LN+NTZecQnKxTImBkYQRxGa2ltR19yA3k19ePBffgyzUzN48/EXAQBRkkDFMUqlEnL1dahrakDfrq3YeMUObLv2chQXl7A4O49CYz2y+Rx23ngVolIZf/eH/xULU7PuIF4hkM1mcPuH34W7P/V+ZPN5qCRBcWEJMpDYesOVaFu5AhmWC0j7CElRSaGkpy2CKRlXJhe1pJOwkd73J119KjpkgjvUayupsv4pp5V+LhVPReEzYxcO8hPSMe/MP0aVHixYCaRAjfudfGRQqc/TjbfqlPJ/V3URPBBWO6VZgblAlC+Fvk/Os+N9hpUkcXVkil3MHc+l8NoLb+CtvQdxzS1Xor2rDZ/6o48jimLsfXafDtFLZ6bRIOx/5QD+7DP/FW0dLfjkv/oYuletwMLcIr72V/+I/lPnEQQB5mfnsbigt1NMTUzjqR8/g+cefQGvv/AGZidnkC/kceM9N+A9v/EuNLY04sqb9+Dy6y/DUz96GlIIHNt/HH/+u59DU0sjPvL7H8HqDatRXCriW1/4Fk4dOokgCLA0v4i5mTkdmWIHlurVOEasYiBWWL99A+5+/73IF/IYGRjBN//q6zj0ygGE2Qy279mOOI4xOapru//0H3+MVx5/CVsu24r3ffZDyOVz6D9+Dt/+/DewvLgEKSVGzg9pR3KiPCbAT4mm2Whqa8GH/vATuPquGyCEwMj5Ybz4s2fQf+wMCnUFdK5agTOHTiFRCmu3b8Bt77sH2XwOo+eH8M+f/wZO7DuMTC6DrXt2ICpXMDc1Y/O7KN+KFIdmtVYGvycjCji+9wCe+c7PcOTFNzB06jyiSgU961fjvt/6ALZcuRNNHa247l13463nXsPi3LyukBDFWFhcQmTOeNx29WUQUmLfY8/jyW89gtJiEdc9eDtuft/9yOZz2HbtFbjkmiuw79FnEMrA+DQVNl6xAzd+4O3I5vOIymXs/8VzeOux55Cvr8O173sb1l2xwxvTODHsylRTIDNQsVQGCcUSEi18OEZG5h1cORx9GKpxpBuzi/Zuuj2A3JziY0z3IWOPTt8hMFDwmIrVUw40TrE9BszNP/g+M8+/dRGkcfPvg0RNAE6hkANUZ17TeFzsYWGTNUelQdIbRObThWFYfEWlndTponqAwMTYFL75t/+E1etWYeXaHqzf0od/9V8/i+/+3ffx6Pd+ibmZeT8hFAqjQ6MYHhjGit5OfPDT7wWgc5Le2nsQh984Yk0Acp5WSjG+/w8/RKVcRhIlMP5dXOi/gO413bjvffcgX5fHrmt34ZmfPoM4ijExOoHRoVG0trfgoV9/CAAQRREO7zuE15/bBxkGhs5LqEQfhMkHMIpiRBV9gs3WKy5BZ28nlFJ46geP47HvPmqd6ueOn4UMpMkYFzhz5DROvnVMO5CjGAAwNz2HN557DfMzc9bH5zuG+cwINvYCNz5wK665W4PV0NlBfOlPP483n9tngwOZbAYqUZBSYOueHWhfodv57A+ewHM/eNwq4YVT53UgwZvb1CJkqTtby5kQJUxwzx46gXNHTqFSLNmywoOn+1GqlPHbf/0naGprwbqdm9G2uhsTb0wAQiCJE5RKJSSJHpdMLovj+w7iG//hCxg5o8354TP96Fm/GjtuvAr5+jps3rMLB596WVcvkAKZTAa7770Frd2dAIBjL+zDz/7qq5ifmIYQwOTABbzvv/whVqxfw+bTnGKkfP0iR7vtIsuqd+u+q+1kGZWgfX/skFL6DkeSKsX0+IR+J7VnlIVaal+EdNaCD4v8gcDKmY9C1PLF+dd2W7wIWC6+xcv9xgfOGl8A8VkXgza+Q5Z9UH1+Q8r0ZU41z3XFiJZNubI+DKrImD6402QUv/HyfnzxL76KkQtjAIDulSvw6T/+BH7vP/wO1m5cbU+Q4SHjquRU4XwBVCNc5+DEiJMYpWJRC7pwK97C/AL2PbcPZVMgrndtL7KFLKI4MhUe+JrFZpsiZwKIkxhRko7qKVbUDejs7TQbuSMMnr2AKI50xEmSE9edoiKlgAwDEzl0twyCwP6RM76WIJIJkiQJmjtacctDdyCXz6FSLuPHf/997Ht6L5I4sSczJ+bIeyElOnu7IAOJqBJh5NwFJHFiD7eggIc7vYgcz8Izy/mGbncoq7/9JUpilMplLC4u6lOP4xiVOEEljnHizSO4cKofAFDX1ICOVd06O12Zca3E9kj7JI6x9+fPYPTcBWSyGWSzGSxNz+L4q29ZOeta04tCXcGmJbR2d2Ljnl0AgOLiEl7/yZOYm5iGCHSkduDoKRx68kUvspooHb3kJzZzySCdcSdmJ97uAB15pD2HOvE0lNI42Nm4caBSadnzo76x0mccUllmfRpPyqOUZmggsBKG5TmwBANNV0PLx04lGMSwa3NGbf9NVUt1oOf2TTorjaGHh14p4EsTuirPOgNRFtdIR//T21lDVz7Yjrz7VCX67FQGNnGS4KmfPINysYxP/eHHsGHrOuQLedzzrjvQs3oFvvAfvoijbx23YWxHuP3GKytILMxMyOpFNU2oO0kwMTKBUrGEbC6LptYm5PI5zKk5vVcuFf60w516/2LhYvpuuaRNmDATYu3mtchkMvYoM496e4IlUtdKP6rpOG9Wkihs3LkZfaYk8eCpAbz6+IsujaLGo1J27Vy1aQ3CTOiHta1JIiw74IpkHcO2PYmLopFiJS5nKkpiqCiyAJskCZKZOUyNTph2ZNDQ2mwXO2Iw1M/i4jIGjp7WDmoDBEIpTA2NISpXkMllkW+oQy6bRbFcgVAKXX2r0NqrT5KeGhzB+cMnoOB8VEkc4/yhE6gUS8gW8haIrD/FjAcBBzfRFJTdHiMtE3YVR3mGugOPWgxDVb1WZoIJBBNV4/ssfUCm5IOXmknLnHfcFjPjrUzSwl11vgCTxhr+Im9LjkgxHPj9rhXV4yYkH5Ka3DGt5L9yRHkrFaTOI4rNnyvbQQyL9mvRSkQZyM/+4nn8x9/7HJ559HlUyhUIIXDZ1bvwL/7sd7B+cx/iOPaUoNbEEnDbKImyb+uVyeToZPM5tHa0olBfsCt2EEh3TLy9+q+gttw2Ty0PRP+VSnD68CksmwNIb3vHHbjp/psRhgFDGEfK7V8NUORsxcJxagjo91JKbLp0K+oa6wEAJ986hqmRCZ+5Qa/s0iTPnDty2mz/EbjpHXfg6ntuRGhM3/Ti59gzPMDRJYNjRHGEShyhHFVQjiooVcxfVEGxXMZyuYRSqYxisYTl5SISpZBvqENTW4uj60LYJGK76ZjVPS8vF7E8t4BMGCITBghNgmdszlYETOSNHQ3WvqobWZMKMzE4jPnpWXtgRAJdmG9+dhZRpVJ7zplbxsmyYV1Gk8jsC81WnjCQ3t5DawlwE7CKybv5TBRM2/Tz2LApyul33iufzTgWRdt43L81gcvzkSkNMoJkjAMgywMTPljxa7iu1AYSG/2l63jdF25l4MLNGmv3LIObrLDXs60QF9FhQT6sKDYXpIbo5zGfC0HWcmLLlADAkTeP4nN/9Jf4yGc+iHd+5O0o1BWw68rt+LXfeT/+x7/9PBbnFu2hnrRPjB5E20VsptCsOGTOZLIhNm3bhD037sbWXVuwYmUXWjtaUd9Uz5HBNlKwiEtKjsg5Vy1o6fGVEgde2Y/9L76Ja++6Dp29nfj0n30G3Wt68Yvv/AzT49M6iZRl3Cl18etZQOYvajwyuQx6162yaRoDp/oRV2JrhmrFcpt1hQKOvPIWjrx6AJffchU6Vq7AR//db6F7TQ+eefgxzE3OQAbS+aOI2rMsc+5TUcokwKrEJOAqk7hrRDVJkMQK7T0d2HnDbuy49nKs3LgWzR2t6FrV7cbb+OsCc2+dha4fcZwASYJMGCATmGiuSAyauDGzIC+Axo42BCa6Ozs2iXKphIQ2cxsQiqPIbnbnY28PNIHvT6KqEwHPobJ7DjlgcN1hGsr3vMKxNrsrgcYZxqvj7flTdpwAx8zt2X6CMTqiy2CMCz5o8QijvkQtGXPlotKWAbxrODX51R6t1NWraBYMuIhUW929vO+bSUrjLEUcU5dFGEc6D0hItteKDRQSZVdNdwFXenh8eAJf+ouvQiUK7/uNdyOTCXHDXdfhqZ8+i2d++ixkIMyqnoJfA2JJqhNJkqCzuwPv/sQ7cde77sIK46uJY+0PCZgSpH0I6WtxZyfYc35Siv2imbGp8Sl846++htauNmy9bCs6ujvwkT/4GLZcugXf+Muv4czRUxDuQPSaZqedC6Lsyrkj/cnW/olcLoemtmYAehfB7PgMpBAIA5dVLyFYQEMnnn7/f30TzR2tWL9jE9q7O/Huf/lRrN+1BQ//9Tdw/vhZOwJeO5XJxCdwMtSPdgVYc0YpDQRKIciEuPre6/HO3/kQtuzZibzZnhVXIo/l0p69QAYQUAiDwAvoBFIilJpdkWymzenEsCcpJLL1efv+8sKC3SxOZzn6QqAnkqo5AMJmpeu26VWe/FEEUpJMQQiWS8VCiFySuL+X/euy6J3yJWAHNcA/SMSmKAiW7CnSe/6EPWG5Vu4VM09q+IVUikkJs6i7Bd4NjdF5mJsrhWppJhbF7Qt+W1Ed5PDcD665noLwF94p18L7l18vTOLY+D5SBcmE/4NEJJZaUufILTI3NYd//JtvY/OOjbjqpj1obGrAdbdfjRceexGVSkUDU5J4AJtY57erSqpiXRHid/7db+OOd9yGIAhwoX8Irz69F8cPHEd9Yx0+9nsfRXNbs1thkxiBSWSsWmkJKO1J1Mqat2wcrfJKUw7n2JtH8fk//kt8/I9+Hbtv2oNsLosb7rsJbV1t+MK//TxOHTxpS9fUWo3c9gi3LUcm/mnYutqlLoQbhqHLE0sSROWyZldSgvsoXL/074+/fgR/9yefx/t+/+PYcd1lyOayuPreG9HU0YKv/Mlf48zhE3raBR9vWOe9dgcQvXFboQS7kRACNz10Jz75n/4FOnpXoLi4jDeefgWHX3oDE4MjuPk99+KK264FoM30QAbIhAFEimGBsa9qV4ejWDzpk49XVI5swMH9yl94iFklKgHfVE8nM3tlZgLpVVHgppdno6Tta7CFkPmrPLZjzT++j8459W3ulqBSM8pjURykuO/KNs3mdVXXSeO+JHIfkM5SBgBbLfivPKbrfUUxnx+/Eb8GY0pV/jJWYVrVUhj2gai1+JtrCwCSTLM4iRHHerd8HMVIosSwGs1s4ijWr/m/UWyVYHhgBI8/8hQqxp+wfss61DUUEEeRVow4tsKlzCofR3R9fT0hBN7+oftxx4O3IQxD7Hv+dfzJb/w7/OW//p/4wT/8AK889SpKZi8eOV9ph3/CSpM4fVPO52H2tTELxFOS9G+P7T+Kv/yD/4bv/s23MTM5AyEEtl+5Ex/+/Y+hpb2Z+cTS5XmEZaSBSVqlf9OAJUVg6zbx1SoIQ2f2wEWy4sTMiYnexSrG0X2H8Dd/8Bd45P98F3NTsxBC4JKrduFdv/tryDfUYblYQrFYQrFYRqlYRmm5jHKpgko5QkRzGMeGTYH1S/9v/a7N+OAffRIdvSswPz2Lb/3Fl/A/f+vf4Qdf+AZefOQJjPUP2T4FUiIbhsgEAcIw8Ptl58TMP1xdKzcVfnSPz5MMA+Oa0A+KuPnslpfREbbETMawupAxvNCUReZHjVXpUPq58QNq3xT9ufbGBGIpl62L6FFOl18vy0sCNUxLm4aKEQlCU+X8UQw7fOuVR4O5ZIIBjd9TFwKr7juNp2/j1RiztM2Zel4FReSzVqlrsKd8fABAuoPZ9CgK8y9tRnUdUXYF40BAjjilFE4dPYOlhWUAQH1Dnd5SYk+E8pHCHsOUaBYURzFWrOzCHe+4HWEmxNjQOL78ua/gwCsHNAiq6vxZCgzYaFTNiCDzFdRgjnzybSTQlCeZGJnANz//dXzlv3wJM2Zb0p6b92DPLVeBai9RygMXTnIoSxnYTPsgCGwSLrVFGIduHMUWiIMgQH1TgwVZvXE8QRRHiKLIpBVEiKIKKlGEKIkxdP4Cvv65L+Or/+l/Y3ZyBgBwxS1X45JrLkNpuYRSsYJyqWxAKjIglXiMVEi9K0FIaTL0JcJMiOsfuBWrN/UBAF545HH88huPYHl2AdlMiFwuq/1VJExCmL4bEK6KnpqFw5xmkyTV5jRJXKIUKmZMACBXV9CAxQ9CVa6ig1UrCbtIhDKwf5nAOPoNs7JRP0YuHDdyKkti5YAqBaoKNkWBvuM51YVz7Lva8nRv9x0XhXQgxdvmlff0CZF9jxOmqoXCttEZmNaRrriup1BDcewh5PGRSKS+8aucYPYejM1xLLS6QQuJ8K8pZSAhM4ERVgNagVZEEQb6eegEWQYSItDvC0/ABeI4cnlYNL7mM8EiXg48pN19r5TCuq3r0bu2FwBw7K1jOPbWMe08ho/+XECJ0dQEfApNSwkBaZmPzci3iiatD0/YjbO69nsSJXj6h0/g6UeehFIK+boCdl1zGfL5nCsWx5JyiDlZv4SX75SePS30pWJR15WHTlPoWt2NRChUogiVqIIoiszzCKVyGaVSGaVyRUfulssolyMszi/i0a//CE89/BgAoNBQh+1XX2rmJdYFHdhqRmxeBsLNoTGVwjBAEEo0tjRh655dEFJiaX4R+59+FahEyGezyIYZu72KjzeZw1XVnJi553KR0oDDZEMlOipoosKNHW2QYYg40XlNNrE1lQNnQSqQyIYBi/ppc9QepVXD/cxf8yhwAg1UkdKRybhWP7wruIhumlXREfd2K43w0y1qRe4sBKaBykMprhG/Ciz8qLWq+oHzH9F/HD29UUuBifOcs3Gs7RCzjKs6GJC6T6ozUoaBTn7MhJCZAIF9HSDI6H9lJkSQDc13QsjQfBYGEIEBsVCiZ3UPCnXaUTo3O4dSuQJ7/ZA5YM1+uyAT6KRI83lXbydyZl/Y5NgkoiiGDHSbglAik+UKImy1B0mMhjt5DeAIA0ZBaJI5DevhAGMTPWVgBds9D1ApRzj06gGUlvWK39LRgkw2CxuuTTEnb4FSLiLK5y5JiD3FKBaL6D9+FrHJll+/cxOydXmUyxWUyxGKxZIDqqIGqeJyyZh2mj1F5QgL8wt449nXUFwuAgCaO1ohyY9EQmJYjTCBFhrDIAwQmvnPZEJkwhB1DXW2ukRpuYj5iRmEYWjGi34XVilFrGqZa870Ti7yOY2fgkCigMkLI6iUdaJwx8oVyDfWmTwrp6uNrc0IMxkr7JkgRDYwjEpKZIIQoQEqr4Kq4AqsL0bWUmL/vVjSZypFgZEfe86hdPlc3G/lVXRlbN9TXI/1cd+Ve82ZCQcI+1vhg677E/5zHqFLmaapK1eDCX/hSQBcy38F2xIc8OieF2GH9AhFYA4mFe4jl+7vBkFAuHwZ6eoMwTi7G1uacNM9NyBf0IB14vBpLC8VEVBCo5TWwZvJZlDfWK+BhkWMwjC0rc3mc1oQhYuOrVi5AnUNdVawM5kMwkzGbLlRCGRg7xGGIRqaGxEGIQKTbU4ENp2MqU0IXoiQ7ulC4XEUWwUrl8qIzZYTW9PJfJavyyMIA51sGghbo4tSBeiRqATluGJ8hRGOvH4Is1MzaOtqx8adm7Ftzw48+8iTkFLqqJdZEsm0trW6uGNCAXGlYpc1Si6l3Kb6pgas274RbSva0dTWjIMvvo6R/iHngGYnygAKWTO2gHaoZ3NZVwddAdl8Hm09nZ5g+U6EGhIKchYz7eDCaSO4CqNnBzA/OY3cqh50rFmJno1rMTM+4Y7mymSw/tJLkDUyJ6Rmh2EQmnpYztT3wli+bttz7xIfDlj+YMqzw6KP1C3uRA/oPZAjn/fXOdQle+70zyRECNQsXexe+C+d+WjklnlgXFPNtb0pcRcQcO3RmuKfBMSmEFWwIlSN+/n3tU1X/rXS/fRcbDTU5n1pT3QwsCpMpEzoEopuu0cgsXn7RqzdqLOqyfcEIdHS0Yr3/fq7cPPdNwAAJsen8MITLyNKaFuJruypq4AChUIe67es0/dS5DMKMTM1Z+tS9W1ai7auNmvL1jfU49rbr2WAReaXNHW6JaIoxuKc3kSdzWexfus6kwFuwsrG7PNKQKeGOFfIIZfPafYTxYiiGGEmxCV7diBf0OH8wTMDKJfKdivTwtyC3TLUtqId7b2dKJXL2m8UVVCuVFCqlG1dckCzrnK5or9XjnB8/zG89eKbAICG5ka89zMfwrpLNqJULKG0XEK5WEJUiWyhwlwhh3whj9gUEExiXcFh1/VXIFfIQyUKQ6fPA0ohzASQgcDO6y/Dn3z9c/i3X/0v+MDvfxwNzQ3IhAGymYxL6DTO8lAGSMoVzE/P6TlrrMfqreus/yhOYqy5ZAPWbNsAPph8VeV75xQDI6/Wle8uMXsV9e/GL4yg//AJAEB9cyP23HsrGhobEUCnLPSuX4vtN11jWXWYCQ3ImuPlPYe6qAJR2zZymjNzL6bEWhsAYL8VrCC0TJt/7rUumUxySuafcgBn5ZhHGX0/mqJAg3C9sMrOgIyzJ3cdn1H5vWaA4cf12M2cFaLv55ClFnHiuvSrDu6qXqdq0CqDUuklI+S3so1M/VgphUIhh0/87oex+ZL1ePPVgzh78hwW55fQ1tmKK665FLuvvRSFugKiSoSffe+XOLDvkKv0IIClpSKGzg/j8msuRZgJ8fYP3Y/5uQVMjExg6PwwLvQP4ezJcxi9MIq+TWux8ZKNeOgjD+JH3/wJkiTBLffehNseuMW2idiZW7UESsslDJ3XUSspJe58552YGpvGyMAwRi+M6gMpvClzipQYB881d12Hq269Gq89sxeDpwYQBBJX3LQHd773HggpMDY0htee2YtypYwgCKDiBKNDY5gam0RLewtaOlrx7k+/D/VN9VhaWMKpQycxNzVro6L0SOIYUTmykdaZiRk88pXvYftVO9G1cgV2XH0p/vUX/z0e/eaPce7YWWSzGXSv7cXLjz6H4XMXcMs778Se26/Bq4+9iMFT5xFmQlx157W4+0MPQAiB0YFhvPnsaxBCl9OBCtC3bQM6ujsggwD9x85gcnAMmYxmoG6fnNtgWlxaxtkDx7Hj+iuQyWZxy/vehgunzmP49Hl0963EA7/9ITR3tlkRCmwJn9rmwMVACun5MPNXWlrGW0+8gO03XIl8fR1233ML5kYncfjpl1Df3Iibfu2d6OpbhahcRpjNIghDHWFlgOJ0z3cnu4g1DynBJq1WtcxZjlbh7JYeQac5c0YFx1iYG4i/nx6DqvdqtUNwYCCD1j2v/gVnPiJ1L17Kz3NE2QTlWg/vrItUNQX9VCeZ8zYT66N7WlhT1XBpW+STOwBAKGxKrylrSw5ps0oopYA4RntXO7bu3IR1G9dg/eY+w7Bis8FXmw3LS0X8/OFf4ltf/mcUS2XrTIcQKJVKePnp13DzPTegoakB67f04Y//4vdRKVfwlb/8Gv7pK9/HhfPDePInz+Cjn/0Qcvks3v+b78G1t10NpRTWblqDofMjmJuZx5oNq3X0LQjYqqJQiSrY++xruPXtt6KlrRkr163EZ//TZxBVInz3i9/FN7/wTZP+4CtTYrao5At5XHPntbjtwdtx49tusucqNrY0IcyEWJxfxCN//wMcef0wKpXImonD54fw2tN7sW7Lekgpcd3dN2L3zVdhdnIG//7j/wYTQ2OAENaBDMBGRu2GZgCvP7MXX/9vX8En/+S30NrZhm27t2PTri0oLRchgwBJHGN8aBQzE9O48e234ZZ33IHb3nkXFmbnIWWAxlZq5wJ+8vcP4+zRU8jkMtqXk8lg7eZ1kEGAOIpw+KU3USkWEQahAyli7WZsoijGqz9/FrvvvgErN6zB+ku34rc///9hcngMHb0rkG+ow4l9B7H+0m269lgYaEFTTPzYYm1LRVsFqzYchXFKB4FOQj3+8us49PTL2P2221DX1Ii7PvVBXPeuexHmc2hoadJVR7MZrLtiJ4JMRrsg0tLPru0iYrwelbKJnpS+4NiHkS7aZMzAigAqMGYgUsxJ2u+SqeUqg3JAsYpP7amhqGmgshMlagEUv4CDKao9S64RN0bCARjnK16wyOWFcdPaMwOtXVorPEatd+a0uGhSlruMANg+UCCUmcBF9FgGcfrfpaVlPPfEy0iSBCt6Ok2ULEAcxZhdmMfpY2fxix8+gSd/9izm5xbsUVUkJUIIvPj0K/jOVx7Ggx94G1rbW5DJ6KJ+2VwOEEClUsEPvvEjtHa04q6Hbkd9Qx227NqMOI5xdP8xfPUvv4bb334runo7EUURgmygfUkiAIwzdt/zr+M7f/sdPPSxd6Ctq13vb5O60F6idHpAqVzC4twistkslhaWUK6UNWPKBDh1+BQ27diMzp4OtLS3QkGhuFTE8QPH8dN//DEe+6dHsbyw5AlRabmEf/rbb6O1sxXX3Hkd6up1SkeYDSHDUAcPpESpWMKCGZsSC9lDOD/ZT7/2Q8xOTOOh33gvNu3agrrGOhTqC4gqMWYmpvV1MyH6j53B0NlBtHV3oLWrHUrpdp4+eByPffsnePYHj0MAyGQykACaWpuxenMfAGByeBzHXjugxSh1hiKxVfKLnDtyEt/7H1/Fu3//4+hdvwYdK1egY6XOyfrF3z+MCyfP4df+9DOoa6zTRRpJY5VeCIqLyygtLaO4uGQPmFBGdRR0Sgcds1YplnQKQhjqBFMhUFlcxhNf+Q4yuSy23XAlsoU8WntXIKpUcGrvfjz55W9h1103YeW2TaiUSqa+vEuA5WzOq95ALMG8TrzsdubLZX4w54YgVpViTYIBFfRhqWTyuZOLzGjb5E8Oivp/Qin/3lbRCeh9l4aFh4vREsV8VXDf8V16fo2qdBIRf279ayr1AQcr71rutjUhKn28mXczvxHi0rW3K34zjq5g2dkqSZDJZtDd04U161ahq6cDOXM8/dD5YZw7fR4zJgdISFHVWEq6y+Wz2LhlHdZtWot8XR7zM/M48tYxXOi/YBWlvrEOV1x7KbZfvh35Qg79p87j1Wf2Yvj8MNZuWovO7nZUyhWcPnqGnS7tRi8MJPq2rMP6LetQqMtjYW4Rx/YfxeDZQdCRYxsv2YBMJoOlhUWcOnQSxeWSPnUlm0H3qm70belDW2cbkjjB6OAoTh0+iYnhce1ETzsGjQI0tzVj6+Xb0Nu3ElIKTIxM4MBL+zE3rRM6e9auxMp1KyGEwNjgCC6cGQBVq4AUdhsUALR2tWLdto3oWduLbC6Lhdl5DJ48h8EzgygXi8jlcujpW4m1W/rQ1tWOJE4wPjSK88fPYnp0kimZnscNu7bgX//9f0V7dyeef+RxfOmP/wfKy0WbOc6P+RK+GkAIgVWb+7Drxj3oWNmNpfkFHH/tAE68dhDZfA5rtm1AGAaYGh7HSP+gne9cIYfV2zYim8+iUixj4MQZlJeWPUVsam/Fqs3rEIYBlucWMHK6HyJRxgflHOcNrc3YeOWlWLl1A0QgMXa6H6f37sf8xBQ61vSieUUn4koFY6fPobS0bDPHdVNYIIBtRnfarLwxsCBBAESfC10bizMnap+0vinFttgo/Vvhm3vEtuj+nvOcAQQ9l+6HKZe5AQghvAxxYd8H25vIAEMAUvmZ9MSmeHFDLt+SWCdDR26x2nvyPio3NtwUtCzW3oddy7Je0yebCKyVTuzqu0PZ2EKqXDLfqsFPN3YXdXRNSmmZlFuoUmhLZUcS5d1LmrBzEie2XngSxyZaBbshl/aGEZXXkT1aJPU17e9tVI+iasreS592E9s+6bY75dR5S4k3GZToyR82LG25KxtDcr6GgXXEKqWg4gSQAkHgopWUL0aX0X1Sjgqb/CgaZ9ryok91hlFsYa+TzqpXcYzb3nsvfvNz/wpJHOOLf/jf8MKPnjDnNRqIYmBF9+f0nw54pfG14wbl9zmgLTH6O7QDQUAgCKVzSAthM+HdUfJ6m5KkdADrwKY5TswJRwIwlXLt4mhqogVSsu0fLsHUxc94mMp3YluAEO7QU9prKOz7zmnuAZeN/FElUmVBy4vqkTKzNlqPG4EIi9j5nifz+1SUkoDLAz6muw6wXIFCqajKA/cpuX6A/Q5QkBxw7Wqt7LYbf3+hgDAZ45K+T2OsdHKtSP3GYQx7n2OIeT9UpkieMBnr1HELTIx1KQ/xrEgY/KLMaU7YWPF6IWxmuqt4qT+M4wSJkLpqp1JGCPXmWpUQrdaAJpxGI1Gx7QwAvb0nkOwYJ2qvnsUkTiAqRH0d4Oq66tUPYZZcyUBYcVDmXlhoMBQisADAFUrne5EN4ELGJLg6jSIFHCzBlbb3QCnwZFQCJs8HldqeFGYz2HT5JchkMzjxxgkc2fsWwECUm0A878f6JwyYWINEUNt0+F3KwN7T1UQ3f0HAImUuP4kiu5QBHgTu0FPrvCYfiiAzIbCAI8wi5+YpsGVnFJv/dOk+a4K5qfB8M45ZuYx0y6RE2i8FH7wIiFgyKBPPGvaQf2QW9yvZKeSsxii8O+zUZ8H0ivYm0vcF+w7Y/bS8+ealUG58PGLC9UJwV7/7lDM1OnSXrseLpaQZPMmNGxV/uPihqiF1Xh8j507dtT8l9gKN2tz2d+a4Dge7mygvVYXYjV6Nda0g52cgxmbUQSkggsfm3HUY67G+MdZDpaAqiRUEz01h76PsCSN8O0/6LDeb5kFvCMc+OCuxgkFKzICEfwa4rHeuGPQ+Xc8lFrI6TIKcvPycQV+euQfGjLRWIaXQ1N6KDbu2QCUJXnn0OUyPTeqyP0xALFgxZRCsXUxaraInbAHzTSxhvyvN6cu0VUfSsfHmeUDfkW5sfaASrDeMfbA2UTIqL+3iMSkYpWG+Ir9LwppPmlG5dARiTTodxo8EUqqCV+TPA0ZmfAp/lHxbivWXLRrWh+17kFif2MTz9zigCfZ+1RNjNnInmFfIj30v7eKhVjLA97CVrelpma3uUe0kCJW6IwCEMAxAMeT2hJ+ZdwmNhWKKwaMbIFMG8HYZk9+Asqyt7Sq8xlsQSZWi8U/CJQbIwchQeK1FAISrh8QazCssCCm8o4u80jqCKY8RINrSY+dSuH1hil4zcLHKZh2e7H3zPUrQpO+4SqF+Vja1gyBGR2+Z0CimGKwv9N/KjWvQ0NKEgy+/iVcfex6JYWkUwneC5W5IhoIFb0+IaNHhQqpsXhyZZlqhqcxw4NefYuae/g5SwGiuLSiy5oDe9dbV8+IJp/SMxyP5dbmz3CZ3CjpgwgAWtcHc0zrQUc22BAgQuaJXPXXKYz9zaQVUScHWthJMMzgyMbBVyi+F44ECzSE3FdlvrUxpJuLdRrGmWjxMgTwJQ/o9Dl5cZvRcwoUqyVXjbu9jLzMjedBR7NxyryI/hEpiy5gsyBj/AAGNEDA+KLaC0ffJZcRX3oQdMQ/3WXo3OR2uQMzKgZgElE6M9BGaNioLqFjf2PpXWIed/0M58wwMvKQbEVvig5+YnAIZsPe4T8eBHrEkBz7u967PNoGVASNfrSycM6cjmbq2/DRbKKqUg4FZZ28XOno6MTk8jqmRcSbQTrA5XrlyysKCH33sFMpngNY3YphUIMnvptlUKJ3/SrMY6UXXPGUSKSWxAApr5tmNu7avji/6IKWfBWzuvHIyZGJLWMDywMj4pLhz3Zq4NtconQZRzQ34AREi5T+qOX9VqQG+v8c+dzgGyRYgGjdpTTxhAwO6H+waKb+V7RMDO3pOlpbzM3E/mYMc6yQ3fbHXZ2zOubiVLSvvLC4nl+SyEgBC2mumEBvt1jviLbVOEggEdosJ90V5LCrhRW+YOWcGiHKQLJOhVcGstOSf4ttjkCSmYikQMMdu2o/mL0DCAZ4BRsWe09x7ysIkxgMaOMW0A8hNR8A6nrWiS6fw9vouGMEZlt9+H2SJOtp9ana1c5tW/R+4V271dUAwMTSG8cERe3o3+Z/IlWhXVCdK9qZK+eY1MUfJzF8pU05/01faGK5ZpwRPtCT2JlImCAd+B6LkclC2TbWAirfe+qrgrukWCpaBTg51SSxdWeVz2evOfeFysRzrJ5ZkCZES2vJITwpHZDbzdN6MN5/Cm2gGAxy4hB0fwa7r1RLjFSHg/tLvuaHm/igufilzlsYhLYsCLuXB65OwmOIPhl+Oxy90mbJ3AYSZjD5VWAWBRUJdbM+ZeO4EXfNeHLPPnIbwqJzuE63ScOBGvifebMHmm63oxM4Euz4HLG9wU/410mzP0ch+z9mSj1mMBdUCL/5dI/z8KK20M5wzF2GpsM/ILCu1zU+troq1wXBouzpZ4kEmMODjmICUAGTofWDJmYBxVsMbK5ESUWKUdjuU3foCV1fK1kEPXCVPc2S8NI3lZ+pxzfGVDNYFQRUtCLyrXBCWHThnP5sgf2sMzRn5pIRvHoIigHC1qvR3OIvkwMhMam4eCSfGtPPNyQKtPsL60ixfqXIfCabIZg7YC8qHsixYMbll1/H8qsx09KHgYr4kGlfhtc29Vr6QV/2aAR6BmfeJ37+q7Hou6EohDGyIXDFb0oSqLQARWBk7O1SWcdHd/FNJhDP9mMllt+oop7S2UcyMsrOXKFsT3p4rRwyPmaSWYTGgI/C0aQd8oM1rqraqABOlcueXCCGsCQwwMEoxPMmByYofW3UZiFbl1PHgBn9WwzeQcMVU/Bop4eDrgnd1s48PdJqMgqolHMRSU4JOR19ZliYck3KOcwnPWU311Zig24WXMy0jkLa9ipt8ru6arxaO4VhFYwuDYGDlQMjcF47pWTNNmpOcLbNiGeoeUPkT5LErJ4isHUx+mMT6iao0Lg54+EXS4MJB2fNzitRnVkaZGehWuNSkeILgsUAu0w4gmYVC16AF0HxI5h2XaZ+QMfNPXKwt7vsKQBgGbv8XMRMFpTkyy7niIKNP0lXGXDQ+H3KoC4a+dDyWBRlTa9tSb8ZYuF/L2kDkNFNW4YUAIH3GJwDfpxaYNicuikiHF9D9crksLrlsG+ob61EulXHsrWNYnF3wVitiFZ4AkFmnhAV2V2LGtFPwRD4mgCyPLD03vngwMU4zKfv/GisaJ59spnVABZal0jxJVoLZKoeATacgpgTAAJVMOcwlO8xB+KYwzTMpUrqjpDNGcWmBoZwpp1PKmVdG9uge3DyypqpwbIiXPeapCaRoBEjOia5YrSqeba5sRQc+A75sUFtIwVPRVTYnis2fZ8YD4CFMUUtALJak87MEuyIbk9T4M1LrtcaZle7d9FLDF2V7J+FLoo+DwruuH613A1IrzSE9ZnTNUIaBu1MqMZQ7yEnQC7ksbrn9anR0tgFK4diR03j9tYPWr+VWAwEROKDpXtmFm26/2lQhVXjjlbdw4uhpZ4v7Y2HM0BRT4c+Vz6KUdOYoCWyS+CBrr5AkaGlrwaf/7aexYdt6TI1P4T/+zn/Csf1H3WkzzNntZpH5dJTO/O/q7UJxuYjpsSnPVLVMAv6EclXjbIFuKdxXGEtS4PvGKJ4kICzzovdrTXwCDehBIHHFLdegb9sGqDjGgRffwNnDJ23iLrEi558SvlknTFmXdKIq0w63s5P5LuDAngOugmbKdHyIfieldDRCxF7YSk6ax8HJByyXJmIPHAXfMmNYlQDqmppQ19SIpelJVEymvB19c++aJ8pUITE/L4b3laufS17gaQya1dZQXI9FcRjh0WynC/TcBn/Spp43sCnmyxVROalKf1Qt16x3Qg+azyFR2+Rj0/krjiq0FwqDTMiSRBN3BWYO8tNWmlqb8L5fewCbtvQBAF587nUcP3oGi4tLKbYkLVAkcYzLrtyJ3/y9jyKXzyJJEnzp89/AqRP9JuLlm5MeaNH1qOPEAlXitiww5OZ5ZDJQ3rXsb4XOQM8XcsjmssgX8rZmOE/As4EHk1HORzjMhHjHx9+Jt33oAUyNT+Grf/5lHNl3yPeZ1ZpVoNrP5BDHABADJ0o7MQim7OfCsBGXYcQzqEXq3pR1f8MDt+LWd96DOIpQKf0tzh09ZQoW+lnoMsWcdNjfT0eg6/q5Oylzgbon+Fquy/L4rxX/uX3f1wQH4uTI980/XpeKm3UcuHxQE0qhtbcHN/76J9C5fh3OvfYaXv3mP6K0MM9Ay7E6Tn8sbnq+zRQAeUueb44x4xFVHaV7WkBiQ8wAmzMnm1bDnvuw6RZAfqiFDe6kRNIz/Zh3A941U8LMFtmLBDrtqPhLmqUeVd937hOBUISh27OjXF6QAyz6sYJMEhTqCsjlc/aafetXYkVPJ/rPXfCdf3QrpQv2bd2xEbl81gp5oa5gd9ZLAkbAS+P3TCk4H5sGMGmBRDmbx+wAZzvxLSsSThvixPeZ0KiZrEFB91QJu65TIpUotHd34M53343evpXo7VuJa++6Hsf2H3VmMRt0G41j7MCfaJZFniLi1BTe/oR9w7Iw5j8g0OU5RgBMRVZWsTUMkMlmEIaBB0yk3MSmyEQkIa427wT48NIcw8wNVwg6sYiOZOOmHc2bM3+rTT5n4jGHeqruFLELfr4gT/rkTnckCVZfuhNr9+xGEIbYeOMNOPHs0xg+cticWuT3lc8RmWaurc4cTANENXmoPrLUVUzwUwUs+AsBkSg3Ft5Cz80/Htm+CGpU39xj9i5HC0Y3GXjX6gs7dUurHddDOEywtzdjRfJUjVM1RkchlKF0WkF+IutDcCYVMax8fR55AzwA0NbegrUbVuP84AgCth/ObjJNFBqaGrDBVAogYS7UFyBNZU7uw7BNgZ+GoDiaKTocUjLWRRpb/a8gMLQTIuyeNztXVMPeViNVEEpfX/pxV80OpPAK8sVxDAQ6Z4wyxJ15oP+VoDP1akxLlQmq2Pup9Yg5x/U7Wospr8v2iSJ6AhBCHyrBq60GgS47EwSBNY3oqHa6bsC+zxwobq7AzJSUX4RlTDkzOSX0ChyYXO4YOcg5GPKSLhKw2fHcNyVtyoZiUUA6BMK5C0i59brkouJJHJtjwviqwziAZR0yNR5GCT0PAu8d/G1qRp6tOQRYq4RMJ+tHA28zRVRdArYUwm5OrkHoWfv8rUDE3Fmtgirnt3/sVm0jMDV7/vd56VN7A/q0urWcxfm+YP1hKELjeLWmH9nCcEpErDjWFTkzhhkppauHbt62Di+99CZs5QH2W6VidPZ0YuXqbjuJQghdOTSQ2n9hXTTCwxvbBrfEuNeK+aUMzbAE1oCZlkDHFO2CmCiIIGCDJ8zBGvpwDW5GCsBu7qWfCwSYnp7BT779E9z73nsxOTqJFx5/0Zw6ZFgjN3UZKwns8PBKXmCg60CZ0zNr0tL1lLuuM4tIuDlTctU3M5mMPdQDQp/uk8mEFrBI+LmZwQ8PdQmmoqZiEGtKksSBASg6maqQADcfxIZd+920cke6F/UTDLDsd3k0UGeuu+O0eCliyhDXUeiBt97E8WefQef69Ti791VMD5zXZWoYOHsmkmUFWiEVcwAp4S8uzIj3NmW7dsDbzGwXMwIt4e7nGBdjivQ+34XBR5pF7zkgKKPY1A8rR1YEfbM2bVS6O5F+pWwGwcSVkTrPNGb805Mnwv0a+BdCsn3YCtakguL+JPIPCVOzPESlEmFpqYjm5gZs2tyHQkMdFheXAUnMzAixBNauX4mW1iYsLi4jiiI0Nzcil89BhNKYoYDHHSFYaQln9/PO8uRQPgS2H/Q80N+V/B5SeQdWQBhzKTRFARUBq2kOS82gyUgS4PEfPYm9z72GcqmMpflFyExohZSXN3HKaRYGEmHuxIfQJigJuWLMhTk/AXdApsu4d9nllFlOddy5wmdYjXZA95lYF/dJ2SxlbuJ5LfBFzPqkGED5Dgy+v4+voHBskUUYyX/m2g+PZblsdWXA009FcJnoMExLA5QlbdQOoeVjYXICz3/ly8gWCijNzyOOKo4lC1/JPBclSzPXi67PJvRaI+0d3QKV8tVY1sgXuOpqC9QWz/Sj71WlyFT7w7y3vfl0DM6bccvC6P7M1VL1SLFmBlZp31eth1L4v30DABCCKghQI43JY/OXPJNXIFeXQyYToFgs4fzAMHY0bcTqNT3o7G7H4rkLgBEUiipmwiw2bVmHbDaDgfPDAIDm5kbkCzkEmRBRkrgJYSyPrwtaiKWdQD8aqX/H99fR/NgQfjoPLEkgwsBb1fTpPaEFFaqGKAJAglgX2zYU6PvOTM3quQ0DRtnJ1+UE3CqscuWYKYXAkikj3IL6wQSU5kXntklT9UA6NmUAKhDCApjHUKAP5vCiTBQRDCTgQZC7MXeP0vM4UQCdCWnpKPXadgDkw9DMmzF4cyO/D9wPxZz6pp3e0QPGDyZMioUrmAebZqEBIbFt4FpJTIWuDyEQFYuoLC/Z8bS+QfPEN96cbCkrW9qk4x5xzRJ4RJiEwZw+TqAj/fxDDlLO6S7cfez7lAhNc8XAyi44KVcCNYM9tX5OBkauPT7gEQGzLLwqgEBuAiZLqbHwRMQ118oYEaZ0c4VSukQy0w9jlTCjgFZ345QvFPK6XG+5gvMDI9i8aS3a2prRt24Vzp0fcg5apaNY9fUFbNi4BgAwMDCC9o4WAEChLo8wl0U5isC30yiVoK6QR3d3J7q62lEo5FAuVzA6PI7hoXEUl4tWsAnK+epD+WBSCjQ0NqClpRHZbAalYgnTk7NYXlxCkmgTkOO+CCTCTAbdvV1YubYXhUIOU+NT6D99HosLS9Y/pJSrGFFXX9DHkimF5aVlFItFrQpKIZvLorGpEUIKLC0sYWF+AZlsBivXrkTPqm5IKTE2NIrzZ86jXCpp5kN9UKw/RjkaGuqwcu0qtHd3AkphbHAYo4MjiKPYHsFOE05lXBwjkxBQuh4Vr+klAATuTEIwVukBrYLNNk9UgrqmBnT3rUJTWwvKxRJG+gcwMTxmDiXhLMNR/rrmBnT2dqOlsx2ZbAal5SImLwxjenQMKk7Y4abCmnuF+nqE2RBQCcqLS0jiGPVNjejZ0IcwE+LCkaOISiXUNTQgX1eAUgqlhXkk5TJyDfVoX70SDW1tSCoVTA9dwNzICBSVJGJaK4IAufp6c/pSgvLioik5pNuUa2xEmMtBJQmKc7OIKxHyTU1oW70aheYWVIrLmBkcwML4uK9gVT4uvbA2dvagddVqhLksFsdHMTvQDxVHyDc1IwgDqEoF5flZCJPj5+/78wsNuhv6qTLctHSI4YCTRx+ty4djKkcWA1zebgzwB2feF2NTggOMfU9xKmYFjiRZ+f0SwpWXgWC79020UHCoNGZVoS6PQGowOj84gsXFZbS1NWPTprV4/qU3fG4Xx1jR3YHVq3sQxzHO9V9AS2sjACBfyCObz6JYKtk8rzAIcPXVl+KOO6/Hxk1r0dTcoA8zjRPMzs7j9dcO4off+wUGzg+ZfXvO9KCFTQmFrq523HTbNdhz9S5093Yhm8uguFzCqWNn8bX/810MDQ7rA0TZ5GQLOdz9jjvwwHvuQffKLsggQHFpGW+88ha++9Xv6Yqo5Cgxcnj/++7DDXdchziK8aPv/ARP/expQ9ASrN+2AZ/4vU+grr6An3/v53j1ub14x4cexLW3XovmtmYIITA/O4+Xn3wJP/j69zE1PmlBizKSaWVdt3U9HvjAg9ixZ6c+FTpJMD05jZd/+Tye+P4vsDAzpxkirdiWYTjfhF5vUqSf1/olKTdClTBGqdcBhUQC2668DLe+523o27oRubo8kijGxNAonvnho3j50SdRZqWflVIo1NfhmntuxRW3XIeevtUoNNTrw12jCDPjk9j/9It46ce/wNLMrGUaEvrUo9s//B5suGwn5ian8PP/81Xk6+pw64feg75dOzAzPIof/Pl/w9z4OLbfciMuu/duVIpFPP/1byCOI1z10EPo3bYV2UIeSaIwPz6Og4/9AkeefAJxqQjyiSql0NjegZs++SnUt7djcXICL/zDVzS4meDMjvvux8brrsfSzCye/+qXUN/ahssefAid6zcgzOWQxDFmh4dw4Cc/wukXn3Nb15hJKZRCJp/Hpltux5Y770HTil6IQKI0P4czzzyO/pefw2Xv/ygau3sxefIo9n/9S4iWFquSPh1pSlEU5oLwauo777llacL7Tg1gsf5nJhOJHwdN45AFG/u2n3vmR/2Zh0x4pJsBln9JMklD0NYXjoDcwW3voN+rq8tbP8jI2ATGJ6bR1taMjRtXo76hgIXFJVegTwn0rVuJlpZGLC4t49z5IezYuRkAkMtlkM1l9KnSQlcBzRWyuOPuG3D99VcgMse3q0QhX8hhRXcH7r3/FnR0tuJvPv81TExMa9CyZqA2wTZfsg4f/eR7sfOyrfqcQ/aIohgidCdV00MGErffdxOuum43GpsaEJvDNXK5LG6550ZAAF/873+HxYVFOx5CSnSt7ML6LeuRJAlaO1ptuEoBCLMZrF6/Cg2NDbjk8kuwY88OXH/79frXiYIMJDpWdOC+970NMpD45v/+R5TLZef0NhO8aftm/Pq/+hTWb12POIpRXC4im8uie1UP7v/wQ8gX8njkaw8jKle833oF/oVxikrhL3/GDrOOYpY0nLDX5Je6/Iar8d7Pfhzt3V2IKhWUlkvI1eWxcmMfHvqtjwAAnv3Ro87/lwANrU24+Z33YeX6taiUK6iUSgjCELlCAd1rV+OOD70b9Y0NeOxr30ZUKhmGrkskt67oRM+GdWhsa8XqrZuw+547sW7XDsCMb2DYYb6xHh1rViMqlbDhqiuxeucOrNiwQW+9ErpSRPvq1bj2Ax9ApbiE48887fqfCIS5HNrX9qGxsxP5hgYE2Zz2MxkVyDc1oXXVGhRa5rHphpux4brr0dLTiySK9FmI2Rw612/ENR/+GIoLcxh4fZ+JNjvzLshksP2+t2PXO9+LbKEOdERcXVsHtr3tIdR3dKJt/SbUtXVgeWrSz4kz6GGd4l7eGzGTFAKlaBAFTIT3TjXSWA4lar/vnDUM2FLX9a4p/DtxM/Nifivu3ve4mwJCIX2mQuagtxZTLpKQOh3BnAE4NTOHgaFRbNnch9WrutG1oh0LZ5fMAaIKYRBi06Y+ZLMZDF4YxdDIuD1MNJvLIpPLGtNMr/blSoRDh04gCCT27j2A4aExSClx+eXbcPfdN6KxqQFX7NmBG265Cj9+5AlvtUkShZWrV+CTv/0h7Ni1BUopjAyP48CbRzEzPYuOzjbMzMxianoGSoIdmgnUN9Tj5juux+D5IXzvWz/C3Ow8rrz2clxz4x6EYYgrr9+N5558Ea88txfCHNoqpL/GGQeKNWkqUcUe67Xn+j3I5rI4dfQUnv/lC6hUKrjutmux44odCIIA191+PV595hUcPXDMbn0BFJpbm/Guj78b67eux9LCEp780S9x4NX96Nu8Dve+7360dbbjhntvwbG3juDg3v2urq+ZMmcySGeeMBOFTjHWiklLG/OzGYVI4gQ9a1fhbR99D9q7uzA9PoFHv/1D9B87iR1X78bt77ofdY31uO099+PEgUO4cKZfH5AbAIuzczi5/yAunDqDo6/tx9zEJOoa6nHpTdfi0puvQyabxRV33ISTb7yJk6/v11VZdZMRR/og2DCTwZ5778TqbVuRxDEWpqYxeeGCNtsEUCmVoJRCkM1ixx23I8xmcPKVl9G//00Umpqw7eZb0bZyJXL1Ddh++x0YeGs/FmdmLGPmkT2bQ03jqBQqRX2SdrZQwI577oOQEkeffhJDRw6hqWsFtt56Bxo7OlDf1o6tt92JkaNHEBVZXXml0LvrUlzytgeRLdQhKpcwuO8VjB09hMYVPei7/hasve4Wm1KjogqESa3gDvcaillb4YX7DTf7qpiahzGuqknapuNbySx3V/4F0i2p3TLhfeabtLVBi3+uFBCKQDC8Es4nxCNTRNsCYXOw4jjGUrGEs/0XoJRCS0sT1q7txen+QS0AEqivK2DdupUAgIELI5iZm7e5S3kDWJAuHA8FPPn0K3jiqZcxP79oQfTwkZMIggDveOhOhGGI3Xt24sknXsbS4rKNXOTyWbz9obuw3TC448fO4O+/9F0cO3oKUSVCJhPqgw5KJSR6YbWPIJAYGxnH337+H3DgjcNQKsEbrx1AU3Mjdl2xHQ2N9di1eydee+VNXQYnkHqvpTcXxm9kCv0lyp30XN9Yj3On+vHlv/wKTh87DQWF44dO4Pf+/e9i7Ya1aG5rxrbLt+Pk0VM2ogcFXH7dFdixZycA4NWnX8JPvv2IPhnnyAmEmRDv+sT70NjShD03X41jbx1BHEWeU90TQAUkgpdj0aAdqRgioRI5zgS0z5UuR3zVnTdh9aZ1iCoRHv/nn+CJh3+COIrQf+I0GpobcetD92HFmpW49IarMDpwwfrR4jjCY998GFGpjFJx2TrIB46fRH1zI7ZdtRv1zU3YvPsynDt4CDqupiOecUUfqpurK2DN9ktQKRbx5i8fx9HnXsDSzDRKiwsG2CLtsggC5BsacOzFF/DMP/w9lqanIaTA7Ogobv/Up5Grr0fb6rVoW70GC9MzjhELX4UVBBLGDGJj4skgRLYgceAXP8Or3/kWSgsLkGGA5bk5XPfhjyHMZtG1cTOaVnRjqv+sXT+ydXXYfOudqGtphVIK5158Fm9+86sozc8hCEMsjg7hsg/9OoJMQc9LVNF1upAypS6OAZ7j2lbEYKzKpk8QaDAnvVIEJMojARw+bPIAfDeln8l/Mf+Vz5pAOWTmBzV/4/XbdVLaSIiJLNkVR8D868ISQkoU8vpY8ChKUI4inO4fwtJSEblsBps2rNFOQyPsnZ1tWNW7AgBw5uwgloslVCq0aobI5jLGchS2INHC0jIWl5Z1bpA5GLNYquCVvQewYEyy7p4uNLc0aZYkNFNYv3ENrr3+CgghMD01i29944d468BRVKIKlFAoVcpYXFrWbbNC6h4vvfAaDh86Dhlq5/v4+CT2vbrfgs6qtb3I1+V1ZC0I9FYenvsiBUSo3xeBNM5q4/9JErz49EvoP3semXwWuXweo0MjOLL/iBYwKbGqbyVyhRxkKCEDibrGOlxx/R5kcznMTs/gpadeRKlUQpANoASw/5XXMT4yBgBYt3UjWjrbTN9g/xIoxMZRHps/TsMTlSBKEsRwn0fmjEb3OkZTRwt2XbsbQggM9Q9g77MvIlG6Vny5XMbrz75kzkaU2HzZDtQ3NehSM1IiCCSWFxYQx2W9aGRDZHIhlubncHzfm5aFrli7CnUNBYSBRBjqCqQqiczY6sXhwJNP4aXvPYyx8+ewPD+HxETakiS2Y708P4/DTz2JpZkZPRdCYPDIYUwODgAAMvk8mrp7DKsSSCBSpokCFdlOzBzyA3DnJ8Zx5KknUVpaRhDqbW0D+9/AwoR2uOcbG9HU1WUjxlBA6+q1WLH1EgDA0uQETj7xc5QWtN8RSYzBvS9i6uwp1gSeMwZGk4zqC+VRJqrBziN+fFeAYyq+zCslbEa62/JGLgAOhBdjUML7HmHMxdiWorbDepg0GYL/R2NQdQHw8jrMZFAQUEJa4ErM5AmpfVgAEMUxYqUwODyGcXO818b1a1BXV0ACHVBes7oHrS06/+rE6fOoxDGK5kj3MAyRzWaNaaaVyppp9r7GNBHAxMSUZl0A6uvrUNdQQKwS+/nlu3egrb0FALB//xEcOHhMJ0maVVRICREIFyJ3yxBKxRKOHTmlM5wDU3pSCgwNjaBc1gDb0NiAXCGvzT76EzynSSLIBAgMaCnhAGt5aRlnTp6FCCSCTIggoz8fHR6zq3d9YwPCXEb7lCTQ0dOJtRv7AAAXzg9haHBI562ZNISZ6VkMD+iTrFs7WtG+okOPl/mLGUhVkhiVJEaUJEjYxp4EQKQSRAagIjMHiVCWhcZKYeX6tVixqgcAcPbYScxMTut+mjyuyZFRTI9PAAA6e7vR1NaiD+QINPgSCMtQAxj5nmbGxxFVtDw0tDQjV1eADIQ5zAMeUMyMjuLA00+jUippRbfsSAMWPebGxzB54YJOAjbzXl4uYt5E8GQQINfYCCWEkVPFzyi2+sEVkgPi9IULmBsfAx1ALIREaWEei5MT5voh8o0N1g0sBdC5YSPyTc0AgMmzJzF7YcDmvkkpUFmYw/Tp4/b+cVS2ey39pAF1UQpDACk5q0obfywQ5zm2VW0S57+fPgMAnPgQHHnf179h4WbUALSqG9euKGv1zJsk+gJrTaJcUQ0ppQ7jA6hEEaI4xtTMPM6a4+FX9XZhRWc7EqUFY/261chmMxgbn8L5CyOIVcIAK0A2l7GHWyY2ryWx5lScmG0SgTaxSiUNHoFRBFtBor6Ards2QAiBSiXCW/uPoFQuG3ByTnYNWuaPmXTlcgVzcwtOwQINbsViSTtuzT1DAzZBGJgDWpnjXkoEYYgwo/+C0GXSLy8XMT+/YBRXaOAMBIrFZVeJVbr3IYAVK7vR1NIEABgZHMbS0pJWHqXBqFgsYmZqBgCQyWXR2NZswIf/xfqP3k8xLMUAjhYH7dei1VCne6xavxb5Qh5JkmC4f5CZnvpixaVlLMzOAgDqGhvQ2Nqskz9D3R8CIWkWCxlK5PJZCKXc+IbaZKf0BqQCBGP9/ZgdH7PjY3OqUubc0uwcKsWSyYnSqZhxkqC0vMy0W0AX8qAc/JTq06INOHPR3GJpZhpxpcySdgWSOEKluGx/buuCmX61rloDquw7O3AOSbnkbTFCkqA4M+V2VLDdGR5YeXBARp9x3fBgDQMqiurRXwLWN/vHz6V2r30nkn9dF5hzKQcW5JXPvACWKeXRRZHqlUr96wMZAISUZ0MRAJ586Y5uSgxgBchls0bJy4iiGMulEo6f6sfN112O5uYG9K3txbFT/aivy2H9Wu2/OtM/iMnpWSRKWcAKggC5bMZu47BhUANaTY312Lh+DTZv7kNvdxfa21vQ2dnmyZUeL4Xm5kasWNGhBWppGQODwyZE7vZmuaxykxXOMt0JHGUQsK0rwg+UCqEZQhhq/4xRQNscKTXrkAJCmTP4zGdRJUIU64gSmZFKAXGSuKkhJZR612F7VzsymYwGgYY67Nh9KTy/khAW0IIgQLaQR6wMBBH4G47vNojwUAOsqaiUdNnkgJd1nglCdPR0QUiJJIrQ2tWBS6/bY/cYCugASr6uTgtUJoOCYUoUQFBQCCTQ3N6GNRs3oHd9H1q6OtDS2YlMzm2kdyaPSMcHMD85gTiObHlnrVbatOd+u6hSNmydfC16GxMBIxd/xXBBpT8jGbC5R/oeUbnkInZMtmjhsV0xwZdMNou6tnY93lEFS5Pj2j9F+YpkkUU12gcPs+2AeHCkKALooneezP8KKEiTNRshTKFMVWAytWXJ/ThtctYihCxlgrEv7jv1ne2uPUIoA1iMr7lDHBLvPaW02VMwTvdSWTOsRCmcODOAhcVlNDXWY9P6NXj8mVfR2tKEVb1dUErh2MlzKBaLEBBYMiudlMKyNVAblEIYBrjiskvwwL23YvslG9HQUOcJpBs0SoIUaGpuREODVpjFhSXMLywhMCkNzpfgpiNRGnz4pjUZSAShBFVgpexxvqDIIEAQSrf1hbVLSs0kIAVE4pSeC5swG9101CYV/jXfoXlsaG604Lnnuitx+dWXs4nWjzDD0jYE9FHwUpqtRaaylGLrqaqxo08AkEbouf/D9DmTzaKxWQOjDALc9uC9uOX+u1KToYGKxonMPhnogEq+roCd112NPbffgu61a5DJ5WzuXVqYFQUdUlNeLpYsUOtbCqc8qe8mRs7JHwPDLHi/LSBdzKNtgVDYhTF9T2om339JbTPDijATImPAPIljVJaW/MjfRQDTaQVLVbHA5NiV276Vit5ZsHKybwkb/YRvfWOZ7u4OroKKxg7BLkItYKzPd3ylp9bdWrH7/z853d3zMIlpb5u7iCtt6m6sSzs4k7BcqSAyZVoGh0cxMjaJpsZ6rO9bibq6PHq7O9DW2oT5hSWcPHPe2qLFYlmHoKXOmhdSC4CCToO4647r8JEPPIj29haUyxWcPNWPU6f7sbRUxE037EFXl16ttJmht8PkclmbG1auVBCZ/BhJR3mZ1cZOvDIMi42HDI2TnzLOhTZduABbc7EGYNEmNiHMAQSpjXiCStfQ9iDjI+ShXjLJANjSO0oplEolFJeLVXNqnfpxgoX5Bc2WEvdZ1arFtjsAMAEEAy5wjlr+PAglMtmM/U2pWESlXIaoEjPd59LSEqKogjCjS9YU6utw80Nvx9V334FcIY/i0hLOHTmK0f7zCDMhdt5wPXKFgh1jIeHYlUj1ldGuixkPZOLEyk572tdsv0Ofp69RAy+rPtdmmPLBx4mKM/noAFyaExN08qNtNaiIWU18Mw92Hu2NbIdSoARhI4EXDzI68HdRPD8/i9kQVcmmrEVwtEel3q2eLIsrKbvRGwLLHOHAKwFCv2a2qtEAd4EgDJA1K2m5EiGO9bo1M7eAs+eHsHnDGvR2d6Krow1rV/egUMhj4FQ/hobHbSXPcqWCxBwpX1efd2aSAnbt3IJfe/8DaG9vwfT0HB5+5DE89+LrmJ6eRVNDPbZfslEDFgmCOWrd+jWgwS/IBNaxy7cx2F1+Sidu8hEKAmfS6Qspb6OwABhgmchVWsiYSUfsLz29XsSED6+C9TmRcNPj6ceeweM/e4IVD1DuO2bupiemDODFdhxIEcgRm66xLqVmlGEQuIhS1T4+B7JRpYJf/NMPcfSNt/T4sn1/Lh1DYXZySvv5hMBlN12Ha+65A9l8HmODg3juB4/g7MFDWFpYRE/fGmzZs1sDlqadzCStho10+oEArE+GP+i0ARvAwcWArcaDSJWoBjpvnlkULi0HzroX/rplMuf9TdC1H7bCKoMFwe5PH7tqGv6p3VZMGCDzwn9VjTaMTFY3wrRVuWuwMfRn42K+JwZm3t5D17iqihD8csxhH1Zf3q+J5cxMhUwmRM6stuVyxYaVy5UIx0+fxx03XYXmpgasX7sSa1frqNKZ/guYW1yClLr2VbkSQSkNELQvUQiBfC6LO2+/Dp0dbYiiGD959Bn85NFnEcexBqEw8JRNMPCI48T6EHK5LAqFvDbdpKiGDJNVT0yJ3ieTjs4ZlEid7Ekmgv1LTTpJqZDQyQT+nGl/kStXE8eRyUlz4BMnifZrKYWi2eIihMDS0hL6z/bzizkhMOaff06gMVnojEDTD12ZgQGWkAhDA1h0bQNAbo+XBioag6X5eYwOXkAYapALhETATEp3Wo5AU3srLr/5RmTzeSwtLOCZh3+AI6/uNXl3iQeGdH1yeKdVmVgRVxSz6HpRPtr3mChyQVWfBKOMLgqGTL717sfXWEDZ9pGSM+20VzEs2LlOzPgJKREacPZ2ltSAT5LVqtQE1gfLtoQwOxN8N4Ni11KGcflXSN3RWFXWr8YuJ7xf+iajHXhyu4jqO1AFF94m/4p+W9Jsjl6GymuNuJinDAp6O00upwGrWCqDiuwpleDUuUHMLy6iubEB27asw6reLiRJguOn+1GJI8NodBRP5zYFqCvkEWZCJEmCrs42bN28DgAwPjGFV/Yd0GYiVSVlUTdiO4FRmuVSEcvLRbS0NKGhoQ5tbc0YHh5jysmjK1oCvU3ANMp0fZ5/xseApJPmx5sQc6it2XwdpxyecZJY8E1UokFWeaqm85+SBEkcY2pySm9sDgO0trdChoFNkNSuBLcE2aoFwpSXYcm47sxAU62Bl5ehw07pBGva0SDNIa9GHhbm5rWwhCFaO9uRy2VtjS0CKD22XPASrFizCh29euEaPnsW544csdUZVOKlsVGL2IJQzVAtCIHMKWWifb6csh1G+FUGnlbManAkGXALgKdKtnnS8JpA+NdwzRdIKmWU5uaMDGdQaG03oMwOfTDpEbXk0W8928/HgkHgmMdE3pd6RlksLSNUSrP9dPkb/Zuqzc+KgaYnyYxXKQdWAKvcq3xzs7YXz1hEwjE7aaNlLExMvg2bEmDey+Wydn9eqVKxlFsEEkNjExge1Xugdl2yEat6VmBufhFnzg9phTIRuJIFLKCuvs4oUYC2thY0NzYAAKam5zC/sKgjciYaR39WtIVmREEgsbC4hInJaQC6oOC6vtV2Y69g1d381Rz+c+H66SuNP4wu9O+vihaUjFkXxzGbSMU+0/1PVGLHwU6yUkiSGHESY3hoBKWSZlndK7uRL+S0U93IG0VBZSARBoE27cLQZPT76RVhqD8PagQKaI4hYMczkAEzFRUmR8cs2HavXolsLusOq5DCxxc2bC0d7TYKODM+gTLtFbTDm1ZS2KTe9IKh45+aXCYKiI0lYM8srKkwF3s4gKnl4HflbgishOdvSTOri5qOAOJKBfNjw/a6Tb2rIY1bRbkbItvQ6E4cN2BI7oyUoJqFRXjg7P0p//RBnSBqB9ixVeUNsKcYHOwUhBlnlhLhOUOFdxm9eOvFxP2r5y1teTjFQg0ml4py6jlxzmTJAMopsDQObKkZkYmiVaLIgJUu1TK/uIQzJh+rb00v2lqbMDQ6gdGJaYRhRju0MyEqcazLkAAo5HVNLBlKrxqmEOQQJuAUqK+vQ0N9nTdIOlIosbxcxOmzOpM5CAJcdtklaGputHk2PBpovbo1VlUlHHXmByMABCYmGTMhhuQ+j+MYSRy7zxL+W1j2pBJl2RZnWEq5jPQECgMDFzA+qpMd16xdjfUb1wMgJ3lgq4VmMxlkshlkTW32MDSAFQTImH+p/AyZ0HwMNfC4BUUnhJoETxM1HRkYxPKiTtpds3ED2ld0aoZggI4y67kmCykQZFz9LYpAEqIpAIWmRpfWwBcLkt8Uc9I5aM7kS5Q7bch7pBGkpo+JRUNr/JxHSrlu8aPu7SGruMhDACqJMd1/GlFJB03a1m9CfUcnEpMqpBQQFurQ0rehusHeKqBfK8VzqIRl9lzW0sE6B2T8M3+xBdLAJ2zCuLJWV6o+v72u8sxzvqgnin5VY/kQqRYwtuy1TjkXiBSWSQV2y4l9Lwjs+zBZ7mFIgBXr3KMgRBBIREmCk2cHEEWRBbWz54ewuFy0SiDN90hRc7msrXhZLJVsVnlbWzNaWpqtWaUAbNqwBu1tLa6nTJDiJMFbB49hdlabLlu3bMAtN11tzE1lwMAc+3Ux9mQ+18CkEMfKAyQF5yuLDAvyAS1BFEdIklj/KT8vJ44TRJHOx4rjSANW4gNWbPPdJKYmp3DogN6609zSjLvvvwvtnW2QUlpQCohZBSEyYca8J70FSMpU4matNczUP7c+G7tgaAAbvTCEwTPah9bZswK7b74emVwWiYrhSuQmtkoD7SIoLi3b/KeWri5kCwWboCrDEGu2bkXWbPXSemAUUDkloAcxKxL9NLOoqQ0WjaoRy6VwVJum7mc+aNFn9gAMMg+r7+DGRQhMnTmNuaFBAEBj90qsuf5WyEwGSRxDJQqdW3agfePW1O8ZkxIEIIzB0B80o0qUS9y0vwcsowL7rcu7vAhYMTNOKT7ewm3dUezPyK//Gva76bGtMSNez1PS6bUzFHREvbVP9Z3ssfDmpxIB8vm8dUqXyhUNZMLYu0LgzOAI5haW0NbShEolwomzA4iSRPtJAIhE2Ax5AMjns1rBpMDE9AxGxibQ2tKEzvZW3HLDHvzgp0+iWCpjXd8q3HPHDTalQkiBMNDbW6SOHePUmX7se+MgbrvlWuRyWTz4wB2or6/Da/vewvzCEurr65DPZXHi5FlUKrEPRma1po3ZxHY4oIDMtTjWw2fGgQNOYhzmsfmefxqMBmqVVLkrdZ9MqoROttSH2L747Eu46to96FzRiatvuArlchlPP/Y0psYnIaC3C61csxKD/QMYGx7VvyNFIvHlyYZSMLIp0LtmNS698gpXkth4W6UQKBVLGDx7DlG5jKXFRex74SWs3bwBhbo6XH37rVBK4cAre7E4N4dAAg1NTejo6Ub/8RNYnJsDIDA+NITFuXk0t7ehd906bN2zG4defhlQwIadO7D92mtc+wKd5hFTaRqVDshroOP1vn4lWNl/VRWhppeSAVf6185x7iqi0oc8Dytd3YHkiYiBEAKLU+Pof/UFtKzpgwxCbLrjfggIjB5+Cw2dXdh094PINjZZnbNSk/Itu/fJK043dmW27b9kQwlXPdfLwatZGgaugqhzArr7Kupz2udVDTe+F4qTqYsb6lXBghpfDaVVPOU1SNof69tJCNQV8gikRKIUypXImhSAFvjRyWkMj02iraUJc/OLODs4ovfGkeJIiUoUIzJZvflcTidqCoHZ+UW8vO8gNq5bg0wmxL23X4+1q3owt7CIzevXoKmpAaNjk1jR1a6V21YM1QJcLJbxk0efRveKTlyybSMaGxvw9vtvxy03XY1isYRCIY+h4VH85ee/imKppMHFG3TlQAew4MOHMjHRPf19/3OdLR8BEJZlwZtI5Qm7VP72ICEEMmEIlcmATrs5d/ocfvbIo3jPh96F+oZ63HrXLbjiyssxNTEFpRSaWprQ2NSIh//xn/HkyKgpIywsaNHDns0nXeRTCIHrbr8JV998fZVQSCkwcmEIX/+rv8X0xASEAI688SbWrO/DdXfehrqGetx8/324/PprMD8zCxkEaGxuRpgJ8fCX/g4n3zqIQAqMDw3j9MFDuPzmG3XxvXe/Cxt27oBSCmu2bAGUwvzMDBpbWqx8xErZwxeqnOmiWmGsX90NpO2frXcu0l/hJZd9isTNRSkBoZgfC877pdi9/ehbDcVNFM69+Ay6tlyC3suuRK6xCdve/l5suusBBNkcouIyJk4cRfvGLRCBPheAb59xdpKLDItqKLD3E9YVghpoIqxWu0IejpgkvPH8aRrAlMMHv43wrlh1JQLbqvuoKpQTNX7O6mE5j79/eIK5kEhQKGh/QxzHKFUqVabV/OIyTpwdxOZ1q3HuwghGJ6dBGelCCIhEIYpilMta6cnnQh1+5qV9WNW7ArdctxuFQh67L9M73BcXl/GjR59GXSGPt997CwSAbDZrmJBbQQeGRvGVrz+Md9x/By6/7BI01NehtbXZtm9mdg75vC51q+DKv1gnuDkEApYtJd53CKT0vwKxyZlKksT+CSHtthj+W8egzB5EmWjwZ76uMAwRh7FlOwLAs088hySOcdf9d6K7txut7a1obW+1111aXEImlzVbjci80X2w5xGaKZLsMA19EnRgM/v5Q0qJbDZr00KkEIhKZTz945+hVCxiz43Xo7mtFa2dnWjt7LRtmZ+eQTaX074WIVAulfHSY4+huaMd67ZtRUNzMy656ioAwPT4OJ770Y+x+bLLsG3PbsgwhAxDbS6aKJrbX0oVUCk0b9TMRPi0OZ/oMvu01Yuc5jCgZPut6+LrY8KIBcHu41NKUWkzW5cMys0hP46O/2t3FiSJ3VBN6RBCSCxNTWL/d76GqFhEz64rkCnUIcwXsDw9iVO//AmEDKxZSP3lzMZqMmNGzinvSoxzuBAsUZjg1pmNnGFxIOL9YqsGuWCU79sVZD6yhlq3vYlgCu+eirU3XcRPfybYK9Zz/e89v/EnbDhYAqlyDaR8lk1rV2Lr+jVIVIK3jp7GwPCYVSxqdG9XO9b0dGFqZg5nzg/ZvYLSTHZ9IY+rLt2GhvoCZucWsG//EZ1zZNIjmhrqcO3uXbh0+2Y01BcwNT2LvW8cwhsHjmJVTxe2bloHpRQOHTmJC0OjdvWj849VAtQX8tiwbjU2bliLttZmQClMTE7j5OlzOHnqHMrlMgr5HPZcvgMNDfUolUp4/fWDmJqaNiF3nVrQ0dGK3VfsQpgJMT09g72vvolSsWip9a6dl6CvbzWSJMHRI8dx+tRZO8AtzY245tqrUFdfwMLCIl579Q0sLy17pteqlb3YeZku4jc+Oo6D+w8hjiOjKJRqoBWuZ2U3tmzbhJ6VPcjmsqiUK5gan8Tg+QEMnBvA8tKS9asAzFXH1lApJTZv34ru3h7QIQg+F3M+mqXFBRx98wBKy8s2QVTXhQ/QvWoV+jZvQFtnJ4IwRKlYxPT4OEb6BzB24QIq5ZIRdq3ErZ2d2HHVlVi1cT3CMIPJkVEcfnUvBk6fwrqtW9DR24tysYQTb+7H4uysZqAAVm/ejO615jyAU6cwfPqMA2FSAZWgc+VKrN9+CYSUmBkZRf+hQ0iSyLZZCIHVW7aga80aKKUwdvoUxs6etiwsX9+A9VfsRraQR7S8jPP730BlccGSgY5169G1YSMAgemBcxg9ftTZfVCQQqJ3xy40ruiBimOMHj2I2QsDnuNeu0QUsvUNaF+/EY3dPYgrFcz0n8Fs/1lsuvsBXPrBT0BIidNPPYo3/+GLQBz77MU85wavPeuQTF+ghhdecYzSv0/8lBqLMXBA4oDDWVzG1LDtkko50GPsSrD20W+FMvWsLHY5NxQdvCKUy/GyxJdYNwBx76f+VBEd8+m2Ymjr7FpiDemzDOxPTLUFEnzL3oiWm+/YQyBTA0bXz2UzCAOJShTprSDGr6OSxFL2wGuDy21R7HvUzsRE6CwjVTHiOLErLq2e2tmYWD+eSigaqOxdQI7HxO1Q0/WfaB8izMlB7Fgq6ZzeLjrlBENIdjQXXdPzjzvQoT4RKxCsOgCZ6NZ34y+QgIrtasz35XHLiKcd2GPdmV+MTtzW7dXA5Noi7FzwjHwBhTCjt1BVyiVX8cFUkHDy4tpLjJba6peAZm01c2Yd4jLVH0CftGOupesvujETRpmoyqdNOLYAkBiZIGAQTknJ55skbI6Eddh7Sac0F0nsA4gAtr/z/dj+rg9CQODoT7+PA9/+mgV8y1hsn81zZg+7ZAXflqbj8nzTDvbkIfemMMzTHbIC777MbWSZm4LkbWSAZY8JUNDXNN+RHqxwwGL9Y3/uOhq0QkviROrUOEUjLNjA6j2AnAIS++JdpyO3nG/MJYy5wyFhab8Tan0FBaBYcocZ8EmgLS9KsTpG1vxxiXXkm0sSdk6eMIBoJlEYz6uWRReT4AxcSImQ0WErPHAOar5xmBgLHeYpIHxFJOUXTtS4j8WuLlw5kQq/my0sMnQbtW1/GJ92bJ4dryToGDCYBYPMRkfcbXuYKFgTRE8CYOdOm1fK2FckyHzuSeAiU2rYqrtiZwk4XfLHwC46fOWlMVMsBSHQY43EsW72ncCcf6mxRJn9kvq0NgfI7tRvbu7psTL2ozU+FJM2kktpFdebL+ovdVUGoKJ7CoAIAtS1d2mgTxIsT0+506eNfNOPU1BpH1TYju8LTj+cmjqCQEmZHJDSfi9XhEexoeEmJey8+/fmfjY68i3VBvaN9KPWtUK7Gdf2SOFiD5Uors66Eew9zUgY0rseex32jsb2rgZ7HQ5e1DSCJGImNoxOt7FHcDE2xNrGYq1wJymnFIsuqJw5QYCYNn8BxzSpeBpFTflUWfCh/vL8HwZIJALekeXcxOO/p/sq1hAGGHaKPbOQ+XRSgOnNBWMQdCUBt0BwRg1h6uNbfxOfUKYEJMzGf+RO2PTFNf3Mpm7Z+XRj55lGzF/FGSrBkJB0QrQy71EelUr1XzF9ZL6dWnph2k9RTdfmlApyH1qqf0olyDY1o3lNHwAgKhUxNzLkgbmicYA7e5Mdv+uGulb7PDLBzDqV/qqqvhBLWXAn8vj6L+xv2GxYBCMCwKhQClQVe9+NDMkkRzj9JASqGZIZGmYisTXFmkzUJxYtU9RJOsHYCQHVJxJC54+kCxrwwSKntajRNncYo2I/0SsmKYy3rYAHETy7nA1OIJAkygIUjwMJBic8RcCBEaqubSNUjBXY8RD+VNkIFFNKz1xjylRtKnJh0GBpT6wBE3RjOhDo+izF5wG2LwJwsOsYlh1jOgU4cdLP83BIkJUiUHfvkyyA/vUkVni6bl8KN8bOdGWs0D5xiizZwiBNrpkU0vIoclrz9pLsMwlLCwzsIpwyYY2h4hrNMEAIqqIaWX+NUvr0pVVXXouWVWsBAAtjI5gZPA9iZCRPirfBg+qLwCn/QQ0ssleqxgQrWdRP36HvxocvoHStdESWt8fjrT7usXH0F3ceMAGsSegGUEGZw0gTi4bkz/EYlbHbXWcZS0nTRdYxlSjrgNdsK6UyyjcnFMjhxjS3Bson9rf++/7gKAYMzs9gE+C93DN/5zpXGrq2JzbCKZ9I3Z/fy5uYqmxr33eSBjiqX8Q4sRUWj82lFneee5U+MkB5r9l1VVph9b8UuXP+LM5UuWngcqUSWkSYT1MZc9TmDKXa7Y+7U0wLUayyg2NOjFUJPX8kX4EZB9r/x2XEvaqtRSrdHqTnki0ipGDcdFQKzT292HDjrZjqP4u5oUFES0sIC3Xo2XUZtt79AIJsFkkc4/zel7E4MQm+bck5wKs3ISl2W9vYixhJvlam51Z5aKL0ZLOxceOVHhRuwlczN/+7PH1B8AtcBOz4/kUoIHQlSlzYHvY9B1xgIGKd0B6joSPYfTXwVMGaVLwDlKdFl7QFnTyTgjMux3mUG39O4dPsjTMJZoI5v5OyvhxvJUkBlJs0wVoPx644OCi3xYnOpOEml1710+YgeM98UbF9Sgkpu7f7h+3vY6zN/YiE0vfJpRMLlRVm7RhP+Fzwz70olGL3ZD5Fb+KVhQ0Hpu7ftPlMz11/XLY57PWdL1AKmA3JLAcN1crARtcfARZk4d/y+JQw5lF6ETBg7H6mF+fOLZdg671vh0oSlBYWEJeKCHN55JqaEYQhkjjGwL5XcOrpx5EksTnb0933V1W1Yk30v+uBF1vgSK9IriyIKO8zd8Hqe6cMBZucKoSTLe8SNL6WWauqua1VocNfnIFQl9RNWB6Ki5yR4HLW46i++07CwMxfsdgYsUZ6okAmBCkevy+9Tg0YKZow4kt9F77WwjrjLYuh062F52fwBooxHvKfeL4Zu4owERfutGY3AYxVETAp5d2DvmxzgUjYlfudNfkYKiko54hmJhOn6DVpORdQJtppxmTvohzLJWCkKC4Hc1IMBza+2Q42R27x8NtOrIngjhiZFVg2h9afZ+xKycDJHWYtbLTWETt2jJXwQ/fVSurYIA2uldPU+BJL5Asa9+tCSshMFqWFeeQbm1DX2gYqWqmiGPNjI+h/5QWc+OXPsTQ1CQgKbHFtgp0DB6qsuXxhU3zkncXjsSh7CQdWCinnPWEwyWhKljxmCSZXDhNte+lWrmwV0xXSFxIFT939pTtUJiGSemAFlNBWwYKVnQDhBoW/TqmG0yK4zvrsp7pkL1OjmvQyzVJcJMXdjkdXavmMLqbMFowBppA1vi8ci/DWXcqfYhekSVWMTjhgSQuNW1U9w42vtp7DvlaEMd0hNzf+Kse4hXJjzn2WUC5507JMYpwKbKFgc4va1D5tQ6WFXQnfd2eXEQJ7myZA+/90fX5n+oFF/Ug2uN3i99OOiKrVTMcJ4PVF2TnmW9eIdTKLiv1Cv3Hi2acwduo4Wlf3obGjE2E+j7hcwsLoCCbOnMTchQtIKhUIIVFTlS7y2jfqWYY7Z4se+6L3lHdBxeUhdUPfUmJlcbi9x2U5deU0S7IgxeSFg5twP/a6KwCE3AxUdKqKh8JkOjhDUwBQpvywUDrhE+TQ9b7v0/r0a5fuoNhptYIxI8ArhkPROrqW+Q7tvXPvU8/ZKmmZkUNQHszhzFeAATGXkpQyOQc9Y3tWsFNC5obPAykfT/1Vkw+dYxWcZQjvu+TX8UEQbN+kW4X5AqRfJm5hSqcn2HFxoE/jY1dOwRYfMoetvVpjNU4953JRlUNlcrAcMLEon3D+KjLT+IJoldGnT5556j5xXKR2QIifYeiWVgGXq0kMll9eASgXlzF28gTGTp5waSXK5fLZM0G9eyJ1dc6QqQVsZbWADPA6Vx4YmfZI3rg0MqTsJD53ngOD35r6TfIAswjxNjGZJSbnLVreJWvcA+TD8iaVmX6m31wt3fuSmW+MGXhRuTRS+0svOYiV8lkEL00MxX1GVQu1x1rA2ypIwJQbKKE8hsChXJlr8Tt54e4U6KbNgvRK4csdY5F8dfSu7y5E4Mc/k+n2gExDVlhNsVXek0B308RUOXWA5ObMjwr7XhPPdFIp3x1c0q5g7YRIj5NjhIxw2k6nc9ScmUf5bM6RTs81mNWqrc5GwK7eDLhUShP42Crqk2/S+PNaa4SVp//+Q2hHug04mTmz9d7h7lStq96i4dwT7HspkkH98LYSkalH/7JZdsPGLR5VJeO+APrj5/nujW1KtogFPvZzjdHKG1w/yl9tYvklkgWYmuir2Gz1VFut74iv1EqZDFrnK6JWOLDy2ZcfJVMpM84JEK1IvoO3xiCa61DmuqOvKSD2hlI/bFlb5cCUt9NG6Szldhnrdv6E1wxvNBUbX6e45prWgcsZByNdqf7ZlT0lNHxpd0/ZXjfltlUQk/JNcDYHzDymvnFD2C0ybFERfE7ZPBqG6xYW2G8IC0our84e4iCEreipq3vyPYLVw12t5Iw1WhnjCuub1ZbUMNOcBsGDKDNcpANcPDm4UHu4j5MkRpPqlMnEdJSCHJ5JRteuMsFqybdrKAdsBd/XbGU3BV7efWuJoS+S+h97YXdfGjnLhEF8QjF1Vu59NpdgMgwBhJooMTE0qQcCghKa3QqeBi/FjD+VgCq5CQGbQKrv5fJirLDbAeDhbLbygASfCUiKLbl8FgYaTODIcej5ZUhNvHQAlg8FOwwu/4V+x+mB7Zdv11nFZiae6zMrjcuuyQ07vbWFqZ7gI+5A1nMGKl0z3hdMl2bimftQ3nikU1Hc8LmFwTpcCdzMBLqcL+H6kjb1GFuiJ7R4eUm3BEocpMz82+02yjHN9NETPPHREQB/5Pwn1cmxdiFQrk9gimTzED1Fgr2Op2j2HikmRrKqHMNxrohU5hsDWX9p9e+ZQDFnOTzmY3XEyoEPEFznAAYorB/OYvn/56HvouerOg2IP1SN99yHhu2bL4TOLJPOTPLsJQXBJ0XxKXaDSMF7GxGU7Bsc8JQvbCniwHpAWfOMfVlTjibTLXMesrNBUNwJZFdNE8kRMJE7Bl7iInPj2QYOJH3/SNq2SF9AjxMpnBMMflMupG4V54OTmM9cTpRhWkrphE6TK6fY53aPJ1thvbMB3XloPjtN94zMNlo0akXvkDJ3aQSEn8wpYEq4QHiVIRyrIjDzTcuLTY+T8ersslq2Gl8oCDh8MVJV1/SQhwGBGxsfoDhx4otJ9dLlForUFTypsBxXMUlnpIKtpt7i7z7x5cu1ze+DcB8wOeWMiS/4jr25JGsj60ilDNm58fidPwgJ74vyxjIUgoBG2oZ46Ql2Vz8sexIpxfdtH38LhQJPKOO/4+OqwA7UMwwN9j2ewGnxiq1SupkpBpUaZAIj+6mnSW7SuC+AF/kzlMI305gwWRPJu2cqogcPNz36nmYFts1c1Phke3lSpvyK3bRNV7VLrr2u/Q2xJ85MBN3jImseZ0w0iIqAyC1IZPI589oxVp4/Je1roUs4w/8ON/tqrcBWTllfhHKmnltM6QvCzbV5WcOW8VgYUmPtLR7K+5aXTmAlnS0QdmyIsZKVQOlBqV9zRm3TcThns8BHMkHvMxOL5MBKGpM98/00eHiMGMzK4SSvBnv1Fizl/I6ialz98UqbxMprCTdgFUIZBCxsTSaGmXIFQARsBWF38JYbToJNX2zEisUoKOJk6pbrMa9OFNW3YmYLaQC3gpQ/0HQvIYTNlXF0T9Rspz98qTVNpX6akiUhyHxzgijZupk2e7kAVnMEZStc0AD6C7xjSXys6D+h4Cfz8vHkCMlYnV0ohBs7V0qIEj2F7auT2Vpmn3Bg7Zl57lqBOa/RRvYkd6ZrRsWZlC3vTqk1wgd4sEVVKOWpIo2LBWvHCfkVqqZBQNhFKm1Koeq3zLEN2ORgLk2q6hrC9seXBbcgpZka6Y1lJ1xH4JIQEsA5sIktCnjf91pnrZ6UnLkQe5UZ5+STvu6AjHaj0PekAKrl3I1HbRPQ/8T2knQfQEgHPyQUXgWZFyIFUGx5UAI21GrRXLGNkS6fSyUsXG62/FgFMTlgjl24Ui9+1JEm0U+4lPDN0yqzoBaAMaVybXXXZ9JrVj8aQ0Yd6Cv00kyy24wteEPAo5PchOPrB7EkeysunPa3vJRH4pmEVWWBaJJToGSJkXKrMnM/+/KTyo2yJYU5g60KTsCCkDRuAQnYE3soNUF/Lm1iZ8AYqGVwfNHgJpC5W8IYhuO0KsWeUsuF7S+7FlNYj4swX5Dyn3iy6XQ49X2lvMitQ/1q5ksKaT/2Rc1e35mcDrRIB4kQcHmSKbDl7Nfez77n5kDrs9MX5rHwdITup/XM7cV1m6X98fEgrNbazRdsklU4XQzJsWxTCaySK52ugCS9wJjTX2In5BZcWB0pYkCUmGrYlK6FpVyZF2IFjDXQNatqbVtHrAEr4SshrUtW2OwAQteMgjArvWNsyiqiKy3ilJR+n2Io1UuNN7gcZLRQ+r48HlLmJoarduFWRtqBYB3ncIzCS9Hg7WNN0g7Z1KpldYQUWlWxJgWeSkFLqM9Q02f3CcaY3GnQwqUiSMmy0V1uVfr0GmX7RA31/Tpe/h7rrzUFmaFg19qUOZJWFKsUdlxJNBkoMvD3fgfmJuHM3wNZbnKyhaiK6SjrPnA9TEOs8hYopSfav7b5cgIHan4irR4gql5h98F6NbgApt5sjOE50i2rYotDmieh6n0ju47uu7EiPfIWDP1cl0jmpgNjN0IoJImLbSmVIJcJsaanC11tzZhbWMCJc4NYWl52gJMkZvIIiNxWH2VKEQulD3kgJU7+f629adNlx3Ee+OS5911770avAAiQxEKIpChKFBeQIkVJ1G7Jo5FMyzP2jLcPMzFLTMT8gIlwzC+YsWP2cWhkjTyyaEuUZJKSrYWCKJKgSAAEARB7o9GN3t7e3/XeU/PhVGY+mXVuE3b4ko33LufUqcrKfOrJrKwqWgoURvq6Y7HGNbjZavQf+cEPYH19DU989cnh7LxaxoED+3Hy+LFhk7lqgZcvX8GdzU1iBQXve+xRnDp5HE/85ZPY29vD2uoq9vaG0218wzjPbF5bXcVsbxez2bzJh4nI7h0Mc1IK6dKg2D3Pptp7AnBL5tXtmX12rZ39dLDR+hSqnwKLwpTFDsYSNp2QopSe0lvER2kCHt5gTzcinFCMitMU8okzbIha3d7ibNktGx2rB42QAAvu+gJhp6vQTyWCQJhZtWvjJFHTzakf3D2MXgc/lGOVWmZwA9M9Bs2FdATkSYTB0wdQqz+zYOtjGuDIW3Cwot9BzEv1p9TteXjQa73P8Rfjd6p52L+NHAaRyrA0yl1yWTSKFRTsX1/FZ3/qU/jQ+96D2WyGre0d/OPf+BxefO3WcI8Ck7ov9XNfmZfte55mWGx9GnVOxxYD9ckJtwuwvLKMn/nxT+LGrdt44qtP+vbDBfiRj34In/2Pfh7b29soALa2t/FP/9m/wAsvvlwNatja40c+/mEcPnQQT3z1SZw6eRx/85d/EX/+F1/Fk998GrFSBWfOnMKv/NIv4I//5Mt46pln0UlXXVpnULwsSFvJU+JhaUzJC8npL9id9oTPYdTUkd58O1NmJkQmK3VZAZOrCCmnjrKkvKxXuoqB3T2d2VOGNOHTpzPDqjEqwPOtVMtc59pE1bxXuKqkxCrCzSgbSRl5R082kqMyJ28izbBZKVal4BtyDeokVwQxjyVJAA19SNsev78QSIVTCdk+A+Cl/rP/jsVX498RPzTo0xCJzGGa4q4fpRs5O0sUjb5iaA4sGpFDaflT302PllyQwgz7Hg3G8mMf/iA++oHvw6/9zhfw/MuvYWVpCReuXKHR33fz7OtxWLYLRO8jmMWxamfnjBitrRtLVFZlV/v3rePYsSN49oUXh0MIJgMpnU4meOhdD+KtS5fxm5/7PGZ7M8z7OS5evGxHjgHA+voqTp44jtfOvoG9vT2srCxjZWUZe3t76ETw7ne+A/v27cOz33kOs75gZXkZS0tL2N3dqwHrCibKQAQooG15AHfphg9D3Mm+G44E41lPj+0pUM1NUUAMQBc/l5qo20nUBHazeotNSGAbfqoM3ZvyEeLmg+rWaYxKMKmbDXYiwzmV5AaGNAYZM8mGqtgvTg548r+YTjRuA9sFmYKEa+rAV0o9z89ZfnCzimujsGYSKDiz8dgZu5V6je/UoXXQwdnZqmk2ARDLx3cDrTE6BVsL4A/X9Iiz6mHwGgFF0fpyGhO9DeASYl8MurSVkPZfoLkFeVY9ttFfmq4T6+gus0D3w9LtkXtFdQ+I6xl9q0tL+NB7H8G3X3oVf/r1b2K2t2fCL6VHqQA1nUywtzczl6+vR7RPRTCddpjN5nYy7KSeODybzQAU2yAOMgRUl5eGLYD7vqZd1M7tuuF49hP3HMWB9XVcuHjZTqQBhuPqT504jpdfO4vnvvsSGZur33TS4dChgzh06ADOX7gIlIJz5y/gn/xv/xSbm5tYX1/Dr/zSL+CV117HU898GyKC186+gX/8v/6f2KoHM/T9fKhLNxmO/yLg0RFWY2Hz2cy6iLdptpN4KHfK1/WJgRfT7Q7APFgpbdWiAFNgS0F4ktROciHFM+Wl5M2cvqAA1UlXgWoApol0lIrgbp/Wk3e0dU5Fg2Lt8wwsHofzYT5fH1YYjPkflIag5RfVV2JB2X1jFtfzgGrxrBw3JBAJZlhqqsJwV0jKTC6ay4XYSJrEGkyVgL5hef6AgDl3S9wMlLqyouQCiziD6ojthLjjSGCvoB46Ebqkt0vUHliOMJ2sTJzDFaVg6sIYjMIZAG0708/RyRQry1Ps7u6i72cQ+n0+n+P08Xvwk5/4KO4/fQrf/M5z+NKfPYHtnR1Mug4feOw9+NRHfhgrK8v4Z//y83jj/Hk89vC78eMf/9jgjn3tG3ji69/AfN7jwx98P9ZWV7G1tY1PfuzD2NnZxe988Y/w1qXLAASHDuzHjz7+ETz67nfi0IH9gAguX71aN/4fmn7o4H4cPnQQ5756AaUUY14oBaurK/jID/0AHnv0YayvrWJ9bQ0X3rqIgoIPvO8x7Ftfx0uvvoYf/9Qn8M53PgDpBD/1mU/jib/4S7zn0UewsryEv/zak+hLj3vPnMInHv8ojh+/B9/5znP48ye+gp2dbTzy8EM4dfIkLl2+jI985IexNJ3ii1/6Q7z6yqvmEg5stLfTpkMMxRgrK6bP4MwBY2UDwLj7bEt8KuJ43IFiVkafCiB+8IWCVNcpSxJjYJ0M7EkPXe0CUMGu14KE1DF5AcEdcI+bwIraNha+NeDSzxq7InfOMCyUy3GfDAotY+vrZ0kgYplqBRY3G0uH8O2EeGG+xEOLrR3FQMvvdUAN144wFo5TqZDiwKTPjO4hw4aCut6nC6QNqKw8GiRH+kUTu9ueoxZWr85mxvOlNKipb1kATIfC1UVTVjWn0X/4t7m1iZfOnsMPvOdh3HfyHrz6xrnKoOY4fvQI/ov/5FfQdYLLVzfw2Z//abz+5pt46jvP4zOf+Bh+9Rd+Dq+cfQPfffU13Nnawvvf8yj+y7/zt/Dy62dRSsHf/9VfwflLl/Dq2XP49Mc/iu97+CG88PKruLO5iZ/45OO4dfs2fvN3fg/71tbxt3/5F/HuB9+Bbz7zHTz8rgdx6/ZtXL9x05hM3xccPXIEKyvLuLJxDcvLS+hkOHF6aTrBz//Uj+MH3v99+ObTz+L73/cYdnd3ceXqVUyXJvjUjzyO7a0tvPLaazh27AgmXYeNjQ30/RyTyQSf/tQnsLGxgb/4yl/i3jOn8Xf+01/FjRvXcevWTfzCL/wcLl66hG899RTe//734hMf/zhefPFFbFy7hg/90A9iNtvD//HKy5VhqivSG4PiXRM4dsH5MlLdBnOxihpDR6zAu1/qzJ6CkceVQPlTFJdScLKs83oSdddBpPN1fCELvWu2GtZYHjv6FmpjozSgKiG8oYbls6keiXF9ZqulxE5mXTprrTZE7LcUIAarqwl6Re0aZ1HkoqDGEvvhu07dTVA7mUUJ7ZBAkWRmnJGfedggRPtSqksTB6sxQhuACukOAYu7kq2r6PoTr7Hr2O0NYFRSmTwY1N/Fuy7PmmtYylzQhsXW7WU0toKie2MV9POZpSAU9JjN9vClJ76CH/y+R/B3f+mv4X/6td/Apasb6AT42R/9BA7sW8f/+E/+V5QCvPeRh3DPkSN46MF34Fd/8efwp3/5dfzm538fW9s7OLBvH371F38e5y68hf/l138Tp08cxz/67/9bvOsd9+OtS5dx6vg9gAC//QdfwKWrG3jPQ+/CoYMDk/r4h38QH3jvY/if/69fw3dffhXvfOB+oBTc2drEEDsS9H2Pk8eP4eCB/fjrP/MZ/NSnfwQb16/jt/7V7+NdD96Pj334B/Hr//xz+Kunnsahg/sxO3MaN2/fwv71NRw7egRfe/JVnD13Di989yWcOnkC/9/n/hUuX76K4/ccxdEjh/HU008DKPjJz3wae3u7+Ke/9uvoOsHDDz2EBx64H089/RSO3XMMS8tL+NIffgnPP/8CTp44gf3796Pv55jN9oa4FcU5jOUOfnmMI8Y+MwCiuRqi/IPWWtIlaZ7u4+QB9M6zz2tcSjAEz6eTriqPsykLsBvriqwsvyz+CbdPXiaUribiJwFEmIOowfZkEHl2zbf1Le52k4GHnRLM9pLRFYDPDggMkSaMmB2G1NVs6CIEVm7wXE8Hd4pLFQaFBFIERoFBk8EPfZjcO6qjgYqWKzFEoL2RKV1cBpfc+PCb/7evv/G2RM3e8OnZY3GzbjinbmBVpZ+j9DP0/QzAHKXM0ZfhOwHw4utn8X9/7nfxnnc9iM/+3E9haWmC40eP4GM/+AH8+Tf+Cptb2/jRj/wwJt0EFy5fxk984nHc2drG7//Jn2J3NkM36fDYQ+/Cu95xP/7tX3wFu3u7w4nLfY+V5WUcPnQQx44cwZ985at49Y1z2Le2iuXlZVy6uoF9a6v41OMfwVPfeQ7PvfgS1tfXcOzIYbxx/gJ2drZR+vlwVLz0uPf0SVy+chXffObb+M4L38V3X3wZ8/kefuSjH8brb5zD088+i5WVJRy/5xguXrqE7e0tHDl8CPv3rePN8+chApw5cxIbG9dw69YtlDLH0SOHsLa6ijfOncPJk8fxfY+9B19+4glsbFzF3t4u9mZ7mHYdlpYmOHH8OL7+ta/hmWeegQiwurqCi5cuYnt7C7P57gBc8xnm9K/vq6wNwDR/rXcXURXE2FJea2uuAACAAElEQVT6pyfRG3sSAy8hd04BZ4j7dRYTnE6Hk6AnXVdPhe4wmXToJp25gI1m2awwjbX1u74MjHde29LXeKiejNwjGjob8nAtLIaqW3OHZxAI9dW9tmfU6+e1DiW42REAra4j/4qBrYOV3WdA1RqeGq/2zcB2/X5to6e7FCuTr+GJKOZhbNk2gHTFVwvYTLCCkf/V956+BMuJI6++oVYqp4KCIj1cI0uoj18PFCnoZfhrXFUBzcqmgTSpF42zAIBp6ef1kFGNqdR0BHgsZSh8oNdPfPNbePDe0/jpTzyOL/zZl3Hs8GGcOXECH/nA9+ND73svDu7fj8998Uu4duMGPvCeR/HU88/jxq1bmE4nQAHe/55HcOPWTZw9fx6T6QQH9q9jaWkJtzbv4MQ9R7GyvITnXnwJBT2OHzuC/etrOHf+Ak6fOo4zJ07g81/6I+zs7eLeA/twYP8+vPHmOezNdi3gvrqygjOnTuDZ55/Hb3/+96177zt9Gu984H78wR/+EXZ2t3Hinntw5PAhPPvcdzDb28WJE8fQlx5vXXwLy8tTnDx+HG+8eQ7b25uY93OcOH4Pdvf28NbFt/CeRx5BP5/j+Reex95sB5NJh5WVFWxc38Da2ioOHjiAp595Grfu3MR9h+/F4cOHcPbs69jZ2w77V/EhsmVklLO4lI6Ixd02zXO1rZhrzzpj6hy0lBV1/luXPk/oHk59sBhZHPsMNDwYrcYPZzE00nIe1MKFr2SYHANz15djXdGdtLSRJvZHxilUJgGNgoYwKgRQc4PNeW9jbhnHe2IBkTGx3Q6rIaKblVm4yw9NJjyzEB2ghrgdaLmThOowOFkPF0R2Xl89uD8jdObLA5BVBhx3zqDkdGg8LUbtcwhE75v2FbDQe7zK0be3CqqRzGYzPPnsd/Czn/oE7jt9CkcOHcLO7i6ef+VVvHHhAl56/SzOvfUWHrz3Xhw5dBBvvnVxUNhJh6XJBPefOY3LGxvY3N4amMzJEyilx8Url/HQAw9gZ3cXlzauAgKcPnkC877HW1cu413vuB/zfo5zFy5g3s9wz9HDmHQd3rxwoW7aPzRq/77BtXvq2WcB9JhOOpS+4OTxY1hdWcG58+dRyhyHD+3H+toq3rxwAQVz3Hv6FG7dvIWNaxs4sH8dhw8dwle++pfY3duBiOD0mVO4fv0arl3fwJnTp3Dt+nVc3biCvdkujhw5hNXVFZw9+/oQ+5pO8Ma5s5jNdnHs6FGsrq7ijXNnMZ/vAZOJGbPSZFZ4lbX68woYfLqQplBo7KkOr34dx6M0YD7pbFZP3yu4GVgB4dkODIOyaCpF40LVi8Lp2YjAZDG2GAhJsSgGqwgajjfkNhVnJxrn8bgTQr5fF9xCKr8BQOqKXDNyJ3N8iuOEgZyUkprYGnw0/JQ0mj2yETdpeL5v9ZN3Q8lt8QRhndbwmdDQRzR5EWOAVU+zoDj2anIu4bTnEH/V26mNQ6wvxdvoNS3khvC+13oyLQqGQ2/rMe9dJ5hUENibzXBg3zpu3L6Fz//xn2Djxg1D8bXVFSwtLWFvPh9GchFMp1PsW1/H5atX0fc9lqYTvO+RR/DmW5dweWMDn378o7h24yZu3bqN6aTD/WdO48bNm7h+4waOHn4fdnZ3cWfzDgTAux54Bza3tnD12rUaFB4EdfzYUexbX8f5ty4M/nulowcP7se8n+POndsACu6/9wxKKbh46SKm0wnOnD6Fi5cv4ebtmzhz+mGsrCzjzfNvYjYb8rPuPX0a5y+cx+3bN7Fv3zq2tjaxvb2Jfr6HRx99BNevX8Mrr76Ejz/+cWzeuYPLVy4CpceZe89ge2cbFy9eGDq0j/EbTYFhEPL0An/fda6CuozK2Y/YEfGQzKKG2b3JZHD9JtIN19JMn6i7Z8pTUGxnA1q/Zirh7pDOQOmJSR4PQaN0RLiSwRqJar7nzxpD6lHiEewhEI0WMIseAusGxfEbDfoqILKVhBiX2YlYeojnm6nB+Sygx6w84Kx9buc60jVmb1lwksGlZXI2EyhevukIMVQtttOdV+wxEh5ZQt9Qwmqtq5cV+7DN0fdhzccqT9MJ4C5DvTJzI0JYg+6M9LTgtZTBL16aTrEyXcL2zg72r6/hkx/6Idy8cwdnL1zAsSOHsX9tHWdOHMeN27ewuryM2WyOO1tb2NndxTtOn8J0OoFgSLDc3NrEwQP7MZ1O8OC99+F9jz6C3/nSlzDb28N9p07hrcuXsbW9heWlKe4/cxqXrlzB5tYm9mZ7WFtZwf71NSydOomP//CHcP3mDWxtb2E6GYLCpe9x5tQJlL7HrVu3sLa6ismkw+7uDmazPSwtLWF9bRWHDx3AR3/4h3FncxPXb1zH+toKTtxzD77xrW9iZ2cTR48eBlBw7foGZvNdHF49gGNHj+Hbzz6Dne0t3Lx5A2dOn0bXCU6cOI6PfvijeOIvnsDGtQ284/4HcOXqZdy6eROTSYcH3vEArm1s4MaN6x47MLDxESec7kPsiF09BjBVXwUqC4wLAZMxqAGUuk7BKgJjNE5SRA+f2FW9Kq6xxD7s202Dsxlzhh9W5C59F9w+NWT9U6fLde+vxuVL93PLgrtFsTAZA8eC8d/FZwp5i+boVrXss0gJv/HsnTeOBBA6Q0aASfWGVyjQewvyw4DGAIaeHdmU15r/+vvo+kalAck3tl0vF3p2dkXDKosRVs4PmobwRCG6VhvV94J3338/PvtTn8HtzU0cPnAAp4/fg9/6wpdw5fo1PP/KK7i9uYm/98u/hO+89BLWV1fxu//mj3F5YwNPPfc8PvOJj+Po4UM4++Z5fPHLX8a3nnsOf+NnfxZ//2/8Ct5x5gxeePllPPGNb2DfvnXcc+QInv3uC5jNZzh44BCOHzuKJ7/1FOb9DK+ePYvp0hT/4G/9Km7cuoWl6QRXNzYw7+eYTKpr1E1w76lTOHLkMP6zv/lZ7O7tYT6f4/e++IUhHrW1hc/+0i/h4qWLWF9bxeUrl7G5dQdnTp7E/v37cfbcG5jP9rC3t4t9+/bhZ37yp/DPfvM3cOjQQezbt46zb5zF3mwXTz3zLXz8Y4/jH/zdv4+jR47i6tUr+MKX/jWWl5Zw5swZnHvjLLa3N7Gysor77r0P5y+cx/b2VmBBOkIaGAGQriPA6iLDIvDy9wo8Ayh13aQmdGowvQKVxb0i6A3GNPR9n5TDBn9VB3OnCjGUOvom1qSzlXqfMRfE2IvAnxvdIWJc7F5Yqo3GRZQtlQZ4irEqBSE3JX2eTacXNzTfkrqFWWc1NJlh9a+bQpKx5mz5aOWlLdxiVUIxS/oL+LIY63v93l1B3X3Uis71pD7geCEAZ6LsWlcqZPFHYsLMQGPvwdheWweNTfluKnngCjBFrHPy8Ec/9j/wrIJtJdLpTJJgaTrFof37cGDfPly6uoHf/bd/jCeffRZAwa07d/DquTexvraKtZUVvPzGG3jp9dewub2N186dw2y+h4P79+PClct45Y2zePOti9je2caxI0fw9PPP4/f+7b/BrTt3sDSdYntnG08//zxu3bqF5ekUu7t7+Hb9fOvObdy4eRP71tfwV888jaeefRZnz53DlatXBxeoAyaTYbbrrUsXcenKZVzd2MClK5fx8quv4OLli7h89TLW11bx7eeew9f/6hs4+8ZZnHvzHKbTDteuX8fTzz6Nza07uHb9OnZ3dyEAnnvhOezu7WFj4yqeeuYpbG9v4fLly7h27RpOnDiBl195Cb/127+Fy5cvYmk6xWw2w1NPfwtXrl7B8tIUfd/j6ae/hcuXLmJSp/E4Y1w0ftQpoHQDcKlrV3OgBhCa1O8nmHSCSTfM6nV1Vm9aZ/i6+l3XTeozCKwUEIlbtYpMClv/Fprp85BqYd2MxpdMMkz7B0OKSs4n9/SV/Q9Y1dtsYVhNQMbPsamefg9pDShwtyrFeoqabwkulW6Jo3loPvMKn8WyR7fMQtsa4l7JsIu60bRagF0/S84VkK06aPFBsaFNXdoZQwdM94ETmKcYpMWdXFZd6lkPHbRMWyRm+NtKC21H/Y4noIL8tE/qjifyM//Nf1f8AWkmRhPrauBw0g15Tv1cx65hKnk+m2PSDQHX2WxWT6318oZlLL01qMMwpT6fzW30VyVU1tGJ1DV6ncXFho7s0Pdzp+a0LQ5QFwnzQQvUNt3NYd7Paza/tq3HfO57c/W6HAZAPx9ifMMz/cSTUnp0XYd+Plzb1faXvretVLhetmuEKi/R9+D2pb+6nKjNLu+sTF3jN+k6UmIqp3Nw8h0onIprbYLRqetF31mGtsRcKaf8tOWy6pMZngbCo/tkddGhtPjz3H0bmflLcRSPqbEn6T5tRzsPcP4P24juPACpRlllNFFWBa97mFlD3PcqlJ9AUXVOGWIANYr9dRzfUTcOeh5jAiV7ZqF7nW35/dGF1rhvAKyelzMxSFFdCdCkRLxQT61T168QYNXvLYm2enTCM8oUoRoyQSrjrPWfykTcnyZXUNvlvVDzYVAgHSwVQrdHmVfDNoTOLkQdEjRfZ1iHR7NakIC6w9+JuU/e4UDXTUKnDYIaFgJPJgKUzoLAlkleG6OAxqM4b+uim+LZZnlV+z0dwRW5lIJuUmtSBjaKiS8GdoNWoHIt53iD78XlYARp33tcqgJWZWkKdrwdjv611IiUIuEG68pqAFXlYa4Xy5oVk8DB3AVTRO//EPtQ9qUDTHFm5zuq+r0YAysMG9P1VixPmxffElwBiMDMYx8Yf0khUKKzEEGGZhIjeWRmkf5GHw3kGycXT59DgNhpvewqn+wwsVbaYTOG5CJan2e59smNyzOAtXC2s4IBzHOkjic4VHamd/ady9VcQlYrrqdhEMV6CzCdTDoLNhjiWifH0koZdmEoKEBfKH+rugy9sg+qvHhjzXTFDXrIBZI65U4Jb/DpzWxkIQHQWDwDjSt6QXUlaKubyK5KvD5sYFaCkSiYah7JADD6myuh26VQh8d8JsszsXKdSdmSF4tBUUwKQoyT4lzkQpiiAPE7AhSLSSmoFAUMQxRivrAYBuuDuQAj4Zj8KvSfCEAFfe91i7k7HvBlxg4A88S0zBVJaRI+I+Wjsj7DGVmcADEXDDGwPtiPeyE+rpeoo+Raol7LdK5lR5G56W+d7fjpeUodSriP7UPjRR6kl7rHPcNL7UsbxKlzVMZCqSChY4tfru3SChRUN1qsqaF94BOPCI+ihgzFcUCro3gmBNNhBC8eIQ2V8Qxh9NVt6ufm+uhfBwv/bB0jElw6c2nU+DpnB75uzfvXR192T2DDegEBpeZO23Y29LcueVF30hW3D+1lw7A9z2tgkM2RXazQpwpqJW7dYn1Ls3wcPAd465bo6rHMmnwpLbMao3D9hBXGAbp39Ag5S6qODTsQGvRISXWbZ5YAj0/aNHPPNSWhPrdXN9PYfZ/KoSUr9tjsGppCqH6zrjM98LZSJcNRYmnGT+x+YhGGzzyQjSE2D6jpd+obO48RnioBcdcJtZft4A5KycjAZ4MnV8FbD4s3FWfFVg7Z7Dj5jC5vCc8ucQC2f1W2PGkQxrc0CjY2VhAKLAVT3Q4rHxahm+4NW8dowNP3veKFuwxYdTVoGK00hqLxlK4GjDWAOKnxnkndQlfzXJK8yN+OLKq3ZSwFHGPiQO1gQZrcSCBrnaWxpuFcRnX7bCKCEgA5BqUHLahB2y4JJmupzLV+UgZlgNX5CC6+EZ65eV1nZfD3ztpyb5dQngFy78DhM218rzMCm0FMND/oFGlsPm1Idcxm9oChzwq8P4DqivsGiOMDhpiB2G4LcCZVLO7pLXCgcVNrQMb6ttR+cFew0wFKvP2BnY28eM8s0xH2UpSBa2xJGGgYKN1Y2SUc2kRrRptrlE0lo1EWXb/hyQiW9zAwu1yDu5Zc8gxW2l4GUIt5FUHX6aBIrFNlFLulkWpwTyGYokNdMDooT28g1NeAsu4WOrfdQvueMuLND9eKe/F68EDePncArLS1rv11oHOXOs8MwdiSAlihWFSpsTbumDyzlH+3UUKGtffcCcpeKG8w6nH90BHrgRmRwNIYoAAFY0oOSGJstNN7OH0hpDHAFY1ASxp5+WSGGo/tp0QgawZm+tPuRxV0ihiw3qGg7GkQFCw3148Yuz5bJyWMSdfyzEZ814LoxoWvrWM45tZX1xJC5YpuCc57y6P2CQG32DvSEzbULJXMP5z1cr8pOHc0sPixZ9GziIeakn1VN1dTGVD7NYZN4AdxFM+fizOAcWaYXVLWp6KDPCIoucz9foDcaPOQgnKRzbh8TAfTxlrZ7Z06C9EgOi22LfyZdnVIvjg0v6jQmiBzY3RJiDMsZREBpGzEU5OJjCDuG9VjXrheA3uyfGa9jkGJDl91dBf7G2IkdZ97jqexYWjAXUfH1qKJEtOiYXMGJcaqAjDZfdJ0duh4t3h7tucr1U/WJgd5Y9dgg9TgN8VqRpRGlUrC80GDATBMIFfm28cFx2GnBIl1pMMFk8C5JvF+NX4DFQVoUfbm8izQbbeJ4VSGBWLRwYUku8on2ZiLCHav3D0KNlJZqO4XNkzjsxuv7Eb7fiSoruUryEj6HsxAmVXFT0FRGZzMKyA2LT5wBfAt3i6fPfQYqrp+7GmYrgh/bKlVdkdF4g9Tjfl4OsAAYGH3UVY0FKCrLIBGSl06wtPqyjqkZlvrk/XgTL4+TocjuGwKqsMo7a6qcPcUByX7q0AF/14Zk4/uPKHPtENHiApOXe3K4gmCQHJdzR3o6Ey+mAA6KBsliIK2N6YZUi3PATXGIJiNlKJg5IHqzgypeCyHRresGIM4KGYQ3ip4BzM1uNA9+VFqyki9r9d4Z2J4pog2exe3sjOHlJFAn0ldFeODbqxSXJams+T22fHpNiBxAJomG2rZdqgEMUjucP2Okz0cqFzHjUnZdwo07hqCBhWuv5Vnkyu+CyjLzFtTwmCR2WCXgENdzowh/DE8W11ben5HOtPolw1MBO4BO7klNNOYcGFa5nN38Wjx87C/FLlMghqLqikFthd8CTtTKvp3Sr3hLp6+wpS/jUZqjD6drkZkm5HoLB4xKA20I3SM96QzP+3xYkBhRsRiYoHqSEdMazhFSIXpLqO6Q5qmYBMNJBt1GU0m0E3q/JwVzpliV0ZB1w9NRRhIzLoqaPUm2/pewZcMqVXOwg+1ekaFd/Ax14+YlMcMAQ2c+TbDypLUyHWGj4mNDy5MeHzyxcGAY4emWwpOPGEiMuQv2QxgGbEoL5PrC6hrOehAHwBXZZlcG5UxDUDB9SMbiLsjlPieyjPmAndzFTR0sHaGTZyK9lSX/Jn1oIKVDlB2fYnP53aIDurwFAq7j7TKhRvb4y4ly6+E0EbuoOm8+C4NTRBa2dJEF9v6zFcYAci145mvLjyKO8J8GJJYoZGyfjY3EMaUdCF2MGJRj4LAigKQ0hFQcH0oBYNBywOPfrX5510xsFLKq0tuLKdKmaUFyb2MHIuSwjUqbpFhQBy+5zV0oa/IdfJteZ0DCb1XuUeXkD+1a8bEquaMm5mTun58sg//Dds9a1pARdHCdYfH3JpzB6FudfQaufYCctsMrED/SmyQ8bsR2wjGBrvWQgKmy74zqklZ+NBZWDwqAlBxOzHga108tjUDLKpw6BPEWFUxGyTvyOya2BXTQfTWbP66I9FZzhcoEZmkomQAJCUTO+k6x7vjRAIPY8xnyxDD4pkP7XRlSAGEiEVYToVoBzlSdrqbpVFAVl5vEPvVtjsEC5xcOwUxPX9Ov9dV79IBUj1Zc4EqkOisn7uALgtd9R8VX9vqLFIv4Bk4V6aUY2UxutwdaP4Or56ucVeIZ9NUMYetgLILQ+ZudRQaYGIb4vl93AeulNZsGYLlKjM9qo1PQQLP0ALgBFB2/XSmNSSYBiig6qQz8dhdHQMY25QQlU3ZEWS8aR2MxXs7XQuV5yq46DO6VDklJBDSbXG5elw2un5qpHHw5hcFroP7F086CozXmBXFcFEQQVSfTfJC7AdmQpJk3wApg6jaM3k1emhKoWuGHyS6nToghr6kuDK5OyrzqTKRItQxhYyR3LkhybRUgKJFtdox5IO7dcCUFQoepTd2Ev3aBGAZtNhFBVPXGnfohuC+C0dHCbdQzsIfKt55ecWNx+BXRxOaEjTA0usMrIf7NfGwTR3QDk3KytPF5NYxkxmOTUOSp5bjzw97tmuNgtuB6AqnwK8qnCl+D5vd6wywnOX5LG2hstW94HQH/12HyLi8h+qBsZcnsbIb6BM6xGZsR4q40FfbpqTWxrH6fI778ymddlCCGqcwyNEsralazatSZiWaZ0X5SMQggnGLtzZuBOj5UnoCuFqA701PTErrUYhZBrfNbTPMN4yc6Ax630lMnwgndDeaLqGvkMqS9KV9lwYj91gLpqLB777YFDuso9XNGxo0mfC6Pj9EM1YtrpMqPr86/DapQ1EpKPp9ge/FTYboW8qqq0SuRQdIL0HY0om7WAQ+PBpbTIanT4OnwDQVdmyjEC3hpM1BNtF59Bi6mUIIPKvhhE5ht6nw5AL9Vhx8woZr9VmdDS7FjEpnnaICsRoR0FTlsxgZsShNIQlgWahvuJyR956nFCm+ykyZTTFji1BfMCQgsmF3Nth4uxk8OrY2VXyqAjPJYu5pdfHsGkXIqBeu/8UXFosnf6oLqnUbA4FcX2dlxWJVHoNVH0OTo5NLGBhVoTJ1EoJ31XC4s/oQ2/EBu9AEgcQ6kuqMvdipc9vTL0u4lyYgk2aQmtWypsMOAkPvaravoZ2QsDV4SU9geuiuTJ58p6URNDpyJAAASjeAps/1jAhB3Rt9zgQGMM4iiS3Re53usTCXuIyk0CwVC5JcQGdDDNLBHui9syTfqM3LLwTqqnTKXPT+fmSZE8i9i8wWNrBwbMTjG9lABJ7IyYDl4BNypoonEms/e8CW2S6xV9YJ/j3JjYE+fleUlDcsw9tek047NiRih4V5L6jtZEocJgAZsagO0WCr4C/VmMUHdJ146ogZOcPyZS4ta3HQ4DWL6koV+KYB7laXIE/VJ2W1AwkkWUu0D9YFdu0AnQwotARIXe3suo0w4cI9z7/HwdGYZOF+J52x+1sUmE6mE+uMTuk0yK1QCkju33C9z2xRXaDHnptgNE1Ko3U8urErjkh6QrlCIKH2pUqiwBS1rL71uI4yk1L0QZScSIbAEo8+Pws9ujIcU2MgjsFRHbudNelvClY2mUBun5pXWLaBOsnRUYdnFzD7TkQv/Ch1/euLwH0lQwEnbZa+DwoUc7piQmKBt9UAopRgjI1aN64b//V4aThRWtMUiM0YoFfXDSSfqKgJ0JyEuqlQWVb3TkJagrJaBipjNtCcKiZpgxJyEN6BynO1UHQG3HWBs6xcSRENiXVTsn2WoA8Sm+zASbo9fPb2s1tZJLIjhpc4pNP34lfk2FWmKSPeJqbTqe6IUIXYua8dAsc02sXeZTSAAYahKQEVs4/g5sE7VX9TBS1GBmhZAtNowJMEq1SdRbnrZ2EsGa7ncqJtu5nZ8fPMyqzqirRu+MPvrCTsytEsaCkpaM0uYQR1bbPGxUzBhY1SlcsTZy3eYw0rdZUOgZKtDPDvbBYSpW4JpO3poytjKqEA27M4yUXJIBVVkmeKxlyIxhURQdfB0hQMHJJOBLUPATwx1hv1rg4+AbjYvRPbE0sZR+sS8vdet1oyMam4i4KEevc+YJkJqxuIaFuF3UDAwgClxMGWYk7WZ9y+QvUoHhENdeZO8hqQ9FpPI9tsmzfmhbZwO+a5yMCwYoBdHbYS9k7y0pj3ReAKhF94YWseGfyawgIQDGkBfe8KaIN0TPakIJnv5EmdN1S1CiqMKgWlY6YopgilysCD4joKc6ck0QYaDmcSgC28VsBSl09P127yqFQyym7h8o+AxY61aiHHNXw0tAXGwc30NISwyL1X911n+Ty4q/LgOrrbRswryCh8eZeXWBv0wjDThhKZjQGI0/OcC2VMn/o5M8y2Z7m84WE2eHcUQBfadkbZlYISpfVwXElFpoyLWVpgLSNxwnDmAlzHInrw8jgChmonHvusAyC7fGgB1Db7467T8b/QtzzYK3aYGJ0sRFhzF523BcrNZFZYMOxeMZ1Op8HV6+h9CIaRe2NB8/q7BAZVO3wIStGsnFULOvTbKKIsoU5TxrjR4JKWPhTieFUlEk4nsViXq2HpUScEhepLSzZoiqinjjfG4ShYfytB2PxbIYAy94oZFWJZbFTmhlcTsgMnxIFg+NXnsQoA3wSqup19rUfvibW+VIbypmzGVmNTnDRJo3k1lEF5Yp9aAmM1kGKGQUq8iGOxyzdYWDUc3VcsMhyx352dGYDa4BHZjUpFiuZMMZd29R6qK7bOL5/76PlUJczGOqtyWXifDoV3iOf+8b5alnZSLFLlSp77gWKGbKd88IWvlKC+65ThKONLmffKqoozWd500ZQwjUUsOzea9FshfQgaX9zjSRGMVlGG66eTSUeGgiBsNcTBbouPZJSFzO5zxQMzRiZghRTeWborc8GwayevaDcjFJ3pKkAP26JEBavfi/hUdURJysWh+tkIEPIPCm1QpsrR2218mpCyyJhQiQEket0MsA8JsDlRlXch9RGuglcX42Eec/M8J3MaON5UYM/taY1o2KWiLm0aDDmyRp4lc/9UCWvWWHUJx+m+zZDKIlX0gUITfMM2xFVG0sUYGE//+8y22HdctgchFrgvBKqdzux1CawQg+gBTBs4proK7QNVnJF5HUgvFLCIQQ1MJIYdjGHZzJ/aJj2/dogCKrfbGRSDk4TvUw97XROR5Yt9+CjpS1KQQoBs/YJUqN+bVwtNJ5NpmG50pVMaww+Do3YFnOqtQWfuovvn/3gENrQXQSl1gUrJihifaV08ATqbsKLRrOZe6Hoslx2NSDS7qYXrVHpziKWUGusiRNbfU7yJY0ClV+YCeFwIppTZUIzt0YyTpyL4LKfKQ91VC+b3ccF3TOzsMe91Dea8AjezQWqf+ySNco7N1mR9dYYSFd48+MAOvf2ajzQAQB3lO0qcDEDOu2+6YSRv0g2htPUR14YmpWBCz5rY5HmpG0sys5KGVfkg7CBgR4F15NrW+vNg46BazB3PrjWzXvGRy0hEx/IlN13gMndwGvbVsnuDuxhUwR6T37A3pU0KfevaaxhhkYbCPWcX03v35Ep67rSrW/raNsbJqKw2cdCyNwWaPxO39SoJ2JiKC1XMDgLVVpQeFq8yPklU1EbiUg9/jewg1NFQEL4Xj3aUfcwA653ddQ5MHgugA9Yrm7KYVF9ndgpCXpmBtbBSSwgcG4AId7yPFMwcOaeLNykECvp5P2xXjeG7vu+dnZoAU2yFZvi8g4hZJUXO+sFtiu6B9qmjhg9K1H5jKaWNXUHC32ZEN9bnLMl/c5bvcSUvwieXYKzK9ypLWyMnVhXX9CUwSPcEoNI+1P+mAUgrH/alsq7wAcfbTt1qTDOBVKqfDQDF66n3x2XoXiFNME1dAH1S0I2UAqCmaNzKCA63q5agsWS2Y3rWdIiRxAWReqPPuFGB5FLRBpEAG0XCGG7IMAL0rtop6BxmG03ohYSgt2kqAzWK6TKAIpqtzuwppjMApW6jQQYdZgCLGXwZiUlZbKjneBGJhBQaiLtCstvDzQezN3j8juN/tvd8ZVS6jq/Qex1Gcha0WP9GA4mAtJhVsZ7wCN7cQ/3i/e/AbcYCpIA6gRDvUaVlUnwl6BfcKAxpaWB1I0/xJ/G9sTivio/0ikAV+21gUWL9q+v3JPW9sSo1VgqiG6MKaECsKsi6mMzCQID43sCzNj6kUhRNuRCSCyzON9KF9MZt0b0zU1kI6ZqWoeOWAXQCo0SQ7U4JvxVMNW40LIHp/cm1Uu761cCz3lrghpyCg0WC2iBsMVzKMBOIfpiBYwrIohKEtROW1yPeEIguHBVjS2Zser9R0mJAYDEwTamosQMh14Vn09jdawLofR+mmyN1d7ag1fR96j3Yyp1VeH/zxP7iltSDu6f76lt8qhqEu3rkrvCJK8yiVPGS0jevlDnoYzi7CDRSBYDiiQTP9fNdLVRevEyIDGpUsQs0bYU1kI3I2+Nsdiw2xW7oREGK6sj38uSHAYO1cXxpS3SCSpDlkE9Xwtcug9QvwXOh7wnkQx2Ky5+3f7EzMbmOSoghAUxs3OC6aL+VWA/vo5iYoThFm7ykl6ZkuE4N/4/INtUtRxRYPFdI4yje+7aCnjFNaSQ/CHWrYR7EucGlOpKlDGknSrasodUAurhPVtgfxwZffb7n0FiaAu2PpcsTdCYssqjep1jDVsswt0oZFAA6LQh+bXIPDFgNpIordG2HxXVUrtR+60bdNFHZlG5N3df4FO20oS6DdoUalm2nwu6+DgSjyBRfMvJeYSaffBKUmUBbDdp/1od7JYwxW5kqLyfcOX2hlN6AkTm5xrksD8oYnackdB3o4BNek+jLnPL2xbzzp86uOfBRfxIKuIHGyZwsT4Ze1dHAfpDdPn9pcufw/ASkVE97VojzkkSVQNSBhzMFvK68Q8XIq44jenIVg3aha0ZvFVOBUSWcitBeTPBYk3RtDhJASzmI3tmoZkIiWhEqWGg7ldp1HcIaMVfMBOnkftqWxUCY0dOLlF147EbRu4dtUwMHJUtRsO2gewKnQrNsSudLJaAFzpSoQztnUt4WVzJLHyiJnerkArE6T43wgP6wMZ5vZc2MU5Wdc3xyp9sARJ8j6LSqKHS9w0Np71IDMQNnN89ByeVGIE7MwOeOqe4EBDbIIupKqLuCJLGkiQKTBs+FtkaCWIDd9njjNsAz0QUD2AFxf3YXs7vxbjLsRnnir2WWS2yHanmndiiE8drSwnE+7Sdnpjwb2JFsIiMqqSsJrOiroOMgD0wNt7qTzeaxaMGRgTC7g4HdBPWV4ah673wJ+SFeWmUEqpG9K2tc7V9LyKCmFVU3sgjFkaA9UCmxVEwo0YWpkUF3v2gJgc5mcgPrCMpbswDKpBTYPLNb3ax+7odrRPdPNzZkxlcCSZAgj2IicIG73HjnCU1k1AXPQyyqTUkwttX7hoZssHd158aUgV/E01tXhJkh4EH7rMzOlAJoMXgykAEILF4kVyjVPX6gaECMKTGTUFbVdfXkZmdVdiKyKAOhswcox6tNZXAwMIBmFsKzgOwh1HZJruNI1/hOE21QO/Sz1YVYlUKT+Ck7XE5hmw4S99lGrrNta1wYK7zbvLdogxsOnkPqzjJxkLPUJm43N47CI/qMqTbYQNBApsaZAGuYpVERNR+e2QVjHAJ3vblstQlh5OR0fXMdC/zEGvYTybiD5AwFiTUhuWjKhIxFFYAW9Qb2UigtwH4vo8/30SwpY6C0PFJQYFVhryf5Wi7XAEp93QnWXMBSQaoul2HF5Y2zPW0hXMBaZSN3jlOYQfAavGBczu99f7SYD90clmE/lZHvK9NLgBtHXB+WS22f56g72ylUVzvWHUNoYlJBSQ8+CW5grbOzLG4T5V6B4ln6OYcBAAOoQrFDTVo1N5VdwuAyJSAjm4w5gwT4Wk/ur5HPojZlesmuqttirod2ubHnVF+17QLUrKYIeOmcCer22MMjuzOPvMoQw1I4sx0EVL9J8T0ng9gQtcrYhY7ApTM/3I5rEoEeB0+aHFW0Y7dxKEvnAgZg83MPI6/14LR0DkbDlsgarNbZMz9oo68xKj1yPuymCU3i8ziK7QVOihCqojOq4i6nKwgxxOIpEJoaobJSt29wTefG7pBGKBswlJzkCKgpowO4fa2Wxn1Hxgjk/k0KRnGnTnJqYisbDfJyDWIXiqXWSHheDXJKXc0AClwYeHlqhC7gd/YkmNb1sQ5efAgIoMOtbkLpbE0BDiYPBqs4zc+hEaciQZ5Q4IC5T2FShuQhFkOO3Zp3IG22GYLEpNAg59ICSPjsAOzdpA2R1u6YN6iG5/IzCgUmqt/Fm3xHU50I82pMbVSGQDfu46OYDKyMT4r5rrwLqbsKEvDHc7tK/VtjZhoAD8paKyqFd2odtkUOZ5pRhrYpSAUiYlqwwzR6+y2cAk2zbJqVHoLhQAW/4YPNrOhIIwmwCgGVMjIO8BNwKWD1BFI+EzmvuzfUU7bRh/utKzACUCODCetmE7cid4jZEbM0Nzj/a3HKzLDsYZKMxQEuujQqO4YiNiaHtLD9Md8vyoD8+DhmUh1974DlB/aGGTRmURagT0mmpNe+PM3b4TGa6P4IvPHs1YRy+frAsPQ6BqQIVuoWdsWf5YvT3U5LlavHkcgjSXWyhjPt1ZCNa3PDrOKL5SDmBTXxRlNn1hCmXoKp9rpt7eaZdsO3GtQTbrSOgkMjiVU6VbcH05pEZSnV9WMlKPpMzTnq4NsXW+/SZwt5KINTkBkASiqAabqGnrzT62xfcP/0n9Y/PUOznqmdWg2deWn3fSokbAKpohvkeRB9cEfnFDvTMx+VTVZWmjc+owCCZvKbeHjQSMrHxqMHY8RJAiU1wsTMR3fxZIMIVy04sdIy2/BnqaNMbdGq8LlaZLh8VqMIDITEAGk4tWhKx8k5UCEE2bUcX1guEagAanPrDkUFToangzUDLN1i8U6VsZPe2E4grghArIvqprM/xhaXYZhxp37xgSG65hwYd41LGr7AlXObbom/6SINsEx8JJYQ5DftREGKJ9TVP/emF7Av78oVUFlH9rD8Q7U/Vlh3OtWJLqPSNWbfeTvMFVLwUDYHZVHGPHzmzHOnKlBRXlVf3CXk2JRQMFljIVrJ7AZSEr2BUeTIyigjiPGJ2fYXDqg6U+ltyvEdYr7MRop/DjEeu95jMLq6wGfpkiHpd3RN3Ao43TMSk7D3jdIjMiSVrytQKMSZgure8P3g9g1XTOpp4ppDlVmWuoLGmhL7swNV6zeczmCMGrHOhE9xOxdyBQECJZNVdLuksOgkfG6YlDJ75H8SkkLVlEqsUqh36Kxq3AacHKciV9Dm4ymmXZpCXQAy+sD0MnCOQGUL6O1o+gpY8UGpEfDZEsX3saDuWONAe1FpI2MHkoJ3BaVpNDGzAlsIXajTPceqAgEfYY8YowpH2pO7xgalmxUGJRVvDjdTNw60nvPuBKuK0mUGS94gr+cTgEAAV4ptTa1i7KTuL15SBwA1+RA2olsbZFLjOuoCiZ8hOaK7sH52F1G/40NjlRFkA0VTM2J09eYxpqV/mP2JXS+WnmCzeenkcHX/JhSnirOBzsgclH1G0EGKWaTXP5vJKNOy+/KOCvX66tkHcOHCa5+jgmcIcCtYCQEZuaIMgACZXrGincWVoDkIMc4CIiTcR6UCVLHyOEQT5RFd4fRVqyOCkO7kRSsDrjf3FbBKLoViIMwooG4HP6xAz3GwoGmoeHBN4nCr+WnEWYMmlMSsSim2eBo1P8mOXq9H5hRy/wwgKFbE7isrGczgGag0qK2y8M5SULG8tARU8bNu5zJvdvXU2NqwXGl43+lZHyQPN17XgsbN6MjYRNlEPCykE4mdx04cDVJx65YYjGeGpAeh5CF8zAUyfUn1t8Ew9A2xO6q/gVJX41C1vgZSzK4q0DkbczCeJHCyzPamHqQP5t6nwYzdHpodFN0MIMlIkt5z9npgfiQ4vdxOjaY6eMwxpikEcK2dxetFhS4qoV6u8whsKi7XVr/MyAP1aO77kt64fsTNCPIrzIiLBt3ZgSwSBJcVjjvTFFZ/42dmVKvPcaT3hoWmBsc3N159xWIUlo3e/keJl+7kOqPiyQ6mokGJoLOVhdiUTg4Mdeqtc6kbtREVSH1XT2J25JsPt5NLEQBK+2R4W6qwO4lX6GsyoWRHdX2qAWsXd03Pxv50OTgTaS9PMRQZU7Q4ivPydzUy7vccvFc2xyyKZ/cmFZy0rdM0M8gTCQbe1L4h9uXti/GqaEhB/8Tz/5q5USuP+5f0iZ9vhKY0AM7/tBz/TuzemKCdvBSlKRw0t1goIjYEt1RVLvoLJZfPhYRBO7E3fhAF2t/eDiCRjQvKkDgK0JQyxafGlVVnAuPKeJt+TAyKGVvcgE6tUBW+jkR9ep4IYIme3BfD9YVc1LB3lDiYWva8GkWIudWSi65xUxCUuiB4+G3I11QXcpAXudewvKaabApiUeb6pZSJEAvUzcQMhF1ZB5YB20KHZ8Vc/oLJpLPv2Fg7HYFHACuAExmw540xsDiA8ogfYVMHhai2TZhe3R7xqzwITqxHuhAkZxdwUt3cJlWBQEkNm5NDra3iOzUALJu4JAYlDjDGTJgtCutzvY4cBgYEIbfLltQYUyrGrkxu9Fz+ngNVLU8gHcrGQ+zK9tMKPah/a5Cl6KOKszSTTUtuGETjOJz/W0aeSnoEt1l91rSQUbQ0jlwi6oTB+Oko+lApKkNAoJViX8UXGzNdLpU5DYIoBgQKiJw9bKfiwGffPH6jyt2hSBmSwwmx43ayxcCIhVn6ep2HvKC1MiXo43Il3+I2nobM6QkG0JWt8XkePnUvZhA6ozq0rQvsQ3Ogus7jOqwUxnrNgGPAWWjNJzMd3ruL43rxGLRiwJPNJRhork993wWFIYAl9zWnJWhi50TGZgCdkYtIA9px6xoCguAJsGPjNsAAJmwHXnuwogaWRD/pR839ymzK3W9asqP/BDU/C8GWSgAt801hgMRYwMt/6NJC96sLqJ8iEWnXQ7q+jcGO61UHYplKOOwiIZnWfrA1kbUtAkytIyjgjFIsOi/8WOqkQCHhLWQDaf5WYzdD1GUDwaXQ3q3GQQ0TfwwMQdj/1zI7VXY/16vrWJnVCN0V62i5kTIqnQywEXgy/Nb3Lmgta55OnQE0vsUTwSNdKllZSQMNVNMMl7pCACZd1wTR2RitT/R+OCvQa9W9dvGnFIlqKFaWhLud3qeAViGrymxcv9dj42w0NTYEAiWf3Zwk1892VFBWBWdQuiWMgmp7IrPX0w2jNcI2o12szo3cLUajxkNxx8L657ZiNljG+9AHWEeqQv8pVE8PsrAb4QyFuzmjTLFr6hKbZumOyq6gieojXUjPyYPkeKxqRAYEzCr3aUNp3T8JnWtLZpjKuR9oYGHS0ex2BZxCiqGXJJRGGVa82zhnyxzASGVGBMiw51UHoBcL/g/lYAhSWKZ9SQjOdHioa6+7g6rdDUQpjLK96R4ngDILdifRdk4oqd48ta2TGGnUVEXlTufZsXCgbQAg6mxY08K1Ekr3G92r8RHNXP/AJlR7qyH1/EMCw1AHB5Ncd2NUnXhg2eJUaMEKYtvUcKIns6dhRpSZSQmxLG2zmXbayVTDIu6C62BbQruEKYn113CBgVVibwDJ1WyIXSjx71Nvxdwn7+jSfhU+5jWg+ru6fRZYL6E05xv1uexGZt4ylnOVgZ1ZDLNH1q0YJ/VnTVmRIB5UVsHYIzRBHWyYcbRkV6sw7aNlBlmQzAQa95BGKO2k0PVCY0/XobPtiOtV6soE4Rb6DQ4wpQC9nT3sIKI9Co4t+T0hnaIG+dVubWZV4zoqaQb0KluVUQaTgSl0IbFxUrO0AWcM3AtaR45n6asbYQZRK1UzxdiJSZw6IPR7R1u1pdGVlSSMtlLX+enZimVY68ezmQ5SXWVcMU3B3GEoWDlgdeGUHUprSECdQSKkIkisszC6EDtn3fLrQLJI3gec5TJ4sfHqtsX8SFdZpyHswOgMvhp8BChlRZHdKED1ClIEWuFetoeGIEUqFNzlEQLmNqq3E5koUX5ZV6c8eobOsocKUvG2ADNNG0TGxXTBNsuP66fCrYU60VIVAF1zFZ6hI3se0UUPhVWQ64MiWafRGkdfnifoJn3NQ1WAc45aes6p8lGI1wBabYJRt0qSW+/xqUGmGWC6zpkGIBF0gtGIf1fY+Ouv4ortp0xX+fBsUu6cCijCSbu5S1S8Yy2k+vq2LbCDHnxbYo4zecKnpiDYnlrGeJxV+cnLKjeEshwMeETM7SwWGnFmVSJQszaWdC8rc9M3rhs2W056Ioj/2Ee3gVwfGgZ5BGB0EkBssHi9dBA1P0ABCmG/zAWv8V94NwdrI7nGYzCJynpNbxkTwk6oPvEF2AZ+PuXsaO3Cs1kzYgbWC8VvMuQvoda2LlAVzGWuTIhZR5KNEEciVwLoqgEN7h5sBm94oBmtsSHtRKtsnb2jgYcXqwEhlsTpEvqdbeJHtxn75Lr22j4hd1AqMHvH6jUD0xju58BycKtGFMf2aiLXaCgjXifVjWaKHg/K1H7hm9iQxLbHdpmTjiQVDS6a6HS85j7RLJ4yKm2jxOTPJlZFYKUgbzsxmB5XGYwZXlJjFFjWOh/qwEH5sM60vukIyMxmePCgZ7YMDyG43jVEqFhXBJfPSIN/ziEWgUQvCc6iBk++mL6y75BjWkFm42gddDJ7CWOETMJ1HEOk3VKNsChuFM3Dgl8o8WEew2CfLCKiOYG1UENcRUb+TKLxzgXZB4WoPRxkQAeBHZEtxYPqMikkCGJ/uo+V+ZRujFKqC2j5WlJHIZ0cKA2jGkTiymFOpwwMRPrq6pWCUmf4FDGYRfk6sjizGY5ir5LinQU8huDGCL4OcWDQ711Xhi/14E/uGasjxSJNLlRPZVtN4oO4keQTiiS1w05ShqTdFfLiY7FJFEvsTAxrOMgUAaj0qRFQQb9GQwtGQpcFdiMlxpWUyWj/uT/mRhjYWbq3+JmGMcZqppdMvh1Ivd/SAFMVxcmW6rBUr6APsbDsIfjMsX9fwhu32TG2b/ZM7Nt11tdPNrlWyrySzLQS07EuzOe6mbdQpx4L+8Ym4Bp0F2ptBQhmOx6rqWpesmE4DHBmbciw73SkKvZPlbKYS1Uq2HbOjJLrVjDMHvaeATo8XlCd+lIXKPtSH0VQrcdwOk5JbizJ0Tax9k7VnVx1w0M7dh7D8VK8zYl3Ioy0+oGwKn8CN5sxFGsGkx6m2rxASoqHBMLx8YUrTgbKlF58JOdBj9MvVGa8LbEvn3H2xQuZDeQgxkQYrPw3YlQ2WCXWPsIMJP1Xzz6Mv7cOw9AfJVzjQEVApvoPHcQcqPQ6Z1eRlaacdRiKIPZnpjFC3xf6QTW314RmsxeMIhEzSC4g7wTcBSlmFharL5AhzzINLCzvxnMw8Kkuoa0VNIXTJM0kEaLJiZsGZqr3KuQokPEhlzxKDX6053YUfqpU2lK3K7bjiCrD8k31HQD6nvbbosLoDIrgwgD9wBbmlMmr6Qjem1Z3X3xcAlNiW1Yl9YmH6B4E16Ya3nTSmW1pBjMrpi1S1/YTw4DeQ4F8YzXKJjHMHWjKgA0wqigd9BBo0hHfZZRdhsAckl6ppNTVs/YSa5robKD4tsQ8qdCNgBWnZAhdx7pqM2tCkwCJMRkpqnJwwBhbTlK8P6ydeaYbaQEzrC7KmgJ7gLucgxy1YtX1KyRYSt61tlDSVVokF9xPrVtfyL70PUVIvLEZZcjBpEGv6BF8DGokV4ZcrbkOJJwe0pnwYPlWCbPDS3+aKtoIBfn0wAZ3AbkOQu1jlyJOq3oQnUYFjd+YEZTGGLTm5mZCanqCP8cTy4qfYlID7DLxhNaipzcasPnyaFWCgEkyMCrTIakThASU6lWqG8jbonjqu+/uwEMhTzY40xi+0xmyhgbDPPB6MrYbrQKB6poea886qOkmw1HpmRUoE4XPCPLsKcUqXSGF3EPvOOHroADTtk+VVQ99UFDSfdYBhNwqHZnH3MU8IZQBR+uslZTUB+r+crzWGuRE0oBBmW6r5zAEYGbC2+MwONrRW/ACGS8sOVpifdw8mDjQoEN25P8YoIp917yMQRJVq7qsOuj4SFvipOfGIkuQoQR5MWVFFGpEvkCEplq5sMunCiGTLAdcmuIkUBJPDA0V17qJj+rcAw6AztiGK/SI1g4+/ayA5cLoAKB09p1hSM9efmUfPV/Af4hRhUx648IuPMVEcwG6enSYAqADuBoXwOfeDX/9MARnPYEd0issIdH34syrlBRcN7xRFzkGe4FkNCrbCoo2klKemVVL/I3tvEmsT3XBTj4WTitIWxgLpSCA5KRlKGB1PFo7wwmGTPrElFegkwqupwxaEhoXdd0YWdJXBmn/Q4MT6X1Tbzag4rgw2LFQPaISOHjqIn5PHRroj98VtoAJe8y3ZWe9WMBUHKBVp/V5I8zIWVUGLmVUSYD0biy2qi9f/GwsiRU49qQRTR09wAF2NA8OcrG+FEJ6hB95vBSJgohTv3q9x69kRGjoiudQBWZQd1XVW0KMC1Z23esjbm2jsFncUFEGxmRKowZBzJXdomGRMm8g57LKgBXATpslLCm/hpmvuaq2mD2u/fRnFAcncVXlOtHAajJwUlFjklQHAyko8fR8K0GNU3Xe8wZKcObU6fXEtMJRVqrY+lyrmyuM9wHAmfrMRoKuso5xu+k5mYAwEHEfjoFrvM51SgcB91oiM2syMYq3n/FNoaxnt08ZVjS42oYS+lTTHqrmtAMc/fMYkkqopL7hNou1I4NRiizEgachggVT5SV2mk14NC321Uqa4KIPq83sSNh63SgEI38nyBLyHT51JHdgVSV1sOsjm1S3rBMNgUVqXP15nQ6GClY7sc4+lU6GNe79YPA2n2hxJt+Vtd4YOspm9kSPhaqLrMUXDtu6vbAcKjKBTiQGfY2aer8YYJk7blbggJIDt9ytRSdOItXg8SsobVIzBx+vs/71jPW0RIba6Yub495UrgNsEG7BfkxYa1wur/w5smzJ5QpCKkQ4omsU+F2mvE9VOAswWUAAPyY1whNJWqabdjjW3XR+uLgvDlwGZDk+lXxaCV6SGUlovdVfEI7ca7XABxoG/3CdIPRlAwMdhfbTvVPvjMFY+wbVvODgNYZp6ygMvTa42oQmxuL0cAGTnVmgsSff5UFnF8lV0y2E9YGkKAW+VEhPzInOKHdrNVKNZ0jtEy2vfskunh7SqvXhsUKDyRA6s05iEDooQOGu5tiNj0Pq1rHb6weyctsL7ZSgSXeRAYDaFsYTVaQ+2IpvIJiVU7sR1B54m9kFNvcX7PJFRsZxr2YXA1Z8p5JwmgvTLx3zheUYjMQBnttjsVtQ+dQH2R4CABKTUx3ya5RhuOYF4VFZhpdkQHnACFUhfCml0O7/nprTvJrmRPDm+lg7Sm1FM+ua9AFCbiMo1uUTY9z88frEAYqrNuXOjrtTEXWTFqXDaIQ4ylm/jyzH8aLFQUrbkJDXDJ3qY3VRATKrYkUzlyj3ReuMsvVpoHrIHKii7gpEurqlMTxnr3aGnexciwkGmkZ3fm4+tptjTbzhHDUHpdAuB+p+1opoRjsf7hEGFepaT03R/1ISa4rRcZ21iM4fP9JnClQYCZQ7s3Qw56PhHdS8dq3sLHBLvetGQzrJ/cw6q+0TcolHrh8+MNuJqSDwr0lfqV+srDEmkBCfy8xGLK0k9OeeB+Oq3pa6ULIMR+qkKJhojYjEmBX93LpyYvJmndB2SKhIalxp+5lDPCyGKXfP8LDhPMJWGYjbJmbleyJxwBx1pFfREEhQAECkqzlMPTEqH9V8VlABjuIWlR4UUZao35LwQ/In/QvMyqWmYSsF1WGX00qd6wykTT0XUnBBjdNUmYRgeuooYoK+XU9kHybzIPZBCfXEYU9LIHkgeO4e72ASom6DsaxiyqnuriApWWJpY1ufaF2YVYaUBMSDHxjUwy6aoOB9cheCBksJdSD1rOpi0Rm6nderuhvUsC0ho1wA3vqFJn86o/AROC8GDjOxzDLcsq2v/WGlcat02B22VfIvzBUknea4fJSN20ioD81Wh9gwgTajibOp6DpamknDThOVG2HpgR8RM53mqJWpXUbdpsMWjBjcOczapI6tpQ9Xm1KXukOQxA3MLKcpCLWYQLzu6eQVeHY6J3zyLgvw2nm99Ugxcw87FPGDEUvRkdNX/vM+9V3HdY8dbRng3MlJcjqjZsqghqOKBDqpp/eyxfW9KoH/ICBwq3E6dSOhLmTVmLypHp9VGeIxBQ0g81o+Sdebq0dsa2LskwfMaOTtltt1BQGljqhR2L26Fs10WEwXA3jTvYWflUCG1x/y6TXtPyHQcgY6PMLRKTymArb2cSBctn2GWB31ZVt+F/c42D3UP01+WWY5BJgBoBgkE6hoX5sea9tRwuf4TKlrNGuBMV40wqRr7dNswXDMV2kvVwMs1AAfcLVjSjR2ftVpvqFdQiO0AhMiimtHa+PCKvrMk7XHW9AM277oaTkMeBoj04FO/JkQWGq4bmw3AFcHjQ2p2isD4el6bbaukQuDCxM5e+ZQAT6RpqPRa3TVO5Eedd2c3ns5WRG64hsNckxGWRx70r6fIK1IAMWwCmwtYmAVQhMl1k6ehICzSHYPeUaPuiIrr7vAfo+73DE9xNtW+1tBLRuTS87vVMAXuja4LYN0lC12QXcrQDaDkZpQ3s00X+exN1t7qr8oLS60JUzWfysD5pIa4SvxOa4j8TmR+eWXWPn6yQ7e4P5r7h8vMLuWuR3239r2KWqO0/Aczc52BQx5HsnfVvYTxMB+MI2ECFcRULF6SV8VL+4kEHKpSpSGk4nBdYw7p5f0KVFTm3evRdOygQLNV/XO5NQA3RyuS+1gt1YVzKChpI5G5/faKERK0fRkBPpMowN9DzJnk0xboNQXB9TtvQ79pV2qEfY1HwGmsN0x3WuHfdL1puCsDyXCig0qpdiGgzZbyrGTANjkMgYACRQkAAoyoGjPUzucURCzIJadSaE3RCcSEnsB21mtQyFORQmf9pfAKmo17UySgEOa8um3APWug/XxJM/oYsfj0NRrCZIbKRe892aqfW5TpI3ToAj6gKT43k6JShV6I7538qebARaAUg+0432dWQFKB0HfTFFb0ZXplcIiC00D90T4VcG1G5JkS6+M0UfDYrlUNRGThsGYUlC/EzY8dS91mhgpoOtKrtWMeyJFACq5s2mXx2EZTVwsq8Bqrk2J6qgXd0KiZCVmY+WcJacc0Q0kBuVr/FzuZtAiQV5u6EkezUoL1jNqBtU5pj2kl8BjKtqHySpG2076YP1kspIA1L6ObpC3cAfyc6hO/L2+9wngEY9B/5WCOQ2AvCh9uDAVShbA8g/hI00TKiRTAhL2EHSSI4AVyQWBvTddMfJKlaG6a5tpgZWVMTU+4c52rWDLihi8mEjZ2zA7BYN3x2UFrz6OTl48fLfrKHcrSd3MnHhXBW20WetrM29pf4WuG6g1KZpl4EJn2nhXBTdg10nORVNJUt3pBCJdHhNZZXzPW/V6YJ+uYbdcLVGNjZROGU9YgQ+vSycujbHgNruBEWzbtXVBacP17C7wCJ6STAv/NuIiUJgAurBdXJlZ9v45ZVYDyCsy7NowiRNfLcDSd03sJdKZQrL1PMeRZMwmSQlGKkoZIhSaCNrTIsCwNK40j6f6U8EhVcO5UMMIQWZtYqMYYerbMBiwDmRM4vqMLO8ad2+5DhbD0gcoV0Drsyv9DnEVXiDJUQ+XYhsM1hF5gBp3qbSnBt9MVMe01KoBPgMooVHB4SMMDsNbVU4zChF0PbhyVqClKmgMS1hh/Rah4Yi3IkmTQZafAygba8eiCBoI1htMupAy6FdOkl1myS00YxNNynQD9tOQvO4BfKSN2bSgFsHLA/DMLJ0VIdxPgESqK/mzKX6aTXXNtc9dMiT1EDpSHAaV8Az4pIrrQwIuBgqhJyfZsWtqwwEzZmISTpiG8EaPEhYw28ErOtAGFpXl07IqbqTnjsGf31wmpucGbjTIUFcGzrSYVaWL6z9tW1MQ4vupGu6gTCWwKKWp4X42FEsOErqPEhlVMIz+NIPjRlNdRuv4Dihz+EEIvjLP35NW5JGLH6izk+gpk1ytsgMmxUFHAVOUObQxkE5dS2Mm6ufrjI1TbM8Xg8XJFJw9gJ2GIO5yS5QlBaluMUDgLayoegmxIHHF6+i6ZnYOCP3WtJ0VNuheBqgxdtZqXxjdyUX2IDztwZXK4XrZZwZhaltQ2wAwUfJoyqL3qU1Z7gGkRkGixAu1H1NCswKVvadlbOxVxHK13sQgR/ImIxMto5hQaufy4Okuf/VwkmytzYnFZRnk3SX8kjLKsCT9BYBpR1WPM3oUU1CDH+HsxoSK0M+JZgcKr84hUXQrrManpMBjX/oADalrxEug2e2sJTbj0dXfuwFUhqn7IefLfUiug6c/aDA9TOMrckC3cknKoi6Yle3swCQTNMRlTsjrnR4YrQNfPqxEauV0eZBKSmgldDiGSyhPiqrDYGPxKcTrDCQIKFByZj7ie+9aCg2MxZPIEc3LiRIby89gZtckc3LWv+Oh9b0xWXijBBiJWbLOiw+wBJJBl1me9owS9Mj9Lz//zxhV72sAVa/MtuhhxuAIQEMcOsijytWYXXyFgVFIDnkAIhzgXRu4z5Shx2dE5Y3hN/1Adyj7Iv4xHaXV4irllFaSwXE1CmAJp36BKhF3vFPKdgRQX19POA4+FQToiV2B4kUQ6LbI7KZQGNxG1gGTKnCJG4jQBQOTAnRjPUnScHAT3/65uhC260RKsTf+GfKjami9RCUzl0ytqRmpYoxEFSX0FYlN+0HLZCDWuvFuBrwwWa+x06P5+woIXa2nZeGzcdoA6Lo0xhbFNLMFNWYHcRDRnD1/BuunAUt6+eqKGOBH4bLpPRstDSCcUDUWr2kHtXFupMto+poEOqeF+GHWncZDoRI4TaV5fEg6je64ljCUmfRGryY2LukBzVjLsh/pC/3gYvGlgJGBj1JUAHUDP/ONuQbBx2cmA5tS5ctN4bgx1h1x6pc34tNRismusMVmey2hKl41jgcIK3AFUm1M1YKO1YWXtpThqDHA//oMiIKV1hFAp3lfVW3q/vKF0RP+eNX1DsNsokUB9WShOvp3Ugz88rmNYUQzqXGOUQUB6pvAjMQVUELdhgs6Ky9OEljqBWJyrAGKcH1c+ZkV+iREZh+IDEhLoJgX51l14FURfI8OUhHoRp9D/+XXAEzF+tjrReERY9lsBKwvzML04dGl0089YGDVl+LBdbUzdQWl1isaGD06KhwzSRW6tkD0Jt78jcCDbSwz7fg9t10Hf65PC1bsBoYCWThj9A016J53TCzw0aDke1Knh9hDUoaYJ0P5Xo0rG9e++ZjrNJEXLxPHgBmmHuNOY495hpYKqY0RWuelC6l9n3P114XqZl1twc5iJzLbHvCkA8NhAppmWkhunM9VQmd6v/k2HwrI3GJWRjsrD+yadGTcxG6JaSowhWskKaJEpQyHJYwor8rcZx6HD5xQaK4Y6bmua1xkGK5PlCxavK+6oE/Dh852H0mKm9668TvYxHSLxDiCXgj1BfMlfkixZjebJlQWNe9LZVU+I9isJClkT2OsZwEpse2ZobrKTE3StaRXoD6hUUeMZpq4vK6F9dllkKNlwQPMVZdQfPMaYlhSDbLwmZhimdFFlwakk3055iLiHc8jdXRbvNIxB1WoaQ5a+gT+x4WpnjmOe2cyQLtvTiVZjo67Hh25Jw4AtYa2lGcouFQv2GQmXpdOCWKhTqR1b/wM33JZ3VWqPPcsid6SNIjxaE6YP4NERe6lGby4ezUwFhpkil9jsQiSZ2BmEEpizLNVCk7iI66+JwS2nRmIdTOLsH2yuA5qtMn3aBhmcsmDizYyWLic3ECtGO2bcC0Xyf5NCUYZr9A0hQGg5sVnAvUqH469E1mvvW7EjMj+2IqsmpnUBPnEPs4kLvZ5/F41klvZcBKQTYQv64BV2rLja6js1KlfNXaalbDxREcrcb7h94Qrg6LZzIJE3OXAnB6WqpWPA0UeNsSMyCWe0ijqTx3d7oFkv1nqwq2O7g/7zmsFqdNtyw44oxmAgzOTqxuh7VaFN6aafNrC9aT2ks9tgFMLyvlB1W9IrMAR1ALadaE5u176viuudIFt6bPoOx1wHMypGcTSTEeSgrrLzkMWXU0M1/cdI+CyPtKGwJWCQZwqZakEySzi012HRON4Jf2tg3tkJ5oYDaOZLc9wBqqsqgDDAScarzKdS6BAesLJuxKub23SGFhp2R0rYWS1POgX2tgg3RYvT6w1sqrc/lCL78Go8ivs1tDURqQCmA63faOAId+DPmupGg9Rg+V+bjs11sMaGEYwoZHNaUBMBlRBOqioQWeXrCNpjbkiCOXFz/w8c2TJKHzdocdbwMZtcZLkk8PsjsBO2+gGW9DmOhmkVkCJ7R0MMacfAL41TcuglIX6DJwNYtSYADjMDKmcQuUPKuXuchMvI8PRfzkXyjSO4xb01iZBiEmCRc3uK3Wr15HYdWIjDJIhbWfsJer+1ThVdQF1ztsqU5SrZNAiNi0lhHbCcWqaqJxcvXCaEzPOnFslmqNWrJwxVoUF3wX7cS8xtDLUq4x/J7ksKmHqlKWFvjgLR1vHJIeTR1OdMVKlswwqpvpGKeJjeTmKo3F0pQL/Mi0bF6xO7w+6xfEpoLOcM+pwbq8ykaKb9bnJFUMRASNxkBgBppbXMUNlRhXSJJzRanuEthe2dgVuMELZSVT5ePrIxGLMxuNanAkvI8pIkGFiiMiet4aJYEizr4ExCMLJNMEFLKFMm0UFGSmlG2T5RD0kRsI6EC5MrwBabdY6P5Axu2ewSmyK15u2cuc+S24zNDZIjF/aei6qn3sc9e7EjJHe+3fkPlMbVXYNg1pQjaBCqU9DUjIraymYOhKOcDvAGEDGfKWMPLIKf+YFzByXiQjVNIppY95jvmE92hB+Sy5gEAL95dva0bFoiCuARiEpDnhS5cLPTLKwdlPahLI8X3nv8SgFbAXFPPpZ3RMziArmI6f+6AmfBE4yFjiPKRxBYZipxGBny1TYJaKxaazOsOeOsyqRyCL9njJaln4ZZq1Z/fheVlDuwwQW8avG9wGs//hnD63Mq9vX9w5Yg01Fdp9dP62rDygl6CtPoBjstmTKn5FYYh4sBFoed5SvjTVwIx0Jr2zaKfpxt2CP39iW7LpUT82JoKBFU3CFoHBs1A2JiOLsqmEkGE495F0LjBCrW9XwxCx6sgCQSyGxib52q7pjKcbjJx8nX7WgBgHjiJ3bwXG8aBeuVGF0UAMiBlrnJ333TgUmrh8bvCopfJ2g3ctKQe5xzNYXmghJMzr2jORCqlkxsFPCbegZTgNYBAACMDvkJMbhMAv4DCBMXBhLIm1cNH5YS+Bp9Ob+0x/T5xL1JWhrZo7FDdQ0ltjUkAyqgXXv/3GK4X81fjTIidMsql5rSCTIpYy6WmaPPAAm8JK2Cv7fbIKQFqCgNtyKqaSy3+4rXx9Ofg7bINf4VUT8OMLlIDUrY1Do3ACB02IkSOKoupUnbtFWgL7rgE53e9B7tKhB8dVN7eqTBJFdmKCDCWsaAwEVhW24ulYXMiaexHCJVfZGYKDgz0tmtAyL+XQxpUDbxrIH9Fm5DRykroAklLA6Vo66CLWurqy1TxPb83o7dNpp1pzDVvszr8HTenVh2VYcWVuAJXOS6CqGiAXVU8J3Cmxx1A/veWxqxszW9xmAyoPo8x7kCg46ZkVmdpbA19w9TQuhlA5eVB8mPFLbbVwnbbL97E32YmsrDfhHD42hQiEYc8j8+f7fxp6olFGelcIh+enT+DEWZeuCg98crZPBitUl8rLUtwZgbYUHeVUBEymJ/M871T8KIH3tlqHmMa/IWcagXb1xrOxGZv7Azy+srMwkCNTV+AoZWdwXLCX/ESCM7YTARo0ALDClL/Zk7R5/Nu+SqWyx2SBRCLzIpfTcx0LjBue7xfif36euZ5vTFAcUb2sXmGEeSLMSkzzTiSfOBBHqll9aP9U1a08xqYTnhb+kL+ra2YLl4gmgpeSUBRp7qf+ZJRq48zY/iWVb1W1AaZ3AYCs08DQ7tZIu8jURRVUi/rlUPdMda1VPhmIZBxxbGLTG6zvOwfTbqX8x0EtvO9FWpsuUXWwUk9Q3PM5Y2bjC5BrlGIOxPHA6g0NXDEwO1/GBnGwgnr3NAsgLkNjV9EbYcpu065kCYDsSuBsZXW12P+O0PNeLy4uLlbWkONx77KPE6ypChdkes0yBLURPQKh9VjgdIOhqrLcxMURjirJ20NX8NWO7YWAhQ7F2MItEKLWwvlCfjW13bPxPkbug7bvQv8V1OGBiCbqtUKGuoC5aph2svWbMBvn5Nptb+5GWKQ0yIqbqzbTGxWU8XrfWA6jlsf0wcNH3o7Op2VuqjW4DBJlhxZqFz0JEqOmtWOaUZ/7yaa6R5nOjVClUAEoz/bfMnnLlx8eCEd+eopmDEXjWejtjpMCkWfXFs9chZKTay7WmxpQkVIz97hB0t+8lxOPcdSEtCq2UUFe6JXRcpNGueDG+pEuEYOgQ3B5yRWPqxtBG3W21UajkRowqWqi/t1ldF4Cez6yh1j/vCxb/RbphQeDQGbFOWU/bZFKXCc+MhV5WQHJaFxmoVoaN39b7+X5VYZM9zirX8sdAkpmlMmCVV82FcoadQaM0HlxgVqTzXZVlmLSpv5fkhnEdmW3HREhaahNWoiwoY+T3srA/eYD2509D8p0JsBY2IgRJSB/cLkV6VpXS9pDzAHU6SyjLe8OQBAowHL+2UVIkzngJ1SvkOmnZLiXhZyiAsQyTXvMe5Lw9dDCaGn8oNEL6lcWVlAzEp/LJ4IUyj0pms8QWlF3pSMUDCbcRbpTKlrVOzl4DbXXDZWDle21nCZdLfmbcRtoNhpldnLGMa0tda1x5Gb+sXeyWcldbuyWwKye9xEb4sdnKSHYGVND91Uv4Lh+e4PYDczl9cIvLYPRvTJStZWSGQw8IBl6fYfl1BFLWbhJDBDlvYwAPyhjIWfl6X+tLkRDzoMP2roMYMW+9lL+fMvkyiaY4VZOYWf92klWq/jfN8Rb+KplvrJyYoOzxpcNwYKoS5p7csGFhswmcaXXoCHfFArCICkfM6AEJ8QZdBOaDvrOgKMy2x/hpTQpI+E7rTnUOncml6aAhdg2fiC2pQ53oePpEKLeostAuGfoc/ly4reOjZzBKkjfLio0wbrGDuBVMUGUHnvb5GV3iKCv5nmQ0ypTu/koBp+IuoG2uVxlWv4CVGtCOHlBBM4EqJw6so9UFBYq7MiJuMwEXC2Fs15RmlpcYaYhPlejltHP//rlQuRnV7JmqO2T/jjrDl1NFkrjPDgOOZm/T6CXxHDmb/dCGhYDb8J0H2ilgS2gesDalEnh+jhumG2xXDT/m/uTZykjF8xOHypeUt2My4PJoaYuzPuZPaaSma5vRVOuRs+05blK/96O/4iSHK3wh8OGHc/wncMc0rsRrTY6LRkVWqrCLKIGU7npBStnMdnJfaB+P9ANPKNgruOOkn9kzEJ14oPYWKyKCX0yNHwVGPYWJmVV7PcIgXwicGYA4+TOcDyDU5gAyCQ7E+zWGHMR1nndlSHYcCEKyrTw4FHjumJZSsKDxC14Ni0V7u+mSXePKNs2Di4lYPFZiDFqFaIrFd437sKob7UgQ+EdqDD1j4HLQDQSbDcO62sEk7FiuYGHFwktX1XubrU6UfR3aUvz3WGCdJEBUUq1WTgS0OmtiZ61yx0ojrGRxZIzzWbpMQ8vImXVpVNXb+gWjtU3EZIF5wD6zNjdKj7mF7WAy8DEwjvXPCFNiw2myzolNcNuTuqVnJV+BR3r7lTfVQ82xyrEkQ9jIUuBM3QccnsBiNuVyYpvgLQHCEpaU1Gz6xFURknsCIqmdJvU5Ga55UxjWJGNNLD4e2AgfGuDPTCrUuwQdEOrxkNbQGLrlFThau3FEVlBCt+p/BLklzLoADoImI6L9rRiGOuKVLvAOHeiA1rDPz0DDh+961ucQv2A6GxigKa+XF5QuU2wdskocYU22EtWBuV6ThiEI9NwTCXlXglgsw6rn8iCAroN4CQo9RtUz8VZ90uBtvoHrr/G+DtxWKtsk74inck6Hu4VYi+tDZD2jsg7uvas1F877VunOsawjdE54WBs35kgy49XVEAxQXEepbomz7eLxvSJ1sNCKlbYvGBBMMF6eWSOxOM6/YkCQUK6YRDNIBlmO9CbVKNRVBI7uAay4jxhJJfSLFjdlA+IdBXj0Y5bI2/62+9xEphUdycVxghAHytoFGkHTLFycFSMBFQn3e8ldGC3iVRoPS2BlR48RbBYXtFjci56WqHEEepaxhMuNsVAf8ARCZ/ydqDuVw88d9K6Y8rmbwCOlg5jnpI24tMYK83o7bp+DrgNUZFUGvqHvOSGSVUXo2XHtPxsXs7+hnEK6VJLqtQjLfWapFiymWp6xKjCARQsQLocSPgMA1j+2hxcdRRaAlAa+sapzefp7WK5EbC6rZf4upyz45FmFPJUB6ULcZSG640EmzL4FDDc0oHthmtbCpIZrPZVUOEIdkmEIF1GMvWRk42sEFMQWMvQRhdHofO4MqUd/+cjZh1F7uJ6OB7MGFGMWw/Kj3qaNYYmdzFKGo5QLsRlrWx2JQ2xMBFIXRwf/P0khgArXOXRFie2B770OFHovtFuq1CaSwZqx+6DScZ11ZFVApq+1zLgLCzMUBpHYFo2b2ZH0rJCZbbJlsPyttT4QsDGM5lvl6ts3xPaDfqfBc3xqy8rXyb6eYlV9rWNkPKTXxnb9udyvbOhxlp2YL8wEybw8hYi1x5NKaQBsBh0fUEB9YANw0CkeHmAgZIOabqfU8BAmFFGn7HtlT0FACGy9dUr9NUV+LZwxEaZgRI/LyG0tYR5AgLdcGRnviNYxC3Ew0HyfahQ2K8jgM7Aiq4NQAqQeGUzCsyxqZpI20npjOZPfv1fQgudDmTvYCtwf4TOTPkslntFMrMNZSpxNjT0jofN5OOR7mwXuBV5RbiMNMIWOJ+tAskoAqwbnf32f16FdRPfznv0jeqAjfG6pARgpEK8gCMu6Wo+iZRmN3jqLUkMtVXZ+4jLJtxbW6UJ4kmVg40CIIQk1wgB9JBUiOFmZCZHA1L205zNi0cG+vnYzsn1+4KIcSt4BOAsvQIyUoP85dDDWF00/i8ufMYEAy0c9XpqR96fhLWeGqXCMvFQYlKOh95QRpUmMwfrSGuMVHphGPVFngVs1KBTtnUqa2zoF3QBaEuRkoGo0Ng3KXEfv3wpgdH3XPI9sShkbBcYt61tU6cXKMeNQ2KuGEd0ShcTkglaGGEDKENQVsQC2eV3oIzMqUiAzvmJHidkCZqL21vcjo5SJMJKtoEXerrzuzs0t4J+k8hNO+6s0740TK1iZKzjC7hKLYWbK5CLoO4OZ3sODm8QplHYJTwtcWX6ZlcRYEA2WWPTKYfZcYGnvJxtwOkJsNw0uQT59fsDYk4fha8rjviyu4sKXOUJSQhxn8HElGlRY1OzVLoUPilAG4lLwxD7xJ0qBHlnTdBBqwJPa5Psj9OFKPW2Hv9GMertWg/Z+RE4tW9cjKrvj+upTk8YhKrDW0sc9ysWBs84wu8f7opObwKatZceUOh/RVQEsBqf1JfeB5ekGSW2TlCskizbZyx8c8OxjGTcfjm2xwZubQkDR1j0BEgnEu9EZiBlpAKtovMYYkhtD6mrA08Un0cBLCaMjOTDWTm2suzPNAB7kpAM+6YzrL4KtRBKSa0CKQ08aY2O58bajRJb/iP5Yn1q/tatE4hIrSxwdm+rmAlwqXk9G0FQR+AyRflWoMpFZqTA7iPT+e6Dcfl1nBseOZaY67TTqMDIL/BQddd0iRQmuXAVS3eVR6Za5njRShXP1AlCNJOdZIDYZtwzBWAdNSntYsKuA91VWNop3UMLsEDCtAFi8VzryCflAjXC/xM85pyhktAd3M8X+ki7rM3mmzC8pnlrh/LmRg6g7WHywal6jthZNK6QtKNMoXASDTL2zDs5aHAM4RmoiynatvSZYX7dKdypjDScs6bNGQDOw4npR3FVj5D5q3/AIAopEX3V9b57JHcmUizY/8IPUukUvt3+u6jR+lTpCgUEYpKzaiKfEqsLHoOIgcGmzqK2R9b8CaJQrCp5YR4BK7wE3/lgHFqLK3SFR2QWxxCQHA90AaIOC+ZUMuoh/w5PRBBYFoDrEZEFBHH3FBguKU3AsjXpPZ3ILeMkSAQLIkgKNd90M7CWteOWZSwfscZXT0rWaAkSDb9wYiS6HuWOup4sUfenASUxXD2J74zX0s11rVTSQpLOIYNW7yS5crjSIRBmCkDHXnLNAImiQt1gTEI54g+uqhHtdHIM+Zhnw9XSD2oMyraLPXiy/oamCUKEgdUTk0HKYUalaSaz3GEB5jifLT9ry08sYFoNATApt1cQyc2m8szmpMBuhEFEAWrTMwpDQCVobXm7jiYcBqTG4ZPowPTxDj5aCvudzCQPLYyWMqq3t14mCANi8tKLA9tryRhO4MJDS71maYjWqe8xHbt50tLkKiIoSHkOG5O4AVbwMJXd1BjXOXKkOkMtYCKS4HqMaMqLY3HwGwXQd4Qh/E3onNLYULO07hkMPfBQrh+/H8qH7sPGd38fmpefQ726h7G6aZzAWGzEmxW6gMXv4QJsdEPurMib9ZAPOgBwMWRaUCQdD1cfw20j4ZqR+7ALmZze3kVuc+Do1QvVfDULiwGzskBecc1sjyGt6ROtauuyyuzqNVctpml6RsRGU9UrIAPiJHuNqJJSew4DZ2YUdvN87Y1ocVE6+NqG8j5RRMUp4x93TGVjmzpUQ/fRn2N3BZVPWlcGfnmfYUYwR+W/jANB0QaDqgCQhx6l21gBncfmZYesbAXg6nI2kMxe5uIuYNWNklzdpBWtycNlFdzDqTX4VdNMV7DvzA+iW1rB3400ceeQzOPTgx7B76y3ceu0r2L15Af3OpithZSMje/B5ztGCp42zBXqfQCJONKRJotjtdv9Y+SFjXiVZ0oMWgaNixbg37jeVt/N9AoNshqIyEBtlpK+39PHCQuXxTqmEh8jj97QHEE5B5sbqt6WRK0CGB/s9X+Wg5Puz62+drWhvZj7IrbKZp/Bs3eMpOnJ2c2knxG24KSZHhlNrexB24p1+3QjYjlBpEHAZiKSRMIBejqw0HaYMLnYDrxEMeq2uQOgOLzAEj1VLaBYpFkiB/9DGsVEWTR1JHCn1yVkpa6lAyNMqsZBEWCfL+zHbvIpbbzwJ6SZYP/4obp39KlaPPIhj7/8l7Fw7i42nP4d+vtuM6sX+xSF9MVscn5ryHSji/XGWz/k9L33Lom5PnE7MKImjqS/bkilCmucMXkMqO9dHq87glNijVSk1Jth2ArZCtHZkUxc4gfKXuYRd+iHTQna1tChvoNh0s5t1bF0ELZ+zM8POQcsEVo1bQbM7efbMOJjAsxtIYayghqQVr6UCV+oBkRgL8liIWMdKqlOUAmDgiOQyagdbdXQmb0Sx6Hp+FwYNZWrWBO2kyrxYqNyORnPq94V/55hB1OKYUxQZkgExVF9aplybPlIHrW4dlErB2j0P4dhjP4ud62dx+9w3IJNl7Fx9BXu3LmHr4vPYvPgcjj72szj00I/ixit/hrK3baXxMK3nCehM9KA4DqScetQREKiuWnIuN6X0BMJuUbr0Jgwc9lv0BsKgUPU+aCT3HY+zY2DSShl8VaAbCdSdEcroNWFANX0cVdhxVWbSFhhpvHY6WlnEgKCEAkv7BHULhI2QKxA5Qg56x4cr46rBdutQv6gkQWn9mg3w8/Q8P49HMBtjmXFpu3yUGMrnJTzKauL74B4Zq6NZu9SZQc7kZyuYN0tigmJExeGyY75SCffGZ1SxjGRrW4kKcJxtbUyneKfQ0q1WOfOWKBKsQarM82g7OvMIoJss49ADH8N89zb2bl+CdBOUvW3s7m1BZAKgYGfjVVx7/l/jng/+TezePI87558GwlTEICjpplg/+QjWjr8b3fIa+u3buH3uKexcO9d6F7WjdHlNZs3a7uWj92Fp3zFsv/UC+r0dv5jdJ2qgMnz9wIeTBObDsl/EtpKjw10fZj2rbTXJnWOz0mP4k/WgXkdcMuhkZnBF+z49r4w+UnxgSBu0IGksuAo8MA/AIuG9XVfEFnEOCZX6r/P3iJ876F/NZCdzDjN2Yv9zDtYs2AntoVu9HUVie2muXoFTJdgp7ZcuPN+GzdBNUsU7NtkLui52LDdVZYaRfmHIs1E7aDwsT6rtUpV9EEgzwgNjh19ETRK6P3yORcdSSlkgk3YwjL0Zh+H1E4+iW1rFnfNPYb5zc2A0AkxWDuDgOz+OyfI6RDrsbLyGzTefwuqxd0O6JXIDvVGH3vU4jv/AX8dscwM7V1/DgQc+hMMPfxJsPoJWu4TqzsxYug6Hvu8zOP6pf4ilw6fhrnxuTWReHf1zEEfUyfA/JQkL5MTSzcBFbaADeBbInvpSdTPpH4lzXBeol5u5pbf1KiNLc6iQwgKrLYzfsZKNUFT7flEQ3w3FWK3RjMgEqKmBAgcUou9aBzf1EDGdwJDER6BhQJe4zccI1/Y0AY+hRbtmYs5MrB1HmkRIq6y6KAj7H43OFrHC5FmuwAiSSiUGF2s2znqCSKwLuO9HQg0yVm5R0ZGM3K0u4XPB8oGTOPTA47jx2hPYfOvbkG5SO2+OpbXDWD/5GDbPfwvAsA5w861ncc8HP4ulc9/E9sZrMCguBZOV/Tjy8I9i59o53Hzpz9H3c5TZHtaOvxvSCTAHCiXEuBeAoOslgdad176B2Y0LmN2+Sm6y9mgheYirj8oiMx4q11337EeR8tqlsawR/yi4xkJI0uzzlZb12LCZPB4E2Yy/ItNe9GoLmY65CRwHUoVBNmy7MjddIhEqpJDWGC07gl2k/h54HcMKhHVRsJqU0g3KVdJNgAczg1FHdxVUjy7FtuJoKgQevYNLKSxC2zPb5FlyINE54r/Lq4l9DY1vlUAQJjLCkwlVI5a3caXMAPN8dHswRqlxpqolPAKPZLX77hegPifGqd1QgG5pDYcf/nHs3rmErcvPAyjYd/p9WDv2MHY2XsXaPQ9jvn0d/d6mlb175ypmWzdsQOUqdN0U3dIKlg+exHTfUezdvoLNC89i9/o5oBR002VMVg+g39tGhw6TlX2Ybd7wlAmZYrK8jjLbxWRpFShAv30LOxdfwN7G6yi724NMJhNMlteB2Q666Sq65XX0d66hzHZcDtMlTPYdhUiH+eYNoB+AsuxtAQAm+49AltfQ376GsrMFQQdMppDVVZTdHXRrB9DvbKHfvkPami1hfCAKerloIqfeLA2YOJFpNn1EHK7VfpsYWX6NBLqmo+iu1Vf2ULICR8bABF5zhBwU+JramuJ5zZJqpiMOg1CiKySeYpSIWZEWVBrBRgma24W8JjIyS2nqSqxF4zcFGOZv9REut9jhZdj+Fu0WPQ6YY8NTpP/1wjDCc3jfs6Jrc3M8K8uDlUa47hzvoqPLLIF2bPM8GBtXcBuelPPS6s8aRyGtkly9qoul9Dhw5gewcuAU7lx8Ft10FTJdxb5T3w8Rwdrxh7F28n24/Ff/D/r5DMCwA0e/t4N+to2lA6ewdfW1UOH5zh3cOf9tHHnsJ3Hq8b+Ha89+AVsXX8DOjQuYrh7Ekff+NPbf9wPYeut5dNMVrJ54CLsbb+DKN34L/e4Wjrzvp7F24mFsnX8Wa/d9APM7V3Hj21/EgUc/henaYVx54tdQ5js4/P6fxsrJR7B78UVM9h/D8rEHsfPmt3Hz6/8C/c4mpvuOYv/3/zS65XXIdBnd6gH0u5vYef0pbH33K1h794ewfPIRyPIaAOD2Vz83zIp+8Kcx2XcEuxdewtqjH8fWS1/Hrb/4bZTeZ5xaslPCu+D6AbDseLNZ0s+G/dGgv4BVxYH0LtSLtLQNeFUSEZHXPdewxxR9PxgA51fF5pJXHuA5TOEH/0J/X+BIW1m1XpA6AkhlvC3sZcoZjJFiQ4FVNXEohN0Thus4/iMj/1pZ2TeFYl6NrBZ1MZrSQm+RyEy/ckBev5fUN9QXYZO9YlL2gkN3UmLgSJ3aejOgIvRx5rcBrLggcjtnOzdR+hmW1u/Bgfs/jAMPfBRlto3rL3wR6Ka4+eqXsXXpRdD+HSilR9/P0S3vj3UToPR72Hj2D7Dx7d/H6tEHcOZT/xVOfORvY+XQafS7m9i7eRHLB0+hzHdx7dkv4vp3/hDr930Ah7/vJ1Fmu5hv3cDqyUeweupR7Fx8ATtXXsfs9lWgn2P56P3oJhOU3U30e9tYOfEQAODWN38P269/E+sPPY6lo/cDAux7309g5b734/ZTf4Db3/p9TA+fgUyWsHP2aazc+xjW3/tj2Hrhz3H7yd/F0vEHsf6+H8N86yYAwfI7PoDp0Xux/fpTmF07H9ZAfm94uNurjLxrNXSQpQQbGn2wu2Zv65W9qzBL2NFvBgGNy5h1zhlUJJBMeeoz1PiF1kzZjXnJyMj0x9tqGhmH0VPzz2z/cX1sXr7i4ie3L7U3xp7Yars62+HDkSQZMkDGEUvrF9vUrPG0/bfiVQ3Lsox86hUNT4wqjKdojOz4nOqAkS9aJR2ImgcAdSM7BSReTTJcwA8qo29FBFuXnsN0ZT8OP/QTWD36Tsy3b+LmK3+CQ498BvPtm7jx8p+gL/PAYAUA+jlmty+NpOgIZpvXcfVb/xK3z/4Vjjz2kzj08KcwWd6HC3/+v2P3+nnM9zaxdfkVbF99HXu3rmD/Az+E1ePvBroOOxtn0e9t4fYrX8WtF/4UIhOUfoa96xdQ7nv/0ITZDmbXL6DfvYPtc89g7/Ir2Fk/jH2PfhLdyj7IZBnLJx5Cv3Mb89tXAQjmt6+izPZQdrew+tBHMNl/D1be9aHBo5jtAJMl9DtbmF2/iLKziTtP/RF2zn8XEF0254znbeKD9VuIhY54L2GZTwmXNzrSqM/brYy0107zEzJMjL03g5Z4XxwKgZDpnIBr+DYq8AJ1bZwY/vZuYD12rdlViJNo58bWdmxZ3FGebBWXtASQjGIIgFycebjbFD35sM6R/N1IrZk6p5y2Me1xlCbSlOIU9n5sVyTqq6TEScetdfx8rmsG48atJN1hYNdY1+1zT2L32lmsHHkAALDv3h/EbOs6rr/wRfR728wPhyd2U0xXD2K6diix+ILpvqOYrBzAzsbr2L78Ei7evDikOZx+L5YPnjKhiciwRXc/Q799G91kCZrXVvoZ5ls3qnD7oGs2gx6WU5FcRID5HmbXzmH1wQ9h+eRDKLNddKv7sP3K14Cuw/TgCcxuXsLO2WdQ9rax+cIT6DdvDG6fCPq9Lcy3bsYTn7QfTK1b9AqDVzI6SUbX9tFIOEO/HhkQwcNH3hn2ri8fzLsgVXNmyOXJLgerWaiYV9njUwxmUWbWUaaSI/NJVDZP4zZ+DqFdbEFMqWAnJbptEu6T9DkKvT6zqMvcOj4ag4ugwsrqbxrXTb9j2XLdBalOfrM/vynUS06jYe5C6zFBe28us1BTxl5l/O67uyDUtY0ekDz6Hru3zuPma38+PKqf4/oLX0C/u1ljmj1K6QeFKz266TIAYPf6Oaj7Msi5YPngKRx57DPopmsABP32TWxffRWln1XwqbUuBaXv0U1XMFk/hK2L30XZ207LadLsXRWEsBWXCga8l3k/w53v/BvM72xg/wf/GtYe/RHcee5Pcef5L6PM5+h37mCyfgjzW1ewc/4FzK5dQJnNhnZqr40cFGIOxiJMyCAV+qjtLf7G3WoHiLd1Ylp4brnrZYF0iGBqCYFoR0g/cklnbzLXad97HNpNQvL1d1mMGkypWYDII7NQbJh2MU3btgDx9BlnWvWaAvBp0tpyyflMqmB52QQrRe754Op6Hb0m7XcyMvIwrHJPxe2dY3+MzcIaKw5B7sx0nIJGfbg70Ni11O6scJpgmqdcdFjmxENviQq7jFRmitWj78D++z6E7SsvYWnfcWD/yeZMg1J6LO8/iW5lP2S6DOmmKP3cpNrvbmLt+CM4/PAncfPVr6Jb2Ye1Ew/jzrlvYu/mW1g5ct/AuM68F/PNG1g79Sjm2zdx67t/hm66hKVDp9AtrWPp0KlhtnBvC5PVfVg6eALd8jqm+4+j37yB6cGT6KarmOw7DFlaxmT/UcjSCib7j6FbXsPqfe+DdBPcfu6PMbt2Af3mTZS9HZT5DFsvfw2HPvmf49CP/QPsvPZNdGsHsXPhJWy/8W1M9h1Ft7IP06NnsHdrA5jthj7Pg8wic7vba3SIVAMsWVPKIniIBdzlmbLg8zSX0KquGmQEHKZ3ccM9d/VcXiOzSaThmYkFYcDN001cNZEz04leh8x6jzNFV00NQaC7OXjOKK2no6U4BnKWb8X1RQDFxr0rAt1dwkBKqVTx9mlFhGZmA8CSAD0nrnXrWo1oVWBsxaU3VdhvTlsct7GwwL/MD/7eznpM1R67wmUQnbwhHWHt+GNDAP7ASRzcdw+BXYyBSTdFv7uFtXsexu7GWcznc9OXvVuXcfPlL2Pt5KNYPnwvSumxffnFISdrb9vY2Oo970Q3WcbutTew8eRvYe/WZSwdPIGlA8exefYbmO6/B8tH78XuxRexfPgMRDpsn3sGy8fuB2Y7mKwexNbrf4XJviOY7D+GyfoRbL32DXRrhyCrByErBzA9ci8O/vAvm1u7+9aLuPWNz2Prpa8DMsHaQx/B8n3vw/bZp7Hz5vNYOnIGEGDr1W9h+fS7sXftLextnIPvb/Lv9tI8wEZzyIOJaxSRx2eyF7Rgpt+9jTiWhxloIP5H/+9vFAWNzo7Boh0Rw0jtG+rxHuug9x7P1GBJqf5n8esEtJ9Qoedw5XpzhkOQm74zYy0Fvikf8dL63FKv8Vwlqrf1TkGHHoK2bVLjEkOHFgIy5sDexrBAOFyX21nsPjZGviZsWFe8TWPJmRIAnvorBUj9UVRGuIa36lHdK6aYnEbiZVbgLSUoL8egTOTw643jpd0a7LfiFhRkZGtPJ035frgp9YN+jwLMZ/AcMZfYZGkV3XQV/XwX/fYdcynXTjyM05/+r3H1yX+OO689iTKfVX3QcMMEUvoK8j3Q9+i6DrCtvFUunT+unwN1+VCpn9ce/CD2v/cz2H7jacw3b2Hp6L3Y955P4eaT/wq3v/WF4XnTZYgI5rs7QF8oYbaadj8fygaBi7YzxEILSAV9wGGvgOXTk+fSk4fUkwQVyNgGrS8F0tP34T7yKgp8Mf+wQZnrWBFNHK0LhZN7YLQkJ446afHr8lCbX5wzVPxZ5kLys78HXQyPzR8M1X1ksFSCsAn6GEtjFkcdB9TlOD34RMrCxpfcUF3gHRy+UXdphJOHQWkRZyf2FcaiMtIvia7n16KuC4ukiXGlbXOsJiaXPGtcQpHjwVqua0FUslia82ZBt7SGrpu6XjWB5aJjJgCgn+1hPr8NHxicu5XdLcx2NqluLGOgzHaHxdMKEvqgfo9c6NrjfY+aIm/VKWXmGlEA9BVA+x7Twydx4IO/gDvffQK3nvqDIcC8tI6lo/dBpstOG/Z2YpnzmUuR+iNC8V1eknQUau/5Mopqjbh77fPcJxq1ZeE/kq7J+uG9Ph1ZSZOAK4FRoIOxmn4yYaKFTU3v4tBKVE+/Ukdbck/AZssgpShvlGD4TWjGDRJiJrGrswtCvwlD7VhHSGAR5PmONl/lP2yi5+4fmZHfqi50OEyihD7J8busAMqmOalWTyzOC97ZbXW3dLzdwSXsKtCZBBbeNlpGfLk2NddPlnHs/f8x1o4/AvT9iEamlkuHrUsv4PLXfh39bNuFH7xx1ZHa190USweOD+Bx8CS6lX1DSoEO9Fo7CjlEEAbpbOXVReogTex5aR2T/fdg6fBpdGuHUHZ3MD3+IMp8hu03vm3qjCjVBZKJeOL1LPBlTgtkzyarzNbFkfpSmR0/WG2NyqLQR/vU0nzj79u2TUs4EbE9c8V3muQV+1XoHBRqDkOgCmnu0F2YU94TzMRMsyuFBcIySPlLaUxHY8jiLXUd8C2KM9rH0T+oafx9RHdYFu6G8jO0LFbB4k8hRhJ53MhuDRbncncrtiQOAXlYGAUFMBdh8MnIC4zFrXjCweRshuyjuSy4X0ffsBWRVb/H3q23IJMl+FYu6RXk3GHv5lsIew41XRefNF07jOVD92Lzzacx3X8PVo+/G1sXniPZwYy5mSNKMvVwDp8kPdy4e+08bn37S9j38OM4+ul/iPmtDUCAm9/+I2xfehWWW7WgN4Mp5r7kuvEYrvXmSnPXEOo1u6TSd3FQSJVY1Kf2t+pHDpwt0DP5R7/xG0Uf5H5sjOPYe6vh8DlsD6wxGmsPHfDN8atUnsZ3fJO+apw6XRtiTgCg/rluPFgQYmT6PsxysWEuiFHla+y5fm3OHRbdM4kg1tpDny0WRM8QO/HHy+PnenkL/qovre1Tb42MwuTOBqSKp35SrFrbjyPAx0FTA0cFo5KuUwDgEbBQWxaUA22f7r/Ee3EV/QxAOi/PROmhBi229CSrfh7EIqHtyVCkQ9dNHGhLGeJE1E+i8gRSm8jy2BSse+IMs3QTLB06jcmBYyg7W9i7dmFYT2igndqex0g+bKQCoZQC6d1tcSalOiy+87HpAsvS26T9GJhWz2TCtKyuwy3WTgDDcV7WDmYo9DzWrZ7qUH8f3a1h8YtaXYhxWbnRQTPXKYBkOwwyWCJR5ZYjxE8cEpF0SWB6lYUJsRDOtreOshZgwZPJsISNifz84Lb6kBbYhkFgYmo2QlnrSO4Snq/ybamz0/KS44/psuw6OiC0cs6q0K4pEwPBpr/ykN9qATF73VBvEQBQMcUnZwzjEhDEXQsSAwz0wBtr2fClR5nPq55llu5lxIX7uZk03BHgZh0v8xl2rrwOXHndQJN7t8SrIy8fE6l1FDduvEtG3/PWJVWE4w5oLH0RUx9TwdCXC75iT2KaSGt6enSFAjWDI25JfFSXjrDN2oJotgZiQUXdNKkKp0po7lBkaAXDFtFtrKbYgRRA4Q2/PFep1Po06QAOZnwQgxYwuMWxDO1YCcFpFlmAuuBeRtbUQiW7G+xeixUf1dnYpNpa6j+vUlkAOItesW6jOldiswexuKya7IUc48iq19Qod/bYlQ7sPAD6BcX7h/p5DMiMMXJMkutZB8CFOJEeHrl5rUYwGx2waO/fekFvj25BV+7y3OGpXbguaot6JXnIEwLt2E/GsgDw7qcLuiXUiOtQ/D8LpSfenSawLqw3ZmkaE5H4VGoQ9T0ZEaqOErLrCGda28KMU/SI6NqZBcWOYCpWZIngFsqJlLyNf9Df4lcbhFWQzRphmw5SS6TKK+6I0P5jYORf2j5XxXXw80XmLBEhQB2RqZXmbWOcRer8sfF3dFQNYhk3GQcQYp1Y/OLmqbTkLuXzTy6bYne6xGNNWOZh7ao1TKoBC4EVlaEDK1VBY59xACgmv948QvpfIR02zS/punrsWPF7Qt+gzu5LaE0jy6gPsX/CmmDJMsojjD/BAjXj5L7pI9zla8Ei5eAVKsNrqkINIxKNRnwAKteqQKevF0umHdv5gjrKZ6KbQMjuUvCyuIt3rdRODVVQFlUf778nCxTTptDhOdAeguIGThEaTbTp7MLYBewqpvJtsz136aQeUxZJG014mLLSFYk5+mSHAOhH6zO25eAgb78y9mp29TMAE4BICWxiTCqLRtr8eEm35L3Fco8tckXiBFBm2gnDzCPgmweWVdL3GovLYQUHKO9f0OOLeEHBVRyPjfy7iHB0MsDbSMnHzf0c6sirM+9WhbtUdkE9hf9TFt/Qpf6u5xoWW/LSVL9wE1TaaOIeYW/wBj3zWO692VtR3lMW7LYjmPj4cB6xCvrCKqy/0YiYOq8dx51ZWDslXhGRn+6Xdr6tNYJwWBYJHUa5Tdl5akevoWc3jFafUWloXKIyzsRGuBA0hkTQFNue28UD5F1AIIwVhUpJBpx3ArHiCppQlK1jSwbPYJUHIvuf0HfN+r8oHUtdQFTp/Jnrx0wpenJqObz9zTAQaW5ls4BYRZUbWM0ic/nBE+hSb7euZMtsx19Rj93gJRUW+w6ke8klS/VpvZDxunRJhm3wLhsr16Nt+sKXyILyqPJDZwTUS73kI76RZ1PiCEw8NIWOGHNxGoDxRnruCwuUF2JnEw4OBFgNDFQSzeXYF7uVYj/KAom9ve/GblbXNmzz05QwnrPDxcroMxY4FAm9kmhDIzIojD6zaftiHRx91kg/8HZCYV29cC9kNGn7QBOx2e1rx/WREAXE9ppbbNvF6iUStcPrrBX3Wfaw6ysicxpnooGWjFaFB/V2KIxDRBDyyFPGwCqX2WHsVXc38JG+jQqZJteWxlBQ28jxKtXOKfF6Pk16TEjuPrZVZ5haaND1P/k0kqDApJsMzjHBIMJWjidpbGsY8TraJHBELrqjRKAFceiKR0DVZ5exIsW2NLG6cLlNqnL8y137PYah0IY4WkvQj+Yuui7v5ZD7zTB1YYXuMnIbE1OQZkPHEDzPZVMF78ZLA7NiZyiwpNqewsGPuiwoeZrDPXGQHs8UjyDAbTLZ53ZmipFJvP5iujPe07kOXkg7TN9Nbly/puS7KF7XFEeGOjbolqAciybUqaplRFz6k/VNGdI5At0fQfaMUDImRv2JDTKJKfFgAxLb5yqH1XM3tUYeAyZjkokMbaTrEJQgPJGbnOok0cCt/BElt/5QCoCFevE2fxkPGTA/GNmC6S6sLRon52aJ3phcTn/rittOM4xWN/UMbDaWe3+4IMDRQgn5jLa7hn1xL8DDJ8OA4a7gOGdrJwVg+YoKRB29/94DTCo90ONWZwL/GqHTeV3zENd+u0+/iyBZpulzl7+woKDQ5TkNnaCxEKuICyZBLlV+iLTP5HvSd637mQWf/tWbcrzCQZC61ww4Qsr3Erzkd5LK49+DP5xjQIkBZQoN1K164iiW2SrHcnwnivQMuiswYuE25CtVriMlJffaNqkj/2BspOWj4bzOubZlaLf4gDcaEyYAc+kS8Ekut9Ge9GkkcASPLPLBviHKasBM00ELlKgwWFFTdFH52J4pjhvkaNGMdUYsGRVY1J02gjTulyzEE1P1ghg5Hr+/WVcrC24IoZH46por62WM/K3EHRQWj5zjqN12XqpzIi2564aRsHbZIhaBwSh09AmMKlhS7GXOXR5LQoiZU2NdzL8vrtvoeFjGLIvbk9sRS7J+Y7mXxBUWlPE9XwuUR78c44XhPprAGCvHloGEnVLRBuNzKRFFF8h8nA9GUWQDjlq56NqCOudKDCnHqhyYSo1N8f0SA+yK9WNMp/j3o24UVT2oNhZfG/6OguuYB9Om9YRrZdF9uQfe3muEYQkoA54GR1432AZig6E29cvr4KNCs58PpI5r2I9QmTXepUIh5iHoGqalbl4QqhlyrE/J3TgCGux5LIrPjcaZwhgjvpi0AT42ycRC9bsm2MIMsY0HxSRK3g22cXyojqoLEVCbQXs06bIFbb5kMYcJDaU6UrRQmH0QLY5+JP0tI30y1n/anHZGRpdauQmkO2nQ9hm+svghxK4CRDLKjOb/ETOFBDfQGyXjGG7ftdlteQjOV2btKKnwZjZTZZbv+Q/06jjIYKyKjEldlYY1BAfWBdzkbSfXJDMqnRGBiHVaDOA34rfV7j4dzbAYHME43Iy5ajwLx88r9D3XoaQy6TeXGQNQ7P7QrgBaXmY7u8KKVhY+H6mu2ZZTmC1dbz6HGcziWBM9hfq9dWR8wGCXvOFjAaTGOKT2+11rMrwrGfJb12wh+eB66GJ90u242DceLcd5VmE7qBzuKAiTTMP4WWgVSNu0oAl36ZD2xMvcLh1U4++tp+KzmqNow+MDqc3dXv+hQKvTTNo+NZYG7gUVIBDjDbhGGq6X+B4Z0QXLMyqRcDKlIeUNngHnJmlvKMOq5Y75nAQHTcBQ4rXO2nInjLU5f0/fSDf8y0yuxr4Y4kacIHfzZASsv4drZACWJkLGs0HEZS6xJP1bqCNGhjTrhqYq+o2mNc0AAAQSSURBVEZJUiKFd31xgJP9rvai0QcziecUhiClsWn3hP4hZSHEolzfU4iNPidgybpJfyysweLhzzZ+LkpU1r+pTXfVldz48eezRDQG14AI3l63hmLvcnEXRwZiWxijdmMj+iJVTS1C679rG8NlId7BLlDgTXRFJK+DwjkgKMhwUDswkESEVaty+gKzmgAOBABj5ScYbX5hVfCF5GRcuVxh+ZCMxOsh1O4AiE3dfMQVANkjGsuQXhg2DD+0me1jo/VdGQNXavQmlUVknG0Mkl1cNn4Zf2ZT6+LMiAY1BauegCgwOcmliAXn+zFkoasZqGKQfYyFhkZR35JFSIcxX3EcSJQyLIhL5gYSY2wb/+/Pq3LOmJbVcZV58BqRe1PgImXjeMzdmsAxrPFy/O6cWW6VILprXZsBROivzSTGdjdhxOKlOp0Yu97rOOZ4+JqrJDDpQh0joI5NYOTnjCuJR32SUS5czh9Zq8cyM2do+6Y56EKDy1hkDPy8slC5yvcwlUWvFgDHAv0CnhkekUITknNWpO8iswh2k/5y0H1MiKnb02wvg1Ssl5Prkmwgy0TCs5J4RqUY1T3hg8b0LD6IdneStplvC7pYb/gf39sBOXeCfVdpqa22P9VinIDDNChlO4w0wkEuN73JDEcXR54RoQ/PSWBFYohB7ruxRImVr5+L1qtJHyAAYs6ewLkFIxoTyTUMbJP6JdYwf46/eX+6heRdxjgY3wbRFw0oKhtprw7NUiN0bq1sth0k2XUFRvNiAl2Tu2FfEIj1dNOkBWgTbnfdLAW+qw2UWS0CM96srwUuboprLeeSjXdFtj+5GyzQQ0wt3zb5WRRXS7/dhS5nn2ZR/9z9NVzUsXZZbESrGoKQSHDnwfIY2klNod5bxEDYXSnhL9WtyfERO/rd1lKFlOU0z5EMK1hV2F4jXlcWfO87ZXYOqHVW03Ng4nu2Yp0RjfgzNr4kmWUGkT63LlE0uHCwQOpjf8Q4SNn3qT3aW2wSi+YiFwzqyB5s237inOK1GS1T/J4My/rfJjxHz+c1htrVo6wK7gY6ICEAsblLdwswcVuiijd14mtiOaGXSXqUhCOSL1/YKaOeOFoGq43ThPJ/P268+JXF1qkAFqtUdu/alpYABgmWJHbkcP14/7WLPmXkb2QdvtwlmRlPwxdxYBUZml06hKFWqFRhg9O6ZbCjRtjqfURtSgy0RHTSFkDdzrwDA/83BOETW/WSFhn8IjeyhN/LmLwDmGbN8P+Eoy+qfMaUN3KYpFfC/NqvchAeaWVSx0V8kOEzGLQQvAdUSB2oNXKlatymzKzyp9AHiQxkoAzxqpCuMzqMRW1lVa3qjk7Aq6QbLWQw44qFoW98/yueirCt0KnP0pMg8abEMJuvw+v/B1zBSj+GD0vGAAAAB3RFWHRBdXRob3IAqa7MSAAAAAx0RVh0RGVzY3JpcHRpb24AEwkhIwAAAAp0RVh0Q29weXJpZ2h0AKwPzDoAAAAOdEVYdENyZWF0aW9uIHRpbWUANfcPCQAAAAl0RVh0U29mdHdhcmUAXXD/OgAAAAt0RVh0RGlzY2xhaW1lcgC3wLSPAAAACHRFWHRXYXJuaW5nAMAb5ocAAAAHdEVYdFNvdXJjZQD1/4PrAAAACHRFWHRDb21tZW50APbMlr8AAAAGdEVYdFRpdGxlAKju0icAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 1, "metadata": { "image/png": { "width": 200 } }, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image('../../Python_probability_statistics_machine_learning_2E.png',width=200)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Information Entropy\n", "\n", "We are in a position to discuss information entropy.\n", "This will give us a\n", "powerful perspective on how information passes between\n", "experiments, and will\n", "prove important in certain machine learning algorithms.\n", "There used to be a TV game show where the host would hide a prize behind\n", "one of\n", "three doors and the contestant would have to pick one of the doors.\n", "However,\n", "before opening the door of the contestant's choice, the host\n", "would open one of\n", "the other doors and ask the contestant if she wanted to\n", "change her selection.\n", "This is the classic *Monty Hall* problem. The\n", "question is should the contestant\n", "stay with her original choice or switch\n", "after seeing what the host has revealed?\n", "From the information theory\n", "perspective, does the information environment change\n", "when the host reveals\n", "what is behind one of the doors? The important detail\n", "here is that the\n", "host *never* opens the door with the prize behind it,\n", "regardless of the\n", "contestant's choice. That is, the host *knows* where the prize\n", "is, but he\n", "does not reveal that information directly to the contestant. This is\n", "the\n", "fundamental problem information theory addresses --- how to aggregate and\n", "reason about partial information. We need a concept of information that\n", "can\n", "accommodate this kind of question.\n", "\n", "## Information Theory Concepts\n", "\n", "The Shannon\n", "*information content* of an outcome $x$ is defined as,\n", "\n", "$$\n", "h(x) = \\log_2\\frac{1}{P(x)}\n", "$$\n", "\n", " where $P(x)$ is the probability of $x$. The *entropy* of the ensemble\n", "$X$ is\n", "defined to be the Shannon information content of\n", "\n", "$$\n", "H(X) = \\sum_x P(x) \\log_2 \\frac{1}{P(x)}\n", "$$\n", "\n", " It is no accident that the entropy has this functional form\n", "as the expectation\n", "of $h(x)$. It leads to a deep and powerful theory\n", "of information. \n", "\n", "To get some\n", "intuition about what information entropy means, consider a sequence\n", "of three-bit\n", "numbers where each individual bit is equally likely. Thus, the\n", "individual\n", "information content of a single bit is $h(x) = \\log_2 (2) = 1$. The\n", "units of\n", "entropy are *bits* so this says that information content of a single bit\n", "is one\n", "bit. Because the three-bit number has elements that are mutually\n", "independent and\n", "equally likely, the information entropy of the\n", "three-bit number is $h(X) = 2^3\n", "\\times \\log_2(2^3)/8=3 $. Thus,\n", "the basic idea of information content at least\n", "makes sense at this level.\n", "\n", "A better way to interpret this question is as how\n", "much information would I have\n", "to provide in order to uniquely encode an\n", "arbitrary three-bit number? In this\n", "case, you would have to answer three\n", "questions: *Is the first bit zero or one?\n", "Is the second bit zero or one? Is the\n", "third bit zero or one?* Answering\n", "these questions uniquely specifies the unknown\n", "three-bit number. Because the\n", "bits are mutually independent, knowing the state\n", "of any of the bits does not\n", "inform the remainder.\n", "\n", "Next, let's consider a\n", "situation that lacks this mutual independence. Suppose\n", "in a group of nine\n", "otherwise identical balls there is a heavier one.\n", "Furthermore, we also have a\n", "measuring scale that indicates whether one side is\n", "heavier, lighter, or equal to\n", "the other. How could we identify the heavier\n", "ball? At the outset, the\n", "information content, which measures the uncertainty of\n", "the situation is\n", "$\\log_2(9)$ because one of the nine balls is heavier.\n", "[Figure](#fig:Information_Entropy_001) shows\n", "one strategy. We could arbitrarily\n", "select out one of the balls (shown by the\n", "square), leaving the remaining eight\n", "to be balanced. The thick, black\n", "horizontal line indicates the scale. The items\n", "below and above this line\n", "indicate the counterbalanced sides of the scale.\n", "\n", "\n", "\n", "
\n", "\n", "

One heavy\n", "ball is hidden among eight identical balls. By weighing groups sequentially, we\n", "can determine the heavy ball.

\n", "\n", "\n", "\n", "\n", "\n", "If we get lucky, the scale will report that\n", "the group of four walls on either\n", "side of the balance are equal in weight. This\n", "means that the ball that was\n", "omitted is the heavier one. This is indicated by\n", "the hashed left-pointing\n", "arrow. In this case, all the uncertainty has\n", "evaporated, and the *informational\n", "value* of that one weighing is equal to\n", "$\\log_2(9)$. In other words, the scale\n", "has reduced the uncertainty to zero\n", "(i.e., found the heavy ball). On the other\n", "hand, the scale could report that the\n", "upper group of four balls is heavier\n", "(black, upward-pointing arrow) or lighter\n", "(gray, downward-pointing arrow). In\n", "this case, we cannot isolate the heavier\n", "ball until we perform all of the\n", "indicated weighings, moving from left-to-right.\n", "Specifically, the four balls on\n", "the heavier side have to be split by a\n", "subsequent weighing into two balls and\n", "then to one ball before the heavy ball\n", "can be identified. Thus, this process\n", "takes three weighings. The first one has\n", "information content $\\log_2(9/8)$, the\n", "next has $\\log_2(4)$, and the final one\n", "has $\\log_2(2)$. Adding all these up\n", "sums to $\\log_2(9)$. Thus, whether or not\n", "the heavier ball is isolated in the\n", "first weighing, the strategy consumes\n", "$\\log_2(9)$ bits, as it must, to find the\n", "heavy ball.\n", "\n", "\n", "\n", "\n", "\n", "

For this strategy, the balls are\n", "broken up into three groups of equal size and subsequently weighed.

\n", "\n", "\n", "\n", "\n", "\n", "However,\n", "this is not the only strategy. [Figure](#fig:Information_Entropy_002)\n", "shows\n", "another. In this approach, the nine balls are split up into three groups\n", "of\n", "three balls apiece. Two groups are weighed. If they are of equal weight,\n", "then\n", "this means the heavier ball is in the group that was left out (dashed\n", "arrow).\n", "Then, this group is split into two groups, with one element left out.\n", "If the two\n", "balls on the scale weigh the same, then it means the excluded one is\n", "the heavy\n", "one. Otherwise, it is one of the balls on the scale. The same process\n", "follows if\n", "one of the initially weighed groups is heavier (black upward-facing\n", "arrow) or\n", "lighter (gray lower-facing arrow). As before the information content\n", "of the\n", "situation is $\\log_2(9)$. The first weighing reduces the uncertainty of\n", "the\n", "situation by $\\log_2(3)$ and the subsequent weighing reduces it by another\n", "$\\log_2(3)$. As before, these sum to $\\log_2(9)$, but here we only need two\n", "weighings whereas the first strategy in [Figure](#fig:Information_Entropy_001)\n", "takes\n", "an average of $1/9 + 3*8/9 \\approx 2.78$ weighings, which is more than two\n", "from the second strategy in [Figure](#fig:Information_Entropy_002).\n", "\n", "Why does\n", "the second strategy use fewer weighings? To reduce weighings, we need\n", "each\n", "weighing to adjudicate equally probable situations as many times as\n", "possible.\n", "Choosing one of the nine balls at the outset (i.e, first strategy in\n", "[Figure](#fig:Information_Entropy_001)) does not do this because the\n", "probability\n", "of selecting the correct ball is $1/9$. This does not create a\n", "equiprobable\n", "situation in the process. The second strategy leaves an equally\n", "probable\n", "situation at every stage (see [Figure](#fig:Information_Entropy_002)), so it\n", "extracts the most information out of\n", "each weighing as possible. Thus, the\n", "information content tells us how many bits\n", "of information have to be resolved\n", "using *any* strategy (i.e., $\\log_2(9)$ in\n", "this example). It also illuminates\n", "how to efficiently remove uncertainty;\n", "namely, by adjudicating equiprobable\n", "situations as many times as possible. \n", "\n", "## Properties of Information Entropy\n", "Now that we have the flavor of the concepts, consider the following properties\n", "of the information entropy,\n", "\n", "$$\n", "H(X) \\ge 0\n", "$$\n", "\n", " with equality if and only if $P(x)=1$ for exactly one $x$.\n", "Intuitively, this\n", "means that when just one of the items in the ensemble is\n", "known absolutely (i.e.,\n", "with $P(x)=1$), the uncertainty collapses to zero.\n", "Also note that entropy is\n", "maximized when $P$ is uniformly distributed across\n", "the elements of the ensemble.\n", "This is illustrated in [Figure](#fig:Information_Entropy_003) for the case of\n", "two outcomes. In other words,\n", "information entropy is maximized when the two\n", "conflicting alternatives are\n", "equally probable. This is the mathematical reason\n", "why using the scale in the\n", "last example to adjudicate equally probable\n", "situations was so useful for\n", "abbreviating the weighing process." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZyN9f//8cfLDJMluyiGka3sGjEYPqIQspO1+Fp+QiR8UlT25UNZJkphEJmvGEt2iTLhYyn7HopR37Jkb5iZ9++PM3zmI8uYOee8z/K6327nxplznXM9z9uY51zXua7rLcYYlFJKKU+TznYApZRS6m60oJRSSnkkLSillFIeSQtKKaWUR9KCUkop5ZECbQewJXfu3CYkJCTVz7969SqZM2d2XiAvpGOgY+Dv7x90DCDtY7Bz586zxpg8d37dbwsqJCSEHTt2pPr5GzdupGbNms4L5IV0DHQM/P39g44BpH0MROTnu31dd/EppZTySFpQSimlPJIWlFJKKY+kBaWUUsojaUEppZTySB5fUCIyU0R+F5F993hcRGSyiBwTkT0i8oy7MyqllHI+jy8oYBZQ7z6PvwgUS7p1Az52QyallFIu5vHnQRljvhORkPss0hiYYxzzhmwVkewi8rgx5le3BFTKhYwxXLx4kXPnznHu3DkuXLhAYmLiXZdNnz49OXPmJFeuXOTKlYvMmTMjIm5OrJTzeHxBpUB+4FSy+6eTvva3ghKRbji2ssibNy8bN25M9UqvXLmSpuf7Ah2DtI9BQkICv/32G6dOneL06dOcOnWK2NhY/vjjDy5dusSlS5fuWUgPkj59erJmzUrWrFnJmzcvBQoUIDg4+PafuXLlIl26tO1E0e8BHQNw3Rj4QkHd7VfEu87CaIz5FPgUoGLFiiYtZz7r2eM6BvBwYxAfH8+ePXvYsmULW7ZsYceOHfz000/Ex8ffXiZbtmyUKFGCSpUq3d4SSn7LkSMHgYF3/28bFxfH+fPnb29t3bqdPXuWEydOsGLFCq5fv357+UyZMt1eV5UqVahSpQrFihV7qK0u/R7QMQDXjYEvFNRpIDjZ/QLAGUtZlLrt+vXrbNy4kU2bNrF582a2b9/OtWvXAMiXLx+VK1emadOmFC9e/PYtd+7cLtstl5iYSGxsLEePHuXIkSMcOXKEffv2MX/+fKZNmwZArly5CAsLo0qVKtSsWZOwsDACAgJckkepB/GFgloG9BKRKKAycFE/f1K2nDlzhhUrVvDVV1/x9ddfc/36dQIDAylfvjydO3e+vaVSqFAht38+lC5dOoKDgwkODqZWrVq3v56YmMiBAwdub9lt2bKFFStWAI7Cql+/Pg0bNqRu3bpky5bNrZmVf/P4ghKR+UBNILeInAbeB9IDGGM+AVYC9YFjwDWgk52kyl8dOHCABQsWsHz5cnbu3AlAoUKF6Ny5Mw0bNqR69epkypTJcsp7S5cuHaVLl6Z06dJ07doVgPPnz/P111/z1VdfsWLFCj7//HMCAwOpUaMGL730Eq1ateKJJ56wnFz5Oo8vKGNMmwc8boCeboqjFOD4AR4VFUVERASHDh1CRKhSpQqjR4+mYcOGlCpVyquPoMuZMyetWrWiVatWJCQksHXrVr766iuWL19O37596devH3Xr1qVixYqEhYXxyCOP2I6sfJDHF5RSniI+Pp61a9cya9Ysli5dyo0bN3jyySeZMGECbdq0IW/evLYjukRAQADVqlWjWrVqjBkzhiNHjjBnzhxmz57NqlWriIiIoHXr1nTs2JFKlSp5dTErz+INJ+oqZdX58+cZPXo0BQsWpEGDBmzYsIHXXnuNH3/8kRkzZvDGG2/4bDndTfHixRkxYgQnT55k/PjxNGjQgNmzZxMWFkaZMmWYOXMmcXFxtmMqH6AFpdQ9nDhxgj59+lCwYEHeeecdypQpw+LFi4mNjWXixImUL1/edkSrAgICCA0NZe7cufz222989tlnBAYG0rlzZ0JCQhg1ahTnz5+3HVN5MS0ope6wfft2Xn75ZYoWLcrHH39MixYt2L17N2vWrKFJkyZkyJDBdkSPkzVrVrp06cKPP/7IunXrKFeuHIMGDSI4OJjevXtz4sQJ2xGVF9KCUirJtm3beP7556lUqRJr1qxhwIABnDhxglmzZlG2bFnb8byCiPD888+zevVqdu/eTcuWLfnkk08oWrQor7zyCidPnrQdUXkRLSjl9w4dOkTz5s2pXLkye/bsYfz48Zw6dYoxY8aQP39+2/G8VtmyZZk1axYnTpygb9++fPnllxQvXpw+ffrw+++/246nvIAWlPJbp06dokuXLpQqVYq1a9cydOhQfvrpJ/r168ejjz5qO57PyJ8/P+PHj+fo0aO8+uqrfPTRRxQpUoT333+fS5cu2Y6nPJgWlPI7f/75J/3796dYsWJ8/vnn9O7dm+PHj/Pee+9pMblQgQIF+Oyzz9i/fz/16tVj2LBhFClShIkTJ3Lz5k3b8ZQH0oJSfsMYw7x583jqqaf48MMPad26NYcPH2bChAnkyZPHdjy/8dRTT/Hll1+ybds2ypUrR9++fXnmmWeIiYmxHU15GC0o5RcOHz7M888/T/v27SlYsCDbt29n1qxZhISE2I7mt5599lm+/vprlixZwsWLF6levTqdO3fm7NmztqMpD6EFpXza9evXeffddylbtiw7d+5kypQpbNmyhdDQUNvRVJLGjRtz8OBB/vnPfzJnzhxKlCjBjBkzUj0PlvIdWlDKZ61Zs4bSpUszYsQIWrVqxaFDh+jRo4dOH+GBMmfOzNixY/nxxx8pVaoUXbp0oXr16uzbt892NGWRFpTyOVevXuW1116jXr16pE+fnvXr1/P555+TL18+29HUA5QuXZpvv/2WyMhIjhw5QmhoKB9++KFuTfkpLSjlU7Zt20aFChWYNm0a/fv3Z9euXf8195HyfCJCx44dOXDgAC+++CL9+vXj+eef55dffrEdTbmZFpTyCfHx8QwdOpSqVavy119/8c033zBu3DidBsKL5cmTh8WLFzNjxgy2b99O2bJlmTdvHo4ZdpQ/0IJSXu/o0aNUq1aNIUOG0Lp1a/bs2UPNmjVtx1JOICL8z//8D7t376ZUqVK0b9+eNm3a6EVo/YQWlPJqs2bNonz58hw9epSoqCjmzp1L9uzZbcdSTvbkk0/y7bffMmLECBYtWkTZsmXZtGmT7VjKxbSglFeKi4uje/fudOrUicqVK7N3715efvll27GUCwUGBjJo0CC2bt1KxowZqVWrFpMmTdJdfj5MC0p5ndOnT/OPf/yDadOm8c9//pO1a9fqRV39SGhoKDt27KB+/fq88cYbtG/fnqtXr9qOpVxAC0p5lQ0bNvDMM8+wf/9+Fi5cyNixYwkMDLQdS7lZtmzZWLx4MSNGjGD+/PlUqVKFY8eO2Y6lnEwLSnkFYwzjx4/nhRdeIGfOnGzbto3mzZvbjqUsSpcuHYMGDWLVqlXExsZSsWJFli9fbjuWciItKOXxrl27RuvWrRkwYACNGzdm27ZtPP3007ZjKQ9Rt25dduzYwZNPPslLL73EkCFD9HMpH6EFpTzaH3/8Qa1atfjyyy8ZM2YMCxcuJGvWrLZjKQ9TuHBhvv/+e1599VWGDh3Kq6++yo0bN2zHUmmkO++Vxzp69CgvvvgisbGxLFq0iKZNm9qOpDxYxowZiYyMpFixYgwePJjTp08THR2tpx14Md2CUh5p8+bNVKlShYsXL7JhwwYtJ5UiIsKgQYOYM2cOMTExhIeHc+rUKduxVCppQSmPs2jRImrXrk2OHDnYsmULYWFhtiMpL9OhQwdWr17NqVOnCAsLY9euXbYjqVTQglIeZeLEibRs2ZIKFSqwZcsWihYtajuS8lK1atXi+++/J126dFSvXp01a9bYjqQekhaU8gjGGPr370/fvn1p2rQp69evJ3fu3LZjKS9XunRptm7dSpEiRWjQoAGff/657UjqIWhBKesSExPp2bMnH3zwAb169WLBggVkzJjRdizlI/Lnz8+mTZuoWbMmr776KtOnT7cdSaWQFpSyKiEhgW7duvHxxx8zYMAAJk+erDPeKqd79NFH+eqrr6hXrx5du3ZlypQptiOpFNCCUtbEx8fTqVMnZsyYwbvvvsvYsWMREduxlI/KmDEjixcvpnHjxvTq1YsPP/zQdiT1AFpQyoqbN2/Srl07Pv/8c0aMGMGwYcO0nJTLBQUF8eWXX9KyZUv69evHqFGjbEdS9+EVJ+qKSD1gEhAATDfGjLnj8WzAXKAgjvc03hgT6fagKkXi4uJo3bo1S5YsYdy4cfTv3992JOVH0qdPzxdffEGGDBkYNGgQcXFxDBkyRH9B8kAeX1AiEgBMAV4ATgPbRWSZMeZAssV6AgeMMS+JSB7gsIjMM8botU48zF9//UXz5s1ZuXIlERER9OrVy3Yk5YcCAwOZPXs2QUFBDBs2jLi4OEaPHq0l5WE8vqCASsAxY8xxABGJAhoDyQvKAI+K47srC3AeiHd3UHV/8fHxtG7dmpUrVzJt2jS6detmO5LyYwEBAXz22WcEBQUxduxYMmbMyPvvv287lkpGPP2qvyLSAqhnjOmSdL8DUNkY0yvZMo8Cy4CngEeBl40xK+7yWt2AbgB58+YNjYqKSnWuK1eukCVLllQ/3xc8zBgkJiYyZswY1q1bR+/evX3m0kX+/n3gC+8/MTGRcePGsXr1anr27EmLFi0e6vm+MAZpldYxeO6553YaYyr+7QFjjEffgJY4Pne6db8DEHHHMi2ACYAARYETQNb7vW5oaKhJiw0bNqTp+b4gpWOQmJhoXn/9dQOY4cOHuzaUm/n794GvvP+bN2+aZs2aGcBERkY+1HN9ZQzSIq1jAOwwd/k57Q1H8Z0GgpPdLwCcuWOZTkB00ns9hqOgnnJTPvUAQ4YMISIigjfffJNBgwbZjqPU3wQGBvLFF1/wwgsv0LlzZ6Kjo21HUnjHYebbgWIiUlhEMgCtcezOS+4XoDaAiOQFSgDH3ZpS3dWECRMYNmwYnTt3Zvz48fohtPJYQUFBLF68mMqVK9OmTRu+/vpr25H8nscXlDEmHugFrAEOAguMMftFpLuIdE9abDhQVUT2AuuBt4wxZ+0kVrfMnDmTN998kxYtWjBt2jQtJ+XxMmfOzIoVK3jqqado0qQJW7dutR3Jr3nDUXwYY1YCK+/42ifJ/n4GqOPuXOreFi1aRNeuXalTpw5z587Vyxcpr5EjRw7WrFlD9erVefHFF/n2228pW7as7Vh+yeO3oJT32bx5M+3atSMsLIzo6GiCgoJsR1LqoeTLl49169aROXNm6tevz5kzd37srdxBC0o51fHjx2nSpAnBwcEsW7aMzJkz246kVKqEhISwYsUKLl68yEsvvcTVq1dtR/I7WlDKaf78808aNmxIfHw8K1asIFeuXLYjKZUm5cqVIyoqil27dtG+fXsSExNtR/IrWlDKKW7evEmrVq04evQo0dHRFC9e3HYkpZyiQYMGTJgwgSVLljBw4EDbcfyKVxwkoTybMYbXX3+ddevWMXPmTGrWrGk7klJO9frrr3P48GHGjRtH8eLF6dKli+1IfkELSqXZxIkTmTZtGgMHDqRTp0624yjldCLCpEmTOH78OK+99hqFCxemdu3atmP5PN3Fp9Jk2bJl9OvXj+bNmzNy5EjbcZRymcDAQKKioihRogTNmzfn0KFDtiP5PC0olWrHjh2jbdu2hIaGMmfOHNKl028n5duyZcvG8uXLCQoKokGDBpw9q9cDcCX9iaJS5cKFC7z33ntkz56dZcuWkSlTJtuRlHKLkJAQli5dyunTp2nXrh0JCQm2I/ksLSj10BITE+nQoQN//PEHCxcu5PHHH7cdSSm3CgsLIyIigrVr1zJnzhzbcXyWFpR6aKNHj2bFihX06NGDsLAw23GUsqJr1668+uqrzJkzh5UrVz74CeqhaUGph7Ju3Treffdd2rZtS5MmTWzHUcoaEWHq1KkUKVKE9u3bc/LkSduRfI4WlEqxX375hTZt2lCyZEk+/fRTvTq58nuZMmVi6NChJCYm0qJFC/766y/bkXyKFpRKkbi4OFq2bMmNGzdYtGiRXmNPqST58+dnzpw57Ny5k969e9uO41O0oFSKvPnmm2zbto3IyEhKlChhO45SHqVRo0a8/fbbfPbZZ0RGRtqO4zO0oNQDzZ07l6lTp9K/f3+aN29uO45SHmn48OHUrl2bHj16sGvXLttxfIIWlLqvQ4cO0a1bN2rUqMHo0aNtx1HKYwUEBPDFF1+QK1cuWrRoweXLl21H8npaUOqebty4Qbt27ciUKRPz588nMFAv3ajU/Tz22GNERUVx4sQJ3njjDdtxvJ4WlLqn999/nx9++IHp06fzxBNP2I6jlFcIDw/n7bffZubMmSxatMh2HK+mBaXuauPGjYwdO5YuXbro+U5KPaT333+fZ599lq5duxIbG2s7jtfSglJ/c+HCBV555RWKFCnChAkTbMdRyuukT5+euXPnEhcXx6uvvqoz8aaSFpT6L8YYevTowZkzZ5g3bx5ZsmSxHUkpr1S8eHEmTpzI+vXrmThxou04XkkLSv2XefPmERUVxZAhQ6hUqZLtOEp5tS5dutC4cWPefvttdu/ebTuO19GCUredPHmSnj173v6QVymVNiLC9OnTyZkzJ23btuX69eu2I3kVLSgFQEJCAh06dADg888/JyAgwHIipXxD7ty5mT17NgcOHOCtt96yHceraEEpAP71r38RExPDlClTCAkJsR1HKZ9Sp04d+vTpQ0REBGvWrLEdx2toQSkOHjzIkCFDaNmyJe3atbMdRymfNGbMGJ5++mm6deumV5lIIS0oP5eYmEiXLl3IkiULH330kU6hoZSLPPLII8yYMYNTp04xaNAg23G8ghaUn5s6dSqbN29mwoQJPPbYY7bjKOXTqlSpQq9evfjoo4/YvHmz7TgeTwvKj/3888+8/fbb1K1b9/YBEkop1xo1ahTBwcF07txZJzh8AC0oP2WMoXv37hhjmDZtmu7aU8pNsmTJwqeffsqhQ4cYOXKk7TgeLc0FJSKZReRJEakkIv8QkdIiks8Z4ZTrzJs3j9WrVzNq1CgKFSpkO45SfuXWXosxY8awZ88e23E81kMXlIgEiEhjEZkiInuAi8BRYAvwDbAbiBWR8yLylYj8U0QKpyWkiNQTkcMickxEBt5jmZoisktE9ovIt2lZn6/7/fffeeONN6hSpQo9e/a0HUcpvzRhwgRy5MhB586diY+Ptx3HI6W4oESkkIiMA2KBaOA1oHTSa8hdbtmBBsBo4KiIrBORVg8bUEQCgCnAi0BJoI2IlLxjmezAVKCRMaYU0PJh1+NP+vTpw+XLl5k+fbqekKuUJbly5SIiIoIdO3YwadIk23E80gMLSkTyiMhk4DDQD3gM2IOjEP4HCAUKAVmBDEBe4CmgHvAu8BVwFagNzBeRPSLy0kNkrAQcM8YcN8bcAKKAxncs0xaINsb8AmCM+f0hXt+vLF++nKioKAYPHkzJkiUf/ASllMu0atWKRo0a8e677/LTTz/ZjuNxxBhz/wVELgOZgRPAbGC+MeboQ61EJAhoiKNIGuEoxgHGmA9T8NwWQD1jTJek+x2AysaYXsmWmQikB0oBjwKTjDFz7vJa3YBuAHnz5g2Niop6mLfxX65cueJ1V/q+evUqHTt25NFHH2XatGmkT58+Ta/njWPgbP4+Bv7+/iHtY/DHH3/QqVMnihcvzgcffOCVByyldQyee+65ncaYin97wBhz3xtwEHgFCHjQsim5AUWB6cDAFC7fEpie7H4HIOKOZT4CtuIo0tw4PhMrfr/XDQ0NNWmxYcOGND3fhn79+hkRMVu3bnXK63njGDibv4+Bv79/Y5wzBh9//LEBzPz589MeyIK0jgGww9zl53RKPoMqaYyZY4xJSHU9/nchHjOOraGxKXzKaSA42f0CwJm7LLPaGHPVGHMW+A4ol+awPuTgwYNMmjSJzp07U7lyZdtxlFLJdO3alWeeeYb+/ftz5coV23E8xgMLKqndnO4hXnc7UExECotIBqA1sOyOZZYC1UUkUEQyAZVxbPkpHFvJffr0IXPmzIwaNcp2HKXUHQICAoiIiCA2Nlb/jybjjPOgRETyiUheEXH6ib/GmHigF7AGR+ksMMbsF5HuItI9aZmDwGocB29sw7FLcJ+zs3irpUuXsm7dOoYNG0aePHlsx1FK3UXVqlXp0KEDH3zwAceOHbMdxyOkulBEpJiILAAu4Tj0/AxwQ0R2i8iotJ77lJwxZqUxprgxpogxZmTS1z4xxnySbJlxxpiSxpjSxhidXznJ9evX6du3L6VLl6ZHjx624yil7mPs2LEEBQXRt29f21E8QqoKSkRK4dhSaY7jwIRb5z6lA8oAbwGHRGSqiGR0UlaVCuPGjePkyZNMnjyZwMBA23GUUvfx+OOP895777F8+XJWrlxpO451qd2CGg1kA64Bw4AwHOdCVQC6AmuBAOD/AdtEJPger6Nc6Oeff2b06NG0bNmS5557znYcpVQK9O7dmxIlSvDGG28QFxdnO45VqS2o6oABuhhjhhhjthljThljdhtjZhhjXsRRVjtxnJu0KulcKOVG/fv3R0QYP3687ShKqRTKkCEDEydO5OjRo0yc6N+fVqS2oIKAG8DCey1gjNkL1MBxFN7TwBupXJdKhfXr17Nw4ULefvttChYsaDuOUuoh1KtXj0aNGjF8+HBiY2Ntx7EmtQUVCyQ+6NwoY8xfOIpJgDapXJd6SDdv3qRPnz4ULlyYAQMG2I6jlEqFCRMmEB8fz1tvvWU7ijWpLahvgEdEpPaDFjTGbAGuA8VSuS71kKZOncr+/fuZMGECjzzyiO04SqlUePLJJxkwYADz5s0jJibGdhwrUltQY4E4YLKIZLvfgiISCAQCenq0G1y4cIEhQ4ZQp04dGjVqZDuOUioNBg4cSIECBejbty8uumaCR0ttQXUEZuH4bClGRCrdZ9mXcVzIVedocoOxY8dy8eJFxo0b55UXnVRK/UfmzJkZPnw4O3bsYNGiRbbjuF1qC2owjkPIDY45mraIyHci0jfZrLo1RWQU8CnwB/COcyKre4mNjWXSpEm0bduWsmXL2o6jlHKCDh06ULJkSQYNGuR3ExumtqC+AA4ACfznJN1wYDz/mVV3PY4TduOA/jhm3lUuNHToUBISEhg+fLjtKEopJwkICGDUqFEcOXKEyMhI23HcKlUFZYxpb4wpA2QBKgKdgQggBselj+6cWXcW8JuInBGR1SIyVkTaiUgZJ7wHBRw+fJiZM2fSvXt3Chd22lWmlFIeoFGjRlStWpUhQ4Zw7do123HcJk3XvjGOGW5/SLrdJiIhOKa7KJ/szxAgX9LthVsvkdYMymHw4MFkzJiRwYMH246ilHIyEWHMmDHUqFGDiIgIvzn03OlXHwcwxpw0xiw1xgw1xjQzxjyJY0vqH0AfIBLYBdx0xfr9zfbt21m4cCH9+vXjsccesx1HKeUC1atXp0GDBowZM4YLFy7YjuMWLimouzHGXDLGbDLGRBhjuhhjQnHsIlRpYIxh4MCB5M6dm379+tmOo5RyoVGjRnHx4kXGjBljO4pbPLCgRORJZ69URNKJSEFnzdLrz9atW8c333zD4MGDefTRR23HUUq5UNmyZWnXrh2TJ0/2i0sgpWQL6pCIzBaREmldmYikF5FuwFEc51KpNEhMTGTgwIGEhITQvXt323GUUm4wbNgwEhISGDp0qO0oLpeSgtoGdAD2i8gGEfl/IpIrpStImnH3ORGZhmNSw4+BPDgORVdpsGDBAn788UeGDRtGUJBeLF4pf1C4cGFee+01Zs6cyeHDh23HcakHHkFnjAkXkUbAKBwHOdQApojIURzTaewBzgIXcFzhPDuQAyiM4xD0CvxnUsObwBRguDHmD6e/Gz9y48YNBg8eTJkyZWjbtq3tOEopNxo0aBAzZ85k0KBBLFx4z0klvF6KDvE2xiwTka+AekAXoCFQIul2v6uU37rWznFgJhBpjPk19XHVLZGRkfz0008sX76cgIAA23GUUm702GOP0b9/f4YMGcLOnTsJDQ21HcklUnwUn3FYZYxpDjwOtAQmAluAkzguBnsT+D9gPxANvAlUMsYUNcaM0nJyjps3bzJmzBgqV65M/fr1bcdRSlnQt29fsmfPzsiRI21HcZlUnSRrjDkPLEq6KTf74osvOHnyJJMnT9YLwirlp7JmzUrv3r0ZNmwY+/bto3Tp0rYjOZ3bzoNSzpGQkMDo0aMpV64cDRs2tB1HKWVR7969yZIlC6NHj7YdxSVSVFAi8pKIBLs6jHqwRYsWcfjwYQYNGqRbT0r5uVy5cvHaa68RFRXFsWPHbMdxupRuQS0FTorIWRH5WkTGJV3staSI6FaYmxhjGDlyJCVKlKBZs2a24yilPMCbb75JhgwZfPLqEg9TLgLkBGrhOPhhDrAXuCIi/xaRaSLymoiEiUgmF2T1e8uXL2fPnj288847euSeUgqAfPny0aVLF2bPns0vv/xiO45TpbSgcgF1cEw6uAj4hf9Mp/EI8CyOw88/Ar4HLonIQRGZLyL/FJE6IqJXMU2DW1tPISEhtGlzvyP7lVL+ZsCAAYgI//rXv2xHcaoUFZQx5oIx5mtjzBhjTEtjTGEgN47zosAxbcZR/jOBYToc50i1AkYDq3BcRUKl0vr16/n3v//NwIEDSZ8+ve04SikPUrBgQV555RWmT5/Ob7/9ZjuO06T68yNjzHljzNpkX6oEPMp/JjCcDHwH/Ml/trZUKo0cOZInnniCjh072o6ilPJAAwcO5ObNm3zwwQe2oziNUw9wMMbEGWN+MMZEGmPeMMY8Z4zJBRQCGjtzXf7k+++/Z+PGjQwYMECvuaeUuquiRYvSunVrPv74Y86dO2c7jlO45Qg8Y8wpY8xyd6zLF40cOZLcuXPTtWtX21GUUh7snXfe4erVq0yaNMl2FKfQQ8Q93A8//MCqVat48803yZw5s+04SikPVqpUKZo2bUpERAQXL160HSfNvKKgRKSeiBwWkWMiMvA+yz0rIgki0gv7SpAAABQSSURBVMKd+Vxp5MiRZM+enZ49e9qOopTyAoMGDeLPP/9k6tSptqOkmccXlIgE4Jii40WgJNBGREreY7mxwBr3JnSdo0ePsnjxYnr16kXWrFltx1FKeYHQ0FDq1avHxIkTiYuLsx0nTVJ6qaMWIlLY1WHuoRJwzBhz3BhzA4ji7gdcvI7jHK3f3RnOlT766CMCAwN160kp9VD69u3L77//zoIFC2xHSZOUbkEtAI6JyDkRWSciY0SkpYgUcWW4JPmBU8nun0762m0ikh9oCnzihjxucenSJSIjI2ndujX58uWzHUcp5UVeeOEFnn76aSZNmoQxxnacVEvpdBsGx3lMOYDaOC53lPwxgDEisgPHDLv7jDF/OSnj3c6funPEJwJvGWMS7ncBVRHpBnQDyJs3Lxs3bkx1qCtXrqTp+Q+yaNEiLl++TNWqVV26nrRw9Rh4A38fA39//+C5Y1C3bl0mTpzIlClTXD4Vh8vGwBjzwBuQCQgDXgM+BbYB14DEZLeEZLebwEEcu+PeARoAwSlZ113WXQVYk+z+28DbdyxzAsekiSdxTJz4O9Dkfq8bGhpq0mLDhg1pev79JCQkmKJFi5oqVaq4bB3O4Mox8Bb+Pgb+/v6N8dwxuHz5ssmWLZt5+eWXXb6utI4BsMPc5ed0Sqd8vwZsTboBtw9KeBooD1RIupXDsZUVgONSR8VxzLwLjq2e1EyQuB0olvQZWCzQGmh7R77bn4+JyCxguTFmSSrW5RFWrVrFsWPHGDFihO0oSikvlSVLFrp06cLEiRM5ffo0BQoUsB3poaXlUkcJxph9xpi5xph+xphaxnHViMJAM2AYsBxHqaT6UkfGmHigF46j8w4CC4wx+0Wku4h0T21+TzZ58mSeeOIJnVJDKZUmPXv2xBjDxx9/bDtKqqRqyvf7Mcb8DPwM3N6CEZGcOLawUvuaK4GVd3ztrgdEGGM6pnY9nuDgwYOsXbuWESNG6EVhlVJpUrhwYRo1asS0adMYPHgwGTNmtB3pobjrUkfnjTHr3bEubxcREUFQUBDdunWzHUUp5QN69+7NuXPnmD9/vu0oD83jT9T1J3/++SezZ8+mbdu25MmTx3YcpZQPqFmzJmXKlGHy5Mled8i5FpQHmTFjBteuXaN37962oyilfISI0Lt3b3bv3s13331nO85D0YLyEAkJCXz00UfUqFGD8uXL246jlPIhbdu2JWfOnEyePNl2lIeiBeUhli9fzsmTJ3XrSSnldJkyZaJbt24sWbKEn3/+2XacFNOC8hCTJk2iYMGCNG6s8zoqpZyvR48eiAhTpkyxHSXFtKA8wN69e9mwYQM9e/YkMNDpR/4rpRTBwcE0a9aMzz77jKtXr9qOkyJaUB5gypQpZMyYkS5dutiOopTyYb179+bPP//0mkPOtaAsu3btGvPnz6dly5bkzJnTdhyllA+rVq0aJUuWZObMmbajpIgWlGWLFy/m0qVLdOrUyXYUpZSPExE6derEli1bOHTokO04D6QFZVlkZCSFCxemRo0atqMopfxA+/btCQgIYNasWbajPJAWlEU///wz33zzDR07diRdOv2nUEq5Xr58+ahfvz5z5swhPj7edpz70p+KFs2ePRtjDK+88ortKEopP9KxY0d+/fVX1q5dazvKfWlBWZKYmMisWbOoVasWISEhtuMopfxIw4YNyZ07N5GRkbaj3JcWlCXfffcdJ06c0IMjlFJulyFDBtq1a8eyZcs4d+6c7Tj3pAVlSWRkJFmzZtVJCZVSVnTq1IkbN2549DlRWlAWXL58mYULF/Lyyy+TKVMm23GUUn6oXLlyVKhQwaN382lBWbBgwQKuXbumu/eUUlZ16tSJH374gT179tiOcldaUBZERkZSokQJwsLCbEdRSvmxtm3bkiFDBo/ditKCcrMjR47w/fff06lTJ0TEdhyllB/LlSsXjRo1Yu7cudy4ccN2nL/RgnKz2bNnky5dOjp06GA7ilJK0alTJ86ePcuKFStsR/kbLSg3SkhIYPbs2dStW5cnnnjCdhyllKJOnTo8/vjjHrmbTwvKjb7++mtiY2P14AillMcIDAykQ4cOrFy5kv/7v/+zHee/aEG5UWRkJDlz5qRRo0a2oyil1G2dOnUiISGBuXPn2o7yX7Sg3OTChQssWbKEtm3bEhQUZDuOUkrd9tRTTxEWFkZkZCTGGNtxbtOCcpOlS5cSFxenF4ZVSnmkV155hf3793PgwAHbUW7TgnKT6OhogoODqVixou0oSin1N02aNEFEiI6Oth3lNi0oN7h8+TJr166lWbNmeu6TUsojPf7441StWlULyt+sWrWKuLg4vTCsUsqjNWvWjF27dnH8+HHbUQAtKLeIjo4mT548VKtWzXYUpZS6p6ZNmwKwePFiy0kctKBc7K+//mLFihU0adKEgIAA23GUUuqeChcuTIUKFTxmN58WlIutX7+eK1eu6O49pZRXaNasGZs3b+bXX3+1HcU7CkpE6onIYRE5JiID7/J4OxHZk3TbLCLlbOS8m+joaLJmzUqtWrVsR1FKqQe69cv0kiVLLCfxgoISkQBgCvAiUBJoIyIl71jsBPAPY0xZYDjwqXtT3l18fDxLly7lpZdeIkOGDLbjKKXUAz399NOUKFHCI3bzeXxBAZWAY8aY48aYG0AU0Dj5AsaYzcaYC0l3twIF3JzxrjZt2sS5c+d0955SymuICM2aNWPDhg2cP3/eapZAq2tPmfzAqWT3TwOV77N8Z2DV3R4QkW5AN4C8efOycePGVIe6cuXKA58fERFBUFAQGTNmTNO6PFVKxsDX+fsY+Pv7B98cg0KFCpGQkMC//vUv6tWr98DlXTYGxhiPvgEtgenJ7ncAIu6x7HPAQSDXg143NDTUpMWGDRvu+3hCQoLJnz+/adq0aZrW48keNAb+wN/HwN/fvzG+OQaJiYkmODjYNGrUKEXLp3UMgB3mLj+nvWEX32kgONn9AsCZOxcSkbLAdKCxMeacm7Ld0/bt24mNjdXde0opr3NrN9+aNWu4cuWKtRzeUFDbgWIiUlhEMgCtgWXJFxCRgkA00MEYc8RCxr+Jjo4mMDCQhg0b2o6ilFIPrVmzZsTFxbF69WprGTy+oIwx8UAvYA2O3XcLjDH7RaS7iHRPWuw9IBcwVUR2icgOS3EBx27T6OhoateuTfbs2W1GUUqpVKlWrRp58uSxejSfNxwkgTFmJbDyjq99kuzvXYAu7s51L/v27ePYsWP079/fdhSllEqVgIAAGjduzP/+7/8SFxdnZR47j9+C8kbR0dGICI0bN37wwkop5aGaNWvG5cuXWb9+vZX1a0G5wOLFi6lWrRr58uWzHUUppVKtVq1aZM2a1dpuPi0oJ/vpp5/YvXu3Hr2nlPJ6QUFBNGzYkKVLlxIfH+/29WtBOdmty9Tfumy9Ukp5s2bNmnH27FliYmLcvm4tKCdbsmQJFSpUICQkxHYUpZRKs3r16vHII49YuXisFpQTXb9+nW3btlGnTh3bUZRSyikyZ85MtWrV+Pbbb92+bi0oJ9q2bRs3b94kPDzcdhSllHKa8PBw9uzZw8WLF926Xi0oJ7q1j1andldK+ZLq1auTmJjI1q1b3bpeLSgniomJoXTp0uTIkcN2FKWUcprKlSsTEBDg9gMltKCcJCEhgc2bN+vuPaWUz8mSJQsVKlRg06ZNbl2vFpST7N27l0uXLmlBKaV8Unh4OP/+97+5ceOG29apBeUktzZ9taCUUr4oPDycv/76ix9++MFt69SCcpKYmBiCg4MpVKiQ7ShKKeV0t375dufnUFpQTmCMYdOmTbr1pJTyWXnz5qVYsWJaUN7m5MmTnDlzRgtKKeXTwsPDiYmJITEx0S3r04JyAv38SSnlD8LDwzl37hyHDx92y/q0oJwgJiaGbNmyUbp0adtRlFLKZapXrw6473MoLSgniImJoVq1aqRLp8OplPJdRYsW5bHHHtOC8hbnzp3jwIEDuntPKeXzRITw8HC3nbCrBZVG33//PaCfPyml/EN4eDgnTpwgNjbW5evSgkqjmJgYMmTIwLPPPms7ilJKudytX8Zv/XLuSlpQaRQTE8Ozzz7LI488YjuKUkq5XIUKFcicObNbPofSgkqD69evs2PHDt29p5TyG4GBgYSFhbnlcygtqDTQCQqVUv7IXRMYakGlwa1N3KpVq1pOopRS7hMeHu6WCQy1oNIgJiaGUqVKkTNnTttRlFLKbcLCwtwygaEWVCrdmqDw1pnVSinlL25NYKgF5aFOnDihExQqpfxWeHg4W7dudekEhlpQqbR3715AT9BVSvknd0xgqAWVSnv37qVAgQIULFjQdhSllHI7d0xgqAWVCsYY9u7dS/Xq1RER23GUUsrt3DGBoRZUKpw8eZKzZ8/q7j2llF9z9QSGXlFQIlJPRA6LyDERGXiXx0VEJic9vkdEnnFlHp2gUCml/jOB4alTp1zy+h5fUCISAEwBXgRKAm1EpOQdi70IFEu6dQM+dmWmMmXK0LZtW0qVKuXK1SillEerXbs2Q4cOJVOmTC55fY8vKKAScMwYc9wYcwOIAhrfsUxjYI5x2ApkF5HHXRWofPnydO3alYCAAFetQimlPF6hQoV47733yJMnj0teP9Alr+pc+YHk24+ngcopWCY/8GvyhUSkG44tLPLmzcvGjRtTHerKlStper4v0DHQMfD39w86BuC6MfCGgrrbYXImFctgjPkU+BSgYsWKpmbNmqkOtXHjRtLyfF+gY6Bj4O/vH3QMwHVj4A27+E4DwcnuFwDOpGIZpZRSXsQbCmo7UExECotIBqA1sOyOZZYBryQdzRcGXDTG/HrnCymllPIeHr+LzxgTLyK9gDVAADDTGLNfRLonPf4JsBKoDxwDrgGdbOVVSinlHB5fUADGmJU4Sij51z5J9ncD9HR3LqWUUq7jDbv4lFJK+SEtKKWUUh5JHHvH/I+I/AH8nIaXyA2cdVIcb6VjoGPg7+8fdAwg7WNQyBjzt7N9/bag0kpEdhhjKtrOYZOOgY6Bv79/0DEA142B7uJTSinlkbSglFJKeSQtqNT71HYAD6BjoGPg7+8fdAzARWOgn0EppZTySLoFpZRSyiNpQSmllPJIWlAP4GnTzbtbCt5/u6T3vUdENotIORs5XelBY5BsuWdFJEFEWrgznzukZAxEpKaI7BKR/SLyrbszuloK/i9kE5GvRGR30hj41DVBRWSmiPwuIvvu8bjzfxYaY/R2jxuOi9P+BDwJZAB2AyXvWKY+sArHnFRhwL9t53bz+68K5Ej6+4u+9P5TOgbJlvsGxzUjW9jObeH7IDtwACiYdP8x27ktjME7wNikv+cBzgMZbGd34hjUAJ4B9t3jcaf/LNQtqPvzuOnm3eyB798Ys9kYcyHp7lYcc3H5kpR8DwC8DiwCfndnODdJyRi0BaKNMb8AGGN8bRxSMgYGeFREBMiCo6Di3RvTdYwx3+F4T/fi9J+FWlD3d6+p5B92GW/1sO+tM47foHzJA8dARPIDTYFP8E0p+T4oDuQQkY0islNEXnFbOvdIyRh8BDyNY7LUvUAfY0yie+J5BKf/LPSK6TYsctp0814qxe9NRJ7DUVDhLk3kfikZg4nAW8aYBMcvzz4nJWMQCIQCtYGMwBYR2WqMOeLqcG6SkjGoC+wCagFFgHUisskYc8nV4TyE038WakHdn79PN5+i9yYiZYHpwIvGmHNuyuYuKRmDikBUUjnlBuqLSLwxZol7IrpcSv8fnDXGXAWuish3QDnAVwoqJWPQCRhjHB/IHBORE8BTwDb3RLTO6T8LdRff/fn7dPMPfP8iUhCIBjr40G/LyT1wDIwxhY0xIcaYEGAh0MOHyglS9v9gKVBdRAJFJBNQGTjo5pyulJIx+AXHFiQikhcoARx3a0q7nP6zULeg7sP4+XTzKXz/7wG5gKlJWxDxxoeu7JzCMfBpKRkDY8xBEVkN7AESgenGmLsejuyNUvh9MByYJSJ7cezuessY4zPTcIjIfKAmkFtETgPvA+nBdT8L9VJHSimlPJLu4lNKKeWRtKCUUkp5JC0opZRSHkkLSimllEfSglJKKeWRtKCUUkp5JC0opZRSHkkLSimllEfSglLKi4jIXBExIjJCRIqIyLSkCeKui8ifSRPmlbadUyln0EsdKeVdyif9mQvYBzwC/IXjl81sQEOghohUMsYcthNRKefQLSilvISIBOG4AClAd+BnHFM8ZMIxQV5b4CqQFRhpI6NSzqTX4lPKS4hIKLAj6e5BoFqy2YxvLTMUxwV8rwFZjTEJ7k2plPPoFpRS3qNcsr93vrOckqxM+jMTkNf1kZRyHS0opbzHrc+fvjfGbLnHMsnn39HdI8qraUEp5T1uFdTi+yyTM+lPA/zh2jhKuZYWlFLeo2zSnz/cZ5lbk0XuN8bEuziPUi6lBaWUFxCRwjgOIwc4d59Fmyf9ufI+yyjlFbSglPIOyQ+QyH23BUSkDFAHiAc+dUcopVxJC0op71A+2d/r3PmgiGQEZuD4Pz3TGPOTu4Ip5SpaUEp5h1tbUBeB3iLSXkTSA4hIFWAj8CyO86PetJJQKSfTE3WV8gIicgIIAToC43Hs5ruJY3dexqTFDgH1jDE/W4iolNNpQSnl4UQkG/Bn0t18OA6WGAX8A8cljo4CUcAEY8x1KyGVcgEtKKU8nIjUAL4F/s8Yk892HqXcRT+DUsrz3TpAYo/VFEq5mRaUUp7v1gESu62mUMrNtKCU8ny6BaX8khaUUh5MRAKBUkl3taCUX9GDJJRSSnkk3YJSSinlkbSglFJKeSQtKKWUUh5JC0oppZRH0oJSSinlkbSglFJKeSQtKKWUUh7p/wMIps6/pYTMyAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "from matplotlib.pylab import subplots\n", "import numpy as np\n", "p = np.linspace(0.001,1-.001,50)\n", "fig,ax=subplots()\n", "#fig.set_size_inches((14,7))\n", "_=ax.plot(p,p*np.log2(1/p)+(1-p)*np.log2(1/(1-p)),'k-')\n", "_=ax.set_xlabel('$p$',fontsize=24)\n", "_=ax.set_ylabel('$H(p)$',fontsize=24)\n", "_=ax.grid()\n", "fig.tight_layout()\n", "fig.savefig('fig-probability/information_entropy_003.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "

The information entropy is maximized\n", "when $p=1/2$.

\n", "\n", "\n", "\n", "\n", "\n", "Most importantly, the concept of entropy\n", "extends jointly as follows,\n", "\n", "$$\n", "H(X,Y) = \\sum_{x,y} P(x,y) \\log_2 \\frac{1}{P(x,y)}\n", "$$\n", "\n", " If and only if $X$ and $Y$ are independent, entropy becomes\n", "additive,\n", "\n", "$$\n", "H(X,Y) = H(X)+H(Y)\n", "$$\n", "\n", "## Kullback-Leibler Divergence\n", "\n", "Notions of information entropy lead to notions\n", "of distance between probability\n", "distributions that will become important for\n", "machine learning methods. The\n", "Kullback-Leibler divergence between two\n", "probability distributions $P$ and $Q$\n", "that are defined over the same set is\n", "defined as,\n", "\n", "$$\n", "D_{KL}(P,Q) = \\sum_x P(x) \\log_2 \\frac{P(x)}{Q(x)}\n", "$$\n", "\n", " Note that $D_{KL}(P,Q) \\ge 0$ with equality if and only if $P=Q$.\n", "Sometimes the\n", "Kullback-Leibler divergence is called the Kullback-Leibler\n", "distance, but it is\n", "not formally a distance metric because it is asymmetrical\n", "in $P$ and $Q$. The\n", "Kullback-Leibler divergence defines a relative entropy as\n", "the loss of\n", "information if $P$ is modeled in terms of $Q$. There is an\n", "intuitive way to\n", "interpret the Kullback-Leibler divergence and understand its\n", "lack of symmetry.\n", "Suppose we have a set of messages to transmit, each with a\n", "corresponding\n", "probability $\\lbrace\n", "(x_1,P(x_1)),(x_2,P(x_2)),\\ldots,(x_n,P(x_n)) \\rbrace$.\n", "Based on what we know\n", "about information entropy, it makes sense to encode the\n", "length of the message\n", "by $\\log_2 \\frac{1}{p(x)}$ bits. This parsimonious\n", "strategy means that more\n", "frequent messages are encoded with fewer bits. Thus, we\n", "can rewrite the entropy\n", "of the situation as before,\n", "\n", "$$\n", "H(X) = \\sum_{k} P(x_k) \\log_2 \\frac{1}{P(x_k)}\n", "$$\n", "\n", " Now, suppose we want to transmit the same set of messages, but with a\n", "different\n", "set of probability weights, $\\lbrace\n", "(x_1,Q(x_1)),(x_2,Q(x_2)),\\ldots,(x_n,Q(x_n)) \\rbrace$. In this situation, we\n", "can define the cross-entropy as\n", "\n", "$$\n", "H_q(X) = \\sum_{k} P(x_k) \\log_2 \\frac{1}{Q(x_k)}\n", "$$\n", "\n", " Note that only the purported length of the encoded message has\n", "changed, not the\n", "probability of that message. The difference between these two\n", "is the Kullback-\n", "Leibler divergence,\n", "\n", "$$\n", "D_{KL}(P,Q)=H_q(X)-H(X)=\\sum_x P(x) \\log_2 \\frac{P(x)}{Q(x)}\n", "$$\n", "\n", " In this light, the Kullback-Leibler divergence is the average\n", "difference in the\n", "encoded lengths of the same set of messages under two\n", "different probability\n", "regimes. This should help explain the lack of symmetry of\n", "the Kullback-Leibler\n", "divergence --- left to themselves, $P$ and $Q$ would\n", "provide the optimal-length\n", "encodings separately, but there can be no necessary\n", "symmetry in how each regime\n", "would rate the informational value of each message\n", "($Q(x_i)$ versus $P(x_i)$).\n", "Given that each encoding is optimal-length in its\n", "own regime means that it must\n", "therefore be at least sub-optimal in another,\n", "thus giving rise to the Kullback-\n", "Leibler divergence. In the case where the\n", "encoding length of all messages\n", "remains the same for the two regimes, then the\n", "Kullback-Leibler divergence is\n", "zero [^Mackay].\n", "\n", "[^Mackay]: The best, easy-to-understand presentation of this\n", "material is chapter\n", "four of Mackay's text\n", "[[mackay2003information]](#mackay2003information). Another good reference is\n", "chapter four of [[hastie2013elements]](#hastie2013elements).\n", "\n", "\n", "## Cross-Entropy\n", "as Maximum Likelihood\n", "\n", "\n", "\n", "Reconsidering maximum\n", "likelihood from our statistics chapter in more \n", "general terms, we have\n", "\n", "$$\n", "\\theta_{\\texttt{ML}} =\\argmax_{\\theta} \\sum_{i=1}^n \\log\n", "p_{\\texttt{model}}(x_i;\\theta)\n", "$$\n", "\n", " where $p_{\\texttt{model}}$ is the assumed underlying probability\n", "density\n", "function parameterized by $\\theta$ for the $x_i$ data elements.\n", "Dividing the\n", "above summation by $n$ does not change the derived optimal values,\n", "but it allows\n", "us to rewrite this using the empirical density function for $x$\n", "as the\n", "following,\n", "\n", "$$\n", "\\theta_{\\texttt{ML}} = \\argmax_{\\theta} \\mathbb{E}_{x\\sim\n", "\\hat{p}_{\\texttt{data}}}(\\log p_{\\texttt{model}}(x_i;\\theta))\n", "$$\n", "\n", " Note that we have the distinction between $p_{\\texttt{data}}$ and\n", "$\\hat{p}_{\\texttt{data}}$ where the former is the unknown distribution of\n", "the data and the latter is the estimated distribution of the data we have on\n", "hand.\n", "\n", "The cross-entropy can be written as the following,\n", "\n", "$$\n", "D_{KL}(P,Q) = \\mathbb{E}_{X\\sim P}(\\log P(x))-\\mathbb{E}_{X\\sim P}(\\log Q(x))\n", "$$\n", "\n", " where $X\\sim P$ means the random variable $X$ has distribution $P$.\n", "Thus, we\n", "have\n", "\n", "$$\n", "\\theta_{\\texttt{ML}} = \\argmax_{\\theta}\n", "D_{KL}(\\hat{p}_{\\texttt{data}}, p_{\\texttt{model}})\n", "$$\n", "\n", " That is, we can interpret maximum likelihood as the cross-entropy\n", "between the\n", "$p_{\\texttt{model}}$ and the $\\hat{p}_{\\texttt{data}}$\n", "distributions.\n", "The first term has nothing to do with the estimated $\\theta$ so \n", "maximizing this\n", "is the same as minimizing the following,\n", "\n", "$$\n", "\\mathbb{E}_{x\\sim \\hat{p}_{\\texttt{data}}}(\\log\n", "p_{\\texttt{model}}(x_i;\\theta))\n", "$$\n", "\n", " because information entropy is always non-negative. The important\n", "interpretation is that maximum likelihood is an attempt to choose $\\theta$\n", "model\n", "parameters that make the empirical distribution of the data match the\n", "model\n", "distribution." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }