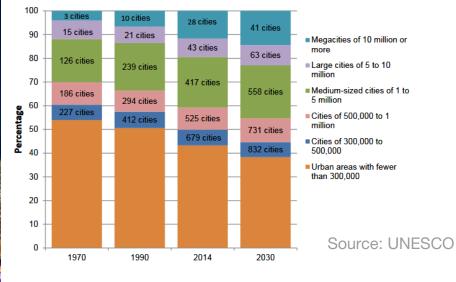
# The State of the Art in Visual Analytics for 3D Urban Data


<u>Fabio Miranda</u>, Thomas Ortner, Gustavo Moreira, Maryam Hosseini, Milena Vuckovic, Filip Biljecki, Claudio Silva, Marcos Lage, <u>Nivan Ferreira</u>



# Urbanization







2050

**68%** 

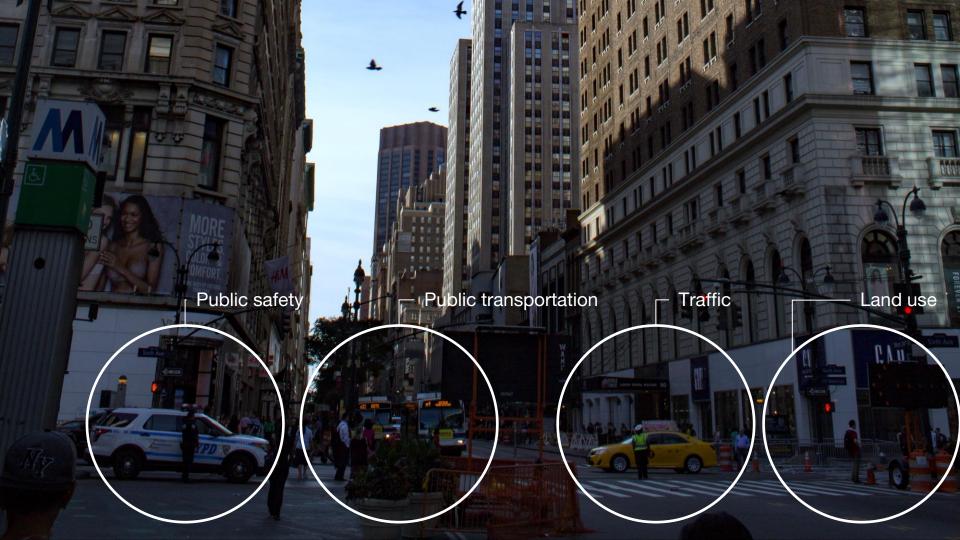
Source: UN

# Urban data





# Urban data






# Urban data







Visual Analysis of Uncertainty in Trajectories [Lu et al., 2014]

TrajGraph [Huang et al., 2015] SemanticTraj [Al-Dohuki et al., 2016]

Spatiotemporal Statistical Data [Kim et al., 2017]<sup>apolis</sup>

Forecasting Road Traffic Congestion [Lee et al., 2019]

Air Pollution Problem in Hong Kong <sup>gh Al</sup>[Qu et al., 2007]

A correlative analysis process in a visual analytics environment [Malik et al., 2012]

A study of new york city taxi trips [Ferreira et al., 2013]

Air Temperature

[Gautier et al., 2020]

MaraVis [Li et al., 2020] SEEVis [Li et al., 2020]

Urba [Miranda]

Urban Mosaic [Miranda et al., 2020]

Location2vec [Zhu et al., 2019

HydroQual .ccorsi et al., 2014] Shadow accrual maps [Miranda et al., 2018] Urban Pulse [Miranda et al., 2016]

## Urban visual analytics surveys



#### Visual Analytics in Urban Computing: An Overview

Yixian Zheng, Wenchao Wu, Yuanzhe Chen, Huamin Qu, Member, IEEE, and Lionel M. Ni, Fellow, IEEE

Abstract-Nowadays, various data collected in urban context provide unprecedented opportunities for building a smarter city through urban computing. However, due to heterogeneity, high complexity and large volumes of these urban data, analyzing them is not an easy task, which often requires integrating human perception in analytical process, triggering a broad use of visualization. In this survey, we first summarize frequently used data types in urban visual analytics, and then elaborate on existing visualization techniques for time, locations and other properties of urban data. Furthermore, we discuss how visualization can be combined with automated analytical approaches. Existing work on urban visual analytics is categorized into two classes based on different outputs of such combinations: 1) For data exploration and pattern interpretation, we describe representative visual analytics tools designed for better insights of different types of urban data, 2) For visual learning, we discuss how visualization can help in three major steps of automated analytical approaches (i.e., cohort construction; feature selection & model construction; result evaluation & tuning) for a more effective machine learning or data mining process, leading to sort of artificial intelligence, such as a classifier, a predictor or a regression model. Finally, we outlook the future of urban visual analytics, and conclude the survey with potential research directions.

Index Terms—Urban computing, visual analytics, visualization, visual learning, spatio-temporal, multivariate

#### 1 INTRODUCTION

WITH the development of science and technology, quite a few issues which have not been addressed satisfacto-rily. Recently, Zheng et al. [3] presented a survey on urban

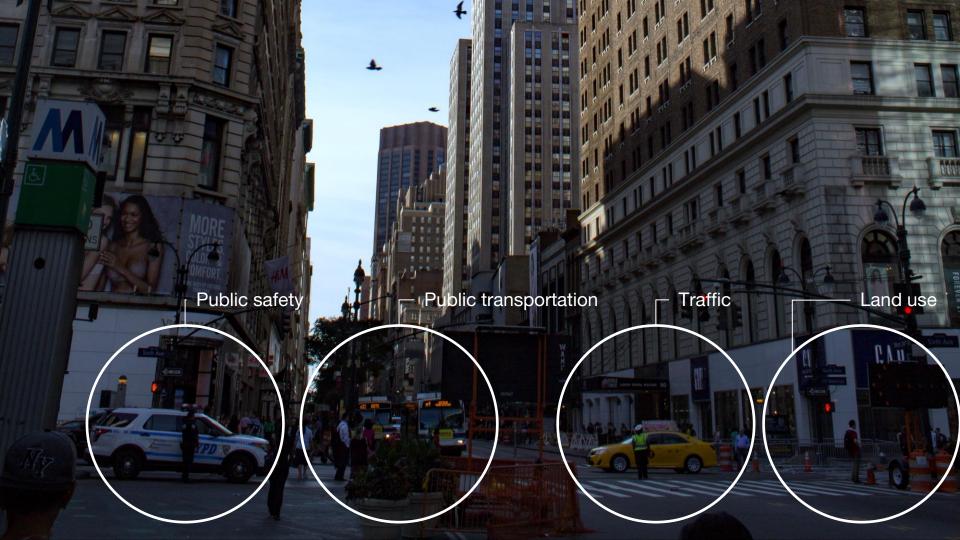
wide, which on one hand improves people's life quality, on computing, which introduced general framework, key the other hand gives rise to serious problems, such as environmental pollution, traffic congestion and ever-increasing based on automated data mining approaches. However, as

#### > 150 papers (Zheng et al., 2016)

#### A survey of urban visual analytics: Advances and future directions

Zikun Deng<sup>1</sup>, Di Weng<sup>2</sup> (🖂), Shuhan Liu<sup>1</sup>, Yuan Tian<sup>1</sup>, Mingliang Xu<sup>3,4</sup>, and Yingcai Wu<sup>1</sup> (🖂)

© The Author(s) 2022.


Abstract Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems. we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based 

knowledge and expertise into the analysis loop. Thus, urban visual analytics [7] is used to empower urban experts using a combination of intuitive data visualization and fast computational methods, enabling experts to visually and interactively perceive, explore, manipulate, and reason about urban data [8].

When developing an urban visual analytics approach, practitioners like urban analysts and researchers may have the following four questions:

- 1. Which urban domain problems have been solved or remain unsolved by visual analytics?
- What visualization techniques have been applied to visually interpret urban data?

#### > 200 papers (Deng et al., 2022)

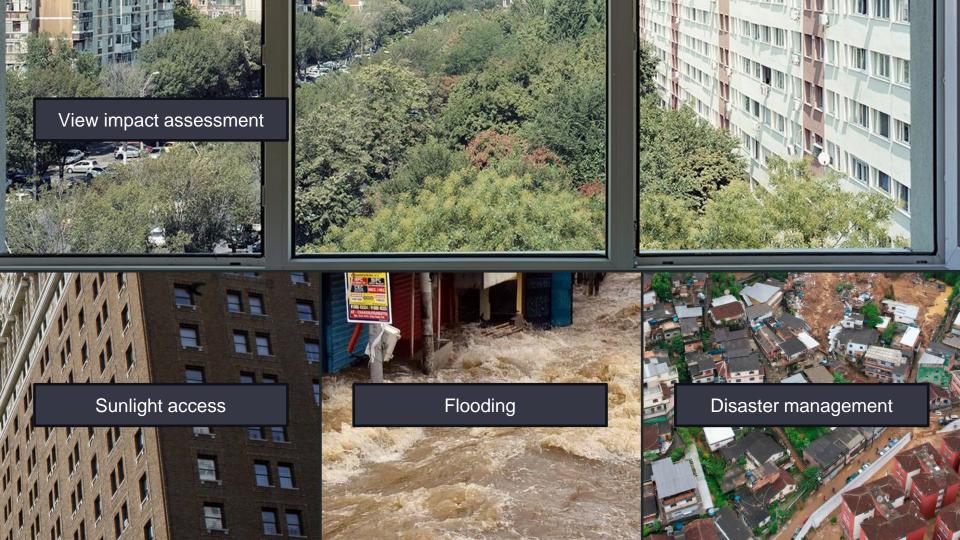




State of the local division of the local div

**EISSIGNS OPEN** 

THE COLL MADE COLS


Flooding

Flooding

**USSIONS OPE** 

Disaster management

F.





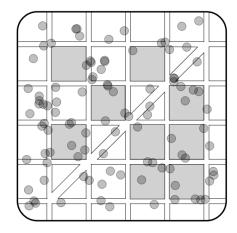
Flooding

Disaster management



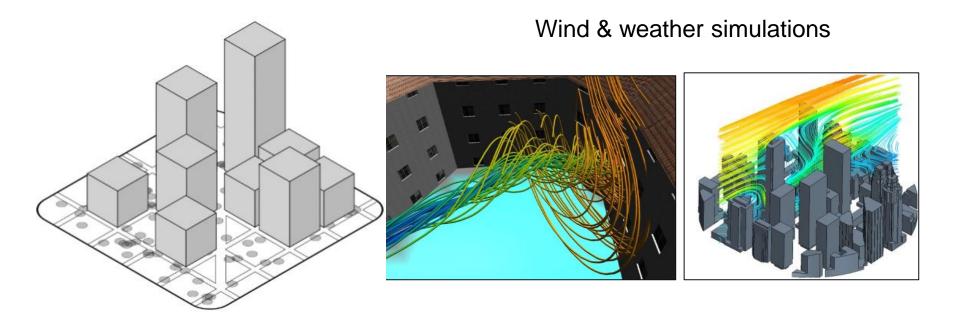
SEG MEETER

Flooding



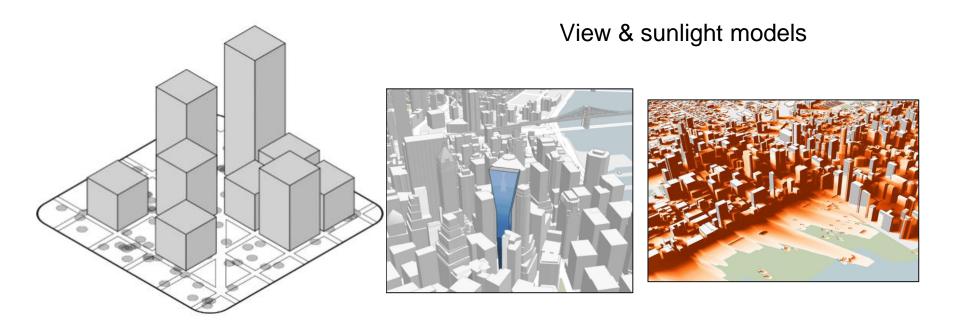

Urban farming

Disaster management


# 3D Urban Data

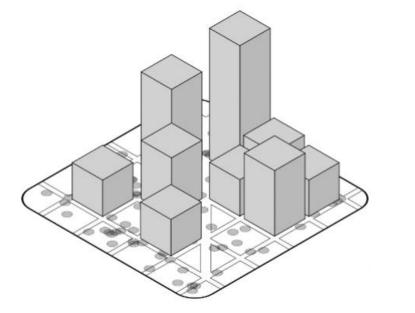





# 3D Urban Data






# 3D Urban Data





#### 19

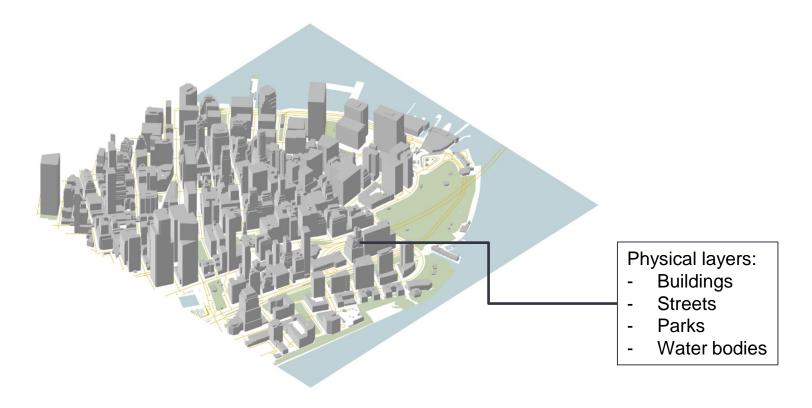
# 3D Urban Data



#### Surveyed data



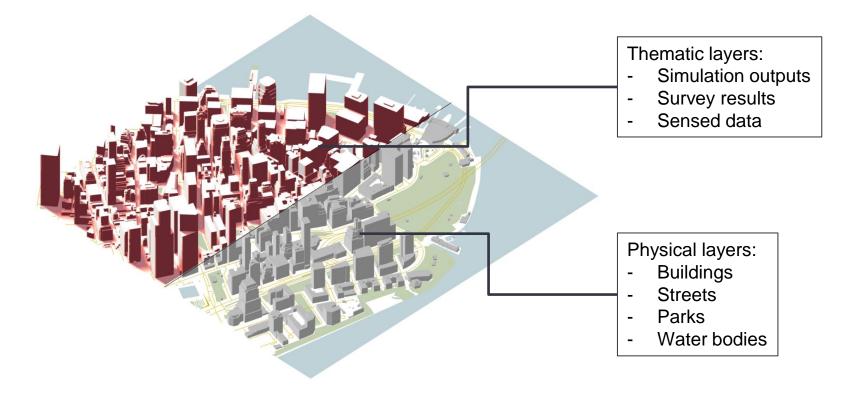



# What is 3D Urban Data?



### In this survey, we define 3D urban data as the information inherently associated with the three-dimensional structure of urban environments.

# What is 3D Urban Data?






21

# What is 3D Urban Data?





# Why this survey?



- Growing availability of 3D urban datasets & visual analytics tools leveraging them.
- Inclusion of this additional dimension increases the difficulty in addressing the various challenges involved in designing effective GIS and VA tools:
  - Visual strategies to support analysis of the data referent to the city's geometry.
  - Navigation to learn the structure of the environment.
  - Integration of the information from different points of view, while avoiding occlusion and viewpoint changes.

# Why this survey?



- Growing availability of 3D urban datasets & visual analytics tools leveraging them.
- Inclusion of this additional dimension increases the difficulty in addressing the various challenges involved in designing effective GIS and VA tools:
  - Visual strategies to support analysis of the data referent to the city's geometry.
  - Navigation to learn the structure of the environment.
  - Integration of the information from different points of view, while avoiding common problems such as occlusion and viewpoint changes.

# Why this survey?



- Growing availability of 3D urban datasets & visual analytics tools leveraging them.
- Inclusion of this additional dimension increases the difficulty in addressing the various challenges involved in designing effective GIS and VA tools:
  - Visual strategies to support analysis of the data referent to the city's geometry.
  - Navigation to learn the structure of the environment.
  - Integration of the information from different points of view, while avoiding occlusion and viewpoint changes.

Tackling these challenges can be fundamental to uncovering features valuable for decision-making and problem-solving in several domains.





We included papers that:

- 1. Made visualization contributions leveraging 3D urban data or facilitating 3D urban analytics.
- 2. Made domain-specific contributions generating or analyzing 3D urban data.





We included papers that:

- 1. Made visualization contributions leveraging 3D urban data or facilitating 3D urban analytics.
- 2. Made domain-specific contributions generating or analyzing 3D urban data.

Venue selection process involved:

# Survey scope



| CFG               | Computer Graphics Forum                                |  |
|-------------------|--------------------------------------------------------|--|
| CG                | Computers & Graphics                                   |  |
| CGA               | IEEE Computer Graphics and Applications                |  |
| IV                | Information Visualization                              |  |
| TOG               | ACM Trans. on Graphics                                 |  |
| TVCG              | IEEE Trans. on Visualization and Computer Graphics     |  |
| TVCJ              | The Visual Computer                                    |  |
| VI                | Visual Informatics                                     |  |
| CHI               | ACM Conf. on Human Factors in Computing Systems        |  |
| EuroVis           | Eurographics Conference on Visualization               |  |
| <b>PacificVis</b> | IEEE Pacific Visualization Symposium                   |  |
| SIGGRAPH          | ACM SIG on Comp. Graphics and Inter. Techniques        |  |
| VIS               | IEEE Visualization Conference                          |  |
| BE                | Building and Environment                               |  |
| CEUS              | Computers, Environment and Urban Systems               |  |
| EPB               | Env. and Planning B: Urban Analytics and City Science  |  |
| IJAC              | Int. Journal of Architectural Computing                |  |
| IJGIS             | Int. Journal of Geographical Information Science       |  |
| P&RS              | Journal of Photogrammetry and Remote Sensing           |  |
| ISPRS Ann.        | ISPRS Ann. of the Phot. Rem. Sens. and Spat. Inf. Sci. |  |
| JUD               | Journal of Urban Design                                |  |
| LUP               | Landscape and Urban Planning                           |  |
| SCS               | Sustainable Cities and Society                         |  |
| SimAUD            | Symp. on Sim. for Architecture and Urban Design        |  |
| UC                | Urban Climate                                          |  |

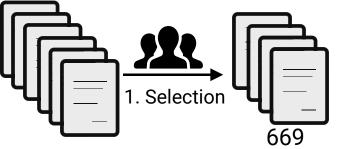
Collaborative effort to select venues that publish works within the scope of the survey. Over 20 venues (journals, conferences, symposiums).

# Survey scope



|            |                                                        | 7        |              |
|------------|--------------------------------------------------------|----------|--------------|
| CFG        | Computer Graphics Forum                                |          |              |
| CG         | Computers & Graphics                                   |          |              |
| CGA        | IEEE Computer Graphics and Applications                |          |              |
| IV         | Information Visualization                              |          |              |
| TOG        | ACM Trans. on Graphics                                 |          |              |
| TVCG       | IEEE Trans. on Visualization and Computer Graphics     |          |              |
| TVCJ       | The Visual Computer                                    | <u> </u> | Visualizatio |
| VI         | Visual Informatics                                     |          |              |
| CHI        | ACM Conf. on Human Factors in Computing Systems        |          |              |
| EuroVis    | Eurographics Conference on Visualization               |          |              |
| PacificVis | IEEE Pacific Visualization Symposium                   |          |              |
| SIGGRAPH   | ACM SIG on Comp. Graphics and Inter. Techniques        |          |              |
| VIS        | IEEE Visualization Conference                          |          |              |
| BE         | Building and Environment                               |          |              |
| CEUS       | Computers, Environment and Urban Systems               |          |              |
| EPB        | Env. and Planning B: Urban Analytics and City Science  |          |              |
| IJAC       | Int. Journal of Architectural Computing                |          |              |
| IJGIS      | Int. Journal of Geographical Information Science       |          |              |
| P&RS       | Journal of Photogrammetry and Remote Sensing           |          | م منع ما ال  |
| ISPRS Ann. | ISPRS Ann. of the Phot. Rem. Sens. and Spat. Inf. Sci. |          | Urban-spec   |
| JUD        | Journal of Urban Design                                |          |              |
| LUP        | Landscape and Urban Planning                           |          |              |
| SCS        | Sustainable Cities and Society                         |          |              |
| SimAUD     | Symp. on Sim. for Architecture and Urban Design        |          |              |
| UC         | Urban Climate                                          |          |              |
|            |                                                        |          |              |

#### on venues


cific venues

#### **1.** Selection:

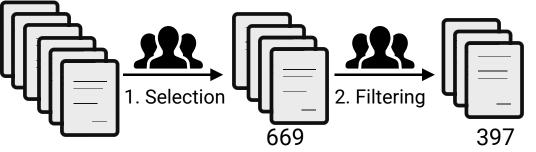
- a. Each venue was assigned to two co-authors;
- b. Review of published works and selection of works within scope.

#### **2.** Filtering:

- a. Each selected paper was assigned to two coauthors;
- b. In-depth review of works. Papers were included if both co-authors agreed that it fell within the scope of the survey.
- C. Meetings to create dimensions and tags.



- **a.** Each filtered paper was assigned to two co-authors for tagging.
- **4.** Consolidation:
  - a. One co-author merged tags, resolving eventual conflicts.




#### **1.** Selection:

- a. Each venue was assigned to two co-authors;
- b. Review of published works and selection of works within scope.

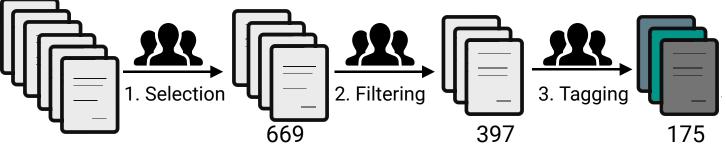
### **2.** Filtering:

- a. Each selected paper was assigned to two coauthors;
- b. In-depth review of works. Papers were included if both co-authors agreed that it fell within the scope of the survey.
- C. Meetings to create dimensions and tags.



- **a.** Each filtered paper was assigned to two co-authors for tagging.
- 4. Consolidation:
  - **a.** One co-author merged tags, resolving eventual conflicts.

#### **1.** Selection:


- a. Each venue was assigned to two co-authors;
- **b.** Review of published works and selection of works within scope.

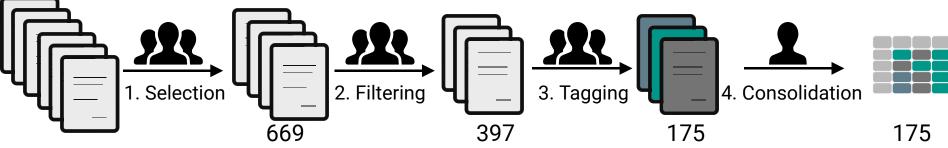
### **2.** Filtering:

- a. Each selected paper was assigned to two coauthors;
- In-depth review of works. Papers were included if both co-authors agreed that it fell within the scope of the survey.
- C. Meetings to create dimensions and tags.

# Ourvey methodology. I our stage process

- **a.** Each filtered paper was assigned to two co-authors for tagging.
- **4.** Consolidation:
  - a. One co-author merged tags, resolving eventual conflicts.




#### **1.** Selection:

- a. Each venue was assigned to two co-authors;
- **b.** Review of published works and selection of works within scope.

### **2.** Filtering:

- a. Each selected paper was assigned to two coauthors;
- In-depth review of works. Papers were included if both co-authors agreed that it fell within the scope of the survey.
- C. Meetings to create dimensions and tags.

- **a.** Each filtered paper was assigned to two co-authors for tagging.
- 4. Consolidation:
  - a. One co-author merged tags, resolving eventual conflicts.



#### **1.** Selection:

- a. Each venue was assigned to two co-authors;
- b. Review of published works and selection of works within scope.

### **2.** Filtering:

- a. Each selected paper was assigned to two co-authors;
- b. In-depth review of works. Papers were included if both co-authors agreed that it fell within the scope of the survey.
- C. Meetings to create dimensions and tags.

# Survey corpus: 175 papers 54 visualization papers

121 domain-specific papers

- a. Each filtered paper was assigned to two co-authors for tagging.
- 4. Consolidation:
  - a. One co-author merged tags, resolving eventual conflicts.



#### The State of the Art in Visual Analytics for 3D Urban Data

OME WIZARD

#### About

This is a companion website for our survey paper on visual analytics for 3D urban data

Authors: <u>Fabio Miranda, Thomas Ortner</u>, Gustavo Moreira, <u>Maryam Hosseini, Milena Vuckovic,</u> <u>Filip Biljecki, Claudio T. Silva, Marcos Lage, Nivan Ferreira</u>

Urbanization has amplified the importance of three-dimensional structures in urban environments for a wide range of phenomena that are of significant interest to diverse stakeholders. With the growing availability of 3D urban data, numerous studies have focused on developing visual analysis techniques tailored to the unique characteristics of urban environments. However, incorporating the third dimension into visual analytics introduces additional challenges in designing effective visual tools to tackle urban data's diverse complexities. In this paper, we present a survey on visual analytics of 3D urban data. Our work characterizes published works along three main dimensions (why, what, and how), considering use cases, analysis tasks, data, visualizations, and interactions. We provide a fine-grained categorization of published works from visualization journals and conferences, as well as from a myriad of urban domains, including urban planning, architecture, and engineering. By incorporating perspectives from both urban and visualization experts, we identify literature gaps, molivate visualization researchers to understand challenges and opportunities, and indicate future research directions.

Use our wizard to browse through a corpus of more than 150 papers covering a period of more than ten years and almost 20 venues.

Feel free to get in touch if you have any questions or comments.

#### **Use the Wizard**

Use the <u>wizard tab</u> to navigate and filter the surveyed papers. We summarize previous visualization and domain-specific contributions using an interrogative method that categorize the papers concerning three questions:

Why is 3D urban data being analyzed What data is being analyzed How it is being analyzed

#### **Read the Survey**

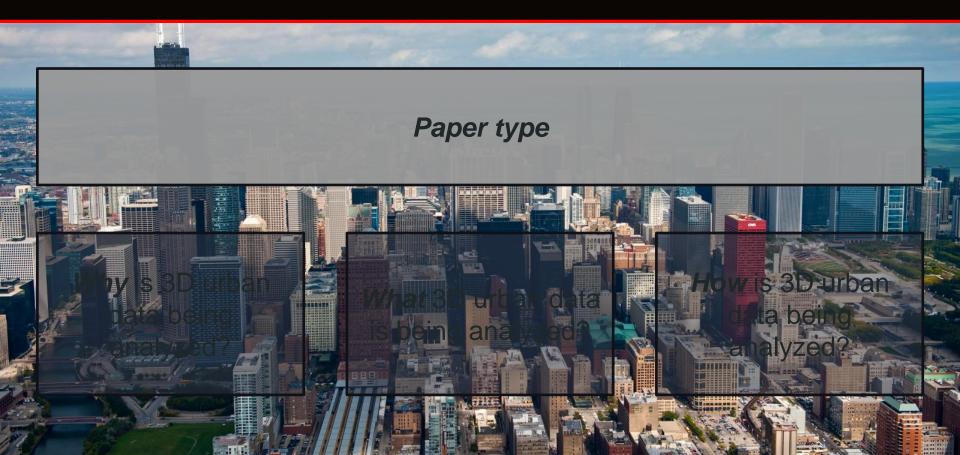
The State of the Art in Visual Analytics for 3D Urban Data Fabio Miranda, Thomas Ortner, Gustavo Moreira, Maryam Hosseini, Milena Vuckovic, Filip Biljecki, Claudio T. Silva, Marcos Lage, Nivan Ferreira Computer Graphics Forum (EuroVis 2024)



Copyright © 2016-2019 The Visualization Design Lab. All content on this website is licensed under the

Creative Commons Attribution license (CC BY), Copyright of the linked publications is with the publishers. Website based on the companion website Multivariate Network Visualization Techniques by the Visualization I

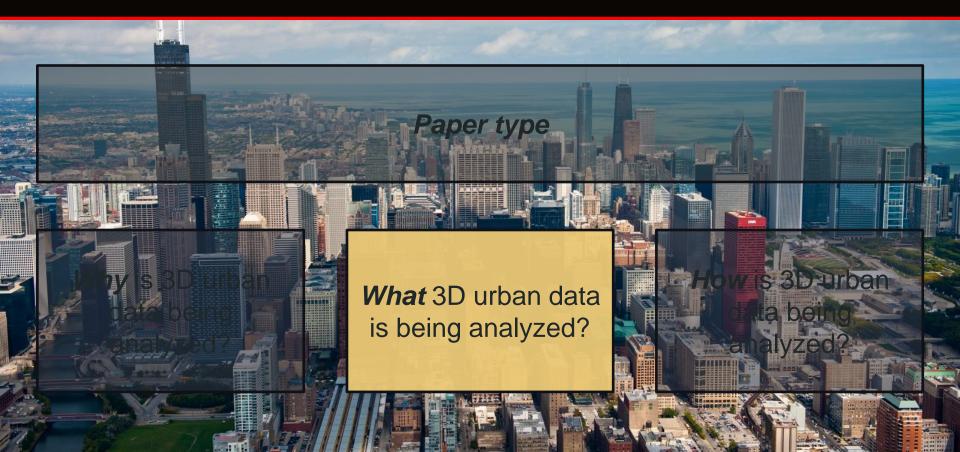




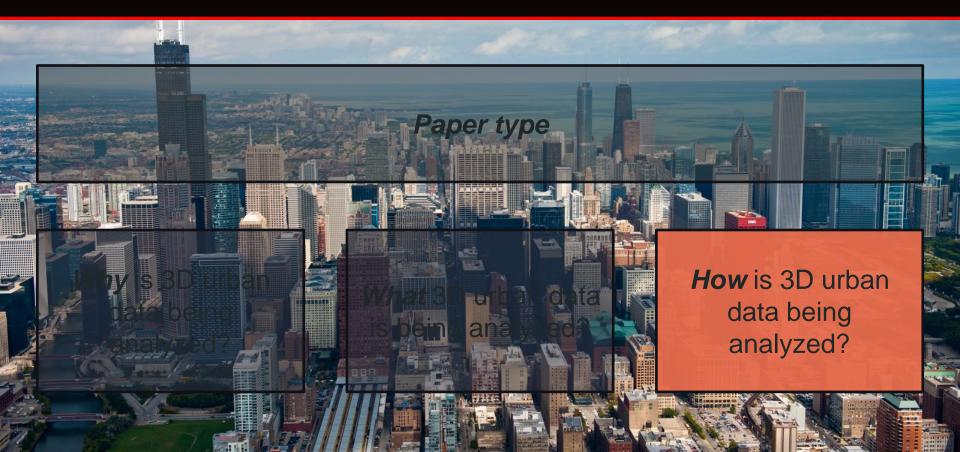

# Survey contributions



- 1. We establish a common characterization that allows us to organize contributions from a multitude of domains, including visualization, architecture, engineering, and urban planning.
- 2. We introduce a comprehensive survey on 3D urban visual analytics, reviewing 175 papers.
- 3. We report a series of research directions and open problems in 3D urban visual analytics.
















MOH



| Paper type                                                 | Visualization<br>contributions<br>System<br>Technique<br>Design study<br>Evaluation    | Domain<br>contributions<br>Data creation<br>Application studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | МΗΥ        | <u>Use cases</u> (7.1)<br>Primary domain<br>cases of the pape | Sunlight access     Wind & ventilation     View impact analysis     Energy modeling     Disaster managemen     Climate     Noise     Property cadastre     Others | Actions that a                  | Browse     Locate     Explore     Identify     Compare            | •                               | (7.3)<br>· Distribution<br>· Trends<br>· Outliers<br>· Extremes<br>· Features<br>imensions (Sec. 7) |
|------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|
| (here)                                                     | Physical data                                                                          | entities (8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Thematic data orig                                            | <u>in</u> (8.2)                                                                                                                                                   | Thematic data pro               | perties (8.3)                                                     | Spatial data scope              | <u>s</u> (8.4)                                                                                      |
| WHAT                                                       | Primary data<br>in the analys                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | How are the them data created                                 | Sensing     Simulation     Derived     Surveyed                                                                                                                   | Properties of the thematic data | Uniform     Semantic     Multivariate     Volumetric     Temporal | Spatial coverage of the dataset | of Micro<br>Meso<br>Macro                                                                           |
|                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                               |                                                                                                                                                                   |                                 |                                                                   | Data d                          | imensions (Sec. 8)                                                                                  |
| Visual encodings (10                                       | 0.1)<br>• Glyphs / streamlir                                                           | And the second s | hematic    | integration (10.2)                                            | Occlusion handling                                                                                                                                                | (10.3)                          | Navigation metho                                                  | <u>ds</u> (10.4)                | Visual analytics s                                                                                  |
| Primary visual<br>encodings used in<br>the visual analysis | Bar / linecharts     Scatterplots     Matrix     Parallel coord.     2D map     3D map | How are th<br>and thema<br>visually int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tic layers |                                                               | How is occlusion<br>handled to suppor<br>the visual analysis                                                                                                      |                                 | Navigation meth<br>used in the visua<br>analysis                  |                                 | How is the integr<br>between visual<br>analytics and mo<br>components                               |
|                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                               |                                                                                                                                                                   |                                 |                                                                   | Visualiza                       | ation & interaction d                                                                               |

41





| <u>System</u> | <u>Technique</u> | Design study | <b>Evaluation</b>    | Data creation | Application study |
|---------------|------------------|--------------|----------------------|---------------|-------------------|
|               | Visualization    |              | Domain contributions |               |                   |

### Paper type



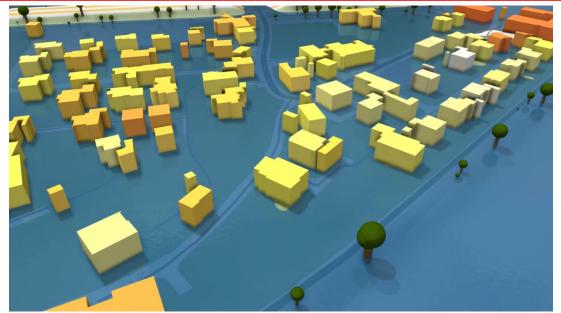
| <u>System</u><br>New infrastructure,<br>framework, or toolkit<br>(27) | Technique<br>New visualization<br>algorithms<br>(16) | Design study<br>New visualization for a<br>particular domain<br>problem<br>(5) | Evaluation<br>Assessing how<br>systems or techniques<br>are used by users<br>(5) | Data creation<br>Methodologies to<br>create new 3D data<br>(13) | Application study<br>Analytical studies using<br>3D urban data<br>(109) |
|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|

Visualization contributions

Domain contributions

### Paper type





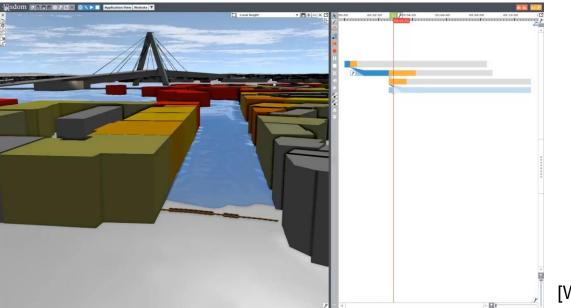

System New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how systems or techniques are used by users Data creation Methodologies to create new 3D data (13)

#### [Doraiswamy et al., 2015]

### Paper type



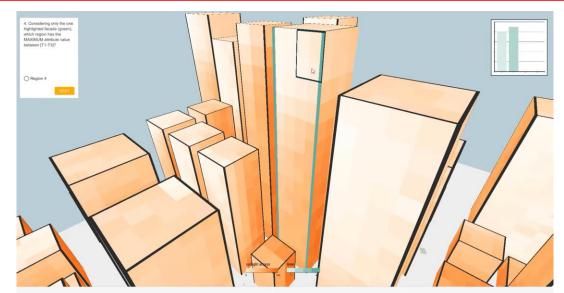



**System** New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how systems or techniques are used by users (5) Data creation Methodologies to create new 3D data (13)

#### [Cornel et al., 2019]

Application study Analytical studies using 3D urban data (109)

45

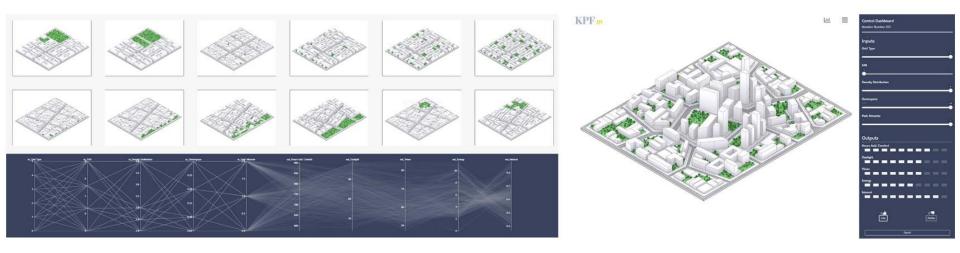





**System** New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how systems or techniques are used by users (5) Data creation Methodologies to create new 3D data (13)

#### [Waser et al., 2014]





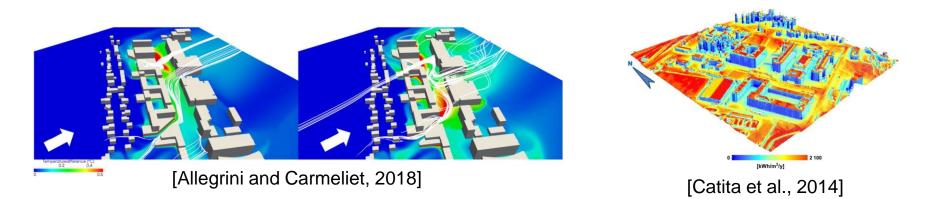

Linked View: multi-viewpoint one location + time interval [task 4]

System New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how systems or techniques are used by users (5) Data creation Methodologies to create new 3D data (13)

#### [Mota et al., 2022]





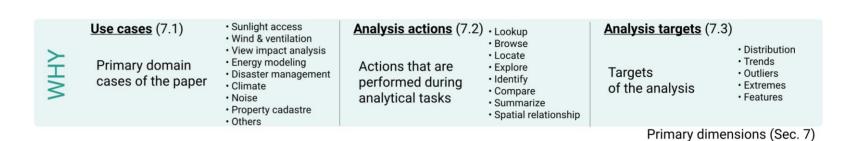

#### [Wilson et al., 2019]

**System** New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how ystems or techniques are used by users

#### Data creation

Methodologies to create new 3D data (13)






**System** New infrastructure, framework, or toolkit (27) Technique New visualization algorithms (16) Design study New visualization for a particular domain problem (5) Evaluation Assessing how ystems or techniques are used by users Data creation Methodologies to create new 3D data (13)

#### **Application study**

Analytical studies using 3D urban data (109)

### Why is 3D urban data being analyzed?



50

Primary domain cases of the paper:

- Sunlight access
- Wind & ventilation
- View impact analysis
- Energy modeling
- Disaster management
- Climate
- Noise
- Property cadastre
- Others





# **Sunlight access:** works that study the impact of the built environment on "right to light" or "right to sunshine."







Sunlight access

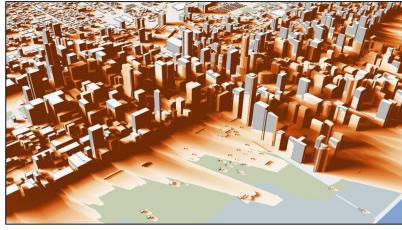
Wind & View impact entilation

Energy modeling Disaster management

Climate Noise

Property cadastre




**Sunlight access:** works that study the impact of the built environment on "right to light" or "right to sunshine."

Total of 39 papers:

- 3 visualization systems
- 3 visualization techniques
- 2 evaluation studies

Why: Use cases

- 5 data creation
- 25 analysis studies



[Miranda et al., 2018]

Sunlight access

Wind & View impact

Energy modeling Disaster management nate Noise

#### 54

Property

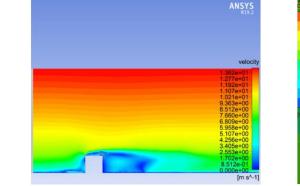
Wind & ventilation: works that study the interplay between built environment and wind.

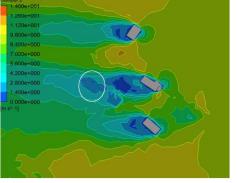
Total of 43 papers:

• 2 data creation

Sunlight

• 41 application studies


Wind &


ventilation

View impact

### [Shiraz et al., 2020]

management



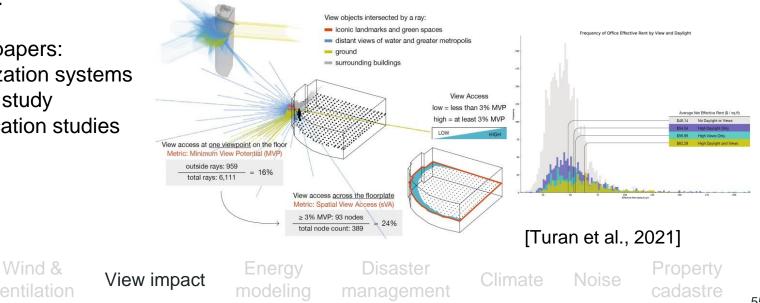


Noise



### Why: Use cases



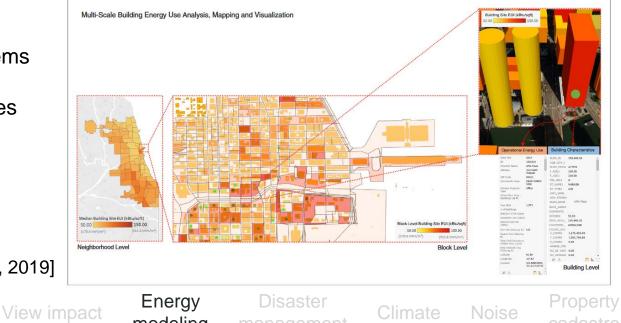

*View impact analysis:* works that use scores computed on the surface of buildings summarizing the visibility of certain geographical features (e.g., landmarks, parks, waterfronts).

Total of 14 papers:

- 3 visualization systems •
- 1 design study •

Sunlight

10 application studies •






### **Urban building energy modeling:** works that model building energy consumption.

Total of 23 papers:

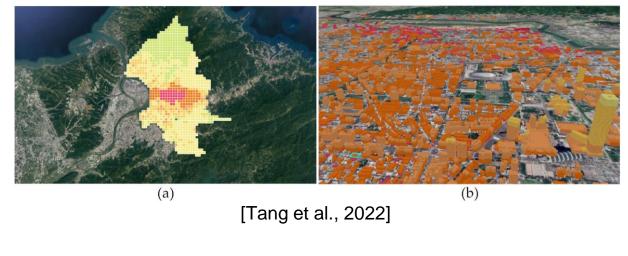
- 2 visualization systems •
- 4 data creation •
- 17 application studies •



### [Abbasabadi et al., 2019]

Sunlight

Wind &


modeling

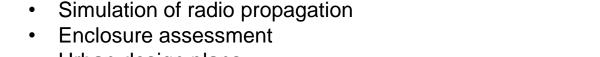


*Noise & sound propagation:* works that focus on the relationship between noise and the built environment.

Total of 8 papers:

- 1 visualization system
- 1 design study
- 6 application studies




Sunlight access

Wind & View impact

Energy modeling Disaster management

nate Noise

Property cadastre



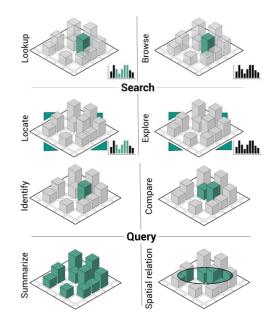
Walkability considering 3D footpath networks

Urban design plans

Why: Use cases

Other works include:

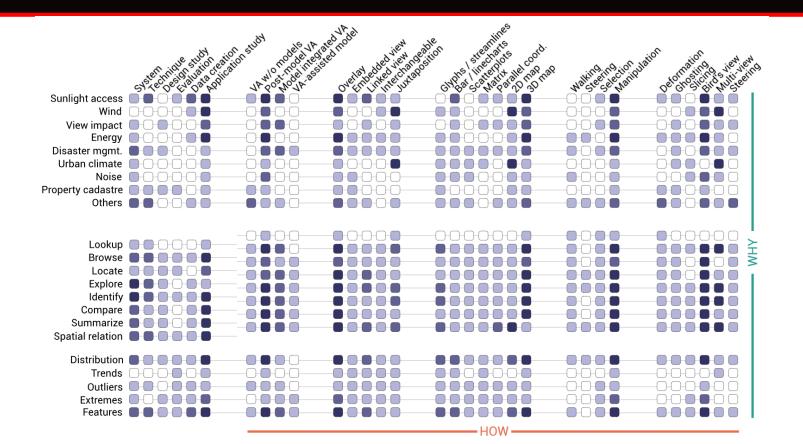
Urban vitality


٠

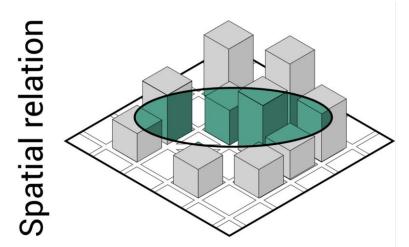
SunlightWind &<br/>accessView impactEnergy<br/>modelingDisaster<br/>managementClimateNoiseProperty<br/>cadastre

#### 59

# Why: Analysis actions


- Actions that are performed during analytical tasks
  - Mid-level (search) actions:
    - Lookup
    - Browse
    - Locate
    - Explore
  - Low-level (query) actions:
    - Identify
    - Compare
    - Summarize
    - Spatial relationship





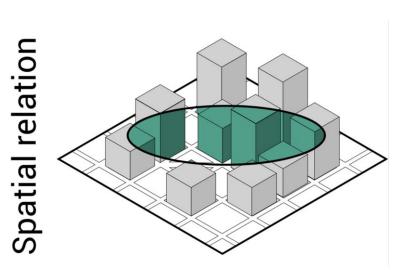

### Why: Analysis actions










# Is the user interested in the relation of spatial properties of a target and its context?


Looked for the use of keywords such as "context", "neighborhood", and "vicinity" in the description of the requirements, methodology, or analysis.

129 surveyed papers mention some type of spatial relationship.

### Why: Analysis queries: Spatial relation







[Ferreira et al., 2015]

Fereira et al. highlighted the need for 3D context models and to explore the view extent over the city.

### What 3D urban data is being analyzed?



| Phy           | sical data entities                 | Thematic data origin (8.2)           |                                   |                              |  |
|---------------|-------------------------------------|--------------------------------------|-----------------------------------|------------------------------|--|
| LYHM Pr<br>in | imary data entities<br>the analysis | • Buildings<br>• Streets<br>• Nature | How are the thematic data created | • Se<br>• Si<br>• De<br>• St |  |

 Sensing Simulation Derived

Surveyed

#### Thematic data properties (8.3)

Properties of the thematic data

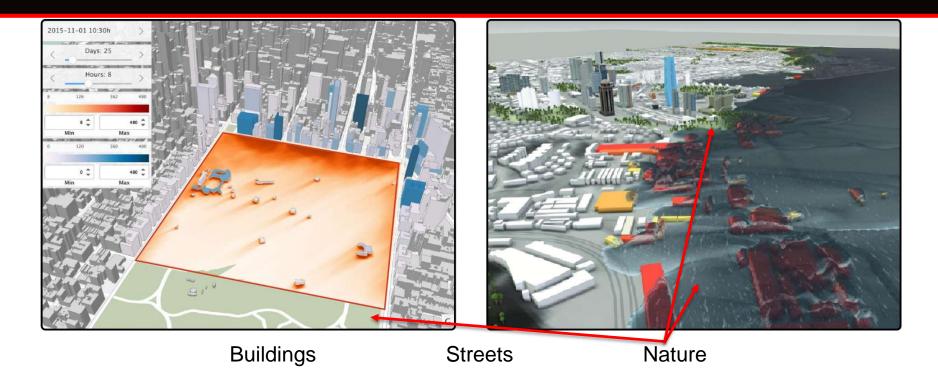
Uniform

Semantic

Multivariate

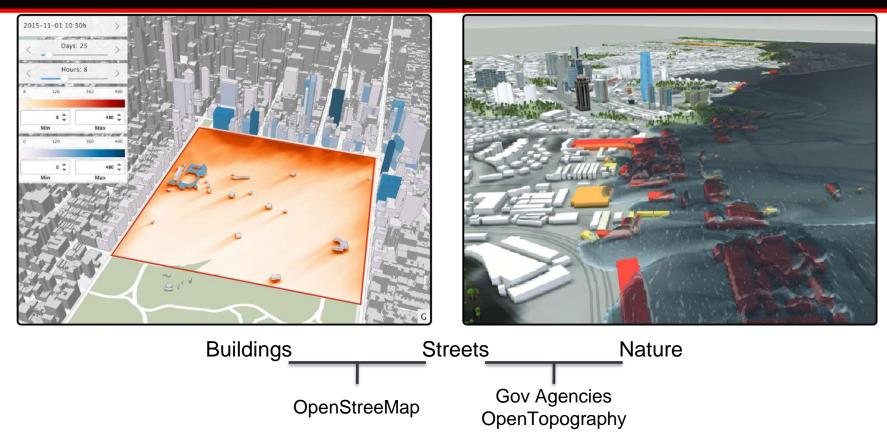
Volumetric

Temporal


#### Spatial data scopes (8.4)

 Micro Spatial coverage of • Meso the dataset Macro

Data dimensions (Sec. 8)


### What: Physical data entities





### What: Physical data entities







Uniform

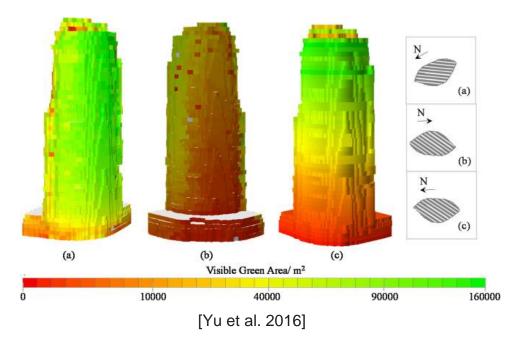
Structural

Volumetric

Temporal

Multivariate




### Uniform

Structural

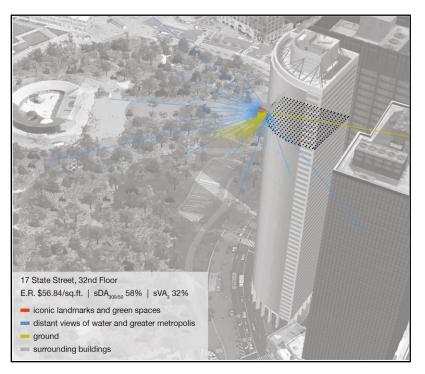
Volumetric

Temporal

Multivariate






### Uniform

Structural

Volumetric

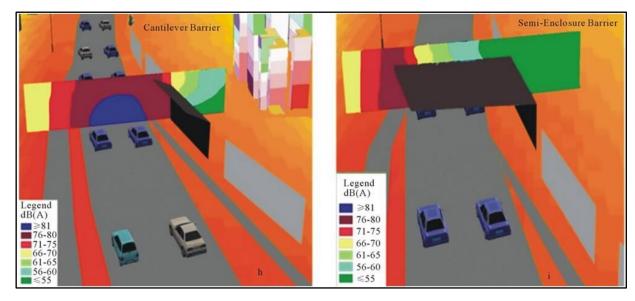
Temporal

Multivariate



[Turan et al. 2021]




### Uniform

Structural

Volumetric

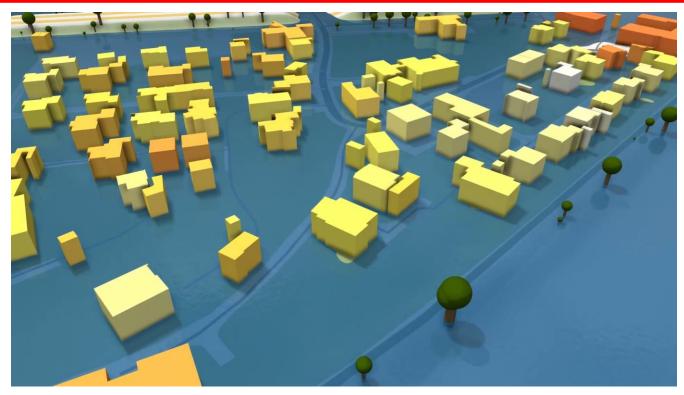
Temporal

**Multivariate** 



[Beran et al. 2021]




### Uniform

Structural

Volumetric

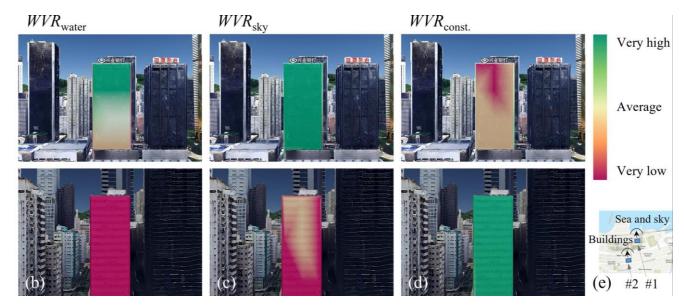
### Temporal

Multivariate



#### [Cornel et al. 2019]




### Uniform

Structural

Volumetric

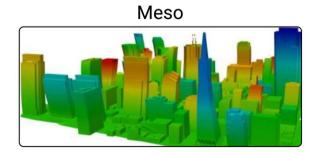
### Temporal

### Multivariate

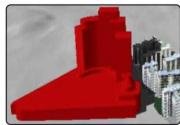


[Li et al. 2022]



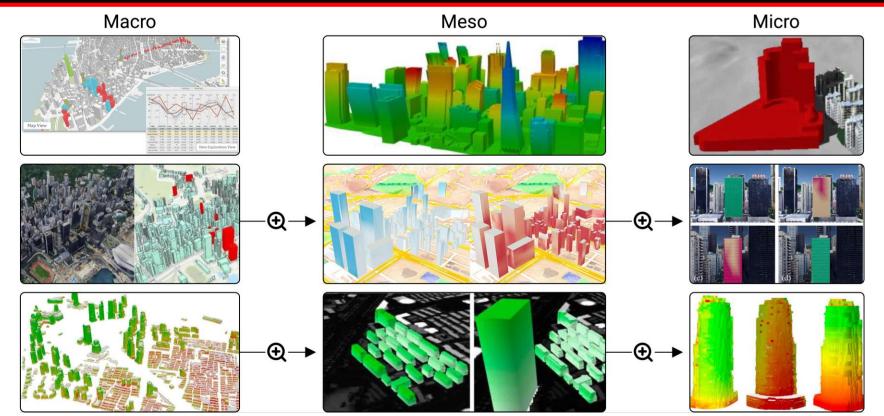

# 48 (~27%) 49 (~28%) 60 (~34%) out of 175 papers out of 175 papers out of 175 papers Volumetric Temporal Multivariate

### What: Spatial data scopes



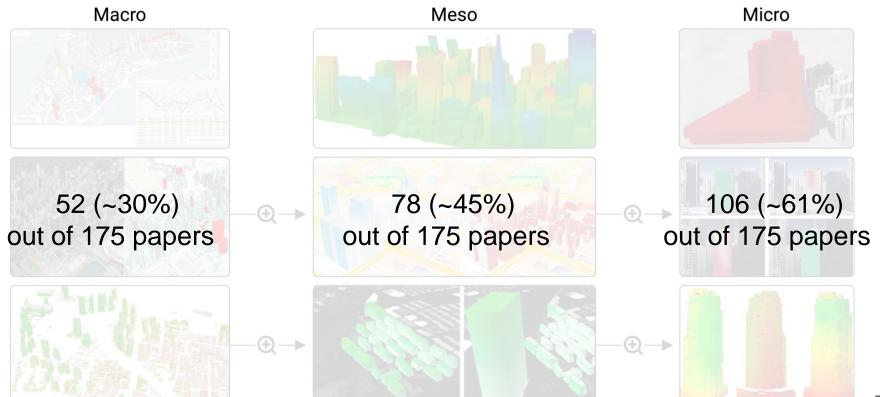

Macro






Micro




#### What: Spatial data scopes



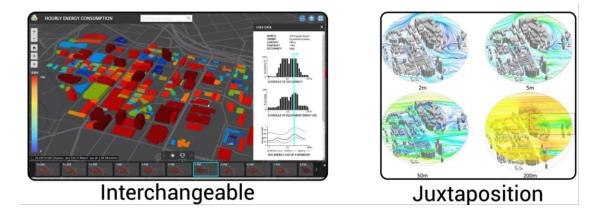


#### What: Spatial data scopes

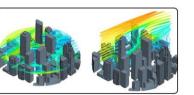




#### *How* is 3D urban data being analyzed?



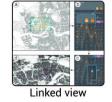

|     | Visual encodings (10.1)                                                                                                                                                                                                  | Physical + thematic integration (10.2)                                                                                                                      | Occlusion handling (10.3)                                                                                                                      | Navigation methods (10.4)                                                                    | Visual analytics systems (10.5)                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| МОН | Primary visual       • Glyphs / streamlines         Primary visual       • Bar / linecharts         encodings used in       • Matrix         the visual analysis       • Parallel coord.         • 2D map       • 3D map | How are the physical<br>and thematic layers<br>visually integrated<br>Superimposition<br>Embedded views<br>Linked views<br>Interchangeable<br>Juxtaposition | How is occlusion<br>handled to support<br>the visual analysis<br>How is occlusion<br>• Biosting<br>• Biofd's view<br>• Slicing<br>• Multi-view | Navigation methods<br>used in the visual<br>analysis<br>Nalking<br>Selection<br>Manipulation | How is the integration<br>between visual<br>analytics and model<br>components<br>·VA w/o models<br>·Post-model VA<br>·Model integrated VA<br>·VA-assisted model |

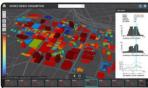

Visualization & interaction dimensions (Sec. 10)

### *How:* Physical & Thematic Visual Integration





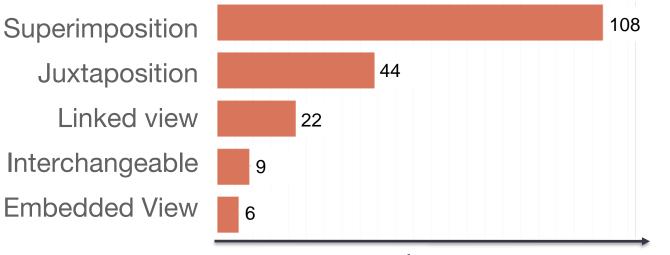

# **How:** Physical & Thematic Visual Integration




Superimposition



Embedded view






Interchangeable



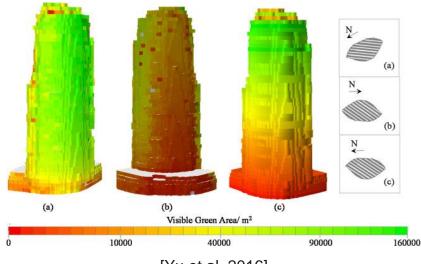
Juxtaposition





- Spatial Encodings
  - Mapping onto surfaces
  - 3D representations
- Non-spatial Encodings
  - Line graphs
  - Bar Charts
  - Scatterplots
  - Parallel Coordinates
  - SPLOMs



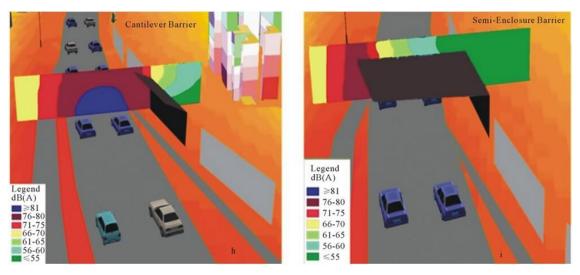

- Spatial Encodings
  - Mapping onto surfaces
  - o 3D representations
- Non-spatial Encodings
  - o Line graphs
  - o Bar Charts
  - o Scatterplots
  - o Parallel Coordinates
  - o SPLOMs



[Cornel et al. 2019]

 $\star$   $\star$   $\star$ 

- Spatial Encodings
  - Mapping onto surfaces
  - o 3D representations
- Non-spatial Encodings
  - o Line graphs
  - o Bar Charts
  - o Scatterplots
  - o Parallel Coordinates
  - o SPLOMs

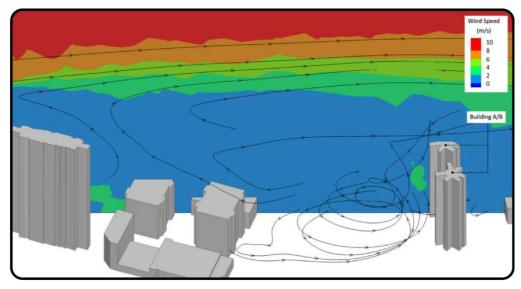



[Yu et al. 2016]



#### • Spatial Encodings

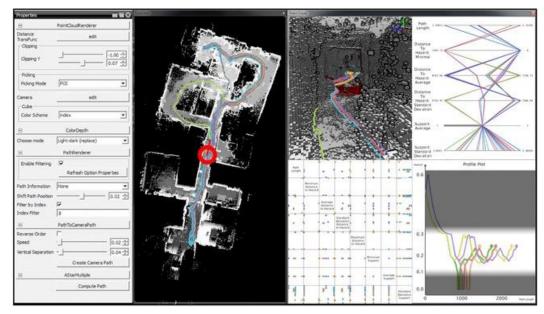
- Mapping onto surfaces
- 3D representations
- Non-spatial Encodings
  - o Line graphs
  - o Bar Charts
  - o Scatterplots
  - o Parallel Coordinates
  - o SPLOMs




[Beran et al. 2022]

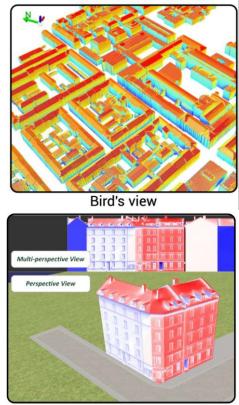


#### • Spatial Encodings

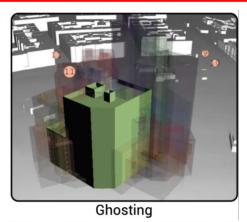

- o Mapping onto surfaces
- 3D representations
- Non-spatial Encodings
  - o Line graphs
  - o Bar Charts
  - o Scatterplots
  - o Parallel Coordinates
  - o SPLOMs

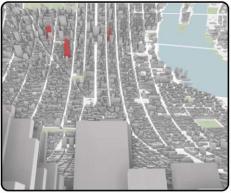


[Zhang et al. 2021]

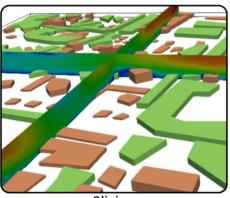



- Spatial Encodings
  - Mapping onto surfaces
  - o 3D representations
- Non-spatial Encodings
  - Line graphs
  - Bar Charts
  - Scatterplots
  - Parallel Coordinates
  - SPLOMs

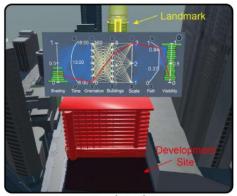




[Bock et al. 2016]

#### *How:* Occlusion Handling



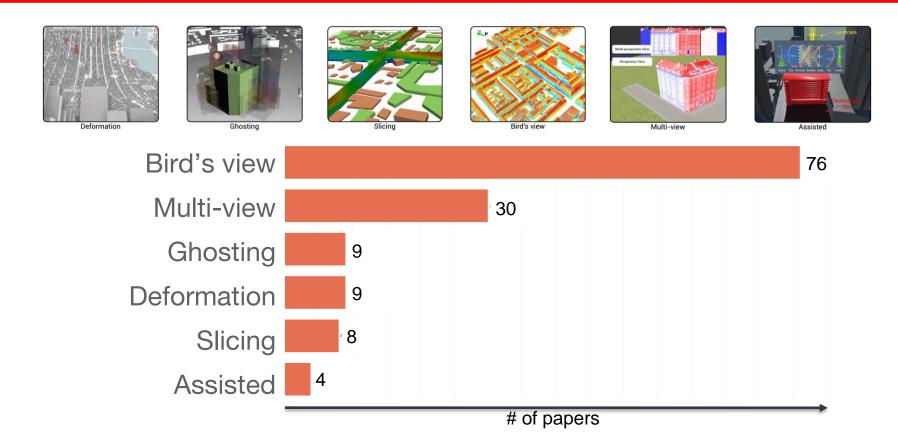

Multi-view






Deformation




Slicing



Assisted

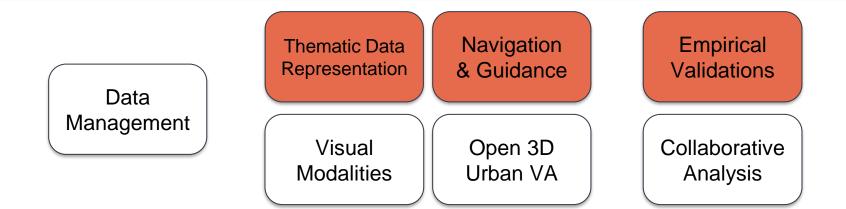
#### *How:* Occlusion Handling





## Research Challenges






| Data       | Thematic Data  | Navigation | Empirical     |
|------------|----------------|------------|---------------|
|            | Representation | & Guidance | Validations   |
| Management | Visual         | Open 3D    | Collaborative |
|            | Modalities     | Urban VA   | Analysis      |

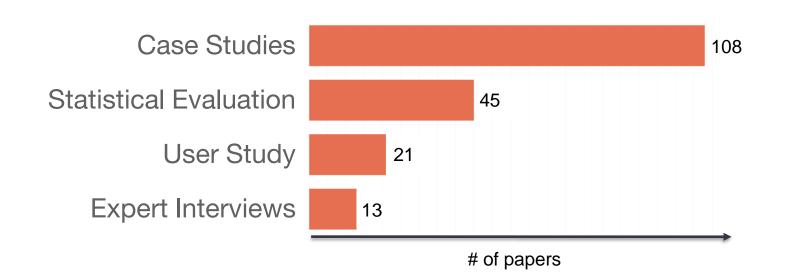
#### Research Challenges





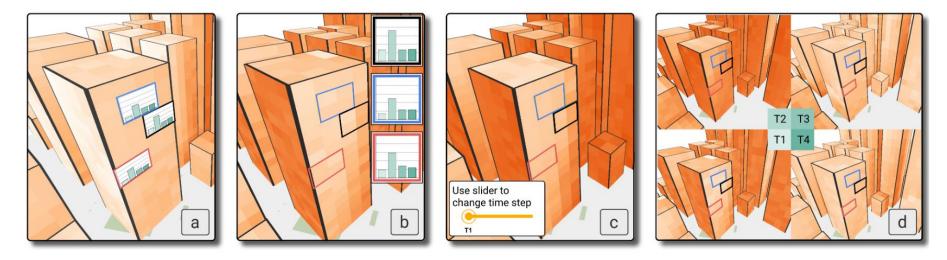


#### Empirical Validations of Visual Designs






"3D geovisualization is essential in urban planning as it assists the analysis of geospatial data and decision making in the design and development of land use and built environment. However, we noted that 3D geospatial models are commonly visualized arbitrarily as current 3D viewers often lack of design instructions to assist end users."


[Neuville et al. 2019]

## **Empirical Validations of Visual Designs**



### Empirical Validations of Visual Designs





[Mota et al., 2022]





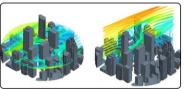
#### 3D Urban data is often complex





#### 3D Urban data is often complex



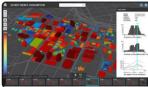

#### Furthermore, often include uncertainty



#### 3D Urban data is often complex



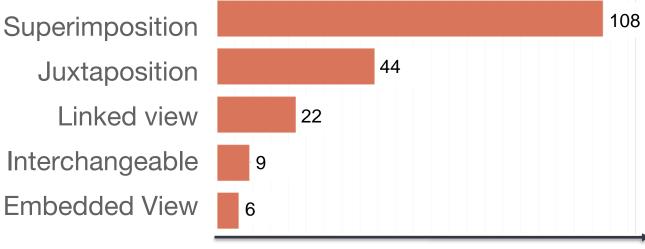
Furthermore, often include uncertainty and analyzed at multiple scales




Superimposition



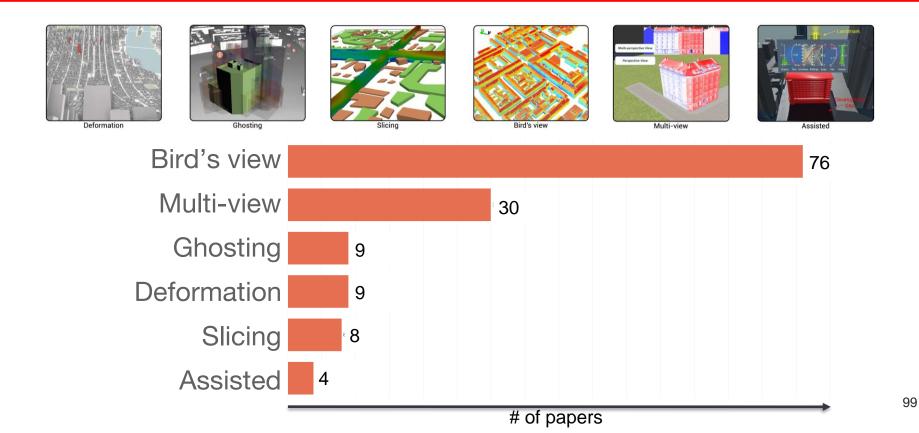
Embedded view






Interchangeable




Juxtaposition



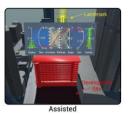
# of papers



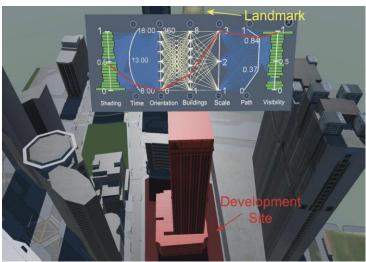

















eformation



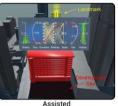
#### View Selection Criteria

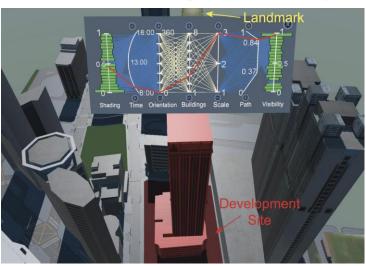
- Camera Target Distance
- Camera Obstruction
- View Occlusion

[Zhang et al., 2021]

















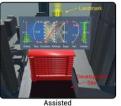

View Selection Criteria

- Camera Target Distance
- Camera Obstruction
- View Occlusion

Does not take the thematic data into account

[Zhang et al., 2021]



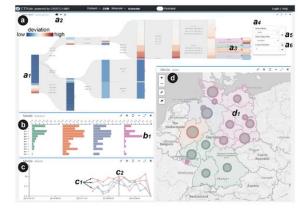










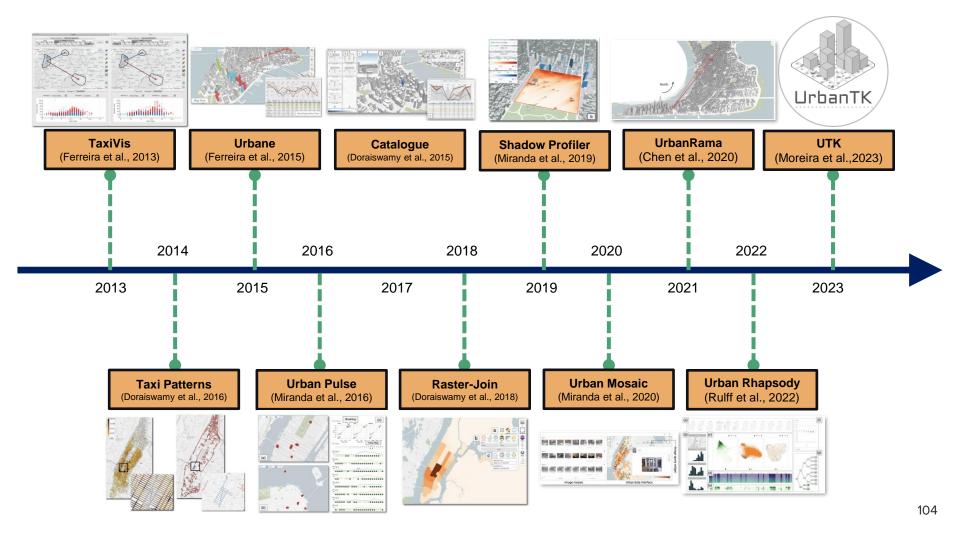






[Doraiswamy et al., 2014]



[Valdivia et al., 2015]




[Liu et al., 2018]





- 3D Urban visual analytics is important tool with large potential of real impact in many domains.
- A plethora of research opportunities
  - Large visual design space.
  - Lack of (open) toolkits.
  - Gap between vis researchers and domain experts.



#### The State of the Art in Visual Analytics for 3D Urban Data

OME WIZARD

#### About

This is a companion website for our survey paper on visual analytics for 3D urban data

Authors: <u>Fabio Miranda, Thomas Ortner</u>, Gustavo Moreira, <u>Maryam Hosseini, Milena Vuckovic,</u> <u>Filip Biljecki, Claudio T. Silva, Marcos Lage, Nivan Ferreira</u>

Urbanization has amplified the importance of three-dimensional structures in urban environments for a wide range of phenomena that are of significant interest to diverse stakeholders. With the growing availability of 3D urban data, numerous studies have focused on developing visual analysis techniques tailored to the unique characteristics of urban environments. However, incorporating the third dimension into visual analytics introduces additional challenges in designing effective visual tools to tackle urban data's diverse complexities. In this paper, we present a survey on visual analytics of 3D urban data. Our work characterizes published works along three main dimensions (why, what, and how), considering use cases, analysis tasks, data, visualizations, and interactions. We provide a fine-grained categorization of published works from visualization journals and conferences, as well as from a myriad of urban domains, including urban planning, architecture, and engineering. By incorporating perspectives from both urban and visualization experts, we identify literature gaps, molivate visualization researchers to understand challenges and opportunities, and indicate future research directions.

Use our wizard to browse through a corpus of more than 150 papers covering a period of more than ten years and almost 20 venues.

Feel free to get in touch if you have any questions or comments.

#### **Use the Wizard**

Use the <u>wizard tab</u> to navigate and filter the surveyed papers. We summarize previous visualization and domain-specific contributions using an interrogative method that categorize the papers concerning three questions:

Why is 3D urban data being analyzed What data is being analyzed How it is being analyzed

#### **Read the Survey**

The State of the Art in Visual Analytics for 3D Urban Data Fabio Miranda, Thomas Ortner, Gustavo Moreira, Maryam Hosseini, Milena Vuckovic, Filip Biljecki, Claudio T. Silva, Marcos Lage, Nivan Ferreira Computer Graphics Forum (EuroVis 2024)



Copyright © 2016-2019 The Visualization Design Lab. All content on this website is licensed under the

Creative Commons Attribution license (CC BY). Copyright of the linked publications is with the publishers. Website based on the companion website Multivariate Network Visualization Techniques by the Visualization 1





# The State of the Art in Visual Analytics for 3D Urban Data

<u>Fabio Miranda</u>, Thomas Ortner, Gustavo Moreira, Maryam Hosseini, Milena Vuckovic, Filip Biljecki, Claudio Silva, Marcos Lage, <u>Nivan Ferreira</u>

