{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEBLAEsAAD/7S4GUGhvdG9zaG9wIDMuMAA4QklNBCUAAAAAABAAAAAAAAAA\nAAAAAAAAAAAAOEJJTQQ6AAAAAACTAAAAEAAAAAEAAAAAAAtwcmludE91dHB1dAAAAAUAAAAAQ2xy\nU2VudW0AAAAAQ2xyUwAAAABSR0JDAAAAAEludGVlbnVtAAAAAEludGUAAAAAQ2xybQAAAABNcEJs\nYm9vbAEAAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAADhC\nSU0EOwAAAAABsgAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAEgAAAABDcHRuYm9v\nbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAA\nAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tn\nT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/g\nAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQg\nVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9v\nbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAA\nAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAOEJJTQPtAAAAAAAQ\nASwAAAABAAIBLAAAAAEAAjhCSU0EJgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAA\nHjhCSU0EGQAAAAAABAAAAB44QklNA/MAAAAAAAkAAAAAAAAAAAEAOEJJTScQAAAAAAAKAAEAAAAA\nAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAA\nAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA////////////////\n/////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////\n////////////A+gAAAAA/////////////////////////////wPoAAA4QklNBAAAAAAAAAIAADhC\nSU0EAgAAAAAAAgAAOEJJTQQwAAAAAAABAQA4QklNBC0AAAAAAAYAAQAAAAI4QklNBAgAAAAAABAA\nAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAADYQAAAAYAAAAAAAAAAAAA\nBN8AAAM7AAAAFgA5ADcAOAAtADMALQAzADEAOQAtADMAMAA3ADEANQAtADIAXwBUAGUAbQBwAAAA\nAQAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAM7AAAE3wAAAAAAAAAAAAAAAAAAAAABAAAA\nAAAAAAAAAAAAAAAAAAAAABAAAAABAAAAAAAAbnVsbAAAAAIAAAAGYm91bmRzT2JqYwAAAAEAAAAA\nAABSY3QxAAAABAAAAABUb3AgbG9uZwAAAAAAAAAATGVmdGxvbmcAAAAAAAAAAEJ0b21sb25nAAAE\n3wAAAABSZ2h0bG9uZwAAAzsAAAAGc2xpY2VzVmxMcwAAAAFPYmpjAAAAAQAAAAAABXNsaWNlAAAA\nEgAAAAdzbGljZUlEbG9uZwAAAAAAAAAHZ3JvdXBJRGxvbmcAAAAAAAAABm9yaWdpbmVudW0AAAAM\nRVNsaWNlT3JpZ2luAAAADWF1dG9HZW5lcmF0ZWQAAAAAVHlwZWVudW0AAAAKRVNsaWNlVHlwZQAA\nAABJbWcgAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAA\nAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAABN8AAAAAUmdodGxvbmcAAAM7AAAAA3VybFRFWFQA\nAAABAAAAAAAAbnVsbFRFWFQAAAABAAAAAAAATXNnZVRFWFQAAAABAAAAAAAGYWx0VGFnVEVYVAAA\nAAEAAAAAAA5jZWxsVGV4dElzSFRNTGJvb2wBAAAACGNlbGxUZXh0VEVYVAAAAAEAAAAAAAlob3J6\nQWxpZ25lbnVtAAAAD0VTbGljZUhvcnpBbGlnbgAAAAdkZWZhdWx0AAAACXZlcnRBbGlnbmVudW0A\nAAAPRVNsaWNlVmVydEFsaWduAAAAB2RlZmF1bHQAAAALYmdDb2xvclR5cGVlbnVtAAAAEUVTbGlj\nZUJHQ29sb3JUeXBlAAAAAE5vbmUAAAAJdG9wT3V0c2V0bG9uZwAAAAAAAAAKbGVmdE91dHNldGxv\nbmcAAAAAAAAADGJvdHRvbU91dHNldGxvbmcAAAAAAAAAC3JpZ2h0T3V0c2V0bG9uZwAAAAAAOEJJ\nTQQoAAAAAAAMAAAAAj/wAAAAAAAAOEJJTQQUAAAAAAAEAAAAAjhCSU0EDAAAAAAkeQAAAAEAAABq\nAAAAoAAAAUAAAMgAAAAkXQAYAAH/2P/iDFhJQ0NfUFJPRklMRQABAQAADEhMaW5vAhAAAG1udHJS\nR0IgWFlaIAfOAAIACQAGADEAAGFjc3BNU0ZUAAAAAElFQyBzUkdCAAAAAAAAAAAAAAAAAAD21gAB\nAAAAANMtSFAgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nEWNwcnQAAAFQAAAAM2Rlc2MAAAGEAAAAbHd0cHQAAAHwAAAAFGJrcHQAAAIEAAAAFHJYWVoAAAIY\nAAAAFGdYWVoAAAIsAAAAFGJYWVoAAAJAAAAAFGRtbmQAAAJUAAAAcGRtZGQAAALEAAAAiHZ1ZWQA\nAANMAAAAhnZpZXcAAAPUAAAAJGx1bWkAAAP4AAAAFG1lYXMAAAQMAAAAJHRlY2gAAAQwAAAADHJU\nUkMAAAQ8AAAIDGdUUkMAAAQ8AAAIDGJUUkMAAAQ8AAAIDHRleHQAAAAAQ29weXJpZ2h0IChjKSAx\nOTk4IEhld2xldHQtUGFja2FyZCBDb21wYW55AABkZXNjAAAAAAAAABJzUkdCIElFQzYxOTY2LTIu\nMQAAAAAAAAAAAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAA81EAAQAAAAEWzFhZWiAAAAAAAAAAAAAA\nAAAAAAAAWFlaIAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAAAAAk\noAAAD4QAALbPZGVzYwAAAAAAAAAWSUVDIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAWSUVD\nIGh0dHA6Ly93d3cuaWVjLmNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAGRlc2MAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNl\nIC0gc1JHQgAAAAAAAAAAAAAALklFQyA2MTk2Ni0yLjEgRGVmYXVsdCBSR0IgY29sb3VyIHNwYWNl\nIC0gc1JHQgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAACxSZWZlcmVuY2UgVmlld2lu\nZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcg\nQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdmlldwAA\nAAAAE6T+ABRfLgAQzxQAA+3MAAQTCwADXJ4AAAABWFlaIAAAAAAATAlWAFAAAABXH+dtZWFzAAAA\nAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAACjwAAAAJzaWcgAAAAAENSVCBjdXJ2AAAAAAAABAAAAAAF\nAAoADwAUABkAHgAjACgALQAyADcAOwBAAEUASgBPAFQAWQBeAGMAaABtAHIAdwB8AIEAhgCLAJAA\nlQCaAJ8ApACpAK4AsgC3ALwAwQDGAMsA0ADVANsA4ADlAOsA8AD2APsBAQEHAQ0BEwEZAR8BJQEr\nATIBOAE+AUUBTAFSAVkBYAFnAW4BdQF8AYMBiwGSAZoBoQGpAbEBuQHBAckB0QHZAeEB6QHyAfoC\nAwIMAhQCHQImAi8COAJBAksCVAJdAmcCcQJ6AoQCjgKYAqICrAK2AsECywLVAuAC6wL1AwADCwMW\nAyEDLQM4A0MDTwNaA2YDcgN+A4oDlgOiA64DugPHA9MD4APsA/kEBgQTBCAELQQ7BEgEVQRjBHEE\nfgSMBJoEqAS2BMQE0wThBPAE/gUNBRwFKwU6BUkFWAVnBXcFhgWWBaYFtQXFBdUF5QX2BgYGFgYn\nBjcGSAZZBmoGewaMBp0GrwbABtEG4wb1BwcHGQcrBz0HTwdhB3QHhgeZB6wHvwfSB+UH+AgLCB8I\nMghGCFoIbgiCCJYIqgi+CNII5wj7CRAJJQk6CU8JZAl5CY8JpAm6Cc8J5Qn7ChEKJwo9ClQKagqB\nCpgKrgrFCtwK8wsLCyILOQtRC2kLgAuYC7ALyAvhC/kMEgwqDEMMXAx1DI4MpwzADNkM8w0NDSYN\nQA1aDXQNjg2pDcMN3g34DhMOLg5JDmQOfw6bDrYO0g7uDwkPJQ9BD14Peg+WD7MPzw/sEAkQJhBD\nEGEQfhCbELkQ1xD1ERMRMRFPEW0RjBGqEckR6BIHEiYSRRJkEoQSoxLDEuMTAxMjE0MTYxODE6QT\nxRPlFAYUJxRJFGoUixStFM4U8BUSFTQVVhV4FZsVvRXgFgMWJhZJFmwWjxayFtYW+hcdF0EXZReJ\nF64X0hf3GBsYQBhlGIoYrxjVGPoZIBlFGWsZkRm3Gd0aBBoqGlEadxqeGsUa7BsUGzsbYxuKG7Ib\n2hwCHCocUhx7HKMczBz1HR4dRx1wHZkdwx3sHhYeQB5qHpQevh7pHxMfPh9pH5Qfvx/qIBUgQSBs\nIJggxCDwIRwhSCF1IaEhziH7IiciVSKCIq8i3SMKIzgjZiOUI8Ij8CQfJE0kfCSrJNolCSU4JWgl\nlyXHJfcmJyZXJocmtyboJxgnSSd6J6sn3CgNKD8ocSiiKNQpBik4KWspnSnQKgIqNSpoKpsqzysC\nKzYraSudK9EsBSw5LG4soizXLQwtQS12Last4S4WLkwugi63Lu4vJC9aL5Evxy/+MDUwbDCkMNsx\nEjFKMYIxujHyMioyYzKbMtQzDTNGM38zuDPxNCs0ZTSeNNg1EzVNNYc1wjX9Njc2cjauNuk3JDdg\nN5w31zgUOFA4jDjIOQU5Qjl/Obw5+To2OnQ6sjrvOy07azuqO+g8JzxlPKQ84z0iPWE9oT3gPiA+\nYD6gPuA/IT9hP6I/4kAjQGRApkDnQSlBakGsQe5CMEJyQrVC90M6Q31DwEQDREdEikTORRJFVUWa\nRd5GIkZnRqtG8Ec1R3tHwEgFSEtIkUjXSR1JY0mpSfBKN0p9SsRLDEtTS5pL4kwqTHJMuk0CTUpN\nk03cTiVObk63TwBPSU+TT91QJ1BxULtRBlFQUZtR5lIxUnxSx1MTU19TqlP2VEJUj1TbVShVdVXC\nVg9WXFapVvdXRFeSV+BYL1h9WMtZGllpWbhaB1pWWqZa9VtFW5Vb5Vw1XIZc1l0nXXhdyV4aXmxe\nvV8PX2Ffs2AFYFdgqmD8YU9homH1YklinGLwY0Njl2PrZEBklGTpZT1lkmXnZj1mkmboZz1nk2fp\naD9olmjsaUNpmmnxakhqn2r3a09rp2v/bFdsr20IbWBtuW4SbmtuxG8eb3hv0XArcIZw4HE6cZVx\n8HJLcqZzAXNdc7h0FHRwdMx1KHWFdeF2Pnabdvh3VnezeBF4bnjMeSp5iXnnekZ6pXsEe2N7wnwh\nfIF84X1BfaF+AX5ifsJ/I3+Ef+WAR4CogQqBa4HNgjCCkoL0g1eDuoQdhICE44VHhauGDoZyhteH\nO4efiASIaYjOiTOJmYn+imSKyoswi5aL/IxjjMqNMY2Yjf+OZo7OjzaPnpAGkG6Q1pE/kaiSEZJ6\nkuOTTZO2lCCUipT0lV+VyZY0lp+XCpd1l+CYTJi4mSSZkJn8mmia1ZtCm6+cHJyJnPedZJ3SnkCe\nrp8dn4uf+qBpoNihR6G2oiailqMGo3aj5qRWpMelOKWpphqmi6b9p26n4KhSqMSpN6mpqhyqj6sC\nq3Wr6axcrNCtRK24ri2uoa8Wr4uwALB1sOqxYLHWskuywrM4s660JbSctRO1irYBtnm28Ldot+C4\nWbjRuUq5wro7urW7LrunvCG8m70VvY++Cr6Evv+/er/1wHDA7MFnwePCX8Lbw1jD1MRRxM7FS8XI\nxkbGw8dBx7/IPci8yTrJuco4yrfLNsu2zDXMtc01zbXONs62zzfPuNA50LrRPNG+0j/SwdNE08bU\nSdTL1U7V0dZV1tjXXNfg2GTY6Nls2fHadtr724DcBdyK3RDdlt4c3qLfKd+v4DbgveFE4cziU+Lb\n42Pj6+Rz5PzlhOYN5pbnH+ep6DLovOlG6dDqW+rl63Dr++yG7RHtnO4o7rTvQO/M8Fjw5fFy8f/y\njPMZ86f0NPTC9VD13vZt9vv3ivgZ+Kj5OPnH+lf65/t3/Af8mP0p/br+S/7c/23////tAAxBZG9i\nZV9DTQAB/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEM\nDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQR\nDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoABqAwEiAAIR\nAQMRAf/dAAQAB//EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAA\nAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIj\nJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU\n5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITES\nBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi\n8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMR\nAD8Ao2WCttN7DDh7XfNNVWLX3tdoXDcPuQtrrDYwcA7giW2hvpWs0d9FyzSCPSPmlYvwn64vUg6U\nP5cP6yKzrzbXjNdzW4NJ/wCirDLPst2TS7UWNBH3Fqq11h1NzTo9p3N/Kp1v+0ZVZf8Ant2z5hKQ\nBuI+QXf+GONcSKl2AOn196LOsOrxsTImWteyR8CrZccrqDn1aFlQH3uKoOuLcY4x4rs/DdKtbjh5\nst1Flf5CkSSeKvUTLhj+9Ew+ZZkB9X7xGThl/V4ozS4+TWOmZDLB+kJtE/e0KTTZS/Cqu/mi4NIP\ng1pVN1e7pr7wdS5xI/tq3bd9svoqGhbufPwEIgagXdker/N8EeJbLeRA04s3GP7sOjatft6h6uN2\nq2ujzdKlj+lk9PvusP6V/qgnvLZY3/qVVw8gY2VlMs1A2R90/wAUF4trwX3t+g9xeB5Of/5kgLI0\nNS4alL/ORzSYuDWMTtxYBjl/g8dF1qMx+RVRhXaNtaGknxYN4/6hTdZ9gzwWncy2mCPNrlWy7GWP\no+zj3scXaeG1zf8Avylh2tstubk/TqcACfAgOUgnGiTphJlL+uJR9DWlA1xAev2zx4/0T7mXh4v+\ngnLX5dV2Wx0Gxp0HiwbP++In7cHh/gd/9tZoyLcauxjf5r1HQf5Lnf8AmSu/YsXx7bfknXOjChxc\nIh/1Ph+b+8g44cYN+g5ZV/dHDE4v8V//0M8EVAWDkaOQdpse9o4+k1NZZudtHDgrODjuusYxhh5a\n/wCHtY6xu791rnN2b/zFn1Qv9KW37HpeLhF9v2IrrBLHt5cNrgos9mPuGj6Xz8lbf0a8O3WWMbW6\n2pjHCZ3WP9NwDLW1u9Sqr9NZV+Z/hES3ouVYWmpzQ21jdzXhzXhxDfa5uxzW+/ez3P8AZ6f6f0Ue\nA0IgeJ/6VJGXHp6tB+z/ANAm06gLvtAd9JzdzfuU6LfXyKfU4LS3+P8ABWX9Hy6623NfXDGkWfTm\nB7n+0V/TrZ+Z/hP+0/q7LFWyMazDrFdhHrUuBJbMQ7+sGu/1/wBGgQRrt+jDw/RTxRlYBvi9P/N9\nv/vGNlrq6rqB9Bth+6Q5Wb4pzKn1fuO/76q1ZD6coP8ApfSH3f8AmKlj2H7TWbeCwgT8igABp+jH\n+cHeXDwolrZ61Ov6/HjjJsU7b6si55h8uH+a0Jq8hzsKjEdw/YyfmCqr3PbXkOr+gXOKPkGs144r\n+mHNP3BID5Qf6nt/1eDXVNC76cRJ/qe3jbW77Jn1umWmtwP3tTw7JdfkMMB2nza2EDHeLsp4u5Yw\nRPmUJmS/HpvDfo73kfAmEtdSNZ8MhIfo+uTHwE1G6NYoxl+/xfrG+Mhl/T2Ux+lsra3+1AKfbk+J\n4VS1gx249jD9F7fugqx+0PJOsXueDjvj/wAGuBj4I6TrSzPg/re7v/iv/9HGrb49jopWWaQDo4Fr\nh4+SEbYGnZMJcfI6hUANbk9JumpLgN7nF3ZwJJkTu1n+U7com20Ps2Pdtf8Azmp9zS5tu1//AFxj\nXqTnBrfjoVCnQ7jwfaUh+lJILKy62v1K6nkV2FljgDztO9nu+n7X+5K8kFwaZFjQ7x40Q2n9MA7g\nHaU7DFzGu4aSz5FCth2Fsg01HQfb/LggnuMua5n+Er1+Sdzg+rGDfpiQfu/8xQanFl7A76LHFv3p\n9WWbx9Guz8D/AOdJDp/jf3lpFadh6fOXFD/u4JBbsxb6Xc7j+MKZmjIpLtRr+T/ag2tFvrvb21/B\nTD/Xura7s0/wSH4HWX9VXc9hLjH7xliill1t9ttfAAB+QTCxjum7D9Nwj5lyEy00m8Dgkpn17Mep\n4PJbp+KAGw2+Sv664AWO3FDh/q+3jbAc4X0st+jr+AVqaPLlUnvOTe2NCxpP3kKOx/j+ftS7H68H\n+Gso8J/f9sC/8Ljf/9LGvrY3aWtAkmfhClhUX35DMfFrF1752VnbBgF7/wCdcyv2Mbv97k2WYazz\ncfyI31fLXdWYLCWs9DLDyBuIH2bIkhm5m/8Aqb1n4xxAWer1PN+mU+EAcMbqtPl7I8wZWLecfJxq\n6bQA7a6thkH6NjHs3121v/Msqf6aeg2WvZj1VVOtvc2utuxol7zsrZudDfc8/nK/gU4nWWt6Tg1O\nL6cSmvByb4bduZkC7Ne2utz66mW05uRtx/Uv9OnG/nFcqzcVz+m1YmPQzGf19zcdzWEPFbLMN1T2\nP3/TfWWssd/olIY3QB0ahyVpw+ob/ZxRl/hOAyx257HVVBwkfzbfpNO1w/zgotvLy/8AR1bo3D9G\n3kLbFWDk7M04lNPoftN7qGF+y77Gyu/Fbfus9Sx++79O/f8Ap61J2PgY3TMnrQwKX2/YsHMZjWhx\noZZfddi5HpVMfX+rXtr9ZtDn7EjA+rVcM4Fek3IgVp83H7fC5GL6+Zb9noorsyLnNFLG1tlzj8f+\nqd9BJ1jqxkU2MoLmwZYK7GExPstqL6rP7Dlt9JxqMD69PxcdjTRVbk01sfLtrfQsvbt13e3+Z/4l\nVBj4V2AK/s1YsyOlZHVPtNUtfXbW641UV+57GYVddP2b7Pt/wnqfzqXBpvrdf4qTmHF8voIhk/ra\n8X/qpzvtDqvUb6dUPbP821O60tNT211e5v8Ao2+AV76yVYtXV34WNj149eOxv83ul5sqoyHGwve/\n6G/bUxv0FlVPl1QdwAR+CaRRPn6vovgRKMZVqY8YvrxxnwJm3g49pdXVukx+jal67pqrdXVtn/Rt\nVd4O15HG4oljvUewDkAodvw/qslDU/3uLz4IpjkenkEsrqjaB/NtUPtzv9HV9Ld/NtUKnhtlm74I\nH/kZQ/Ot08I1HShH6cD/AP/Txs2NjP6x/Im6YzLtzmV4T21ZD2Wj1LHNawV+nZ9qc99jXsYz7N6v\nuVPgyPmtL6ulg6wz1dxr9DL3BhAdt+zZG7YX7mb/AN3cqMI1Qvq9PzGQyE51+ifT820WeO93Qsl9\n1pIy245PTX0OY+lwubZjHN+0h3vqpp9X0WMZ+kyP570fSVfp+ZnsfT0/CuDA7JpsqY4McG3hzK8b\nI3WMsdVtcK/U2fzlf876qvYvUqvsHUMjExKm19NwaKsBmQ1uS5pfk+/JsNrPT+1Psybrf0dTKf5v\n9H+jWjTjYzbXYzaqxi4DukXYGSGNZYX5Dsf7Q/12tbZk/a9+RY/e+xn6v/wKkA7H+X8otWU64uON\nnQG/Dhr0/wDVv3nEsy+oYGR6Qv2X9OybiHM2kNuJ9LLeHFv6Rl3pfQt/RPq/wX6R6TbOpZfTupZZ\nvDsXZjDOaS1u5u/0sFlNbGCtleO+v6FPoMrrW31Cs5d1t7nU4uXi9Wz2V2/Z63fqlFTszIc7FbW1\nubZQ/wB9Prep+sZH87/hETMe3D6b1TO6expsvwulZXvoqg2WveH5DsHbbi1XWfTcyveyu1+//hEu\nDfU1r+S33hcajHjJj5fzkf0uH/C/vuR04dbz+qMzMW9ozsq54Zkvcxp9QUusvmoNdtZ9l3M9T7P6\nP9tVm39SrwWdPD3Hp7q/tAqbteG0WOG/1La992NQ69jPWx3211et6fq1b7F1uFg4GN1+sYdbGhnV\nsuppY0S0fYBa/GY5o9tNGRZdsp+gxZGLc/EwHOxWVsdZ9XWX2foq3lz2ZPp+o/1K37v0bv0n7/6P\n1P5mrYjDxPW0xzgnSEfljwgiq9U/+h+i4mRl5GRlnLybDddY7a+wwC7a0Vt+htb7a2Mah8sY4c7i\nFt51LXdIpysapll3W/sjK62Vg2CzFbdV1L7PWxu5nq5NOL6npfzvrLCDoMdg+Uwg79erYxyEtAK4\nTQ/6n+j/AI/HBkHxW9p/e/uTma7QR4KDx9IjxUg7c/3eCH5FeCav9IDUd5ShFQ9we/uoz/1MJpIa\nfAokN/6CWv8ALsv0v/C/Zwv/1OXHgrPT6MnJyNmNZ6L2V2WWXlzmtrqYxxybLH1B1npejuY9rG/p\nP5pVe6t9Kf1CvObZ06l2TkMa6aBWbg+tw9O+u7HaHerRZW/07VTG70s74TVbHfZRx7q2ZRxLTkYV\nIqGRkUh9dRD3fqzbarhVb/Pt9jH1/wA7X6n/AAibHyM7IdjYOPdbYW2t+xY4sdtba53sdjtc4V0v\n9T/CN+guhtqdhdI+sGJ051tX6HAybcBj3k4/qbv2lju/PfXTXsrybP8AuPsqyP5paQoycI9KbZZl\nPdjdapxaczJdBsrsp25DcINH6Hpt7q2Nrp9W+u7/ALcrT+D+X1ap5jTYHX038383GXFL/GeNdm5r\nhRnPz3vtpe6qmb3uvqDA33t3HdTRZ6np1uY/9L72I9eV1pzWZjc3IqZZc3FOc6+xrRZDrGtutDnW\n7KKrrbXe39FVZatLCv6jVTiWZVGZl5n27OZcxm85jd2Ni0/aKt7bLG5WLW5tlG9v+Z/OLQNXUcbG\nZgfbH532T6xUsyrWOc4Gtwx3s+0s3P2b8w/pPU/R/b9/+FSESTdlM8oiK4Y6/wDR4pDR5V2Xk4lx\nZTluBqsc9tlNrtpfrRZlVP8AY79Yr/7Ufzl1P001Obl02sux8m2uyppqpsY9wLGGXNqrc1wcyn37\nvTb7F0fWBmV+7pdLr639Szj1Sutr3ssublD7Li9RbX/2nsxjWyql36N/rW/4RZ/1iqzcnNdm2jIm\nzHGZdRmGLcVjrrMc4p9Qs3UfaX/qWytlj6L/AOYQMa67L8eWMquIHF6dT+lH+r/Xa46xdjvxHYLf\nQrwKLK8Vrjuc2y8Pbl5m5np/rD3Wfof8HT6WP+4qJDdp26AbY+AUW66HtISBgR4hN1+xmEQNBpfX\n/C4mW6A4fBO7RxI8FF3Lj5BIHUz4IJu/7wv8f/RV93shPDvwUPBS3/kSpdYseZ/Pd//V5Xup01X3\nXMrxmWW3uP6NlIc6wkDd+jbV+k+j+6h91odDxcfL6h6V7iIqtfVS1/pnIsaz9FgDI/wP2r6D3f6P\n9F/hFTAsgPSzlwxlLsLa9ODnPtdRRjXvurcan1V12F7XEOLqrK2N3tc5tVv6N/8Ao7Efo3Srer51\nWIwW+g57Kr72MdY2lr9zavU/wdXvGytti2+o5r2V9TsrvbVfYejFxpu3y5lTvV9PI9Syy/0bWfzv\nrWfQ/nFewbHv64yzGyWU4+J1vOuz917a2lt3p14l2xz2+q25nrYtW1v0/wBH/hE8RFteeefCSAI6\naHseCM/+64YvL9I6dkdV+1vqtdXZh4j8385znlm39C14c17LLGn+cSPR8ivpWD1Gsl7epW2UU49b\nSXEVkip3sP6X1rWWelV6at/VXMq6di5ufa4A0/YRskBzmfaW2ZDGMPuf+gqfvWtYzpmQ2vpP2308\nXB6hj41N7HNY4tqw7mvfU6dtf2vPY79P9CuzISERXiVZMs45CP0IkdP0eH/0ODyxxMwZRwzRcMsw\nDjbHi06eo1rsePVf7P0n0P8AhFcvw+o4nTBa1t5pzWl/UQa3fo34+Rdi49WTeRur3W1ufsu9P9N/\nxS2skvtP2KgMxupXdIqxcelmTu2bMyx+T077Vdc79O7Ebs9F93+ko/4NVqci2nCxMSy8t2dM6tXd\nV6gI9Rz8v2P2ucx77Hsq/wCM/RpcIH2IGaUqND5hcT+kIxlPi/5rkOwMl17a8Sq7LLmVP/R0WBwd\nbX6/p+ntc921rbPTu/m8iuv16v0aCym+2uy2qqyyuhs3vYxzm1gz7rnNG2n6Lv5xb1+Wa+l5no3+\nnaaOhgFj9rjsqPqRtO79E9vv/cV4ZzqruoWYWNVnW4vVM/IursyPSYK7WtqrynUb2V5dLqftFH/Q\n/wAOlwjuk55VXDe1G+HXhjP1f47yAMj4hI8k+SgwbWtAMhrAAfgpT+RMbG/94Mp4TwPwUO/ySn8i\nVLuLXxv9r//W5RWum4dWdmDGtJDDTfZLYmaabcln0w5u3fV71UWj0B9TOrVm62uhjqcmv1bXbKw6\nzHvpq9Sz8xrrHtaqg3D0mQkQkR0ifya2B07Oz2vOFjOvNLN9grA0kF21oJG+x7WWP9Grfc9ldn6P\n2KTul5v2BnUTjk4TiGtuG0gbiam7mtd6lVdljHVsssYyqx63emXt6d079n1ZHTLs7Dy2Z1dt9u7H\nLTVXU1+Nk12Usdl4llX6THez/C/olXe7pNP1bvqxH4wty8Og2hxnMflDJpty6Sz/ALT4uNXX+hq2\nfpq/0/6f9N6R4RX0LEc0jKgNOKMRp+if0mo36tdfdeKP2faLhB2u2tLQ91tVbnue9ra2XWY1zKnv\n/nv8H/O0+oCvpeTdUxlONe/LdddjmkMEfoa2320tbPr/AGqv3+rR6X0P5v8ASrT6lnY9r/rIRkNs\n+15+LZjnfu9SuuzI3Or/ANJVTX6X8hn6NX8bqnT6+sG92VUysdW6peLN4j07sUVY9+5v+Duu9lVn\n570eGPdYc2UD5QdNKEv3ON549D6o3NHTXYbm5VjBaKTsg1kT6/q7vs/o+3+d9X02KvkYt+HaaMqk\n0XsDS+p4hwkB9e5v5vsc1amNbi2dLowDlVY1t/Sn4wfa7axloznZvoZD/wDAfaMev/Cf8Gg/WRoH\nWLWteLAKMQCwTDoxcb3+8Nf7v5aBAq10ckjIxPSMjsfmv5nOhoOgHf8AHlItbp7QYOmnCX8E47fe\ngz/x0VMj5JTBPwTA8fNPyPikt3Fjf+z/ANCXlL+5R8fgnk/9FJdxfy+r/9fk06ZEpovyLW049T77\nXztrqaXvMDcdtdYc/wBrVTelJpgkrv7E63E/s3Mgc/q13/pNL9i9b/8AK3M/9hrv/SaNHst9yH7w\n+1ppK5+xet9um5n/ALD3f+k1UsZZVY6q1jq7GGH1vBa5p/dex8OalRVxxPUFnRk3Y1hsp2bi0tIs\nrruaQYkelkstq/N/cSycnIy8l+Tk2OuvucXWWO5JP+u1rW/QQk88+SK01d6Xpr4D1KHJThNPHmmD\nmuEtM69kk3+BLI/kBTTHyCeUx7+aSCeoLJP/AHKE8p5/6lKk8f8AL6v/0OTWh0HPo6f1IZGQ+yup\n1F9JspG57Taw1MsY3dX9B38tZ6ZVRobegnUomJ2kKP1e7f8AXLobrW3DKzmvZb6rYpdtgD24+05P\n9Ha73+mh/wDO3on2dlAz+ojYT+mFThYfZTU1xsGR/O7qN2/6H6e6qqqlcRqkpPck1PuWDtL7XuLf\nrh0i0NDs/qALQWmKXbXAufb+lZ9q9zvc1v8AxbPTXMfWDqFHU+t5vUMcOFOS8OrFgh0BjK/c2Xfu\nLO1SQMjLddjwY8RJjdkVqV5SnnzUUtUKZDNNiupbk0uvZ6lIe31GEgAie7nhzNrfp+/9H/pFq51+\nH9tbkZtjM1r/AFpeyxuTZtisYxtfU8+pkNs9e5jb/wBX/wC036Oj9LjYk8pSjTGZWQb7h1bWfVym\n59IffY1hc02NcHtO01FhosZV/hW+vvu/6H6TepXU/Vyllbhdfc57N4a17dJa9zWXbaX+jZ6noVP/\nAOv/AOh/SY5KY90a8FnER+kftSAmNee6efyIUnVSn8iHCu95/9kAOEJJTQQhAAAAAABZAAAAAQEA\nAAAPAEEAZABvAGIAZQAgAFAAaABvAHQAbwBzAGgAbwBwAAAAFQBBAGQAbwBiAGUAIABQAGgAbwB0\nAG8AcwBoAG8AcAAgAEMAUwA1AC4AMQAAAAEAOEJJTQ+gAAAAAAEMbWFuaUlSRlIAAAEAOEJJTUFu\nRHMAAADgAAAAEAAAAAEAAAAAAABudWxsAAAAAwAAAABBRlN0bG9uZwAAAAAAAAAARnJJblZsTHMA\nAAABT2JqYwAAAAEAAAAAAABudWxsAAAAAgAAAABGcklEbG9uZ1Atq58AAAAARnJHQWRvdWJAPgAA\nAAAAAAAAAABGU3RzVmxMcwAAAAFPYmpjAAAAAQAAAAAAAG51bGwAAAAEAAAAAEZzSURsb25nAAAA\nAAAAAABBRnJtbG9uZwAAAAAAAAAARnNGclZsTHMAAAABbG9uZ1Atq58AAAAATENudGxvbmcAAAAA\nAAA4QklNUm9sbAAAAAgAAAAAAAAAADhCSU0PoQAAAAAAHG1mcmkAAAACAAAAEAAAAAEAAAAAAAAA\nAQAAAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAx\nAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLUhQICAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNj\nAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRi\nWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAA\nACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAE\nPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2th\ncmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdC\nIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABv\nogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAA\nAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5j\naAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAA\nAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAA\nAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElF\nQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2\nMTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPt\nzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAA\nAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0A\nMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8\nAMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWAB\nZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJL\nAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3ID\nfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTw\nBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8G\nwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjS\nCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkL\nUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4T\nDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETER\nTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTO\nFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y\n1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0e\nHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h\n+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcY\nJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs\n1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLU\nMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5\nfzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0Bk\nQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BI\nBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/d\nUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9Y\nfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFP\nYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q\n92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTM\ndSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/\nhH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opk\nisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmW\nNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqIm\nopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGv\nFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7wh\nvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnK\nOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk\n2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/n\nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb7\n94r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////4TnJaHR0cDovL25zLmFkb2JlLmNvbS94\nYXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5\nZCI/Pgo8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBY\nTVAgQ29yZSA1LjAtYzA2MSA2NC4xNDA5NDksIDIwMTAvMTIvMDctMTA6NTc6MDEgICAgICAgICI+\nCiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYt\nc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAg\nICAgIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyI+CiAgICAgICAgIDx4\nbXA6Q3JlYXRvclRvb2w+QWRvYmUgUGhvdG9zaG9wIENTNS4xIFdpbmRvd3M8L3htcDpDcmVhdG9y\nVG9vbD4KICAgICAgICAgPHhtcDpDcmVhdGVEYXRlPjIwMTYtMDMtMDNUMTY6MTI6MDMrMDU6MzA8\nL3htcDpDcmVhdGVEYXRlPgogICAgICAgICA8eG1wOk1vZGlmeURhdGU+MjAxNi0wMy0wM1QxNjox\nMjoxMSswNTozMDwveG1wOk1vZGlmeURhdGU+CiAgICAgICAgIDx4bXA6TWV0YWRhdGFEYXRlPjIw\nMTYtMDMtMDNUMTY6MTI6MTErMDU6MzA8L3htcDpNZXRhZGF0YURhdGU+CiAgICAgIDwvcmRmOkRl\nc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAg\nICB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iPgogICAgICAgICA8\nZGM6Zm9ybWF0PmltYWdlL3RpZmY8L2RjOmZvcm1hdD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+\nCiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnBo\nb3Rvc2hvcD0iaHR0cDovL25zLmFkb2JlLmNvbS9waG90b3Nob3AvMS4wLyI+CiAgICAgICAgIDxw\naG90b3Nob3A6Q29sb3JNb2RlPjM8L3Bob3Rvc2hvcDpDb2xvck1vZGU+CiAgICAgICAgIDxwaG90\nb3Nob3A6SUNDUHJvZmlsZT5zUkdCIElFQzYxOTY2LTIuMTwvcGhvdG9zaG9wOklDQ1Byb2ZpbGU+\nCiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4w\nL21tLyIKICAgICAgICAgICAgeG1sbnM6c3RFdnQ9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEu\nMC9zVHlwZS9SZXNvdXJjZUV2ZW50IyI+CiAgICAgICAgIDx4bXBNTTpJbnN0YW5jZUlEPnhtcC5p\naWQ6QkRBNzhBOTUyQ0UxRTUxMThFQTM5QTVDRkVFOTAxNDQ8L3htcE1NOkluc3RhbmNlSUQ+CiAg\nICAgICAgIDx4bXBNTTpEb2N1bWVudElEPnhtcC5kaWQ6QkNBNzhBOTUyQ0UxRTUxMThFQTM5QTVD\nRkVFOTAxNDQ8L3htcE1NOkRvY3VtZW50SUQ+CiAgICAgICAgIDx4bXBNTTpPcmlnaW5hbERvY3Vt\nZW50SUQ+eG1wLmRpZDpCQ0E3OEE5NTJDRTFFNTExOEVBMzlBNUNGRUU5MDE0NDwveG1wTU06T3Jp\nZ2luYWxEb2N1bWVudElEPgogICAgICAgICA8eG1wTU06SGlzdG9yeT4KICAgICAgICAgICAgPHJk\nZjpTZXE+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPmNyZWF0ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpCQ0E3OEE5NTJDRTFFNTEx\nOEVBMzlBNUNGRUU5MDE0NDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OndoZW4+MjAxNi0wMy0wM1QxNjoxMjowMyswNTozMDwvc3RFdnQ6d2hlbj4KICAgICAgICAg\nICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgUGhvdG9zaG9wIENTNS4xIFdpbmRv\nd3M8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAg\nICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0OnBhcmFtZXRlcnM+ZnJvbSBhcHBsaWNhdGlvbi92bmQuYWRvYmUucGhvdG9zaG9w\nIHRvIGltYWdlL3RpZmY8L3N0RXZ0OnBhcmFtZXRlcnM+CiAgICAgICAgICAgICAgIDwvcmRmOmxp\nPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkJEQTc4QTk1MkNFMUU1MTE4RUEzOUE1\nQ0ZFRTkwMTQ0PC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hl\nbj4yMDE2LTAzLTAzVDE2OjEyOjExKzA1OjMwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBQaG90b3Nob3AgQ1M1LjEgV2luZG93czwvc3RF\ndnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+Lzwvc3RF\ndnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgIDwvcmRmOlNl\ncT4KICAgICAgICAgPC94bXBNTTpIaXN0b3J5PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAg\nPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAK\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAog\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAKPD94cGFja2V0IGVu\nZD0idyI/Pv/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB\nAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB\nAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIAOcAmQMBEQACEQEDEQH/xAAeAAAB\nBAMBAQEAAAAAAAAAAAAHBAUGCAIDCQEACv/EAFAQAAAGAgAFAgIHBAYHBAcJAAECAwQFBgcRAAgS\nITFBURNhCRQVInGBkRYyobEXI1LB0fAkQlNikuHxCiZjghlDVnKW0tUlJygzNDZEwuL/xAAeAQAC\nAwEBAQEBAQAAAAAAAAAFBgMEBwIBCAAJCv/EAFIRAAEDAgUCAwUEBwQHBQcDBQECAwQFEQAGEiEx\nQVEHE2EUInGBkRUyofAWI0JSscHRCCTh8RczU2JyktI0Q4KToiUmVFVjc5U1dNSytbbC4v/aAAwD\nAQACEQMRAD8ArfYYFvJY6LMNDiLtBs3dgIG7gogoGxDuAgPUXfb03x/Pup1xz/SPDbIKWZnmRV82\nN0kC/wAQRa3ocf6Ack1F6j5nmUmQbx3n3miFAWKHEqAtfbg3IPr84Zc7s4tOPU2h1PiKNk0DB3+8\nBkNEPrQj3AAHwPpv04N0rL36LeINNqzqChqQ4tlSjcApX7yQQehvb5kD1csnwI1MzZLaTZHnF9BS\nbC4cBKTYjqSNtudu+FMtWXD/ABilPoGFRRs0buQMBtmKq2OURHXfXcuxEPQdjrfFnN9eisZ8pCWi\nEe0LciqKTpuHQRYgc/eF7ne31oZKrCqVnup0WTszJkOtAKsAUO602F9ibK423HJFsPuRb4naMRxz\nUxupdojHn6gN3AyRSkEQ9QEAEd/h7gIcKtEoT9H8T6dU5GoMPPOxyVX0lDitYG9gAd/+b1wYyLRT\nRc/VDRZKZC5qCm1tl6ldrWNrgWHp0xEbJEyBscx1h/rDJIljHfUJjiHUiqmJh862AgO9a18/R7zb\nJgws80lMVSEKkIlMe4QN1pWE8d7jvv25xL4fVgNZ7r1BfIu4udHbBFvdcDmnnkFJT1Ow6YOWbbsx\ns+GodJMwC5SGDXMHUIiApCmUwh334N3/AIj54y/KkGc14uUaROKzHJnRAVG40PbgX2uDbbfftscA\nvCugvULxDqxCQEPJqrZ5A/WJcIB+BAAPTta2BxkJrLMqCzfqisLXqizCIifpFM7lubex7BsNaD39\ndb3p+Zo0CBnzLj0PSl1xM21iAQ422ogbHmyifmfTFnwirjU7O9cpjoQHWhUEoBAvqQl5BA2vfk7b\nc/K2ebbfCzeBZFsgdMzh5CMCFKQwdRVOtoJv5DoQ17DvjJafJq1V8V8iRJynfZo1ddUorJ0lKo0p\nkcf8Sbg7/PGceEeXJNF8VxN8tSQ1NnqUrTsU+XItvbqSPx62wC7A/nariwximXI2ZRZU0w2fXQVI\niRQ1sA1oQ0G++9fLjVvEzLVONYys+zYuSa8zcbatSUqfJ27FB9Nr4O+G1diZp8WZUN5KNbs19aib\nXCg4tauRubg+oti69Xe1dTAsWKgoAqaktPibEOsXARBOvex/e+IAiPr1aAN9uM38Sc71ictGXBrt\nPr8SITuCpCqqyLXtuNA/n1xjNQy3MV45T6ikLKk5pkOoO+kI+0VEEcptpsPQbbG+Ks4hsU7TsYps\nmyq6bcG67sTAY4AIOjndCPyD+tHwO/PpvjUPGzI0d3LdQqHuKWlEZlQA6JW0wAOpv934n1xqed6/\nS8y+MxivIQtz7QahbgH3mFJjAdbfcHr6EkXtxyyR8DcsWltL4SHfTUlYXDhQ5w6hAZN2mQDd+33S\nAIj8/AhoeKuYvE05RyiuhqASqn5ehwm+ySKW0gK69VW+V+b4xH+0nl2cjxdbgxlKTGp0WiMoQgEI\nPlwYylWA2HvE8dsCjFFxkcY3fMTaOVODJ7epFdACmESCkizaNimAd60ApGDe+2td+KzXh8/XPC3K\n9RUkh1OU2HVjcHU+HpSj03/Wg26X6cY0fxeqlLrEDwzp08o9qgZVpcV69tSVrcdcKSNiLhYPA9L3\n2N+GEUc02C6W2RcAq7iZFpAGAxxEQ+rtCuhKIiPYA+sa9QATD8uGfwYzXTsh+GFCpE0paIhzZhUr\nYrD82SCrfck6SDwLjnk4xz+1DQ51CpmQqVSUqbjzaQKpZFwkiRIKEq2G2ryr3tuONgbZ1O0L4W5k\nbo3KsIx0pTKufp6h0Kn2jPHEADv3IBw36aHxrysZcpczOtBreYKUHGkS845mltLb2CmlNwWkkWNi\nFFk/Mk4N5jiw6v8A2d8gU6paDPp9brYJctq0uRaWL73NiUqA22O99jg7z1jLzELto5BTR6NLEfD0\nm++Kcuzkm5TeN6MLcQ7h26fAb3w7/wBmKotZeZzdFrjoW+c0VhpCnjuGmjDUlN1b2SVE2Hf0x8/+\nK+XpuQMh0SsUlJtmemzYKi390mHLp8gXte5Gu9/UgbXwMZAr7C+ccWzS5zBGykfa2DrrMIlMANG2\nurfbsJSnL8y7D3ExnNAzBnCs1PLZCnUUultKdYsR5kWpzUqTdN9whwXvc7j5MHg4+rMngL4kUKuk\nCUh/LdQipctqIE2W0tSb72OoJO24I64OGXslscoVpWjQpyqSbhxHyqIkEBMUkc6ROsJdCI7AhwER\nAewAIjrhU8Glzv8ASpmZvM6ysRIVJdi+cdkKkCosuaQrYaglIIAF79cL1Myk5k3J8rOcFGhmE/Ih\nuFCT73t8CZHAVb9kqKfja3QYE5H07jGy44s8iquZg0tsayeCYw9IJPk3DUeoB7D2UEe/4+muNO8W\nHIzOY6BMoSk+3NRqikpaI1lAaafAVbci7Suf5YC+Brhz1SfE3L89oJTUsq1ZTXmJtdyNokgJvwf1\nW1rqAPO18XS/pLqP+3a/oH+HAT9Pc2fuPfjjK/8ARFG/+HT/AMo/pj8wbGzrs2MxVFjgJEvrKJCn\nHuBTnPrQewGAB9tfhxjVUy2ZApWZ2kElCmn9aRc3ASVXPIPP0PbH9dZLcdNYh1SwSp8suAg2uQEg\nm+3IuD69dwRHsdQJp1hLRquhUQXXECGDv0HOYPugHkAN/EdbEeGfxJrcYUmmVFkpDrQYUVJtqCgg\nXuQL8je/fnF7Ms9dDzPAqbRIYlttBSk8a9Kdzv8AH1Pe2CDWLIm0p0/Tn/ZVqZ63TKbW+jyTsPsJ\nQD8wHzxmGYKZIqcuh5jYJU2hUaQVJ6EbLBN/mdtuthjusQk/pVTK/GOlEpEZ1ahwVHZQuO1ySD09\nBgT1aMdT8BLMidZyNlXKQEAOwJiJxJ2Ee3SICAbDx27a41vPLkKNS6LWGtCX0+yuqVtfUAnUfXjf\nfe/bDHWKuaDnunvqVZqayy4FdPNKAFC9/wBq9+b7n5meAnWkrg2TgHhifXWKLtsJTCAmAW6m/I9+\n3SI67aAf1xzNAmu5xoVVRrVHEiO9qF9IQ+m178Abp42G/a2Bc2nu0vxUjVePcMzVsPFSTsUvpuDt\ncG5UN7He/S5AgJ9pS+POsDHOi3an2GzGDbMwGAR7+OlMB769R7ca5muFDpU+g1hjSlxUplRVtcec\nlN9+xJPPBB2wzxKozTPFF+A5ZAkq1oNwCfaUAEDbf76gel/W+LRXKXjLDy4JHIKYuiQTBQQ7CoCz\nYUhEfID4Jv2/jrHpVRnyPFHLYkKcLEesOskq+55cgFIvckW4569L4znJ1JkUDxolrSlSWpFTmIJs\noJUh8rt04uqw+nU4Cdkk5VXHaaigqGahHtVB2IiT4fU3ER9fTz6b7/PjXMz0KJQ805ZqTGkOCpr0\nkABQcCVKA27nja+56i+GnItShueJ1VpSwlL7cmalNxvqSXRtf0txY72ucW9y24g5Ll/fnQFD4y1b\nZHSEvR1/GMm1MbwHnq6vPbQDv03lj2ZKjXPETJFLf1+UzmQBwG+nR5Uhq9zcEEqH4C+Mh8K6PJo3\njMJQQpIFWmpcO4GhSpHXtYW672A7YBUpapqvY1+AJ1StmkURDsYwFEoNyoF7+NDsO/tsO3jjQfED\nJ0RisZanN6SpyvRnCbb60u+f3H7l+bXHHOHXI86nZl8VJcUpQX3Jz7guASFIdU4bc3IKTYXsfXpb\n+vwdcUwkwXEESqmpbVY59lAwrfZJDmEdB+8Bu3nYevoHCl4l+IkuoNjL6ArXOrsOJbqUmrMpUkD/\nAHk3Pr0xh79Lnjxwl1H3z5WaX1JFjYI+0l2243TuO/wJxXnCl9mKVjJrGoqqpppouXHTsSgAOFVH\nGy9+wiCngPO++/PDF40ZBDtFnTykWKYzSrX2ALTAHrxbGvZ/k0fNPjAtpZQp1U5mJuASpTKUsaSd\njykgfyOLM4SrEXdqCNycKlO5sDuXeKmN3MO3rhIphEdjsQT2IiI+nftwzTvEeHljJxortkuU6gxY\naUHYXRTW0gW+JvY882PGPn/x9plUi+KqKbGK0RqWilMBAuBZEWOsgAbWuSLcc88YG+Cr66xjZMux\nhVNt1b7KnSARHpORugg1KcPAAG0jB27emh7cKVQyZNqnh1lyoshaAMqsOqCQRYvJekk7D/6l9z62\nxsXjMmmZhi+Gcd9SEyouUaRGcCrBSVLKnSk9d9YO+99yN8Fyjsz5ptlnuZlSmPHqMYE+hDqAzVuL\njp8dugHIG12EOoOwhw+eCFcpmU/DCi02oLQh5TE2a6XNisvy3rrJvuVBAAPB0/EYxH+0ZT6hlSk5\nLoVNSsNSoK6mNIIT/eH/AC9exsdYaCTxcDbi2HbGlsVxHnK/Q75TTCQrNUcpdRvugoDue+8G9BsS\nm6TD+G/fhEpkabXKdW65QvMQ3Izbmd1K2rgKaKYKUm6eRqbJAAuOBg5m2lxcyeAfhsiaEmfBqlfa\ndCx72lxulkA3ttdJOwvcEdTieZJmS5vlIAIcQFSmvXhnJyCAmKWUQXKQdh6GBDpIA/MR9uNH/s4z\nW41LzB9urSqYqvVaOFPEavJYlpUhPvXIA8w/M8dDjGeqZN8NclRpkNCkt5np4YCWxZKjAlsugnpd\nJcJ68gC2ByxcvsY5qx24kxP9my8fZWionH7g9DJAQ3vsIlOBTD1aHiDNYCs65lqWXrl0Uyh6i1uC\ntqfUEKB09dKhexuPTjDh4ZuDOPgBn6nVIBMqNPy/LZS4LEpVJlNrKQSNrG1x1v15OecrdGXOolr0\nIJVZYkrCyjcERKY5CM3pBVOGu4aBQNjvsAj7cAfCudOr/iXWmsxrKm6bBhqjIeJKQZaJzKwArgEN\ngepIGwGFDKeXnMiUCoZpjNhuMhqfAfWNgtM6BLbSkkc+8Bbc72ttbAM+yLn/ALV1/wAR+PrT7Jof\nZj/0f0xjf+kdP+yV9D/045DAQ7m7fWTH6UJEuzCICJQE59b3vXYw9vkPoHHy/GmMtZUkUl0Dzooc\nQ2Cd9grSAObnp2x/T6aRJy6w+ybvwVhSCLkqQkggDra1x8frgkswGh2BF2I6ZyKR/iCH7oiYxR77\nDWwNoR3v3Dtxk6CvNNJnU65L0RZSE7lQSAQNhc9Pp644kyU5lobZJPtENTZF7agAON97WBB72G18\nDqxPviXo5WgiVGVIZQAAdAJj6ENa8/e2Ude/YR9dHydAZdybKgTAn2mCkpQT94AIULb9bjsdz3OD\nry3v0TjTEnW7Tnm0qF9Vmxe477c/yscTnFyiNcsslESIAmjJt1F0vidiiJhERAOrQbHvsfn8+EDN\ncqTVMtrjsFS1QV+SUpNyNJuk23sLbfO2/TjOCvt+iUitxTrfguMtrKTdQASLXIueeCLX42xBXDha\nOslkgWpzC2cKuF00yj90wLCJT9Jd6Ht30Ab+fDhRqU1Wckxp7gBlwGUIXq3UC2NSeLkEG979MMlV\nnJTTMt1xwXKVMRnnDykoCSjUe/Q34+NsFTD6DR9SLZX3pS/WWRXRUwN0gJQVRUEohvvruX1/5pHi\nBXJTkOjFtSlNoXFXtfYtOJSoG3pf+PY4X/EAus5yy1mSKSG5SYylKSdjoUlKrkbd+b8XPcDCOmpB\nWmSleKY50Wn1yP0AmEAAgn6NgGu+hLrYe4+nDpVaAymLSczoCQsOQ5ZVbfVrTq37kpUL3w5VKREg\n59pExYSlVQ9mloP7ylgBfO43uCfUHbpYpuxjJ7l0O4AE/rZK6sQTCAdYKtO3f1AdE779tB3DupZy\nzVIk5poMRV9LFeiFViSC28NJNth1G/AvydrZZHjyaF49uy0lYZkVVKiBeym5PO1iNyq/c35OBNKW\n2TdYySaHUOZv9lIFEOoddJUkw8a9OkBDXj599uFayo1RcwUCuISkLRWWVhY2OoqKhf1Ivfj44fKA\nuA14rS4I0JkJnSFAG176lkeo+9vY/MYs1lSHh1sEv3zYEwXNXWLpMwAHUKqiTY4h6DsROID8+4dx\n7rdUzg9Xc35OpGk2/SRDbgJvsEyGyeTtwQdsYt4VQplK8bDIUpelVXntLSb2CCqQNiTtbb5E24wL\n1ciSsLjUjA6qpEG0MRscBEQDQNSpAHnXcRHsGv8AC3nfI6Itey9P0JPmV6M8DYH3kvpfAIt0037W\n2vjQcqppeYfE6W0gNrkqnuvCwBIUh9SyT8ADvzvvYWtYeKpUP/Q80eEMBVlKei7E+w7KDFFV79g0\nO9gPf+WuJfEnxDTPhmhtjU9MrUKIE8myqmykpA5Nxva3A9N8S8mojxwem3UWms0uhKLGxR9oqAvz\nsemwGBxhHKD+m4rjokyhilatlzlAwjopVllVx868gfqHzryPkeBni/kaQuDNnJStKHfZ2za46NNA\nEXNuCngX4366x4hQ6TmnxclAKbU89NbZIBBKlNIQxbqdQKe3oDwQTsVUxK6Vh/cvigY9hkpt91AI\nCIiaQdFAwiHcd9HYA9u/y1eoZ2pVDyQmlPKQhdPy7FiBtVh76KY2kJA26nfv05xh3jgKrA8TotJj\nBQj0tmkRykEgJS3EjKKQNgOTtbk2G4vhDy5ZCUx7IZRiHhhFP9u5YUxMIBv6si3a7L4+7/VCGw89\n/XzklZy/U5GRqBUIXmNt/ovGcVoCgP1wdkgm2x/1gO/fodjrvjnTYGY/9HRJQX28o0hlaTa+pepw\nhQO+o679ztt3nTZq4yzcp+5Mh2kgkxhDmTHf32RVVugdf2frQj/5tfPjU/A2XTaJ4YUqFUFNiU6i\ndOfLlgpS5Eh33lA9SEJ37D0xhvjp7fkylZQy9FCyhxhyohKQdI9pWhsm3QkMgX52vcdVGGLWeg5d\nyTXplQCoKRtWcIfEMHSBzBKnEwb/ALZDl7/r27cITS5yabOqlA1Bl/MeZlAtcFHtEcIVcbAXSbHD\nbn6ix80eCPhfJfSlUtl2utPJUBqILkEJSeSCkp26HfpiZZkkk8ky9TWrwgovWHUiLlRPQiQkggdM\npfujsoHBEddw2IeeHf8As+vJqEDMEyvELlvVadD1PbqLUOWpTY9+xIHmXFyQAdsZHXkS/DTJThbS\npqNmKGyhLaQQHFwZSXOByR5x/Ha9sQKtSj2o5fpradMYWMvF2BA3xhHo6kW7U6X7w62VQO3YdAIa\n78V8yJTR855iqNE3V7BQyoNb6iJVQQ4DpHbftcb83w3ZKWjOvgHnRl1ATIh1ShvNgj3i265MbXYn\ne1u3Xbti6v7R1n+23/RP/HgV/pBzH/s3Pof+jHzl/o7Y/dP1V/THCJnFJqxaUgHZ01TN19u+gHYj\nvyHoYPTyHpvhYqtTWiuKYST7NMXdJB21K252GxuDz9DYffUKYqM7Ipqzdla/1RJ41EkcnexuO9iO\nb7N11nySteEoCP1uONow7AB6RL0mMHroR0bx6j+IlcqUY0jMXnuJHs0617iyLqJNyP8AOwvfBPLz\nQjznYxUAzJSoBP7qjqI+huLgdtxziEMm7l2nFzgAYxmol6zdx0AaEd9x7bD8AA3fXDDXJLVHqUmM\nwQhuYkEAGwJIII2AG1+3PFr4NUiZZNWoEuwK1q8sG3vJKTpUO+xAFuwsb2xP8hvUUWsFZWJilVIi\nCawk7CHUUuwNodh3EQ7+3fhEydEU/XqpSZd/JlOakah7tzcAi+3PYbdd8fsoIcLFWoUi5CVLU0FH\na6SSkp5G3oNuu+IJDOyr3aNknX3kHxUkFTD42bQefGxAQ1v8+HdZXQIVXpCbaSFrQngFJSb7b8X+\nHPXBmQU1bJE6A2f7zAkOOJSfvJLRv/6SOwPTE3mXylGusik1OJWsy2ROUAHRTCCQgb5dyj3DvvXf\nvseEPL1NTmqkvMupCnYT79gRchJUD2Ft9x6HYdMRxHE1zJlPkvgKkUlxSVrULlKdQG999lA9du3T\nGeIY9rOPLbGuQ/rBXVdogOv3VB7DrwIfe1v5eBDsLFmOsqg5QbgqvdpBZsedTR1WFuDYG3B339KP\nibIeQjJldiqJDKGmnFJJP3Sk2JF+LHvt13udULa3cNWLFTjKG+G2XlGgJ67dKp1BTAN+A0YBANaH\nWuAcjLoq0Sn5kQm6kIiSNfNlMaNR2v8Au3v63tvYMtdjxXcx5er50gzWoD2sm13GwgL3OxII4t3t\nvgh12ts53Bqj0uhdJQr5Ee4CYFmqaoa9fAAHsPb32HB3PGbELNLiagHG6pTHDsNkLUhJPzvf+XUZ\ntVX5dG8fWZwJEWRUYiyL2BbkhAJFiNjffob29MROWyC9fYsTiFVTCl9koNzFEe3SmiQo+ohoBKI6\n8eQEOK8jKP2VmKiV/SbNVmO+hRG3vuEgg7WJSq3rfGgUeDAi+KzqE6EyDPecQNgSVKWQbEjc6um3\nY4M2SKrHlws+lG2vijAMnhBDQ7FUjc4gOgHz1Dr0D04sZgza3WcxZTpbZ1FWYUNrHVNm32xxbqB6\n272xjnhSmdTvG91x1avKcqtQYsq/ujU+E2Hba1+DsbjrHf6UH8bjZKKOscE0oQGZ9iOgL9TBHpAf\nHYRAAAP4duAebckqj5hoU9xu6F16LIF72OiUl7e4tf3bnrbrtu/5fptNrHiZKLWhT32k8+Ei1yUy\nC4dr/eABO/x35JO/YJqjicz9JUoKjVive2v3vswFhANevqPz7jr0a/EDPEOfBbpKAFvS6xBiJTtc\nBVRabNvXbjrvsBvjHqc/UV+OHtCypUZOaFoA3uUmolI1cbbbX3564b8EZUWqmK4uLcG0LZBwYvUP\ncoLLrKjv72tD8QRD8Q323tG8XcrTizMkNlxLb5Ybsm4SfcbZsLgWv92/a/XjT/EaiQMy+LE1bakK\nW9JZQoDSSS0020LeoKLbbi3xw9Y8p69piJW2IGDpnpadfEEDdjCaRdFE467DvpDvofQfQA42idXq\nPTMht019TaTAy1FjaFaQQpFLbGkA2OrXvv3+GMf8ZqhUqf4kQKQyHCxTI1Gj7EgNoRDilSQOARqJ\nIHW43uCX7luyCSpt8iRMopoyN4mRTExg/dQI3biQNiHYPhdh152PrxjFahVVjKVFk04uIZVlqK4r\nSSBqcS8/ckW5Cxfa9j1vjSvHigRcwTshPNpQpz9FKO2sWudawp0n/iPmb+nptjByV1eci2q2ROyt\n1E4mNOdMexjMWZh6REBABMArG2AeN68DxsPhEzT4/hlRGahoVKfYmTXysJuXJUhZWTffcIA336jG\nUeME6Zk2h5Py4kL0IjvzUoAsLypAuoD18pIF/wAbXEiwlafsTJGQq9OnHSbStrtwWHwZROSE4h1D\nsBOUxREfOyh8uM4iTJdGpsqbRiosP1/Mtyi+kpblNJQo2NjwU9Lc9yGDxOoLOZvB/wAMZ60AvLFY\nQ+Lb7PRAi4tcFJSQPUn1xIc2PELBO0p7Xek7mFPLguZAe6ZHiRCAAiURAN/B6tj7B6iGnPwTUMzx\ncw1Ste9IenOwR5m/uwpLhTYHfl0gdbc7HfMHHn/DjJFQYCC1ErsaGUpsQHHIUlargbA7PWJ7Hc83\ni/1yz/7Vf/iN/jxsH6MUP/ZM/RvGNfp4j9xX1H/Rij7ybTh1RamEoJLAdI5d9hAxdAYPcdD+Q/gO\n/maFSV1eO1KsfMYWCb/eBCtx8Pn34x9rLAcWHwdJ91YUNwFA3IO3Fx36WvgVomWdTL1iPUZNx1AX\nYiJTAbsA69NlEPzDwA8aTNUyijMvjSl+IEknYKsnk356b9t8G3XFMCDVGraUrQJCd/dN91fXf59c\nFKnt0W7B3DPgIUyqagJAYPvCYAMUQKBtDvuUwa8h31rjJ8zS3qh7NNYUVKjuo1EH9m4JvuSeoPTc\n45rD5FQi1WPaxKA6UjYpJSbm23p88C+ekF1m8hCGExvhG/qSiIiPUURDQF8j1a7aAfPYONCp1LQ2\nxArzOzg0B61gRuDcW5IPf1w2w5TUKrU6WqyWp3uqULAXVYe92+Z6HqBh/jowjylllGwgD6LUSOIF\nHZg+EJDDrQ9QD0iG+/YOkQ8913M1XC8wxdf+rlp8lZ2sokFO/HHP8+p/RJH2bmqTBcv7FVg4Ug7N\nlToKTa+xN9+vXfDNcbEWcdVx+ocoHIui1VOc2hE3YhSdxABEwiJSlDuYRAAAR4K5SgHLtQlFQszK\nQpYB+6rWOfU8EWufntg7QoAjxMw0fkLjvvNpAPFtRVbsBZV7DTvfqcTiKXUodrjZEBErSWjlSHMG\nwIcRADp7Hv8A6o6D8PQd8K1baTXFVSA1YluT5rYHQK2Vba2/NyOh24wuwAcx5Pl05665VImJ0gm6\nkpSog2vvwAT1t88IIZmnZLvaWqIhp0QjxIoeBMIGMfp/Iw7+Qb7cNtCfTTcnuU+Vs400+0ArYj3f\nc+BulO3qBjzPEl+HkzLM9rUXKfLSy4U8hIIFj23A2vcYmVOtpq3XrTTnQj/UP5RJMhhAOlNyQRDQ\ne2jD29/A8ZvVqO9WhCqbJKkpajrVa9tcZYtxyRoFyNrC2+LeYYLdVqWV8zoteTDp61r7uM6Qbnv7\nu/J+GEMPVQmcTOJNLZjpR0gAgHcQO1FUBKIa7D0gAh/Dv341XMtfjmkQ2FFPmtyaYq3XdTYUe9ub\n/wARbCxX6pJpXjvTHUlQiPyqepSrm1n0tgnpsSevr83OWyOu/wATJQih9gMI2aCOx7gkkmAAOx1o\nAIGt+RDQ+3CGrLLkLNNIrKgfLZrLMkXBIst65IPqFW6EA/R4pVDiw/FJ19ISl01F54Db9ta1CwHH\n3j+SDiT5Cp6bXFLmVQMAmCKZui6EPvFW+rj09u/YFA/Dv379nLM2ZY1Uq2WYDSgpxVbSggWumzb4\nHxuQPpf4ZR4Uy50bxtfEgn2ZdRqTIJvynz7Ej5Dt8hhyXym4b40CJUVDQwH1AwiI7APqPwCh3Ht/\nZ36gGt8IVbym8zmahy3Ur8r7eiSSkg6VBExDyjbe9tJO/r2Aw70CgwZ/iRIkMhKnUVVcqyebplea\nSflvfji/G7onQ1mOMzyaJwAQroPQ12EAGP8AjCAa0Ow7j38Dr37aB4i5pps+EzTkaFPSaxBjJSLE\n3VOQg/K223fjoM1o9Smu+NoL2oxhmJbRUSSFJM4oAIvsLC29/n1kmCcnI1/GETHuhATtknehEwbH\n4zpwtsQ2I/6+/wA/YOMy8U6PVAiYppbiGXksM6Rq0gKZbZNrcAgEeh26YePEzLEfMHinNfaCSp59\nhJAAVYtMNN2HN90EbftDtvhqqFckJhjNWRmBgRmpaaflEm/vmVkHICPYQD0AN+wAHoPG3z5NHh5A\nagvFkLhZbisHUU6gpFNbtzyST67npjOPFeuToHiLSaMkuFqmx6NEHJCEIiRrg8AWuSQbWvzbEs5c\nLu1jYu5MpZQPjJ26U6TqDsfhokRbgn38AUUh157bDxxkddeq1Jy7SjTitLAoEZWlOoJBWHHb7bDV\nrHxt3vh58fsssVqsZRdaQlVsuUtKkhIP6xYW6pW9xdRXv8jthlkHDqcyfbp+DE31ZVKHZmUTEekR\nZsRNoRL4Hawj535347aX4XUyE54a0b7TKVSpQqc10rtcKlzHFK+9v+yN7HoR2wieJ1TfyplbJWXX\nE2DLEqShHrJlKvYHYizYva/wxMMNWZNa73aEnT7OzbQqrcFh7gKxXhlgL1m2GwEvj09O/CRS6k9l\nemPvU4KUw/Wq/fR90+XJbSg7dDYi4/paz4q5aZr/AIW+HdQQ2AZKKl5wSP3VsBBNv+Ej62xaH63X\nv7Tf/jL/AI8CP9KlY/3vof64+av9GzX/AMOfof8ApxxLmZNWYbpOUjiKiB+lTQ9xABHpEdeofn2/\nhqFNZao7jjDgs24Cd9hudzc2vf4fQ74+uYLQLj0Z0aUuJAH+6oAHb0sL7jjbriTQrE51GUkAfe6S\nlP28HLoQ38hANBv04V6vUtD78K90LJ0i5spKrj8L9eDb0xIl3REk09w3UhRsD+2ncBXYbWNrXuOe\ncXIxJJY6aVTIo32YqDRtZ3mP4aAhrFYDQ6MtaK2rbrdFEsKjBw1l4HHis82rETcbYV5EMWrKUPHj\nLtFVHDhj7kSnxXV1aDUjHUzMchojsvu6VOONKkSBrSlSXURA4GUPvgtosvy0uJVcpznMBrj8ijt0\nmPUnXaW1WpUqVDie0KjwJqKdTnjEDyHI0qsJiLnSKZT/ACpDrjkcPezLQEIdmkax5Q2E3ZLJESMM\no8/ZnKcHXq5DZEKxmrQD2yR8XJWpvcJa3NGkM0/YmwzldxzS52NjrVKsqlMWRmyyOjbolNHTXFUe\nkU2dESUgNtTUsMIlpQ44CspDiH3HgGv1Di2o7DgDziY61pTK85OBjsrxFq1IgRH2ZVotToMyVPkU\ncuxqcpiBIfZpy6bGpy3pLiqtCiTK3VIz79OjuVKLCecoiqdILi6mWfD1fw9X4O9zFGmUnWLICvjS\npGXfx8mtecYDzfXdujY42DcRc/FV2ZnbniJlFP0pVija1ZxCux75RWPmSRmeRVUytUiI4+uLJeis\nshyGtxxDom0r9JpDYfQytp9thx6ZTShaXEJkeaGUqJS6GylRj5mqNedqtIjVeK5HzHMnLrDEZl5h\nFIr48MqQtUGRMbkwpE6LFpWZnZDCozy6cmIuc+yEvxjJXSGO+UuvsSyMe7qMJE2yNyc+pU3GZBtz\nmfslff3PmPpMhHSzFzNPGzOhsoWuY0ialKhHtH07MfaLR5KTi7mdKz0eomhR6ZFkKcYZSWpKWHEP\nu+Y4ytVQjlC7rJDOluOhpR95agUqWsldv36TeJT1ZiuvIqUp+KvLsSrxZFGpqIMOcxRsj1hh5h5u\nK2Xaw9LnVyTUI5dcaiMFlbUeIhuIXJC/q3J/kOnW+eaNauygqjBSczZXUHab6tIY9qsDfFa5G2Ki\nldzMoM1LS0EZm/tbOwftGoQZCCkIeHZDMpNTJlHp2XxmCfLZbjpbdY85/RImL9mZadcbbfiJcdWl\n1b4LSpiXi9p1MrZbaD1jPTp/ifluvw6cp2ouzK5LjRYLMym0VEevVKdQxPkQawW4kcRI0ad5rFMd\ngfZ4PkTWZUtwRVuCvltaYTqcTDT9cTxtH3yRvJY1Vrjm6z1qbiwPNZZbzzACSVhn2amP42mx+EJa\nk2cVPtSfsdkuSbqSeOk5mFrHmfY8BulTG6eYrcwrbdS3GfW6SA5MEhJQpbiRGQymAph0AKcddfBW\nshaGmagyM3V9FdoFTcrsikU6muSh9u0qFT3ESQxlp2A8PZ4MN9Nbk1J/NserwADFiQYNLU0wygRp\nVQq1Y24vb/OosTAJXrMj0oJ9wMYBApxAA9wMPz7D39eA/h8ltygPRpgGttbzadQ3AUFEc+pHGxvj\nQqnMcgeHFMlm4cpc0Mk8FLd9ueB1+Jt8Z7jiwoxdMtNYfH6VGzt+kmmbv/Vu2wGAAAfAdRx7j28+\nO3CHmaPKkyYy2Lqa0N6wL2C47xGr1ICBb/PFTMcIViq5UzOyNRkwqc4tY6OsOAEk7b+7uLgnnjA9\nZV1eQx4tIpdRiJMXphAB2IfVjrFH3D7oFD5+PQONhrU2KaFFUdIfaep6gdgoFRbCrnnck39RjitZ\nhdpfjdSY9yGZb1PJJ+4Q+hAN9upNzzbjpgjT+QySWJUIk5wFRSFYtVBES+USIhrQd97IG/w7+usr\nYosljN1KqDtywzWUPpFiQAp1W9ybAWV6c7DrhgomXWoPie9LQNKhUZTyQBvdwum4PJFlX67nDfkK\nprRtAXkSdyAiyOPbQdC5kQDQjrto4APYN79eNLzJV4c6dl6M1oLyqgoAAgkaGXVb23F1IuOnB6YQ\nvCOrS1eME5iRr8ov1NCSq+kqbS8U87CwTdPfm18EJ1kwCYyNFnMAKHrpmIDsO3+gfC8CIDv0+fft\nvjJ6rl+T+lVGcd1mOquxX1JN7FKJrbt9+m1/T4g4aKFlqPK8RHJrRBLdXVKVbkkSw4enHyJPr0i7\nepyMbj8ZNPZUywgPCgA+Ci0BXYgAhr1H3DYiPrxrPiJVKVLgsxUFsvu1SJHQE2KrmSls9b2tsOnH\nrhQo1bly/Gr2d9S1MqrzrB1G6Sn2pSABzb3Raw26c74LuFsgsY3F0Q0eiAKoIOgMJh0JhVcrqgbv\nv7oif17fr3x7xHZqzapbDK1iO/5LOkE20lhDZHQfAdNhbrgz4k5VRWPFCdIZCVFyQztYHT5TLKAk\ndbDRyNr/ACwKanGyarWZl2RVAbyUtMPg+GA9JxUfudiAh57FAA7aAPTYaDdq7EpTeSksOlvzYlAj\no1EpuFNwGyLj43GF7xJzRIi+INNo6yVNwmaXDSk7gIRFjbE9Nyb/AD22wSeXizMTRttLKmILn9pH\nQAZXQm+EgggiQNj56RTMGu38B4yisVWpUChUlmDrSwmjNkhHALi3XDYA9Qobj487YYPH7K7dTq2V\nS00FtoocMaRY2cdW46rYX5Kxt/MDEVkH64ZRuUrCCPwFixLcTJb6RFuwIY3jWxE6ptgOvAAHDx4f\nURipeHdKeqBBkSTVJR12NjImvKHPokdfx5BZ9qpy7k3I1BkoA8mPLeCVW2D01aQm1thZsW2NuvW8\ng/aef/2q36m4TP0ahf8A0/x/rhR+1oP+xH/J/hil8IwOi5cIK/eRVMIbHuBREREo7+fgfQfH4M1Y\nqRkxUOtH9Y1ubHcpFr9+Ph/TGhy3G2wxITsvSNVuVDck2B54/HpfBIarosEioHECFOAFD/dPrRRD\nehAPb8hHfCoppyohD6QS42Rc2N9Nxfm3+FrYBy1q9oD6TcK35sFDkg9fyBgey0uo4VfR5jj0nHqK\nAGHZVCbADa2Ib9BH+7jR6fAbYZjzk2DiAkOGw3HPTc27dO5xO04Iz8aQB+rdUElXQFROx9Cdhe3a\n1zbDnWI87hmm6ARBZoIiICJtiQR7j22I+A342JQ86HhezRVAp1NvurslVienG3+92vue2CRcTT5z\njWwjz0JWRyEvAc2494E787/RbeZMruOauEz9LhoYEVSgYQNodfe870OxANediHrxXyhEMWpr8xJM\naWNab/dOoWV2sRe+/Tfi9r9CbDK50BX3H0Lcav8A7wPF+xsSefXDVS3rlGabJyLhyszcIHaNiOF1\n1UWyK6izgUWiapzJtUTOnK7k6KBU0jOXLhwYhll1Tnu5wCkR34rKlWaBW2kqvZIJWABe1tySBbe5\nPJvI4oVGguJCG0zKbIUtxSW0IccWzpQlxwpSFOqDSENpWsqUG20IB0oQA3TczNRSNmpzSXlW8HKO\nEHr6IbyT5CJkl49Y6scvIxiTgrGQWj1FjqMFnjddRkoqodsZIxzCMuXWVzaQiQFrStsIU62laghw\ntXKVLQFBC1I94pK0koJOg84bA7ELVAzI5HjqlRdMX2pbDS5EZuQlLb6WZC0F5lDwADyW1oDoCQ4F\nAWElVOV9jxhKIj/p0K7TE4gI9YdHgR86HuIb9d9xEPK/NmKXXmYrxKmnmwgdQQo7g3569B02xUgN\nph55mt2/utaiqHoSsAg2O2xAPHfjCOnTQmvME9dmAyT1uVkoY+9CC2xTAfTYiIh6enbe+DlTjqok\nJ9yONIUgvAJtvptqFgdtj3vjmuRm5uXcz0EAeZEcEpCBudKTuQm5JHwtb64frimqwuk02ZCJUnrJ\nJ6BSiIAIlKCZx0HoG/P/AF4pZLbZrMN8PgFaH3UoJH7xKki1u5HWw9DgZCl+yeHVPku2K6VLMfUr\nkNlRUPpv87YnGM5NsbHdhhnYlBZovKoAU+t9DpEypdfiKmvzDxvhazVKltSm4jZV5J8g2F7BTD1j\nf5Iv8u2+BWa4aanmXKmZmN/aIlMfCwLgLZcSlVzY8aduu3fAmNGvFaMV4QDCimyVU3/qgCJzkN6g\nPYSeQ+W9calUUxFUqNISEpfbehkq/auooJ36bqvv3t3wbn5lMDxoptNUbNy341wfu/3hsAfHdXb4\nAXwYrpdW0ti9tHgICsuwikzhsP3kjNRNrvsd9Aj4EA4y+mQpac3Up+QVFhmpqULk2CVl1Ive21l/\nzF+suVMu/ZviNLmJFtMmorSQNz5qJAtvtb3uTz19YfeoJ7FVA7rZgTAWqY632KscpQD00AgPj8vP\nGjZjkQpVSoSGAjzlSHVDTYE6GisEgDopH4X+K94PV1+Z4mVONIKvLSmolOrca2tagUk8kaPwwWHV\n8bDi48cIAC560LQN+QH6h8LuAj5EP477eB4yiqU2a5mmlJeWr2dVdjPEEm2lE1Dh24sNz27YLULL\naHPEhc9ohQbrRkk9R/e9ZPp24tY2AwPQjJSHopniZVCIIxn1kmgHpApkAVA3b02YRD5j541XPaaX\nJjxGm/L852pR2BuCpV3NJHW5t27fUdQa89VPGJUKQSptVVeZVqB+6l5aBvwbAWsCb27XODViK1Ri\nONopJ4YgOEm7oVBHuY5lHDhQRAR0ICImEdj37iHcB4yzxBl1VszIbSnBGeQ0wBc2CSw2gA/ACw6W\nI7Yg8RMsKqPiZPlMoCgqSyUG33A2y0m224tp36/AjAXqH2i2QmHjIpyt30pKOwEgGAv3nq5Q1r7u\ngAgAHt4HsGh1qu0aArKLRcKfOjUSODq07FMRC7b78qO/N++JfEXM6ms8UykPDUIjNMi2VfgR2Dfj\nYEqO2w54vgnYLk2Mo2tTiT6DuxnTkAVP3vhotUUg7iI9gEo77hodfhwhz67Ny3QaXEi6ksopZKdP\nCVOOurOwtc++N/jucSePWXEzallVttGppqkskBN9luvuO9j0WBvv9cG3df8Adt+ocZH+lFV/fe/5\nlYzr9En/APYuf8hxz5K7TSTOY2gMTQHEB772PSb+HcfQR1xsbUVwSSjctrJIB4Nz7wueduBbf6YZ\nC95zflnmx0XtcK6i29ufXa2GOYnjLNepIw9SZgIoAD30Ah0m0A+B9/HpvhnpVMTFeUlaQUrBUL8f\nC/pva+1jzttEyyp1RZXtcHTvslW17dr87n64Z2wmdu2zzuYVOkqgj662Ud997EP17cEZcpMZpyKC\nANKtHAsDxa/x72v8cXY8cqjSY7wstu+m/IUDqSpO/ANj/O2CvGCnEkE/b4By9RhEP/VmDY9u29Ds\ndeddtcZy+F1BxxhQJWkkpBv95PFutyLb8HpccU5LqpjDat/Nj2SedWpHbe+43H+OBpY3BlXzxumb\nrIcnWUN9jAGjEH2EQLrf6hoeNGocdP2Y0txOl5i9lWsdtlDv/j64JGYWBTqgjhDiWnwP3FkJN/ge\n+3O+wxJ2iAL1hF8loHccdMwiHYRIXQlH0HWu2/lr34S6nLU5WG23TqadJaP47H/AdbjffBKK4Itc\ncbP/AGeptqCk7aS4Rza5F+O1784hyr9OTsTFVbsDpMUFREQ/eNom9j52IAPrsQ3692uHHVR4jwRs\n0tJWkd0kX7DjqNvnhgKQaPVqSlX6yN+uZA/c+8hSe25Avv8A0kSjo8InYK+sIgk6IVZEO4AImT/e\nD00IgA+3n14UvZBUpMaY1uthfvWG+yzsSdztfr6G2JoK/bIlFq9x50Ihl5R+8NC9B1DkWH+Nt8J2\nLbqqUfPNh/r4p2j8QQ2JigksBijsNCH3BEP0D5cGavLEjyoLttSkuNgHrrRb16jf+B2xC+4Ws+OM\nKN4tYpzjVr3SpakG3S179bHsDfbEojJxKdvUOo5EDEesHDMwj3ATCXqJvv53oA8d/wAw4p02OrLs\nVx5N0tl1Dhvce6LXNr7DqbfS4OKlcp+jJ2ZKS3cLZWiQlIJuE8ahvfbYkdhzjVLquK5ZLDGtxMVF\nymi8AhdgA/ERBMf0ENdtB764mgwmcwFx0BKih11IJF9tZcA9L3/HbsKtDeSjINDmSgC5THlwlqPI\nSl0qSd9he/pbffc4m9KWavsVyjVXp+O0TmmglHyAD1rJ73sQ317ANBvt+YauVV+M+im2OhTkRwHf\n9h1II5/3Sd+/XAnNMASfETLOYmSVJcapElCxwbaUrsvYbFKrH5cYEcgR2FTarfeFEGzdUBHYl0Bi\nF3vxrYD27+o6134fpkKMiFGmt6Q6mSzc2BN1Am/fnfYdul8N7GYm4/i4KOTYSHXBbrdbS1b/AF+l\n7Xwbcg2dpK0BmyIICsv9jgcA7j9xVv1/j38/x4zakImOZspi5KiWGZMgAqO1ltupBNztsR0PS2KO\nRsvml54qEwJA0pqu45OtqQEk8E3uN+w64HluYv4muFMcDlTMKTffcA6Th0AHftsQ9P7/AC+V9uE7\nVKQWNPmlxxwhNrktpCwTsDyOfS574q+ENdcqmeqsy+SpLSJbqbk3u04FXB9CNvTfnfBinLYwWxYs\nx+6C56+RsACH+sDUhREBAd77bHYeB88Zs+1PfzVSGnlKMcVplw3JOwkX43Fhfc3+uJcs5fKPElVR\nSLhuruSCtNr7yFnkcbm2/wDPYXoDIw1TFRMFCIos/iF0BgDpMUTgAD2Dv1b8a9R40PO9Pp7yYhSU\nF12a00RsSom4v1O1reva245oVcNY8UHIT4BSqa62Sf8AdUpIJuSf2ee3XsZsWScSOPWH1r4QOCpP\nBW6gADidR04P5EREdgbXjt+e+EHO9YqbQlU9pTnkuNNMpte2kMNpAuNtikbdehtgP4h5dXN8SZUt\ntBVpfjFpQFwA2wykHuLaSefhffAdprt5GISyzTrKk9kHzgBKAgXpFdUhdD4ENFAN/h6caDX6FHey\n0y64U+axTGQRtfaOhaud73JPrcj4nPEDMbSs302lPpCvZW4Eff8A+00tR+qibfHC39s5L/bqfqP+\nPGQfo+z+5+B/rjWPsWH+4P8Al/xwBFpNwR0oisRQEz9RTGFNQC6EdAYTaApQ799iGh79ta42dEdj\nywtC2ypG9gpBNxzYBRUbbcXvYD4fPqae+tnzww8ixBWVsOpCSLWUVKQLW6lRta3N9kTcFSOzt1fv\nJLdg34Hf7ohsB16b7jsdaDiR+UhUbW3stroLk2A3HTcevfnuQMdHlsygLLRYOc7gHc7cm/O3F+2C\nLWICSeEXIwiZSSBucpjDHRkjIigY3UJAW+pNlwSFUCHFP4gl+IJDCQDdBtKs+Q9MSHGUuuLQAFht\nCl7Hi+gG1rbcbdTY4pVOaxFfbdXIjspeb0K859pnWLXuA44nVYkBRAOkKsbXGJRJRVlBmu3CsWr4\nhEjHT/7sz/cofvEDUcPcPIfh8+0tLpsgyY8ksPWKglY8l0e9Yc3QLX436HnAJE+C1J/7dB8t4WNp\nsSwVa+4D3W/Y+npAWVdtbh6yUUqlrOXqBM4jV7B3T7gID1RoeAH8PGu2+HWcHIkdwstOp1i9ktuG\nx67JR8+Ob/DFiLLgqE6C7OgaDdxkmbEPuK3skl+3uq277YIitdssORZsFXtJmrtExQAKxPiAdRRE\nviOENgPuPtxnrUKRUn1KDD/mtOBxP6l0fdNzYlFt+bfh3tx6lEfisvmoQPPgOAm86ICUoIB/78XJ\nSBuL3O9+LDBrTbaqZRylVbUJmLg5g/7sWAPuCImKIbjQEdCGthv8PIC+Tis0xDK2XQ4EAD9U4T92\nx/Y6c9+pHGGCRWqe3V6fKTUIHkT4/s79p8O3vAaCQHvUp3684k1rgbPIKwj9OrWoTuEEkHABV7Bv\nqAvwzAb/AOzdgIb2Aj8/nwq5ZjPxZUpt1h4tlZUkll0CyiTcXQO5F7/HfBmjTIDEas05VRp9klx1\ni9QhW3uoWJkb3Pb14tbC+pwFoRh7HAOqtaS/EQFdEpqxPgAnADdiiMboR3oNeo9/wqZkhyU1GI+w\ny+pCXrHSy6dtQI3CD0J62555IxVShSzQqsJ8APRJHsrx9uiah5S9OojzxsUi574Yoqr29inCzxKv\na9sXpCH1WbABg+GuBRESjGgYNkMG/QQ3oeGSptqmUhbAYd8zQof6l251NEg7JF9xt/DF6rVinHNL\ntOM+nmPV6Y8i4nw9HmBrWi6vPKQbgixNwTf0wRnkFPWG7ImGsWjoeQq6fUNZn+n4iIgoXZhjunqA\nA9e+x7BsOAWVW5dJaUXWHwFSE7qZduQoEbjTfpbj48YBVd2LEyBWoTdQp/msSkuNpTPhlR1IVuAH\n9R3HQfgRiPpxNxgFbHCJ1m1AgdwZUALWp8SiVdApe3THCHfWu2/TfgeJ5NGNVlqkpjvEoUsWLLgv\npWpQsCjgXvt9OMXKJU6ZKyplWpy6hA86K0mMsrnQ9aVMuqKbgvhQuOL+lsS9tVJ5/iMTjV7N9Ybx\njlLoNWp4FPiNlziUen7NA47AA0IBsQ/LiKVUZKH26cWJBHtcZX+oeKSk266LHn/LbAWoCH/phpda\nbqMAtKehOFYnxNGh1pP7Xn2B943B+GBvKV65FiWInq9sFMpmRwKFYsA6DqIcA6Qjvw8h7dx4YJlJ\nEdEWY0y55hdN7NOE3KTvfSSDzv0Pww9UXNdKV4hVGk+309OpE0BZnRNBPlrt7/n6dweQdzccg4Me\nSWM1JVNi1Qq9nOqu6jDGKWszwmKAHJ1dgjh150I+waHhJojVSk5ngKlNSfJYMlAKmndNihQ5KLdB\n337jYAvDuHBo+Z6tNE+nItEqdiahCTqKmnCm59osfeAta5v+I2slauzKETSPV7X0HEqHSWsz4gBR\nIYNdIRw9tAAeO2gD305VimtJq9NdYZdKtSntmnDZSFNqvcJ23O1/XjF3wqzRBqmZqz7ROgIDLbjy\nFOTojYJS8DYFbyQTueN97WBwX55hKK42Wbp1ey/WRhUkwKFZnesFAQIXYB9nbEfw2Pr3HhAfFWlZ\nkp0d9qSWRVW1G7L2jT5xG50WGyhvfYWN8DsrxYTHiH9oe305KRU3XVOfaEIApLqzuov2Ox29NhgW\nR8TdomugROsWsqaaAn1+zNg2PXs2tfZ++4m7+4/gIA65uoLaww4lpxa3H0IIS04eEnsk2FgN/Q29\nClMzNTKx4gvRHZlOA9odR5qp0QI9wKT98v6eEgixt1GDNjuryK9HZKOaxYiuRQcmXA9bnCqdQrrn\n7lNHb8CGu3f2791HNlZqzSJNPajyi2pptlBRHfIt5LaQLhGw237W78p+fYsOV4iyJrc+CoNyYym1\nJnxFJshplIN0vkEXBF+O+wGBj+y85/7MWf8A+F7D/wDTuLf2ZM/2D3/lOf0xuv2tG/8AmNM//JwP\n/wCRhRbiCrW59PY/fYLl/D+sIP4en+e3CTRVBur05y33Jbaj67KG+3qcfRHiKr/3DzVckj7Ek3HP\n7TWASgkUxSCqOzpABRN66APumH5dtfmA6Dvxo7i3G3jouWnNxtdIBtcfHbp8txbHwZ7V7rrBNrkl\nIuPiefToOl/S1lsCYS5lM6OrJGct+O8m5BkK42jXlsb43XcNgikH53qUOvNLkmIZoQHyjKRTjiLr\nqqqmbOyt0/uq7u0igVaoPvJpkaXISlKVvCMVJCEuFYQXCHEJ3KVhFyeFEbDCBmrNmTcuMRjnKsUS\nktyXHmqeusJQvzlNBtT6IyVRpDh8oOsl4pSlAC29at04FmV0864nuz2iZQRy7jm6RIIBL1G5yV1r\ns7Hg7R+M1VWj5B+iodo+QEHDF83Fdg/bj8dm6XTATAzsQ5lODsSZ7Ww+1YqbfW8hwAi6FaVqvYi1\nlXKVbWJHFqjKy5mWlN1GhKoFWhLKlRp9OZp0qK8plRC0h1ppSQtCgUOtr0uNKGlxCFWGI/XrVcFf\njEPc7kByHBVIRt9mDXT3MUdy3YNb3sdBrfrwv1qoyACkPv8A3SCA87vtzcLvz8bYYXafTm2ostNN\npt7FDg+zoXCvdIN4/INt+b7ckYMUFA5xy1BZFfY9kbnYkMPY5mMuZBXb394wCv43r7uPYzFlOElZ\nGKkkiydyjBIWMQWQllvrHxGzFZNNVQkeWIlTlSnZLCpDzLEVyVKJlK0tMtKSlbhDjo1C7iRpQFLN\n7hJAJwKlT8rZcnU2PWGaZE/SqpMUGjpXSWnhLrUpt1xiECxCdDCnW2XFedILMdJRpW6lRSFB6n3S\n4kk3Ldzc7kZJ6kJSddvspih1lESiAjLCG+vt2HYefHm3mp99tpDjD7wsdwl90cDcbLHT42sbYItQ\nIT0F1g06nedTpKlIUKdBuWtepB/7PcgAWN7jbDFMXm7NV1Gn7Z3PpZvCCGrfZgECCfQbH7V3rfne\nwEPTtxJSvNkwTID7/meSSf1z17p/8dj1/HD2Y9IZTAnGmUry5iBHeH2ZAIClgAE/qAAdXXnn5SSe\nu9xaHipNvc7iCcgzKRQAt1k6Pih2NsPtXX7359xH0DgPEkvTJLsZ1+QVMuEbvPD3Rx+38DvfYDvi\nOgUamFNYhLplMu1JXIZ1U2CbBQJFiY/oLWJA/hIsdzORrtHvKZAzuQZ60S8wzjK7CxVjtb+Yl5iX\ndpMYuLi2aEmdy7fyD9ZBmzaolMdddYiZS7Nx+qj06NU4kVp2U4ZbjTLbTbr61uuLKUNtoSlepS1K\nWEpA3Kjta+BOYGaHGmUjMMmLRocGnpdcqEqRCp7EWNHhoUuU/JcUwG22WWErddW4QEoSpR9SPlrG\nvMrysZKp1Tzg/n6raZCMTllIJnmKLuriPZKyDyHcM589Iu1kZwE6zkWDtq/rsyuzmmR0utZkVJRJ\nU5/MVLqVMpTrb6nWJiW/NLaJoeWjSSNK1R5DoaWlSVJW2shYO5AFjgXSM15B8QmqqcptQqjSpLLz\nLE13LEikofkMMNykuQk1akQHpcR1l1txmdFQ5EeSqyHCsKSILM2e1ylulCN7lbwIpEJLlKS22QoC\ndI/QfRSyoBvoHY6AB7+fYLlKoyENo9pefPmPLRdbzpNlJ2HvL7335x+rFPhUzw5eLVMpweizlFKv\ns6Fr0my/vCPqtyeSB2xHmuSrswr8zBnuNw2m5fJ9RrZYzHKVQTCAAcZTqDz26TBryAaDiGXDkSKo\nZKJEnSlSFBKZD4SSgg7AOW5G/PrhppNNo82HlWuPU2l6nYUELvTYIC3GQEqJHkWJNt9QJv3PErmb\nLaV8cs5BO428FBYRphMW3WQDAdNQiag9QSvVvQDvYj6iPpxO5XHnXo8AvP6ky1AjzXAbEKsD73G/\nrtvfnC3TKBEZ8ZnZZp1OVFcdfT5Rp8ItWWwog+WWS3sCDe3PG/EJlb5eSpRpFLlcQIRw13/3ushR\nECnIfQiEoAjsCj58h78X5MZ6GuNKRIkXX5hB894gEpIsQVkbXv6/Q4eMrroUzNFepaaVSS41Em2H\n2ZT1WsCj3QY2xAVfYc2PU4JuSL3YXUHFoNLhbCqrv2gGFK2WIhukxDFENllAHQiIbDxvQjvtwsUS\nbUZmYGPaZEny22H0gKfdCehuQV2JATcXud+dsA/DvLMClVKvS3KXTiEU6cqzlPhOJ1JAcSQFsKCb\nEXukXAJ4scD2dvd7bRJED3G5FKcAQAf2tsYG/dENAb7U2OgL5377HfDDUmFM1eG41IfJCvNID71t\nnEHcBdjuQLHbfcEcFvDX7IrNYqi3KRSz7OC6L0yAof64DYGPYXvyPobYJk3c5wcenOlcLYDoYtvo\nxbbYgU+ICaQD94JQDAO97EBEfn34VpNXqsuvQojkiT5QqG4DzwBTrUAVaVgHYja3pgTlnLUJvxBX\nKNLpymzPfUpKqfBUjQpblhoMfRaxHAF+fhBYzJd6i4AE/wBsbj0ERMbrG2WMxh6tjrqGTERABMGh\n38g78Hcz0x3Wy6JL4LjqEgJkPpsQnbYLF+L7bfIYMRGKFWc7vxBSaXqDzidIp0DSS2kjYCOB+zuB\nbcXxFf6SLp/7ZXL/AOLrL/8AVOCHmvf7Z/8A893/AK8a7+jtI/8AlVI//E07/wDiYKttUBKuzyg6\n0RisI77f65A4x+io11anI396UgbfBXbGxeJhUPDzN5TfUKDJItzfzGMVoUlgTV6B2HUPTvt3Kbeh\nAfUQ338a0PGwogpU2Dzp3HWxFhv8T+HrbH8/VIccu6LggG9r9Cbnqbem9xa5GOtf0f8ARsiZc5Jv\npWce4vqFov1+nqTygJV2qU2OdS1kmDM89S0nIljI9mIOHH1WIYvn7voMBUmDVysqJUUziD1l+I6/\nQszMw2HX33GaToZZSVur8ucpaglA32SlSiLW0gk8HGFeKlSpdB8R/Ays1ufCpdLj1PPplz6i6iPD\nYCssR2WlPvOXQjW88203cXLi0JQCpQAsPkHAkJzGX/kc5Hs43adU5tsW8i2bIO1Pq/aYC0S8HmiL\ne2DKuA8C5In36NhbybyvUSHl4axREZJGm41zJRrJnLoqvfiL35kVufJo1FlvrFVZok9twtuNuLRN\nR5kuBAkrIcClIYQtDiEK8xClISlQKhhfouZpWS6b4k+KWWqVEHh9XfE/LT0FuZBlwY8rLb6IdDzV\nmqjRWlw1sty6nJZkQpL7IivoZfdcjKS1pQGOSblxwVGuPo7MrZyaX6xTHNBzWWOlROOIk1EVqLip\n44tFGqMRJ3KGtcG+dytZmMozbqCu7FJ71S1TZSEfBtUJcizsybSaXTFyMpzaqJT6q1XX47cNv2Yx\nzHhvRmG1yWn2lKcYXNdU1JQFWcYSpDYCwo4bfE3OWaVI8ZMtZYcpEOLkjIsWqv1iSKoKgioViDU6\nhJZpsiDKabjzo9EjIlUtwtWYnuMvSlqjkN4tDjWK5bXXNR9LzWai8yljXGTTky5t4nLEnYoyi2Z/\nASkZzAQje0r4jqtMTrUaNUbRTZBlQ63ZHSMkk8+rtZiQSjwEyTlRI9Mbqub2YyZcWKIVWTKVIEZZ\nQsVH9aYbcZLaExggJTGacIcTYJcUBYjN8w1DOKfD3wCnz0USr1xvxEyM/QmYTtUhpksOZTkOQkV+\nZUVzHjUHH1Kcqc2GgsLbKlx2lO803sXIvjbJK3IfZeT6z5HCj87Fpt2OYeMz2nVnV7xjeca3FlW7\n2vaHeOWTGvzVeZRbpe1tfsVA6os45wyI+WO7SKyVa7QWZk3LrVLffVFzHJkw225wbU9Dlw3kNSlL\nMdIQtkNLL6dA1BKFJCzqGnTaF4p1WhHxQR4gwaP9o+HdLg1mU7lUzkUyuUut0x2bSUQ0Vdx2XGmO\nSG00932lYT5r6XS0kNqLsAzfyv8ALfZcM5uzTypXjMllLyw5Vq2J83R2X4+ioNbbE3iRnK5TM1Yz\nUpiLNzBVeXudcfwbqlWkkpMx7F1HShpgFPiN3Vo0qm02kzJlIfnOsUyU3Em+3Jj2ebkKWy1Oi+Ql\nPlsuPIKSw6FuJSUqLl7gn6Jn3OjVXoGSs/0rLcBzONCm5jyo9l16qKepsmlsxKhUMs1wVJTiJc2P\nTZjclqqQPIjOvNSI4jKGlbdtMqfRzcpUNkfPnKPTMv8AMDI8yOKsEzPMZQpOyQWPE8S/ZcDjeAya\nrie0qRzVK1zNulK9JGkjXGKSrdbi05CPjkY9++ipEJORzKVDjVurQYsyqqqzVONUZU43FFO0Nxm5\nPsbuhIkOSFtK8zz0+U0gKSgJUpCipeyp42+Iy6LkzxKqeW8ns5HzFmmFkWssw5dZVmMvy6zLoIzH\nBDy1U6NAjzGQyKbJVNmySy+8p1lmSx7PVz6II2PUPpD+WxK7sri9CftMe9x4FXc15Bk3vqMa+lYd\n5dU5xs5Vd1RrHN5VRZtXjtZ8J0sK4buSsUHyao/LSYM/M+X5EpEhTjE1JjBgtBKZiG1ltUkOpUSw\nlIWSlkJd8zyiFABQLZ/aBTWz4O+JjNLdpjYp7Ly6sZ6Ji3FUZ91mNMZpJiLQluouSVxwlc0OQzEM\npK0F5TJTJP6EuU23QnNHzX255zOR/LlizMsbQ0KwzkMSO+YTKWeMgzVknbS2aW1SFHHMNUoFsxf2\nwz6Th31iexS7GKXWGTFy7NKItLJr0+WqqIozcuPCSyVw1VKZU5vnuPJQ95fsrbLbaFP61oU4pKkI\nV72pWKVQzH4hwq/4WZOp6ciO55q+WXqiJnkZjRkuh5TpsSFApypFO9r+235shS2oC2o0luG3IQ6+\n0lLIQ3goY1+jvx+/5uMo4wncyWSOxA15ID85mHcxuYCOQcyOLpxCnTkNJZBrKSD/AOKaDg5a0M7D\nF1pVgvITsAyWjnkaykDtUZhkuEh6Wyai9GgsUhVfhVEtJ2jBDLwXLYSleoNMrfDrbJQpbjSdCkJX\nYCs1+N1Vd8OKY+zleA5mWT4oDw0zPlduW84iPXYq6pBms0ScpbNkyZ0anuw356HkMRJjiH23nWUu\nq5jZijMWq5SyaTB7i9vMVJSMarS3WTG8MzvjqOXhWJXbmyNK6UIZq6cTJZJVs2YlIDeNOwRcFK8T\ncFADTZNNkSnBAMtcB0OCKuelpMxSEoRcvoZ/VpUXNZSlJGlGkEagcasqfmCheF2VVZhRTGq/Hcda\nqKKIuS5S21+2OpaRDcl/3lxtuMWErW5fW+HlNnyyi42CwKHpBYkxuyRDJCHt0LGMAeewgIa8b32A\nPZZXTSmruSgDpQ8FjqNtr88WHO3wxrMBllys0usEpC5ceK6D11LjtpJvfe5uPS+3GJHcWKYQMY8S\nAAMorGmKJfX4yIb+Xk2/T8vUl9pJlOxItwS2XgsdQUmwv9Lj+OEfI8SRE8TMxSnNRZdaqSR2Avq7\nD90+mwxGX0isd1EJrjshHzYwgIdtJqpiPy8b7b9fx46fg/Z76X2wEqXHeKSNt1IIBtfufp35DxlW\npx6i7meOyR5keJISo25LiXGr7bmxIt15ubbYmeRlGS0dGpNejrO8IA9IbECikcuu2vUwAH5jwGoj\n8ifW0+0EkIjuAatxfUk7X3FwD8bnAnw6groz1elFJSkQZCzcHdSFBy42sDtz0J+JMNk5NwnDkaHE\nwJmIVIAHetAUde4DoCh29B9eCU6ntsViM4mxUFB47C+y0km3S4PcduuxzIVQZq1TnyrALZcLtzva\n7tib+p9Lbb98TaXbMS0b46Yk+OZg2HfbYmECAbt5DuPy8jwJmVSTMq8WIu4QmYbptyAVAXN+LW+X\nUjgHlmEtnxBdlBJ0rmSb3BsEkuWPQb3v69BgR9/7Jf8AhN/hw7/Z6+6vqca/9qI/IH9cWNvRTGqN\noKX940W4Av4/ET4w+gKCK5SVq3Sma2Tfi2lY3+vONr8REheRM0pPBokgG/Fitnn074qUbqctwEQE\nF0R0I70YQDff0H/p59eNlL/kO8gtODbqAdie+1uT2+AGPheO02l91lVhquPkdrfW9yRxY9xjpbyl\n5JrFQ5FPpPK0+vcTU79fqbynsMfwqlmSgLZbnNczs7lrK2qLVN6zl5hWIgljPZtGJKsZnFrHWfFI\n0UMIn6ZNZiUfNLS5DbTkhmk+yNl0NuvFM9ReSynUFLLbfvOeWTZBuqw3OOZ4oUyoeKXgm6ilyJ9K\npFSz+7V5PsRlQae1NyoiPBcqCy05HjpkS0JaiqfKQ5ISEt3cAtWXljyhI4M5icH5niUVnT3HGWqH\ncjsW4Ki4l2rGzMft6JKVEQXcLT8M5lYo5CCZZ2eRMT+sVVHqWKdUHKdVoEpF1+yz40gJBPvpS8kr\nRtuS60VtkXuSuw3OHzOtIZzXkjM+V5C0oTU6DVaal1enSwtyE6YkglQKUpiyEx3wT7rYZ/ZSkW66\n84+S8ScvH0oHK5jOEmPq+EOR/IeJGEtIETOKMY8sWcX3MRld8qzRMsKa8CF+Yw8gigQVifssokok\nLlMyfDjWExIeb6PFYV/cMtSYQUoAnSp2orqs1RAvYtmUhCha48ni42+cMiUyu5r8EM7Zglsa8zeJ\nVLr7iGiQVOsRMsM5OobYWQm6JApTklpajpJnBQUGyDiNkfUTEPMZ9L+vP5swTYoTP3KBzQ2HDlio\nuWqhboO7K5ZzXEWamU6PfRz8UwyQ8iEHLp3j4hnFhaIIg7+rrMl0HJza/Z4UnNizLhOCbSam7FcZ\nktOIe9plJdZbSpKrF9SPeLNysAX+6b45DNUzBl7wBbjZdzPDcy9nrJETMEOqUKoQJFNcoGXXoNRn\nuNPNXNHS6tCW6sQiI6olGtLiVoDtgrmixZy/4i+h/tsra4STNhDmR5tbDlqswz9nMW2l0jIFvhYl\nCdlq0zXUlWhXVelpSdgU3DZI04jFLkixcKBrhcYrMRlvIU1TrbjlLrFcensNqS4/HYkutseatlJK\n06mVreaCgPMDZ0XIxczDkOuZnrP9oanR4EllOYcm5Bi0CbIZdjwKjUKTAlyFxY8xxCY7hblMMRZZ\nQtSYqn0F/Sk4C1+Rx9yd8qPOnjKNzlhTNVp5yMx4hYYraYXyHF5GUYYDxPerLlJTJd+LCpqo0OSs\nziXhKrF06wOW9qJKoSp1GIsWqzohOotMQMtV2AibDmO1RbAi+ySEyCYUZ1UkSHQi/kqXqQhLThDo\nWFbFIJwyQptR8QvErwvzA7ljM2W4ORsvVlFdczHSHqOheaq7SY1CFJpRkKBqrEJLMia7UoiFQVsL\nYCXA6pKMW0yDnHDjn6XvmWyY2yzjlXHNo5G75WYK9BdK9+x8xal+T2kVlrXYuxGfliX066sLB3AN\nYls6UfOZputFN26j8gtwtM1CnyM51aQiZFcjLo5jokokNqZW6aLFaU0h0K0Kc81LjehKiouJKLah\nbC9SstZla/syZPoisv1kVuleKtKqMqk/Zkz7RjQEeItWnuTX4Ya9oZiNxHWpbkhxtLLcZaX1rS0Q\nvHMT6M251Wm853JReb1Y4Cl1ipZPjDWe0WqYj69XoFiWm2NkZ5NzUq4aR8U0TduEG6jl+4QbpKqp\nkVUIJw2i5VdRT85w25LrbMduWh5TrykttNp8h1Opa1kIQBcbqIAJFydsbh4wwp1a8LvFKFR4Muqz\n63lZZgQKdGemzZj5qUB0tRYsdDj8h4oQ4oNsoWspSopTYHB3wLPVfN/Kzzf8m6eSsXY9yPJ81MVz\nO4ffZZvENjqg5BjkWNpoNyrieQp46dciZhhCu4y2QzeTcoknWJ1yRh1VUFuk3MDNSpEykszYMOW5\nWYlagKnSURI0sMIehy44lufqW3UsuJfaStQDoBSjfhOzEzUMueIfh/4iuUOv1qjUvJsjIeZGcu0q\nVWqxRluO0+t0md9jREqmyIz0lEmnSVsIUYj6Ul8JStN7gl5iMGp5ezrCweWKLJUbDH0Llx5KaLkY\n84hFVvL+TqTWK8R2nj91NiwXsJbLa383H01BsiZ3YmsQo+ikHDJZBU501enSTW6a3LYWxAyW9Q2Z\nOsIbmSEREJcMcuBJcDjqlIZABU6EakApIJy1/Jubva8kTahl+qxalnH+0bF8TqrQjGU/Oy7SKpWX\n3mRV2ovmohuQaWiO/UytWiGt8NSFJcQ4EcGKm/B3LzKS+xF3HNlAEw72dBQA770PYD6H5entkzqV\nUtuC8i4TdxB6W1p2622I25/DH2DnSE1UaAqnN2vGlqBSLEgKIUknY7XSd/6Yiq7IwR0qYmxIg/ep\n6D2KIqB49iiPYfmIe4sNPU1KQ8VAa1MBwE72KgPnudvie2Ia/WXaGxktAJGtMJhd77gFAFyOhAte\n5w7v54zyEh2hxHSJmIDodiPwTp/h6B/z1rhajQlMzXJNjYOOEdhqve/zufW9ucP8GCxGr8yUkAKl\nNSFJtyfNbKiB3BJG3pzhzuDAjYYtRLYGUeCAaAPAE6wHsHjYa3wUROFQfZZBBDccg36FRAI6/wAc\nIXhmxIg1bOEh8qLbsd1SdR4CXyob7jr2433xHnsio5exyS5jdAOm4mAf7IKlKO9h6AI7/vDzyYn2\nfKU6hICvZ3LHpfQoiwv6Cw49MPGV5seo02vmOblDLzJsL7uNO2G3Q2tf584k16TZpsGANxAFDuAK\nbQb+78M3cddg7+nngZS5L1Rqx87hDKrfHUk97G9vpfAvw+jqpRrLywoIEZbh1Ai5QsL69wDxcWO9\nsRx9LLfZANDHP8MUypAA+NlDsIB29C+dAIB6dhDi3KpyWKqy8Ei4WHNuh1Dtx+O9r9MHsoyo9RqU\nyUj77ThWTYbalkdODzuPTjGnRPcf8/lwf+0D2H4/9OC+gdz+H9MHe6v2Q1axAR6yOc0cv0pkdtjq\nGETk0UqZVROYw+hSgIjodcYpRI7xq9O1MPpSJSNSiy6lKRY7lRSEgDuSBj6B8RKjBVkTNaGZ8Fx1\nVEkBtDc2K4ta9bJCUIQ8VrJsdkgn06YqoCxCqdXgf3TB6CAiGvPbXfz899vXXvKK2tKtyN0ne424\n23BuBtj4UedcDiXkXBSTf5XBHqTbnr3xc/la5TWfMPTc+5Ps+cKJgTGXLlDY8l8g3C7VK+XUoEyb\nZ5CoVZKLgMex0lOLiadZpM3ihG6x0gkGqoIGbpvF25Wm0IVSLOkPzmIEemoYceffZkP7SXSygJbj\nJU4buJsdid0mxAJGd548Rncp1TKtMg5cqeZ6zm2RVo9Mp9OnUynX+xobU+YXpVVdZjIAjOKcRqWA\nrylgqCy2lRMPV5b6OLPOLMpWWt4b5pK7ZcZrZj5ZrzDWGwPcPWuRdnM0o+UisDMYuakH2MrWyM4m\n8Z2pixOWZSZg4dtzkjJdG0iAvLlQhzXWYVWQqMZdNkJccMN1SzaPL0FKFqVEeSCuM6lPv6RcEJWA\nLtYZ8XcuVmjwpmYskyWKunLmdKbIiRWq/BbbAXUaIXg49HaarcBzRGrMJx0GOp3QhYLzCqB3i+Wj\nIFps16uU2+sVwt9kmrXa7BJKApITVhsMk4l5mWfKAAFBw9kXa7g5SgRNEDlRRKRFNMhaw1LedlPL\nU69IWt591R95x5aipxajblSiSeg4AAtjTKXTIlNjRqJBjNxaZEhMRKdEZFmY0OKwiMzGZBJOltpC\nACbqVupRKiVE78pfLebmbu+SKaS2J0o9DwHmTO/180B9vDJmxJXELCNbK1LKw/1M9iM4KzGaFdyM\nWXqcjGyI6bmsRYZqL0hhL3kJYps+cpRb8zWIbPm+VYLbKS5e3mXJRYHSrYYB5yzV+hVFo1Qep5qT\nk7N2XMqhHtXshYFemrioneYWJBcERKCv2bQgPkBHnM7rwE3Lv4sOgsX7inwkjdOw6gExCG6OrsIi\nQTdOtB3DsBREA4TYLZ9rCre6pVz8+l+Odu47g4eW9LcxSVEFD6XG732JSCNunvAXF/x5wxQ3+lLS\nbVQpQMYply9gDawAB+oda2cQ2BhHZu298MdWX7K1GeQRocuhdrgb7K52BAtufhgEw4pb6ozit4T4\nS2om/wCpUvU0U9kg7bbfja0HOdy8q8pnMxbuXh9bkL6tQUqWClsSgzVtKULcqFV7wUCwp5SaMzCP\nJZiRhzjJOQcHafXABD6wDdOSoURVCm1CK28HzG8h0upQWgrzWGpBPllSynR5uk+8blN9gQBz4dZ7\nRnrJVMzUKcaS3mJNUQinrle2ll2l1afSlAyQxGDntHsRfCQw3oDnl+9p1qm2F+TZ9lS+8n2Nlsw4\nzjmvOLcLBCR6dUkiXq94dTrc8+gnC+UaADivGiJGYMyNJ1mKGfTLLRZjrnftFG6qXHUahiqVOhui\nZFSK0HGiWVefIieStTajJj3b0KWRrbR5g1pvdSbYoS/EhGVcteIlZTluuPueGMCNIcM9k0mlZkTP\njty226HWC3N89qKHfInP+xqMd8JSGXQtKgLbhhB3AYztGYAyHjFWOq+Z3OCHVAXsqbXLUy9YMJmS\nHIDGiGbrCfHqacMLJ9NGkzGZS64MyoLpt1XADzDDsB5xciKr2CruU/2dToExQCVq9oTHIJMfaxc1\nEhZKbHSSWjL2ZESc2igijVsOVfKrObW6siEpzL8ZKnIzIpTtVCkAVdXtIcZjeQPOjtlwlClpRiGW\n6jXfHsfI0rJVOsdHt0Y3h51at2yLcQ061i7LFsrFXnzqLekTeM0peEfM5VkV0kiuoxdt1jpJAoXg\nfOZkUysmO824yZDLThbcSUqs42FJulW4CklKhcAkEEjfF6n1OlZlqtKr1Gnw6nDRKlQxOgPokRlS\nILzsOY02+2S04WJDK2HC2VIDiFpCzY2hBF1YaWZOiCYCu2Jw330PWUhwDetdtD6D7cW5rSJ9IZPK\nmZKUk7dNQsbi/bc9e+PYsky82Vmlu/6pUduQhKjtqbUQe56K44xIYRQj6JsCRwKJwenW0OvC7Y2+\nwiPYRDx76HiiHlU+Q2m5CXIyUj/wrHH16c/XEGeKeKgmgFrf2SQz903KfKc4PrY7c8DpiHOUzpRT\nJbRuk3wxD2DpV6B9/Al7/wDLuYZbbeiSVCxWgk9zcjV1Hbve19+tjVQryoeeKBTrkJlNtIX6ktlB\n6fw9TiVPpcZN1BoqGESldogO/XqDoERD8/Xx34X4kdURa5G4GlfpsLmwNrWHTfexOGOHDZhor4bN\nnHYUoWAF90kgn5jr6dcJrI1I1fx/wxEBN8Q4iH/hnIYNh+G9DvtwSRI+0ZCgNwltKRuOqSk/E3Nv\nh3wqeG6HabR8yOyCTdSXAVXtazgO5/4t/wCJ4De+kDO12KKpjdP1lHXV3AAE4EMPb5DxCzG9gmuu\nAAENKI730Ejk9Tbm/T4YccuyWJtGqkhk31NSGSRbc+USO+4+HXi2Hi2tEGzVl9XN95RTQgAh3AEx\nHfbx+Ad/76sSW5UKgQsXCG7D098HsL7C/S3XffAvITaoH2w6vVp8ouEm4tpVcgfzI9fhhi6ze/8A\nAP8ADhg9jV+7/D+mCP6Rw/3v/Un+mB07D4hQXSKQFCmHYgUoCGhH1DQgICHfXkN9/QIozikLWy4T\npJPUmwsRuD32PG3pxhKS20tojQhKkDYhCRvbodItf03Fr7HGw7gyzYipdAcoFKcPXXb/AD57b0Ac\nep/VPltVyhRJBJ2tvt/LtsN8cssoeStpQ94Da/cDbjfcDg79sdkfo6qxAZB5HPpXKtaMnUzDUFKU\nbk9LJZKyE2s7yn1grDPkvIoKTLWmxE/Zlwk3LRGFYJxcS7UGRkGn1j6u0+sOUXLL7KF0rNLDshmK\n0pmkkyXw6WWwZyz7/lJccOpQCE6Un3lC5Cdx84eLL8qmeJXgc/CodRzFLZqniElqi0hcJuozi7lW\nO2RHcqMiJCT5KVqkvF99seSy5o1OaUKsZy6WLlY5iub/AJJOT2PRPnzlo5YuVPmmos3e7XS/sBTK\n11stMvWVrtf6ZUbQgtK1aMr8+3Yji1xPop2CMesgmhSbqps3SxCnO0udVaRRgDOp9NplSZU86yGz\nKdcaflPPNMuDU2ltYT7KVjWkp12SQklRzZSs65T8OvErxAfUMsZzzfnnI9Qj0qFUfahQqdEqVLoV\nNplRnw1hia/KjOO/bSYqjFeQ57OCtJcQmuNCuuKJvCHNb9IEy5U+XWHkse2blu5ZOWrB8hSVLjg+\nkO7W0lpOZybkCkzsiKeVMkEx/Gsmj6dtCxWU3cH8jZ3DArwyRE6DMuKqDVK6mmwEGO5T6bToamC7\nDZU8FKVIfaWq0qR5CUgrcNluqU4pINsOtTpFcj5kyB4WuZ3zbIRVIWcs65yzKzUhTszVBqnux4zF\nFpNSishVCo5qjrq2o0JJdjwG2YSHSjUVXpwLQcQUHm6gc50vGUHXcYczv0OGYuZi0YQrTqVgqlX5\n6Yph4fKdEqDkHjiVrtSnJatO3MGi0dmNX284uhFC3btGSCFuI1DYrKZjUZCYlUyZPqrkBBU2yhTj\nBblx2jdS22XFtEtgE+WHCEAAADOs1VbMFVyFLytUq1KmVrJf9ojLuS4WZprceVPmRYtTEihVWoo8\ntDEyoRo05tEpTjYEtcVCn9a3HVrotmpnTeY3kdwJzW0flww7jvMFW5uk+U+044wTQJKt0jMENM0G\nMyZilm4oUfKP3spYiHSUob9yzkFbJaGki5M7kjvXbIY8S0zHqlGp1WRTIEKa1VTS3o9OjqZjy21x\n0SYl2EqWVOAfqFq1lx1JJUsqUnS90t+q5Q8Qc3ZGnZuzHWaG7kYZ+p1WzPVWptUoEuJVnqLXlNVV\n1hlDMN1taao0240mHCdaQG2Q2275xn5q8Huw5GbjlrNGDeTzBnMhhPmUxtj41c5Tj4/hZmvY3ybX\nporzGee6Vjiy2mNhLjW5xmk/gD2qWe3QjJoshJr/ABjSRnlrM0FT2XJa5kOkxJ8CpxWkN0xTCVNs\nSW1HyJrDDjgbeQtOpHmqLuge8d1krvh1mFlXinTKTl7MWfsx5VzPk6sVJyXnkVSQzKq1GlRy3Vst\nVKqxITsqDJYWWpIhMt0/zXAWU6SyG7q8zq2IuY76Srmi5HLfy6YbVcXrl/Na4HmBJX3g5+hc7UHl\nYq2SadammQHUk6GMosbCQ7eoDjuKjo+FeIM1pSTVfOZyUQOyzFRZ2YarQnoEQe1U8KE3Qr232tql\nsvNuecVGzKW0hsMISlJ0laiVLUMImVm67lPwPyJ4nQM45j/9i5uchv5SMxsZUXlmpZ4n0udD+yW2\nEedVJEqQuoKq8h56SkvJjsJabisLFVeV2jUWFyH/ANnsyLXKbWoC5ZbtGcpfJNliIhkym7rI1rKs\ntDV5zaJRBIjucXr8MY8PELSCq6rGN/0RA5ENJguUGKzEX4fuIZbbfkPVT2lxKEpcfU1UHmmlOqAu\nstt2QgqvZGwIG2NQzZWapNy1/bBpEyozZdNodLyg3RIMiQ45FpbM6gx5U1EBhSi3FTLkaZEhLSUh\n10eYsFdzisbiKpFZ+j+yvzDGxnjK2ZToH0sSlTjpq/0mJuDaSpKeP7raHePLK0fAitOY8mJpJGQn\nKgs8Ri5ZwQFHJPiAVQoyRFYg0mr1JMSK9LbzagNuSI6HQuOYDr5jOBVi5GU6nWtkqCFK3IBGztQK\nhU6t4rZdyma5XadQ6v8A2e3ZUqNR6rIprrFVRXKdTG6zBdZKkxKzGiFTMSopaW/HSSlv3SQelvMb\ndcfZk+mHLyo5hxLgAKVlPENbxhD3dHEcA1yGlkLMXKjV18dTs9dDKupGXVpN5YQ8RjswN27mmspP\n6rFqqiBOpnrAiVDN8GFNh05TUmEqGHzDa9pRKmUtlcVxT5JWSw+EJjbAshatBucYh4fwq3lz+z7V\nM95czDm0VTLGZF5icpZzDLXSHaLl7PcxNcix6aA2yyKnS3ZMise8tFSXGCpCUgXHH7P9BrGLuRnk\nrhJGqV9vnPKeQ+YLJ19s60KzJdWVEo9oTwZSqgvOGTCTJXXllrV0sScKJysjSLUsgUgrGMYEh9lq\nl5fp0R1tAnzZdWqDyygB5MaNKTAjNFZGoNrW0+4lBIAUNXXH0blCpSsweN/iJV4syQvLNCouWKFT\nmEvrMB6oVanHNFQmIjgloyWoc+nRVPgFwNL8o2G2KCsHysa8mGY72oRI4l0IB4UKI+n5eO3YQ3wI\nq0RL4pj6RsptQ27jTt8740nL8tNWcq7T9yabUFab8hJJuBcW5Av8PW+HE4kcVNE+9GRBwUe4AICR\nz8QN+O4B59gDt68QR3yy7Jjq5WU254Lex5+O/Hztjmt09UrPFAqDf3Y6myVDtZJF/wARe23ww1Oh\nO0cxxxHsCiShRD0AClUD5eQHzr18gOuLrrSF04LTa5JSepOxSevTi23bnBamVoyc7VikKX+r9gke\n76lII6b7bW33th3cPftOXYFUOPT/AFhR/wDOQ35eQ/u8cC4jZha3Lfsgi/YKA468m99+MGTHbZoF\neZjkalRlggWJ1bgHtyeN9+LG4wjmkCtHrUqZvBPiDrXYSqAIe/kA/wA+lpl0zpDyrbWCRYXH3SB8\nbd7YG5KLlKytUlSFcPFRJFtlIKTvbi5/jjx0+O+VYpKKDr45ADYB2KOiiPj5/hrfFZlj2KU8sJsU\ntqJsP929uLDfsdj8MMFFcakUWoyGbHzGJKL8G/lmx2/gNxzuOJh9kIf7T+X+HE32yf3R9R/XGV+y\nvfvK/D+mAE3cCoQ5f9YBMAgO9B94fT376Hxr57Hi7IQG3Ao3sd734O19wfodhzxtg61zp4Va+/Cg\nehvb4EdLXxtbLFAx09jsQENfMP7vn/L16eQVNpUOljq55/D13OI1XZfB4J9DYg9bfO3XF08B8x1M\nxVyp892BZyKszy080Vb5foaiyUS2jFYCFc4nyw4vdgVtTh3KM5Boi+ilStYcYmOljrSACk8TZt/9\nIEvDqLbFHrUJSXVPVFuAhlaAkoQYkv2hwukqCgFIuE6UrOoWUADfGeZrytOq/iF4XZsjSITdPyXN\nzVJqbL63kypCa9QhSoqYKG2HGlqbfClyPPeYCWxdtTi/cxnyA8xFM5VeZqvZov8AF2ebrMNQczVh\nePqLSNfTqkhkTFlppEKsghLy0KxFm1lptovKKnkCLoRxHCzVu9cETaK80SpM0ypMz5CHFtojzGlJ\nZSgrKpEV1hFgpSE6Q4tJUSu4SCQFbDHXizlWfnfKcvLlJkQYsqfVcuTku1Bx5qIluj12BU5KVLjs\nSnQ45HiuJYSGVJU8pKXFNIKnEvfKlnvEdQwtnXla5jGOQy4czqfFttbXvEcfXJ7IWK8tYfcu1K3a\nomq2+Xr9etUDYIqRe1yzxLuWYPiMwaPGBzqgsVPim1CI3Cn0yopk+xzzFdEiGlpyRFlxCS06hp5T\nbbzbiVFt1BWkhNine+IM9ZXrs/NOW85ZPepH6Q5ZTXYRpWYHZkWkV3L+ZG20zoD86nxpcuBLiSGW\npsGQ3HdbLvmNvAJKSbi1T6SLCsDzOL3qQxZkV5y5Y55EbJyOYTxkEvXEb5KU5SuNYRlKZBsbZdGF\ngpW5v3lqnrRI11Ge/ZxaRi2UaznQZLuVCrFfhir+0qiSVU6PQHaFBi62xIUwW0oSuS6CENrfUp1b\nqmw55ZUhKQuxJzWpeE2YX8iewNVykIzfUfFOL4m5mrPs8tVMYqKJi5DrVKiLSqTJYprLcGLDZmKi\n+1pZfdecjealsQOP58sC8vAcmuOuVup5huuH+XTmjU5uckyOeE6JWr5lXIziKZ0uLrkdF0h1YK5X\nouh45RcRUHNrvXSkrbVUp40exaNx+tXI9Ug01mmMUxqW7FptQNVfM3yWn5TxSGQgJZK220sRwUoW\nVErd/WaUjmWZ4d5ozXLz1Vs6zMvU6tZ5ySch0hOVjVJtLolMQ8aiuU6/Um4suU9VKsUvyYyG0hiC\nkxQ844u6UuW+ZTk/Lyy8z+BcAsOY6Vms8czND5jTXXM0RjuJTaIxcrbJCXoy0dULVNuRPWkJ1P7P\ntzlw/eXyWk5Rw/j6u0i2KksLrFXpBgz4cBFQW7U6lEqBflIYSkJZL2uOpLbqlDy0uXQ6dRfUpWoN\npSnWSylkjPzGdMmZmzU9lJiJlPKNWyoKfQH6u+XDLZgpjVND0+FHbKZbkZYegpSy3TGGWUtOTXHn\nQwf8sfSOcoU/zD545xsT0XmHjeaDIuIJrBmOYK5J48QxFCIzeN4nFLjO8vJQ088trC7s6KzcRCeN\nWjaYr6ksinNlsgpSrtKMPTq9TNU7MESNOFQXHVCYQ75AjoDsZEX21wpUpwOIZSUhga0a7K12UrSk\nUrwoz3TaHlbwtzDV8qvZNiVqNmmqSKd9qLrElUWrSK2Msxm5MZqG5T3ak4iQqrLMeV7OpTHsmplB\neAuJee7EmO330RhZeuZCWbcgc5ltTLQx8ZX3K9jZ37JMhbIUMfFc2VmSVWZRDpFCSLYlKuUH5FEm\n6i7fpdGGw6zESrLLpakFNBEt6UEIbJdTIkmQPZgp1IUQlVleYWhq4JTvjQK54X5gkU7x6Dc6jp/0\ntRsuRKCXn5iBDdpFGZp732xohOGMhyQ0pTBiCcS0QVhC7tgFW3mbpD7kmzVyxt4i1pXe+89Z+aKF\nmVmUUNWaUVXHthqoxEi6JMGlC2oslLtnP1FvEuIo7MixwmSrFIipQVU486iu04Nu+fLq32iFkJLS\nWhGej6FnWV+ddwGyUFNgff4BcqBkWq03xFo+fFyICqTRfC53JciKlx8T11NytQqkZDDZjhgwPJju\nI8xchD4dUi0YpKlCwvMDnauc3POFyr575VobMSXNfcJLAsbZMdT8HVy0+JyfiOPocHTH2MrPXpt9\nOzUPKOawvKWVeyw8IjX4VkaSMYiZ5Fuw7l1VqsVanSqY1OTVhKgNPxXW2vKRLiIYZbVEdaWtxxpY\nY8xwuob8tIKiACoJW8jZTleHvh34i5dz1Jy4rIMan5qehVmJKmmoSaHmFyrS57VbhS4zUSNJYROT\nHhJhSJSpcpwMJBPkLdtTzIWzlw5mvpM+YGUu0SykuT3knw7lRSSr9es8hXoyxK4mbTCp4CuWKCet\nZIw5G5r8ovY+LNDPE155E+kFCM1zmTv1lqFUc41J2W35lHpFIkksIdW0h1MZDqg2262pK7yqrLIH\nlqBXfY2JOELw9j5tyf4E5VFDlOM+I3iRm2jwmJsuCxNeh/bjsZK5kyJLacY00bIVBS88ZLakRFJu\noFxKQeCUsgdWdUWBNNA7tmZU6CJjGRQU38QyCJjmOcyKInFJEyhzqGTIUyhzGExhTmJKXoUBKwAU\nOaSATYahx1JAtbfsNzfH0hR2V0x3NchKlKbcT5ra1AJUvQ0lQcUAAkLXpKlAAAKUQABYBrayBwiX\nLQBDRV3AD662bx7+2vy1vzxxOiaKkoi9lNtKG3Pu8jfe/e/PY2OGTLcpFSgU6quEFaXFtFR3+45t\n96xBttf0w+yoFXQiVCgBhODMO2h8o9I99CH73+djxCy+THUwoH3FuE89F3AJ72+PUcYpUynKZzxV\nKoE2SuG6gW2v7v8ASx9Nx1BwzidRrKJG0ICkImAe3fRhKI77eRHew3/Pi5OaSWGNI3cQQfXUAb3F\ntgQP8r4lyfVlVReZ4zvvNsq0JvewAcUk7E9gDt8xscLxXGRkkSH77IoUR2HgA3r19vPnvvihG/uR\ncWdtgqxt3A7evJIOD8xlKsrVJqOACuwGn94LAPHPO5/hfZPJpgzdt+jwUpVN7DsAG7dh+Qb9P13x\n2yv256QrbckbDY3Tb6777kenAxDllRpuV3w+QLOLClKN7haQPS++w4vY79cPf28r/kv/AD45+yB2\n/FOAXt0Hun/0f0wFEVehZT00Y3b37m7615Ae/r5H178FHgVNgbnqD2P4339L/QjHqinUlY2ULE2v\nxYfL5Y3LG6FSKlAA35/6a9vPv47ccsHW2ptW5Atvz1+d/X0PY37loC0BQACgOe/G/G3T15x0J5Us\nHYNkcF8xfN5zGxGQ77jXAFhxDj2Ew/i+1MqDOZCyLmKTfIRalpyC5iZ5zSqHX4yOUWfvImJWmJiV\neto5gqUzZRo+M0eFEVCqVRqCH340FyLGREjupYXIflqUE+a+UrLTCEpJJQkrUtQSk7EHIPEDMWYh\nmHJ2Q8nO0umVrNMPMFXk1+tQnapGpNIy6w0uQmFSUPxk1GqS3ngG2330x47LS3XUnWHG8MYcq0lz\nwZgy2PJxie949xXQsX2HKDmDuspaszPa8rUaeSWc0BO9VanNgnbpkWfZyjTFdfk2URIy7RNZI6rp\neIegf2LSzWZUxNKivR4rEdcgoeU7LLZaaK/I89tka3X1hQjIWEqWm+6ilV62Yc6t+HGWcurz9X6X\nVK7Ua1Fo7UmnMwsvolCbUFMJqZpk6oLManUmK4yuuS2XH2Y7ikEJbRJbtXet8uvMdbZe5Vyr8ved\nrFY8eCJMh16CxBkWYnMfuAbA8Oyu8VH1pd/VH6bcfjiwnW7B8ZHaxGxk/vcD26XOeLzTcGYtyOf1\n7aIshS2DYqs8hLeppVrnSvSbWsLYaalnPK0Bij1OXmrLcWJVdqbKk16lMMVRtS/LDlNedmJbmtBY\n0+bFU60FEpKwdsE/l85LOYHmeomdMi4tpNnm4PAtOGxyqMZRr5Y5K8WIZiMiEsYUFCs12TQl8ikT\nlUZuSrizpvIxdfJ9pKslyLIpjfp1Elzo8yTFZcWmE0VqCWXXFPLK0p9nYDbagt8agsouClHvEG+4\nHNXiHlnJtcoFGrtRhR1ZulpjsrfqVMhsUyOYz7q6zVFzJTKo9JUWVMNS0oWy9KPlJdRpUoQa5Y6p\ntewPjmdTqPMBD5qkct5XpmQHdwpgRGFHDCoqxjOCq+OpdWNbzMjlCAklXTTJNaeOXLyEdLEaOY2N\nULH/AF79JbYZixVhuaiU8/KYkea0ERClsAIaYVpCjJbVcSGySpCiAUpOnUQok6pT69WIDk/K0mgU\n6jUOpUZMCol/MiHJvnOvTqqwHlRmqJLjhCqRMbQlElCCtDzoLvlFvE3I3zQZSzpirAB8NZMxxdMs\ngycxbrJmL8k1iKiKcusi2e5HnSK1RSUQoUOs5aISdjQYqR7V8/jI5y6au5FqBhcOg1WZUY1OVElR\n3n1621So0lpCWCoBUlV2tXsyCRqcSCkLUlJIKhj2veJmRqLlav5rGYqLVqdQ2nG3m6NW6NNfkVJK\nFLao8XTPDC6q+EOLZhqdS8400+8hC0Mrsxp8vKGNUOZ6Ez3jTmbr+TsTUyOmMXDA4xlIanMXq+SD\n1b9uc3Et0IhMVvEFphWbotJsrUzFpLzLgG7SVeu0mrF2ZXBMeNWIU1iel5uKlyNojqS2k+cWw9KL\nqApuO4AQ05cBSiUhRIAIGXmwZikeH9Xy1VcpSabUKo5FrIkVhl+e6gUtMo06gCFIUzNrUN1aVVCI\nQ44wwnWplDZW42EGuHctXCoXfJVOxZkqz45oenV1v9fodqmqTTiJEIsqa02yNiXNfgQRSUTVdDJy\nDb6qkomo5+EkomcwuixpTjZeTFkOxkIU2++2y6tlroPMdSgob5F9Sha4JIGNCzHmOgw4ceizK9RY\nVcnaXaVSZVVgxqpUVIVt7BT3n0TJWoBSUeQ0vWpJCNRCgFtixFlqEplWyjY8WZLr2Nrw3K2qWRJ6\ng22Holpd/BUWIhXbhJRDavTSyqKC66BI6QcGcoILrtgWRRVOSm3EmQUIfeiSWovtSkMSHGHkMOgk\n28p1aA05sD9xZBAJAIGC1HzNl6qInUOHXqJMrcaJ5k+jxatT5FWgIWkJK5lOZkLmxkBa0oUp5lAQ\npaEr0qWAVGG83ZPwjZUrdie7TVBtb2rWmgurFX1GzeYJWbkyCNsLBi+XbuFoty+aJplQl4wWc1Fq\nkI6iJBi6IRwXwvS6bMnyYD7kZ1xpxPmt6QsNSEgOhKiDoUUba0WWnYoUki+IZWXqFmvLbEDMlMi1\neDHnQqgmHMStcf7QpD6nIbzrSVoS+lpZJVHfDsZ9JU3IZebJTgWu0wSWlCgURKRcFyh+9oRHrA33\nhHZijsQOYRMBhEd9QiIzNKTIdhk8rjpbVcm5KRpGx55Fuv44tQ3DTKPU1EkBuW46m2w0OL94DoB6\nCw4HAFpK1fEdyDA4j++zOmIh6mMiHYR/EB18x7b1wF8tUdtaT/3UpJ9BZwjbi43Hp8dzgoGG3KVI\ncFv75GQoHuHGyNrc21W7jYYYfgCklKjvsksc34AYm+wdg+etcMRKZM9jg+Ywixv1TcbfC/5BthKp\n8t2h5MbKiUqROI3vslayk+n7NucLE3hjoRmzj0kM3MACPoAl9t+P7/IjrgKpjQuUAAClbv8AE/j8\nPnbpp0JbS/Z5AI1zISFAki5LjQ426b7n5eq2QKVSQIBBD7wLD6eddQa/T5ee/Yd8Ttvl1LCV76Cg\nb9rAb+p26dNiOAs0OnGkRcyyk3Cnw87bjZJUvp8uPlhtQVOg7+J1AAl+9vfgOkQ2Gvw9Py4knNJU\n4UIBspAFun7JI45P9cXsozlzssynZCgQZbiPe7WQR14vt/jhSooZ+7KUTb2mbQ+fHfXntsAH1Hf6\n8V4ZENTilCxB/Djgfnbc7YKVBjzMtPtsqt5hQQR3C7E7X9b7bG3e+Hf7K/3y/r/z4ufabf7v/wDV\n/TGX/ZUr98/85/pgNKGEFjGL/a2ID+Pf9S+e/n+EqSCjSeo2Pba/4HjnDo4m9+Ljn+R+RHXn5YVq\nG2kBv1+fvr08h/P1DXFdrZ1Sb8nY/M7/ACxNbzGbi1wncdTbY+g79Phi2/KLzgWvlSnLrum1XMGF\n8rVpKnZ/wDkJsD2i5aorNyo/RauTdCitet1eXUdSFJujIhndek11RWQdsHDhvwXp1UdpL7x8pqVE\nlthmdBkJuxKZSdQB2PlutklTLyQS2onZSSQc2zrkGBnyLAQqoT8vZjoM1VRypmukuFuqUCqOIDal\noF0pl0+YlKGqnTXVBEthKQhTbyELx2ZwdimD5WOdjmgrXL9ccgxOD8u/RPZq5psXQMhZ5dnYazBZ\nGw4xs1Lh7WaPlAB/a8cvjzTKt2R+dxYGUa6bOCSQyDh+/etkSIim1mppgvPJhzMsTKiw2pxYW2h+\nIHWUuFKrKcYOtLbhu4lKgQrUVKPzxmGvSM7+HWSns2U+lSMy0Hx3y1kqsymoTC4kuRSswOwanIgh\n5kFmDV2kx3JkNtKIzjyFpLIaS001Rrk6jLXS8e1DnLzVzb8yWKKHauaem1CjVXDL6eu2Us85xpjG\nBlZ+z239qsg1WntarVIKRaVueuF4c2mbl28lIVyJiVUwAj0RSkusMt1eZVKhFYdqTLTLUQrekTZj\nIQpxx3zH22g022UtuOvF1awpSEpI+9p2fVwanUqr4b5byDk6u1WnZKqlSqVQzEiLTKLlbLM56SzF\nhU4wqVOqLk+dLZXMiU+mogxWFNNS330kktX0vtls2O86/wDaLIigWi10uNgaC5uMFH1O0T9bZwlu\nnMq0dzL2aFawkixRibE/UfOU15uOTbyqzVX6mo7M0KRADjrrjE7PaGXHWkoYLqEturbSh1yS1qcQ\nEKTpcVcgrTZVjpBttjLqdBg1fKf9keTU4MKoyJNWTTZTs6FFlOSafFolSSxCkOSGXFPxGktIUiO8\nVMpWPNCAslWK80PNzTBXJt9FVzAWqvuMjNccfSIc1WR7DAP3pV5K0DHL1t5JKBIypliK2MVV1pqM\nkJVRQp7I1ZOpBcAOu4KITNEKj5ZqDrZkeyZhqUlxtSrqdCFoK7KWSC5ZRWhayf1iUlRtc4dKllk5\nn8RfHLKcCWijqrfhFkikRJbTRSzBL7cxDILLASUw9KExn2WACIbjiGkkhKCcMUVS51f6SL6OrPdA\n5ocq8wPLbzTZ1uUjie53S3XdneoIgWWQeZjwZlGsyk24Ti5yuWhxCHsEewAKjcyMYuwJxSJ2bfpt\nQoz7eZaFUGKnKqFNqkp9yI8+8+H27OFcuDJaWshC23CguJTZp7SlzTdIwp5jqlNl+DvitleqZIoW\nVM45Jy5TYdfp1Np9NcpckqhttZczRRJrEZBejTIbclMV129QppdfiF9QcVeqmGLbbLXiT6cyVtlm\nsttlWmBmLNhI2qwTNlkEY2J5qpUsTFIPp16/dpRTAAFKOjUlisGSSiiTRBEhzlNz563Kbmp9bi3H\nEQA2VOLUtVkVU6RdZUdKUkhIvYbpAGDNRpkOBnX+z5Biw4sOFJzOmX5UOMxFaLkrIzQkvFuO22gu\nrUAp1zTrcUkFxRIBCP6S3IV9xbO8vHKxjq2Wqp8u9X5H+X99E0SuWKwQdEyS+y7VXN0yXebpBRUg\n0j7m8v8AZl3TeedTiMkVVGPUatiIAK5D18wuPw2oMOI46zAiU2nKDDTjiGZHtjZekPPIQoB5Uh0q\n8wuagbWFt7k/CWHS6wvM+aq3AgT801zxEzfFeqk2FDlVOjpy9NTTKPS6dKfaW9Tm6XBS0uM3FUyQ\np4LWV+4RI+fmzn5t8bO+e7C+W705xA5uuI8d545TLZMTjNjyvZXTx/8As1QhpFfRkT0Ww4jsDaKn\nUKJZoaLj5eFdTMkwelUWkJppCcZiT9sQ5NbhzH1xlLiIl0x1bgTTZSI+lnyEBXkORXEhflOIQlSF\nKWlW6lpRa8KkJ8NqpE8L8zZcpbGYEwq7UcrZ+gRoi3M60FyrCXU01KWplNViV2I69ENThSJD0eS3\nHYdbslmM5K4ynMKBlTlMAkTcgqQSjshiiffUQxdlMXe9CXYD30I61wrt6ZCgDv5sYpvyLpSQP8bY\n+j3z7FSpBFxpfDh2sUha/f2O43PGxBt3uX4xyOTyOtf1rMOnt2EegQ+Y9+3bQcUIqyy7CKr/AKt8\noN78Xvvfkbbf13xHVmddEloRy8w6sW5PuBYvbn177Ww1sHX1cI1U29FOCZt/IBIPv/j39OL8qN5i\nqjYDYlwem4VsOb/ntiGJPDVLobCzvJQiObk3ulYSL/hte+HcpyLoy5fVT4ZgD37CUQ/QR9Pbz24r\nxHFNy4a1E20LTfgXHvXO/wCI+O+KWbKcleXnYrSSClxtwBI32fSTt02N/n8ThpPpFnHmAe5jkL3/\nAN04l8efTfbYdvYeLyGw8Kkq33StQN9hcarbDr13+Hp49U3IM/KUMqIS82y0sd9J0EH5Ec/hxhyT\nclF8gY5h7dW9h/qiUQ/kPf8A6cCi2UMpUBY6k9/Q/PYdD/DDussuoqUNJBU5HdFh2Ox435Ox/DHi\nwlOuqJO39WGvUdl3/cO/mA69eLTCit9JcN7mxvxv6H/IfDC8pj7GyhOQzcLS4FgDY3UoJJv6X6fj\njQgp8FUDmEQEomAdAPgS6/Pe/wAvXuHHEhtLjzqUbi46bc7cWt136HBSjyAvK0RUkjWsLCtX/wBw\nkc9Rtbjrxh++0/8AfL+n/wDnil7Mr8kf0xBqif731/8A+sB9ZT7wm8feMHpodDrsHj9fmPYOC7Q2\nIVz+NgT1+nyxUdF1FSOQATsOxPfnjY/DCoqu0x7B43rx4ARAf4/qH58QLGly/wAevNiLj+Py6WxL\nHVdGwtfn+H/+vXnti0nLnzQROBomywc3yucqXMQ3np2JsjB7zE40nLnM1OVh2CzBujXJSBuNVVLX\nXpFfrM1U5Mj+FmXyaTp2n1EAvBmNPRDbWFU2lzwtaHAqfHcdU0tCSB5akPNkIIuVtK1IWoDUNsZ7\nmzJj+Zp0ORHztnnKBjxn4TreUKzGpzE9iS6l1apbMmnTk+1tlBRHnMlqRGbKkNqsb4IlT+kM5hYP\nmtnubyfWpOQ8iW2sz1BuNTuVVKbFtjxfYqujTHuLFKbAPoYIiitK00YRkLFw8i1WjisEHKrl84Xk\njyErVdnInqqq/JkSHW3GHmnmx7M7HcaDRjeS2UaWUtgISlJBTYG6iVXD1bwkyovJ8LIcRNTpNGhT\nIlUp8+nzj9uRK1EmqqLdcFRltSA/VFzVuvyH5DK0vF1aEttISylp4ov0gt0x/TbHjuKwNyyStA/p\nvdcw2G6ZbceWGywXLLlRyxRiyzOFUHt0IqaJbMWkf9Xq+Rl75XzyEYylXzF6sVwi46ZrT7LC2UQq\nepgTDPiNOMOOIp0rTpC4gL4OkAJs3ILzd0pWoKN7w1PwuptRrkOpSc050j1N3LCMp5hqUCrxIUvO\nlDS4t5cbMi26aU+e64t0rm0hFLmBp5xhl1pJQpC6v/SK5ZjOY/mT5h5zHGFL4PNvXpurZ3w9darY\npXD9wr839huDx6cUja21pixYyVfZSca9QtSjtB0s/SMdRFwmm35TXpaJ0+oLjw3zVEKanRHm3FRX\nW1lBKQnzQ4nSpAUkh0kEq6Gw8f8ACXL8jKGVsmx6xmOmHIExioZXzBTZ0NjMFPlxhJQHlPKgLhPh\n5iU4y80qClCkJaUAlSFFQ8jucixxuPMHYxmcW4NtONsB5uyxmmt0i8VuwzFVs8pmRMjeepF3j1bm\nzLL0WKbkTQqsfHuImeYqN2jl7PSrpoicKwqroaixFxoTsaFLlzW2X2nFtOqmCzjDyS8AthAADaUl\nDibAlxRAwWfyFAdqWYK/HruZ4FYzXl2g5Ym1OmTYcabBZy8SqHUqa8Kc4Y9TfXdU555MiK6FuNtR\nWEOKGJJc/pActv8AIPLndaJV8R4IrvKRNq2rAOKcXVmTjcX02yStiZ2W1Tsm0tllsdgtsze5Vi2T\ntsnYLIs5kmJCx7L7OL1qqXRV5BdpchpqLCZpjpMOLFQtEZha1Bbq1B11xx1x4geapxwlSRpTpFyQ\nMfwxoiKXnyiT5tdzNU87QkNZhrtbmMv1upRIsR2LAjNLgw4kSFGpra3PYmIkNKGnFFxzzTYDOwc8\ndtm5Hmqf1nDmCsVxXOVQa9RMpVbHNdt0bXYg8Hd/6Qn1spTOTucoeKtVrsx13NjVk1ZmEVQXOnHQ\nseuUrriKbWHVKrLLUWHHRU222n22G3UoCUviQXmgp5Wl11zdwq1Nm/uoTzj2ieG8L2Tw9kzK9mSs\ny8g1GXOpMyrS4L0t7z6eaU1AqDjVPZ86DAjAIhpaDElJSC9JdT7mEsxzz3W2YHp2C8pYb5fcxKYz\nqrrG+Ic05FpE89zhiOgOHovW1TqtvhLfCR0nFQS5lQqxLZBzp66g4XbtTrkOT4dlqqOyKaumyo8S\nR5MMtRJLzK1SmGvvhlLqXEBbbZuWtaVlAJAJBsKFW8PKZTMzJznl+s5loqqnXWanmOgUyosIy9Vq\npoDL1SkU9+E+7HlS0JSJ6okhhEpSUrWlCr3mth5xo/MrSkYImcXcu3KTy3WbPuNMlcwI8vGMrfHf\ntceAlW7B3bLQhI2e/WN8yp9WfWJap4/p5Y6EQlnoLNo1w4+rC3/RasmcpinuxKfTIEh5t6amBHdR\n5ykXSVuanH3FJabK/KYa0oSo7JJItPVfDxeXIFTzdHzBnDPecKXl6bTMrrzdWoEj7MZk2f8AYoPs\n8GlxUOz5jcQTqrUPOluMNaVOoRr1hnnIz4Tmi5ms75ybMPsaCvlxfOaTBC3bM/2dx3BIt6zjqAFo\n0Ii0aqx1MhoUjxBummkSTVfCUoioImFz6gqdWnZ2ny23pbiGmwAkNR0EMx27AAApZQ2CBYatVsO+\nScqoyj4Z5eyoHvapUGhJNQla1uGZWJYXUatM8xwrcWH6jIkFtSypXkIbBItiuUc56VSAbX9a3MQf\nYekA2PftsPx9eBclqwcWkbtyAra/VR4/yw5h4OQacysgrfjJTY7FRDZSoD/D441PAAke2OUB2R8H\ny0HxB7B6a1r5+oe3F6ErzH5oVwuKT0NzpHxtvhdzC2YqKEWrgMVFoGw4SoBZv/yd7bnbClF0BF3K\nXgVEAH12IAPbfbv5/LwIcVHGVJZjujgLKfTj+Hpx89sMq5TU2dKpxIJaYDxB5tqRyOg3B/IOM3HQ\noxZaHYpqn2HjWlAEvp6hv5eewb4mjOlszkkn9YlP4pt1+vqeDe+A9ap5k1rL8htPuxnHLkbgbNqH\nHHFh/PfGtUwEkQIHYASEfUO46Ht/EQ7D+PcddLQk05lfBLgGw42tv8/h88dUuorczhWYy1EtNxXL\nA3sLBKtgdtxfte/XG9usX4xxER8D2/IB9vAhruP4+d6puoU2pBAtcC21u/8AH5W74ZStmpU2Ywkh\nSQ6EKAsdwbkH83/nioIKip0D32Guw/gPb2+X/MeJYtg4Svix5/NvhfbjFGthUTLrDMYWIfbSANrB\nRVf7oO23x/lt+AP9oP0Hiz5rf7x+if8AqwqWmd1/n5YHKvSJjAO9dQgH47Ef8df48cJ5Jvaw7E7f\nL8/jhoNx7wOx5H87bfn0woSEADuPp7evn+/8B88QubkG3e3px3ucTtgWJHB/jv8A4fw6YPXL/gdv\nnWcnox9njl0wGxgW0MqpYeYjIz+hRUy7nn68bHRVYbw9XtkxPv01kDLTB0I1GOrscdGTmn7Roumc\nSkOCJwUlUyBCSgJuuc+phKitRSEt6W3VrNxddkhKBZS1JTbCTm/My8rNxn2ssZtzQ5KW+ExMp0hq\nqPx24rSXnX5q5E2DHitlKwmOlbqnZbwUzGacWlQFgq39GtzR2PmFzvywpxFGhcvcvFAeZNu8bZb2\nxg65I0lo7pxCWGs3N0zCvu4Z7B3iEuLeXm3NfjEqkWSkX7pm+YHiz2Wcv1JcybTdDKJUFkyHkuPB\nCFNAt2cbdIKChSH0OhSy2PK1KJBBSVur+MOSY+T8p53L9Tk0HNlUbotNeh0xyRMZqS26gVRJtOQ7\n7U3Iak0yVT3I8ZMp5U8stNIcacD4i+d+RnL+EZHA6UbP4uz5WeZwXDTBOROXS4Oci0XI9kj7JHU+\nYpsHLPoOsvRs8RZpeLinbJzGItjnfJLovDJovysuZNHkwlQ0hyPNaqIIhPwHTIYkOBwNLaQsobPm\nIcUlKgUgXULK2IHVF8SMv5qjZikGLXMr1DI5bXmek5tp6KTU6TCehvT41RkstSZjfsMmFHffbcQ8\npYDRStsFbRd6d1rkxvfKdyC/S1s7zfsDZAmUaByt1C2R+G8mscgy+IclV/mIj3tkxlkpkaKh31bt\n0cylGhjKMEpSAkTN5Nmym13sO/bIMLdJep1DzOh56E+4Gae04mJIS+uLIbnJU5HkJ0pLbqbi9tSD\nYgKJQoDGJniHTM7eLXgZKptLzRSYjtSzfOhO5hoztKj16lS8qvMRKzR3A/IamQH3G1gB1TMtsLZW\n5GS1IaWoCfQlMMYn5uMiWfNFcg7PjKgcs2TrBa4+xRrGUi28dP3bFGO1ZQ7eRavG6a8a3ujtyi6+\nECqAFVBJZD4iihamUmo32kuRKbQ5Hap0guhxKVpAW7GYKrKBF0hwkEC43Hrg7/aIl1oZGiUihS5M\nOtTc70aPTnIrzjLy1MU6u1ZLIU0tC1JcVT0JUm5SolJKVWANjvoluV6p4v8ApG+YWFzdW4a21nlg\nuC3LU1jbJHR8vDTGS8155YYJx45OxlWr5i+cDS2FytzEFEVDHQb/AFlE5BEq5SeWqe1FrVQZltod\nbgPiGhLiUqSp6XLENk2UkgqLQdcG3AuCL4TvHbOE+t+F2TKrl2bJgTc5UpWZH3YTzseQzTMu5eXm\nSqIDrDjbrbYnuQYTpCkjUrQQd0nlbhLlWcZ3tt0qrfPPLNhOQgMjjQIGPz/k99QpK6WiXnZqNhIS\nnxcVU7U6eoncx5I+QnZAkVXYaQeRrF9IkXftkzKMem/aEp0e20+GoOezoTNklhT7qlqQlLSEtOqU\nLpCVrVpbQooBVdQGPoCs51bybTYUleVs5Zjjyaf9sSHcq0RqqMU2AiLHkSpE95+dCbbUEvKdZitF\n+XIZbfdaZKWlqxponJJzAXrmAyxy2LQlapF2waa1SObrHkO2RtZxlh6tUd0i1st1vl9Ej6NY1Jso\n5ZHjZOPRkl7ASQYDDMnYLnFC83R5ypQjBDbLsVDyJ7jzqW40Vtg6XHn3rKQGhqFlJ1ly6dCTfZeq\nPiTlWNRkVxUqbU6ZmP7MeyrEpUB+bWa/LqyFOQqfSqXdt5yevQ4HmHlMJilp4SHG9I19LOXPlhXk\n+SX6UvCEDmzlstrSFyTyEzr/AJgozJwNeXeHqqU3cLNO2h1kew16Ik0I2BYKjGzDFnWHU4vYkjVq\nJipaTVQRWL02nlukV6O3Lp7iW5lGUqcmTpgoaDrjjizIcbQoBCV6VAIKy5+rSlSuc7zvnJK/ETwa\nrE7LecYC5WXPE2I1lV+i+ZmyROeiQoMWI3SIkuQypyS+yH47q5iIyIZEx9+OylakgHCvJznrAnPd\nTsGOKPywZyttkwZf8o4/Nkl9J3rlpyniyfw7cJ9hkmuyjKETk5M6MJGy8hSnC8G0VaW2LbFX+ptl\nG00mPj0adErCY6Y9Nmulh6Wx7UovU+RGeiOrTJQtKAokJQpTJKBZ5IuQCF4csw+JOVcx+GCa19q5\n2y1Aj1ynZfq32I2zTM5USuU+vU+K9RpTDsksMpcfejNVJtMlaXKfIc0+YsLjkQ4H+jqy3m3E+Ic3\noZV5b8TYryxdbPjCrW/OOWxoKSuSK7Jx0HGUJaOCuTEk+tN3dvVnNVawTeXZmi4mYk7E/gEWzUj+\ntBoMmoQjJ9ogx48x1bDL0uQWh7QytCA0tJbUrW6pd2tGsFKVFwosAo9nPxdoGU8zPZaVRs21qtZZ\njxKvUadl2iCpLVRahGkSXKgw4ZbDIi05tsImmSuKsPux2YrcpS1qbhNc5K81TuYc04JshqNi+Y5c\nP2llM+3nJttSgMW4kr9UlGkQ9sdlt0fHzSz6OlZCRi2tQa1uImpq4LyrBODiVxO4FrSjUma3UpkZ\nfkxlQmHTPfkuhEaK22oIUtx1IWVIWtSA0G0LW6VDQk3NjuYPEHKr+WMtZkhfaVcj5rl0wZTplGp5\nlV2vS5sd6Q1Dh0952Mlp6Oy0+uoLmSI0anJYdMp9ACPMGHMRy+X/AJacqpY/vqtalDS9JrGQKbca\nPNGstAyLju6sjyFSvtFsRmUcpMVuebIuQbquI6PfNXjR6xfsWzluYpp59PdgQmo8gsuKLjbzLrDn\nmsSI74KmX2HbJK23EkkakpUCCFAEb1skZxpuba5UavS0To7LcedTKhTqpF9hqtIrFMKGahSqnE8x\n5MebEeQA4lDzzS0LbdacWhacBVJYFG+gEdEWOHvrRv8Al+ncNhwHeZLTy07XU0g/UdfXf69cadS5\nTU+KiWLHRJfaB7aQng97W9N7DblUcpTPSn8iYuhD038MPA/p+fjXjjzzSYjbfGhQ7jhZuOeN+L32\nxSj04s1qsVCwBejKCT1P6gA/X+IOESBx2uYQ79W+3fQBsB1+e9a9gD34szEBT0dCQT+rO3G+38vw\n4scD8qTFtUSqyXybCYpQKr7CxT19fXoOu+FKCoaE3vsN/MB9v8j27/Kk4gocUm5Frgi/S3T5fx27\nFsQ41UaRFeJBQ4srF+PdUtNuTva/XnfDj8UPl/xB/hxHYev1P9cceyNf7v8A6f8ApwLz9zn2IiPU\nOvfex7fh/H19w4v8WsABc37W7/H8OnY4ooCtrbg/n436W/zwqT/cDfnXf8eIVAEnte46YtJFgPnf\n646Z8pOGqOlylcy3NtJYBb82mR8bZVw/g/HGDJkl/k6FCOsqRspJu8pZKqGL38LcbvGqOGbKjVKu\nBYIeAXsT1wrKqO1PqwNGOlxWRS59SXCFTeYkxYjENYeWygyUqUZMhqOpLrySQllpvzEIK1HVe4Aw\nzxCzHUnM/ZQyIzmhWRaNV6JXsyVjMsf7LZqklqiussIolIn1pqRT6c8lDjlSny/ZZEpMVtIZCE6y\nvsrmgkq258fpYyTEO0rc2n9B0qSVgoxFVoxhJIMRYPRkYhkio5drIs41wC8a3SVdujptkCIKOFxK\nY52eVqFczNrQG1fogNaEghKVCLDCkgEnZO6RcnYWJO5x8/0HyHPCbwLEaQuWwf7Sn93lPKStyQya\n7mUsvuKCG0qcdTodWpLaAVrKkpRfSKw8qlnrNRw79ApZLo6aM65FfSH81BX8hJLpt2EYrI3OpxEP\nIOnKwlRbNWNhkol6qsoYiSIpfHUMUCGOFCnLbajZLW6UhpNcqV1KNkp1OtJQok8BLqknfYW7Yb84\nRZtRq/8AajiwW1uTXfCfIvltMoK3XUsQJ70lptCbla3IjL7YSkFSgdIBJsYhXMGZuxNyl/T1L5Zp\nFwrHXaMPVgZmzRMnFMrXZY7m7lLLKvq87kUEEbOx+xrJBzis5DnfxhGdnh1DvSnlkCKRsxJcSn5z\nVKZdbu7Fb1OIUlLqxU1LWWyoAOp0OIWXE3QA4m6gVC96p5ky3mHOP9l5ugVOnzVohV+Z7PCfYfdg\nRFZFjRo7UtDSlKhu+0wpMVMeQGni5CkANn2dWmlHI2LiPwj9KTY26hkF2fIBI1hu7KJinbu73zA4\nei2p01ChtNT4kaJimLo3UmBgMXpEwCaQopgZkIJBRSFISf3S9MioBBtcG6QRv06WvjQ/EyK27nDw\nTbWAUy/EtmS6gjUFppuWK68u6TsRpeIN+irEEc9qbbkyppZc+jZzNW5OPGxfSZc7vJDzS5PaxgGb\nqxiWBcZ48wXZImSRDZR+0c83e+2FQAExF3jNRYehf4xEmx2U0JVAlNqT5mYarSahIAuClMKOxDWh\nQv8AtTH3l9blJJ3vj52p+Xp6qB4y5dmsPex+DHh74i5PoanSFh5zM9ZqeZYshomxHl5ZpdNii4BC\nHQjdJSTR+G5eavjKqZ05hIrlsi+bnNUz9KJkvlLpWOLYxyDYscYhYwdlk7S2utlpWM52tytmttxl\nXaERUhtMq2p8G0YhJqIOXgLpLBI8BphMmeIKalLVmSVSmWHQ+uPEShxbnnLajrQpx15RCWvNUGkA\naiCrGl1PN0+sP5fyqvNzuRsvxfBGiZ+qFUguUqLV8wvSIceEabDqFXjS2YcGnx0LkTvYWVVCS455\nOpDekptrzNV+QyNl7/tEGHsbQ76w5utL3lPv8FU4GPWk7ZcMUYrlqlL5diK5FtE1ZCWUjyScHNyU\nZHIrun7YrdJNBwouikqaqiVyTnSFHQpcsvU99DSElTrsZlbDklLaR7yyAUrUlIJIAAFyAc3yM5Fo\ncf8AsrZprD7UTLzcHONIlVCU6liBArdTaqkWiPS33ClpgOlL0dp51aG2lFSlKQlKlJ5sYFh5+s/R\ne/SgxVih52vS5ct/R7ndxVhipSClU276+3J+yVdRku2ZSCSTxqs2fNDuGxCOW6rZ2gKiSiShl6E2\n4nLOY21pW2tEikLKVpUhX+uWsXQsJULgAgm1xYi4scbVnKZEe8cvAydDkRZcZ6jeI8YPxJDMlhSk\nQ40Z1KHo63GlKbWtTTgSslC0rbXpUFAdOcK9Q86n0OBzCJhD6F60EER2JtFxLzGgUNjsekoF6Sh4\nKAABew64ZIBvUMvpO5OUQQe5DU8bfI9uoxiWcGiMk+Nq0gAI/tJKQoAWA11PKahwLbqT3359cctb\nyKg/RVfRqAUxg6OcvmcU7GMACckhj8oH12ATFBRQpTa6gAxwAQAxgFYB8vLlCTuNdQqg7XN4xvvf\nm3TG7qZ9o8cvF5YAKmck5DcHBslLdXuD2/ZKhvewJF+OuuV56LNzE/8AaBaRG4TrHMZkZzMcqGTY\nvCFlC/HSv+N8ZOqw7yMsyZ4vna1eZVxRFpuAu54yElkwcKs2ij1pIIgRoq1TtAlZwSiG1PfcVT3h\nDc879fHirbMggR1tPLLPmIeKEL3KRqBGx+e8qCQqi/2ZZcjM07J9Hixs40dzMsM0oKpNXrseoIpK\nXHK3Fm0thFVEWTTA/JjkoS6sNLZUS4ngNzfZ+ueeLBhZra8F1fl7i8MYOicUY3oVWi8mxjImN29k\nsVjgXhv6WJmdtUi2K+mJdpFyJn6zBdokoRBRZRJUwIlTqLstqE07CbgIhtssMMMpkJAjJdWps/3p\nbjqgVLWAvUUqANr4+q8jZJp+W5GZ6hAzPNzc/mKozavV6vNfozzqqw/Baiy2v/YMeLAaXoZjreZD\nKHULWCtKQpN6XtjmTYrGMP8A/IU9+2xDQ7EB86/X29fJLKXZ6UpBt7Om4A7Dg7+v5AwTodTcgZWW\n64SFKqjgTqt+2lO255sD+O/GHUpxBRI2w3r/APrr19g/kOuA5QdChbYH16KuLfTj69cacl1ClJRc\napEdKrdSC0Dt3O5sLdLX6nESj0L9OgExN/n1B7/j/H8+LCXNUllSr7H+X06b/XC9Ngey5cqEZkaV\nLIV7vJKnBvwN+p9NrHcY07FJAB8D1CGg/AP013+foA+OJAkPynO1gbjpt+P0N+2I1S1UfLNMSu+q\n+gj3rlRUVdr8H4DCj4o+/wDEn+PHnkj0+px59sn0+pxCR0Jh9uof5+/EBJuodzv8r2+X+GDyUABN\ntwbXsP4/j8MbdlD1D9Q4j06jc+ot8zb8Pxx1q0ggX5vc9Nhf539MWCwnK80lKrGY8qcvFkzNR6jS\n63XYnOl3xNcLDTY+Hqd5nFK/WY69v69NRDlzE2CwCtGxKCib0CyJlRR+qCoosctCVUGWZUiE5KZb\nabQmW7HdW0ENvLKG0vFC0EpWu4SCFe9fjfCLmdnJVTn0Ci5riZeqc6oy5b+WqbXIESoPSJ1OjiTM\ndpjUuM+hD8WLpdfUFNXaCQrzAkJEQVzZmRaRnZpfLWSl5m0Y/bYns0qvebKtJ2PFrOPYRLTG08/U\nkju5eiNoqLjI1CpyCriDSYRzFqVkCDVEhKntUouLWZMnU6yIzii+4VLjhIQI61FV1MhKUpDSroAS\nkBNkpANpy3l5MKNHTQaMmPAqa67CjppkJLMStuPPPuViK0lkIj1Rb7zzyp7IRJLjrq/M1OKJjr68\nXOWqNdoUnbrLJUWoSU9M1OmPp2Td1WsS9qM2Us0pXoBZ0eKhpGwqM2ak49jmzdzKnatjvlFzIJiX\nlb7ykNsrccLLKlrbaK1lptThHmLbbJ0oU5Ya1JAK7DUTYWmiUynNSqlUmIMJmpVKNGjz6i1FZRNm\nMQQsQmZcpCA/JaiBxwRm3VrQwFuBtKQogkO18zPMbkCNdw19z9mq7RLyoR+P3sVb8pXeyRjyiREu\nxn4ynO2ExOPGrqtMJ6MjZxvEuElGgS8cwkjpqPWTVdK2/NnvkIenTHW3GksFLsl5aS0lSXEtELUo\nFCVoSsJ3GpIUfeAIXKRlXKNLZVIp2VsuU6VEqb1UTIg0SmxH26i+w7EfqKHY8ZtxEx2I89GW+hQX\n5DzrIIbccSodwl0ttch7VA161WGCgr5Fs4G8wsRNSMbFXODjZdvPR8Nao9m4Sa2CKYzbNpNM4+US\ndNW0o1bSCKRHaKapaiHHWxIbQ44hD6NDyErKUOoCgtKHACAtIWkLCVXAWNQFxcMkqFAmu0qXKhQ5\nUmmPuSqXJfjNPP0+S6wqM7IguuIUuK+7GccjuOslC1MrWyo6FKSZzQV835BuGNahjJbKd2vtRWUL\nhmsUle12S1VZzHyj6/LkxpDQ6juSgVWUyjJ3RYKy3ZghKEfWFTpeAs647ZEx92I3H9peeaUoRW2S\n6440QVPn2dKblFlhTp8tKbKCnDY3VgfV/wBGaRCr9QrCKJTqXPQk5imVJEKJCmodZZpiPtmQ+EMy\nw7HUzTk+2LWVslqILoKUY3QfMLnuoL5FGq5ty9VVsxkkS5cGv5GuUAtkxaRXfKyhsgDHS7Na0uny\n8jJfaC84Ll44M/kUXCpyPHaSs8eVNaRJU3Lktl50mUUPuoMhKiVK8/SpJcKiVlRXcnUq53VcTU8t\n5VqEqiRZ+XMvzmqZDCcvmVSKfKTRvIbQiP8AZXmx3EwUtIaZ8lMbQ2gNNKQlJbbUltjs15iaZEQz\nO2yzkprmJF6R8XKra9Wdtkcr5COQiEXQ3VCTTsRliRDVrFAY8gcp4xshHqFOzTIiHUiXJRNXKbkS\nEvrCHBIQ84l/UEBIV5oUHNkgJNlfdAB2FsVqHl2hy8stZel0SkvUeM/Iiqoz9OiOUtTSn1vls09x\npUVSS66p63lXDqi6khw6istue84ZBG7q3nM2Urkrk2Uq8nk0bRf7PO/0hSNITFGlPrsWSk3BLO5p\n6IijVVZcroa8iPwYf6mlonEy5ctS5QfkyHRNabW6XXnF+cpoWbU5qUdZaBIb1fcGybDFKFl3LzSK\nP9l0Gj045VqMuPS0QKbEippceoOBc9uCGWUeyInLGuYlgo9qXdb/AJirnHzPN+ZY6VqNhi8uZLjr\nDj2prY6os2yvNlazFLx85aSUe4otVkkZMjuvU5wwmZdkvW4pZrDqtJWRbqNBReuCKQIlS2nG3DIf\nCkxCwwsPOBTTJBHktKCgUNgKUPLSQmy1C1lEE1Ky9l2pM1OCuh0dxmRX2K1VIyqbDUxUaolbbn2l\nPaUyUS5+thhQlSEuP62WlBeptJEdNfLo7q8BQnVws7ilUudk7JUKevPSatWq1gnxaGm56uQKjo0V\nCzEwZgxGUko5q3ePxZNBdLK/V0eiB1bwjxUea4WUeattorUW2nFlIWptF9KFqCRqUkArsLk2GDEO\nHTVV7MMwQISajLZgRps9MZlM2bEZQ6Y0WVKCPOkxo5dc8hl1a22vNXoSnWbyVLNmZGmVnmb2uW8m\nNsyKuyzR8tNr3Z2+SlJYWScaeRVvCMoSyLO1Y9BGPXWWkVBcsUiMnAKtSlS4somSlGLJ9pk+1h9Z\nVJ89wSCsgAqL2rzCSmySSrdIAN07YAu5cy+w3WaCqg0ZWWzRmW0UJdKhKooZacL4aTTFMGGhCXlK\ndQlLI0OqLiNKyVYS33K+S8yWg96y5ka8ZRub1i1YOrbkO2TlzsazFgRQrBgeYsD1++KwYkUWKxYJ\nrJsmYKrA2bpfFUA1ac7JfkPLlPvSXQtKS4+6t1zQknSnU4onSm50pBATewA3wbytTKJSMv06HQqT\nTKLAcQ44mDSIManxPPeUoPuiPEaabU88UjzHilTjmlGtZ0iw4cl6GRky6ETOOodD/aEe3z8B8x8c\nWoruuaVqJsGLfSw67dr22GF6vU0xsusx2uVVVlSgOytdySP47X743nWAHbVPYa+EAm/4PTx/kO/t\nxCGgYchzg+adJsf9p/Q/Q+uDKaitGZqTCKiE/Z6CQTexMXkjvcD4DfCkipTCqACAiAAGt+fXXoP9\n+td+4cU1tqQWlHYKBN/wvyfS/T0thmYlNTW5rQIIZcShQ7XCjufS29/hbnHxwA6YAAl/f2Ab9A7e\n/fwA9h7jvsO98SMOFpxxRBuU2v09DtuAPX03AFsUK/CE6FBYR91uQF2HbTY3AtxwOR8+FPSHuH/E\nH/y8fvOPr9BiP7Kb7n6J/riBb0Y+x8mEA/IRH+/jhYvwONz89v5YLhzSQOQR8vT+fp/EZcfkp4N/\nW38MQuO/eHUi4I/H473/AMeMdX+TIAH6Nf6Y8RABEKDySaEQ2If/AIl3e9D6fPXDLTP/ANCzR/8A\nYpP/APcDjBfEG/8Apg8AACReqeI3/wDh7XrvgD8qPLbj/JGOuYPmKzk8ycGDuXFpjqMlKphRrArZ\nZypkzLtgdQdEx9UpG0Rs1XasxbMouctdwtsrBzScTCRjdq0j1HsokshQp1PZfZnT5ZkeyQPISWog\nQZMiTJcKGWGlOBTbadKVuuurQsJQAEpuoWc895yqtGqOU8o5aboxzLnE1Z5mbmNySihUSjUCIiTV\nKpPahPRpc11bj8aBT4DMmMXpLy3HHg2wpKp3nDlp5dOWXmUp0FkaX5ib1yzZbwRj7mFw2egx+Oaz\nnuwwOXYP67SaTbSWxq+pkBOQ1hY2Gs3GVioWRcqmi2DyErZXEkqyZzz6fAgTmUyFTnoEmGxNi+QI\n7c1aJKAWWXfNCmkKS4HEOqShRukFCLqISEyhnLN+b8pVR6kMZSpmcqFmWqZXr32s7V5mV4j9DklF\nSqMEwXGqhKjvxXIsunx35LKAH3ESZhQylxyzsV9GLiW288XJpg+tXDNMHg7ndwTOZnpB8iQ1eruc\ncZPI+m5HeKUfIDb9nxrrtzBXGmxqcnMR9bahJ1mUcjHtyPUEJNckmgxnatSIjbstEOqxFS2S+hDc\ntghp8+S+PL0FSHGkhSw2NSFE2BAUUV3xgrkHw38Ssxy6fl2TmLw/zDGy7UhSn5crLdYS7UaSyKnS\n1e1e1tok0+ovLZYelrLMxhHmqLSlspiGP+UDkHvdV5wslxWbOZeTw/yWUnl8kbZcIqo45aWDMFzu\nGRLpQclNMbVeYIRtAVW3ykXUo/DMtbpVN1XEJaSn74zsDVBs0U5ZpNHfFUkJkz1RqaxBUtxDbGqS\n66+8y+GEKFkNuKS2IynFXRqUt5KxYYkqfiL4mUn9AKQ/QcpM17O9YzVHiwZEyrLj0Kn06lUypUld\nXlx1FcmZCZkTna+xCZKZRYZjU1cVxS1AyYZ5J8dMPpCvo+I/lpzxzEY6w/zmYanM1YzyK0lqvWOY\n/FAtKXk1ha6g6skDEGqryRbSVbCJcS7KDBlIwM7JMSpLnQRk17EWjMIrFE9gmTmItTYXKYfCm250\nazUgOMlaE+USFN6VLCNKkLUOQFERmLxOq73hn4rfpjlrKdWr+RqvHy/VaUtibMyjXCqpUZcKoNQ5\nUj25ttTExMlth2SXGZUVl0lIUplNZcPcsXJux5PqBzi81GQeY1GOsHNVkzl2f49wg0x45n54ISv1\n+yRFuZz98YKM6+yrca4s01eDvBsUpanAQEJWI6HcLyUmpDFplMbpqqhUHpgQ/OfiLZihnWoNtodS\n6hbwsjQlTindWsuEIShKSVEk8wZ6z5JzyjJuTqZldUilZVpOZGqnX1VNEZhyXNlQHoEmPT3krk+0\nvNw2IAaEVENJkvynX0oabTOpT6NjH+K+bfnSxxmbKFxT5ZeR+hx2Y77fKVDQpsoX6lXpnU3WH6PU\n2MogtVInIN9c3JlEOZOWajAxisRKPgYolds0WkbtDZZqlUYlyHfYKRGTJeeZSj2h9p7yjFZaCh5a\nH3i6ElShoSUqUQAQBbp/i5VKhkXItXy7RaaM3+JdcXRqXTKlIkiiUupU5U5rMFRnOMLTNfpVN+z3\nH0MsOe1PB9louqLbinAnzj8r3L9h3B3KTn7l5ueXbRUubFDO1kQiMvtKWysFGi8YXSuU5hUXxKW1\nLHyNkh5N/PR1isbZ4eEshWEXMQUXCN3azQ8Nahw2YdGmQlyVNzm5e0kNBxtLC20JbWWhpU4hRWla\nwooWAFJSkG2C/hZmbMtVzb4nZXzVEokaflSVl0OO0NU9cKbIqcWXLelxzUFF9uJIaTGeixnEiRFD\nrseQ8+pAWOdSJ/8ASXSY+Q6Dhv2Hf6d+/wD0HgM+n+7Q3Op1IJt8uevBONOpTpGYcxxVX0pEZ9PX\nZQF7evvjex32+G8BErlfzoSEN6+g+nv2D+PHJGqNHsAbLWn134+V/wCuLrKixWqu4T7jlPivb8XS\nLE8fx4+G2FZgA4KiA7/qh0Ou3Yg9vy2G/wAOIGyUraSejoNvTUAbg9T0/ji9KQHYkt8fefpbiQRY\nk/qVKTvzft/W+ESCgposg/tmEo78++t70Hfxrfbz7cXnWg47NWOUpCh2Ow/p1tbC1TJqosDK8dSj\nd2QWiNx/3x2+BChc4Xj0nIJR9DAP8/8AD5633Dim2pSFBf7zZH8P44aZbTcxtTJ3DElpahYbFOog\n79Og+PyxgZPb5I4f6qAAGu4+BD9dCIh49A337Thz+4qb4KnTf6p9eL2+GAioKlZqbm2OhqA2lPYE\nJULXt6C3Yd7Y0NTiH1k5gDQG2Aj47bAfI+O/fWhHx8+JZTQK4qE/uAEDvsTb6dfrgdl+c4zBzBMd\nUbJkgpJ7JUtPPrx8h1wqTUAUSn8dYD58eoCIfkOuwBvXjim40UvrQP2bcfAEX+l9/TqcNkCamRSo\nclah7+pV77H9Yocn0AI+nbDjxXsex+hwT8xH5A/6MQM4AImEPQTbD5dQ+POv8j54lvY2PBO30H8f\nwO3GKxClIBB32F973t+Hbn0xmHgNeNBrj24vbrziLSSnUTc9efh+fTHXz6O1nUL7yi/SbYAlMzYK\nw9e83UzlUYY4c57yrAYlq067oeapi6WdFGenQWFRSOg2XWqRkxfHTcPY9JciCbsq5GWihp+m1+Eq\nXDivS2aclgzJCIzayzLW84Na7/dQm+wJuUg2vfGEeKq59Kz74M5rZy9mbMFMy5Uc7uVhvK9El12d\nFbqeXY9OhKVFjadIekOWSXHWgpLbykFSmyknPlVlLPyy485v+San88GCMO5/y03wDnTBHMFh7mUY\no4SsU7RZKxRt1wZY8/QzFlDU6x2emuSLNms0VvEkk26Me/d9T5DdmmKcp7NUpLVXiRZkn2KZDmxZ\n49kcW0pwPQ3JqAlLLjjR2DlkhQCSbkWXs+NQ851TIHiNO8N8zV/K9COassZlyrX8nunMcONUmoj1\nOzLFytIddkT4cOopKVORip8sqU62geUqyflwyJkyN5g+adrnPnHxBcudxDk9NT+UPmSvPMXUMl46\no+QJOdaztgp1W5hJgJChU/JTelSViiK7NnkEY+rWSQsDZhOFfOzqL+w35CJtREuqRnasKZ5dLnvz\nmn2Gn1LC3Gm5qtTLT/klaULKrNuKWEr1HeHM9Ko0jKuSHct+H9dg+HRz+J+f8n0vKk+k1apUpiMu\nNFnTsrRi1VKhR1VFmI/LjBpTsyI1FW7G8tsJTa2hZ+xpA8+X0OVpybzc4xy66xDyvZoqGfM5PsxI\n2+EiskLI5tZvWNtyJan5JBwo4lZVnFV2en1G6dyjjRE5XjvoSXinTgk1LjorGVnpFSjyTFp8tqZL\nVKDiEvlMxKg6+6rUTrWlLa1keaNKkXSpJKNUMtVeX4a/2g6bRsi1mhCu5yy9UMsZZay+qBKdpCXc\nvONuQqRCaLaEpjsrflRYwUae4H48oNSGH0J5T8qOQKLWuQz6VulWK41iCt2S6fylNseVeWm46Pnr\nw6rHMS7nrG3qkS5XSez60HCmLLS6UWi5PHxog8dFSQH4nACmSWWqPXm3HW0OvNU1LLalJS495U4r\ncDaSQpehB1K0g2TudsbFn2hVOf4k+D8yHTpkmn02bnp6qzGIzzsWm+15RRFiLnPoSpqKmVKSGGFP\nFAde/Vo1LBGOhnK1nfCdZ5mvoHbLYcu40hIHD3Kjlet5amZS7V1nG4ysEkGY0Y+Cv7xaRBCoTD48\njH/U4yeOxeuSSLBRFAyT1qdVggTIaJ2VyqTHQiLTZAkKLyAlhajJsh43/VqIWkgLsTqSbWIJxrOW\nWcyTMpeP7cah1iRKr+dqOujMM06Wt2sxm0UDzJFMQGiqew2phwLdjeYhKm3EqVqbWE86bveqQ7+i\nbxFjVpcKw6yHGfSF53vEjRUJ2MWtzCnS2H4uMibW9ribk0u1rknJdUfHTS7ROOevk1WrVyqukqQg\nORJaVl6EyHUF/wC15S1M6k+aGlRQgOFu+oNqOwURpKtgSTpxrlHy/UEeNGbJ7kCW3S1eHOXYkeor\njOpgrqDOYVyXITcooDC5bTOp12OlZdbbstaEoKSenXMBnfAOZucz6U3BKWfMS1ilc6XLnyzVnEmd\n5e2MFcMIZfwZUMVW2Arltv8AFqPYuu1+wSzGeq8nYljqsYSZjDMXyYvFEWyhp+XDl1mvwxLjhmqw\nYLcaVrSqOZENqO4ltx5BUlCFkONqVchCk2O+2Mpo+W8z5d8L/B3M6su1h2peHOa83Ta5l5MN1quC\nh5lqVZhPS4tOfS2/IfjNuRJbUYBLj8eQHmyGgVioX0i1Lisa8iP0TlFishUXKBK/VOdBJ/c8aSru\nfocnNOc8Vx1PtqnYXkbEjZ4GBnFn1cbWpmyTiLE4iXErDKKxbhoqcbXGEs0fLkZLzUgtiqBTrCit\nor9qHmBtZSnzENqu2HAAhZSVJukgh68Kas/VPE3xwrj9LqFFEw5AcRBqzKI1RaYOXVmK7MjtPPiK\n/LjIRMMNbhfjIkJakAPJcA4wl2Vyqr6GSL79wDXkR/D/AKa7Lp96O011Q8pI+dySO3PQfW+NwQfJ\nrdQnjZuRS2Vk7WulLZJvfn3TuL/HphSYRMVRXtsyXfXuADr8ewd/4dh4iR7qkN/uvDY+qh+e+Cbu\nlceRNRy9SVAKvudKFKF+vS/ztzfG5A4ikTx99LQAO99gHx7j5/L+PDydLyyL+478Byk+vS3126Ys\n094P0yAhR3dg6dupLZB9dvSx57YSrbA7EgAGiKDoPUdAAhv0HXcd+R3xcYVqROUTcrbF/wAbkDts\nNr9uMLFVilmTlRtFwlqcsqt/uqbVuPid743orAY7regBM4BrvoA0Pr379v8AHXpw6yQiKOdaD05I\n034+O5/pi9S6oFyMxFavdjSWkgngW80G3bcC4/nhWQwbKoGtiAa36h5D2EfPFRSTZSeiVG/e97fx\nH4/RkZcbdMd/q+w3Ynkgovyfjew22PO2ExyiVBYCB942+3ft94B7a/TyPb+FtDmqQ0VbBIHToEnn\nng9xfvhckU/yaDUmGwQp5aVHoTqeB7ep6et+MYKmMk3RIHkRAvfuPfYj/PWvb046aSlx99ZsRYn0\n4t8h1/jitPU9AolHit3ClOhBA+IUQfrf4j44d+s3v/AP8OKlkdz+flhh1u91fT/DEK3o5/bqH8hE\nR/h7/lxCtNxccj+H5/ngg2sJJQf2hex6/A9/yPTPjzcpChyPqenz+HxxIFAXSRe4/P8Alj0AAR0I\nFH/3gAe3rre+/wDD38cem33rEk2t1sem3r1PPbnHqSBcb3sLWJ6d99x36j5492GtdIdIgIHLoOkw\nDrYCXwIDruAhr33x0lJur1427fDbj629cVX3dIQu/CrG97i+wPfY/m+NhAAAMXpKJBAAAogAkEvY\nekS+BKGg0GtbAPbj1W6QOOQfh0t062+uI4t0uubn3vfBvuDwq3bc/H449AP6wB0A9XYd+oh4EffQ\ndgHvr9OOju0oHobjrb5HY3/l64hTdM9Dib2cQtCrcak7/wAbj44zIIG862U49x767CPn03rY6/Pf\ncOPFC1vUJP12PPzv87d8dRXQtL45U2pbavUBQtcG/T88YyEgdIgAB+9vWg0I73332Ht6/LjpKveu\nbbp0nptpt+fycQOMgx0p3u3IDqN+PeSrY323vjPQbEdBsdbH17b9db18t6+Xvze4A7X+h3/r+b4s\nFIQ9IcAsHEt355Cjud7X975c4MWEL1iXH9zfS2acDsuYekuq7JRJqG4yhdcPuWUm8XYKsrTEXKiI\nO5RCWiSNHLZBk+Yv4Z2hJuhes1FUmp0iVOdYjvNPSYqZbZ1N+X57sdSFEgh1LjXvakgEBKgpBCyS\nCbYRM7Qq1WaZU6ZRMwu5bnNJizvbE0mBWUyYzSFB2A9DqCkNhh9S0OKfZW3IbWy35bgCnAoic0nN\nE95j1cZxMNjeq4Vw/gvHh8a4Tw5TZawWKJo9WdzLqyTbmStdpWVsFwt9qnnJpS0WmUTarSblFtpm\nkZJZZ1YnT1TpkZsMtxosS8eLHaK1pbQpZcWpS1nW6464vW44oDVsALXKhGU8nM5TyzXp7tUm12vZ\njArdfrdQajsPzpjEZqJGZZiREJjwYECI0mPDiNFzy0FZLh1JSirJDdTX4nkfq49999gHy7a7CHje\n9D68UVAIllu/EgH0N/8AE/54bGl+dl1MwEa1UZzfgnywvb/08cgdL43tx6mie/JkhD+Ah6/yH+7i\nN8aZS7XsHAb/ABIP1/ni/SnPaKBFKgSpymuJPcnS4nv0P5tj1MwkM3J/uG7D7lD/AJd+OnAFCSv9\n1SP/AFEA2/r/ABxBCeVHdoEU3GqLIBB66ELI2NvTr8OmFAlA6iZvPQbsI+QHx/HXf/I8QoUUodHG\ntKR+JI+v59CchhMl+A5a4jyHFegJ0g9PTnjbfthtERSRkD9wEywAHce/cQ147B38/l24Kps47CR+\n6yTa1/2Un+Q9NucZ875kGn5rk7gvVJKEEbXBdWB+H8jheRbpM0J5MdMoiA/+569/l+P4+OKbjN0y\nli9kuKAI53UBt8B26W6Xw0Rqj5b2XIale+/EaUvp/wBxext6i/xtfCgBAwHANdh9R9R7++g7+O+v\n47rlJSWyeoNj6Abfn/IHkSG5CZjQsUtrQFcbXuq2/O6ev+WJyAcCb0Ou/wAvHnx29vTz8uPUKKC5\nbqLH4G5/PrjiYw3KRCuPdZcKx24A4+X4C/bDroPYP0DiDF7QO5/D+mIKIfeP7iI6/wDMIh+mxD8P\n5+A3+pH0OO3RpUlQv8R6W2H53/h74KHy1v8Av/yHffHuOXlLQEr5AsTbY268duf4b8e7Dt8/HHoF\n7+gvb06/THK3SlxCibJXt6A22O/4/HuBjIA322Pgda/kHtx+FxZXr3/j8fz61lkrU8yTyCpPz+fQ\n27Y2l30hvz6/kPH48m3F9vhi1FN20qOxCVJPO2ki/wDI9euPijsRAfQREB/XXf39Pw8cdKFkp7KS\nLj58/wBfS/fFWMsrecSbBTLygf8AhPB37gj/AAvt6QNGUD1EomDe/bWx/XXHSveQ0R0UEm/UA3t+\nem3GKjai1MqbdzpW0X0/8puO17gX+nGNxTAIFH3HW/n3/wAPy/LjlSbKWP3QT222/kf54sNyErYj\nLuLOnSe17f0H+Yx8c2imH+zof5D/AJ/TjpCPeb/3r/539Li+3TEUuRoYnKB3Y0m3/iQq/wCfwvjX\n5c632Ubj2+YefxDz50H5BxOABGP7yJA6dLWJ7cgfjgMpXm1xPVuZRjfixIBPw6fnpuNr4Z0gHyic\nADuHoOu/zDsI+w/nx+F/MQ6Bw8i/foPh2uOOMTP2ECRT+ppcgAf+Fwgb/wAsYogP1Uqeu/wjl18v\nvfmIefQR9fHHT28pS+nnNnt1G1/hybfjipTNsvtRD940+Y3pPPD1u3Pytt8cbGw9BEEvUSG7D29x\n0I6D1H38+B9/HhqU+50S4nj10/httviajueQxSYJBGuJJuL9Eqc4+Xf/ABxuOX+vb+xSqd/y1/ER\n/PjxBPkSSf3kD53+vFr/AF74llJ0VaiKGyW2ZgsL8BNvz1N8bEFAMmBv/EOX9BDQef8AO968jxy+\n3pc02P8Aq0n589emx57X2xLS5gfiB5SrXmvtg8f94kDr22/NsYLpgZA5Q/11CiIePJhH/p5Ht34m\njuEOtrN/daUO/wCyALD8/HA+swEuUyZHQLl+ey4Rze7yifgPxxqEpgfIa2JU0O/ffp7fw32DiYEG\nG93W727kG2xv6enfA1xpYzTS0i4bh01tVtrApaWN/pv3x42WH4TpUfHxNBvYh6h6/P8Az68evsgu\nx2+SEb29bXv8fp3OOKNU1og1+a4o29qSlJPoFpFj6374WFVAEUzCIgJwD22Ox8e+/wDOxHimps+a\n8kbhJN9r/dF/684ZmqglNNpzyyNT6UEepUspHp6+vph52HuH6hxUwd1nsPx/riBmH7x+++4gH4dW\n/wBO38ePwFzYdfz+fxOPzzoCAeiRfueg3A/O3PbMDAIb9w8b878aH5+g/wB4Dx+4x6HkrZHXbrue\nOD8P6bXwXsUcvmes9DNp4OwnlnMSla+z/wBoi4vx7ar19g/aguQiwlzVuLkCxp5EGTwWCbsySjor\nRyZEpyIKmLbiw5ksq9liyZIRYOeQw49oCr6dflpVp1WNr2vY2vY4Wq/mvK+XmYxzDmGiUEyy57H9\nsVSHTTJ9n0ed7OJbzRe8oONh0thQQXEBRGtNzMT6PTn4EQMXkl5sTaHpMJeX/KBukR190dVv94RE\nAKUe4iIaDuG7X2LWLEfZVR52/ub99r8/q7/T5bHdePir4Zh1lz/SDkoe6Qv/AN5qR1G/MvoQbn+e\nMi/R88+ggOuSjmtHQHNouAcmjoqfdQR1XN6T/wDWDrRO3XrfHgolYNr0qo2//ZyOP/LxKfFjwzQh\nWnxAyWdyQBmakblW4sDL3JPHNz8MYh9Hzz6dex5KOa7RiFMUf6AcmgBgHq0YojXNGKPQfpEOw9Cm\nh+6bUpotXLaR9l1C6T/8G/cjfpo6fH8cUWvFXw3RNdc/T/JnlutpUVfpLSdIWm1wT7VzYja97Adx\nfZ/6Prn06uoeSnmu2IGKP/3BZNDet9v/ANuB3DpNsA8dI7/dNrz7Fq4AAplRsFA2MORb5fq9sfj4\nqeGyni7+n2TPfYcaVfMtJ2ubjf2oHc336/HbAYytgLPOBRg2+cMK5Xw44sf15Suo5Px/aaIedTiz\ntU5Q0OFkjI8JL7OM+Zg+K0FU7P621MuQgOERN+kQJUZ7+8xn43mtKLYfaW1r021aCtIB07Xte1xe\nwIx+o+caBWqYVUGu0itfZtRaTKNLqUSf7OmQXPJ88RXXC0HghflFdgsoXoJ0KAEhj7M4L/uAIee/\nb2/APPFdCLCOrqHCkjvyL+lhfbBuXNK3a4zc2VDQ4na2+hPT4/jY264yTPv4J/X4QlH/AIfG/wBA\n9flrjxabB5Hd3UBfpsf577jb8PIz4K6VKVbUinlpR26oUD8wdvlj0VdO0yehkTeo/P0/AAHiRDX9\n2cURuHk7DtdJuDe43OK8moD7ehtAjQ9Tnwod/ddvt36Df+mPgVAq6SXbRkzdt996N+v8fb0Dj0sl\nbDrhG4cRv2sQPoNx19D0EAqHkVSDCBshcOR7vTcO3H8enIxkKvS6QANa+Gcd+fcd9/Hb+X5cepa1\nRnz3cb+dyLbfC/zt8ceuTvKrVJSkgITDlXtYAbLA4+P12txhSRyitpRJVNUpAEomTUIoUBEoGADC\nQxgAwlEDAAiGymKbQlEBGHyrJWkdVJvb678d9/SxwVcnBxcd43BaakAEixGq6TyN+CDbqDvfCRJf\n4aSIDrZ1h9/Uwf535D9NXnI4W86bE6GE9L2skg8dRvxbnrhRh1ZUWn09rUdT1VcP/hLyTx+bm25w\n4AuA9YdvuiA7/j4328eNh7jxUDBSEG33ge/Qj5fAC/4YZl1hDypLeoHy3G1EX4PvEdALfW/O2PPi\nFFUTgPcUwAPG+wD/AA767/z468shsI3sFlRv8f42H+A4xCZiDNclba1RUtA8cIVYbEWNz0237YQj\n91oYgeTnKIh8hHY79fbft+QcWwNUkKNyEoIHrt/Dc9/kcLK1KYoD0ZBOqTKbWrfc3Wb/AFHOxBuf\nXHqyoh9VTAewAG/mAeewD69xDf699ceNNAiSs/tEgfO/W19r/nrJUZ7iTQ4barBsIKx6JWL3+l/j\n8MP3xh+f6BxQ8g/vD6HDf9sD94fjiHmMGzj7GH5BvfgPw4q6LEWv6kn+lufpa+Djrw0WJ5AueABb\n8/H15HhRHpAPcOwgGw9vy9h7hv39vSkEg/X1xXQ/ZCgCdxxcAH8n59CBj9Nv0EYz05yp/SE0qiWt\nrAZFmci8n8tEsUbpD0ywSdWgLm7k74jEupa747TcJPahH2GHXZq3KsMZkXZq+7n40kmK5NLyEttp\nFVC1oSpTkMgFSUkgIeSSAoi4B5I6+u2PhT+1+xMqEvIC48STJQzEzG04tmO68hDipNMWlKy2haUr\nKU6wk7lIKrWG3aq/4b5iLghlZzFZpLDScxfeYCRxKd7zUPfqdRx/kFljVpjGtS8ZW8mwST0tPdxe\nSn7uMRkxWYR1oRi4C3IuCNn0boXns9Hmv/MR/wBWPjH7JqW3/s2b0H/YZG9t/wDY9L2PU23G9sSG\nk1jmqjsi0Gw3DJ8HN1iDmOVFslXXvMzETEOBcOwJKVlyw5Jblt8I6km1yj7tecjVheqDPys1kejY\nx/pUqtnjCvTtf3nsf7Zr/wAxH9cfvsqpf/LZt9z/ANikfK36na3G/F9iL7Rv+jbnCJks1ljeYWPZ\nV5DMz17Zox1zKRi0XkCsS+YqW+sl0iIlOyLp0+NVxYhFpVCgIox6ME9xxbYIIiNRyQo7sH7z2f8A\nbNf+Yj/qx++yqiRtTZx9fYpHNh2a5vyfUHe22hWl850qTGk1H5uJW3ERS8Q1q71ma5na0uaVdR1R\nwHWMlSRnULcZtgpNoWekXS8Q06m6O6nmT+dZyZW8jeZBgX957O13Whfu4j+uP32VUTe1Om/KFINh\nubf6kW6c8Wv0GON/0+7xyw5Wfou6PZp5rJZLp9TywzyCxWt8Jb7AlPoVzE8dKzEzIQ1+yWR2EzNt\nJFyhKnt8wWQMcxjOG7oF4xgiZ2W2s0rQ4hZCphISpKiAUsAE2OwJBF+9+1sfXP8AZYhy4rXiCqRF\nkR0ONZZDa3o7zKFrafq61JQXEIClJStKlJT7yUqCiACCfzDCb+tOO9AZIA/T/H2/LhASPcQN9nb8\n9/r+e2Psdb2qdJUSbPQkoO56BIv69h6epxkB+lLz3IQ39/v6a/z4Dj3yrug72UpPA67X9T+H4bcC\nWGoQBVu1HXbuLBX0+ex4xqBQDLIKb7AkYP1Ef8h29d8WAjSy8ji7ieevHPyvf19cCFSy5U6bJ1cQ\n3Qo9gQ5fr3P4+mMDqj9cRMGgAEzB7a7HH+Gh9fX8+O0IHsrqTvdxJHw27+tu/pitKmE1+A7clKYb\nt9+4d/G3ffnBnwJC0e0ZkoMNkWSRjau/lFETFextilImZnitXKtOqtiSqDd7a2NVuFtJCVq1TFbj\npKciK/KSL2KYqPU0V20sNlpTiWnjpQt5JNwtQUoD9WhYbBXocc0oWtAKkoUpSRfcDczVOczCfn0x\nBclR6e9pKHY7brDCl6ZkqOZRRFclw4ZfkxGZDjbD0hptt1YQVJVc7m/bWy1o5lmrmawW+Rxw+xo2\ngsyWjF0JjJOVss7aLBUrjj+sqwbJELFievRykC3pzqwy1llG4UNexxcmxgrUqyc36kytxclTiVOF\nlTOl9TKWbqUtTbjSC2BrYSko8vWVqBaKwUpWUlRyJUo0OPQmYamYaKkzVzIo8aqSKl5cZiOzKhVG\nSmQ4r2arSHUyDLEZqK0sTkx3WnH4iXEyTJXInRHsfL26jWqTxhVKlXGrpzD3avWWx3GPlnLfNSxS\nZtB3YmcPjQ4TeHHdIg7rQ3F5xdlte2UW343bsEJiSrUfbVTWymQttRaT5AGlaVqWFf3gfrwpQDVi\nwW0ONFxl/WhxqwUUBej58npcokKZHRUZCqo6oOw3o8eG42k0c3o5Qwp6oI8qqJmPRZ6YdSpQjTYd\nQLhaalONbH6P6IlZ2UpTDKEqk5q+V7rjey5BWxNZE0Hc1B2flporSHa011e02rSEjp3OjmbTuX26\nm5mYKAsyy0KVGIjxH00VKlMshw/q1OoW75SrEpXGb06C4AAC+VBWq6koUdNkg45b8U5DMepVBcBt\nQlMQZUaEKnHuhp2NmCWp0y0wypxxbVJbYMUM6Wnn49nSXV4ZXn0ekzDUpnbLHllnDOjYddZkdQhc\nW3aXcOq39WqSbBxVDRLxzI2uPQn7UrXbk9CFhntG/ZuXsktDr1SQrkvK1lUUpaU4p4J/Vl7T5Liv\ndOi2jSSVgKUULIQktlKllJQUqUcb8VEPT0Q2KYp5Pt6KSHjVITQDwEnzPaA8hDcdwsx0yIiPNeTN\nElqO06iU2+y1T3PWNWGFsq27FjS1ObitSnTOKmJtepO6YQ88Zig8k2TCIezc84cxjH60gmynDPUk\n5ohju27Js3BIy9KRF9nfW0lRWUAJUoo8saiAVAJKlGw2AVeyuQAMNVFzIa3R489yOiGmSsvNMCWi\nZZlCylpa3kMsJS45pJWxoPk2AUtSr6Q+ZUBMQRHuAaAfbff8Pf5D6b1xCGyEqABsTuO/T8Px77YJ\nuTkreYdJ3bTZNzwSb7d7bdNrYcPih7k/h/8ALxx5H/F/zf44s/a//wBT8P8ADDIcdmNvf7w/l3Ht\nwECTcfj226X/AA+Pwxpzj2pNr9j87G3x73P03x56dh0Htv5f3/8AXjooF9jYdvz/AI4rpfGk3uCO\nQDsdv5jnb+WNJkkFTD8VBBYS7AorIpqiUDAG+j4hTdO9B1AUQAdBveg13a9tr224vyTiol9Ta3Sl\nZSHPesFFIJHPG199iSetucYg3Z9P/wCiZiId+zRv27eP/wAvyAdvQRD24k8oFQsAAbcgf06/Priq\nJ7vkOfrFkoUf21X5va+r8CBvta3GQt2eyj9TZaENaBo3+f8A4Xn+fbv449S0NKgQNj2HH8uP44ru\nTXA8yoOLstCkkFaubXt97e/4/DHhWzIA7MWIdx0Is23bv7Al7/z18uOyhKiBpSTYcgfu37YiRKW0\n2r9Y5bzFEfrF8Fe21+gPccfHGsG7Mvxf9CZ9hAQH6o3ENiADvXw/cd/3cTeWD5ew432Hc+m4Ft74\nHmY42mYfMXYqKr61g7gH97Ynjjn53UEIiQB+Eggj1gHUKKKaQnAv7vV8MpOoCiI66t9PUOu4jvwN\nhJuOm2wA7825/PTYeOyy43YrKvMTcAqKugHUm2/bn8cZioACA7761/1147+/8PTtKDbZPrv/ABF+\nwxWXJ9/Xcfd0fK/X+VwOeMazq7KoG+3wxHt7a/x7D/HXbVhtvdCiOVgfQjt063/pgbLmjypLYN7R\nlHnbcEf5bjtjAqmkSm33BMB3/D2+fgeJi3d1SbbFwW+I67nvtbjf0wNTKCIbDpPvNxVWN+Dv/Em2\n4/E41irsQUH0SH+/uG/G97D8vXiRLViUW5cHzO56X527nfFJ2ZdCJZO6Iit/Q6vpsRthzh5p7ByE\nVORwtgkId8ylmIvo+Ol2QPY50k9ai7iJlpIQ8o0BdBP6xGyrB7Gv0etq/ZuWiqyKnQbKXwQPuuJO\n6UkXSb7pUCki43BBB4IN94Vy0yKYtDhUUvQXm1aHFtLKHULSrS40tDjaiCqy2nEOINlIUFAEGe98\nzWWcm1tao291jxWFeOGT9clcwPgGgyn1iOcfWWnwLHj3F9VsrRD4wB9YZtJduxfpADd+3ctg+Fxb\nfceeS4F+UU+Yk+6xHQRYgj322kL2O1goA8G4thepUCm0t6E9G9uS+Irou/Wq1Ma0rSpKrxplRkRi\nbEhKiyVtq95BSo3wMWV4sMdTrFj9m9bpVG2TdTslgixioddR9N0RCca1B8SUXYKzDAYNtZp9Bq3j\nZBmzVSlXRHbdzpD4MKErS240D7jim1LTpAuWwsINzuNOtWwIHvG4wSkLjvT4U9YUqTCamMsOF1wB\nDcxTBkoLYWGl+cqO0pSloWu7aSFDe8BVBMW4kFNISqqiUwCUuhT6TlEgaDYF6DnKABoCgc4F0Bzb\nIttgug2FkM9u4Fuu25N7d979VaRKWiCpKVq1SagFGxN+Sb9OpG57b7gYK18zbkbJcbW63dJ5KUgq\nazjE4WPQhoSIbg6hahBUKMl5MkPHsSy880pFbgKoSbfFVkFYaKboOFlXCr107/OJW7GaSs3u4kJG\nlI+6kNpUQkC6vLShOo7lKd733hhLh06sS3ojRaV7K8XVl5103fdcluNoU4tZaZXLfekFlBDYddUU\ngJCUpF5HnS3E2gKAnECgHbQbDsABoCh33oNevjzxyYg84JA4Qm9h3HwO9rbW2F7dBi63XVCnuPKW\nSXJC9JJJ2skA78nt/mcbxd6MmX+0AD8h2HqI9/X+/wDGERtlm2wJ+e5442vxe/pi8ushK4qCsBSk\nouNt/dubb7c/jhz+s/P/AD/w8R+Sr82/rif7WH+0P1ONZgVExh6fJh8iX0EfQB9f8/JTCSfh3/O+\nPoBb9+FHjewte4+X5+Ax90qD/q67e4b8DvXft37B7ee/p+0m4B69PT+Hf6fC8C3kpB3JNr9bG3f6\nYxAqvfRQ9vIdh9fXv+e+JtOnpa4v8sUw/quSetuP4fm3bH3QcAMHT217l7DrQ+v+fz4kCSQk9R/C\n9x+f6YpLcF3Ugmygbj1t1+f53x4BTiBQ14Nrew323+XcPy9Ncd6d1evI/A/W+Kheulk9Unbm3Hz4\n/wAsYqAYAEOkd7Dv1BvXb8Q2PbevPgeJEIuRttY9t7dPS2+K0mTpbVYm4UD1tuoG+3y5xgYqnQcw\nhre/UB8AHz9PIcSITZSepH9Sf64pyZA8p0dVp3NttgBbgHp+NseAB9kDQ/u+4fx7/j+vp4GQN7Ls\nOCOvX+pFvnioZdixufebPf024436327YxN167FHYG15Dxsf972Dx3DiRLfvDsU9QD8/z3xTem2Qo\n3OzgG3/ER2B6d+x3ONQ9YmU7dujv3D+8R9w+e9Dv04nS1ZCNv2z1HPS31+mBz0kl6QOhYSm2/X5d\nev8AK2PDAcERAC7ACe5Q9QD3+f4a9N8Spbu6lXdzYfX+Y/POKUqVoguI3uGNItfb+e5v1698ajCb\n4Hgdin27h/Pfb+Xn8pktkv8AA/1hNjbkfh0t+O/Ua/LtTSi5v7KE335JF/X5349cfEE4JFLoddHj\nqDXoIf5/kPHSm/fUbAgrv2sL/n8jEDc20ZtkEn9RpPPUWHPoca9nBXsUfupD6l9/x86HXt+W+Jw1\n+rNx/wB4O3Hr8wL7fC+B7k3RJSRchEMgc9Sbdem3Tv8ADHwHPoPuj3Ae2w0G/wAxEd/9fTXQZNyB\nYWNrjrvYdsQiolSGzc7pUTyN9z/TjCcwmECh0iIAYR8l89h9/wC7iwhsgrI5Kd/699r/ANMDHpSV\nBgb2S6Vbgnext8eb3/phOb4gfHN09zAIAOw8CAdvPqH5b9OJkt3DSdrJIJ/j15wNcl2VUXRfUtBR\n12FtPy+XptjSb4gJok6ddRgEe4a8APjf/PiVLYDjiv8AdsPlfn6fDFJySRFhMAm3mFagL9bE8/Ej\nnrjITK/WA2A6IUB1svsHrsR8/n3HWvTkNANEW3USfxO3x2+u/U4lXPUuotkE6WW0ADf90dB3va/b\nphy+Op7fwL/jxx5Kfzf+uLH2p/xfT/HH/9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image \n", "Image('../../../python_for_probability_statistics_and_machine_learning.jpg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Python for Probability, Statistics, and Machine Learning](https://www.springer.com/fr/book/9783319307152)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import division\n", "import numpy as np\n", "np.random.seed(1234)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The estimation problem starts with the desire to infer something meaningful\n", "from data. For parametric estimation, the strategy is to postulate a model for\n", "the data and then use the data to fit model parameters. This leads to two\n", "fundamental questions: where to get the model and how to estimate the\n", "parameters? The first question is best answered by the maxim: *all models are\n", "wrong, some are useful*. In other words, choosing a model depends as much on\n", "the application as on the model itself. Think about models as building\n", "different telescopes to view the sky. No one would ever claim that the\n", "telescope generates the sky! It is same with data models. Models give us\n", "multiple perspectives on the data that themselves are proxies for some deeper\n", "underlying phenomenon.\n", "\n", "Some categories of data may be more commonly studied using certain types of\n", "models, but this is usually very domain-specific and ultimately depends on the\n", "aims of the analysis. In some cases, there may be strong physical reasons\n", "behind choosing a model. For example, one could postulate that the model is\n", "linear with some noise as in the following:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "Y = a X + \\epsilon\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " which basically says that you, as the experimenter, dial in some\n", "value for $X$ and then read off something directly proportional to $X$ as the\n", "measurement, $Y$, plus some additive noise that you attribute to jitter in the\n", "apparatus. Then, the next step is to estimate the paramater $a$ in the model,\n", "given some postulated claim about the nature of $\\epsilon$. How to compute the\n", "model parameters depends on the particular methodology. The two broad rubrics\n", "are parametric and non-parametric estimation. In the former, we assume we know\n", "the density function of the data and then try to derive the embedded parameters\n", "for it. In the latter, we claim only to know that the density function is a\n", "member of a broad class of density functions and then use the data\n", "to characterize a member of that class. Broadly speaking, the former consumes\n", "less data than the latter, because there are fewer unknowns to compute from\n", "the data.\n", "\n", "Let's concentrate on parametric estimation for now. The tradition is to denote\n", "the unknown parameter to be estimated as $\\theta$ which is a member of a large\n", "space of alternates, $\\Theta$. To judge between potential $\\theta$ values, we\n", "need an objective function, known as a *risk* function,\n", "$L(\\theta,\\hat{\\theta})$, where $\\hat{\\theta}(\\mathbf{x})$ is an\n", "estimate for the unknown $\\theta$ that is derived from the available\n", "data $\\mathbf{x}$. The most common and useful risk function is the\n", "squared error loss," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "L(\\theta,\\hat{\\theta}) = (\\theta-\\hat{\\theta})^2\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Although neat, this is not practical because we need to know the\n", "unknown $\\theta$ to compute it. The other problem is because $\\hat{\\theta}$ is\n", "a function of the observed data, it is also a random variable with its own\n", "probability density function. This leads to the notion of the *expected risk*\n", "function," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "R(\\theta,\\hat{\\theta}) = \\mathbb{E}_\\theta(L(\\theta,\\hat{\\theta})) = \\int L(\\theta,\\hat{\\theta}(\\mathbf{x})) f(\\mathbf{x};\\theta) d \\mathbf{x}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " In other words, given a fixed $\\theta$, integrate over the\n", "probability density function of the data, $f(\\mathbf{x})$, to compute the\n", "risk. Plugging in for the squared error loss, we compute the\n", "mean squared error," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}_\\theta(\\theta-\\hat{\\theta})^2 =\\int (\\theta-\\hat{\\theta})^2 f(\\mathbf{x};\\theta) d \\mathbf{x}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This has the important factorization into the *bias*," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\texttt{bias} = \\mathbb{E}_\\theta(\\hat{\\theta})-\\theta\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " with the corresponding variance, $\\mathbb{V}_\\theta(\\hat{\\theta})$ as\n", "in the following *mean squared error* (MSE):" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}_\\theta(\\theta-\\hat{\\theta})^2= \\texttt{bias}^2+\\mathbb{V}_\\theta(\\hat{\\theta})\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This is an important trade-off that we will return to repeatedly. The\n", "idea is the bias is nonzero when the estimator $\\hat{\\theta}$, integrated\n", "over all possible data, $f(\\mathbf{x})$, does not equal the underlying target\n", "parameter $\\theta$. In some sense, the estimator misses the target, no matter\n", "how much data is used. When the bias equals zero, the estimated is *unbiased*.\n", "For fixed MSE, low bias implies high variance and vice-versa. This trade-off\n", "was once not emphasized and instead much attention was paid to the smallest\n", "variance of unbiased estimators (see Cramer-Rao bounds). In practice,\n", "understanding and exploiting the trade-off between bias and variance and\n", "reducing the MSE is more important.\n", "\n", "With all this set up, we can now ask how bad can bad get by\n", "examining *minimax* risk," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "R_{\\texttt{mmx}} = \\inf_{\\hat{\\theta}} \\sup_\\theta R(\\theta,\\hat{\\theta})\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " where the $\\inf$ is take over all estimators. Intuitively, this\n", "means if we found the worst possible $\\theta$ and swept over all possible\n", "parameter estimators $\\hat{\\theta}$, and then took the smallest possible risk\n", "we could find, we would have the minimax risk. Thus, an estimator,\n", "$\\hat{\\theta}_{\\texttt{mmx}}$, is a *minimax estimator* if it achieves this\n", "feat," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sup_\\theta R(\\theta,\\hat{\\theta}_{\\texttt{mmx}}) =\\inf_{\\hat{\\theta}} \\sup_\\theta R(\\theta,\\hat{\\theta})\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " In other words, even in the face of the worst $\\theta$ (i.e., the\n", "$\\sup_\\theta$), $\\hat{\\theta}_{\\texttt{mmx}}$ still achieves the minimax\n", "risk. There is a greater theory that revolves around minimax estimators of\n", "various kinds, but this is far beyond our scope here. The main thing to focus\n", "on is that under certain technical but easily satisfiable conditions, the\n", "maximum likelihood estimator is approximately minimax. Maximum likelihood is\n", "the subject of the next section. Let's get started with the simplest\n", "application: coin-flipping.\n", "\n", "## Setting up the Coin Flipping Experiment\n", "\n", "Suppose we have coin and want to estimate the probability of heads ($p$) for\n", "it. We model the distribution of heads and tails as a Bernoulli distribution\n", "with the following probability mass function:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\phi(x)= p^x (1-p)^{(1-x)}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " where $x$ is the outcome, *1* for heads and *0* for tails. Note that\n", "maximum likelihood is a parametric method that requires the specification of a\n", "particular model for which we will compute embedded parameters. For $n$\n", "independent flips, we have the joint density as the product of $n$ of\n", "these functions as in," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\phi(\\mathbf{x})=\\prod_{i=1}^n p^x_i (1-p)^{(1-x_i)}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " The following is the *likelihood function*," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathcal{L}(p ; \\mathbf{x})= \\prod_{i=1}^n p^{ x_i }(1-p)^{1-x_i}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This is basically notation. We have just renamed the\n", "previous equation to emphasize the $p$ parameter, which is what\n", "we want to estimate.\n", "\n", "The principle of *maximum likelihood* is to maximize the likelihood as the\n", "function of $p$ after plugging in all of the $x_i$ data. We then call this\n", "maximizer $\\hat{p}$ which is a function of the observed $x_i$ data, and as\n", "such, is a random variable with its own distribution. This method therefore\n", "ingests data and an assumed model for the probability density, and produces a\n", "function that estimates the embedded parameter in the assumed probability\n", "density. Thus, maximum likelihood generates the *functions* of data that we\n", "need in order to get at the underlying parameters of the model. Note that there\n", "is no limit to the ways we can functionally manipulate the data we have\n", "collected. The maximum likelihood principle gives us a systematic method for\n", "constructing these functions subject to the assumed model. This is a point\n", "worth emphasizing: the maximum likelihood principle yields functions as\n", "solutions the same way solving differential equations yields functions as\n", "solutions. It is very, very much harder to produce a function than to produce a\n", "value as a solution, even with the assumption of a convenient probability\n", "density. Thus, the power of the principle is that you can construct such\n", "functions subject to the model assumptions.\n", "\n", "### Simulating the Experiment\n", "\n", "We need the following code to simulate coin flipping." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1]\n" ] } ], "source": [ "from scipy.stats import bernoulli \n", "p_true=1/2.0 # estimate this!\n", "fp=bernoulli(p_true) # create bernoulli random variate\n", "xs = fp.rvs(100) # generate some samples\n", "print xs[:30] # see first 30 samples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Now, we can write out the likelihood function using Sympy. Note\n", "that we give the Sympy variables the `positive=True` attribute upon\n", "construction because this eases Sympy's internal simplification algorithms." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "p**57*(-p + 1)**43\n" ] } ], "source": [ "import sympy\n", "x,p,z=sympy.symbols('x p z', positive=True)\n", "phi=p**x*(1-p)**(1-x) # distribution function\n", "L=np.prod([phi.subs(x,i) for i in xs]) # likelihood function \n", "print L # approx 0.5?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Note that, once we plug in the data, the likelihood function is\n", "solely a function of the unknown parameter ($p$ in this case). The following\n", "code uses calculus to find the extrema of the likelihood function. Note that\n", "taking the `log` of $L$ makes the maximization problem tractable but doesn't\n", "change the extrema." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "57/100\n" ] } ], "source": [ "logL=sympy.expand_log(sympy.log(L))\n", "sol,=sympy.solve(sympy.diff(logL,p),p)\n", "print sol" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Programming Tip.**\n", "\n", "Note that `sol,=sympy.solve` statement includes\n", "a comma after the `sol` variable. This is because the `solve`\n", "function returns a list containing a single element. Using\n", "this assignment unpacks that single element into the `sol` variable\n", "directly. This is another one of the many small elegancies of Python.\n", "\n", " \n", "\n", "The following code generates [Figure](#fig:Maximum_likelihood_10_2)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "d:\\Miniconda64\\Lib\\site-packages\\numpy\\__init__.py:1: RuntimeWarning: divide by zero encountered in log\n", " \"\"\"\n" ] }, { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x1c390a90>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAElCAYAAAAyWE/9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8FHX6wPHPE3qLEJAqgURA6RztUKoURT2kKJ4VUQ+9\ns97v7KIe3p2KXpXz1LMgRThFAUEFEZAiKlVAmgSJhCpFIBA6yfP7YybLJtkku5ttSZ736zWvZL4z\n+51nZ5N5dr7zne+IqmKMMcaEU1y0AzDGGFPyWbIxxhgTdpZsjDHGhJ0lG2OMMWFnycYYY0zYWbIx\nxhgTdpZsijkRGSciWdGOw8Q2EdkmIl9EOw4DIrJQRFKjHUekWbIJMRHpKSJZBUyng6jzNhF5MJ/F\nCkQ92YjIH0VkYLTjCFQh+7Yk8euGOhE5z/0se4QjCBFp69afGI76i4lSeXNj2WgHUIJNBmb5KA8m\nMQwHGgEv+1j2G+DuIOoMtT8C44AZUY4jUMPJf9+WRtVxPksFFoeh/nZu/QuA7WGo38QoSzbh862q\nTg73RlQ1E8gM93ZMqSERqN/vb/YiEgdUUNUT4QvJRII1o0WZiAwTkWUickhEMkRkq4i8KyI13eU/\nAj2Bxl5NcZnZzRy+rtlkl4lIgvv7fhE5IiLTRaSOu85dIrJRRE6IyCYRucZHbPeIyBwR2Skip0Rk\nt4hMFJFGXus0crevwHDvGHPV1det65C7zbUi4tcZWfY2ROQZEblaRJa7dewWkZfcA1Lu1/QQkbki\nclhEjovIKhG5I9c6Be7bQmLy+/2IyAh3H58UkS0i8qCIZO+rHl7r5Xv9zV13bK6yQj+fQIhITyAV\n57Mc5bVPUr3WKSMij4nIBvd9HxCRaSLSyo/6/whkv4eFXvWPdZdn75M+IvK0iPwAnASG5rcP3PLb\ncu9LtzxeRF509/lJEdknIpNFJMmPWEe7deZ5X269J0RkmlfZr0Vkhoikudva7/6/tS5sW+7rfV5T\nk3PN8sNylZcXkSdFZL0byyERmSki7fzZXjTYmU34VBY3YeRyWlWPAojIrThNT4uAp4ETQEPgKqA2\n8DPwIDAaqAn8nnPfPDe5P5W83xSzyz4Ddrh1N3Hrmu7+k4wA3gJOAQ8AH4hIM1VN86rnIeAbnCam\ng0Ar93WXiUhrVT0E7AduAd7FaXZ5I/cbFpG7gNfcuv4CHAP6Aa+JSLKqPuZzD+Z1NXAP8DrwNjAQ\neNiNbbTX9gYA04A9wF+BDOAG4C0RSVLVp91VC9u3PgXyfkTk98A/gNXAE0BlnP26n/w/N3/58/kE\nYiPOfvgXzv7LPphmeK0zGefgPwd4FagL3At8IyLdVHVtAfVPBeq5Mf4F+N4t3+r+zH7vf8M5Nr0B\nHAE2+xF7jv0mIvE4++YCnAS3wd32PcBSEemoqjsKqG888CgwzP3p7ddAeZz/3Wz3AgeA/wI/ARcC\ndwFLRKS9qm6lYAV97rnfW1mc/d8FmAj8GzgPZ79+JSLdVfXbQrYXeapqUwgnnG/KWThNW1k+pple\n604FDgNSSJ0LgNR8lr0DZPoqA8bkKv+7G8M2oIpXeWu3/Llc61fysb3L3HUfzlWeBYz1sX5dnCQ6\n0ceyfwFngMaFvP9Gbv1HgYa5lq0DdnnNxwFpOAffOl7lZYEl7vYu9Gff5hOL3+8H5wCQ4cZY0Wu9\n+u57yQR6FPRZFrR/A/x8fgS+8OP9Ze/rZ3ws6+cum5yrvI37vhf5Uf9tud93rmVZOMm+gj/7IL86\ncRLwMaBVrnUbAum+6vFR73JgJ7n+P4EvgX1A2UI+i4twzsxeyVWe528uv8+Hc8eTYV5l/+e+3765\n1q3q/u0X+jlHY7JmtPB5A+jrYxrptU46zjfdAWGKIfdF7y/dn+NV9Vh2oaquw/kG2dR7ZXXbycUR\n756prXPj/qWfMQzF+RY4VkRqek/AJ0AZnP3ij+ma99voAqCuiFR25zvgHFDeVtW9Xu/lLPCSu72i\n9JoL5P1cgfP5/kdVT3rFshuYVIQYsusJxecTiEE437KfyxXHd8DHQLd8zuYD9aqqnipiHTfhnGnv\nyfUZnQCWApf7Ucd4nLOhftkFItIYuBQn4Z7NLleva0oiUs3d1s84Z2Wh/ixuxjkrXJ3rvVUE5uJ8\nDhVCvM0is2a08NmiqoXd1/A80B2naesgTnPabOB9Vc0o8JX+yd2XP7tZZZuPdQ/hNCd5iEhv4Bmg\nM84fcjYFavgZw8U4zVPz81muQB0/6/rRR9nP7s+awHEguz1+o491N7g/k/3cni+BvJ8kd95XM5Cv\n+AISos8nEEk437K/97FsA04ST+LcZxIMBbYU4fWIyPk4fw+X4zRX+tqGP51q/ofTGjAM+Nwtu839\nOTHXNn8B/BnnTKRKrnpCfU9Nc5zPO7/3BlAL2BXi7RaJJZsoUtUfRKQF0MedegJvAs+67a6+Dq6B\n1J9fO3B+/2ienkgi0hGnXXgLTpv1NpxvhQq8j/+dS7J7H92K05bti7//jAUdIMLdi8p7O6F6P7n5\n/LxEpIyPslB9PrHoeIDr5z6OZf8tzMO5JhfU34aqHhSRWcAgEanitgbcAmxS1VWejYk0xPmimA48\nC6TgNOEpTutC7uTjc3P5lPs6RgvOGez/kf9785WIosqSTZSp6hmcC/mfAYhIf5z7c/4A3J+9WhRC\nuwnngNVfVT33Q7jNVYF8a87+lvqzH2d6oZB9oG/pY1nLXOtA4Ps2kPeTinMwuBinuc9XLN4OAohI\ndVU97FXu60wsVJ9PbgXtj1R3m82B9bmWZb+fwr4gFeVv+SCQ4KP8wlzz+3Guhcarau79HqjxOM2H\nQ0Ukxd1W7g4Dg3ESyq9UNce9SW7z1kkKV9B7y73PtgDnh+C9RVRx/vZT7OXTvr3G/en9h5dBeJpF\nCpJ9FpH7b2SkjzJwYvT1zzIFOI1ztlYx90L3WkP5ogSay7c4NwveLiK1vbZTFngEpxnI+8bTQPdt\nIO9nLs7Zxr3e64rIBcCNPupOwUlOua9hPexj3UA/H39lN9/6+iw/wonvCe9Ct3vwAOBLVS2sCS3D\nrcNX/YVJAS7JtS9r4NyY6+Ge0U8COovItb4qcpva/PEpTi+zYe6USd7rbT4/CxEZgdOhxB8pwMUi\nUs/r9RVwes/lNgHnOuVDviry/ruPJXZmEz4dROTmfJZNV9XjwOcichjnwv0OnLu3h+McECd4rb8U\nuFpEXgG+xvnjnq+qB8IVPDAd5zR9toi8gXOA7YfTc83XdpcCfUXkUZyDvarq+6q6S0R+h9M8uElE\nJuL0mDkfpxfTNUALQnQ3uapmich9ON12V7qxH8Xp+twZp8eddzfUgPZtIO9HVQ+LyNM43a+/EZEJ\nON+A78Y5uPwiV/X/w7mO94aINMf5ttufXNfSXIF+Pn5xm45+AG4Q5/6avcAxVf1EVeeJyBR3WQJO\nh4js7sTHcbrQF2YFzt/3SLeOY8CPqrrcXV5Qk9crOF3sF7j7vQbOCBrbyHvdbyTOhfz3ReQDnM/5\nNE5vu6uAlcAdFEJVz4rI/4D7gI7APFXdk2u12ThfKt51/44OAV2BK3G6dedpBs3nvd0AzBeR14EK\nOE12x3ys+zLOZ/2Se93uC5wOPok4zfEn3J+xJdrd4UrahHPdJbOQKdld906cdvfdOKfau3D+gXvk\nqrMSzsFtD04XU083T5zusmdzrZ+nLFdsw3ws+xHnIOtddg3OweEoTlfPSTj3LfhatwlOU+Dh7PeZ\na/klOF29f3Lf606ci+y/B8oXsk8buXU+7WPZH91libnKu7v79jDOgXAVMNzH6/Pdt4XE5Pf7wbn/\nYRPOQSAFp3l0uK9tAZ1wvnwcd/f5a0C8u+7bRfh88pQV8N46ujFkd89O9VoWh3OGuMF9Pwfc/dAy\ngP+RW3Ga4U669Y91y/PtFu312ofc93LCjeG2/F6HcxF9JLAW56Cd7r7mv0CnAOJt79Z/Frghn3W6\n4fR+S8f5kjAT50vHAmBrrnXzlHntl03uftnqvtfL8PE/634O9wHL3M/pKE5HlInk6hIdK5O4gRcr\n4tyJPALnHwzgSVXNvubxBM43lrPAg6r6ue9ajIkeEbkN52bDyzRXO78xJVFxbkb7h6r+w7vAbXq4\nHucC5gXAPBFpqsUxoxpjTAlSnDsI+GrbHQi8p6pnVXUbTq+NzhGNyhj/Raq7tjFRV5yTzX0iskZE\n3hKR89yyBjgX2rPtcsuMiUV2xm1KjZhNNuKM2Pud17TO/TkAZwDAZFVth3OB9u/RjdaYwKjqeFUt\nY9drTGkRs9dsVLVf4WsBTk+ij93fd+GMi5XtAvIZskFE7FulMcYEQVUDbgKO2TObgoiI941SQzh3\nN/NMnHsAyovzzIomOCO3+hTtroCxMv3xj3+MegyxMtm+sH1h+6LgKVgxe2ZTiJfEeUhQ9nD5dwOo\n6kb3prONOPdM3KNF2TvGGGNColgmG1UdVsCyF4AXIhiOMcaYQhTLZjQTWr169Yp2CDHD9sU5ti/O\nsX1RdMVyBIFQEBFrYTPGmACJCFpaOggYY4wpXizZGGOMCbti2UHAGOM/VWXevHl88MEHnDlzBoBy\n5coxdOhQ+vbti4iNmmPCz67ZGFOCTZo0ienTp1O1alUaNWpEXJzTmJGVlUVaWhoZGRkMGTKEm266\nKcqRmuIi2Gs2lmyMiYK77rqLlJSUoF7brFkz3njjjULX++tf/8r69etJTvb1VOlzUlNTadWqFY88\n8khQ8ZjSJdhkY81oxkRBSkoKixYtClv9kyZN8ivRACQnJ7N+/XomT55sZzgmbKyDgDEljKoyffp0\nvxJNtuTkZKZNm1ak4UiMKYglG2NKmHnz5lG1atWAX1etWjXmz58fhoiMsWY0Y4qdjIwMli5dyrFj\nxzh27BgnTpzg5MmTnmnGjBl079494HoTExMZPXo0P/zwA5UqVfJMVapUoWrVqlStWpVq1aoRHx9P\ntWrVPJ0NjPGHJRtjIuzs2bOcOnUq6NevWrWKSy65JN/lDRs2pGfPngHXGxcXR0pKCr/73e8KXVdE\niI+PJyEhwTPVrFmT2rVrc/7551O7dm3q1atH3bp1PT/LlrXDTWlmn74xIZSVlcXu3btJS0vzTDt2\n7GDXrl3s3LmTXbt2sX//frKysqIdapGoKunp6aSnp/Pjjz8Wun5cXBz16tWjQYMGJCYm0qhRIxo3\nbkzjxo1JTk4mOTmZihUrRiByEy3W9dmYAJ05c4bU1FS2bNnCli1b+OGHH9i6dSupqamkpaVx+vTp\nsG6/UqVKtG7dmsqVK1OlShUqV65MxYoVqVixIhUqVGDVqlX069cv4GaurKws5syZQ5s2bThx4oRn\nym6uO3r0KEePHiU9PZ1jx46F9D2JCA0aNKBp06ZcdNFFXHzxxVx88cW0aNGCCy64wG48jSF2n02A\nLNmYwhw/fpxNmzaxceNGz/T999+TmprK2bNni1R32bJlg66jZ8+eLFy4MN/lc+fOZdKkSSQlJQVU\n77Zt27j55pvp27dvoeuePXuW9PR0Dh06xMGDB/n55585cOAA+/fvZ//+/ezdu5c9e/bw008/sXv3\nbvbt2xdQLN7i4+Np0aIFbdu2pW3btrRr1442bdpQpUqVoOs0wbNkEyBLNiabqrJr1y5Wr17N6tWr\n+e6771i3bh1btmwJqitwrVq1aNy4MY0aNSIxMZGGDRvSsGFDGjRoQIMGDahXrx79+vUL+j6bwpKN\nqjJ06FBat24dUL3r169nypQpYTmLOHXqFHv27GHHjh1s377d08SYmprK1q1bSUtLC6hpMS4ujubN\nm9OxY0c6duxIly5daNu2LeXKlQt57CYnu6nTGD/t3r2b5cuXs3LlSlauXMmqVas4cOBAQHU0bNiQ\nZs2a0bRpU5o0acKFF17IhRdeSOPGjalWrVqYIvePiDBkyBDmzJnj9702qampDBkyJGzNVRUqVPBc\no/Hl9OnTbNu2jZSUFDZv3szmzZvZuHEjGzZs4PDhw3nWz8rKYsOGDWzYsIHx48cDULFiRTp27Ei3\nbt3o3r07Xbt25bzzzgvL+zGBszMbU6KdOnWKVatW8fXXX7N06VKWLVvGzp07/XptXFwcTZo0oWXL\nlrRs2ZIWLVrQvHlzmjZtWuQmnF69eoXtzCZbSRiuRlXZs2cP69atY+3ataxdu5bVq1ezefPmQs+E\n4uLiaNeuHb1796ZPnz50797dmt5CwJrRAmTJpmQ6evQoX3/9NYsWLWLx4sWsXLnSr27G8fHxtGvX\njl/84he0bduWNm3a0KJFCypVqhSWOCORbAAmT57MtGnTqFatGomJiTkG4ty+fTsZGRkMHjy42A1T\nk5GRwZo1a1i5ciXLly/nm2++Ydu2bQW+ply5cnTr1o0rr7yS/v3706pVK+t4EARLNgGyZFMynDhx\ngq+++oovvviC+fPns2rVKjIzMwt8TZUqVejYsSOdOnWiY8eOdOjQgeTk5IjepBipZAPO2cH8+fOZ\nMmVKjkcMXH/99fTp06fEHHB/+uknvv76a7788ksWL17MmjVrCjz7SUxM5JprrmHgwIH06NGD8uXL\nRzDa4suSTYAs2RRPqsq6deuYM2cOc+bMYcmSJYWeuTRp0oRLL72USy+9lC5dutCyZcuo32AYyWRT\nWqWnp7N48WLmz5/P/PnzWb9+fb7rnnfeeQwaNIihQ4fSr18/SzwFsGQTIEs2xcfRo0eZN28es2bN\nYtasWezevTvfdUWENm3a0LNnT3r06EG3bt2oU6dOBKP1TyQeMWBy2r17N3PmzOGzzz7j888/99nx\nAKB69epce+213HLLLfTo0cOG5cnFkk2ALNnEtj179jBz5kw++ugjvvjiiwJvlLz44ovp06cPffr0\noWfPniQkJEQwUlMcnTlzhi+//JIZM2YwY8YM0tLSfK6XmJjIrbfeyh133BHQKNolmSWbAFmyiT1p\naWlMnTqVDz/8kG+++Sbf9RISEujXrx9XXHEF/fr144ILLohglKakUVVWrlzJBx98wJQpU/JNPH36\n9GHEiBEMHjy4VDezWbIJkCWb2LB7927ef/993nvvPZYvX57vem3atOHqq6/m6quvpkuXLpQpUyaC\nUZrSQlVZunQpEydO5P333+fgwYN51qlbty6//e1vufvuu6lbt24UoowuSzYBsmQTPUeOHOHDDz9k\n4sSJLFq0yOdd+mXKlKFHjx4MGjSIa665Jt+bAY0Jl9OnT/PJJ5/w9ttv89lnn+Xp2VauXDluuOEG\nHnnkkYBHayjOLNkEyJJNZGVlZTFv3jzGjRvH9OnTOXnyZJ51ypYtS9++fbnuuusYOHAgtWrVikKk\nxuS1Y8cOxo4dy3//+1/27NmTZ/nVV1/N448/Trdu3aIQXWRZsgmQJZvI2L59O++88w5jx45l+/bt\neZaLCJdddhk33ngjQ4YMsYv7JqadOXOGadOmMWbMGL7++us8y3v37s2zzz5bopOOJZsAWbIJn8zM\nTObMmcNrr73GrFmzfN5Y17ZtW2699VZuvPFG6tevH4UojSmaZcuW8eKLL/LRRx/laQru27cvzz//\nPJ06dYpSdOFjySZAlmxC7/Dhw7z11lu8+uqrPh+oVbNmTW699VaGDx9O27ZtoxChMaG3efNmXnzx\nRSZMmJBn9IobbriB559/PuDHPcQySzYBsmQTOikpKYwZM4Zx48b5fKhW3759GTFiBAMHDqRChQpR\niNCY8Nu6dSt//vOfmThxYo6z+fLly/Pggw/y9NNPR31E8FCwZBMgSzZFt3TpUl566SWfzQgJCQnc\nfvvt3H333TRt2jRKERoTeSkpKTz55JNMnTo1R3n9+vX55z//ydChQ4v1eHSWbAJkySY4qsrcuXN5\n7rnnWLx4cZ7lrVu35sEHH+Smm24K24jJxhQHX331FQ8//DBLly7NUd63b19ef/11LrzwwihFVjSW\nbAJkySYwqsqsWbP485//zLJly/Isv+qqq3jooYe47LLLivW3NmNCSVWZPHkyDz30EHv37vWUV65c\nmRdeeIH77ruv2I29ZskmQJZs/JN9JvPUU0+xYsWKHMvKli3LzTffzMMPP0yrVq2iFKExsS89PZ1n\nnnmGV155Jcf1nO7duzN27FiaNGkSxegCY8kmQJZsCvfVV1/x5JNP5mkuK1++PCNGjODRRx8lMTEx\nStEZU/x8++23DB8+nHXr1nnKqlatymuvvcYtt9wSxcj8F2yyidnzNxG5TkTWi0imiLTPtewJEdki\nIptE5HKv8vYi8p2IpIjIvyIfdcmQkpLC4MGD6datW45EU6FCBR544AFSU1N55ZVXLNEYE6D27duz\ncuVKnnrqKc/4fhkZGZ5bAjIyMqIcYRipakxOwEVAU+ALoL1XeXNgNVAWaAz8wLkztGVAJ/f3WcAV\nBdSvJqf9+/frfffdp2XLllXAM5UtW1bvvvtu3bFjR7RDNKbEWLlypTZt2jTH/9pFF12kGzdujHZo\nBXKPnQEf02P2zEZVN6vqFiD36dpA4D1VPauq24AtQGcRqQtUU9XsCwsTgEERC7gYO3v2LP/5z39o\n1qwZr7zyCmfPnvUsu+mmm9i8eTOvv/66DeVvTAh16NCBVatWceutt3rKNm/eTJcuXfj000+jGFl4\nxGyyKUADYIfX/C63rAGw06t8p1tmCrBkyRI6dOjAfffdx6FDhzzlPXv2ZMWKFUyaNMkeGmVMmFSr\nVo0JEyYwfvx4KleuDDijog8YMIDRo0f7HBG9uIrqg9hFZC7g/cxewTmdHKmqH4d7+6NGjfL83qtX\nL3r16hXuTcaMQ4cO8eijj/LWW2/lKE9OTuYf//gH11xzjXVhNiZChg0bRps2bRg4cCDbt29HVXni\niSf4/vvvefPNNylXrlzUYlu4cCELFy4sekXBtL1FcgIWkPOazePAY17znwG/BOoCm7zKbwBeK6De\nYJssi7WsrCz93//+p7Vr187RVly5cmX9y1/+oidOnIh2iMaUWvv27dMePXrk+N+8+uqr9dixY9EO\nzYOSds0mF++v2DOBG0SkvIgkAU2A5ar6E5AuIp3F+Uo+DJgRhVhj1k8//cTgwYO58cYb2bdvn6d8\n0KBBfP/994wcOZKKFStGMUJjSrfzzz+fuXPncuedd3rKPv30U/r16+fzqaHFSjAZKhITzsX9HcAJ\nYA8w22vZEzi90DYBl3uVdwDW4XQaeLmQ+oue4ouJ7LOZhISEHN+YGjRooNOmTYt2eMaYXLKysvTJ\nJ5/M8f/aqlUr3bdvX7RDC/rMxm7qLOEOHz7M3XffzZQpU3KU/+53v2P06NHEx8dHKTJjTGFefvll\nfv/733vm27ZtyxdffBHVhwzaCAIBKg3JZsmSJdx88805npCZmJjI2LFj6dOnTxQjM8b469133+W2\n227zDHPToUMH5s2bR/Xq1aMST4kbQcAELzMzk2effZaePXvmSDS/+c1vWLdunSUaY4qRW265hbFj\nx3p6h65atYorr7ySo0ePRjmywNiZTQlz4MABbrrpJubOnespq1GjBm+99RZDhgyJYmTGmKJ48803\nueuuuzzzV155JTNnzqRs2cjewWJnNoZly5bRvn37HImmZ8+erF271hKNMcXciBEj+Pe//+2Znz17\nNr///e+LzY2flmxKiLfeeovu3buzY8e5wRWeeuop5s+fT8OGDaMYmTEmVO677z6efPJJz/x//vMf\nxowZE8WI/GfNaMVcZmYmDz/8MP/617lBrqtXr867777L1VdfHcXIjDHhkJWVxY033ujpYSoizJgx\ngwEDBkRk+9YbLUAlIdkcOXKEG264gdmzZ3vK2rZty7Rp02w8M2NKsBMnTtC7d2/PI6fj4+NZvXp1\nRP7vLdkEqLgnm127dtG/f3/Wr1/vKRs0aBATJ06katWqUYzMGBMJ+/bto3PnzqSlpQHQqVMnlixZ\nQvny5cO6XesgUIp8//33XHrppTkSzZNPPsnUqVMt0RhTStSuXZspU6Z4eqOtWLGCJ554IspR5c+S\nTTGzdOlSunbt6rl/pmzZsowfP57nnnuOuDj7OI0pTTp37syLL77omf/HP/4Rs8/CsWa0YmTevHkM\nHDiQ48ePA1ClShWmTp3KFVdcEeXIjDHRoqpcc801fPLJJwDUrFmTdevWUa9evbBsz5rRSrjPPvuM\nX/3qV55EU6tWLRYsWGCJxphSTkQYN26c50m6P//8Mw8++GCUo8rLkk0x8OmnnzJw4EBOnToFQMOG\nDfnqq6/o1KlTlCMzxsSCmjVrMn78eM/8Bx984DnTiRWWbGLcxx9/zODBgzl9+jQAjRo1YtGiRTRr\n1izKkRljYknv3r0ZPny4Z/7ee+8lIyMjegHlYskmhi1YsIChQ4dy5swZAJKSkli0aBFJSUlRjswY\nE4v+9re/UatWLQC2b9/OM888E+WIzrEOAjFqxYoV9O7d2/PNJDk5mYULF9rQM8aYAk2cOJFhw4YB\nEBcXx/Lly+nQoUPI6rebOgMUy8lm48aNdO/e3fMY2Pr16/PVV1/RuHHj6AZmjIl5qkq/fv2YP38+\nAF27duXLL7/0PKKgqCzZBChWk83OnTvp0qULu3btApwLf4sXL6ZFixZRjswYU1z88MMPtGjRwtME\n/+mnn3LVVVeFpG7r+lwCZGRkMGDAAE+iqVq1KrNnz7ZEY4wJSJMmTXI8+2bkyJGeJ31GiyWbGJGZ\nmcnNN9/MmjVrAGdkgI8++si6NxtjgjJy5EgqVaoEwJo1a/jwww+jGo8lmxjx2GOPMXPmTM/8a6+9\nZo9vNsYErV69ejzwwAOe+aeffpqzZ89GLR5LNjHgnXfe4e9//7tn/pFHHuE3v/lNFCMyxpQEjz76\nKOeddx4AKSkpTJgwIWqxFNpBQESygECvpKuqRvbB2AGKlQ4Ca9as4ZJLLuHkyZOA85iAqVOn2qCa\nxpiQeO6553jqqacAZ/SRrVu3Uq5cuaDrC1tvNBEZR95k0wFoBWwGNrllLYBmwHpglareHmgwkRQL\nySY9PZ0OHTqwdetWAFq2bMmyZcuoUqVKVOMyxpQcGRkZJCcns3//fgDef/99rr/++qDrC1tvNFUd\nrqq3Z09j2AoUAAAgAElEQVTAZCAJGKSqzVV1iDtdDAxxl00KNJDSRlW5/fbbPYmmatWqTJ061RKN\nMSakqlatyr333uuZf+WVV6ISR8D32YjIUmCJqj6cz/K/A11VtUsI4gubaJ/Z/POf/+QPf/iDZ76o\n3zaMMSY/e/bsITEx0dNBYO3atbRp0yaouiJ5n00bYGsBy38AWgdRb6mxdu1aHnvsMc/8/fffb4nG\nGBM29erV49prr/XM/+c//4l4DMGc2ewClqvq4HyWzwA6qWr9EMQXNtE6szl16hSdOnVi3bp1QOSe\nG26MKd2WLFlC9+7dAahcuTI7d+6kRo0aAdcTyTObycBAEXlbRJqLSBl3ai4iY4FfYdds8jVq1ChP\noqlUqRITJ060RGOMCbuuXbvStm1bAI4fP864ceMiuv1gzmwqAO8BA3F6qWWPgRAHCPAxcL2qngph\nnCEXjTObr7/+mu7du3uGjRgzZgz3339/RGMwxpReb731FiNGjACcIW02b94c8G0WER+IU0QuBwbh\n9D4DSAVmqOrnQVUYYZFONseOHaNt27ae3me9e/dm7ty5dj+NMSZijh8/ToMGDTh8+DAAs2fPpn//\n/gHVEfGBOFX1c1W9R1WvdKd7i0uiiYY//elPnkQTHx/PO++8Y4nGGBNRlStX5o477vDMv/feexHb\ndpEeMSAiNTl3ZvOjqv4ckqgiIJJnNhs3bqRt27aebodvv/12jg/cGGMiZeXKlZ4BfmvUqMHevXsD\nGlEgomc2ItJWRBYB+4Bl7rRPRBaKSHCdt0soVeXee+/1JJpu3brleE64McZEUocOHUhMTATg0KFD\nLFy4MCLbDTjZiEgrYAlwKTADeN6dZgBdgS9FpGUogyzOJk+e7Pkwy5Qpw6uvvmrNZ8aYqBERhgwZ\n4pmfOnVqRLYbzFHvT8AZoIM7TM3T7jQE+AWQ6a5TJCJynYisF5FMEWnvVd5IRI6LyLfu9KrXsvYi\n8p2IpIjIv4oaQ1Glp6fz0EMPeeYffPBBWre2+12NMdHlfYPnRx99RGZmZti3GUyy6QH8R1W/y71A\nVdcDrwI9ixoYsA4YDCzysewHVW3vTvd4lb8G3KmqzYBmInJFCOII2qhRo9i7dy8A9evXZ9SoUdEM\nxxhjALjkkkuoU6cOAHv37uWbb74J+zaDSTZVgJ8KWL7HXadIVHWzqm7BuXcntzxlIlIXqKaqK9yi\nCThds6Ni27ZtOYaE+Oc//0m1atWiFY4xxniUKVOGQYPOHR4j0ZQWTLJJxRklID+/ctcJp8ZuE9oC\nEenmljUAdnqts9Mti4pRo0Zx5swZAC699FKGDh0arVCMMSYP76a0adOmEe7eucEkmwnAFSIyWURa\neg1X00pEJgGXA+P8qUhE5rrXWLKnde7PAQW8bDeQqKrtgYeAySJSNYj3ETbr16/P8US80aNHIxJw\nT0FjjAmbXr16Ub16dQC2b9/Ot99+G9btBfM0zb8B7YEbgF+Td7iaKcDffb80J1XtF+jGVfUMcMj9\n/VsR2Yrz0LZdQEOvVS9wy/LlfQ2lV69e9OrVK9BwfHrqqac83xKuuuoqz+B3xhgTK8qVK8c111zj\n+WI8depUOnTokGe9hQsXhqR7dFGGq+mHcwG/sVuUCnykqvOKHFXO7SwAHlbVVe58LeCgqmaJSDJO\nB4LWqnrYfdbOA8AK4FNgjKp+lk+9Ybmp85tvvuHSSy/1zK9evZp27dqFfDvGGFNUM2fOZODAgYDz\npOD169cX+pqIj40WbiIyCPg3UAs4DKxR1StFZAhO1+rTOGdVz6jqLPc1HXCa8CoCs1T1wQLqD3my\nUVV69+7t+RZw4403Mnny5JBuwxhjQuX48eOcd955npvODx065Glay09Uko0NV5OT9/MiypYty6ZN\nm2jSpElIt2GMMaHUqVMnVq5cCfg3MKcNVxMD/vrXv3p+v+222yzRGGNi3iWXXOL5/euvvw7bdmy4\nmhDZvHkzM2fO9Mx7jxxgjDGxyvsaczhv7gymN1r2cDVdc48i4Caixe461/p4bYn197+f64A3YMAA\nmjdvHsVojDHGP97JZunSpWRmZlKmTJmQbyeWh6spNvbu3ZvjvpqHH344itEYY4z/GjZsSP369QHI\nyMhgw4YNYdlOzA5XU5y88sornDrlPAW7c+fOdl+NMabYEJEcZzfhum5TXIeriRnHjh3j1Vc9A0/z\n8MMP22gBxphixbuTQLiu20R1uJqSYMKECRw8eBCApKSkHM+JMMaY4iASZzYB32cjImWAycBQQPE9\nXM1Nqprlu4bYEKr7bDp06OAZU+jll1/mgQceKHKdxhgTSadOnSI+Pp7Tp08DznXo2rVr+1w3YvfZ\nqGqmqv4auAJ4HZjrTq8Bl6vqDbGeaEJl7dq1nkRToUIFbr311ihHZIwxgatQoQIdO3b0zC9dujTk\n2wj6+cSqOldV71XVq9zpvlCPixbr3nnnHc/vQ4YMoUaNGlGMxhhjghfumzuDTjal3enTp3n33Xc9\n87fffnsUozHGmKIJ982dwdzUiYgkAncDTYGa5H1ypqpqnyLGFtM+/vhjfv7ZGQouMTGR3r17Rzki\nY4wJnveZzfLlyzlz5gzlypULWf0BJxsRuRKYDpQHMoBiM/hmKI0dO9bz+/Dhw8Nyx60xxkRKvXr1\naNy4Mdu2bePkyZN89913Pp9vE6xgmtFeAA4AnVU1XlWTfE0hizAG7d69m88+O/eYnOHDh0cvGGOM\nCZG2bdt6fv/hhx9CWncwyeZi4F+qujKkkRQjEyZMICvL6XB32WWXkZRUonOrMaaU8D6W/fjjjyGt\nO5hksx/nwWWllvc4aHfccUcUIzHGmNCJtWQzkVI2orO3zZs3s2nTJgAqV65sIwYYY0qMcCabQjsI\nuD3PvI0DLhORGcDLwI9AZu7Xqer2UAQYa2bMmOH5/YorrqBy5cpRjMYYY0InOTnZ83vEkw2wDWdY\nGm/ZXZ0LGpCzRHbP8k42AwcOjGIkxhgTWo0bN/b8npaWFtJn2xQ6NpqIjCJvsimUqj4bZEwREczY\naHv37qVevXqoKnFxcezdu5datWqFKUJjjIm8OnXqsG/fPsBJOImJORu3gh0brdAzG1UdFWilJdUn\nn3xCdoLq1q2bJRpjTImTlJTkSTY//vhjnmQTLBuuJgDWhGaMKenC1UnA7w4C2Rf8fXQY8KmkdRA4\nduwYc+fO9cxbsjHGlERRSzY4HQSyRKSyqp7Gd4cBX0pUB4G5c+dy8uRJAFq2bMmFF14Y5YiMMSb0\nwtUjzZ9k8yec5HI213ypYk1oxpjSwPvMJjU1NWT1BvykzpIikN5omZmZ1K1blwMHDgCwbNkyOnfu\nHM7wjDEmKlJTUz0tN/Xr12fXrl05lgfbG82SjR++/vprunbtCjgjo+7cuZO4OOtbYYwpec6cOUPF\nihU94z+eOHGCihUrepZH7LHQpdGiRYs8v/fv398SjTGmxCpXrhwNGzb0zKelpYWk3kKPmiKSJSKZ\nAU5nC6u3OPnyyy89v/fo0SOKkRhjTPiFo5OAPx0EJlAKOwRky8zM5KuvvvLMd+/ePYrRGGNM+CUl\nJbFgwQIgdJ0E/BlBYHhItlRMrVu3jiNHjgDO9RrvjG+MMSVROO61sYsPhViyZInn9+7duyMS8HUx\nY4wpVmIq2YhIDxH5i4i8KSIXu2VV3fLqIYkuBnhfr+nWrVsUIzHGmMiIiWQjImVE5H1gAfAkcAdQ\n3118FvgIuCck0UWZquZINna9xhhTGoSjg0AwZzaP4Typ8w9Ac8492wZVPQlMB64KSXRRlpqayp49\newCIj4+ndevWUY7IGGPCr06dOlSqVAmAQ4cOcfjw4SLXGUyyGQZMUNWXgQM+lm8CSsTAYd5nNV27\ndg3ZQ4SMMSaWiUiOB6mF4uwmmGTTGPimgOWHgRpBReNFRF4SkU0iskZEpopIvNeyJ0Rki7v8cq/y\n9iLynYikiMi/ihqDNaEZY0qrUF+3CSbZHAUSCljeBNgfXDg5fA60VNV2wBbgCQARaQFcj9OEdyXw\nqpzrIvYacKeqNgOaicgVRQnAuyeadQ4wxpQmsZBslgC3iI8+wCJSA6fDwIKiBqaq81Q1y51dClzg\n/n4N8J6qnlXVbTiJqLOI1AWqqeoKd70JwKBgt793715SUlIAKF++PJ06dQq2KmOMKXZC3UkgmGTz\nHNAU+AL4lVvWVkTuBr4FqgCjixxZTncAs9zfGwA7vJbtcssaADu9yne6ZUHxPqvp3LlzjoHojDGm\npAv1mY0/w9XkoKorReRa4C3gHbf4bzi90vYBg1V1oz91ichcoI53Ec7QOCNV9WN3nZHAGVX9X6Cx\nFkXumzmNMaY0ad++Pc899xxJSUm0aNGiyPUFnGwAVPVTEWkM9ONc9+ctwBxVPR5APf0KWi4iw3G6\nUff2Kt4FNPSav8Aty688X6NGjfL83qtXL3r16uWZX716tef3Sy65pKBqjDGmxGnUqBFPPvkkCxcu\nZPr06UyfPr1I9QX8PBsRKe8+HrqgdRqoaoEHej+20x/4O9BDVX/2Km8BTAJ+idNMNhdoqqoqIkuB\nB4AVwKfAGFX9LJ/6C3yeTe3atdm/3+nnkJqamuOU0hhjSqtIPs/m3UICqYdzPaeo/g1UBeaKyLci\n8iqA20Q3BdiIcx3nHq+scS/wNpACbMkv0RRm//79nkRTuXJlGjVqVKQ3YowxpV0wzWiDRORlVX0w\n9wIRqY2TaGoWNTBVbVrAsheAF3yUrwKKfJv/hg0bPL+3aNHCHpZmjDFFFMxRdARwv4g85l0oIufj\nJJq6wOW+XlhceCebli1bRjESY4wpGYLpjTZeRBoAz4vILlV9V0QSgHk4F+j7qeq3oQ40knKf2Rhj\njCmaYHujPe8mnLfdR0A/AiQD/VV1eSgDjIaNG8/13LYzG2OMKbqgko3rPqAeTs+w48DVqvpVwS8p\nHqwZzRhjQqvQrs8iMqyAxZWAl3AeK5CjB5qqTihydGGUX9fnffv2UaeOc59plSpVOHLkiHUQMMYY\nV7Bdn/05sxmHc1d/QZUPc6dsijM2WbHjfVbTvHlzSzTGGBMC/iSby8IeRQyx6zXGGBN6hSYbVV0U\niUBihV2vMcaY0LM2olws2RhjTOgVembj1UFgojv+WEEdBjxivYOAL6pq99gYY0wY+NMbLQvngn8l\nVT3tNV9QhwFV1TKhCzP0fPVG27t3L3Xr1gWsJ5oxxvgSzt5olwF4jfRcYjsMeHcOsDHRjDEmdALu\nIFBYhwH3iZ0PAsWuDcqu1xhjTHiE46t7LeCiMNQbdna9xhhjwsPaibzYmY0xxoSHJRtX7p5olmyM\nMSZ0LNm40tPTOXjwIACVKlUiMTExyhEZY0zJYcnGtWfPHs/vDRo0QCTgnn3GGGPy4dcjBkTkDwHU\n2TXIWKLKO9nUq1cvipEYY0zJ4+/zbP4WYL0F3ykag7yTTfaNncYYY0LD32RTYm/kzGZnNsYYEz5+\nJZvSMPLzTz/95Pndko0xxoSWdRBw2ZmNMcaEjyUblyUbY4wJH0s2Lks2xhgTPpZsXNYbzRhjwqfQ\n59mUVN7Pszlx4gSVK1cGoGzZspw6dcoeL2CMMT4E+zwbO6KSsyda3bp1LdEYY0yI2VEVu15jjDHh\nZskGSzbGGBNulmywZGOMMeFmyQbriWaMMeFmyQYbqsYYY8LNkg3WjGaMMeFmyQZLNsYYE26WbLBk\nY4wx4RazyUZEXhKRTSKyRkSmiki8W95IRI6LyLfu9KrXa9qLyHcikiIi//JnO2fPnmXfvn2e+Tp1\n6oT8vRhjTGkXs8kG+BxoqartgC3AE17LflDV9u50j1f5a8CdqtoMaCYiVxS2kX379pE9bE2tWrVo\n2rQpImJTjE6NGzcO2R+YMSZy/H1SZ8Sp6jyv2aXAtV7zecblEZG6QDVVXeEWTQAGAXMK2k7unmjr\n1q2jtI4XVxyIBDwkkzEmBsTymY23O4DZXvON3Sa0BSLSzS1rAOz0WmenW1Ygu15jjDHhF9UzGxGZ\nC3hfJBFAgZGq+rG7zkjgjKpOdtfZDSSq6iERaQ98JCItgtn+qFGj+Pbbbz3zvpKNqjJv3jw++OAD\nzpw5A0C5cuUYOnQoffv29eubdijqMMaYaFi4cCELFy4scj0x/YgBERkOjAB6q+qpfNZZADyEk4QW\nqGpzt/wGoKeq/i6f16mq8uc//5lnnnkGgMcff5zRo0d7mtEmTZrE9OnTqVq1Ko0aNfKMBp2VlUVa\nWhoZGRkMGTKEm266Kd/3EIo6zDniDG8e7TCMKbUkyEcMxOw1GxHpDzwC9PBONCJSCzioqlkikgw0\nAVJV9bCIpItIZ2AFMAwYU9h28mtG++tf/8r69etp3bp1ntfExcWRlJQEwJw5c9i1axePPPJInvVC\nUYcxxpQEsXzN5t9AVWCu5Ozi3AP4TkS+BaYAd6vqYXfZvcDbQAqwRVU/K2wjuZ9lA87ZyPr160lO\nTi40yOTkZNavX8/kyZNzlIeijnBYsmQJzZs3D/t2grFo0SIaNmwY7TCMMWEQs8lGVZuqaqPcXZxV\ndZqqtnLLOqrqLK/XrFLV1u5rH/RnO77ObKZPn+5XksiWnJzMtGnTPM07qlrkOnxp3LgxlStXJj4+\nnmrVqhEfH88DDzxQYL1xcXGkpqZ65rt168amTZv8jisQt99+u6dJMlh2/cqYkilmk02k5E42ZcqU\noWrVqgHXU61aNebPnw/AvHnzilyHLyLCp59+ypEjRzh69ChHjhxhzJiCWwrt4G2MiQWlOtmoap5k\nk5CQQKNGjQKuKzExkSlTpgDwwQcfFLmO/Pg689m6dSu9evWievXq1K5dmxtvvBGAnj17oqq0adOG\n+Ph4PvjggzxNVUlJSfztb3+jbdu2VKtWjREjRrBv3z6uuuoq4uPjufzyy0lPT/esf/3111OvXj1q\n1KhBr169PGdJb775JpMmTeKll14iPj6egQMHAk4yv+6666hduzYXXngh//73vz11nTx5kuHDh5OQ\nkECrVq1YsWIFxpiSqVQnm0OHDnH69GnAOauoUqUKFStW9PQYC0RcXJynW/OZM2eKXEcgnn76aa64\n4goOHz7Mzp07uf/++wHnGgjAunXrOHLkCEOHDgXynu1MmzaN+fPnk5KSwsyZM7nqqqsYPXo0Bw4c\nIDMzM8fZ01VXXcXWrVvZt28f7du39/SiGzFiBDfffDOPPvooR44cYcaMGagqAwYM4Be/+AV79uxh\n/vz5vPzyy8ydOxdwup7/+OOP/Pjjj8yZM4fx48cH/N6NMcVDqU42xfGGzkGDBpGQkECNGjVISEjg\n7bffpnz58qSlpbFr1y7Kly/PpZdemuM1hXUVvv/++6lVqxb16tWje/fu/PKXv6RNmzaUL1+ewYMH\ns3r1as+6w4cPp3LlypQrV45nnnmGtWvXcvToUZ/1rlixggMHDjBy5EjKlClD48aN+c1vfsN7770H\nOGeATz31FOeddx4NGjQo9PqTMab4KtXJxldPtJMnT5KVlRVwXVlZWZQrVw5wbtgsah35mTFjBgcP\nHuTQoUMcPHiQO++8k5deeomsrCw6d+5M69ateeeddwLarvfgo5UqVcozn5GR4Ynv8ccfp0mTJlSv\nXp2kpCREhAMHDvisNzsBJiQkeBLkCy+84Bn4dPfu3VxwwQWe9YNpejTGFA+lOtn4OrM5ePAgaWlp\nAde1fft2rr/+egCGDh1a5Dry4+sspXbt2rzxxhvs2rWL119/nXvuuSdHD7RQmTRpEh9//DFffPEF\nhw8fZtu2baiqJ6bczXMNGzYkOTmZgwcPehJkeno6H3/8MQD169dnx44dnvWD2WfGmOLBko0rO9lk\nZmZ6vskHIiMjgz59+gDQt2/fItcRiA8//JBdu3YBUL16deLi4jzXjOrWrRuyxJORkUGFChWoUaMG\nx44d44knnsiRYOrUqZNjW507d6ZatWq89NJLnDx5kszMTDZs2MDKlSsBJym/8MILnmtNr7zySkji\nNMbEnlKdbC666CJuuukmLrvsshx3+Q8ZMiSgA3RqaipDhgzxHHhFpMh15GfAgAE57rO59tprWbly\nJb/85S+Jj49n0KBBjBkzxjMU/6hRoxg2bBgJCQl8+OGHeerLvb2Ctj9s2DASExNp0KABrVq1ynNt\n6M4772TDhg0kJCQwZMgQ4uLi+OSTT1izZg1JSUnUrl2bESNGcOTIEQD++Mc/kpiYSFJSEv3792fY\nsGH+7CpjTDEU02OjhVP22Gg+ylFVz1Azhd2YmZqaSqtWrQocrqYodZicbGw0Y6Ir2LHRLNnkLfcc\nzCZPnsy0adOoVq0aiYmJOQbR3L59OxkZGQwePLjAQTRDUYc5x5KNMdFlySZA/iQbcC7Iz58/nylT\npuR4PMD1119Pnz59/H7EQFHrMA5LNsZElyWbAPmbbExssc/HmOgKNtmU6g4CxhhjIsOSjTHGmLCz\nZGOMMSbsYvZJndF01113kZKSEtRrmzVrxhtvvBGSOowxpqSwZONDSkqKZ8TkaNZhjDElhTWjmYDY\no5uNMcGwZFMM9erVi4SEBL+efZOWlkZcXFxQo1Dnx+4LMsYEypJNMZOWlsaSJUuIi4tj5syZha6v\nqnZvijEm6izZFDMTJkzgkksuYfjw4YwbN85TfvLkSR566CEaN25M9erV6dGjBydPnqRnz56AMxp0\nfHw8y5Yt49lnn+XWW2/1vDb32c+4ceNo0aIF8fHxNGnSxDorGGOKzDoIFDMTJkzg4YcfplOnTnTp\n0oX9+/dz/vnn89BDD7Fp0yaWLl1KnTp1WLZsGWXKlGHx4sUkJydz5MgRT/PXZ599VuBoz3Xq1GHW\nrFk0btyYL7/8kv79+9O5c2fatWsX0fdqjCk57MymGFmyZInnAWvt27enSZMmTJ48GVXlnXfeYcyY\nMdStWxcRoUuXLjme+hlIM9qVV17peURB9+7dufzyy/nyyy9D/XaMMaWIJZtiZMKECVx++eXUqFED\ngBtvvJHx48dz4MABTp48WeijDPw1e/ZsLrnkEmrWrEmNGjWYPXt2vo9+NsYYf1gzWjFx8uRJpkyZ\nQlZWluepoqdOnSI9PZ09e/ZQqVIltm7dmuMhcOC751iVKlU4fvy4Z977iaWnT5/muuuu491332Xg\nwIHExcUxePBg62BgjCkSO7MpJqZPn07ZsmXZtGkTa9euZe3atXz//fd0796dCRMmcMcdd/B///d/\n7Nmzh6ysLJYuXcqZM2c4//zziYuLY+vWrZ662rVrx+LFi9mxYwfp6emMHj3as+z06dOcPn2aWrVq\nERcXx+zZs/n888+j8ZaNMSWIJZtiIjuhNGjQgNq1a3ume++9l8mTJzN69Ghat25Np06dqFmzJo8/\n/jhZWVlUqlSJkSNH0rVrVxISEli+fDl9+/bl17/+NW3atKFTp04MGDDAs52qVasyZswYhg4dSkJC\nAu+99x4DBw6M4js3xpQE9jybvOX07Nkz6KFmevbsycKFC+nVq1eR6zB52T1DxkSXPc/GGGNMzLJk\nY4wxJuysN5oPzZo1K/JrQ1GHMcaUFHbNJm+5XROIYfb5GBNdds3GGGNMzLJkY4wxJuzsmk0ujRo1\nsue1xLBGjRpFOwRjTBBi9pqNiPwJGAhkAXuB4ar6k7vsCeAO4CzwoKp+7pa3B8YBFYFZqvr7Aur3\nec3GGGNM/kriNZuXVLWtqv4C+BT4I4CItACuB5oDVwKvyrlTkdeAO1W1GdBMRK6IQtzFjt1Aeo7t\ni3NsX5xj+6LoYjbZqGqG12wVnDMcgGuA91T1rKpuA7YAnUWkLlBNVVe4600ABkUq3uLM/pHOsX1x\nju2Lc2xfFF1MX7MRkb8Aw4DDwGVucQPgG6/VdrllZ4GdXuU73XJjjDFRFtUzGxGZKyLfeU3r3J8D\nAFT1KVVNBCYB90czVmOMMcGL2Q4C3kSkIfCpqrYRkccBVdUX3WWf4VzPSQMWqGpzt/wGoKeq/i6f\nOmP/jRtjTAwKpoNAzDajiUgTVf3BnR0EfO/+PhOYJCL/xGkmawIsV1UVkXQR6QyswGl+G5Nf/cHs\nLGOMMcGJ2WQDjBaRZjgdA9KA3wKo6kYRmQJsBM4A93j1Yb6XnF2fP4t41MYYY/IoFs1oxhhjireY\n7focCiLSX0S+F5EUEXksn3XGiMgWEVkjIu0iHWOkFLYvROQmEVnrTktEpHU04owEf/4u3PU6icgZ\nERkSyfgiyc//kV4islpE1ovIgkjHGCl+/I/Ei8hM91ixTkSGRyHMiBCRt0Vkr4h8V8A6gR07VbVE\nTjiJ9AegEVAOWANcnGudK3E6HgD8Elga7bijuC+6AOe5v/cvzfvCa735wCfAkGjHHcW/i/OADUAD\nd75WtOOO4r54Anghez8APwNlox17mPZHN6Ad8F0+ywM+dpbkM5vOwBZVTVPVM8B7OMPfeBuIc/Mn\nqroMOE9E6kQ2zIgodF+o6lJVTXdnl1Jy71Hy5+8CnK72HwL7IhlchPmzL24CpqrqLgBVPRDhGCPF\nn32hQDX392rAz6p6NoIxRoyqLgEOFbBKwMfOkpxsGgA7vOZ93eSZe51dPtYpCfzZF95+A8wOa0TR\nU+i+EJH6wCBVfQ0oyb0W/fm7aAYkiMgCEVkhIrdGLLrI8mdfvAK0EJHdwFrgwQjFFosCPnbGcm80\nEwUichlwO85pdGn1L8C7zb4kJ5zClAXaA71xho36RkS+0XO3JZQmVwCrVbW3iFwIzBWRNppzaC2T\nj5KcbHYBiV7zF7hluddpWMg6JYE/+wIRaQO8AfRX1YJOoYszf/ZFR+A9d4DXWsCVInJGVWdGKMZI\n8Wdf7AQOqOpJ4KSILAba4lzfKEn82Re3Ay8AqOpWEfkRuBhYGZEIY0vAx86S3Iy2AmgiIo1EpDxw\nA84Nod5m4tz8iYh0AQ6r6t7IhhkRhe4LEUkEpgK3qurWKMQYKYXuC1VNdqcknOs295TARAP+/Y/M\nACrNDyoAAAJHSURBVLqJSBkRqYxzMXhThOOMBH/2RRrQF8C9PtEMSI1olJEl5H9WH/Cxs8Se2ahq\npojcB3yOk1TfVtVNInK3s1jfUNVZInKViPwAHMP55lLi+LMvgKeBBM49suGMqnaOXtTh4ee+yPGS\niAcZIX7+j3wvInOA74BM4A1V3RjFsMPCz7+LvwDjvLoDP6qqB6MUcliJyGSgF1BTRLbjDAlWniIc\nO+2mTmOMMWFXkpvRjDHGxAhLNsYYY8LOko0xxpiws2RjjDEm7CzZGGOMCTtLNsYYY8LOko0xxpiw\ns2RjjDEm7CzZGGOMCTtLNsYYY8KuxI6NZkxxISJ3AW2ALJzHG9yC87TIi4ERqno4iuEZExKWbIyJ\nIvdBbXHA8zjD+R9T1SfcZa8Do4HfRi9CY0LDmtGMia4uwKc4ZzHHgKe8lqXjjLxrTLFnycaYKFLV\naaq6A+gOfKWqmV6LWwNHoxOZMaFlycaY2NAdWJA9IyLlcB7N/UXUIjImhCzZGBNlIlIWpzltgVfx\nIJz/z1ejEpQxIWbJxpjoaw9UAuoAiEhN4EXgt6qaFs3AjAkV641mTPR1BxYCrUXkF0BTnETzeVSj\nMiaELNkYE33dgaWq+ny0AzEmXKwZzZjo6wZ8E+0gjAknSzbGRJGItAYSgOXRjsWYcLJkY0yUiMh1\nwHuAAm+KSMsoh2RM2IiqRjsGY4wxJZyd2RhjjAk7SzbGGGPCzpKNMcaYsLNkY4wxJuws2RhjjAk7\nSzbGGGPCzpKNMcaYsLNkY4wxJuz+H/8FPp5Cb3ffAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1c223b70>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "fig,ax=subplots()\n", "x=np.linspace(0,1,100)\n", "ax.plot(x,map(sympy.lambdify(p,logL,'numpy'),x),'k-',lw=3)\n", "ax.plot(sol,logL.subs(p,sol),'o',\n", " color='gray',ms=15,label='Estimated')\n", "ax.plot(p_true,logL.subs(p,p_true),'s',\n", " color='k',ms=15,label='Actual')\n", "ax.set_xlabel('$p$',fontsize=18)\n", "ax.set_ylabel('Likelihood',fontsize=18)\n", "ax.set_title('Estimate not equal to true value',fontsize=18)\n", "ax.legend(loc=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Programming Tip.**\n", "\n", "In the prior code, we use the `lambdify` function in `lambdify(p,logL,'numpy')` to\n", "take a Sympy expression and convert it into a Numpy version that is easier to\n", "compute. The `lambdify` function has an extra argument where you can specify\n", "the function space that it should use to convert the expression. In the above\n", "this is set to Numpy.\n", "\n", "\n", "\n", "<!-- dom:FIGURE: [fig-statistics/Maximum_likelihood_10_2.png, width=500 frac=0.75] Maximum likelihood estimate vs. true parameter. Note that the estimate is slightly off from the true value. This is a consequence of the fact that the estimator is a function of the data and lacks knowledge of the true underlying value. <div id=\"fig:Maximum_likelihood_10_2\"></div> -->\n", "<!-- begin figure -->\n", "<div id=\"fig:Maximum_likelihood_10_2\"></div>\n", "\n", "<p>Maximum likelihood estimate vs. true parameter. Note that the estimate is slightly off from the true value. This is a consequence of the fact that the estimator is a function of the data and lacks knowledge of the true underlying value.</p>\n", "<img src=\"fig-statistics/Maximum_likelihood_10_2.png\" width=500>\n", "\n", "<!-- end figure -->\n", "\n", "\n", "[Figure](#fig:Maximum_likelihood_10_2) shows that our estimator $\\hat{p}$\n", "(circle) is not equal to the true value of $p$ (square), despite being\n", "the maximum of the likelihood function. This may sound disturbing, but keep in\n", "mind this estimate is a function of the random data; and since that data can\n", "change, the ultimate estimate can likewise change. I invite you to run this\n", "code in the corresponding IPython notebook a few times to observe this.\n", "Remember that the estimator is a *function* of the data and is thus also a\n", "*random variable*, just like the data is. This means it has its own probability\n", "distribution with corresponding mean and variance. So, what we are observing is\n", "a consequence of that variance.\n", "\n", "<!-- !bc pycod -->\n", "<!-- def estimator_gen(niter=10,ns=100): -->\n", "<!-- 'generate data to estimate distribution of maximum likelihood estimator' -->\n", "<!-- out=[] -->\n", "<!-- # make sympy variable real-valued -->\n", "<!-- x=sympy.symbols('x',real=True) -->\n", "<!-- # likelihood function -->\n", "<!-- L= p**x*(1-p)**(1-x) -->\n", "<!-- for i in range(niter): -->\n", "<!-- # generate some samples from the experiment -->\n", "<!-- xs = sample(ns) -->\n", "<!-- # objective function to maximize -->\n", "<!-- J=np.prod([L.subs(x,i) for i in xs]) -->\n", "<!-- # log is easier to work with -->\n", "<!-- logL=sympy.expand_log(sympy.log(J)) -->\n", "<!-- # use basic calculus to find extrema -->\n", "<!-- sol=sympy.solve(sympy.diff(logL,p),p)[0] -->\n", "<!-- # convert output to numeric float from sympy -->\n", "<!-- out.append(float(sol.evalf())) -->\n", "<!-- # return scalar if list contains only 1 term -->\n", "<!-- return out if len(out)>1 else out[0] -->\n", "<!-- !ec -->\n", "\n", "<!-- dom:FIGURE: [fig-statistics/Maximum_likelihood_30_2.png, width=500 frac=0.85] Histogram of maximum likelihood estimates. The title shows the estimated mean and standard deviation of the samples. <div id=\"fig:Maximum_likelihood_30_2\"></div> -->\n", "<!-- begin figure -->\n", "<div id=\"fig:Maximum_likelihood_30_2\"></div>\n", "\n", "<p>Histogram of maximum likelihood estimates. The title shows the estimated mean and standard deviation of the samples.</p>\n", "<img src=\"fig-statistics/Maximum_likelihood_30_2.png\" width=500>\n", "\n", "<!-- end figure -->\n", "\n", "\n", "[Figure](#fig:Maximum_likelihood_30_2) shows what happens when you run many\n", "thousands of coin experiments and compute the maximum likelihood\n", "estimate for each experiment, given a particular number of samples \n", "per experiment. This simulation gives us a histogram of the maximum likelihood\n", "estimates, which is an approximation of the probability distribution of the\n", "$\\hat{p}$ estimator itself. This figure shows that the sample mean\n", "of the estimator ($\\mu = \\frac{1}{n}\\sum \\hat{p}_i$) is pretty close to the\n", "true value, but looks can be deceiving. The only way to know for sure is to\n", "check if the estimator is unbiased, namely, if" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}(\\hat{p}) = p\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Because this problem is simple, we can solve for this in general\n", "noting that the terms above are either $p$, if $x_i=1$ or $1-p$ if $x_i=0$.\n", "This means that we can write" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathcal{L}(p\\vert \\mathbf{x})= p^{\\sum_{i=1}^n x_i}(1-p)^{n-\\sum_{i=1}^n x_i}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " with corresponding logarithm as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "J=\\log(\\mathcal{L}(p\\vert \\mathbf{x})) = \\log(p) \\sum_{i=1}^n x_i + \\log(1-p) \\left(n-\\sum_{i=1}^n x_i\\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Taking the derivative of this gives:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{dJ}{dp} = \\frac{1}{p}\\sum_{i=1}^n x_i + \\frac{(n-\\sum_{i=1}^n x_i)}{p-1}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " and solving this for $p$ leads to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{p} = \\frac{1}{ n} \\sum_{i=1}^n x_i\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is our *estimator* for $p$. Up until now, we have been using Sympy to\n", "solve for this based on the data $x_i$ but now that we have it analytically we\n", "don't have to solve for it each time. To check if this estimator is biased, we\n", "compute its expectation:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(\\hat{p}\\right) =\\frac{1}{n}\\sum_i^n \\mathbb{E}(x_i) = \\frac{1}{n} n \\mathbb{E}(x_i)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " by linearity of the expectation and where" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}(x_i) = p\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Therefore," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(\\hat{p}\\right) =p\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This means that the estimator is *unbiased*. Similarly," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(\\hat{p}^2\\right) = \\frac{1}{n^2} \\mathbb{E}\\left[\\left( \\sum_{i=1}^n x_i \\right)^2 \\right]\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " and where" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(x_i^2\\right) =p\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " and by the independence assumption," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(x_i x_j\\right) =\\mathbb{E}(x_i)\\mathbb{E}(x_j) =p^2\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Thus," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left(\\hat{p}^2\\right) =\\left(\\frac{1}{n^2}\\right) n \\left[ p+(n-1)p^2 \\right]\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " So, the variance of the estimator, $\\hat{p}$, is the following:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{V}(\\hat{p}) = \\mathbb{E}\\left(\\hat{p}^2\\right)- \\mathbb{E}\\left(\\hat{p}\\right)^2 = \\frac{p(1-p)}{n}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Note that the $n$ in the denominator means that the variance\n", "asymptotically goes to zero as $n$ increases (i.e., we consider more and\n", "more samples). This is good news because it means that more and\n", "more coin flips lead to a better estimate of the underlying $p$.\n", "\n", "Unfortunately, this formula for the variance is practically useless because we\n", "need $p$ to compute it and $p$ is the parameter we are trying to estimate in\n", "the first place! However, this is where the *plug-in* principle [^invariance-property] \n", "saves the day. It turns out in this situation, you can\n", "simply substitute the maximum likelihood estimator, $\\hat{p}$, for the $p$ in\n", "the above equation to obtain the asymptotic variance for $\\mathbb{V}(\\hat{p})$.\n", "The fact that this works is guaranteed by the asymptotic theory of maximum\n", "likelihood estimators.\n", "\n", "[^invariance-property]: This is also known as the *invariance property*\n", "of maximum likelihood estimators. It basically states that the \n", "maximum likelihood estimator of any function, say, $h(\\theta)$, is\n", "the same $h$ with the maximum likelihood estimator for $\\theta$ substituted\n", "in for $\\theta$; namely, $h(\\theta_{ML})$.\n", "\n", "Nevertheless, looking at $\\mathbb{V}(\\hat{p})^2$, we can immediately notice\n", "that if $p=0$, then there is no estimator variance because the outcomes are\n", "guaranteed to be tails. Also, for any $n$, the maximum of this variance\n", "happens at $p=1/2$. This is our worst case scenario and the only way to\n", "compensate is with larger $n$.\n", "\n", "All we have computed is the mean and variance of the estimator. In general,\n", "this is insufficient to characterize the underlying probability density of\n", "$\\hat{p}$, except if we somehow knew that $\\hat{p}$ were normally distributed.\n", "This is where the powerful *Central Limit Theorem* we discussed in the section ref{ch:stats:sec:limit} comes in. The form of the estimator, which is just a\n", "sample mean, implies that we can apply this theorem and conclude that $\\hat{p}$\n", "is asymptotically normally distributed. However, it doesn't quantify how many\n", "samples $n$ we need. In our simulation this is no problem because we can\n", "generate as much data as we like, but in the real world, with a costly\n", "experiment, each sample may be precious [^edgeworth]. \n", "\n", "[^edgeworth]: It turns out that the central limit theorem augmented with an\n", "Edgeworth expansion tells us that convergence is regulated by the skewness\n", "of the distribution [[feller1950introduction]](#feller1950introduction). In other words, the \n", "more symmetric the distribution, the faster it converges to the normal\n", "distribution according to the central limit theorem.\n", "\n", "In the following, we won't apply the Central Limit Theorem and instead proceed\n", "analytically.\n", "\n", "### Probability Density for the Estimator\n", "\n", "To write out the full density for $\\hat{p}$, we first have to ask what is\n", "the probability that the estimator will equal a specific value and the tally up\n", "all the ways that could happen with their corresponding probabilities. For\n", "example, what is the probability that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{p} = \\frac{1}{n}\\sum_{i=1}^n x_i = 0\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This can only happen one way: when $x_i=0 \\hspace{0.5em} \\forall i$. The\n", "probability of this happening can be computed from the density" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "f(\\mathbf{x},p)= \\prod_{i=1}^n \\left(p^{x_i} (1-p)^{1-x_i} \\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "f\\left(\\sum_{i=1}^n x_i = 0,p\\right)= \\left(1-p\\right)^n\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Likewise, if $\\lbrace x_i \\rbrace$ has only one nonzero element, then" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "f\\left(\\sum_{i=1}^n x_i = 1,p\\right)= n p \\prod_{i=1}^{n-1} \\left(1-p\\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " where the $n$ comes from the $n$ ways to pick one element\n", "from the $n$ elements $x_i$. Continuing this way, we can construct the\n", "entire density as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "f\\left(\\sum_{i=1}^n x_i = k,p\\right)= \\binom{n}{k} p^k (1-p)^{n-k}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " where the first term on the right is the binomial coefficient of $n$ things\n", "taken $k$ at a time. This is the binomial distribution and it's not the\n", "density for $\\hat{p}$, but rather for $n\\hat{p}$. We'll leave this as-is\n", "because it's easier to work with below. We just have to remember to keep\n", "track of the $n$ factor.\n", "\n", "**Confidence Intervals**\n", "\n", "Now that we have the full density for $\\hat{p}$, we are ready to ask some\n", "meaningful questions. For example, what is the probability the estimator is within\n", "$\\epsilon$ fraction of the true value of $p$?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P}\\left( \\vert \\hat{p}-p \\vert \\le \\epsilon p \\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " More concretely, we want to know how often the\n", "estimated $\\hat{p}$ is trapped within $\\epsilon$ of the actual value. That is,\n", "suppose we ran the experiment 1000 times to generate 1000 different estimates\n", "of $\\hat{p}$. What percentage of the 1000 so-computed values are trapped within\n", "$\\epsilon$ of the underlying value. Rewriting the above equation as the\n", "following," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P}\\left(p-\\epsilon p < \\hat{p} < p + \\epsilon p \\right) = \\mathbb{P}\\left( n p - n \\epsilon p < \\sum_{i=1}^n x_i < n p + n \\epsilon p \\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Let's plug in some live numbers here for our worst case\n", "scenario (i.e., highest variance scenario) where $p=1/2$. Then, if\n", "$\\epsilon = 1/100$, we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P}\\left( \\frac{99 n}{100} < \\sum_{i=1}^n x_i < \\frac{101 n}{100} \\right)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Since the sum in integer-valued, we need $n> 100$ to even compute this.\n", "Thus, if $n=101$ we have," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{eqnarray*}\n", "\\mathbb{P}\\left(\\frac{9999}{200} < \\sum_{i=1}^{101} x_i < \\frac{10201}{200} \\right) = f\\left(\\sum_{i=1}^{101} x_i = 50,p\\right) & \\ldots \\\\\\\n", "= \\binom{101}{50} (1/2)^{50} (1-1/2)^{101-50} & = & 0.079\n", "\\end{eqnarray*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This means that in the worst-case scenario for $p=1/2$, given $n=101$\n", "trials, we will only get within 1\\% of the actual $p=1/2$ about 8\\% of the\n", "time. If you feel disappointed, that only means you've been paying attention.\n", "What if the coin was really heavy and it was hard work to repeat this 101 times?\n", "\n", "Let's come at this another way: given I could only flip the coin 100\n", "times, how close could I come to the true underlying value with high\n", "probability (say, 95\\%)? In this case, instead of picking a value for\n", "$\\epsilon$, we are solving for $\\epsilon$. Plugging in gives," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P}\\left(50 - 50\\epsilon < \\sum_{i=1}^{100} x_i < 50 + 50 \\epsilon \\right) = 0.95\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " which we have to solve for $\\epsilon$. Fortunately, all the tools we\n", "need to solve for this are already in Scipy." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.953955933071\n" ] } ], "source": [ "from scipy.stats import binom\n", "# n=100, p = 0.5, distribution of the estimator phat\n", "b=binom(100,.5) \n", "# symmetric sum the probability around the mean\n", "g = lambda i:b.pmf(np.arange(-i,i)+50).sum() \n", "print g(10) # approx 0.95" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFiCAYAAAAEBkVdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+cbXVd6P/XewAPZ0wxxa8IWXzrNlywPDPuoRulwyTa\nD1Iqvl4wUm8dkYtfkR+FXfRqnK5SpnADzMqgwW6ZcAIzLdREHRAKhWGPSPF1zIvgD9TAivAcuDD7\n/f1j7Tnus86evdeZ2TN79uzX8/GYxx4+6/Ne+7PX+ey13nzmsz4rMhNJkiRJ3zHS7wZIkiRJG41J\nsiRJklRikixJkiSVmCRLkiRJJSbJkiRJUolJsiRJklRikixJkiSVVEqSo3BeRNwdEbsj4r6IuDgi\nRqu+UUScGBG3RMTDEfFgROyMiCOXqfvciPiriHig+X53RcQ5EWFSL0mSpDUXVR4mEhGXAa8DrgM+\nAhwNnA3clJkvrBB/MvAXQB24EjgEOA94HJjMzK+31J0CPgr8K/Au4AHgRcAvAH+UmWfux+eTJEmS\n9lvXJDkijgE+B1yXmae0lJ8FXA6clplXd4g/ELgXeBR4dmbubpZvA+aAK1sT34iYB/5Ds+69LeV/\nCLwaeH5m/t3+flBJkiSpqirTF05rvl5aKr8C2AW8vEv88cAzKZLh3UuFmflZYBY4NSIOAIiIpwDP\noRihvre0n/cAAfxKhTZLkiRJK1YlSZ4EGsBtrYWZ+SgwDxzbJf5YIIFb22y7FXgyMNb87y3N111t\n6i6V/Wj3JkuSJEkrVyVJPhx4IDMfa7Ptq8ChzSkVneKX6raLBzgCIDO/QTEH+UcjYkup7guar8+q\n0GZJkiRpxaokyaMU84nbeaSlTqd4ltlHu/jfpZie8ZcRMRkRR0bEq4EdFDf6VV5RQ5IkSVqJTiPA\nS3YBT19m28EtdTrFw3emUnSLfxuwFfg14NMU85D/HfhV4LeAA7o3WZIkSVq5Kkny14CjI+KgNlMu\njqCYivF4l/ilup9vEw8tUzGyWG7jNyLit4EfpkiSP0uRHP8R8PfLvVFEdF/PTpIkSZtWZkYv9lNl\nusVtzXo/0lrYnDM8TumGvmXiAziuzbbjgIeAhfKGzNydmZ/JzE9n5iPAzzT38zed3iwz/VnFz4UX\nXtj3Ngzyj8fPY9jvH4+fx6/fPx5Dj18/f3qpSpJ8TfP13FL5GRTTIt67VBARh0XEURGxtaXejcD9\nwOmtT+hrrpN8PLAzMxc7NSAinkYx1eKbwLsrtFmSJElasa7TLTLzroh4F/DaiLgOuB44huIJfLOZ\n+b6W6m8DXglMAzc14x+PiHOAq4GbI+IKiifunQt8g+KGvD0i4meA1wMfA74OHAm8CngK8JLM/NYK\nP6skSZJUSZU5yQDnAPdQjB6fSLFM22XAhaV6SbGm8t6FmddGxEnAm4B3UKx0cQNwQWbeX6r+JWA3\ncBbwtOZ73QBclJlfqNherdD09HS/mzDQPH6r5zFcHY/f6nj8Vs9juDoev42j62OpB0lE5Gb6PJIk\nSaouIsh1vHFPkiRJGiomyZIkSVKJSbIkSZJUYpIsSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIs\nSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIsSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIsSZIk\nlZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIsSZIklZgkS5IkSSWVkuQonBcRd0fE7oi4LyIujojRqm8U\nESdGxC0R8XBEPBgROyPiyGXqPisi3h0RX4iIXRHxlYj4YEQ8v+r7SZIkSSsVmdm9UsRlwOuA64CP\nAEcDZwM3ZeYLK8SfDPwFUAeuBA4BzgMeByYz8+stdZ8J3EmRwL8b+AJwOPBq4HuAl2Tmh5d5n6zy\neSRJkrT5RASZGT3ZV7ekMiKOAT4HXJeZp7SUnwVcDpyWmVd3iD8QuBd4FHh2Zu5ulm8D5oArM/PM\nlvpvAN4K/Fxm/nVL+Q9QJMwfyMyTl3kvk2RJkqQh1cskucp0i9Oar5eWyq8AdgEv7xJ/PPBMimR4\n91JhZn4WmAVOjYgDWuo/qfl6f2k/3wAawMMV2ixJkiStWJUkeZIiOb2ttTAzHwXmgWO7xB8LJHBr\nm223Ak8GxlrK/hYI4Pcj4viIODwijgXeBzwEXFKhzZIkSdKKVUmSDwceyMzH2mz7KnBoc0pFp/il\nuu3iAY5YKsjMWeC1wPcDnwS+Anwa+EHguOYItCSpRaPRYG5ujrm5ORqNRr+bI0kDr0qSPEoxn7id\nR1rqdIpnmX0sF//PFCPXvwacBJxPcbPf9RFxBJKkPer1OrVajampKaampqjVatTr9X43S5IGWqcR\n4CW7gKcvs+3gljqd4gG2VImPiFcD7wK2ZebdLeV/C9wB/DbwyuXebMeOHXt+n56eZnp6ukPTpN5p\n7Xutv0trqdFosH37dubn5/eUzc/Ps337dubm5hgZcTl8rR/Pg1pvs7OzzM7Orsm+q6xu8RHgBGC0\nPOUiIm4GfjAzn9Eh/gLgIuBFmfmJ0ra3Am8AfmgpIY6ILwIPZ+a2Nvu6EzgkM79vmfdydQv1TcR3\nbqa1H2q9zM3NMTU1xa5de49VjI6OctNNN1Gr1frUMg0jz4Pqt/Ve3eK2Zr0fKTViCzBO6Ya+ZeID\nOK7NtuMobsZbaCk7AjigTV0oRr6rjH5LkiRJK1YlSb6m+XpuqfwMYCvw3qWCiDgsIo6KiK0t9W6k\nWM7t9NYn9DXXST4e2JmZiy31/xE4KiLKSflxFKtgfKZCmyVpoKz0xruJiQnGxsb2KR8bG2NiYmLN\n31+SNquuSXJm3kUxR/jkiLguIl4VEZdQLMU2m5nva6n+NuBuWpaFy8zHgXOAZwE3R8RrmlMwPkqx\n9vGO0lsu/fcNEfH2iHh1RLyDYmm4R4H/sf8fU5I2rtXceDcyMsLMzAzj4+OMjhbjENu2bWNmZqby\nfGRv/JOkfVV9LHVQjCSfARwJPABcDVyYma033V0FvAJ4QWbeVNrHicCbgOdQJLs3ABdk5j1t3m8a\neD3FFI9DgH+hGJF+a2be2aGdzklW3zgXTyvRaDSo1Wp73XgHMD4+vl833jUaDer1OpOTkywuLu5X\nXC/eXwLPg+q/dX0s9SAxSVY/eXHQSvT6xrvmBaJv76/h5nlQ/bbeN+5JkiRJQ8UkWZL6qFc33g3q\n+0vSRmWSLEl91Isb7wb5/SVpo3JOstQjzsXTaqz0xruy/Z2T3Ov313DzPKh+88a9ZZgkq5+8OKgX\nVprkbpR4DTfPg+o3b9yTJEmS1pBJsiRJklRikixJkiSVmCRLkiRJJSbJkiRJUolJsiRJklRikixJ\nkiSVHNjvBkjSZrD0MA4oHvU8bA/jGPbPL2nz8SwmSatUr9ep1WpMTU0xNTVFrVbbkzAOg2H//JI2\nJ5+4J/WIT5oaTo1Gg1qtxvz8/F7l4+PjzM3N7feIar+fmLe/8b3+/BpsngfVbz5xT5I2iHq9zsLC\nwj7lCwsLQzGaOuyfX9LmZZIsSZIklZgkS9IqTExMMDY2tk/52NgYExMTfWjR+hr2zy9p8zJJlqRV\nGBkZYWZmhvHxcUZHRwHYtm0bMzMzQzEfd9g/v6TNyxv3pB7xhpXhtrQE2uTkJIuLiytOEAftxr0l\nvfr8GmyeB9Vv637jXhTOi4i7I2J3RNwXERdHxGjVN4qIEyPiloh4OCIejIidEXFkm3qfjIhGh5+P\nVv94krQ+RkZGqNVqe34fNsP++SVtPpVGkiPiMuB1wHXAR4CjgbOBmzLzhRXiTwb+AqgDVwKHAOcB\njwOTmfn1lronAM9os5uXAT8LnJ2Z71rmfRxJVt84giIY3JHgjRKvweZ5UP3Wy5HkrklyRBwDfA64\nLjNPaSk/C7gcOC0zr+4QfyBwL/Ao8OzM3N0s3wbMAVdm5pldGxpxN/B9wOGZ+a/L1DFJVt94cRD0\nP8kc9HgNNs+D6rf1nm5xWvP10lL5FcAu4OVd4o8HnkmRDO9eKszMzwKzwKkRcUCnHUTE84GjgPcv\nlyBLkiRJvVIlSZ4EGsBtrYWZ+SgwDxzbJf5YIIFb22y7FXgysO/6QXt7VXMfV1ZoryRJkrQqVZLk\nw4EHMvOxNtu+ChzanFLRKX6pbrt4gCOWC46IJwEvBe7JzNnuzZUkSZJWp0qSPEoxn7idR1rqdIpn\nmX1UiT+tuf2PO9SRJEmSeqZKkrwL2LLMtoNb6nSKZ5l9VIl/FcUqGO/pUEeSJEnqmU7TJJZ8DTg6\nIg5qM+XiCIqpGI93iV+q+/k28dB+KgYR8UMUc6I/lJn3V2grO3bs2PP79PQ009PTVcIkSZI0YGZn\nZ5mdnV2TfVdZAu4twBuBqcy8paV8C/AgMJuZL+4QfwLwMeDNmXlRadvHgecCh2bmYpvYy4CzgJ/P\nzA91/TAuAac+cukjQf+XUBv0eA02z4Pqt/VeAu6a5uu5pfIzgK3Ae1sadlhEHBURW1vq3QjcD5ze\n+oS+5jrJxwM7l0mQnwD8EvAN4G8qtFOSJEnqia5JcmbeBbwLODkirouIV0XEJcAlFKPI72up/jbg\nblqWhWtOxTgHeBZwc0S8JiIuAD5KkQDvWOatfwF4KvCezGzs9yeTJEmSVqjKSDIUSe75wDHA7wGn\nAJcBLynVS4o1lfcuzLwWOIliNYt3AK+nGGF+Xoe5xtub+5qp2EZJkiSpJ7rOSR4kzklWPzkXT9D/\nOb2DHq/B5nlQ/bbec5IlSZKkoVJlCThJ2vQajQb1eh2AiYkJRkYcQ1hPHn9JG41nIUlDr16vU6vV\nmJqaYmpqilqttidh09rz+EvaiJyTLPWIc/EGU6PRoFarMT8/v1f5+Pg4c3Nz+z2i2e85vYMW3+vj\nr/7yPKh+c06yJPVIvV5nYWFhn/KFhQVHM9eBx1/SRmWSLEmSJJWYJEsaahMTE4yNje1TPjY2xsTE\nRB9aNFw8/pI2KpNkSUNtZGSEmZkZxsfHGR0dBWDbtm3MzMw4H3YdePwlbVTeuCf1iDesDLalJcgm\nJydZXFxccYI2aDfObZT4Xh1/9ZfnQfVbL2/cM0mWesSLw+YwqEmm8doIPA+q31zdQpIkSVpDJsmS\nJElSiUmyJEmSVGKSLEmSJJWYJEuSJEklJsmSJElSiUmyJEmSVGKSLEmSJJWYJEuSJEklJsmSJElS\nSaUkOQrnRcTdEbE7Iu6LiIsjYrTqG0XEiRFxS0Q8HBEPRsTOiDiyQ/1jIuLPI+JrEfFIRHw5It4f\nEU+v+p6SJEnSSlQdSb4UuAS4CzgL2AmcDXywSnBEnAx8CNgCnA+8HZgCbo6Iw9rU/yngduCHgMuA\nM4F3AgE8uWKbJUmSpBWJzOxcIeIY4HPAdZl5Skv5WcDlwGmZeXWH+AOBe4FHgWdn5u5m+TZgDrgy\nM89sqf904G7gVuCkzGxU/jAR2e3zSGslIvb8bj8cXBGxqn8/4/sbr/7yPKh+a55DonvN7qqMJJ/W\nfL20VH4FsAt4eZf444FnUiTDu5cKM/OzwCxwakQc0FL/NcB3A7+emY2I2NpMtCVJkqR1USVJngQa\nwG2thZn5KDAPHNsl/lggKUaGy26lmD4x1lL2M8BDwFMjYh74NvBIRNwUEZMV2itJkiStSpUk+XDg\ngcx8rM22rwKHdhnpPbylbrt4gCNayo4CDgQ+QjEd4/8BXk8xP/mTEXF0hTZLkiRJK1ZlGsMoxXzi\ndh5pqfNQh3iW2ccjpToAT6JI3v8sM1+1VBgRdwCfBH4D+MXuzZYkSZJWpspI8i6KVSnaObilTqd4\nltlHu/ilect/0loxM28E7gOmO7yXJEmStGpVRpK/BhwdEQe1mXJxBMVUjMe7xC/V/XybeNh7KsZX\nKKZcfL3Nvu4HJjo1dseOHXt+n56eZnp6ulN1SZIkDajZ2VlmZ2fXZN9VloB7C/BGYCozb2kp3wI8\nCMxm5os7xJ8AfAx4c2ZeVNr2ceC5wKGZudgsew/wCuBnMvNvS/W/DGRmfu8y7+UScOoblz7aHPq9\nhJnxLgE3yDwPqt/Wewm4a5qv55bKzwC2Au9tadhhEXFURGxtqXcjxQjw6a1P6Guuk3w8sHMpQW76\nU4qHhpzZUkZEvIRi5PlvKrRZkiRJWrGuI8kAEXE58FrgA8D1wDHA64BPZeYJLfXeA7wSmM7Mm1rK\nXwpcDdxJsb7yIRRJ9yIwmZn3l97vvcDLKFa4+GvgSIon/X0LODYz203FcCRZfeUISn81Gg3q9ToA\nExMTjIxUfaDo3vo9Emr8yuJ79e+v1fE8qH5b75FkgHMoHid9DPB7wCkUj4t+SaleUqypvHdh5rXA\nSRSrWbyDYkm3G4HnlRPkplcAFwDfD/xP4L9QPAr7R5dLkCUNr3q9Tq1WY2pqiqmpKWq12p6ESZuf\n//6S1kKlkeRB4Uiy+skRlP5oNBrUajXm5+f3Kh8fH2dubm6/RxQHdSR1WON7/e+v1fE8qH7rx0iy\nJG1I9XqdhYWFfcoXFhYcTRwC/vtLWismyZIkSVKJSbKkgTYxMcHY2Ng+5WNjY0xMdFxWXZuA//6S\n1opJsqSBNjIywszMDOPj44yOFqtMbtu2jZmZGeejDgH//SWtFW/ck3rEG1b6a2kJsMnJSRYXF10C\nbsjie/Xvr9XxPKh+6+WNeybJUo94cdgYBjXJM35jxGt1PA+q31zdQpIkSVpDJsmSJElSiUmyJEmS\nVGKSLEmSJJWYJEuSJEklJsmSJElSiUmyJEmSVGKSLEmSJJWYJEuSJEklJsmSJElSiUmyJEmSVGKS\nLEmSJJWYJEuSJEklJsmSJElSSaUkOQrnRcTdEbE7Iu6LiIsjYrTqG0XEiRFxS0Q8HBEPRsTOiDiy\nTb3jI6KxzM8Hq380SZIkaWUOrFjvUuB1wHXAxcDRwNnAOPDCbsERcTLwF0AdOB84BDgPuDkiJjPz\n623C3g18qlT2lYrtlSRJklasa5IcEccAZwHXZuYpLeVfAi6PiJdl5tUd4g8E3gncCzw/M3c3yz8C\nzAE7gDPbhP59Zv559Y8iSZIk9UaV6RanNV8vLZVfAewCXt4l/njgmcCVSwkyQGZ+FpgFTo2IA9oF\nRsRoRGyp0EZJkiSpZ6okyZNAA7ittTAzHwXmgWO7xB8LJHBrm223Ak8Gxtpsuwx4GNgdEZ+PiLMr\ntFWSJElatSpJ8uHAA5n5WJttXwUObU6p6BS/VLddPMARLWWPAX8F/DrwEuC/Av8CXBoRf1yhvZIk\nSdKqVLlxbxR4dJltj7TUeahDPMvs45FSHTLz74BfKNW7IiI+DPxyRFyZmX/ftdWSJEnSClUZSd4F\nLDcv+OCWOp3iWWYfVeKX/DYQwM9WqCtJkiStWJWR5K8BR0fEQW2mXBxBMRXj8S7xS3U/3yYe2k/F\nKPtS8/XQTpV27Nix5/fp6Wmmp6cr7FqSJEmDZnZ2ltnZ2TXZd2Rm5woRbwHeCExl5i0t5VuAB4HZ\nzHxxh/gTgI8Bb87Mi0rbPg48Fzg0Mxe7tOOFwN8Cb8nMC5epk90+j7RWImLP7/bD/omIVR1/44c7\nXqvjeVD91jwHRPea3VWZbnFN8/XcUvkZwFbgvS0NOywijoqIrS31bgTuB05vfUJfRGyjWB5uZ2uC\nHBFPLTcgIp5AsZ5yAh+q0GZJA6bRaDA3N8fc3ByNRqPfzdGQsf9JKus6kgwQEZcDrwU+AFwPHEPx\nBL5PZeYJLfXeA7wSmM7Mm1rKXwpcDdxJsb7yIRRJ9yIwmZn3t9T9DMUUjbnm6xHALwH/Abg8M8/r\n0E5HktU3jqCsXL1eZ/v27SwsLAAwNjbGzMwMExMT+72vfo9EGj948b3sf8PO86D6rZcjyVWT5KBI\nas8AjgQeoEh6L8zMXS31rgJeAbygNUlubjsReBPwHIqVLm4ALsjMe0r1Xg/8PEVS/BTg2xSPs353\nZu7s0k6TZPWNF4eVaTQa1Go15ufn9yofHx9nbm6OkZEqf/D6jkFM0ozvX3yv+9+w8zyoflv3JHlQ\nmCSrn7w4rMzc3BxTU1Ps2rX3Ijejo6PcdNNN1Gq1/drfoCVpxvc3vtf9b9h5HlS/rfecZEmSJGmo\nmCRL6quJiQnGxvZ9Mv3Y2JhzQrXm7H+SlmOSLKmvRkZGmJmZYXx8nNHRYgGcbdu2MTMz43xQrTn7\nn6TlOCdZ6hHn4q1Oo9GgXq8zOTnJ4uLiihOUQZsTa/zGiO9V/xt2ngfVb964twyTZPWTF4feGNQk\ny3jj5XlQ/eeNe5IkSdIaMkmWJEmSSkySJUmSpBKTZEmSJKnEJFmSJEkqMUmWJEmSSkySJUmSpBKT\nZEmSJKnEJFmSJEkqMUmWJEmSSkySJUmSpBKTZEmSJKnEJFmSJEkqMUmWJEmSSkySJUmSpBKTZEmS\nJKmkUpIchfMi4u6I2B0R90XExRExWvWNIuLEiLglIh6OiAcjYmdEHFkh7jkR8VhENCLi5KrvJ0mS\nJK1U1ZHkS4FLgLuAs4CdwNnAB6sEN5PbDwFbgPOBtwNTwM0RcViHuACuAHYBWbGtkiRJ0qoc2K1C\nRBxDkRhfm5mntJR/Cbg8Il6WmVd3iD8QeCdwL/D8zNzdLP8IMAfsAM5cJvxs4GiKpPo3K3weSZIk\nadWqjCSf1ny9tFS+NML78i7xxwPPBK5cSpABMvOzwCxwakQcUA6KiGcBbwEuBL4MRIW2SpIkSatW\nJUmeBBrAba2FmfkoMA8c2yX+WIqpEre22XYr8GRgrM22PwD+Cbhs6S0rtFWSJElatSpJ8uHAA5n5\nWJttXwUObU6p6BS/VLddPMARrYURcSrw08CZmdmo0EZJkiSpZ6okyaPAo8tse6SlTqd4ltnHPvER\n8RSKqR1/lJmfqdA+SZIkqae63rhHMe/46ctsO7ilTqd4KFa2qBJ/cfP1DRXaJmkDaDQa1Ot1ACYm\nJhgZcQl2DRe/A9LmUyVJ/hpwdEQc1GbKxREUUzEe7xK/VPfzbeKhOe0iIiaAXwF+g2Iax6HN7c9o\nvh4WET8AfDkz/0+7N9uxY8ee36enp5menu7QNEmrVa/X2b59OwsLCwCMjY0xMzPDxMREn1smrQ+/\nA1L/zM7OMjs7uyb7jszO98NFxFuANwJTmXlLS/kW4EFgNjNf3CH+BOBjwJsz86LSto8DzwUOzczF\niPg54P1Lm0u7ymZZAsdm5h1t3iu7fR5prRTLeheGpR82Gg1qtRrz8/N7lY+PjzM3N7ei0bSIWNXx\nM9749Yxfi+/AIBvG86A2luZ3uCcrolX59l7TfD23VH4GsBV4b0vDDouIoyJia0u9G4H7gdNbn9AX\nEdsolofbmZmLzeJPA/+5+fPSlp93Nbdf3Nz2xQrtlrTG6vX6ntGzVgsLC3v+9CxtZn4HpM2r63SL\nzLwrIt4FvDYirgOuB44BXkcxivy+lupvA14JTAM3NeMfj4hzgKspnrB3BXAIRdL9DYqHiSy919f5\nzkjyHhHxJIpR5Fszc5/tkiRJUi9V/TvQORSPkz4G+D3gFIr1i19SqpcUayrvXZh5LXASxWoW7wBe\nTzHC/LzMvL9iG/y7jbTBTExMMDa27zLnY2NjzsfUUPA7IG1eXeckDxLnJKufhnUuXutNS7t27WLb\ntm1cddVVK04QBm1OqvHG9/o7MMiG9TyojaOXc5JNkqUeGeaLw9LyV5OTkywuLq7qZqVBTJKMN76X\n34FBNsznQW0MJsnLMElWP3lxWH2C0ot9GG/8IMcPOs+D6rf1Xt1CkiRJGiomyZIkSVKJSbIkSZJU\nYpIsSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIsSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIs\nSZIklZgkS5IkSSUmyZIkSVKJSbIkSZJUYpIsSZIklZgkS5IkSSUmyZIkSVJJpSQ5CudFxN0RsTsi\n7ouIiyNitOobRcSJEXFLRDwcEQ9GxM6IOHKZen8VEfdExLcj4lsRMRcR50TEluofTZIkSVqZAyvW\nuxR4HXAdcDFwNHA2MA68sFtwRJwM/AVQB84HDgHOA26OiMnM/HpL9R8GHgeuBO4HtgLPB34XOBH4\nqYptliRJklYkMrNzhYhjgM8B12XmKS3lZwGXA6dl5tUd4g8E7gUeBZ6dmbub5duAOeDKzDyza0Mj\nfg94DfCfMvP2Zepkt88jrZWI2PP7sPbDiFj1Z1/tPow3fpDjB53nQfVb8zsY3Wt2V2W6xWnN10tL\n5VcAu4CXd4k/HngmRTK8e6kwMz8LzAKnRsQBFdpxX/P1uyvUlSRJklasynSLSaAB3NZamJmPRsQ8\ncGyX+GOBBG5ts+1W4CeAMeDu1g0R8V3AFuDJwPOAXwceAD5doc2S9kOj0aBerwMwMTHByIj39Err\nye+gtPFU+RYeDjyQmY+12fZV4NDmlIpO8Ut128UDHNFm21XAPwNfBP4EWAB+OjMfqtBmSRXV63Vq\ntRpTU1NMTU1Rq9X2XKwlrT2/g9LGVCVJHqWYT9zOIy11OsWzzD46xe+guCnwF4E/apYd2uF9JO2n\nRqPB9u3bmZ+fZ9euXezatYv5+Xm2b99Oo9Hod/OkTc/voLRxVUmSd1FMe2jn4JY6neJZZh/Lxmfm\nP2TmJzLzmuaNfe8BPhwRx3VvsqQq6vU6CwsL+5QvLCw4kiWtA7+D0sZVZU7y14CjI+KgNlMujqCY\nivF4l/ilup9vEw/tp2KU/Rnw+8CZwN8vV2nHjh17fp+enmZ6errCriVJkjRoZmdnmZ2dXZN9V1kC\n7i3AG4GpzLylpXwL8CAwm5kv7hB/AvAx4M2ZeVFp28eB5wKHZuZil3Y8BfgW8DeZ+ZJl6rgEnPpm\nEJc+ajQa1Go15ufn9yofHx9nbm5uv28ecgk4443fv/hefwf7bRDPg9pc1nsJuGuar+eWys+geNDH\ne1sadlhEHBURW1vq3UjxUJDTW5/Q11wn+XhgZ2uCHBHPWKYd5zRflx1FlrR/RkZGmJmZYXx8nNHR\n4uu5bds2ZmZmBu7iLA0iv4PSxtV1JBkgIi4HXgt8ALgeOIbiCXyfyswTWuq9B3glMJ2ZN7WUvxS4\nGriTYn1YVRm6AAAY8UlEQVTlQyiS7kVgMjPvb6n7z8DNwB00V88AXgScAHwWeF5mfnuZdjqSrL4Z\n5BGUpeWnJicnWVxcXPHF2ZFk441fWXyvvoP9NsjnQW0OvRxJrpokB0VSewZwJMV6xVcDF2bmrpZ6\nVwGvAF7QmiQ3t50IvAl4DsVKFzcAF2TmPaV6/x34SYq1k58K7KaYy3wd8M7WB5K0aadJsvpmM1wc\n+p1gbIQ2GG/8IMf322Y4D2qwrXuSPChMktVPm+HisBEu8P1ug/HGD3J8v22G86AG23rPSZYkSZKG\nikmyJEmSVGKSLEmSJJWYJEuSJEklJsmSJElSiUmyJEmSVGKSLEmSJJWYJEuSJEklJsmSJElSiUmy\nJEmSVGKSLEmSJJWYJEuSJEklJsmSJElSiUmyJEmSVGKSLEmSJJWYJEuSJEklB/a7AZJWr9FoUK/X\nAZiYmGBkxP//lYaJ5wCp9/wWSQOuXq9Tq9WYmppiamqKWq2252IpafPzHCCtjcjMfrehZyIiN9Pn\n0WCJiD2/r1c/bDQa1Go15ufn9yofHx9nbm5uv0eTImJVbV9t/EZog/HGD1J8r88Bq9WP86DUqvkd\niu41u3MkWRpg9XqdhYWFfcoXFhYcSZKGgOcAae1USpKjcF5E3B0RuyPivoi4OCJGq75RRJwYEbdE\nxMMR8WBE7IyII9vUm4qId0XEnRHxbxHxzYi4OSJeVv1jSZIkSStXdST5UuAS4C7gLGAncDbwwSrB\nEXEy8CFgC3A+8HZgCrg5Ig4rVf8d4CXAJ4FfAy5qtvPPI+LdFdsrDYWJiQnGxsb2KR8bG2NiYqIP\nLZK0njwHSGun65zkiDgG+BxwXWae0lJ+FnA5cFpmXt0h/kDgXuBR4NmZubtZvg2YA67MzDNb6j8f\nuLk8uTgiZoHnAz+cmf+4zHs5J1l906+5ePV6ne3bt7OwsMCuXbvYtm0bV1111YoukP2ej7kR2mC8\n8YMW38tzwGo5J1n91ss5yVWS5LcCbwCen5l/11K+BXgQmM3MF3eIPwH4GPCmzPyt0rYbgBpwaGYu\ndmnHWcBlwC9m5s5l6pgkq2/6eXFYWv5pcnKSxcXFFd+s0+8EYSO0wXjjBzG+V+eA1TJJVr+t9417\nk0ADuK21MDMfBeaBY7vEHwskcGubbbcCTwb2/VvRvp7VfP1GhbrSUBkZGaFWq+35XdJw8Rwg9V6V\nb9LhwAOZ+VibbV8FDm1OqegUv1S3XTzAEZ0aEBGHA68Gvgjc3Lm5kiRJ0upUeeLeKMV84nYeaanz\nUId4ltnHI6U6+4iIrcBfAk8EXtxtWoYkSZK0WlVGkndRrErRzsEtdTrFs8w+OsY35z3/FfBc4Jdb\n50RLkiRJa6XKSPLXgKMj4qA2Uy6OoJiK8XiX+KW6n28TD22mYrQkyC8Atmfm+yq0lR07duz5fXp6\nmunp6SphkiRJGjCzs7PMzs6uyb6rrG7xFuCNwFRm3tJSvr+rW7w5My8qbfs4xSjxXqtbtCTILwRe\nnZlXVfowrm6hPtoId3UP6p35G6kNxhs/zPGrtRHOgxpu6726xTXN13NL5WcAW4H3tjTssIg4qjmP\neMmNwP3A6a1P6Guuk3w8sLOUID8B+ABFgvxfqybIkiRJUq90HUkGiIjLgddSJK/XA8cArwM+lZkn\ntNR7D/BKYDozb2opfylwNXAncAVwCEXSvQhMZub9LXWvBU6mGH3+X22ac2dmfm6ZdjqSrL7ZCCMo\n/R6FciTZeOMHO361NsJ5UMOtlyPJVeYkA5wD3EMxenwi8ADFgz0uLNVLijWV9y7MvDYiTgLeBLyD\nYqWLG4ALWhPkplpzPy9s/pT9JsUTACVJkqQ1UWkkeVA4kqx+2ggjKP0ehXIk2XjjBzt+tTbCeVDD\nbb3nJEuSJElDxSRZkiRJKjFJliRJkkpMkiVJkqSSqqtbSFpDjUaDer0OwMTEBCMj/v+rpPXleUja\nm98Aqc/q9Tq1Wo2pqSmmpqao1Wp7LlSStB48D0n7cgk4qUdWsvRRo9GgVqsxPz+/V/n4+Dhzc3P7\nPZLT7+WjXALOeOMHL76X5yGXgFO/uQSctEnU63UWFhb2KV9YWHAUR9K68DwktWeSLEmSJJWYJEt9\nNDExwdjY2D7lY2NjTExM9KFFkoaN5yGpPZNkqY9GRkaYmZlhfHyc0dFRALZt28bMzIx3lktaF56H\npPa8cU/qkdXcsLK09NLk5CSLi4srvjAN4k1DG60Nxhs/rPG9OA954576rZc37pkkSz3Si4vDIF9g\nexG/EdpgvPHDHL/afZgkq99c3UKSJElaQybJkiRJUolJsiRJklRikixJkiSVmCRLkiRJJSbJkiRJ\nUolJsiRJklRikixJkiSVVEqSo3BeRNwdEbsj4r6IuDgiRqu+UUScGBG3RMTDEfFgROyMiCPb1Dss\nIi6KiA9HxDcjohERM9U/kiRJkrQ6VUeSLwUuAe4CzgJ2AmcDH6wSHBEnAx8CtgDnA28HpoCbI+Kw\nUvWjgDcARwOfAXxkjza8RqPR7yZIUl95HtRm0zVJjohjKBLjazPzP2fmH2fm+cCvAi+IiJd1iT8Q\neCdwL/D8zPzDzPwd4KeAw4AdpZDbgadn5pHAfwF68mhBaa3U63Vqtdo+ZZI0LDwPajOqMpJ8WvP1\n0lL5FcAu4OVd4o8HnglcmZm7lwoz87PALHBqRBzQUv7tzHywQrukvms0Gmzfvp35+fm9yrdv3+6o\niqSh4HlQm1WVJHkSaAC3tRZm5qPAPHBsl/hjKaZM3Npm263Ak4GxCu2QNpx6vc7CwsI+5QsLC46i\nSBoKnge1WVVJkg8HHsjMx9ps+ypwaHNKRaf4pbrt4gGOqNAOSZIkaV1USZJHgUeX2fZIS51O8Syz\njyrx0oY1MTHB2Ni+fwgZGxtjYmKiDy2SpPXleVCbVacR4CW7gKcvs+3gljqd4qFY2WIl8ftlx44d\ne36fnp5menq6V7uW9jEyMsLMzMw+8/FmZmYYGXEZckmbn+dB9dPs7Cyzs7Nrsu/I7LzCWkR8BDgB\nGC1PuYiIm4EfzMxndIi/ALgIeFFmfqK07a0Uy739UGbe3Sb2acA/A+/JzO1dP0xEdvs80lpoNBoc\ncMCe+09ZaT+MiBXHbob4jdAG440f5vjV7KNX50FpNZr9tycro1X5X7zbmvV+pNSILcA4pRv6lokP\n4Lg2244DHgL2nfEvDRBHSyQNO8+D2myq9Ohrmq/nlsrPALYC710qaD4t76iI2NpS70bgfuD01if0\nRcQ2iuXhdmbm4koaL0mSJK2FrnOSM/OuiHgX8NqIuA64HjgGeB0wm5nva6n+NuCVwDRwUzP+8Yg4\nB7ia4gl7VwCHUCTd32Dfh4kQEW+iWDbuic2ibRHx35u/35SZn9rPzylJkiRVVuXGPYBzgHsoRo9P\nBB4ALgMuLNVLijWV9y7MvDYiTgLeBLyDYqWLG4ALMvP+Nu/3P/jO46iTYlrHePO/fxMwSZYkSdKa\n6Xrj3iDxxj2tVKPR2LPo/cTExIrm1kV85z4Bb9xbuX63wXjjhzl+tftYzXmwF+dhab1v3JM2tXq9\nTq1WY2pqiqmpKWq1mk+JkqR15HlYG5EjyRpqjUaDWq2219qeAOPj48zNze3XSIYjyf0fxTLeeOMH\nbyS5l+dhyZFkqUfq9ToLC/uuQLiwsOAohiStA8/D2qhMkiVJkqQSk2QNtYmJCcbGxvYpHxsbY2Ji\nog8tkqTh4nlYG5VJsobayMgIMzMzjI+PMzpaPOtm27ZtzMzMOA9OktaB52FtVN64J/GdpYcmJydZ\nXFx0Cbg+xW+ENhhv/DDHr3YfvVgCbjXnYamXN+6ZJEst+nVx6MX7b4b4jdAG440f5vjV7mMjnAc1\n3HqZJFd94p60obkIvSQNN68D6jV7kAaei9BL0nDzOqC14HQLDbReL0I/6H9mHPT4jdAG440f5vjV\n7qMf50EfRqJWPkxEanIRekkabl4HtFZMkiVJkqQSk2QNNBehl6Th5nVAa8UkWQPNReglabh5HdBa\n8cY9bQirXbqnV4vQD9oNK5stfiO0wXjjhzl+tfvo53lwtdcBl5DbHLxxT5tKL5buGRkZoVar7fld\nkjRcVnMdcAk5teNIsvpqIy3http4R5L7P4plvPHGD+9I8krjXUJuc3EkWRtOo9Fgbm6Oubk5Go1G\n5TiX7pEk9VOvrkMrvQ5q4zJJ1qr5ZypJ0jDzOrg5VUqSo3BeRNwdEbsj4r6IuDgiRqu+UUScGBG3\nRMTDEfFgROyMiCOXqfvkiHhnRHyl+X53RcSZVd9L66fRaLB9+3bm5+fZtWsXu3btYn5+nu3bt1f6\nP2mX7pEk9dNqr0OrvQ5q46o6knwpcAlwF3AWsBM4G/hgleCIOBn4ELAFOB94OzAF3BwRh5XqHgTc\nAJwBvK/5fv8f8PsR8RsV26v91K/pEi7dI0nqp9Veh5yusXkd2K1CRBxDkahem5mntJR/Cbg8Il6W\nmVd3iD8QeCdwL/D8zNzdLP8IMAfsAFpHiV8NTAJnZebvN8v+OCKuBd4YEVdl5perf8ThsJqla+r1\nOtu3b9/zJR8bG2NmZmbdRnInJiaYm5vbs3TPHXfcYYIsSVo3/b4O9eI67BJ2ayAzO/4AbwUWgR8r\nlW8BHgb+ukv8CUADeGObbTcA/wIc0FJ2M/DvwBNKdZ/X3M/5Hd4r+2VxcTFvv/32vP3223NxcXFd\n4++4444cHx/P0dHRHB0dzfHx8bzjjjsqv+/4+HgCe/2Mj49Xasdq48tW+2/Yz/jWz9+P998M8Ruh\nDcYbP8zxq93HMJ4HN8J1dDV5QGs7+pXH9FLz369rflvlp0qS/BHgMeCgNttuBr7RJf6CZpL9gjbb\nlhLwo5v/HcC3gZva1H1Cs+41Hd5rxf8w/UpSVxu/2i/X7bffnqOjo/vEj46O5u23377f7Qdy27Zt\n+/3lXDJoJ8dy7LBdHHodvxHaYLzxwxy/2n0M63lwNdfB1V6HN0KSvZGS9PVOku8E7l9m2zXNxPXA\nDvGXN+sc1Wbba5rbXtj876dSjBa/b5l9fQO4ucN7regfZpBHYlf75epFkrz0OZY652r+D3IQT46t\nscN4cehl/EZog/HGD3P8avcxzOfBlV4H+30d73cek9nbJL2XSXKVCSujwKPLbHukpU6neJbZRzm+\nU92l+h1X1NjfO0pXe1fqaifs93ud4F6tLuET7yRJw2yl18F+r/LU7zxmtXlYOb6Xqvwr7qKYf9zO\nwS11OsWzzD7K8Z3qLtXvegT2J8Hsd5K6Wqv9crm6hCRJ/bPa63C/k+zVWqskvRe6Ppa6uQrFCcBo\nZj5W2nYz8IOZ+YwO8RcAFwEvysxPlLa9FXgD8EOZeXcUz7N8GJjLzKlS3ScAuylW2Th1mffq/GEk\nSZK0qWWPHkvddQk44DbgRcCPALcsFUbEFmAcmK0QH8BxwCdK244DHgIWoJhEEhF3ABMRcVApKf9P\nzf3cttwb9eqgSJIkabhV+Xv6Nc3Xc0vlZwBbgfcuFUTEYRFxVERsbal3I3A/cHrrE/oiYhtwPLAz\nMxdb6r8PeGJz/63OpVhlY2eFNkuSJEkr1nW6BUBEXA68FvgAcD1wDPA64FOZeUJLvfcArwSmM/Om\nlvKXAldTrJRxBXAIRdK7CExm5v0tdQ8C/g54DsVDSO4Gfhb4OeAtmbljxZ9WkiRJqqDKdAuAc4B7\nKEZ3TwQeAC4DLizVS4ol3PYuzLw2Ik4C3gS8g2L1ihuAC1oT5GbdxyLiBIo1lF8GPA34IsUT+P6g\nYnslSZKkFau0fEFzGbrfzcyjM3NrZj4rM1+fmbtK9X4lMw9sHUVu2XZ9Zv5YZn5XZj4tM0/NzHuW\neb+HMvPszPyezNwKnAz8eET8Y0T8a0R8OyLujohLIuKwcnxEjEXEByLiWxHxcETcFBE/Ue2QbE7N\nY/JnVY5hRFwYEY02P4sR8av9+gwbTURsjYj/3Tw2l7fZbj/soNPxsw+2t8wxaUTEQ23q2v9Kqh4/\n+9/yIuK7I+LiiPhCROyOiG9GxCci4sdL9ex/y6hyDO2D++pwTJZ+Hi3VX3UfrDqS3G/fAxwGvB/4\nCvA48MMUI9unRsR4Zj4AEBHfD/w98H+At1HcGPhq4KMR8dPlFTaGSOVj2JQUU2IeLO1nbh3aOije\nQvGXjn3mLNkPK1n2+DXZB9u7CfijUll55SH73/K6Hr8m+19JRHwvxX1Go8AfU9x0fwjF9MgjWurZ\n/5ZR9Rg22Qf3dh3whTbl24DXAx9cKuhZH+zVU0n68QO8lGJ6x/ktZTspTng/3FL2ROBLwN39bvNG\n+1nmGF5IMV/8e/vdvo36Azy32c/ObR6/y0vb7YerO372wfbHrQHMVKhn/1vd8bP/tT8unwLuBf6v\nLvXsf6s/hvbB6sf03c1j9dMtZT3pg4P+tIj7mq/fDRDF6hkvAT6ZmZ9bqpSZ3wauBMYiYnLdW7mx\n7XUMSyIinhQRB6xngza6iBihuAH1euAv22y3H3bQ7fjtW90+WBYRB0XEE5fZZv/rotPx27eq/Q8g\nIqaAHwd+JzO/GREHxt4rWS3Vs/8to+ox3DfMPricZn87leIv5B9tKetJHxyoJDkitkTE0yLiiIj4\nSeAPKf4ccX2zynMontZ3a5vwWynWWT52XRq7QVU4hnuqUqxG8m/AIxFxS0T89Do3d6P6VWAMOGuZ\n7fbDzrodvyX2wfZeSvHk0X+PiG9ExOUR8eSW7fa/zrodvyX2v739DMW14isR8SGKh3t9OyI+HxG/\n1FLP/re8qsdwiX2wu1OAJwNXZXO4mB72wUGZk7zkdIpl4ZbcA7w8M5cecnJ48/WrbWKXyspzfoZN\nt2MI8K8Uf774O+BfgKMo/iz+NxHxK5n5v9arsRtNRPzfwA5gR2Z+OSK+r001++EyKh4/sA8u59MU\nf0b8IsWF4USK/9mYiogfy+Jmavvf8qocP7D/tXMURXJxBcU82ldQJCK/BvxpRByYmX+C/a+TqscQ\n7INVvYpiGtVVLWU964ODliT/JcW6yd8FTAAnAYe2bF96WMmj7OuRUp1h1e0YkpmXlWL+OiJmgH8A\nfjcirs3SyiZD5A+BfwJ+t0Md++Hyqhw/++AyMvO4UtGfRcTngIsolur8bex/y6p4/Ox/7T2p+foQ\n8BOZ+ThARPwV8L+B3wL+BPtfJ1WPoX2wgogYo5i+8rHMvLdlU8/64EBNt8jMr2XmJzLzg5n5m8Av\nA++IiP/WrLLUYba0CT+4VGcoVTiGy8X9C0WC8xTgx9a+pRtPRLwcOAF4Te79lMgy+2Eb+3H82rIP\nLusdFHdw/2zzv+1/+6d8/Nqy/7GbYqrA+5aSO4DM/FeKVQUOi4ijsP91UvUYtmUf3MfpFMfzylJ5\nz/rgQCXJZc0J2XXg/20Wfa352m4Yfams3fD70GpzDDv5UvP10E6VNqOIeAJwCcXc7W9GxA9ExA8A\nRzarHNIsOwT74T728/h18qXm69D1weU0L7Zf4zvHxP63H9ocv06+1Hwdxv73lebr19tsW3oo2Hdj\n/+uk6jHs5EvN12Hsg3s0b2R8BcXyeB8obe5ZHxzoJLlpK/DU5u+foxheL/9JjWZZArevU7sGSesx\n7GSs+fqNNWzLRrUVeDrFaNMXWn4+SdGvXkExx+xV2A/b2Z/j18kw98G2ImILxTroS8fE/rcf2hy/\nToa5/32GYj7t97TZ9qzm6zex/3VS9Rh2Msx9sNVJwDOAP83M8jrnPeuD8Z2bATeuiHhGZu7TIZpP\nTvkY8InM/Mlm2U7gF4DnLi39ERHfRTGPZ1dmHr1+Ld84qh7D5v+dPTEzy0+gehYwT/EQku/NzHZz\nfTatiDiQ4ktZ9nTgD4APUywMf2dm/pP9cG8Vj9+VFCe3e7AP7iMinpqZ32pT/g6KFUN+PTMvaZbZ\n/0qqHj/Pge1FxFMo1vf9N+A/Ls2HjYhnUvwP7pcz85hmmf2vjarH0D7YXUT8NcVqIc/JzH9os70n\nfXBQkuT3A88EPkHRwQ4GasDLgIcpJsDf2az7AxR3MD9OcXPQQxRPlXs2cGJm3rDuH2ADqHoMm3/u\nvofizxd3U9xV+x8pRvieCLwsM9+//p9gY2quznAP8HuZeXZLuf2wgnbHzz7YXkT8T+BHKUbf76O4\n+fZE4Cconiz1gqWLpv1vX1WPn/1veRHxaoo5sf8IzFDM+TyT4mmuP5uZH2/Ws/8to8oxtA92FhGH\nU+Qxt2Vm27nZPeuD3Z42shF+KNa1/GDzoOwCvk3RwS4FvqdN/aMoVnH4FkUCeCNFEtj3z7LRjyHw\nBIpHtn6WYq7PoxRzd64Bav3+HBvtB/g+iif9XNZmm/1wBcfPPrjssTqJYsT9y83v8L8DdwD/DXhC\nm/r2vxUcP/tf1+P48xTLkv07xYjoh4EfbVPP/rfCY2gf7Hr83tC8bmzvUm/VfXAgRpIlSZKk9bQZ\nbtyTJEmSesokWZIkSSoxSZYkSZJKTJIlSZKkEpNkSZIkqcQkWZIkSSoxSZYkSZJKTJIlSZKkEpNk\nSZIkqcQkWZIkSSr5/wEbrh/dm7GnvgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1c225828>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "from matplotlib.pylab import subplots, arange\n", "fig,ax= subplots()\n", "fig.set_size_inches((10,5))\n", "# here is the density of the sum of x_i\n", "_=ax.stem(arange(0,101),b.pmf(arange(0,101)),\n", " linefmt='k-', markerfmt='ko') \n", "_=ax.vlines( [50+10,50-10],0 ,ax.get_ylim()[1] ,color='k',lw=3.)\n", "_=ax.axis(xmin=30,xmax=70)\n", "_=ax.tick_params(labelsize=18)\n", "#fig.savefig('fig-statistics/Maximum_likelihood_20_2.png')\n", "fig.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- dom:FIGURE: [fig-statistics/Maximum_likelihood_20_2.png, width=500 frac=0.85] Probability mass function for $\\hat{p}$. The two vertical lines form the confidence interval. <div id=\"fig:Maximum_likelihood_20_2\"></div> -->\n", "<!-- begin figure -->\n", "<div id=\"fig:Maximum_likelihood_20_2\"></div>\n", "\n", "<p>Probability mass function for $\\hat{p}$. The two vertical lines form the confidence interval.</p>\n", "<img src=\"fig-statistics/Maximum_likelihood_20_2.png\" width=500>\n", "\n", "<!-- end figure -->\n", "\n", "\n", " The two vertical lines in the plot show how far out from the mean we\n", "have to go to accumulate 95\\% of the probability. Now, we can solve this as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "50+50\\epsilon=60\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " which makes $\\epsilon=1/5$ or 20\\%. So, flipping 100 times means I can\n", "only get within 20\\% of the real $p$ 95\\% of the time in the worst case\n", "scenario (i.e., $p=1/2$). The following code verifies the situation." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n" ] } ], "source": [ "from scipy.stats import bernoulli \n", "b=bernoulli(0.5) # coin distribution\n", "xs = b.rvs(100) # flip it 100 times\n", "phat = np.mean(xs) # estimated p\n", "print abs(phat-0.5) < 0.5*0.20 # make it w/in interval?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Let's keep doing this and see if we can get within this interval 95\\% of\n", "the time." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "97.4\n" ] } ], "source": [ "out=[]\n", "b=bernoulli(0.5) # coin distribution\n", "for i in range(500): # number of tries\n", " xs = b.rvs(100) # flip it 100 times\n", " phat = np.mean(xs) # estimated p\n", " out.append(abs(phat-0.5) < 0.5*0.20 ) # within 20% ?\n", "\n", "# percentage of tries w/in 20% interval\n", "print 100*np.mean(out)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Well, that seems to work! Now we have a way to get at the quality of\n", "the estimator, $\\hat{p}$.\n", "\n", "**Maximum Likelihood Estimator Without Calculus**\n", "\n", "The prior example showed how we can use calculus to compute the maximum\n", "likelihood estimator. It's important to emphasize that the maximum likelihood\n", "principle does *not* depend on calculus and extends to more general situations\n", "where calculus is impossible. For example, let $X$ be uniformly distributed in\n", "the interval $[0,\\theta]$. Given $n$ measurements of $X$, the likelihood\n", "function is the following:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "L(\\theta) = \\prod_{i=1}^n \\frac{1}{\\theta} = \\frac{1}{\\theta^n}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " where each $x_i \\in [0,\\theta]$. Note that the slope of this function\n", "is not zero anywhere so the usual calculus approach is not going to work here.\n", "Because the likelihood is the product of the individual uniform densities, if\n", "any of the $x_i$ values were outside of the proposed $[0,\\theta]$ interval,\n", "then the likelihood would go to zero, because the uniform density is zero\n", "outside of the $[0,\\theta]$. Naturally, this is no good for maximization. Thus,\n", "observing that the likelihood function is strictly decreasing with increasing\n", "$\\theta$, we conclude that the value for $\\theta$ that maximizes the likelihood\n", "is the maximum of the $x_i$ values. To summarize, the maximum likelihood\n", "estimator is the following:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\theta_{ML} = \\max_i x_i\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " As always, we want the distribution of this estimator to judge its\n", "performance. In this case, this is pretty straightforward. The cumulative\n", "density function for the $\\max$ function is the following:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P} \\left( \\hat{\\theta}_{ML} < v \\right) = \\mathbb{P}( x_0 \\leq v \\wedge x_1 \\leq v \\ldots \\wedge x_n \\leq v)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " and since all the $x_i$ are uniformly distributed in $[0,\\theta]$, we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{P} \\left( \\hat{\\theta}_{ML} < v \\right) = \\left(\\frac{v}{\\theta}\\right)^n\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " So, the probability density function is then," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "f_{\\hat{\\theta}_{ML}}(\\theta_{ML}) = n \\theta_{ML}^{ n-1 } \\theta^{ -n }\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Then, we can compute the $\\mathbb{E}(\\theta_{ML}) = (\\theta n)/(n+1)$ with\n", "corresponding variance as $\\mathbb{V}(\\theta_{ML}) = (\\theta^2 n)/(n+1)^2/(n+2)$.\n", "\n", "For a quick sanity check, we can write the following simulation for $\\theta =1$\n", "as in the following:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.990250835019\n", "9.41473660278e-05\n" ] }, { "data": { "text/plain": [ "9.95762009884e-05" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ ">>> from scipy import stats\n", ">>> rv = stats.uniform(0,1) # define uniform random variable\n", ">>> mle=rv.rvs((100,500)).max(0) # max along row-dimension\n", ">>> print mean(mle) # approx n/(n+1) = 100/101 ~= 0.99\n", "0.989942138048\n", ">>> print var(mle) #approx n/(n+1)**2/(n+2) ~= 9.61E-5\n", "9.95762009884e-05" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Programming Tip.**\n", "\n", "The `max(0)` suffix on for the `mle` computation takes\n", "the maximum of the so-computed array along the column (`axis=0`)\n", "dimension.\n", "\n", "\n", "\n", " You can also plot `hist(mle)` to see the histogram of the simulated\n", "maximum likelihood estimates and match it up against the probability density\n", "function we derived above. \n", "\n", "\n", "In this section, we explored the concept of maximum\n", "likelihood estimation using a coin flipping experiment both analytically and\n", "numerically with the scientific Python stack. We also explored the case when\n", "calculus is not workable for maximum likelihood estimation. There are two key\n", "points to remember. First, maximum likelihood estimation produces a function of\n", "the data that is itself a random variable, with its own probability\n", "distribution. We can get at the quality of the so-derived estimators by\n", "examining the confidence intervals around the estimated values using the\n", "probability distributions associated with the estimators themselves. \n", "Second, maximum likelihood estimation applies even in situations \n", "where using basic calculus is not applicable [[wasserman2004all]](#wasserman2004all).\n", "\n", "\n", "## Delta Method\n", "<div id=\"sec:delta_method\"></div>\n", "\n", "The Central Limit Theorem provides a way to get at the distribution of a random\n", "variable. However, sometimes we are more interested in a function of the random\n", "variable. In order to extend and generalize the central limit theorem in this\n", "way, we need the Taylor series expansion. Recall that the Taylor series\n", "expansion is an approximation of a function of the following form," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "T_r(x) =\\sum_{i=0}^r \\frac{g^{(i)}(a)}{i!}(x-a)^i\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " this basically says that a function $g$ can be adequately\n", "approximated about a point $a$ using a polynomial based on its derivatives\n", "evaluated at $a$. Before we state the general theorem, let's examine\n", "an example to understand how the mechanics work.\n", "\n", "**Example.** Suppose that $X$ is a random variable with\n", "$\\mathbb{E}(X)=\\mu\\neq 0$. Furthermore, supposedly have a suitable\n", "function $g$ and we want the distribution of $g(X)$. Applying the\n", "Taylor series expansion, we obtain the following," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "g(X) \\approx g(\\mu)+ g^{\\prime}(\\mu)(X-\\mu)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " If we use $g(X)$ as an estimator for $g(\\mu)$, then we can say that\n", "we approximately have the following" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\mathbb{E}(g(X)) &=g(\\mu) \\\\\\\n", "\\mathbb{V}(g(X)) &=(g^{\\prime}(\\mu))^2 \\mathbb{V}(X) \\\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Concretely, suppose we want to estimate the odds, $\\frac{p}{1-p}$.\n", "For example, if $p=2/3$, then we say that the odds is `2:1` meaning that the\n", "odds of the one outcome are twice as likely as the odds of the other outcome.\n", "Thus, we have $g(p)=\\frac{p}{1-p}$ and we want to find\n", "$\\mathbb{V}(g(\\hat{p}))$. In our coin-flipping problem, we have the\n", "estimator $\\hat{p}=\\frac{1}{n}\\sum X_k$ from the Bernoulli-distributed data\n", "$X_k$ individual coin-flips. Thus," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\mathbb{E}(\\hat{p}) &= p \\\\\\\n", "\\mathbb{V}(\\hat{p}) &= \\frac{p(1-p)}{n} \\\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Now, $g^\\prime(p)=1/(1-p)^2$, so we have," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\mathbb{V}(g(\\hat{p}))&=(g^\\prime(p))^2 \\mathbb{V}(\\hat{p}) \\\\\\\n", " &=\\left(\\frac{1}{(1-p)^2}\\right)^2 \\frac{p(1-p)}{n} \\\\\\\n", " &= \\frac{p}{n(1-p)^3} \\\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " which is an approximation of the variance of the estimator\n", "$g(\\hat{p})$. Let's simulate this and see how it agrees." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "odds ratio= 0.123638095238 var= 0.017607461164\n" ] } ], "source": [ "from scipy import stats\n", "# compute MLE estimates \n", "d=stats.bernoulli(0.1).rvs((10,5000)).mean(0)\n", "# avoid divide-by-zero\n", "d=d[np.logical_not(np.isclose(d,1))]\n", "# compute odds ratio\n", "odds = d/(1-d)\n", "print 'odds ratio=',np.mean(odds),'var=',np.var(odds)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " The first number above is the mean of the simulated odds\n", "ratio and the second is the variance of the estimate. According to\n", "the variance estimate above, we have $\\mathbb{V}(g(1/10))\\approx\n", "0.0137$, which is not too bad for this approximation. Recall we want\n", "to estimate the odds from the $\\hat{p}$. The code above takes $5000$\n", "estimates of the $\\hat{p}$ to estimate $\\mathbb{V}(g)$. The odds ratio\n", "for $p=1/10$ is $1/9\\approx 0.111$.\n", "\n", "**Programming Tip.**\n", "\n", "The code above uses the `np.isclose` function to identify the ones from\n", "the simulation and the `np.logical_not` removes these elements from the\n", "data because the odds ratio has a zero in the denominator\n", "for these values.\n", "\n", "\n", "\n", "Let's try this again with a probability of heads of `0.5` instead of\n", "`0.3`." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "odds ratio= 0.498458458458 var= 0.024323949976\n" ] } ], "source": [ "from scipy import stats\n", "d=stats.bernoulli(.5).rvs((10,5000)).mean(0)\n", "d=d[np.logical_not(np.isclose(d,1))]\n", "print 'odds ratio=',np.mean(d),'var=',np.var(d)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " The odds ratio is this case is equal to one, which\n", "is not close to what was reported. According to our\n", "approximation, we have $\\mathbb{V}(g)=0.4$, which does not\n", "look like what our simulation just reported. This is\n", "because the approximation is best when the odds ratio is\n", "nearly linear and worse otherwise.\n", "\n", "<!-- dom:FIGURE: [fig-statistics/Maximum_likelihood_0001.png, width=500 frac=0.85] The odds ratio is close to linear for small values but becomes unbounded as $p$ approaches one. The delta method is more effective for small underlying values of $p$, where the linear approximation is better. <div id=\"fig:Maximum_likelihood_0001\"></div> -->\n", "<!-- begin figure -->\n", "<div id=\"fig:Maximum_likelihood_0001\"></div>\n", "\n", "<p>The odds ratio is close to linear for small values but becomes unbounded as $p$ approaches one. The delta method is more effective for small underlying values of $p$, where the linear approximation is better.</p>\n", "<img src=\"fig-statistics/Maximum_likelihood_0001.png\" width=500>\n", "\n", "<!-- end figure -->" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }