Algorithms on Strings, Trees,
and Sequences

COMPUTER SCIENCE AND COMPUTATIONAL
BIOLOGY

Dan Gusfield

Universityof California, Davis

E® CAMBRIDGE

&% UNIVERSITY PRESS

Contents

Preface

Exact String Matching: The Fundamental String Problem

1 Exact Matching: Fundamental Preprocessingnd First Algorithms

11
1.2
1.3
1.4
1.5
1.6

The naivemethod

The preprocessingpproach

Fundamental preprocessinf the pattern
Fundamental preprocessimglineartime

The simplestlinear-time exactmatching algorithm
Exercises

2 Exact Matching: Classical ComparisonBased Methods

2.1
2.2
2.3
24
2.5

Introduction

The Boyer—Moore Algorithm
The Knuth-Morris-Prattalgorithm
Realtime string matching
Exercises

3 Exact Matching: A DeeperLook at ClassicalMethods

3.1
3.2
3.3
3.4
3.5
3.6
3.7

A Boyer-Moore variantwith a*simplée* lineartime bound
Cole'slinear worst-casebound forBoyer-Moore
Theoriginal preprocessingor Knuth-Momis-Pratt
Exactmatching witha setof patterns

Threeapplications okxactset matching
Regularexpressiorpattern matching

Exercises

4 Seminumerical StringMatching

4.1
4.2
4.3
4.4
4.5

Arithmetic versugomparisorbased methods

The Shift-And method

The matchcountproblemandFastFourier Transform
Karp-Rabin fingerprint methods foexactmatch
Exercises

Xiii

— O 00 =1 ON Ln

o p—

16
16
23
27
29

35

35
39
48
52
61
65
67

70

70
70
73
77
84

8.10
8.11

CONTENTS

For the puristshow to avoid bit-level operations
Exercises

9 More Applications of Suffix Trees

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Longesttommonextensiona bridgeto inexactmatching
Findingall maximal palindromesn linear time
Exactmatchingwith wild cards

Thek-mismatchproblem

Approximatepalindromes andepeats

Fastermethoddor tandemrepeats

A lineartime solutionto the multiple commonsubstringproblem
Exercises

IITInexact Matching, SequenceAlignment, Dynamic Programming

10 The Importance of (Sub)sequenc€omparisonin Molecular Biology

11 Core String Edits, Alignments,and Dynamic Programming

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9

Introduction

Theeditdistancebetweentwo strings
Dynamicprogramming calculatioof editdistance
Edit graphs

Weightededit distance

String similarity

Local alignment:finding substring®f high similarity
Gaps

Exercises

12 Refining Core String Edits and Alignments

12.1
122
123
124
125
12.6
127
12.8

Computingalignmentsin only linear space

Fasteralgorithmswhen thenumberof differences aréounded
Exclusionmethodsfastexpectedunningtime

Yet moresuffixtreesand morehybrid dynamicprogramming

A faster(combinatorial) algorithmfor longestcommonsubsequence
Convexgap weights

The FourRussianspeedup

Exercises

e T T
13 Extendingthe Core Problems

13.1
13.2
13.3
134

Parametricsequence alignment
Computingsuboptimal alignments
Chaining diverse localignments
Exercises

14 Multiple String Comparison- The Holy Grall

14.1
14.2
143

Why multiple string comparison?
Threebig-picturé' biological usesfor multiple string comparison
Family andsuperfamilyrepresentation

192
193

196

196
197
199
200
201
202
205
207

209
212
215

215
215
217
223
224
225
230
235
245

254

254
259
270
279
287
293
302
308

312

312
321
325
329

332

332
335
336

viii

CONTENTS

Il Suffix Tees and Their Uses

5 Introduction to Suffix Trees

5.1
52
5.3
5.4

A short history

Basic definitions

A motivatingexample

A naivealgorithm tobuild asuffix tree

6 Linear-Time Construction of Suffix Trees

6.1
6.2
6.3
6.4
6.5
6.6

Ukkonen's lineatime suffix treealgorithm
Weiner'slinear-time suffix tree algorithm
McCreight'ssuffix treealgorithm
Generalizedsuffix treefor a setof strings
Practicalimplementation issues
Exercises

7 First Applications of Suffix Trees

7.1
72
7.3
7.4
75
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.7
7.18
7.19
7.20

APL 1: Exactstring matching

APL2: Suffix treesandthe exactet matching problem
APL3: Thesubstring problem foa databasef patterns
APL4: Longestcommonsubstringof two strings

APLS5: RecognizingDNA contamination

APL6: Commonsubstringf morethantwo strings

APL7: Building asmallerdirected graphior exact matching
APLS: A reverserole for suffix treesandmajor space reduction
APL9: Space-efficient longest commanbstring algorithm
APL10: All-pairs suffix-prefix matching

Introductionto repetitive structures molecular strings
APL11: Findingall maximalrepetitive structurem lineartime
APL12: Circularstringlinearization

APL13: Suffix arrays- morespacereduction

APL14: Suffix treesin genome-scal@rojects

APL15: A Boyer—Moore approacho exact setmatching
APL16: Ziv—Lempeldata compression

APL17: Minimum lengthencodingof DNA

Additional applications

Exercises

8 ConstantTime Lowest Common AncestoiRetrieval

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
8.9

Introduction

The assumed machimeodel
Completebinary trees: a very simple case
How to solvelca queriesin 13

First stepsn mapping7 to B

The mappingof 7 to B

Thelineartime preprocessingf 7
Answeringan Ica queryin constantime
The binarytreeis only conceptual

87
89

90
90
91
93

94

94
107
115
116
116
119

122

122
123
124
125
125
127
129
132
135
135
138
143
148
149
156
157
164
167
168
168

181

181
182
182
183
184
186
188
189
191

CONTENTS

17 Strings and Evolutionary Trees

17.1 Ultrametric treesand ultrametric distances

17.2 Additive-distancetrees

17.3 Parsimony: charac tdrasedevolutionaryreconstruction

174 Thecentrality of theultrametricproblem

17.5 Maximum parsimonySteinertreesandperfectphylogeny
17.6 Phylogenetialignment,again

17.7 Connectiondetween multipl@lignment andreeconstruction
17.8 Exercises

18 Three Short Topics

18.1 MatchingDNA to protein with frameshifterrors

18.2 Geneprediction

18.3 Molecularcomputationcomputingwith (not aboutDNA strings
18.4 Exercises

19 Modelsof GenomelLevel Mutations

19.1 Introduction
19.2 Genome rearrangememsth inversions
19.3 Signedinversions
19.4 Exercises
Epilogue- where next?
Bibliography
Glossary
Index

447

449
456
458
466
470
471
474
475

480

480
482
485
490

492

492
493
498
499
501
505
524
530

14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11

CONTENTS

Multiple sequence comparison for structural inference
Introductionto computing multiple string alignments

Multiple alignmentwith the sum-of-pairs(SP)objective function
Multiple alignmentwith consensus objective functions
Multiple alignmentto a (phylogenetic) tree

Commentn boundederror approximations

Common multiple alignment methods

Exercises

15 Sequence Databasesd Their Uses- The Mother Lode

15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12

Successtoriesof database search

Thedatabase industry

Algorithmic issuesn database search

Realsequence database search

FASTA

BLAST

PAM: the first major amino acid substitution matrices
PROSITE

BLOCKSandBLOSUM

The BLOSUM substitution matrices

Additional considerationfor database searching
Exercises

IV Currents, Cousins,and Cameos

16 Maps, Mapping, Sequencingand Superstrings

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19

A look atsomeDNA mapping andequencingroblems
Mapping andhe genome project

Physical versus genetic maps

Physical mapping

Physical mapping: ST8ontent mapping and ordered clone libraries
Physical mapping: radiatielybrid mapping

Physical mapping: fingerprintingr generalmapconstruction
Computing the tightest layout

Physical mapping: last comments

An introductionto mapalignment

Largescale sequencing and sequence assembly
Directed sequencing

Top-down, bottomup sequencingthe pictureusing YACs
ShotgurDNA sequencing

Sequence assembly

Final commentson top-down, bottoraup sequencing
Theshortest superstring problem

Sequencindpy hybridization

Exercises

341
342
343
351
354
358
359
366

370

370
373
375
376
377
379
381
385
385
386
387
391

393
395

395
395
396
398
398
401
406
407
411
412
415
415
416
420
420
424
425
437
442

Preface

History and motivation

Although | didn't know it at the time, | beganwriting this bookin the summerof 1988
whenl waspartof acomputersciencdearly bioinformatics)esearctgroupat theHuman
GenomeCenterof LawrenceBerkeley Laboratory.'Our group followed the standard
assumptiorthatbiologically meaningful resultsould comefrom consideringDNA asa
one-dimensional character stringbstracting away theeality of DNA asa flexiblethree
dimensional moleculanteractingin a dynamicenvironmentwith protein and RNA, and
repeatinglife-cyclein whicheventhe classidinearchromosomexists for onlya fraction
of thetime. Asimilar, but strongem@ssumptiorexistedfor protein,holding,for example,
that all the information neededor correctthreedimensional foldings containedin the
proteinsequencétself, essentiallyindependenbf the biologicalenvironment therotein
lives in. This assumptiorhasrecentlybeenmodified, but remainslargely intact[297].

For nonbiologists, thedevo assumptions wer@nd remainpgod sendallowing rapid
entry intoan exciting andimportantfield. Reinforcing the importancef sequencéevel
investigationwerestatementsuchas:

The digital informationthat underliesbiochemistry, celbiology,and development caoe
representedy a simple stringof G's, A's, T's andC's. This stringis the rootdatastructure
of anorganism'shiology. [352]

and

In avery realsensemolecularbiology isall aboutsequencesirst,it triesto reduce complex
biochemicaphenomen#o interactiondetweerdefined sequences. .[449]

and

The ultimaterationale behind alburposefuktructuresand behavioof Living thingsis em
bodiedin the sequencef residuesf nascenpolypeptidechains.. . In a real senset is at
this levelof organizationthatthe secretf life (if thereis one)is to befound.[330]

Sowithout worrying muchaboutthemore difficultchemicaland biologicahspectof
DNA and protein,our computersciencegroupwas empoweretb considera variety of
biologically importanfproblemsdefinedprimarily on sequencesyr (morein the computer
science vernacular) osrrings: reconstructinglong stringsof DNA from overlapping
string fragments; determininghysical andyeneticmapsfrom probe dataindervarious
experimental protocols; storinggtrieving,andcomparingDNA strings; comparingwo
or more stringsfor similarities; searchingdatabases$or related stringsand substrings;
defining and exploring differentnotionsof string relationships; lookingor new or ill-
definedpatterns occurring frequently DNA; looking for structuralpatternsn DNA and

' The other long-term members wereWilliam Chang, Gene Lawler, Dalit Naor.and Frank Olken.

Xiii

PREFACE XV

ence, althouglt wasanactivearea forstatisticiansandmathematicians (notablyichael
WatermarandDavid Sankoffwhohave largelfframedthe field). Earlyon, seminal papers
on computationaissuesin biology (suchastheoneby Buneman[83])did notappear in
mainstream computer sciengenuesbut in obscureplaces suclasconferencesn corn
putationalarcheology{226]. But seventeertyears later, computational biologgyhot, and
manycomputerscientistaarenow entering the (nownorehectic, more competitivejeld
[280]. What shouldheylearn?

The problemis that theemergingdfield of computationamoleculariology is notwell
definedandits definition is made morelifficult by rapid changesn molecular biology
itself. Still, algorithmsthatoperateon molecularsequence dat@trings)areat the heart
of computational moleculdriology. The big-picture questionn computationaimolecu
lar biology ishow to "do" as much’real biology" as possible byexploiting molecular
sequencelata(DNA, RNA, andprotein).Getting sequence datsrelatively cheap and
fast(and gettingnoreso) comparetb moretraditionallaboratory investigation§heuse
of sequence datis alreadycentralin severalsubareas ofmolecularbiology andthe full
impactof havingextensivesequence data igetto be seenHence, algorithms thatper
ate on stringsvill continueto be theareaof closestintersectionandinteractionbetween
computerscienceandmolecularbiology. Certainly thencomputerscientistsneedto learn
thestringtechniqueghathave been most successfudpplied.But thatis notenough.

Computerscientists needb learnfundamental ideamndtechniques thaill endure
long aftertoday'scentralmotivating applicationareforgotten. Theyneedto study meth
odsthat preparethemto frame andtacklefuture problemsand applicationsSignificant
contributionsto computationalbiology might be madeby extending oradaptingalgo-
rithmsfrom computerscience evenwhenthe original algorithm haso clear utility in
biology. This is illustrated by several recent sublineime approximatenatching meth
ods for databassearchingthat rely on aninterplay betweerexact matchingmethods
from computerscienceand dynamigrogrammingnethodsalready utilized irmolecular
biology.

Therefore thecomputer scientisvhowantsto enterthe generafield of computational
molecularbiology,andwholearns string algorithmasith thatendin mind,should receive a
training instring algorithmghatis muchbroaderthana tour through technique$ known
presentapplication, Moleculamiology andcomputerscienceare changingmuch too
rapidly for thatkind of narrowapproachMoreover, theoretical computscientistary to
develop effective algorithms somewfikfferently thanotheralgorithmists.Werely more
heavily on correctness proofs, worstse analysis, lowdyoundargumentsrandomized
algorithmanalysis, andboundecapproximatiorresults (amongther techniquegpguide
thedevelopmenbof practical,effectivealgorithms,Our ' relative advantagepartly liesin
themastery andise ofthoseskills.S oevenif | wereto write abookfor computer scientists
who only wantto docomputationabiology, | would still choose tancludea broadrange
of algorithmictechniquedrom pure computescience.

In this book,| covera wide spectrumof string techniques- well beyond thoseof
establishedutility; however,| haveselectedrom themany possibléllustrations, those
techniqueshat seento havethegreatestpotential applicatiamfuture moleculabiology.
Potential application, particularbf ideasratherthan ofconcretemethodsandto antici
pated ratherthan toexisting problems ia matteiof judgmentand speculationNo doubt,
someof the materialcontainedin this bookwill neverfind directapplication inbiology,
while othermaterialwill find usesin surprising waysCertainstring algorithms thatvere
generallydeemedto be irrelevantto biology just a few yearsagohavebecomeadopted

Xiv PREFACE

protein; determiningecondary (twalimensional)structureof RNA; finding conserved,
but faint, patterngn manyDNA andproteinsequencesgsndmore.

Weorganizedurefforts intotwo high-level tasks. First, waeededo learn the relevant
biology,laboratory protocolsandexistingalgorithmicmethodsisedby biologists Second
we soughtto canvass theomputer scienckterature forideasandalgorithmsthatweren't
alreadyusedby biologists,but which might plausiblybe of useeitherin currentproblems
or in problemsthat we could anticipatearising whenvastquantitiesof sequencedNA
or protein become available.

Our problem

None ofuswas arexperton string algorithmsAt that pointl had a textbooknowledge of
Knuth-Morris-Pratt and @eepconfusionaboutBoyer-Moore(under what circumstances
it was a linear timealgorithm andhow to do strong preprocessingn linear time). |
understoodthe use of dynamic programmingo compute editdistance,but otherwise
hadlittle exposureto specificstring algorithmsn biology. My generalbackground was
in combinatorialoptimization,althoughl had aprior interest inalgorithmsfor building
evolutionarytreesandhadstudiedsomegeneticandmolecular biologyin orderto pursue
thatinterest.

What weneeded thenbut didn't have wasa comprehensiveohesivetext on string
algorithmsto guide our education.There were atthat time severalcomputerscience
texts containing @hapter or two on strings,usually devoted ta rigoroustreatmentof
Knuth-Morris-Pratt and @ursory treatmemf Boyer~Moore,andpossiblyanelementary
discussionof matching witherrors. Therewere alsassomegood survey papersthat had
a somewhat widescopebut didn't treat theirtopics in muchdepth.Therewereseveral
textsand editedvolumes fromthe biological sideon useof computers and algorithms
for sequenceanalysisSomeof thesewere wonderfulin exposingthe potential benefits
andthe pitfalls ofusingcomputersn biology, but they generallyackedalgorithmicrigor
andcoveredanarrowrangeof techniquesFinally, there was theeminal texfime Warps,
String Edits, and Macromolecules: The Theory und Practice of SequenceComnparison
editedby D. SankoffandJ. Kruskal, whichservedasa bridge betweenalgorithmsand
biology and containeananyapplicationsof dynamicprogramming.However, ittoo was
muchnarrowerthanourfocus and wasa bitdated.

Moreover, mostof the available sourcefrom either communityfocusedon string
matching, the problemof searchingfor an exactor "nearly exact copy of a patternin
a given text. Matching problems are centrddut asdetailedin this book, they constitute
only apartof the manyimportantcomputationalproblemsdefined onstrings.Thus,we
recognizedhatsummera needor arigorous andundamentalreatmentof the general
topic of algorithms thatoperateon strings,along with a rigoroustreatmentof specific
string algorithmof greatesturrentandpotentialimportin computationabiology. This
bookis anattemptto providesuchadual,andintegrated, treatment.

Why mix computer scienceand computational
biology in one book?

My interestin computational biologybeganin 1980,when| startedreadingpapers on
building evolutionarytrees.Thatsideinterestallowed me anoccasionakscape fronthe
hectic, hypecompetitive'hot" topicsthat theoreticatomputersciencdocuseson. At that
point, computationamolecular biologywas aargely undiscoveredreafor computersci-

PREFACE XVil

rithm will makethoseimportant methodsiore available andiidely understoodl connect
theoretical resulttlom computerscience orsublineafstime algorithmswith widely used
methodgor biological database search. thediscussiorof multiple sequence alignment
| bring togetherthe three major objectivefunctionsthat havebeenproposedfor multi-
ple alignmentandshow acontinuity between approximation algorithnigr those three
multiple alignmentproblems. Similarlythechapter orevolutionary treeonstructionex-
poses theommonalityof severadistinctproblemsand solutionsin away thatis not well
known.Throughouthebook,| discussnanycomputational problentoncerningepeated
substringga very widespread phenomenaon DNA). | consider severalifferent ways
to define repeatedubstringsand useeachspecificdefinition to explorecomputational
problemsandalgorithmson repeatedubstrings.

In the book try to explainin completedetail, andata reasonablpace,manycomplex
methodsthat have previously beenwritten exclusivelyfor the specialist irstring algo-
rithms. | avoid detaileccode,asl find it rarely servesto explain interestingdeas,® and
| provide over 400exerciseso both reinforcethe materialof the bookand todevelop
additionaltopics.

What the book is not

Let me stateclearly what the bookis not. It is not a completetext on computational
molecularbiology, sincel believe thafield concerns computatiors objects othethan
strings, treesandsequencesStill, computationn strings andgequence®rm the heart
of computationaimolecular biology, anthe book providea deepandwide treatment of
sequenceriented computationddiology. Thebook is alsaotahow td* bookon string
and sequenceanalysis.There are several books availabl&at surveyspecific computer
packagesjatabase@ndserviceswhile alsogiving ageneraideaof howthey work. This
book, withits emphasion ideasandalgorithms, doesiot competewith those.Finally,
at the otherextreme, thébook doesnot attempt adefinitive historyof the field of string
algorithms andts contributors.The literatureis vast, with manyrepeatedjndependent
discoveriesgontroversiesand conflicts] havemade some historicabmmentsandhave
pointedthereaderto whatl hopearehelpful referencedyut! ammuchtoo newanarrival
and not nearly braveenoughto attempta complete taxonomgf thefield. | apologizein
advancetherefore to the manypeoplewhosework maynot beproperlyrecognized.

In summary

This bookis a general rigoroustext on deterministic algorithms thatperateon strings,
trees,andsequencedt covers thdull spectrumof string algorithmdrom classical com
puterscienceto modernmolecularbiology and, when appropriate connectshosetwo
fields. Itis thebook | wished| had availablewhen| beganlearningabout string algo
rithms.

Acknowledgments

| wouldlike to thankTheDepartmenbf EnergyHumanGenomeProgram,TheLawrence
Berkeley Laboratoryl heNationalScience Foundatioffhe Progranm Math andMolec-

3 However, mary of the algorithms in the book have beencodedin C and are available at
http://wwwesif.cs.ucdavis.edu/ gusfield/strpgms.html.

XVi PREFACE

by practicing biologists in both large-scale projeatsiin narrowertechnicalproblems.
Techniques previouslgismissedoecausehey originally addressedexact)string prob-
lemswhere perfectdata wereassumechave been incorporatess componentsof more
robusttechniques thatandleimperfectdata.

What the book is

Followingthe abovediscussion, thibookis a generalpurposerigoroustreatmenbf the
entirefield of deterministic algorithmshat operateon stringsand sequencesMany of
those algorithms utilizéreesasdatastructuresor arisein biological problemsrelated to
evolutionary treeshence the inclusioaof "tree$' in thetitle.

Themodelreadelis aresearcHevel professionaln computerscienceor agraduate or
advanced undergraduagidentin computer sciencalthoughtherearemanybiologists
(andof coursemathematiciansyvith sufficient algorithmicbhackgroundo readthe book.
The book is intendedto serveas both a referenceand a main text for coursesn pure
computer sciencandfor computer sciencerientedcourses orromputationabiology.

Explicit discussions obiological applicationsappearthroughoutthe book, but are
moreconcentrated in thiast section®f Partll and in mosbf Partsl11andIV. | discuss
a numberof biologicalissuesin detailin order togive the readera deeperappreciation
for thereasons that manyiological problems havéeencastasproblems orstringsand
for the varietyof (often very imaginativefechnical ways thagtringalgorithmshavebeen
employedn molecularbiology.

Thisbookcoversall theclassic topiceandmostof theimportantadvancedechniquesn
thefield of stringalgorithms with three exceptiondt only lightly toucheson probabilistic
analysisand does notdiscussparallel algorithmsor the elegant,but very theoretical,
resultson algorithmsfor infinite alphabetandonalgorithms usingnly constantuxiliary
space.Thebookalsodoesnotcover stochastioriented methodhathavecomeoutof the
machine learningommunity, althouglsomeof the algorithmsn thisbookareextensively
usedassubtools inthose methoddWith theseexceptionsthe book coversall the major
stylesof thinking about string algorithmslhe readerwho absorbs thenaterialin this
bookwill gainadeepandbroad understandingf the fieldand sufficient sophisticatioto
undertake originatesearch.

Reflectingmy backgroundthe book rigorously discusses eactf its topics, usually
providing completeproofs of behavior (correctnessyorst-casdime, and spaceMore
important,it emphasizeshe ideas anddervaons of the methodsit presentsyather
thansimply providingan inventory of available algorithmsTo betterexposeideasand
encourage discovenypftenpresenacomplex algorithnby introducing anaive,inefficient
versionandthensuccessivelapply additional insight andiplementation detatb obtain
thedesired result.

The book containssomenew approaches developedto explain certairclassic and
complex material. Imparticular, the preprocessimgethodsl presentfor Knuth-Morris-
Pratt,Boyer-Mooreandseverai othelinear-time pattern matchirgjgorithmsdiffer from
the classical methoddyoth unifying and simplifyingthe preprocessing taskseededor
those algorithmsl also expectthat my (hopefully simplerand clearer)expositionson
linear-timesuffix treeconstructiongndon theconstantime leastcommonancestoalgo-

2 Spaceisa very important practical concern, and we will discussit frequently, but constant space seemstoo severe
arequirementin mostapplicationsof interest.

PART |

Exact String Matching: The Fundamental
String Problem

XVili PREFACE

ular Biology, andThe DIMACS Centerfor Discrete Mathematicand ComputeBcience
specialyearoncomputationabiology, for supportof mywork andthework of my students
and postdoctoral researchers.

Individually, |1 owe a great debof appreciationto William Chang,John Kececioglu,
Jim Knight, GeneLawler, Dalit Naor,FrankOlken,R. Ravi, PaulStelling,andLusheng
Wang.

| would alsolike to thank the following peopléor the helpthey havegiven mealong
the way: Stephen AltschulPavid Axelrod, Doug Brutlag,Archie Cobbs, RicharcCole,
RussDoolittle, Martin Farach, Jan&itschier,GeorgeHartzell,PaulHorton, Robertrv-
ing, Sorin Istrail,TaoJiang,Dick Karp, Dina Kravets,GadLandau, Udi Manber, Marci
McClure, Kevin Murphy, GeneMyers, JohnNguyen,Mike PatersonWilliam Pearson,
Pavel PevznerFred Roberts,Hershel SaferBaruchSchieberRon Shamir, JaySnoddy,
ElizabethSweedyk, SylviaSpengler,Martin Tompa, Esko Ukkonen, Martin Vingron,
TandyWarnow,and MikeWaterman.

i

EXACT STRING MATCHING 3{
for otherapplications.Usersof Melvyl, theon-line catalogof the Universityof California
library system pftenexperiencdong, frustratingdelaysevenfor fairly simple matching
requestsEvengreppingthrougha large directorcan demonstratidat exacimatching is
notyettrivial. Recentlywe usedsCG(avery popularinterfaceto search DNA and protein
databanksbo searchiGenbankthemajorU.S. DNA databasefor a thirty-charactestring,
which is a smallstring in typical usesof Genbank.The searchtook overfour hours(on
alocal machineusinga local copyof thedatabase) tfind that the string was nehere.?
And Genbanktodayis only afractionof thesizeit will bewhen the variougenomepro-
gramsgo into full productionmode,crankingout massive quantitiesf sequence®NA.
Certainly therearefaster,commondatabaseearching programs (fexample BLAST),
andtherearefastermachinesonecanuse(for examplean e-mail server isavailablefor
exactandinexactdatabasenatchingrunningona4,000processoMasPacomputer). But
the pointis that theexact matching problens not soeffectivelyand universallysolved
that it needs ndurther attention.It will remain aproblemof interest as thsize of the
databasegrow andalso because exact matchiwwgl continueto bea subtaskneededor
morecomplexsearches that wilbedevised. Manyf thesewill beillustratedin thisbook.

But perhapshe mosimportantreasortostudyexactmatchingn detailis to understand
the various ideaslevelopedor it. Even assuming thahe exacmatchingproblemitself
is sufficiently solvedthe entirefield of string algorithmsremainsvital andopen, and the
educatioronegetsfromstudying exactatchingmayecrucial forsolving lessinderstood
problemsThateducatiortakes threéorms:specificalgorithmsgenerahlgorithmicstyles,
andanalysisandproof techniquesAll three arecoveredin this book,butstyle andproof
technique gethe majoremphasis.

Overviewof Part |

In Chapter1l we present naiveolutionsto the exact matchingproblemand develop
the fundamentaltools needed to obtaimnore efficient methods Although the classical
solutions tothe problemwill not be presented untiChapter2, we will show attheendof
Chapterlthatthe use offundamentatoolsalonegives asimplelineartime algorithmfor
exactmatchingChapter2developseveratlassical methods fexact matchingjisingthe
fundamentatools developedh Chapterl. Chapter3 looksmore deeplatthosemethods
andextension®f them.Chapterd moves ina very different direction, exploringnethods
for exactmatchingoasednarithmeticlike operationgatherthan charactesomparisons.

Althoughexact matchings thefocusof Partl, someaspect®f inexactmatchingand
the useof wild cardsarealsodiscussedTheexact matchingroblemwill be discussed
againin Partll, whereit (and extensionsyill besolved usingsuffix trees.

Basicstring definitions

We will introduce most definitions at the point wherethey arefirst used,but several
definitions aresofundamental thatve introducethem now.

Definition A string Sis anorderedlist of charactersvritten contiguousljrom left to
right. Foranystring S, S[i..j1 is the (contiguousjubstringof S thatstartsat position

% We later repeatedthe testusing the Boyer-Moore algorithm on our own raw copy of Genbank.The searchtook less
than ten minutes, most of which was devoted to movemenof text betweenthe disk and the computer, with less
than one minute usedby the actual text search.

EXACT STRING MATCHING

Exact matching: what's the problem?

Givena string P calledthe patternanda longer stringT calledthe text,the exact
matching problemis to find all occurrencesif any,of patternPin textT.

Forexample,f P = abaandT = bbabaxababayhen P occursin T startingat
locations3, 7, and9. Note thattwo occurrence®f P may overlapasillustratedby the
occurrencesf P atlocations 7and9.

Importance of the exactmatching problem

The practicalimportanceof theexact matching probleshouldbeobviousto anyone who
usesacomputerThe problem ariseis widely varying applicationsoo numerous t@ven
list completely.Someof themore commormapplicationsare in wordprocessorsn utilities
suchasgrepon Unix; in textualinformationretrieval programs sucdsMedline,Lexis,or
Nexis;in library catalogsearching programs thhave replaceghysicalcardcatalogsn
mostlarge libraries; innternet browserandcrawlers whichsift throughmassive amounts
of text available on thimternetfor material containingpecifickeywords;]in internetnews
readerghat carsearctthe articlegor topicsof interestin thegiant digitallibrariesthat are
beingplannedor thenearfuture;in electronic journal¢hat are alreadbpeing” published
on-line; in telephonealirectory assistanc@ on-line encyclopedias amathereducational
CD-ROM applications;in on-line dictionaries andhesauri, especiallthosewith cross-
referencingfeatures (theOxford English Dictionary project hascreatedan electronic
on-line versionof the OED containing50 million words);andin numerous specialized
databasedn molecularbiology there areseveral hundred specializddtabase&olding
raw DNA, RNA, andamino acid strings,or processegatterns(called motifs) derived
from the rawstring data.Someof thesedatabasesvill be discussedn Chapterl5.
Althoughthe practicalimportanceof theexactmatching problenis notin doubt,one
mightask whether thproblemis still of any researchr educational interestHasn't exact
matchingbeenso well solvedthat it can be putin a black boxandtakenfor granted?
Right now, for example, meditinga ninetypagefile usingan'ancient' sharewaravord
processoandaPCclone(486), andeveryexact matcltommandhati've issued executes
fasterthanl canblink. That'srather depressinfpr someonenriting a book containinga
large section exacimatching algorithmsS ois there anythindeft todoon thisproblem?
Theansweis thatfor typicalword-processing applicatiorthereprobablyis little left to
do. Theexactmatchingproblem issolvedfor those applications (althougithermore se
phisticatedstring toolsmightbeuseful in wordorocessorsBut thestorychangesadically

I | just visited the Alta Vista web pagenaintainedby the Digital Equipment Corporatiofihe Alta Vista database
containsover 21 billion words collected from ovetO million websites.A search for alweb sitesthat mention
" Mark Twain'" tooka coupleof secondsind reportedhattwenty thousand sites satisfy the query.
Foranotheexamplesee[392].

1

Exact Matching: Fundamental Preprocessing
and First Algorithms

1.1. The naive method

Almost all discussionsf exact matchingegin with the naive method,and we follow
this tradition. The naive methodalignsthe left endof P with theleft endof T andthen
comparegshe charactersf P and T left to right until either two unequatharactersare
foundor until Pisexhaustedn whichcaseanoccurrencef Pisreported. Ireither case,
P is thenshiftedone placeto the right, and the comparisonarerestartedfrom the left
endof.P. This procesgepeats until theight endof P shifts pastherightendof T.

Using n to denotethe length of P and m to denotethe lengthof T, the worstcase
numberof comparisongnade by this methots ®(nm). In particular,if both P and T
consistof the same repeatatharacterthen theras anoccurrencef P ateachof thefirst
m— n+ 1 positionsof T andthe methoderformsexactlyn(m — n+ 1) comparisonsFor
examplejf P —aaaandT = aaaaaaaaathen n=3,m = 10, and24 comparisons
aremade.

The naive methods certainly simple to understand and prograrut its worstcase
running time of @(nm) may beunsatisfactoryand canbe improved. Everthe practical
running timeof the naivemethod may betoo slow for larger texts angatterns.Early
on, therewereseveralrelatedideasto improvethe naive method, both practiceandin
Worstcase.'l'heres"ult'ils thatthe ®(n x m)worstcasebound carbereducedo O(n+m).
Changing"x" to t in the boundis extremelysignificant (tryn = 1000 andm =
10,000,000, which arerealisticnumbersn someapplications).

1.1.1. Early ideasfor speedingup the naive method

The first ideasfor speedingup the naive methodall try to shift P by more than one
charactewhena mismatchoccurs,but nevershift it sofar as tomissan occurrenceof
Pin T. Shifting by morethanoneposition saves comparisons siricenovesP through
T more rapidly. Inaddition to shifting by larger amountssomemethodstry to reduce
comparisonduy skippingover partsof the pattermafterthe shift. We will examinemany
of theseideasin detail.

Figurel.1 givesaflavor of theseideas,using P = abxyabxz andl' = xnbxyabxyabxz.
Note thatanoccurrencef P begins at locatioB of T. Thenaivealgorithm firstaligns P
atthe leftendof T, immediately findsa mismatchandshifts P by one position. It then
finds thatthenextsevercomparisongrematchesndthat thesucceedingomparison (the
ninth overall)is a mismatchlt then shiftsP by one place finds a mismatchand repeats
this cycle two additionaltimes, until theleft endof P is alignedwith characte6 of T . At
that point it findsight matchesand concludeshat P occursin T startingat position 6.
In thisexample atotal of twenty comparisongremadeby the naivealgorithm.

A smarteralgorithm might realize, aftethe ninth comparison, thathe next three

4 EXACT STRING MATCHING

I andendsat positionj of S.In particular,S[1..i] is theprefix of string S that endsat

positioni, andS{i..[S(1is thesuffix of stringS thatbeginsat positioni, where|S| denotes
thenumberof characters in strin.

Definition SJi..j] is theemptystringif i > j,

For examplecalifornia is a string, lifo is a substring,calis a prefix,and orniais a
suffix.

Definition A properprefix, suffix, or substringof Sis, respectivelya prefix, suffix, or
substringhatis not theentirestring S, nor theempty string.

Definition Foranystring S, S(i)denotesheith character 0.

Wewill usually useéhesymbolS to referto anarbitraryfixed string thathasnoadditional
assumedeaturesor roles. However, whea stringis known toplay the role of a pattern
or therole of a text, we will referto the stringas P or T respectively.We will use lower

caseGreek charactergy, 8, y, §) to refer tovariable strings and udewer caseroman
charactergo referto singlevariable characters.

Definition Whencomparingtwo charactersye saythat thecharacters matah they
areequal; otherwise we sakiey mismatch.

Terminology confusion

The words™string’ and™ word are often used synonymously the computerscience
literature but for clarity in this bookwe will neveruse™ word when"string" is meant.
(However,wedouse"word" when its colloquial Englisimeaning isntended.)

More confusing the words' string" and" sequencé are oftenusedsynonymouslypar
ticularly in thebiological literature.This can be thesourceof much confusiorbecause
"substrings and subsequenc&sareverydifferent objects and because algoritiforsub
string problems arasually verydifferentthanalgorithmsfor theanalogousubsequence
problemsThecharactersn a substringof S mustoccurcontiguously in S,whereas char
actersin a subsequence mighie interspersedwith charactersiot in the subsequence.
Worse,in the biologicalliterature one often sees thevord "sequencé used in placef
"subsequence Therefore for clarity, in this book we will always maintaira distinction
betweer'subsequenceand™ substring’ andneveruse'’sequencéfor **subsequencte We
will generally usé'string* whenpurecomputer science issuagediscussed andsese
qguencé€ or"string" interchangeablyn the contextof biological applications.Of course,
we will alsouse"sequencé whenits standardnathematical meaninig intended.

Thefirst two partsof this book primarily concernproblemson strings andsubstrings.
Problemsonsubsequenceare considereth Partslll andIV.

1.3. FUNDAMENTAL PREPROCESSINGFTHE PATERN 7

smartermethodwas assumetb know thatcharacter did notoccuragain until positiorﬁ,{
andtheevensmarter methosvasassumedo know thatthe patternabxwas repeatedgain\\
startingat position5. This assume#&nowledgds obtainedin the preprocessingtage.

For theexactmatchingproblem,all of the algorithms mentioneah the previoussec
tion preprocesyattern P. (The oppositeapproachof preprocessing text T is used in
otheralgorithms, suctasthose basedn suffix trees.Thosemethodswill be explained
later inthe book.) These preprocessintethodsasoriginally developed, arsimilar in
spirit but often quite differentin detail and conceptualdifficulty. In this book we take
adifferentapproachanddo not initially explainthe originally developedpreprocessing
methodsRather,we highlight thesimilarity of the preprocessing taskeededor several
different matchingalgorithms,by first defining @undamentalpreprocessing oP that
is independenof any particular matching algorithmlhen weshow how eachspecific
matchingalgorithm uses thenformationcomputedby the fundamentapreprocessin@f
P.Theresultisasimplermoreuniformexpositionof the preprocessing needdy several
classicalmatchingmethodsand a simplelinear time algorithm forexactmatching based
only onthis preprocessingfiscussedn Section 1.5)Thisapproacho lineartime pattern
matching waglevelopedn [202].

1.3. Fundamental preprocessing ofthe pattern

Fundamental preprocessingll bedescribedor ageneral stringlenotedby S.In specific
applicationsof fundamental preprocessingwill often be thepatternP , butherewe use

S insteadof P becausdundamentalpreprocessing will alste appliedto stringsother
thanP .

Thefollowing definition givesthe key valuescomputed duringhe fundamentalpre-
processingf a string.

Definition Givena stringSanda positioni > 1, let Z;(S) be thelength of thelongest
substringof S thatstarts ati andmatches prefixof S.

In otherwords, Z;(8) is thelengthof thelongest prefix of S{i..]5|] thatmatches grefix
of S.ForexamplewhenS= anbcaabxaathen

Z5(S) = 3 (aabc..aabx...),
Z¢(S) =1 (aa..ab..),
Z7(8) = Zg(5) =0,

Zo(S) =2 (aah..aaz).

WhenS is clearby context,we will useZ; in placeof Z;(5).

To introducethe nextconceptconsiderthe boxesirawnin Figurel.2. Eachbox starts
atsome positiony > 1suchthat Z; is greater than zerd.helengthof the boxstarting at
j is meantto represeng ;. Therefore each box in the figureepresents maximatlength

si @ | -

Figure 1.2: Each solid box represents a substring of Sthat matches a prefix of Sand that starts between
positions 2 and i. Each box is called a Z-box. We use r; to denote the right -most end o any Z-box that
begins at or to the left of position i and a to denote the substring in the Z-box ending at r;. Then / denotes
the leftend of a. The copy of « that occurs as a prefix of Sis also shownin the figure.

EXACT MATCHING

0 1 0 1 0 1
1234567890123 1234567890123 1234567890123
T. xabxyabxyabxz T: xabxyabxyabxz T: xabxyabxyabxz
P: abxyabxz P: abxyabxz P: abxyabxz
L] L])
abxyabxz abxyabxz abxyabxz
AAANAAANNAS AAAAAAANT AAAANAANANT
abxyabxz abxyabxz abxyabxz
abxyabxz
abxyabxz
*
abxyabxz

ARAAAANAN

Figure 1.1: The first scenario illustrates pure naive matching, and the next two illustrate smarter shifts. A
caret beneath a character indicates a match and a star indicates a mismatch made by the algorithm.

comparisonsf thenaivealgorithmwill bemismatchesThissmarter algorithm skipsver

the nexthreeshift/comparesimmediatelymovingthe leftendof Pto align with position
60of T, thus saving three comparisokw canasmartemlgorithmdothis?After the ninth
comparisonthealgorithm knowsthatthefirst seven characterd P matchcharacter®

through8of T.If it alsoknowsthat the firstharacteof P (namelya)Jdoesnotoccuragain

in P until position5 of P, it hasenoughinformationto concludethatcharactea doesnot

occuragainin T until position6 of T. Henceit has enouglinformationto conclude that
therecanbenomatchesetweenP and T until the leftendof Pisaligned with positioré

of T. Reasoning of this sors thekey to shifting by morethanonecharacterln addition

to shifting by larger amountswe will seethatcertainalignedcharactersi o not needto be

compared.

An evensmarter algorithnknows thenextoccurrencen P of the firstthree characters
of P (namelyabx)beginat position5. Thensincethe first sevencharacter®f P were
found to match character® through 8 of T, this smarteralgorithm hagnoughinforma-
tion to conclude thatvhen the left end of P is alignedwith position 6 of T, the next
three comparisonmust be matchesThis smarteralgorithm avoids making thosehree
comparisons. Instead, afttre leftend of P is movedto align with position6 of T, the
algorithm comparesharacter4 of P againstcharacte© of T. This smarter algorithm
therefore savea totalof six comparisons over theaive algorithm.

The aboveexampleillustrates thekinds of ideaghat allow some comparisont be
skipped, althoughit shouldstill be unclearhow an algorithmcan efficiently implement
theseideas.Efficient implementations have beeatevisedfor a numberof algorithms
suchasthe Knuth-Morris-Prattalgorithm,a reaktime extension oft, the Boyer—Moore
algorithm,andthe Apostolico-Giancarlo versionof it. All of thesealgorithmshave been
implemented to ruin linear time (O(n+ m) time). The detailswill be discussedn the
nexttwo chapters.

1.2. The preprocessing approach

Many string matching@ndanalysis algorithms ar@bleto efficiently skipcomparisondy
first spending'modest time learningabouttheinternalstructureof eitherthe patternP or
thetext T. During thattime, theother stringmay notevenbe knownto the algorithmThis
partof the overallalgorithmis called thepreprocessingtage. Preprocessingfollowed
by a searchstage where thanformationfound duringthe preprocessingtageis usedto
reducethework donewhile searchindor occurrencesf Pin T. In theaboveexamplethe

1.4. FUNDAMENTAL PREPROCESSINGN LINEAR TIME 9

Q

« 8] . [B]

k Zl { . k r

1 o
sy 8] 3101
Z,. k' ! k r
k'+2Z,.-1

k+2Z,~1

Figure 1.4: Case 2a. The longest string starting at k” that matches a prefix of Sis shorter than |B]. In this
case, Zx = 2.

LB | rBEI 1~

K } ! koo

Figure 1.5: Case 2b. The longest string starting at k’ that matches a prefix of Sis at least |A|.

The Z algorithm

GivenZ, forall 1 <i < k — | andthecurrentvaluesof r andl, Z, andtheupdatedr and
| arecomputedasfollows:

Begin
1. If k >r, then findZ, by explicitly comparingthe characters startingt positionk to the

characterstarting at positiort of S, until a mismatchis found.The length of thematch
isZ,. If Z, >0,thensetrtok + Z, — 1 and set 1tok.

2. If k < r, then positiork is containedn a 2-box, andhenceS(k) is containedn substring
S[l..r] (call it a)such that > 1 anda matches prefix of S. ThereforecharacterS(k)
alsoappearsn positionk' = k — 1+ 1 of S.By thesamereasoning, substring[k..r] (call
-it 8) mustmatch substring[4’..Z,]. It follows thatthe substring beginningt position k
mustmatcha prefixof S of length at leasthe minimumof Z,- and| 8} (whichisr —k + 1).
SeeFigure 1.3.

We considenwo subcasebased orthe value of that minimum.
2a. If Z, <|B| thenZ, = Z,- andr, 1 remainunchanged (see Figuied).

2b. If Z;+ > 18] then theentire substringS[k..r] mustbe a prefixof SandZ; > [8] =
r — k + 1. However,Z; might bestrictly largerthan|8|, socompare theharacters
startingat positionr + 1 of S to thecharacters starting position|8| * 1 of S until a
mismatchoccurs.Say the mismatch occurs @haracter; = r 1. Then Z, is setto
g —k,rissettoq — |, and/ is set tok (see Figurel.5).
End

Theorem1.4.1. UsingAlgorithm Z, value Z, is correctly computedndvariablesr and
| arecorrectlyupdated.

PROOF in Casel,Z, is setcorrectlysinceit is computedby explicit comparisonsAlso
(since k > r in Casel), beforeZ, is computed,no 2-box hasbeenfound that starts

8 EXACT MATCHING

substringof Sthatmatches prefix of Sandthatdoesnot start apositionone.Each such
box iscalleda 2box. More formally, we have:

Definition For any positioni > 1 where Z; is greaterthan zero, the Zbox ati is
definedas thentervalstartingati and endingat positioni +2; — 1.

Definition Foreveryi > 1, r; is the right-most endpoinbf the 2-boxesthat beginat
or beforepositioni. Another way to state this is; is thelargestvalueof j + Z i—1
overall I <j <isuch thatZz; > 0.(SeeFigurel.2.)

We use theterm{; for the value of j specifiedin the abovedefinition. That is,!; is
the positionof the left endof the 2-box that endsat r;. In case therés morethanone
2-boxendingatr;, thenl; canbechosento betheleft endof any ofthose2-boxes. Asan
example supposeS= aabaabcaxaabaabcthenZz,y =7,r;s = 16,andl;s = 10.

Thelineartime computatiorof 2 valuesfrom Sis the fundamental preprocessingask
that we will usein all the classicalineartime matching algorithms thatreprocessP.

But before detailingthose useswe showhow to do the fundamentalpreprocessingn
lineartime.

1.4, Fundamental preprocessing irlinear time

The taskof this sectionis to showhow to computeall the Z, valuesfor S in linear time
(i.e.,in O(]S]) time). A directapproachbasedon the definition wouldtake ®(|S5|*) time.
The methodwe will presentwas developeth [307] for adifferent purpose.

The preprocessinglgorithm computesZ;, r;, andl, for eachsuccessivepositioni,
starting fromi = 2. All the Z valuescomputedwill bekeptby thealgorithm, butin any
iterationi, thealgorithm only needsher, and/; values forj =i — 1.No earlierr or
| values are needediencethe algorithmonly usesa singlevariable,r, to refer to the
most recentlycomputedr; value; similarly,it only uses a singleariablel. Therefore,
in eachiterationi, if thealgorithm discovera new2-box (starting ati), variabler will
beincrementedo theend of that 2-box, which is the rightmostposition of any Z-box
discoveredsofar.

To begin, thealgorithmfinds Z, by explicitly comparingleft to right, thecharactersf
S[2..181] and S[1..|S1] until amismatchis found. Z; is the length of thematchingstring.
if Z, > 0,thenr = r, issetto Z, + 1and/ =1, is setto 2. Otherwiser and/ areset
to zero.Now assume inductivelyhat the algorithm hasorrectlycomputedZ; for i upto
k — 1> 1 andassume thathe algorithmknowsthe current r=r,_1andl = {;_,. The
algorithmnextcomputesZ,, r = r, andl =/,.

Themain idea igo usethealreadycomputedZ values tacceleratehecomputatiorof
Z,. In fact,in some casesZ; canbe deduced fronhe previousZ values without doing
any additionalcharactercomparisonsAs a concreteexample supposek = 121, all the
valuesZ, throughZ,; have alreadypeencomputedandr s = 130and{,», = 100.That
meanghat therds asubstringof length 31 startingat position100and matchinga prefix
of S(of length 3). It follows thatthe substringof length 10startingat position121 must
matchthe substringof length 10 startingat position 22 of S,andso Z,, may be very
helpfulin computingZ,;;. Asonecase,if Z, is three,say, thera little reasoning shows
that Z,,; mustalsobe three.Thusin this illustration, Z,,; can bededucedwithout any
additionalcharactecomparisonsThiscase alongwith theothers, willbeformalizedand
proven correct below.

16. EXERCISES 11

for then charactergn P andalsomaintainthecurrent/ andr. Those valuearesufficient
to compute(but not store)the Z valueof each character ifi and henceo identify and
output any position whereZ; = n.

Thereis anothercharacteristiof this methodworth introducing here:The methodis
considerednalphabet-independent lineartime methodThatis, we neverhadto assume
thatthe alphabesizewasfinite or thatwe knew the alphabet aheaaf time — a character
comparisoronly determines whethehetwo characters matchr mismatch;it needsno
furtherinformation about thaelphabetWewill seethatthischaracteristi¢s alsotrueof the
Knuth-Morris-Pratt and BoyerMoore algorithmsbutnotof the Aho-Corasick algorithm
or methods basealn suffix trees.

1.5.1. Why continue?

Sincefunction Z; can becomputedor the patternin linear timeandcanbe useddirectly
to solve the exact matchingroblem in O(m)time (with only O(n)additional space),
why continue?In what way are more complex methods (Knuth-Morris-PratBoyer-
Moore, realtime matching, ApostoliceGiancarlo,Aho-Corasick, suffixree methods,
etc.)deservingof attention?

Fortheexact matchingroblem, theKnuth-Morris-Pratt algorithmhasonly amarginal
advantage over the direaseof Z;. However,it hashistorical importancend hasbeen
generalizedjn the Aho-Corasick algorithmto solve the problerof searchingor a set
of patterngn atextin timelinearin thesizeof thetext. That problems not nicely solved
using Z; valuesalone. The reaktime extensionof Knuth-Morris-Pratt hasan advantage
in situationswhentext is input on-line andonehasto be surethat thealgorithm will be
readyfor eachcharacter ag arrives.TheBoyer~Moore method isvaluablebecauséwith
the properimplementation)t also runsin linear worstcase timebut typically runsin
sublineartime,examiningonly afractionof thecharactersf T. Hence itis the preferred
method inmostcases.The Apostolico-Giancarlomethodis valuable because has all
the advantagesf the BoyerMoore methodandyet allows a relatively simple proof of
linearworstcase runningime.Methodsbasedn suffix trees typically preprocesbetext
ratherthanthe pattern and thdaadto algorithmsn whichthesearchimeis proportional
to the size of the pattermather than theizeof the text. Thisis an extremelydesirable
feature.Moreover, suffixtreescan be usedto solvemuch more complexproblems than
exact matching, includingroblemghatarenoteasilysolvedby directapplica~ioof the
fundamentapreprocessing.

1.6. Exercises

The first four exercises use the fact that fundamental processing can be done in linear
time and that all occurrences of Pin T can be found in linear time.

1. Use the existence of a linear-time exact matching algorithm to solve the following problem
in linear time. Given two strings « and 8, determine if & is a circular (or cyclic) rotation of 8,
that is, if « and 8 have the same length and a consists of a suffix of 8 followed by a prefix
of 8. For example, defabds a circular rotation of abcdef. This is a classic problem with a
very elegant solution.

2. Similar to Exercise 1, give a linear-time algorithm to determine whether a linear string « is
a substring of a circular string . A circular string of length nis a stringin which character
nis considered to precede character 1 (see Figure 1.6). Another way to think about this

10 EXACT MATCHING

between position andk — 1 andthat endstor afterpositionk. ThereforewhenZ; >0
in Casel, thealgorithmdoesfind a new Z-box ending abor afterk, andit is correctto
change tok + Z, — 1. Hencethe algorithm works correctly Casel.

In CaseZ2a, the substringbeginningat positionk can matcha prefix of S only for
lengthZ,. <|B}. If not, then the next characterttteright,charactek+ Z,, mustmatch
characted + Z,.. But charactek + Z,- matches character + Z; (sinceZy c 18D, s0
charactek' + Z, mustmatch charactet + Z,.. Howeverthatwould bea contradiction
to the definition of Zy., for it would establisha substringongerthan Z,- that startsat k'
and matchea prefixof S.HenceZ; = Z, in thiscase. Furthek+ Z, — 1 <r,sor and
1 remaincorrectlyunchanged.

In Case2b, B mustbea prefix of S (asarguedn the body of thealgorithm)andsince
any extensionof this matchis explicitly verified by comparingcharacterdeyondr to
characters beyond the prefx thefull extentof the matchs correctly computeddence
Z, is correctlyobtainedin this case.Furthermore, sinck + Z, — 1 > 1, the algorithm
correctlychanges andl. ¢

Corollary 1.4.1.Repeating AlgorithnZ for eachpositioni > 2 correctlyyieldsall the
Z; values.

Theorem 1.4.2. All the Z;(S) valuesare computedoy the algorithm in O(|S]) time.

PROOF The timeis proportionalto the numberof iterations, IS], plus the numbeof
charactecomparisonsEachcomparison results in eithamatchor a mismatchsowe
nextboundthe numberof matchesand mismatchethatcan occur.

Each iteratiorthatperformsany character comparisons at aildsthefirst timeit finds
amismatch; hencthereareat most|S| mismatches during thentirealgorithm.To bound
the numberof matches, notéirst thatr, > r,_; for everyiterationk. Now, letk be an
iteration wherey > 0 matchesoccur. Therr, is settor,_; + g atleast.Finally,r, < |Sl,
so the total numbepnf matchesthat occurduring any executionof the algorithm isat
most|S}. O

1.5. The simplestlinear-time exactmatchingalgorithm

Before discussinghe more complexclassical) exact matchingethods we showthat
fundamentapreprocessingloneprovidesasimplelineartimeexact matchinglgorithm.
Thisis thesimplestlineartime matching algorithnwe know of.

Let S= P$T bethe stringconsistingof P followed by the symbol“$” followed by
T, where"3” is a characteappearingn neitherP nor T. Recall thatP haslengthn and
T has lengthm, andn < m. So0,S = P$T has lengtm T m+ 1 = O(m) Compute
Z«(S) fori from2ton *+m + 1. Because's” doesnot appeatin Por T ,Z; < n for
everyi > 1. Any valueofi > n + 1 suchthat Z:(S) = n identifies an occurrenceof
P in T startingat positioni — (n + 1) of T. Converselyjf P occursin T starting at
position j of T, then Z,1+; mustbe equal ton. Since all theZ;(S) values carbe
computedn O(nt m) = O(m)time, this approach identifiesll the occurrencesf P
in T in O(m)time.

The methodcan be implementedto useonly O(n)space(in addition to the space
neededor pattern andext) independertf thesizeof the alphabetSinceZ; < n for all
I, positionk' (determinedn step2) will alwaysfall inside P.Therefore there isno need
to recordthe Z valuesfor charactersn T .Instead,we only needto recordthe Z values

1.6. EXERCISES 13

and m, and finds the longest suffix of ¢ that exactly matches a prefix of 8. The algorithm
should run in O(n +m) time.

. Tandem arrays. A substring ¢ contained in string S is called a tandem array of g (called
the base) if @ consists of more than one consecutive copy of g. For example, if S =
xyzabcabcabcabcpg, then @ = abcabcabcabc is a tandem array of g = abc. Note that S
also contains a tandem array of abcabc (i.e., atandem array with a longer base). A maximal
tandem array is a tandem array that cannot be extended either left or right. Given the base
B, a tandem array of g in S can be described by two numbers (s, k), giving its starting
location in S and the number of times B is repeated. A tandem array is an example of a
repeated substring (see Section 71 1.1).

Suppose S has length n. Give an example to show that two maximal tandem arrays of a
given base g can overlap.

Now give an O{m)-time algorithm that takes Sand g as input, finds every maximal tandem
array of 8, and outputs the pair (s, k) for each occurrence. Since maximal tandem arrays
of a given base can overlap, a naive algorithm would establish only an O(r?)-time bound.

. If the Z algorithm finds that Z; = g > 0, all the values Zs, ..., Z;11, Z4+2 can then be
obtained immediately without additional character comparisons and without executing the
main body of Algorithm Z. Flesh out and justify the details of this claim.

. In Case 2b of the Z algorithm, when Z, > 8], the algorithm does explicit comparisons
until it finds a mismatch. This is a reasonable way to organize the algorithm, but in fact
Case 2b can be refined so as to eliminate an unneeded character comparison. Argue that
when Z,» > jB{then Z, = |8| and hence no character comparisonsare needed. Therefore,
explicit character comparisons are needed only in the case that Z; = |8].

. IfCase 2b of the Z algorithm is spiit into two cases, one for Z;» > |8| and one for Z,: = |8],
would this result in an overall speedup of the algorithm? You must consider all operations,
not just character comparisons.

. Baker[43] introducedthe following matchingproblemand appliedit to a problem of software
maintenance: "The application is to track down duplicationin a large software system. We
wantto find not only exact matches between sections of code, but parameterized matches,
where a parameterized match between two sections of code means that one section can
be transformed into the other by replacing the parameter names {(e.g., identifiers and con-
stants) of one section by the parameter names of the other via a one-to-one function".

Now we present the formal definition. Let £ and IT be two alphabets containingno symbols
incommon. Each symbolin X is called a tokenand each symbolin IT is called aparameter.
A string can consist of any combinations of tokens and parameters from £ and I1. For
example, if £ is the upper case English alphabet and I1 is the lower case alphabet then
XYabCaCXZddW is a legal string over £ and I1. Two strings S; and S; are said to
p-malch if and only if

a. Eachtokenin 8; (or S) is opposite a matching tokenin S- (or Sy).
b. Each parameter in S; (or Sz) is opposite a parameter in Sz (or St).

c. For any parameter x, if one occurrence of x in Sy (S,) is opposite a parameter y in S {Sy),
then every occurrence of x in $; (S:) must be opposite an occurrence of y in Sz (). In
other words, the alignment of parameters in $; and S: defines a one-one correspondence
between parameter names in Sy and parameter namesin Sz.

For example, §; = XYabCaC XZddbW p-matches S; = XYdxCdCXZccx W. Notice
that parameter a in S; maps to parameter d in S,, while parameter d in S; maps to c in
S,. This does not violate the definition of p-matching.

In Baker's application, a token representsa part of the program that cannot be changed,

EXACT MATCHING

8 ¢ c2
7 o:3
8
6 ¢ a

Figure 1.6: A circular string 8. The linear string A derived from it iS accatggc.

problem is the following. Let B be the linearstring obtained from 8 starting at character 1
and ending at character n. Then « is a substring of circular string g if and only if ¢ is a
substring of some circular rotation of 8.

A digression on circular strings in DNA

The above two problems are mostly exercises in using the existence of a linear-time exact
matching algorithm, and we don't know any critical biological problems that they address.
However, we want to point out that circular DNA is common and important. Bacterial and
mitochondrial DNA is typically circular, both in its genomic DNA and in additional small
double-stranded circular DNA molecules called plasmids, and even some true eukaryotes
(higher organisms whose cells contain a nucleus) such as yeast contain plasmid DNA in
additionto their nuclear DNA. Consequently,tools for handling circular strings may someday
be of use in those organisms. Viral DNA is not always circular, but even when it is linear
some virus genomes exhibit circular properties. For example, in some viral populations the
linear order of the DNA in one individual will be a circular rotation of the order in another
individual [450]. Nucleotide mutations, in addition to rotations, occur rapidly in viruses, and
a plausible problem is to determine if the DNA of two individual viruses have mutated away
from each other only by a circular rotation, rather than additional mutations.

It is very interesting to note that the problems addressed in the exercises are actually
"solved"” in nature. Consider the special case of Exercise 2 when string a has length n.
Then the problem becomes: Is a a circular rotation of 37 This problem is solved in linear
time as in Exercise 1. Precisely this matching problem arises and is "solved” in E coli
replication under the certain experimental conditions describedin {475}. In that experiment,
an enzyme (RecA) and ATP molecules (for energy) are added to E. coli containing a single
strand of one of its plasmids, called string 8, and a double-stranded linear DNA molecule,
one strand of whichis called string w. If a is a circular rotation of 8 then the strand opposite
to « (which has the DNA sequence complementaryto o) hybridizes with B creating a proper
double-stranded plasmid, leaving o as a single strand. This transfer of DNA may be a step
in the replication of the plasmid. Thus the problem of determining whether a is a circular
rotation of B is solved by this natural system.

Other experiments in [475] can be described as substring matching problems relating to
circular and linear DNA in E. coli. Interestingly, these natural systems solve their matching
problems faster than can be explained by kinetic analysis, and the molecular mechanisms
used for such rapid matching remain undetermined. These experiments demonstrate the
role of enzyme RecA in E. coli repiication, but do not suggest immediate important compu-
tational problems. They do, however, provide indirect motivation for developing compu-
tational tools for handling circular strings as well as linear strings. Several other uses of
circular strings will be discussed in Sections 7.13 and 16.17 of the book.

3 Suffix-prefix matching. Give an algorithm that takes in two strings « and 8, of lengths n

12.

13.

1.6. EXERCISES 15

nations of the DNA string and the fewest number of indexing steps (when using the codons
to look up amino acids in a table holding the genetic code). Clearly, the three translations
can be done with 3n examinations of characters in the DNA and 3n indexing steps in the

genetic code table. Find a method that does the three translations in at most n character
examinations and 7 indexing steps.

Hint: If you are acquainted with this terminology, the notion of a finite-state transducer may be
helpful, although it is not necessary.

Let T be a text string of length m and let S be a multiset of n characters. The problem is
to find all substringsin T of length n that are formed by the characters of S. For example,

let S = (a, a, b, c} and T = abahgcabah. Then caba is a substring of T formed from the
characters of S.

Give a solution to this problem that runsin O{m) time. The method should also be able to

state, for each position /, the length of the longest substring in T starting at i that can be
formed from S.

Fantasy protein sequencing. The above problem may become useful in sequencing
protein from a particular organism after a iarge amount of the genome of that organism
has been sequenced. This is most easily explained in prokaryotes, where the DNA is
not interrupted by introns. In prokaryotes, the amino acid sequence for a given protein
is encoded in a contiguous segment of DNA - one DNA codon for each amino acid in
the protein. So assume we have the protein molecule but do not know its sequence or the
location of the gene that codes for the protein. Presently, chemically determining the amino
acid sequence of a protein is very slow, expensive, and somewhat unreliable. However,
finding the multiset of amino acids that make up the protein is relatively easy. Now suppose
that the whole DNA sequence for the genome of the organismis known. One can use that
long DNA sequence to determine the amino acid sequence of a protein of interest. First,
translate each coden in the DNA sequence into the amino acid alphabet (this may have to
be done three times to get the proper frame) to form the string T; then chemically determine
the multiset S of amino acids in the protein; then find all substringsin Tof length |S] thatare
formed from the amino acids in S. Any such substrings are candidates for the amino acid
sequence of the protein, although it is unlikely that there will be more than one candidate.
The match also locates the gene for the proteinin the long DNA string.

Consider the two-dimensionalvariant of the preceding problem. The input consists of two-
dimensional text (say a filled-incrosswordpuzzle) and arnultiset of characters. The problem
is to find a connectedwo-dimensional substructure in the text that matches all the char-

acters in the rnultiset. How can this be done? A simpler problemis to restrict the structure
to be rectangular.

As mentioned in Exercise 10, there are organisms (some viruses for example) containing
intervals of DNA encoding not just a single protein, but three viable proteins, each read in
a different reading frame. So, if each protein contains n amino acids, then the DNA string

encoding those three proteins is only n+ 2 nucteotides (characters) long. That is a very
compact encoding.

(Challenging problem?) Give an algorithm for the following problem: The inputis a protein
string S, (over the amino acid alphabet) of length n and another protein string of length
m > N. Determine if there is a string specifying a DNA encoding for S, that contains a
substring specifyinga DNA encoding of S;. Allow the encoding of Sy to begin at any point
in the DNA string for S, (i.e., in any reading-frame of that string). The problem is difficult
because of the degeneracy of the genetic code and the ability to use any reading frame.

14 EXACT MATCHING

whereas a parameter represents a program's variable, which can be renamed as long as
all occurrences of the variable are renamed consistently. Thus if Sy and S; p-match, then
the variable names in S could be changed to the corresponding variable names in Sz,
making the two programs identical. If these two programs were part of a larger program,
then they could both be replaced by a call to a single subroutine.

The most basic p-match problem is: Given a text T and a pattern P, each a string over
and 11, find all substrings of T that p-match P. Of course, one would like to find all those
occurrencesin O(| P} | T}) time. Let function Z?P for a string S be the length of the longest
string starting at position 1 in S that p-matches a prefix of ${1..i]. Show how to modify
algorithm Z to compute all the Zf values in Q(] §) time (the implementation details are
slightly more involved than for function Z;, but not too difficult). Then show how to use the
modified algorithm Z to find all substrings of T that p-match P, in O(; Py + |71 time.

In [43] and {239], more involved versions of the p-match problem are solved by more
complex methods.

The following three problems can be solved without the Zalgorithm or other
fancy tools. They only require thought.

9. You are given two strings of n characters each and an additional parameter k. In each
string there are n— k + 1 substrings of length k, and so there are ®{n?) pairs of substrings,
where one substringis from one string and one is from the other. For a pair of substrings,
we define the match-countas the number of opposing characters that match when the two
substrings of length k are aligned. The problem is to compute the match-count for each
of the ®(n?) pairs of substrings from the two strings. Clearly, the problem can be solved
with O(kn?) operations (character comparisons plus arithmetic operations). But by better

organizing the computations, the time can be reduced to O(n?) operations. (From Paul
Horton.)

10. ADNA moleculecan be thought of as a string over an alphabet of four characters{a. t, c, g}
(nucleotides), while a protein can be thought of as a string over an alphabet of twenty char-
acters (amino acids). A gene, which is physically embedded in a DNA molecule, typically
encodes the amino acid sequence for a particular protein. This is done as follows. Starting
at a particutar point in the DNA string, every three consecutive DNA characters encode a
single amino acid character in the protein string. That is, three DNA nucleotides specify
one amino acid. Such a coding triple is called a codon, and the full association of codons
to amino acids is called the geneticcode For example, the codon tit codes for the amino
acid Phenylalanine (abbreviated in the single character amino acid alphabet as F}, and
the codon gtt codes for the amino acid Valine (abbreviated as V). Since there are 4° = 64
possible triples but only twenty amino acids, there is a possibility that two or more triples
form codons for the same amino acid and that some triples do not form codons. In fact,
this is the case. For example, the amino acid Leucine is coded for by six different codons.

Problem: Suppose one is given a DNA string of n nucleotides, but you don't know the cor-
rect "reading frame". That is, you don't know if the correct decomposition of the string into
codons begins with the first, second, or third nucleotide of the string. Each such "frameshift"
potentially translates into a different amino acid string. (There are actually known genes
where each of the three reading frames not only specifies a string in the amino acid alpha-
bet, but each specifies a functional, yet different, protein.) The task is to produce, for each
of the three reading frames, the associated amino acid string. For example, consider the
string atggacgga. The first reading frame has three complete codons, atg, gae, and gga,
which in the genetic code specify the amino acids Met, Asp, and Gly. The second reading
frame has two complete codons, tggand acg, coding for amino acids Trpand Thr. The third
reading frame has two complete codons, gga and ¢gg. coding for amino acids Glyand Arg.

The goat is to produce the three translations, using the fewest number of character exami-

22. THEBOYER-MOORE ALGORITHM 17

algorithm.Forexample consider the alignmemf P against Tshown below:

1 2
12345678901234567
T: xpbctbxabpgxctbpq
P: tpabxab

To checkwhetherP occursin T atthis positionthe Boyer-Moore algorithm startsat
the right endof P,first comparingT(9) with P(7). Finding a matchit thencompares
T (8) with P(6), etc., movingright to left until it finds amismatchwhencomparingZ (5)
with P(3). At that pointP is shiftedright relativeto 7 (theamountfor the shiftwill be
discussedelow) andthecomparisondeginagainat theright end ofP .

Clearly,if P is shiftedright by oneplace aftereach mismatch, or aftan occurrence
of P is found,then theworstcaserunning timeof this approachs O(nm) justasin the
naive algorithmSoat this point itisn't clearwhy comparing charactefsom right to left
isany betterthancheckingfrofn left to right. Howeverwith two additionalideas (thébad
characterand the good suffix rules), shifts of morethanonepositionoftenoccur,andin
typical situationdargeshifts arecommon. We next examindghesetwo ideas.

2.2.2. Bad characterrule

To gettheideaof thebadcharacter rule, supposkatthe last(right-most)charactenf P
is y andthe charactein T it alignswith isx # y. Whenthis initial mismatchoccurs if we
know theright-most positiorin P of characteix, we can safely shiffP to the rightsothat
the rightmost xin Pisbelowthe mismatched in T. Any shorter shift woulanly result
in animmediatemismatch.Thus,the longershift iscorrect(i.e., it will not shift past any
occurrencef Pin T). Further, ifx neveroccurs inP ,thenwe can shiftP completelypast
the point of mismatchin T. In these casesomecharacter®f T will neverbe examined
andthemethodwill actuallyrunin “sublinear” time.Thisobservation i$ormalizedbelow.

Definition Foreachcharactex in thealphabetiet R(x) bethepositionof right-most
occurrencef character in P.R(x) isdefined tobe zeroif x doesnotoccurin P.

It is easyto preproces® in O(n) time to collectthe R(x) values, and we leave that
asanexercise.Note that this preprocessingoesnot requirethe fundamentapreproces
sing discusseth Chapterl (that will be neededor the morecomplex shift rulethe good
suffix rule).

We use theR valuesin the followingway, calledthebad character shift rule:

Supposdor a particulamalignmentof P againstT, theright-mostn — i charactersf
P match theicounterpartgn T, but the nextharacter taheleft, P(i), mismatches
with itscounterpart, sayn positionk of T. Thebad characterrule saysthat Pshould
beshiftedright by max{1, i — R(T(k))] placesThat is,if theright-mostoccurrence
in P of characterT (k) is in position j < i (including the possibility thatj = 0),
thenshift P sothatcharacterj of P is below charactek of T. Otherwise, shiftP
by one position.

Thepointof thisshift ruleis to shift P by morethanone character when possible.the
above exampld(5) = t mismatchesvith P(3)andR(¢) = 1, soP canbeshifted rightby
two positions After theshift, the comparisoaf P andT begins agaiatthe rightendof P.

2

Exact Matching:
ClassicalComparison-BasedMethods

2.1. Introduction

This chapterdevelops anumberof classical comparisebhasedmatching algorithmsor
theexact matchingroblem. With suitablextensions, abhf thesealgorithmscanbeimple-
mented to rumn linearworstcasetime, andall achievethisperformancdy preprocessing
patternP.(Methods thapreproces3 will beconsideredn PartlI of the book.) Therig-
inal preprocessingethodsor thesevarious algorithmsirerelatedin spirit but are quite
differentin conceptual difficulty.Someof theoriginal preprocessingnethodsare quite
difficult.! This chapterdoesnot follow the original preprocessingnethodsbut instead
exploitsfundamentalpreprocessing, develop@dthe previouschapter, to implemerthe
needed preprocessirigr eachspecific matching algorithm.

Also, in contrast t@reviousexpositionsweemphasizehe Boye-Moore method over
the KnuthMorris-Pratt method,since Boyer-Moore is thepractical methodof choice
for exact matchingKnuth-Morris-Prattis nonethelessompletelydevelopedpartly for
historical reasons, buhostly becausé generalizeso problemssuchasreattime string
matchingand matchingagainsta setof patternsmore easily than BoyerMoore does.
Thesetwo topics willbedescribedn thischapter andhe next.

2.2. The Boyer-Moore Algorithm

As in the naivealgorithm, the Boyer—Moore algorithmsuccessivelyaligns P with T and
thenchecks whethelP matchesthe opposing charactexd T. Further, after the check
Is complete,P is shifted right relativeto T just asin the naivealgorithm. However,the
Boyer—Moorealgorithmcontainsthree cleveideasnot containedn the naivealgorithm:
the rightto-left scanthe badcharacteshift rule, and the goosuffix shift rule. Together,
these ideadead to a methodthat typically examinedewer thanm + © charactergan
expected sublinegime method)andthat (with a certain extension)insin linearworst
casdiime.Ourdiscussiorof theBoyer—-Moorealgorithm andextensionsf it, concentrates
onprovableaspectsfitsbehavior. Extensive experimental and practstalieof Boyer—
Moore and variants haveeenreportedin [229], [237], [409], {410], and[425].

2.2.1. Right-to-left scan

For anyalignmentof P with T the BoyerMoore algorithmchecksfor an occurrenceof
P by scanningcharacterdrom right to left ratherthanfrom left to rightasin the naive

I Sedgewicki401] writes" Both the Knuth-Morris-Pratt andthe Boyer—Moore algorithmsrequiresome complicated
preprocessingn the patternthat is difticult to understand andhaslimited the extent towhich they arc used”. In
agreementvith Sedgrwick,| still do notunderstandheoriginal Boyer-Moorepreprocessingnethad for the strong
goodsuffix rule,

22. THE BOYER-MOORE ALGORITHM 19

P beforeshift 1 I |

P aftershift z ! I

Figure 2.1: Good suffix shift rule, where character x of T mismatches with character y of P. Characters
y and z of Pare guaranteed to be distinct by the good suffix rule, so 2z has a chance of matching X.

good suffix rule. The original preprocessingnethod{278] for the strong good suffix
rule is generallyconsideredjuite difficult andsomewhat mysterious (although a weaker
versionof it is easyto understand)In fact, the preprocessinépr the strongule wasgiven
incorrectly in [278) and corrected,without muchexplanation,in {384]. Code basedn
[384] isgiven without reaéxplanationin thetextby Baasd32], buttherearenopublished
sourcesghattry tofully explainthemethod.? Pascakode forstrong preprocessingpased
onanoutline by RichardCole[107], is shownin Exercise24 at the endof this chapter.

In contrast,the fundamental preprocessimj P discussedn Chapterl makes the

needed preprocessing vesymple.Thatis the approachwe take hereThe strong good
suffix rule is:

Supposédor agivenalignmentof P andT, asubstring of T matches auffix of P,
butamismatch occurat the nextcomparisorto theleft. Thenfind, if it exists,the
right-mostcopyt' oft in P suchthatt' is notasuffix of P andthe character tothe
left oft' in P differs from the character to the left oft in P.Shift £ to the rightso
thatsubstringt' in 2 is belowsubstringt in T (seeFigure2.1).If ¢+ doesnot exist,
thenshift theleft endof P pasttheleft endof t in 7 by the leastamountsothata
prefix of the shifted patternmatchesa suffix of t in T. if no such shiftis possible,
thenshift P by n placesto the right. If anoccurrenceof P is found, thenshift P
by the leastamountsothata proper prefix of theshifted # matchesa suffix of the

occurrence ofP in T. If nosuch shift is possiblethen shiftP by n places, thais,
shift P pastt in T.

Foraspecificexampleconsiderthealignmentof Pand 7T given below:

0 1
123456789012345678
T: prstabstubabvgxrst
*
P: gcabdabdab
1233567890

When the mismatchoccursat position 8 of P and position10of T, t = ab and t'

occursin P startingat position 3. HenceP is shifted rightby six places, resulting ithe
following alignment:

2 A recentpleaappearedon the inemet newsgroupcomp. theory:

| am looking for an elegant (easily understandable) proof of correctnessfor a par! of the Buyer-Moore string matching
algorithm. The difficutt -to-prove pan here is the algorithm that computesthe dd- (good -suffix) table. I didn't find much of an
understandableproof yet, sold much appreciateany help!

18 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

Extendedbad characterrule

Thebadcharacteruleisausefulheuristicfor mismatchesear theight endof P ,butit has
noeffect if themismatching characterfromoccursn Ptotherightof themismatch point.
This may be commonwhenthealphabets smallandthe textcontainsmany similar, but
notexact,substringsThatsituationis typicalof DNA, which hasan alphabedtf size four,
andevenprotein,which has amlphabebf sizetwenty, oftencontaingdifferentregionsof
high similarity. In such casesthe followingextendedoad characterrule is morerobust:

Whena mismatchoccurs apositioni of P andthemismatched charactar T isx,
thenshift P to the rightsothat theclosestr to the leftof positioni in P is below
themismatched in T.

Because thextendedule giveslarger shiftstheonly reasornto preferthe simplerrule
Is to avoid theaddedimplementation expens# the extendedule. Thesimplerrule uses
only O(|Z|) spacg X isthealphabetfor array R, andonetable lookugfor eachmismatch.
Aswe will seetheextendedulecanbeimplemented taakeonly O(n) spaceandatmost
oneextrasteppercharacter comparisofhat amounbf added spads not often a critical
issue butit isanempiricalquestionwhetherthe longer shifts makep for the addedime
usedby theextendedule. Theoriginal Boyer—Moorealgorithmonly useghe simpleibad
characterule.

Implementing the extendedbad characterrule

We preprocess$® sothattheextendedadcharacterule canbeimplementecefficiently in

bothtime andspace Thepreprocessing should discovésr eachpositioni in P andfor

each characterin the alphabethe position oftheclosest occurrenagf x in P tothe left
of i. Theobviousapproachs to usea two-dimensional arrapf sizen by | %} to storethis
information. Then,whenamismatch occuratpositioni of P andthe mismatching char
acterin T isx, welookupthe(i,x) entry inthearray.Thelookup isfast, buthe sizeof the
array, andhe time tobuild it, may beexcessiveA bettercompromisepelow,is possible.

During preprocessingscanP from right to left collecting, foreachcharacterw in the
alphabetalist of the positionswherex occursin P.Sincethescanis right to left, each
list will bein decreasingrder. For examplaf P = abacbab¢thenthelist for character
a is6, 3, 1. Theselistsareaccumulatedn O(r) time andof coursetakeonly QO(n) space.
During thesearchstageof the Boyer—Moorealgorithmif thereis a mismatch at position
i of P andthe mismatchingcharacteiin T is x, scanx's list from the top until we reach
the firstnumber lesghan: or discover theras none.If thereis nonethenthere is no
occurrencef x beforei, andall of P is shifted pasthex in T. Otherwisethe found entry
givesthedesiredpositionof x.

After a mismatchat positioni of P thetime to scarthe listis at mostn — i, which
is roughly the numberof charactershat matched.So in worst case, thisapproach at
most doubles theunningtime of the Boyer—Moorealgorithm.However, inmostproblem
settingsthe addedtime will be vastly lessthandouble.Onecould alsodo binary search
onthe listin circumstanceshatwarrantit.

2.2.3. The (strong) goodsulffix rule

Thebadcharacter ruléy itself is reputedto be highly effectivein practice, particularly
for Englishtext [229], but proves less effective femallalphabetsand it doesnot lead
to alinear worstcase runningime. For thatwe introduce anotherule calledthe strong

22. THE BOYER-MOORE ALGORITHM 21

Forexamplejf P = cabdabdabthenN;(P)=2andNsP)=>5.

Recallthat Z;(S) is the lengthof thelongestsubstringof S thatstarts ati and matches
aprefix of S. Clearly, N is the reversef Z, thatis, if P” denotes thetring obtainedby
reversingP, thenN, (P)= Z,.;+1(P"). Hence the, (P)valuescanbeobtainedn O(n)
time by usingAlgorithm Z on P'. Thefollowing theoremis thenimmediate.

Theorem2.2.2. L(i)isthelargestindexj lessthann suchtharN;(P) > | P[i..n}]| (which
isn—i+1). L'(i}isthe largest index j less thann suchthat N;(P) = |P[i.n}{ = (n—i+1).

GivenTheoren.2.2,it followsimmediately thaall theL (i) values canbeaccumulated
in lineartime from the N valuesusingthe following algorithm:

Z-based Boyer-Moore
fori :==1tondol'(i) :=0;
for j:=1ton-1do

begin

i :=n-nN;P)T1;
L'i) = J;

end;

The L{i) values(if desired)canbeobtainedby addingthe following linesto theabove
pseudocode

L(2) := L'(2);
fori := 3tondoL(i) = max[L{(i — 1), L'(i)];

Theorem2.2.3. Theabovemethod correctly computeshe L values.

PROOF L (i) marks the right end-position of theright-most substringf P that matches
Pli..n] andisnotasuffix of P[| ..n]. Therefore, thasubstringoeginsat positionL(i)—n-+i,
whichwe will denoteby j. We will prove thatL(i} = max[L{i — 1), L'(i)] by considering
whatcharactelj — 1is.First,if] = | thencharactef — 1 doesn'texist, soL(i — 1) =0
and L'(i) = 1. Sosupposethat j > 1. If characterj — 1 equals character — 1 then
Li)y=1L{ -1).If characterj — 1 doesnotequal character— 1 thenL(i) = L'(i). Thus,
in all casesL(i) musteitherbe L:(i) orLf - 1).

However, L(i) mustcertainly be greaterthanor equalto both L:(i) andL(i —). In
summary,L(i) musteitherbe L'(i) or L(i — 1), andyetit mustbegreaterrequalto both
of them; hence (i) mustbethe maximumof L'(i) andlf - 1). O

Final preprocessingletalil
The preprocessing stageust also preparefor the casewhen L'(i} = 0 or when an
occurrenceof P is found.The following definition andtheoremaccomplish that.

Definition Let/’(i) denote thdéengthof thelargestsuffix of £[i..n] that is alsoa prefix
of P,if oneexists.If noneexists,thenlet {'(i) be zero.

Theorem 2.24. I'(i) equalsthe largestj < |P[i..n]|, whichis n — i 1, such that
N;(P)=].

We leave theproof, aswell asthe problemof how to accumulatethe /'(i) valuesin
linear time,asasimple exercise(Exercise9 of this chapter)

20 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

0 1
123456789012345678
T: prstabstubabvgxrst
P: gcabdabdab

Note that theextended badharacterrule would haveshifted P by only one placein
thisexample.

Theorem2.2.1. The used thegood suffix rule nevershifts P pastanoccurrencen 7.

PROOF Suppose theightendof P is aligned withcharactek of 7 beforetheshift, and
supposehat thegood suffix rule shifts P soits right endaligns with charactetk” > k.

Any occurrenceof P endingata position! strictly betweerk andk' would immediately
violatethe selection ruléor k', sinceit would imply eitherthataclosercopyof t occurs
in P orthatalonger prefix of P matches suffixoft. O

Theoriginal published BoyerMoorealgorithm([75] usesasimpler,weaker, versiowf
thegoodsuffix rule.Thatversionjustrequiresthat theshifted P agreewith thet and does
not specifythatthe nextcharactergo the left of thoseoccurrencesf t bedifferent.An
explicit statementf the weakerule canbe obtainedby deletingtheitalics phrasen the
first paragraph of thestatemenof thestrong gooduffix rule.In the previougxamplethe
weakershift ruleshifts P by threeplaces rather than six. Where needto distinguisithe
two rules,wewill call the simpler rulethe weakgoodsuffix rule andthe rule statedbove
thestronggoodsuffix rule.Forthepurposef provingthat the searcpartof Boyer-Moore
runsin linear worstcasetime, the weakruleis not sufficient,andin this bookthestrong
versionis assumedinlessstatedotherwise.

2.24. Preprocessindor the goodsuffix rule

We now formalize the preprocessingeededor the Boyer-Moorealgorithm.

Definition For each, L(i) isthe largest positiorlessthann suchthat stringP[i..n]
matchesasuffix of P[1..L{i)]. L(i}is defined tabezeroif thereis noposition satisfying
theconditionsForeachi, L'(i) is the largest positiolessthann suchthat string P{i..n]
matchesa suffix of P[1..L'(i)] andsuch that theharactemprecedinghatsuffix is not
equalto P(i —1). L'(i) isdefinedtobe zeroif thereisnopositionsatisfying the conditions.

Forexamplejf P = cabdabdab, thenL(8) =6andL'(8) = 3.

L(i) gives the righendpositionof theright-mostcopyof P{i..n] thatis notasuffix of
P ,wheread.’(i) givesthe rightendpositionof theright-mostcopy of P{i..n] thatis not
asuffix of P, with the stronger,added conditiorthat its precedingcharacter isunequal
to P — 1). So,in the strongshift versionof the Boyer-Moorealgorithm,if character
i — 1of Pisinvolvedin a mismatchand L'(i) > 0, then P is shiftedright by n — L (i)
positions.Theresultis that if the rightendof P wasalignedwith positionk of 7 before
the shift, then positionL (i) is now alignedwith positionk.

During the preprocessingtageof the Boyer-Moore algorithmL'(i) (and L(i), if de-
sired)will becomputedor eachposition: in P.Thisisdonein O(n) timevia thefollowing
definition andtheorem.

Definition For string P, N;(P) is the length of the longestsuffix of the substring
P[I..j] thatis alsoa suffix of thefull string P.

23. THE KNUTH-MORRIS-PRATT ALGORITHM 23

Boyer-Moore method haa worstcaserunning timeof G(m) provided thathe pattern
doesnotappeain the textThiswasfirst proved byKnuth, Moms,andPratt[278], andan
alternate proof wagivenby GuibasandOdlyzko[196]. Both of these proofs werguite
difficult and establishe@vorstcasetime bounds ndbetterthanS»= comparisonsLater,
RichardCole gavea muchsimplerproof [108] establishinga boundof 4m comparisons
andalsogave adifficult proof establishing d@ight boundof 3m comparisonsWe will
presentCole's proofof 4m comparisongn Section3.2.

When the patterdoesappeain the texthen theoriginal Boyer-Mooremethodruns in
®(nm) worstcasetime.However severakimple modificationso themethodcorrect this
problem, yielding an O(m) time boundin all casesThefirst of these modificationgas
dueto Galil [168]. After discussingCole'sproof,in Section3.2 for thecase thaP doesn't
occur inT, we useavariantof Galil’s ideato achieve the linear time bouirdall cases.

At the otherextremejf we only usethe bad character shiftile, thenthe worstcase
running timeis O{nm), butassumingrandomly generated stringbe expectedunning
time is sublinear.Moreover,in typical string matching applications involvingatural
language texta sublinearunningtime is almost alway®bservedn practice We won't
discussrandomstringanalysis inthis book but refer the readeto [184].

Although Cole'sproof for the linearworstcaseis vastly simplethanearlier proofs,
and isimportantin orderto completethe full story of Boyer-Moore, it is not trivial.
However afairly simpleextensiorof the Boyer—Moorealgorithm,dueto Apostolico and
Giancarlo [26], givesa' Boyer-Moore-like" algorithmthatallows afairly direct proof of
a2m worstcaseboundon thenumberof comparisonsThe Apostolico-Giancarlovariant
of Boyer—Mooreis discussedh Section3.1.

2.3. The Knuth -Morris -Pratt algorithm

Thebest known lineatime algorithmfor the exactmatchingproblemis dueto Knuth,
Morris, and Prat{278]. Although itis rarely the methoaf choice, and i®ften much
inferior in practiceto the Boyer—Moore methodand others)ii canbesimply explained,
andits linear timeboundis (fairly) easily proved.The algorithm alsdormsthe basif
the well-known Aho—Corasick algorithm,which efficientlyfinds all occurrences ia text
of any pattern fromasetof patterns.*

2.3.1. The Knuth -Morris -Pratt shift idea

Foragiven alignmenof P with T, suppose theaivealgorithm matchethefirsti charae

tersof P against theicounterpartin T andthenmismatchesnthenextcomparisonThe
naive algorithmwould shift P by just oneplaceandbegincomparing agaifrom theleft

endof P .Butalargershift mayoftenbepossible. Foexamplejf P = abcxabcde and,in

the presendlignmentof Pwith T, themismatchoccursn position8of P,then itiseasily
deducedand we will provebelow)that P canbeshiftedby four placeswithout passing
overanyoccurrencesf P in T. Notice thatthis canbe deduced without eveknowing
what string 7" is or exactly howP is aligned withT. Only thelocationof themismatchin

P must be knownThe Knuth-Morris-Prattalgorithm isbasedon thiskind of reasoning
to makelargershiftsthanthe naive algorithmmakesWe now formalize this idea.

* We will presentseveralsolutions to that setproblem including the Aho—Corasick methodin Section3.4.For those
reasons, and for its historical role in the field, we fully developthe Knuth-Morris -Pratt method here.

22 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

2.2.5. The goodsuffix rule in the search stagef Boyer-Moore

Having computed.'(i) and{’({} for eachpositioni in P,thesepreprocessed valuesare
used duringhesearch stage of thalgorithm to achievearger shifts.If, during thesearch
stage,a mismatchoccursat positioni — 1 of # andL’(i) > 0, thenthe goodsuffix rule
shifts P by n — L'(i) placesto theright, sothatthe L'(i)-length prefix of the shifted P
alignswith the L'(i)-lengthsuffix of theunshiftedP,In the casahatL’(i) = 0, thegood
suffix rule shifts P by n — #'(i) placesWhenan occurrence of P is found,thentherule
shifts P by n — I'(2) places.Notethattheruleswork correctly evenwhenl'(i) = O.

Onespecial caseemains. When thefirst comparison is a mismatch(i.e., P(n) mis-
matches}hen P shouldbeshiftedoneplaceto theright.

2.2.6. The completeBoyer-Moore algorithm

We havearguedhat neithethe goodsuffix rule nor thebadcharacterule shift P sofaras
to miss any occurrence of P.Sothe Boyer-Moorealgorithm shiftsdy thelargest amount
given by eitherof therules,We can now preserthecompletealgorithm.

The Boyer-Moore algorithm

{Preprocessingtage)
Giventhe patternP,
ComputelL '(i) and?’(i) for eachpositioni of P,
and computeR(x) for eachcharactek < X.
{Search stage)
K:=n:
whilek < m do
begin
L I=n;
h :=k;
whilei > Qand P(i) = T(h)do
begin
[=1—1;
h:=h-1;
end;
if i = 0then
begin
reportanoccurrence of P in T endingat positiork.
k:=k+n-ro;
end
else
shift P (increasek) by the maximum amountetermined by the
(extendedpadcharacter rule andthe goodsuffix rule.
end;

Note thatalthough wehavealways talked about shifting P, andgivenrules to deter
mineby how muchP shouldbe™ shifted thereis noshiftingin theactualimplementation.
Rather, thendexk is increased to the pointwherethe rightendof P would be' shifted'.
Hence, each act shifting P takesconstant time.

We will later show,in Section3.2, thatby using the strongoodsuffix rule alone,the

83 THE KNUTH-MORRIS-PRATT ALGORITHM 25

a B k

—_—

~

P beforeshift

P after shift

——— o = o — =
G EN R B |

—-
1
1
1
I
1
1
1
]
|
]

" missedoccurrencef P’

Figure 2.2: Assumed missed occurrence used in correctness proof for Knuth-Morris-Pratt.

by 4 placesasshownbelow:

1 2
123456789012345678
xyabexabexadcedgfeg
abexabede
abcxabcde

As guaranteedhefirst 3 charactersf the shifted P matchtheircounterpartsn T (and
theircounterpartén the unshiftedP).
Summarizing, we have

Theorem?2.3.1. After amismatchat positioni * | ¢ P anda shift of — sp; places to the
right, the left-most sp; charactersof P are guaranteedto match their counterparts in T.

Theoren?.3.1 partially establishethecorrectnessf theKnuth-Morris-Prattalgorithm,
butto fully provecorrectnessve haveto showthat theshift rule nevershifts toofar. That
IS, using theshift rule no occurrencef P will everbeoverlooked.

TheoremZ232 For anyalignment of P with T , if characters I throughi ¢ P marchthe
opposingcharactersof T but character 4+ 1 mismatchesT'(k), then P canbe shiftedby
i — sp; placesto the right withoutpassing anyoccurrenced P n T.

PROOF Supposeanot, Sothat thereis anoccurrenceof P startingstrictly to the left of
the shiftedP (seeFigure 2.2), andlet a and 8 be the substringshownin thefigure. In
particular 8 is the prefix of P of length sp!, shownrelativeto theshifted positiorof P.
The unshiftedP matchesI" up throughpositioni of P and positionk = 1 of T, andall
charactersn the(assumedinissedoccurrencef P matchtheir counterparts 7. Both of
thesematched regionsontainthesubstringe andg, sotheunshiftedP and the assumed
occurrenceof P matchon theentiresubstringef. Hencew§ is a suffix of P(1../] that
matchesa proper prefixof P. Now let! = |og| T 1 sothat positior/ in the"missed
occurrenc®of P isoppositepositionk in 7. CharacterP(/) cannotbeequal to P +1)
since P(I) is assumedo match 7' (k) and P{ + 1) does notmatch7 (k). Thuses is a
propersuffix of P(1..i] that matchesa prefix of P, and the nextcharacteiis unequalto
A + 1). But le} > 0duetotheassumptiorthatan occurrencef P startsstrictly before

theshifted?, solaB| > |B8| = sp;, contradicting the definitionf spf. Hence the theorem
is proved. O

Theorent.3.2 saysthatthe Knuth-Morris-Prattshift rule does not missany occurrence
of Pin T, andsothe Knuth-Moms-Prattalgorithmwill correctly id all occurrencesf
Pin T. Thetimeanalysisis equatly simple.

24 EXACTMATCHING:CLASSICAL COMPARISOBASEIMETHODS

Definition Foreachposition: in pattern®, definesp; (P)to bethelength of thelongest
propersufiix of P[l ..i] thatmatches prefix of P.

Stated differentlysp;(P) is thelengthof the longest propesubstringof P(1..i] that
endsati andthat matchesa prefix of P.Whenthesttingis clearby contextwe will use
sp; in placeof thefull notation.

Forexamplejf P = abcaeabcabd, thensp, = spy = 0,5ps = 1,spy = 3, and
spio = 2. Notethatby definition,sp; = 0 for any sing

An optimized versiof the KnutkMorris-Prattalgorithm usethefollowing values.

Definition Foreachpositioni in pattern P, definesp;(P) to be the length of the
longestpropersuffix of P[1../] thatmatchea prefix of P.with the addedconditionthat
characters P(i + 1)and P(sp; + 1) areunequal.

Clearly, sp/(P) < sp;(P) for all positionsi and any string P. As an example,if
P = bbccaebbcabdhensps = 2 becausestring bb occursbothasa proper prefixof
P[1..8] andasa suffix of P[1..8]. However,bothcopiesof thestring arefollowed by the
samecharactec, andsosp; < 2, Infact,spg = 1 sincethe single charactéroccursas
boththefirst andlastcharacteof P[1..8] andis followed by charactebin position2 and
by charactecin position9.

The Knuth -Morris -Pratt shift rule

We will describe the algorithrim termsof the sp’ values, and leavi¢ to the readerto
modify the algorithmif aly the weaker sp valuesare used.' The Knuth-Morris-Pratt
algorithm alignsP with T andthencompareshealigned charactefsom left to right, as
the naivealgorithmdoes.

Foranyalignmentof P andT, if thefirst mismatch (comparinfyom left to sight)
occurs in positioni + 1 of £ andpositionk of T, thenshift 2 to theright (relative
to T)sothatPll..sp!] alignswith T[k — sp!..k — 1}. Enother wordsshift P exactly
i +1—(sp;+1) =i —sp! places to the righgothat characterp, + 1 of P will
align with charactek of T'. In thecasethatanoccurrencef P hasbeenfound(no
mismatch), shiftP? by n — sp; places.

Tre shiftruleguaranteethat theprefix P[1..sp!] of the shiftedP matchestsopposing
substringn 7'. Thenext comparisotis thenmadebetweercharacterg (k) and P{sp; + I].
Theuseof the strongeshift rulebasedn sp; guaranteethatthesamemismatchwill not
occuragainin thenewalignment,butit doesnot guaranteghatT (k) = P[sp; +11.

In the above exampleyhere P = abcxabede andsp; = 3, if character 8 of P
mismatchethen P will beshiftedby 7 — 3 = 4 placesThisis trueeven withoutknowing
T orhow P is positionedwith T.

Theadvantagef the shift rule is twofold. First, it oftenshifts P by morethanjust a
single character. Second, afteshift, the leftmostsp; charactersf P are guaranteed to
match their counterparta T. Thus,to determine whethehe newly shifted P matches
its counterparin 7, the algorithmcan start comparing P and T at position sp; + 1
of P (and positionk of T). For example, suppos® = abcxabcdeasabove, T =
xyabcxabcxadedg f eg, andtheleft endof P is alignedwith characterd of 7. Then P
and T will matchfor 7 characterbutmismatchancharacte8 of P,and P will beshifted

4 The reader should be alerted that traditionally the Knuth-Morris-Pratt algorithm hasbeen described in terms d
failure functions, Which are related to the sp; values.Failure functionswill be explicitly defined n Section2.3.3.

2.4. REAL-TIME STRING MATCHING 27

sp.(P) :=sp (P);
fori ;= n— 1downto 2do
spi(P) == max[sp;+1(P) — 1, sp/(P)]

2.3.3. A full implementationof Knuth -Morris -Pratt

We havedescribedhe Knuth-Morris-Pratt algorithmin terms of shifting P, butwe never
accountedor time needed to implement shifthereasons that shifting is only conceptual
and P is never explicitlyshifted. Rather, asn the caseof BoyerMoore,pointersto P
andT are incrementedVe use pointep to point into P andone pointer (for " current’
character}o pointintoT.

Def|n|t|on For each positionfrom 1 to n + 1, definethefailurefunction F'(i) to be
5P + | (anddefineF(i) = sp;_; T 1), wheresp;, andsp, are definedo be zero.

We will only use thg(strongerj¥ailure functionF'(i) in this discussiotut will referto
F(i) later,

After amismatchin positioni +1 > 1of P, the Knuth-Morris-Pratt algorithrfshifts”
P sothatthe nextcomparisoris between theharactem positionc of T and thecharacter
in positionsp;+1of P. Butsp,*1 = F'(i*+1), soa generalshift' canbeimplemented in
constantime by justsettingp to F'(; T 1). Two specialcasesemain. Wherthemismatch
occursin positionlof P ,thenpissetto F'(1) = | andc isincrementedy one.Whenan
occurrencef P isfound,then P is shifted rightby n — sp/, places. Thigs implemented
by setting F'(n + 1) tosp’, T 1.

Putting allthe piecestogethemgivesthe full Knuth-Morris-Pratt algorithm.

Knuth -Morris -Pratt algorithm

begin
Preprocess Rofind F'(k) = sp,_, T 1fork from1ton¥t 1.
c:=1;
p:=1
Whilect(h = p)<m
do begin
While P(p) =T(c)and p=<n
do begin
p=p+1
ci=c+1;
end;

if p=n+ 1then
reportanoccurrenceof P starting at positiola — n of 7.
ifp:=1thenc:=c+1
p:=F'(p)
end;
end.

2.4. Realtime string matching

In thesearchstageof the KnuthMorris-Pratt algorithmpP is aligned against substringf
T andthetwo stringsare compareteftto right untileitherall of P is exhaustedin which

26 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

Theorem2.3.3. In the Knuth-Morris-Pratt method the number of charactercomparisons
iIsat most2m.

PROOF Divide thealgorithminto compare/shift phaseswhereasingle phaseonsistof

the comparisonsione betweesuccessive shifts. Afteanyshift, thecomparisons irthe

phasegoleft toright andstart either withthelastcharacteof T comparedn the previous
phaseor with thecharactetto its right. Since P is nevershiftedleft, in any phaseat most
onecomparison involves aharacter off’ thatwaspreviouslycomparedThus,the total
numberof charactecomparisonss boundedby m + s, wheres is the numberof shifts
donein the algorithmButs < m sinceafterm shiftstherightendof P is certainlyto the

right of therightendof T, sothe numberof comparisonsloneis boundedby 2m. O

2.3.2. Preprocessingor Knuth-Morris -Pratt

Thekey to thespeedup of the Knuth-Morris-Prattalgorithmover thenaivealgorithmis
the use obp' (orsp)valueslt iseasyto seehow to computeall thesp' ands p valuesfrom
the Z valuesobtainedduring thefundamentalpreprocessingf P.We verify this below.

Definition Positionj > 1 mapstoi if i = j + Z;(P) — 1. Thatis, j mapstoi if i is
theright endof a Z-box starting af .

Theorem2.3.4. Fur anyi > 1, sp(PY=2Z; =i —] + 1, where j > 1is the smallest
position that maps toi. If thereis nosuch j thensp/(P) = 0. Foranyi > 1, sp;(P) =
i — j+ 1, wherej isthesmallestpositionn the rangel < j < i thatmapstoi orbeyond.
if there isnosuch j, thensp;(P)=0.

PROOF If spi(P) is greaterthan zero, then therés a propersuffix « of P[1..i] that
matches prefix of P,suchthat P[i + 1] doesnot matchP[|a] T 1]. Therefore]etting |
denotethe starof o, Z, = ja| = sp(P) and] mapstoi. Hence,if thereis no j in the
rangel < j <i thatmapstoi, thensp(P) must bezero.

Now supposep;(P) > 0 andlet j beas definecabove Weclaim that j is the smallest
positionin therange2toi thatmapstoi. Supposenot,andlet j* beapositionin therange
1 < j* < jthatmapstoi. Then P[j*..i] would be apropersuffixofP[1..i] that matches
a prefix(callit 8) of P.Moreover,by the definition of mapping,P(i + 1) # P(Bl), so
spi(P) > |Bl > lal, contradicting theassumptiorthatsp; = a.

The proofsof theclaimsfor sp;(P) are similar andhreleft asexercises. O

Given Theoren.3.4, all thesp' andsp valuescanbe computedn lineartime using
the Z; valuesasfollows:

Z-based Knuth -Morris -Pratt

fori ;== 1tondo
sp; =0,
for j :=n downto 2do
begin
i= |tz p)-1;
sp, =17
end,

Thes pvaluesare obtainedy addingthefollowing:

25. EXERCISES 29

shift rule,the methodbecomegeal time becausk still never reexaminea position inT
involved in a match (afeatureinherited from the Knuth-Morris-Pratt algorithm), and it
now alsoneverreexamines position involvedn amismatch.So, the search stage thfis
algorithmneverexaminesa character inT morethanonce. It follows that the searchis
donein realtime. Below weshowhow tofind all thespy, ,, valuesin lineartime. Together,
this givesan algorithmthatdoeslinear preprocessingf P andreal-time searchf T.

It is easy toestablishthatthe algorithmfinds all occurrencesf P in T, and weleave
thatasanexercise.

2.4.2.Preprocessingdor real-time string matching

Theorem2.4.1. For P[i +11 # x, sp/, .,(P)=i — j T 1, wherej is the smallestposition
suchthatj mapstoi andP(Z; t 1) = x. If there isnosuch j thensp;; ,(P) = 0.

The proof of this theoremis almostidenticalto the proofof Theorem2.3.4 (page 26)
and is leftto the reader.Assuming(as usual)that the alphabetis finite, the following
minor modification of the preprocessingyiven earlier for Knuth-Morris-Pratt (Section
2.3.2) yields the needegp;; ,, valuesin lineartime:

Z-based real-time matching

fori := 1tondo
sP. .= 0 for everycharactex;
for j := n downto 2do
begin
i=jtzwp -1
x =P, T,
SPixy = Zj5
end;

Note thathelineartime (andspace)oundfor this methodrequire thathealphabetZ
be finite. Thisallowsustodo|X | comparisong constantime. If thesize of thealphabet
isexplicitly includedin thetimeandspacebounds,thenthe preprocessingime andspace
neededor thealgorithmis O((Z|n).

2.5. Exercises

1. In "typical" applications of exact matching, such as when searching for an English word
in a book, the simple bad character rule seems to be as effective as the extended bad
character rule. Give a "hand-waving" explanation for this.

2. When searching for a single word or a small phrase in a large English text, brute force
(the naive algorithm)is reported [184] to run faster than most other methods. Give a hand-
waving explanation for this. In general terms, how would you expect this observation to
hold up with smaller alphabets (say in DNA with an alphabet size of four), as the size
of the pattern grows, and when the text has many fong sections of similar but not exact
substrings?

3. "Common sense" and the @(nm) worst-case time bound of the Boyer—Moore algorithm
(using only the bad characterrule) both would suggestthat empiricalrunningtimesincrease
withincreasing patternlength (assuming afixed text). But when searchingin actual English

28 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

caseanoccurrencef Pin T hasbeenfound)or until amismatch occuratsomepositions
i+10f Pandkof 7. Inthelatter caseif sp; > 0,thenPis shiftedrightby —sp; positions,

guaranteeinghat the prefixP[1..sp;] of theshiftedpatternmatchests opposingsubstring

in T, No explicit comparisonof those substrings neededandthe nextcomparisonis

betweercharacterd (k) and P(sp; + 1). Although theshift basedn sp; guaranteesghat

P + 1) differs from P(sp, + 1), it doesnot guarante¢hat T (k) = P(sp; + 1). Hence
T (k) mightbe compared several times (perha&pg P}) times)with differing characters
in P.Forthatreasonthe Knuth-MorrisPratt methods not a reattime method.

To bereal time,a method mustio at mosta constantamountof work between the
time it first examinesany positionin T andthe time it last examinethat position.In the
Knuth-Morris-Prattmethod, ifa positionof T isinvolvedin a matchjt is neverexamined
again(thisis easyto verify) but, asindicatedabove, thids nottruewhen the position is
involvedin amismatch Notethat the definitiorof realtimeonly concernghesearchstage
of the algorithm. Preprocessingf P neednot berealtime. Note alsothatif the search
stageis realtime it certainlyis alsolineartime.

Theutility of areattimematchers twofold. First,in certain applicationssuchaswhen
the characterof thetext are beingent toa small memory machineonemight needto
guarantee that each charactanbefully processedefore the nexbneis dueto arrive.
If the processingtime for eachcharacteris constant, independent olfie lengthof the
string,thensuchaguaranteenaybepossible Secondin this particular realtime matcher,
the shifts of P may be longerbut never shortethanin the original Knuth-Motris-Pratt
algorithm. Hencethereakttime matchermayrun fasterin certainproblem instances.

Admittedly,argumentsn favorof real-timematchingalgorithmsover linear-timemeth
odsare somewhat tortureédndthe realtime matchingis moreatheoreticalissuethana
practicalone Still, it seemsvorthwhiletospendalittle timediscussingeaktime matching.

2.4.1.Converting Knuth -Morris -Pratt to a real-time method

We will use theZ valuesobtained duringundamentalpreprocessingf P to convert
the Knuth-Morris-Prattmethod intoa reattime method.The requiredpreprocessingf
P is quite similarto the preprocessing donia Section2.3.2for the Knuth-Morris-Pratt
algorithm.For historicalreasons, theesulting reattime method isgenerallyreferredto
asa deterministicfinite-state string matcherandis often representedith a finite State
machine diagramWe will not use this terminologhereandinsteadrepresenthe method
in pseudaode.

Definition Let x denotea characteof thealphabetForeachposition: in patternP,
definesp; ,,(P) to be thelengthof thelongest propesuffix of P[1..;] that matches a
prefix of P,with the addedcondition thnr character P(sp, + 1)isx.

Knowing the sp;; ., valuesfor eachcharacterx in the alphabetallows a shift rule
that convertsthe Knuth-Morris-Pratt method into a reattime algorithm. SupposeP is
comparedagainsta substring of T anda mismatch occurat characterd (k) = X and
P(i*+1). ThenP shouldbeshifted rightby i — 5P » PlacesThis shiftguaranteethatthe
prefix P[1..sp; .,] matchesthe opposingsubstringin T andthat 7(k) matchesthe next
charactetin P.Hence,the comparisorbetweenT (k) and P(spy; ,, + 1) can beskipped.
Thenext neededomparisons betweercharactersP(spy, ,, +2)andT (k + 1). with this

16.

17.

18.

19.

20.

21.

22.

23.

24.

25. EXERCISES 31

Using sp values to compute Zvalues

In Section 2.3.2, we showed that one can compute all the sp values knowing only
the Z values for string 8 (i.e., not knowing S itself). In the next five exercises
we establish the converse, creating a linear -time al gorithm to compute all the

Z values from sSp values alone. The first exercise suggests a natural method to
accomplish this, and the following exercise exposes a hole in that method. The
final three exercises develop a correctlinear -time algorithm, detailed in [202]. We
say that sp; maps to k if k = i—sp; T1,

Suppose there is a position i such that sp; maps to k, and let i be the largest such position.
Provethat Zx =i — k + 1 = sp; and that rx = /.

Given the answer to the previous exercise, it is natural to conjecture that Z; always equals
sp;, where i is the largest position such that sp; maps to k. Show that this is not true. Given
an example using at least three distinct characters.

Stated another way, give an example to show that Z; can be greater than zero even when
there is no position i such that Sp,maps to k.

Recall that r_1 is known at the start of iterationk of the Z algorithm (when Zx is computed),
but r, is known only at the end of iterationk. Suppose, however, that rx is known (somehow)
at the start of iteration k. Show how the Z algorithm can then be modified to compute Z
using no character comparisons. Hence this modified algorithm need not even know the
string S.

Prove that if Z is greater than zero, then r, equals the largest position / such that k > i-

Sp, .Conclude that r« can be deduced from the sp values for every position k where Zi is
not zero.

Combine the answers to the previous two exercises to create a linear-time algorithm that
computes all the Z values for a string S given only the Spvalues for S and not the string
Sitself.

Explain in what way the method is a "simulation” of the Z algorithm.

It may seem that (i) (needed for Boyer—Moore) should be sp, for any i. Show why this is
not true.

In Section 1.5 we showed that all the occurrencesof Pin T could be found in linear time
by computing the Z values on the string S = P$T. Explain how the method would change
if we use S = PT, that is, we do not use a separator symbol between Pand T. Now show
how to find all occurrences of Pin T in linear time using S = PT, but with sp values in
place of Z values. (This is not as simple as it might at first appear.)

In Boyer—Moore and Boyer—Moore—like algorithms, the search moves right to left in the
pattern, although the pattern moves left to right relative to the text. That makes it more
difficult to explain the methods and to combine the preprocessing for Boyer—Moore with
the preprocessing for Knuth-Morris-Pratt. However, a small change to Boyer—Moore would
allow an easier exposition and more uniform preprocessing. First, place the pattern at the
right end of the text, and conduct each search feft to rightin the pattern, shifting the pattern
left after a mismatch. Work out the details of this approach, and show how it allows a more
uniform exposition of the preprocessing heeded for it and for Knuth-Morris-Pratt. Argue that
on average this approach has the same behavior as the original Boyer—Moore method.

Below is working Pascal code (in Turbo Pascal) implementing Richard Cole's preprocess-
ing, for the strong good suffix rule. It is different than the approach based on fundamental
preprocessingand is closer to the original method in [278]. Examine the code to extract the
algorithm behind the program. Then explain the idea of the algorithm, prove correctness
of the algorithm, and analyze its running time. The point of the exercise is that it is difficult
to convey an algorithmic idea using a program.

30

10.

11.

12.

13.

14.
15.

EXACT MATCHING:CLASSICAL COMPARISON-BASEDMETHODS

texts, the Boyer—Moore algorithm runs faster in practice when given longer patterns. Thus,
on an English text of about 300,000 characters, it took about five times as long to search
for the word “inter” as it did to search for "Interactively".

Give a hand-waving explanation for this. Consider now the case that the pattern length
increases without bound. At what point would you expect the search times to stop de-
creasing? Would you expect search times to start increasing at some point?

Evaluate empirically the utility of the extended bad character rule compared to the original
bad character rule. Perform the evaluationin combination with different choices for the two
good-suffix rules. How much more is the average shift using the extended rule? Does the
extra shift pay for the extra computation needed to implement it?

Evaluate empirically, using differentassumptions about the sizes of Pand T, the number
of occurrences of Pin T, and the size of the alphabet, the following idea for speeding
up the Boyer—Moore method. Suppose that a phase ends with a mismatch and that the
good suffix rule shifts Pfarther than the extended bad character rule. Let x and y denote
the mismatching charactersin T and P respectively, and let z denote the character in the
shifted Pbelow x. By the suffix rule, z will not be y, but there is no guarantee that it will be
X. So rather than starting comparisons from the right of the shifted P, as the Boyer—Moore
method would do, why not first compare x and z? If they are equal then a right-to-left
comparison is begun from the right end of P, but if they are unequal then we apply the
extended bad character rule from z in P. This will shifl Pagain. At that point we must begin
a right-to-left comparison of P against T.

The idea of the bad character rule in the Boyer—Moore algorithmcan be generalizedso that
instead of examining charactersin P from right to left, the algorithm compares characters
in Pin the order of how unlikely they are to be in T (most unlikely first). That is, it looks
first at those charactersin P that are feast likely to be in T. Upon mismatching, the bad
character rule or extended bad character rule is used as before. Evaluate the utility of this
approach, either empirically on real data or by analysis assuming random strings.

. Construct an example where fewer comparisons are made whenthe bad character rule is

used alone, instead of combining it with the good suffix rule.

Evaluate empirically the effectivenessof the strong good suffix shift for Boyer—Moore versus
the weak shift rule.

Give a proof of Theorem 2.2.4. Then show how to accumulate all the /(i) values in linear
time.

tf we use the weak good suffix rule in Boyer—Moore that shifts the closest copy of t under
the matched suffix t, but doesn't require the next character to be different, then the pre-

processing for Boyer—Moore can be based directly on sp, values rather than on Z values.
Explain this.

Prove that the Knuth-Morris-Pratt shift rules (either based on sp or sp') do not miss any
occurrences of Pin T.

It is possible to incorporate the bad character shift rule from the Boyer—Moore method to
the Knuth-Morris-Pratt method or to the naive matching method itself. Show how to do that.
Then evaluate how effective that rule is and explain why it is more effective when usedin
the Boyer—Moore algorithm.

Recall the definition of ; on page 8. It is natural to conjecture that sp; = i — /; for any index
i, where j > {;. Show by example that this conjecture is incorrect.

Prove the claimsin Theorem 2.3.4 concerning sp,.’(H.

Isit true that given only the sp values for a given string P, the sp' values are completely
determined? Are the sp values determined from the sp' values alone?

25.

26.
27.

28.

25. EXERCISES

if (plk]l = p(J])} then
begin 13}
kmp_shifte[k] :=j-k;
Ji=3-1;
end 131

else

kmp_shift (k]:=j-k+1;

end; {2}

{stage 21
ji=j+1;
j_old:=1;

while (j <= m} do
begin {2}
for i:=j_old to j-1 do
if f{gs_shift[i]l > j-1) then gs_shift[i]:=j-1;

j_old:=3;
Jr=j+kmp_shift[j];
end; {2}
end: (1}

begin {main}

writeln(’input a stringon a single lineY;
readstring (p.m) ;

gsshift (p,matchshift,m) ;

writeln(’the value in cell i isthe number of positions to shift);
writeln('after a mismatch occurring in position i of the pattern’);

for ii= 1 b m do
write{matchshift[i]:3);
writeln ;

end. {main}

Prove that the shift rule used by the real-time string matcher does not miss any occurrences
of Pin T.

Prove Theorem 2.4.1.

In this chapter, we showed how to use Z values to compute both the sp/ and sp; values
used in Knuth-Morris-Prattand the sp/, values needed for its real-time extension. instead
of using Z values for the sp,.’_ ,, values, show how to obtain these values from the sp, and/or
sp/ values in linear [O(n| £1)] time, where n is the length of P and [X| is the length of the
alphabet.

Although we don't know how to simply convert the Boyer—Moore algorithmto be a real-time
method the way Knuth-Morris-Prattwas converted, we can make similar changes to the
strong shift rule to make the Boyer—Moore shift more effective. That is, when a mismatch
occurs between A7) and T(h) we can look for the right-most copy in Pof P[i*1..n] (other
than P[i* 1..n] itself) such that the preceding character is T(#). Show how to modify

32

EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

program gsmatch(input,output});

(This isan implementation of Richard Cole's
preprocessing for the strong good suffix rule}
type

tstring = string [2001;

indexarray = array[l..100} of integer;

const

zero = 0;

var

p:tstring;

bmshift,matchshift:indexarray;
m,1i:integer;

procedure readstring{var p:tstring; var

begin
read(p) ;

m:=length {p);
writeln(’the length of the string

end;

procedure gsshift({p:tstring; var
gs_shift:indexarray;m:integer);

var
i,J,j._old,k:integer;
kmp_shift:indexarray;
go- on: boolean;

begin {1}

for j:= 1 to mdo
gs_shift[j] := m;
kmp_shift[m]:=1;

{stage 1}
J:i=m;

for k:=m-1 downto 1 do
begin (2 1

go_on:=true;

while {(p(j} <> p{kl} and go-on do

begin 131
if {gs_shift[j] > Jj-k)

then gs_shiftij]

if (3 < m) then ji= j+kmp_shift{j+1]

else go_on:=false;
end; {3}

m:integer);

= j-k

3
Exact Matching: A DeeperLook at ClassicalMethods

3.1. A Boyer-Moore variant with a “simple” linear time bound

Apostolico and Giancarld26] suggesteda variantof the BoyerMoorealgorithm that
allowsafairly simple proofof linearworstcase runningime. With thisvariant,no char
acterof T will ever be compared afteit is first matchedwith any characterof P.It is
thenimmediatethat thenumberof comparisonss at most2m: Every comparison ii-
ther amatch ora mismatch; thereanonly bem mismatchesinceeachoneresultsin a
nonzeroshift of P;andtherecanonly bem matches sincaocharacteof T is compared
againafter itmatches @&haracteof P.We will alsoshow thaf(in additionto the time for
comparisons)hetime takenfor all the other workn this methodis linear inm.

Giventhehistoryof very difficult and partial analyses othe BoyerMoorealgorithm,
it is quiteamazingthataclose varianof thealgorithmallows asimplelinear timebound.
We presenthere a furthermprovemenof the Apostolico-Giancarloidea,resultingin an
algorithm that simulatesxactly the shiftsof the Boyer-Moore algorithm.The method
thereforehasall the rapid shifting advantagesf the Boyer-Moore methodaswell asa
simplelinearworstcasetime analysis.

3.1.1. Key ideas

Ourversionof theApostolico-Giancarlo algorithm simulateése BoyerMoorealgorithm,
finding exactlythesame mismatchdbat Boye-Moore wouldfind and makingexactlythe
sameshifts. However it infersandavoidsmanyof theexplicit matches that BoyetMoore
makes.

We take the followinghigh-level view of the Boyer—Moore algorithm.We divide the
algorithm intocompare/shift phases numbered throughg < m.In acompare/shift phase,
theright endof P is alignedwith a characteof T, and P is compared righto left with
selected characteo$ T until eitherall of P is matchedr until a mismatchoccurs.Then,
P is shiftedright by someamountasgivenin the Boyer—Moore shift rules.

Recall fromSection2.2.4,where preprocessing f@oyer—Moore waddiscussedthat
N;(P) is thelengthof the longestsuffix of P[1..i] that matchesa suffix of P.In Sec
tion 2.2.4 we showed howo computeN; for everyi in O(n) time, wheren is thelength
of P.Weassumdere thatvector N hasbeenobtained duringhe preprocessingf P.

Two modificationsof the Boyer—Moore algorithm areequired. Firstduringthesearch
for Pin T (afterthepreprocessing)we maintainanm lengthvectorM in which at most
oneentry isupdatedn everyphase. Considex phasewherethe rightendof Pis aligned
with position j of T andsupposehat PandT match forl places (from righto left) but
no farther. Then,setM () to a valuek < ! (therulesfor selectingk are detailed below).
M(j) recordsthe fact that suffix of P of lengthk (at leastjpccursin T andendsexactly

34 EXACT MATCHING:CLASSICAL COMPARISON-BASED METHODS

root

Figure 23. The pattern P = aqgra labels two subpaths of paths starting at the root. Those paths start at
the root, but the subpaths containing agra do not. There is also another subpath in the tree labeled agra
(it starts above the character z), but it violates the requirementthat it be a subpath of a path starting at the
root, Note that an edge label is displayed from the top of the edge down towards the bottom of the edge.
Thus in the figure, there is an edge labeled “gra”, not “arg’".

the Boyer—Moore preprocessing so that the needed information is collected in linear time,
assuming a fixed size alphabet.

29. Suppose we are given a tree where each edge is labeled with one or more characters, and
we are given a pattern P. The label of a subpath in the tree is the concatenation of the
labels on the edges in the subpath. The problem is to find all subpaths of paths starting at
the root that are labeled with pattern P. Note that although the subpath must be part of a
path directed from the root, the subpath itself need not start at the root (see Figure 2.3).
Give an algorithm for this problem that runs in time proportional to the total number of
characters on the edges of the tree plus the length of P.

3.1. ABOYER-MOORE VARIANT WITH A" SIMPLE" LINEAR TIME BOUND 37

4. If M(h) > N; andN; < i, then P matchesI’ from the rightendof P down tocharacter
i — N; T 10f P, butthe nextpairof characters mismatghe., P(i — N} # T(h — N}
HenceP matched for j — h + N; characters and mismatclapositioni — N; of P.
M(j) mustbe setto a value less thaor equalto j — h + N;. SetM¢j) to j — h. Shift
P by the BoyerMoorerules base@n a mismatchat positioni — N; of P (this endghe
phase).

5. If M(h)= N; and0 < N; < i, thenP andT mustmatchfor at leastM (%) charactergo
theleft, buttheleft endof P hasnot yetbeenreached, so séttoi — M{h) andseth to
h — M{h) andrepeat theophasealgorithm.

3.1.3. Correctnessand linear-time analysis

Theorem 3.1.1.Using M and N as above,the Apostolico-Giancarlo variant of the
Boyer-Moore algorithmcorrectly finds all occurrencesof P in T.

PROOF Weprovecorrectnesby showingthatthe algorithm simulates tlogiginal Boyer—
Moorealgorithm.That is,for any given alignmentof P with T , thealgorithmis correct
when itdeclares anatchdownto agivenpositionanda mismatclatthenextposition.The
restof thesimulation iscorrectsincethe shift rulesarethe same as inhe Boyer—Moore
algorithm.

Assume inductivelythat M(h) valuesare valid up tosome position inT. That is,
whereverM(h) is defined,thereis an M (h)-length substring inT ending at positiom in
T thatmatchesa suffix of P.Thefirst such valueM(n), is valid because its found by
aligning P attheleft of 7 and makingexplicit comparisons, repeating ruleof thephase
algorithmuntil a mismatctoccursor anoccurrenceof P isfound. Now considera phase
where the righéndof P isalignedwith positionj of T.Thephasesimulategsheworkings
of Boyer-Mooreexceptthatin case®, 3, 4, and5 certain explicicomparisons argkipped
andin case4 a mismatchs inferred,ratherthanobservedBut whenevecomparisons are
skippedthey arecertainto be matchedy the definitionof N andM andthe assumption
that theM values are validhusfar. Thusit is correctto skip thesecomparisonsin case
4, a mismatchat positioni — N, of P is correctly inferred becaus¥; is the maximum
lengthof anysubstringendingati that matchesa suffix of P,whereasM (k) is lessthan
or equalto the maximumengthof any substringending ath that matches a suffiof P.
Hencethis phase correctlgimulatesBoyer-Moore andfinds exactly thesame mismatch
(oranoccurrence ofP in T) that Boyer—Moore would find. The value given toaM(j) is
valid sincein all casest is lessthanor equalto thelengthof the suffix of P shown to
matchits counterparin thesubstring7 [1..i]. O

Thefollowing definitionsandlemmawill behelpful in bounding the worloneby the
algorithm.

Definition If | is a positionwhere M{j) is greaterthan zerothentheinterval [j —
M(j) T 1..j] iscalledacoveredinterval definedby j.

Definition Let | < j andsupposeovered intervals agefinedfor both j andj'. We
say thathecoveredntervalsfor j andj' crossif j —M(j)+| < j andj - M(j')t1 <
j — M(j) T 1 (seeFigure3.2).

Lemma 3.1.1. No coveredintervals computed bythe algorithm evercrosseachother.
Moreoverfi the algorithm examinesa positionh of 7 in a coveredinterval, thenh is at
the right end of that interval.

36 EXACT MATCHING: A DEEPERLOOK AT CLASSICAL METHODS

p [o]

Figure 3.1: Substring « has length N; and substring 8 has length M{h) > N;. The two strings must match
from their right ends for N; characters, but mismatch at the next character.

at position j. As thealgorithmproceedsa valuefor M(j) is setfor every positionj in T
thatis alignedwith therightendof P;M(j)is undefinedor allother positionsn T.
Thesecond modification exploithe vectorsh andM to speed ughe Boyer-Moore
algorithm by inferring certain matchesand mismatchesTo get the idea, supposethe
Boyer—Moore algorithm is aboutto comparecharactersP (i) and T (k), andsuppose it
knows that M(k) > N; (see Figured.1). That means thaan N;-length substringof P
ends atpositioni and matches suffixof P, while an M(k)-length substringof T ends
at position hand matchea suffixof P.Sothe N;-length suffixesof thosetwo substrings
must match,and we can concludethat the next N; comparisons (fromP(i) and T (h)
moving leftward)in the Boyer—~Moore algorithm wouldbe matchesFurther,if N; =i,
thenan occurrenceof P in T hasbeenfound, andif »; < i, then wecanbe surethat
the nextcomparison (aftethe N; matches)would be a mismatch. Hencén simulating
Boyer—Moore,if M(h) = N; we canavoid at leasty; explicit comparisonsOf coursejt
is notalways theasethatM (k) o N;, but all thecases arsimilar andaredetailedoelow.

3.1.2. One phasein detail

As in the original Boyer—Moore algorithm, when the righéend of P is alignedwith a
position j in T, P is comparedwith T from right to left. When a mismatchis found
or inferred,or whenanoccurrenceof P isfound, P is shifted accordingo theoriginal
Boyer—Moore shift rules (eithetthestrongor weak version)and the compare/shift phase

ends. Herave will only give thedetailsfor a single phaseThe phase beginwith # setto
j andi setton.

Phasealgorithm
1. If M(n)is undefinedor M(h) = N, = 0, thencomparer (k) and P(i) asfollows:

If T(h) = P(i)andi = 1, thenreportanoccurrence oP endingat positionj of T, set
M(j) = n, andshift asin the Boyer-Moorealgorithm (ending this phase).

If T(h)y = P(i) andi > 1, thensethtoh — | andi toi — 1 and repeathe phase
algorithm.

ff T(h) # P(i), thensetM(j) = j — h and shiftP accordingto the BoyerMoore rules
basedn a mismatch occurringn positioni of P (thisendsthe phase).

2. If M(h) < N;, then P matchests counterpartsn T from positionn down to position
i — M(h) T | of P. By the definitionof M(k), P might match moreof T to theleft, so
seti toi — M(h), set htoh — M(h), and repeat the phase algorithm.

3. If M(h) = N; andN; =i > 0, then declare thain occurrenceof P hasbeen foundn
T endingat position j. M(j) mustbe set ta value lesghanor equal ton. SetM{) to
j — h,and shiftaccordingto theBoyer—-Moorerules basedn findinganoccurrence oP
endingat j (thisendsthe phase).

32. COLE'S LINEARWORST-CASEBOUND FORBOYER-MOORE 39

if thecomparison involvindr' (k) is a match thenat theendof the phase M(j) is setat
leastaslargeas j — h+ 1. Thatmeansthat allcharacterén T that matched a character
of P during that phase awontained irthecovered interval] — M () + 1..j]. Now the
algorithm onlyexaminegheright endof aninterval,andif h is therightendof aninterval
thenM (k) isdefined andyreaterthan0, so thealgorithmnevercomparescharacteof T

in acoveredinterval. Consequentlyno characteof T will everbecompared agaiafter
it is first in a matchHence thealgorithmfinds at mostm matchesand thetotal number
of characteccomparisons i®oundedby 2m.

To boundthe amountof additionalwork, wefocuson the numberof accessesf M
during executiorof thefive casesincetheamountof additionalwork is proportionalto
the numberof such accesse# characterromparisonis done wheneve€asel applies.
WheneverCase3 or 4 applies,P is immediatelyshifted. Hence Casels 3, and4 can
apply at most O(m) timessincethereare at mostD(m) shiftsandcomparesHowever,
it is possiblethat Case2 or Caseb canapply without animmediate shiftor immediate
charactecomparisonThatis, Case2 or5 could apply repeatedly before a comparison or
shiftis done Forexample Caseb would applytwicein arow (withouta shiftor character
comparisonjif &; = M(k) > 0 andN;,_y, = M(h — M(h)). But whenevelCase2 or 5
appliesthen j > h and M () will certainlygetset toj — h + 1 or more atthe end of
that phaseSopositionh will bein the strict interiorof the covered interval defindgy |.
Therefore,h will never be examinedagain,and M(k) will never beaccessedgain.The
effectis thatCase® and5 canapply at mostoncefor any positionin T ,sothe numberof
accesses made whémesecasesapplyisalsoO(m). O

3.2. Cole's linear worst-casebound for Boyer-Moore

Here we finally present dinear worstcase time analysisf the original Boyer—Moore
algorithm.We consideffirst the useof the(strong)goodsuffix rule by itself. Laterwe will
showhow the analysiss affectedby theadditionof the badcharacterule. Recall thathe
goodsuffix rule isthefollowing:

Suppose for given alignmentof P and T, asubstringt of T matches auffix of
P, buta mismatchoccursat the next comparisono the left. Thenfind, if it exists,
the rightmostcopy t of t in P suchthatt' is not a suffix of P and suchthat the
character to theleft oft' differs from themismatched charactém P .Shift P to the
right sothatsubstringt' in P is belowsubstring in T (recall Figure 2.1)If t' does
notexist, thenshift the leftendof P past thdeft endof t in T by theleast amount
sothata prefix of theshifted patternmatches auffix of 7 in T . If nosuchshift is
possible, then shif® by n places taheright.

If anoccurrenceof P is found, thenshift P by the leastamountso that a proper
prefix of the shifted pattermatches suffixof theoccurrenceof Pin T .If nosuch
shiftis possible thenshift P by n places.

We will show thatby usingthe goodsuffix rule alone,the Boye-Moore method haa
worstcaserunning timeof O(m), provided that thpatterndoesnot appeain the textLater
we will extendthe Boyer—Moore method tatakecareof thecasethat P doesoccurin T .

As inouranalysis of thé\postolico-Giancarlo algorithm, we dividéne Boyer-Moore
algorithm intocompare/shift phasesiumberedl throughq < m.In compare/shift phase
i, asuffix of P is matched righto left with character®f T until eitherall of P is matched
or until a mismatchoccurs. Inthelattercase thesubstringof T consistingof the matched

38 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

) [1

b)
J'= MG+ 1 j j

J-M@G)+1
Figure 3.2: a. Diagram showing covered intervals that do not cross, although one interval can contain
another. b. Two covered intervalsthat do cross.

PROOF Theproof ishy induction onthe numberof intervalscreated. Certainly the claim
IS true until thefirst intervalis createdandthatintervaldoesnotcrossitself. Now assume
that no intervalscrossand considerthe phasevhere theright endof P is aligned with
positionj of T .

Sinceh = | at thestartof the phaseand j is to the right of any interval, h begins
outsideany interval.We considerhow h couldfirst besetto a positioninsideaninterval,
otherthan the righendof the interval Rule 1 is neverexecutedvhenh is attherightend
of an interval(sincethen M(h) is defined andyreater than zero), arafter any execution
of Rulel,eitherthe phasendsor h is decrementedly one placeSoanexecutionof Case
1 cannot causé to move beyond theight-mostcharacteof acovered intervalThis is
alsotruefor Cases3 and4 sincethe phaseends after eithesf those cases. Sbh is ever
movedinto an interval ina position other thamts right end, that move must follow an
executiormof Case2 or 5. An executionof Case2 or 5 movesh from the rightendof some
intervall = [k..h] to positionk — 1, one place to thieft of 1. Now suppose that — 1is
in some interval’ butis notatits rightend,andthatthisis the firsttime in the phase that
h (presentlyk — 1) is in anintervalin a positionotherthanits rightend. Thameans that
therightendof | cannotbeto theleft of therightendof I' (for then positiork — 1 would
have been strictlynsidel1"),andtheright endsof I and|' cannotbeequal(since M (k)
has at mosbnevaluefor any h).But theseconditionsimply thatl andI' cross, which
iIsassumed tbe untrueHence,if nointervalscrossat the startof the phase, theim that
phaseonly theright endof any coveredntervalis examined.

A newcoverednterval gets created in the phasdy afterthe executiorof Casel, 3,
or 4. In any ofthesecasesthe interval[h t 1..j] is createdafter thealgorithmexamines
positionh. In Casel, h is not inanyinterval,and inCases3 and4, h is the right endof
aninterval,soin all casesh t 1 is eithernot in a coveredinterval or is at the left endof
aninterval. Sincej is to the rightof anyinterval,andh + 1 is either notn an interval
or is theleft endof one,the newinterval [h + 1..j] doesnot crossany existing interval.
The previouslyexistingintervalshave notchangedsothereareno crossing intervalsit
theendof the phase, and the inductiorcismplete. O

Theorem3.1.2. Themodified Apostolico-Giancarlo algorithm doesatmost 2mcharacter
comparisonsand at mostQ(m) additional work.

PROOF Every phasendsif acomparisonfinds a mismatcland every phasexceptthe
last, isfollowed by a nonzerahiftof P.Thusthealgorithmcanfind at mostm mismatches.
To boundthe matchespbservehatcharacters are explicitly compareqly in Casel, and

3.2. COLE'SLINEAR WORST-CASEBOUND FORBOYER-MOORE 41

be periodic. For example,ababababis periodic with periodababandalso withshorter
periodab. An alternate definitiorof asemiperiodic strings sometimesiseful.

Definition A stringe is prefix semiperiodiavith periody if « consistof oneor more
copiesof stringy followed by a nonemptyprefix (possiblytheentirey j of stringy .

We usethe term™prefix semiperiodit to distinguishthis definition from the definition
given for "semiperiodit, butthe followinglemma (whoseroof issimpleandis left as
an exercise)showsthat thesetwo definitions are reallyalternatereflectionsof the same
structure.

Lemma3.2.2. A string a is semiperiodic with period 8 if and onlyfi it isS prefix semiperi-
odic with thesame lengtiperiodas 8.

For example,thestring abaabaabaabaabaais serniperiodicwith periodaabandis
prefix semiperiodic with periodaba.

The following usefullemmais easyto verify, andits proof istypical of the style of
thinking usedin dealingwith overlapping matches.

Lemma 3.2.3. Suppose pattern Bccursin text7 starting at positions pand p' > p,
wherep — p < |n/2J). ThenP s serniperiodicwith period g — p.

The following lemma, called the GCD Lemma,is a verypowerful statementabout
periodsof strings.We won't needthe lemmain our discussion of Cole'proof, butit is
naturalto stateit here.We will proveit and useit in Section16.17.5.

Lemma 3.2.4. Supposestring a 5 semiperiodic withboth a period of length pand a
period of lengthg, and |@| > p + Q. Then « IS semiperiodic with a period whose length
is the greatestcommordivisor of p andq.

Return to Cole's proof

Recall thatthe key thing to proveis thats; > g;/3 in every phase. As notedearlier, it
thenfollows easilythat the total numberof comparisonss boundedby 4m.

Consider thdth compare/shift phase, where substrirrgof T matchesa suffix of P
andthen P is shifteds; placesto theright. If s; > (|¢] + 1)/3, thens; > g;/3 evenif all
characters oT that werecomparedn phase had been previously comparddherefore jt
iseasyto handlephasesvhere theshiftis"relatively* large comparetb thetotal number
of characters examined durirthe phase.Accordingly, for the next severallemmaswe
considerthe casewhenthe shift is relativelysmall(i.e., s; < (|4 + 1)/3 or, equivalently,
It 1> 3s,).

We needsomenotationat this point. Leta be thesuffix of P of lengths;, andlet 8
be the smallestsubstringsuchthata = g' for someinteger! (it may bethat 8 = a and
| = 1).Let P = P[n— |t:|..n} bethesuffixof P of lengthis] T 1, thatis, that portion of
P (includingthe mismatch) thatvasexaminedin phasd. SeeFigure3.3.

Lemma 3.2.5. f |1] +1 > 3s;, then botht; and P are semiperiodic with period a and
hencewith period 8.

PROOF Startingfrom the right endof P, markoff substrings ofengths; until less than
s; characters remain aheleft (seeFigure3.4).Therewill beatleastthreefull substrings
since|P| = |r;] * 1 > 3s;. Phasd endsby shifting P right by s; positions.Considehow
P aligns withT beforeandafter thatshift (seeFigure3.5). By definition of s; anda ,a is
thepart of the shifted P to theright of theoriginal P. By thegood suffixrule, the portion

40 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

characterss denoted;, andthe mismatch occurgust to the leftof ;. The patternis then
shifted right by anamountdeterminedby the goodsuffix rule.

3.2.1. Cole's proof when the pattern doesnot occur in the text
Definition Lets; denote the amouty which P is shiftedrightat theendof phase.

Assumethat £ doesnot occurin T, sothecomparepart of every phaseendswith a
mismatchln eachcompare/shift phasewedivide the comparisons inthose thatompare
a character off’ that haspreviously been compared(in a previousphase)and those
comparisonsthat comparea characterof T for the first time in the execution of the
algorithm. Let g; bethe numberof comparisons in phaseof the firsttype (comparisons
involving apreviouslyexamined charactef T), andlet g/ be thenumberof comparisons
in phasd of thesecondype. Then, over thentire algorithnmthenumber of comparisons
is Y"%-1(g T g)), andourgoal isto showthatthis sumis O (m).

Certainly,} 7, g/ < m sinceacharactecan be comparefibr thefirst time onlyonce.
We will show thatfor anyphase, s, > g;/3. Thensince} 7_, s; < m (becaus¢hetotal
length ofall the shiftsis at mostrn) it will follow that} ?_, &, < 3m. Hencethe total
numberof comparisonsloneby thealgorithmis 3 7_, (g + g <4m.

An initial lemma
We startwith the following definitionanda lemmathatis valuablein its own right.

Definition Foranystring 8, 8' denoteshe stringobtainedoy concatenating together
i copiesof B.

Lemma3.2.1. Let y andSbetwo nonernptystringssuch thayd = 6y. Then6 = p' and
y = p’/for somestring p andpositive integers andj.

Thislemmasaysthat if a stringis the saméeforeandaftera circularshift (sothatit
can be writtenbothasyé andSy, for somestringsy and 6) theny and6 can both be
written as concatenatiornsf somesinglestring p.

Forexample,letd —ababand = ababab,sody = abnbababab- y5. Thenp = ab,
6 = pz, and y = p3.

PROOF The proof is by inductionon |8 + |y|. For the basis,if }5| + lyl = 2, it must
be that6 =y = p andi = j = 1. Now considerlargerlengths.If |§] = |y |, thenagain
8§ =y =pandi = j = 1. Sosupposds| < |y|. Sincedy = y§ and}8} < |y|, 6 must
be a prefix of y, soy = 66' for somestring 6. Substitutingthis into §y = y4§ gives
666" = &§’8. Deleting the left copyof 6 from both sidesgives §§" = §'5. However,
|81+ 18’] = |¥| < I8] +1y|,andsoby induction,6 = p' and 8’ = p/. Thus,y = SS'= p*,
wherek =i+ j. O

Definition A stringa is semiperiodic with periodg if a consist®f anonempty suffix
of astring 8 (possiblythe entire 8) followed by one ormorecopiesof 8. String a is
called periodiavithperiod if a consists ofwo or more completeopiesof 3. We say
thatstringe is periodic if it is periodic with some periog.

Forexample bcabcabc isemiperiodic with perioébc,butit is not periodic.String
abcabads periodic with perio@bc.Note thata periodicstringis by definition alsosemiperi-
odic. Note alsothat a stringcannothaveitself asa period althougla period may itself

3.2. COLE'S LINEAR WORST-CASE BOUND FOR BOYER-MOORE 43

L

. (1B I[BIBIpIpI5]

Figure 3.6: Substringt, in T is semiperiodic with period 8.
L E
7 | e[B{B[p]|BiploB |
k!
b | |
k

Figure 3.7: The case when the right end of Pis aligned with a right end of 8 in phase h. Here g = 3.
A mismatch must occur between T{k’) and P(k).

concretenessall that copyB andsaythatits right endis ¢8| placesto the leftof the right
of #;, whereq > 1 (seeFigure 3.7).We will first deducehow phaseh must haveended,
andthenwe'll use that tprove thelemma.

Let k' be the positionin T just totheleft of ¢ (so T'(k") is involved in the mismatch
endingphasei), andletk be the positionin P oppositeT (k) in phase hWe claim that,
in phaseh, thecomparisorof P and T will find matchesuntil the leftendof t, but then
mismatch when comparir k") and P (k). Thereasoris thefollowing: StringsP andt; are
semiperiodicwith periods, andin phaseh theright endof P is alignedwith therightend
of someB. Soin phaséh, PandT will certainly match until the lefendof stringt;. Now P
is semiperiodiavith 8, andin phaseh, theright endof P isexactlyg|Bi placesto the left
of theright endof r,. Therefore P(1) = P(1+|8]) =.-- = B(1 + ¢I8|) = P(k). Butin
phaseé the mismatchoccurs whercomparingf (k) with P(1), so P(k) = P(1) # T(k').
Hence,f in phaseh the rightendof P is alignedwith the rightendof a 8, then phaseh
must haveendedwith amismatch betweeii (k') and P(k). This fact will be usedbelow
to provethelemma.’

Now we considerthe possibleshifts of P donein phaseh. We will show that every
possibleshift leadsto acontradictionsonoshiftsarepossible andheassumedlignment
of PandT in phaseh is not possible, provinghelemma.

Sinceh < i, the rightendof P will not be shiftedin phaseh pastthe rightend of
1;; consequently, aftethe phaseh shift a characteof P is opposite characteF (k') (the
characteof T thatwill mismatchin phasei). Considerwhere theightendof P is after
thephaseh shift. Therearetwo casedo consider:1. Eithertheright endof P is opposite
theright endof another fullcopy of 8 (in ¢;) or 2. Theright end of P is in theinterior of
a full copy of 8.

Casel If the phase h shifalignstherightendof P with theright endof a full copy
of B, thenthecharacteoppositeT (k') would be P(k — r|8}]) for somer. But sinceP is

' Later we will analyze the Boyer-Moore algorithm when P isin T. For that purpose we note herethat when phase
h isassumed to endy finding an occurrenceof P,then the proofof Lemma 3.2.6is completeat this point, having
established a contradiction. That is. on the assumptionthat the right end of P is aligned with the right end of a 8
in phaseh, we proved that phaseh endswith a mismatch, which would contradict the assumptionthat 4 endsby
finding an occurrenceof P in T. Soevenif phaseh endsby finding an occurrenceof P, the right end of P could
not be aligned with the right end of a 8 block in phaseh.

42 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

P
a
1 BlB]#R
!i ends here
mismatch occurs here
Figure 3.3: String @ has length s;; string P has length |t;| +1
P
o
Bl BB
P | 81
Figure 3.4: Starting from the right, substrings of length || = & are marked off in P,
*]]
T ' 2
= P
[¢3
P N

\F \
o N O N\ o N o
N} N N

Figure 3.5: The arrows show the string equalities described in the proof.

of the shiftedP belowt; mustmatchthe portionof the urrshiftedP belowti, sothe second
markedoff substringfrom theright end ofthe shifted P must be the same aghe first
substringof theunshifted P. Hencethey must bothbe copiesof stringa. But the second
substringis thesamein both copiesf P, socontinuingthis reasoningve seethatall the
s;-length markedsubstrings are copies afand theeft-mostsubstring isa suffixof a (if
it is nota completeopyof a) .HenceP is semiperiodiavith perioda.Theright-most];|
charactersf P matchy;, andsoy, is also semiperiodiwith perioda.Thensincea = 8,
P andt; mustalsobe semiperiodiovith period8. O

Recall thatve wantto boundg:, thenumber of characters comparnadheith phasehat
havebeen previouslyomparedn earlier phasesAll but oneof thecharactersompared
in phase are containedh ¢;, and acharactein ¢; could havepreviously been examined
only during a phasehereP overlaps;. Soto boundg;, we closelyexaminein what ways
P couldhave overlapped; during earlierphases.

Lemma3.26. If |4) + | > 35, thenin any phaseh < | the rightend of P could not
havebeenalignedoppositerie right endof anyfuil copyof B in substring t, of T.

PROOF By Lemma3.2.5,y; is semiperiodicwith period 8. Figure 3.6showsstring,t; as
a concatenatiorof copiesof string 8. In phaseh, the right end of P cannotbe aligned
with the rightendof ¢; sincethatis thealignmentof P andT in phase > h,and P must
have moved righbetween phases andi. So, supposefor contradiction,thatin phase
h therightendof P is alignedwith the right endof someother full copyof 8 in ;. For

3.2. COLE'SLINEAR WORSTCASEBOUND FOR BOYER-MOORE 45

sothat thetwo characteref P alignedwith T (k") before andafterthe shift areunequal.
We claim theseconditions hold wheithe rightendof P is alignedwith the rightendof
B’. Considerthatalignment.Since P is semiperiodicwith periodg, thatalignmentof P
andT would match at leastintil the leftendof ¢; andsowould matclat positionk” of T.
Therefore, the twoharacteref P alignedwith 7 (k") before and after th&hift cannotbe
equal.Thusif theend of P werealignedwith theendof g’ thenall thecharactersf T
that matcheah phaseh would againmatch, and the charactest P alignedwith 7' (k")
before and aftethe shift would be different. Hencehe goodsuffix rule would notshift
theright end of P pasttheright of theendof g'.

Therefore|jf theright endof P is alignedin theinteriorof g8’ in phaseh, it mustalso
bein the interiorof 8’ in phaseh + 1. But h wasarbitrary,sothe phaseh + 1 shift would
alsonot movethe rightendof P pastg’. Soif therightendof P is in theinteriorof g’ in
phaseh,it remains there foreverhisis impossiblesincein phase > h theright endof
P is aligned withtheright endof ti, which is totheright of 8’. Hencetheright endof P
Is notin theinterior of §’, andthe Lemmais proved.

Note again that.emma 3.2.8 holdsvenif phaseh is assumedo end by finding an
occurrencef Pin T. Thatis, the proof only needheassumptiorthatphase endswith
amismatch, not that phasedoes.In fact, when phasé finds anoccurrenceof Pin T,
thenthe proofof thelemmaonly needshe reasoning contained timefirst two paragraphs
of theaboveproof.

Theorem 3.2.1.AssumingP doesnotoccurin T, s; > g;/3 in everyphase.

PROOF This is trivially trueif s; > (|#] + 1)/3, so assumds;| + 1 > 3s,. By Lemma
3.2.8,in any phaseh < i, theright end of P is opposite eitheoneof theleft-most|S8| — 1

character®f #; or oneof the right-most|g} charactersf ¢; (excluding theextremeright

character)By Lemma3.2.7, at most|g8| comparisons are made in phdse i. Hence
the only charactersomparedn phase that could possiblynavebeencomparedoefore
phase are the lefimost|8| — 1 charactersf #;, the rightmost2|8| charactersf t,, or

the character judb theleft of ;. Sog; < 3|8] = 3s; when|t;] + 1 > 3s;. In both cases
then,s; > g;/3. O

Theorem3.2.2. [108] Assumingthat P doesnotoccurin T, the worst-casenumberof
comparisons maday the Boyer—Moorealgorithmis at most4m.

PROOF Asnoted befored_ ?_, ¢/ < mand)_?_, s; < m,sothe totalnumberof compar
isons dondy thealgorithmis S i=i(g; T ¢) < (3, 3s)Tm <4m. O

3.2.2. The casewhen the pattern doesoccur in the text

ConsiderP consistingof n copiesof a singlecharacter and consistingof m copiesof
thesame character. Thddoccursin T startingatevery positiorin T exceptthe lastn — |
positionsandthe numbeonf comparisonsloneby the BoyerMoorealgorithmis ©(mn).
The O(m) time boundprovedn the previous section breaks down becausasderivedby
showingthatg; < 3s;, and tharequiredthe assumption that phasendswith a mismatch.
SowhenPdoesoccurin T (andphaseslonotnecessarily end with mismatcheg)e must
modify the BoyerMoorealgorithmin orderto recover the lineaunningtime. Galil [168]
gavethe firstsuchmodification.Below we present versionof hisidea.

The approach comdsom the followingobservation: Suppose phase that the right
end of P is positioned withcharacterk of T, andthat P is comparedwith T down

EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

P
T | BIB[BTpRIBIR] B
b [B] |
i8]

Figure 3.8: Case when the right end of Pis aligned with a character in the interior of a 8. Then f would
have a smaller period than 8, contradicting the definition of 8.

serniperiodiowith period8, P(k) mustbeequalto P(k — r|8]), contradictingthe good
suffix rule.

Case2 Supposehephaséh shift alignsP sothat its rightend alignavith some character
in theinteriorof afull copyof 8. Thatmeanghat,in this alignmentthe rightendof some
B stringin P is oppositea charactein the interior of . Moreover, by the good suffix
rule, the characters in trehifted P below 8 agreewith 8 (see Figure 3.8).et yé be
the stringin the shifted P positionedopposites in t;, wherey is the string throughthe
endof g ands is the remainderSince = 8, y is a suffix of 8, § is a prefix of 8, and
ly1 T 181 = |B] = /3L thusys = §y. By Lemma3.2.1, howeve = p' for t > 1, which
contradicts th@ssumptiorthat 8 is the smalleststringsuch thatr = g' for some/.

Startingwith theassumptiorthat in phasé the rightendof P is alignedwith theright
end ofa full copyof g, we reachedhe conclusion that no shift in phaseis possible.
Hencetheassumptioris wrongand theemmais proved. O

Lemma 3.2.7.1f || + 1 > 3s;, thenin phaseh < i, P canmatchs; in T for at most
{B| — 1 characters.

PROOF SincePis notalignedwith theendof any 8 in phaseh,if P matcheg; in T for 8

or more characters thehe right-mosp charactersf P would matcha stringconsisting
of asuffix (y) of B followed by a prefix (8) of 8. So we would again havg = yé = 3y,

andby Lemma3.2.1, thisagainwould leadto a contradictionto the selectiorof 8. O

Note againthatthis lemmaholds evenf phaseh is assumedo find an occurrenceof
P.That is, nowherén the proofis it assumedhat phasén endswith a mismatch, only
thatphase does.This observatiorwill be used later.

Lemma3.2.8. If |;] + 1 > 3s;, then in phase < i if theright end ofP is aligned with
a characterin ;, it canonly bealigned withoneof theleftmost|8} — 1 charactersoft;
or oneof theright-most| 8| charactersoft,.

PROOF Supposen phaseh that the right end of P is alignedwith a characterof
otherthanoneof the left-most|8| — 1 characteror the rightmost || charactersFor
concretenessaythat the rightendof P is alignedwith a charactein copy g’ of string
B. Sincef’ is not the left-mostcopy of 8, theright endof P is atleast|8| characters to
the right of theleft endof ¢;, andso by Lemma3.2.7 a mismatchwould occurin phase
h before the left endf ¢; is reachedSaythat mismatcloccursat positionk” of T. After
thatmismatch, P is shifted right by someamountdeterminedoy thegoodsuffix rule. By
Lemmas3.2.6, the phaseh shift cannomove the righendof P to therightendof ', and
we will showthatthe shift will alsonot move theendof P past the righendof g'.
Recall thatthe good suffix rule shifts P (when possiblepy the smallest amounso
that allthecharacter®f T that matchedn phaseh againmatchwith the shifted P and

32. COLE'S LINEAR WORSTCASEBOUND FOR BOYER-MOORE 47

all comparisonsn phases thatnd with a mismatch have alreadyeenaccountedor (in
theaccounting fophases nah ¢) andareignoredhere.

Letk' > k > i beaphasen whichanoccurrencef P is foundoverlapping the earlier
run butis not partof that run. As an exampleof suchan overlap, supposP = axaaxa
and T containsthe substringaxaaxaaxaaxaxaaxaaxa. Then arun beginsat the startof
thesubstring and endsith its twelfth charactegndanoverlapping occurrencd P (not
part ofthe run) begins with that character. Even with @&alil rule,charactersn the run
will beexaminedagain inphasex’, and since phade does noendwith amismatch those
comparisons mustill be counted.

In phase k'jf the leftendof the newoccurrencef Pin T starts atleft endof acopy
of 8 in therun, thencontiguous copiesf g continuepast theightendof therun. But then
no mismatchwould have been possibie phasek sincethe patternn phasek is aligned
exactly|8| placesto theright of its positionin phasek — 1 (wherean occurrence dP was
found).Soin phasek, theleft endof thenew Pin T muststartwith aninterior character
of somecopy of A. Butthenif P overlapswith the runby more thari8| characters, Lemma
3.2.1limpliesthatg is periodic,contradicting the selectioof 8. So P canoverlaptherun
only by partof the run'sleft-mostcopy of 8. Further,sincephasek’ endsby finding an
occurrenceof P,the patternis shiftedright by s, = |8] positions. Thugny phase that
findsanoccurrencef P overlappinganearlierrun next shiftsP by a numberof positions
larger than théengthof the overlap (andhence thenumberof comparisons). It follows
then that over the entire algorithmthe totalnumberof such additional comparisons in
overlappingregionsis O(m}.

All comparisonsareaccounted foand hence) ., & = O(m), finishing the proof of
thelemma. O

3.2.3. Adding in the bad characterrule

Recall that incomputing ashift after amismatch, théBoyer—Moore algorithm usesthe
largestshift given by eitherthe (extendedpadcharacterule or the (strong) goodsuffix
rule. It seemdntuitive thatif the timeboundis O(m) when onlythe good suffixule is
usedjt shouldstill be O(m) whenbothrules are used. However, certdinterferencg is
plausible andsotheintuition requires groof.

Theorem 3.2.4. Whenboth shift rules are usedrogether, the worstcaserunning time o
themodified Boyer—-Moorealgorithmremains O(m).

PROCF In the analysisusing only thesuffix rule we focusedon thecomparisonslone
in anarbitrary phase. In phase theright endof P wasalignedwith somecharacteiof
T. However,we nevermadeany assumptions abouiow P cameto be positioned there.
Rathergivenanarbitrary placemenof Pin aphasesndingwith a mismatchwe deduced
boundson how manycharacterscompared in that phasmuld have beencomparedn
earlier phases. Hence alf the lemmas andnalysesemain correctf P is arbitrarily
pickedup and movedsome distancéo the right atany time duringthe algorithm.The
(extended)bad character rule only moves P to the right, so all lemmas and analyses
showingthe O(m) bound remain corre@ven withits use. O

46 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

to characters of T. (We don't specifywhether thephase enddy finding a mismatch
or by finding an occurrenceof P in T.) If the phase shift moves P so that its left

end isto the rightof characters of T, thenin phasei T 1 a prefix of P definitely
matchesthe characterof T upto T(k). Thus,in phase T 1, if the right-to-left com-

parisonsgetdown to positionk of T, the algorithm canconcludethat anoccurrenceof

P hasbeenfound evenwithout explicitly comparingcharacters tehe left of T(k + 1.

It is easy to implement this modificatido the algorithm, andve assumein the rest
of this sectionthat theBoyer—Moore algorithm includeshis rule, whichwe call the
Galil rule.

Theorem3.2.3. Using theGalil rule, theBoyer-Moorealgorithmneverdoesmore than
QO(m) comparisons, nmatterhow manyoccurrence®r P therearein T.

PROOF Partitionthe phasesnto those thatlofind anoccurrencef P and those thato
not. LetQ bethe sebf phase®f the firsttype and letd; be the numberof comparisons
donein phassd if i € Q.Thenzieg a4t Ziw(]t,-l + 1) is aboundon the total number
of comparisons doni@ the algorithm.

The quantity .., (|| + 1)is againO(m). To seethis, recall that the lemmasf the
previous section, which provdbtatg; < 3s;, only neededthe assumption that phasge
endswith amismatch and thdit < i. In particular,theanalysisof how P of phaséh < i is
alignedwith P of phase did not need thassumptiorthat phasé endswith a mismatch.
Thoseproofs cover botlthe casethath endswith a mismatch andthath endsby finding
anoccurrenceof P.Hence it again holds thgt < 3s; if phase endswith a mismatch,
eventhough earlier phases migihdwith a match.

For phasesn Q, we againignore thecasethats; > (n + 1)/3 > (d; T 1)/3, since
the total numbeiof comparisonslonein suchphases muste boundedby } 3s; < 3m.
So suppose phaseendsby finding an occurrenceof P in T and thenshifts by less
thann/3. By aproofessentially thesameasfor Lemma3.2.5it follows thatP is semi-
periodic; letg denotethe shortestperiod of 2. Hencethe shift in phasei movesP
right by exactly || positions, and using the Gatille in the Buyer—Moorealgorithm,
no characterof T compared in phase 1 will haveever beencomparedpreviously.
Repeating this reasoning, phasei + 1 endsby finding an occurrenceof P then P
will again shiftby exactly|8| placesand no comparisonsn phasei + 2 will examine
a characterof T compared inany earlier phaseThis cycle of shifting P by exactly
|8l positions and then identifyingnother occurrencef P by examining only|8| new
charactersf 7 mayberepeatednanytimes.Such asuccessionf overlappingoccurrences
of P thenconsistsof a concatenatiorof copiesof B8 (eachcopyof P startsexactly |B|
placesto the right of the previousoccurrenceandis calleda run. Using theGalil rule,
it follows immediatelythatin any singlerun thenumber ofcomparisons use identify
the occurrencesf P containedin thatrun is exactly the lengthof the run. Therefore,
over the entire algorithm the numberof comparisonsusedto find thoseoccurrencess
O(m). If no additionalcomparisonsvere possiblewith characters im run,then the
analysiswould becomplete. However,additionalexaminationsarepossibleand we have
to account for them.

A run endsin some phas& > i whena mismatch is foundor when the algorithm
terminates)lt is possibleghatcharactersf T in therun could beexamined agaim phases
afterk. A phasethatreexamines characteof the run either endsvith a mismatchorends
by finding an occurrenceof P thatoverlapsthe earlierrun butis not partof it. However,

33. THE ORIGINAL PREPROCESSINGOR KNUTH-MORRIS-PRATT 49

5Pk k k+I
Figure 3.11: B8 must be a suffix of a.

spe T 1 = |a] T 1, thenB would be a prefix of P that is longetthana . But 8 is alsoa
propersuffixof P[1..k] (becausesx is a proper suffixof P[1..k + 1]). Thosetwo facts
would contradictthedefinition of sp, (andtheselectionof a).Hencespis; < spk +1.
Now clearly, spis1 = spe T 1 if thecharactetto the rightof a is x, sincea x would
then be a prefix of P thatalsooccursasa propersuffix of P[1..k T I]. Converselyjf

spis1 = spe T 1 then thecharacteaftera mustbex. 0O

Lemma3.3.1 identifieghe largest"candidat® valuefor sp,+; andsuggesthow to
initially look for thatvalue(andfor stringg). Weshould firscheckthecharacteP (sp.+1),
just totheright of a. If it equalsP(sp; * 1) thenwe concludehat B equalsa, 8 is ax,
andspy4; equalssp, T 1. But whatdowedoif the two characters ar®tequal?

3.3.3. The generalcase

When characterP(k+ 1) # P(sp, T 1), thenspis, < spe T 1 (by Lemma3.3.1), so
spis1 < spi. It follows that8 mustbe a prefix of a,and B mustbe a proper prefix of «.
Now substring8 = Bx endsat positionk + 1 and is of length amostsp,, whereasa' is
a substring endingt positionk andis of lengthsp,. So B is a suffix of a*,asshown in
Figure 3.11Butsincea'is acopy of a,B is also asuffix of a.

In summary,whenP(k+ 1) # P(sp, + 1), B occursasa suffix of a andalsoasa
proper prefixof a followed by charactex. Sowhen P(k + 1) # P(sp, + 1), B is the
longestproperprefix of a thatmatches auffix of @ andthatis followedby characte in
position| B} 1 of P.SeeFigure3.11.

However, sincea = P[l..sp;], we can state thias

**) B is the longest propeprefix of P[l..sp.] that matches suffix of P[1..k] and
that isfollowed by charactex in position|B| + 10f P.

The general reduction

Statements and xx differ only by the substitutionof P[l..sp;] for P[l..k] and are
otherwise exactlyhesameThus,when P(sp; T 1) # P(k 7 I), the problem ofinding

B reducego another instancef the original problembut ona smaller string P[1..spx]

in placeof P[l..k]). We should therefore proceeas before. That isto search forB

the algorithm should findthe longest propeiprefix of P[l..sp,] that matchesa suffix

of P[l..sp«] andthencheckwhetherthe characteto the rightof that prefixis x. By the
definitionof s py, therequired prefiendsat charactesp;,,, . Soif characteP(sp;,, +1)=x

then we have foundB, or elsewe recurse again, restrictingour searchto eversmaller
prefixesof P .Eventually, eithea valid prefixis found,or the beginning ofP is reached.
In the lattercasespey; = 1if P(1) = P(k+ 1); otherwisespis1 = O.

The completepreprocessing algorithm
Puttingall the piecestogethegivesthe followingalgorithm forfinding 8 andspy1:

48 EXACT MATCHING: A DEEPER LOOKAT CLASSICAL METHODS

3.3. The original preprocessing for Knuth-Morris -Pratt
3.3.1. The method doesot usefundamental preprocessing

In Section 1.3ve showed howto compute allthe sp; valuesfrom Z; valuesobtained
during fundamentadreprocessingf P.Theuse ofZ; valuesvasconceptually simpland
alloweda uniform treatmentof variouspreprocessingroblems. However, the classical
preprocessing method givem Knuth-Morris-Pratt{278] is not basedon fundamental
preprocessinglhe approachaken theres very well known ands usedor extendedn
severahdditionalmethodgsuchasthe Aho—Corasick methodthatis discussed nextlror
those reasonsg,seriousstudentof string algorithmsshould also understand the classical
algorithm forKnuth-Morris-Pratt preprocessing.

The preprocessinglgorithm computesp,(P) for each positiom fromi = 2toi =n
(spy is zero).Toexplain themethod we focuson howto computepi+1 assuminghatsp;
is known for each < k. Thesituation isshownin Figure3.9,wherestringa is the prefix
of P of lengthsp,. Thatis, « is thelongest stringhat occurdothasa properprefix of P
andasasubstringof P endingat positionk. For clarity, leta' referto the copyof a that
endsat positionk.

Letx denote charactért 1of P,andlet 8 = Bx denotetheprefix of P of lengthsp
(i.e., the prefix thatthe algorithmwill nexttry to compute). Finding p«+, is equivalento
findingstring 8. And clearly,

=) B is thelongest propeprefix of P[1..k] thatmatches suffix of P[1..k] and that
is followedby character in position|B| + 1 of P.SeeFigure3.10.

Our goalis tofind sp.4.1, or equivalently,to find 3.

3.3.2. The easy case

Supposehe charactejustaftera is x (i.e., P(sp« T 1) = x). Then, stringax is a prefix
of P andalsoa propersuffix of P[1..k+ 1], and thuspe.; > |ax] = sp, T 1. Canwe
then endour searchfor sp,,, concludingthatsp,+: equalssp: + 1, oris it possible for
sPr+1 to bestrictly greater thamp, + 17 The next lemma settles this.

Lemma 3.3.1. For anyKk, spi+1 < spy + 1. Further; SPis1 = SP + 1 |f and o] -ﬁllf the
characteraftera is x. Thatis, spis1 = sp, T 1if and onlyif P(sp, T+

PROOF Let 8 = Bx denotethe prefix of P of lengthspey. Thatis, 8 = Bx is the
longestpropersuffixof P[1..k T 1] that isa prefix of P.If sp., is strictly greatetthan

5P, k k+1
Figure 3.9: The situation after finding $zx.

k k+l
Figure 3.10: $px41 is found by finding 8.

3.3. THE ORIGINAL PREPROCESSING FOR KNUTH-MORRIS-PRATT 51

eachtime thefor statements reached;jt is assigneda variablenumber oftimes inside
the while loop, eachtime thisloopis reached. Hencthe numberof timesv is assigneds
n — | plus the numbeof timesit is assigned insidéne while loop. How manytimes that
canbeis thekey question.

Each assignmemf v inside thewhile loop must decreasthe valueof v, andeachof
then — 1 timeswv is assignedat thefor statement, itwalueeitherincreasedy oneor it
remainsunchangedatzero). The valueof v is initially zero,sothe totalamountthatthe
valueof v canincrease (at tifer statement) ovetheentire algorithms atmostr — 1. But
sincethe valueof v starts azeroandis never negativethe total amountthat thevalue of
v candecreas®vertheentirealgorithm must alsbe boundedby n — 1, thetotalamount
it canincrease. Hence canbeassignedn the whileloopat most: — 1 times,and hence
thetotal numbef times thatthe valueof v canbeassigneds at most2(n — 1) = O(n),
andthe theorem igproved. O

3.3.4.How to computethe optimized shift values

The(stronger)sp; valuescanbeeasilycomputedrom thesp; valuesin O(r) time using
the algorithm below. For the purposesf the algorithm, characteP (n+ 1), which does
notexist,is definedto bedifferentfrom any charactein P.

Algorithm SP/(P)
sp; =0;
Fori:=2tondo
begin
V= 8p;;
If P(u T 1) # P(i T 1) then
sp; 1=V
else
Sp; = Spys
end;

Theorem3.3.2. Algorithm SP'(P)correctlycomputesll thesp! values in O(n) time.

PROOF Theproofis byinductiononthevalueof i. Sincesp, = O andsp; < sp; foralli,
thensp', = 0,andthealgorithm is correct foi = 1. Now supposehatthe valueof sp; set
by thealgorithmiscorrect for alli < k andconsideii = k. If Plsp.T1] # Pfk+ 1] then
clearly sp, is equalto spi, sincethe sp; lengthprefix of P[1..k]} satisfiesall the needed
requirements. Hencin this case, the algorithroorrectly setsp,.

If P(sp, T 1) = P(k+ 1), thensp;, < sp, and,since P[1..sp;} is a suffix P[1..kl,
sp, canbe expressedsthe lengthof the longestproper prefix of P{l..sp;] thatalso
occurs assuffix of P[1..sp,] with theconditionthat P(k+ 1) # P(sp, T 1). Butsince
P(k+ 1) = P(sp, T 1), that conditioncan be rewrittenas P(sp; + 1) # P(sp, T 1).
By theinduction hypothesishatvaluehasalreadybeencorrectly compute@ssp;,, . So
when P(sp, T 1) = P(k T 1) the algorithmcorrectly setsp; tosp;, .

Because the algorithranly doesconstant workper position,the total time for the
algorithmis O(n). O

It is interesting tocomparethe classicaimethodfor computingsp and sp' and the
methodbasedon fundamental preprocessirige., on Z values).In theclassicalmethod
the(weakerspvaluesare computedirst andthen themoredesirablesp'valuesarederived

EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

N

a b x ab q a b x ab r ab x ab qgab x ab x

| | i

SPr+1 Spy k k+1

Figure 3.12: "Bouncing ball " cartoon of original Knuth -Morris -Pratt preprocessing. The arrows show the
successive assignments to the variable v.

How to find spi+1

x:= Pk + 1)

U i= 5Py

While P(v + 1) # x andv # Odo
V= 5s5py;

end;

If P(v+1)=x then
spirr i=v T 1

else
spr+1 :=0;

Seetheexample inFigure3.12.
Theentire seof sp values ardound asfollows:

Algorithm SP(P)

spy, =0
Fork:= 1ton—1do
begin
x = Pkt
V= Spg.
While p(v + 1) # x andv # 0 do
VIi=s5p,;
end;
If P(v+ 1) = x then
SPiv1 ' =v 41
else
SPi+1 =10,
end;

Theorem 3.3.1. Algorithm SP finds all the sp;{ P) valuesin O(n) time, wheren is the
lengthof P.

PROOF Notefirst thatthealgorithmconsistof two nestedoops,afor loop andawhile
loop. Thefor loop executesexactlyn — 1 times, incrementinghe value ofk eachtime.
Thewhile loop executes variable numbeof times eachimeit is entered.

The work of the algorithmis proportionalto the numberf timesthe valueof v is
assignedWe considerthe placeswherethe value ofv is assignedandfocuson how the
valueof v changeover theexecutionof thealgorithm.The valueof v is assigned once

3.4. EXACT MATCHING WITH A SET OF PATTERNS

'rl) b)

Figure 3.14: Pattern Py is the string pat. a. The insertion of pattern A when P is pa. b. The insertion
when P is party.

TreeX, justconsists of a singlpathof | P,| edgesout of root r. Eachedgeon this path
is labeled witha character oP, andwhenreadfrom theroot, these characters speilit
P,. The numberl is written at the nodeat the end of this pathTo createk’; from K,
first find the longest patfrom rootr thatmatches theharacter®f P; in order.Thatis,
find the longesprefix of P, that matcheghecharacter®on somepath fromr. That path
eitherendsby exhaustingP; or it endsat some node in thetree wherenofurther match
is possible. In the firstase, P, already occurs thetree,andso we write the number2 at
the nodevhere the patbndsIn the secondasewecreate anewpathoutof v, labeledby
theremaining(unmatched) characteo$ P,, and write numbeR at theendof that path.
An exampleof these two possibilities shownin Figure3.14.

In eitherof theabovetwo cases/C, will haveat mostonebranchingnode(a nodewith
morethanonechild), andthe charactersn thetwo edgesout of the branchingiodewill
be distinct. We will seethatthelatter property holds inductively fany treeXC;. That is,
atany branching node in X;, all edgesoutof v havedistinct labels.

In generalto createX; ., from K;, start attherootof X; andfollow, asfar aspossible,
the (unique)pathin X; that matches the characténspP;,; in order.This pathis unique
becauseat any branching node of X;, thecharacters otheedgesout of v are distinct.
If patternP; . is exhaustedfully matched), then numbé#ére node wher¢he matchends
with thenumber: T 1. If anodev is reached whereofurther match is possiblaut P, is
notfully matchedthencreatea new pathoutof v labeledwith the remaining unmatched
part of P,,; and number thendpointof that path witthe numberi + 1.

During the insertiorof P, , the workdone atany nodeis boundedy aconstant, since
thealphabet is finite ando two edgesut of a node are labeledith the samecharacter.
Hence foranyi, it takesO({P,,|) time toinsert patterrP;,, into X;, and sathe time to
constructhe entire keyword tree i€ (n).

3.4.1. Naive useof keyword treesfor setmatching

Becauseao two edges oubf any nodeare labeledvith thesamecharacterye can use the
keywordtreeto search for albccurrences T of patterngrom 7. To begin, considenow
tosearcHor occurrencesf patternsn P thatbeginatcharacterl of T: Follow theunique
pathin X that matchea prefix of T asfar as possibldf a nodeis encounteredn this path
thatis numberedy i, then P; occursin T starting from positiorl. More thanone such
numbered node cdieencountered gome patterna P are prefixesf otherpatternsn P.
In general,to find all patternsthatoccurin T, start fromeachpositionlin T and
follow the unique patfirom r in K thatmatchesa substring ofT starting at charactér

EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

Figure 3.13: Keywordtreek® with five patterns.

from them, whereas therderis just the oppositein the method based ofundamental
preprocessing.

3.4. Exact matching with a setof patterns

An immediateandimportantgeneralization othe exactmatching problenis to find all
occurrencesn text T of any patternin a set of patternsP = {P|, P»,..., P,}. This
generalizations calledtheexact setnatchingproblem. Let: now denote the total length
of all thepatternan P andm be,as before, théengthof T. Then,theexact setnatching
problemcanbesolvedin time O(nt zm) by separatelyusingany lineartime methodor
eachof thez patterns.

Perhapsurprisingly, the exactetmatchingproblemcanbesolvedfaster thanO(n +
zm). It canbesolvedin O(n+m tk) time, wherek is the numbepf occurrences T of
the patterngrom P.The first method taachieve thisbound is dugo Aho andCorasick
[91.2 In this section,we developthe Aho—Corasick method; somef the proofs are left
to the readerAn equally efficientbut more robustmethodfor the exactset matching
problemis basedn suffix trees and igliscussedn Section7.2.

Definition The keyword rree for setP is a rooted directedree X satisfying three
conditions:1. eachedgeis labeledwith exactly onecharacter2. any twoedgesout of
thesamenode havalistinct labelsand3. everypattern?; in P mapsto some node of
K suchthatthecharactersn thepath from thecootof X to v exactlyspellout 7;, and
every leaf oflC is mappedo by somepatternin P.

Forexample, Figur8.13showshe keywordtreefor theset ofpatterns (potato, poetry,
pottery,scienceschool).

Clearly, every nodén the keywordtreecorrespondso a prefix of oneof the patterns
in P, and every prefixf a pattern maps ta distinctnodein thetree.

Assuming dixed-size alphabet, it is easy constructthe keywordtreefor P in O(n)
time. Define X; to be the (partial) keyword tree thaéncodegpatternspy, ..., P; of P.

There is a more recentexposition of the Aho—Corasick method in [8], where the algorithm is usedjust as an
"acceptor”, deciding whether or not there is an occurrencein 7 of at least one pattern from P. Becausewe will
want to explicitly find all occurrences, that versionof the algorithm is too limited to use here.

3.4. EXACT MATCHING WITH A SETOF PATTERNS

2
Figure 3.16: Keyword tree showing the failure links.

For exampleconsider the set of patter®s = {porato, tattoo, theater, other}and its
keywordtree showrin Figure3.16.Let v bethenode labeledvith thestring potarSince
tat is prefix of tattoo, andt is the longest propesuffix of potat thatis a prefix of any
patternin P ,ip(v) = 3.

Lemma3.4.1. Let a bethelp(v)-length suffix of string L(v). Thenthereis a unique node
in thekeywordtreethatis labeledby stringa.

PROOF K encodesll the patternin P and,by definition,the!p(v)-length suffix of L(v)
is a prefix of somepatternin P. Sotheremustbe apathfrom therootin X thatspells out

54 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

Numberedhodesalongthat pathindicatepatternsn P that startat position!. For afixed
I, thetraversalof a pathof K takestime proportional tathe minimum ofm andn, soby
successively incrementiddgrom I tom andtraversingC for eacH, theexactsetmatching
problemcanbesolvedin O(nm) time. We will reducehisto O(n+ m + k) time below,
wherek is the numbenof occurrences.

The dictionary problem

Withoutanyfurtherembellishments, this simpleeywordtreealgorithmefficiently solves
aspeciakaseof setmatching,calledthedictionaryproblem.In thedictionaryproblem,a
setof strings(forming adictionary)is initially known and preprocesse@henasequence
of individual strings willbe presentedfor eachone,the taskis to find if the presented
stringis containedn the dictionaryThe utility of a keywordtreeis clearin this context.
Thestringsin thedictionaryare encoded inta keywordtree KC, and whenanindividual
stringis presenteda walk from theroot of XC determinesf thestringis in the dictionary.
T this specialcaseof exactset matching,the problemis to determineif thetext T (an
individual presentedtring)completely matchesomestring in’?.

We now return tothegeneralset matching problemf determiningwhich stringsin P
arecontainedn text T.

3.4.2. The speedup:generalizing Knuth -Morris -Pratt

The above naiveapproachto the exactset matchingoroblemis analogoudo the naive
searchwe discussed beforiatroducing theKnuth-Morris-Pratt method.Successivelyn-
crementindlL by one and startingachsearchfrom root r is analogoudo the naiveexact
matchmethodfor a single pattern,whereafter everymismatchthe patternis shifted by
only one position,and the comparisons aralwaysbegunat theleft endof the pattern.
The Knuth-Morris-Prattalgorithm improveon that naivealgorithm by shifting the pat
ternby more tharonepositionwhen possiblendby nevercomparingcharactergo the
left of the currentcharacterin T. The Aho—Corasick algorithm makeghe samekind of
improvementsjncrementingl by morethanoneandskipping over initialparts of paths
in K, when possibleThekey isto generalizethe functionsp; (defined on pag@7 for a
singlepattern)o operatmnaset of patternslhis generalizatioris fairly direct, withonly
onesubtletythatoccursif apatternin P is apropersubstringof another patterin P. So,
it is very helpful to(temporarily) makethe following assumption:

Assumption No patternin P is a propersubstringof any otherpattemin P

3.4.3. Failure functionsfor the keyword tree

Definition Eachnodev in K is labeled with the stringobtainedby concatenatingn
orderthecharactersnthe pathfrom the rootof K to nodev. £{v) is usedto denotethe
labelonv. That is,theconcatenatiof character®n thepath fromthe rootto v spells
outthestring L(v).

For example,n Figure 3.15 the node pointed to by the arrow is labeled with the
stringport.

Definition Forany nodev of K, definelp(v) to be the lengthof the longest proper
suffix of string £(v) thatis a prefix of somepattemin P.

3.4. EXACT MATCHING WITH A SETOF PATTERNS 57

to the noden, labeledtat, and/p(v) = 3.Solis incrementedo5 = 8 — 3, andthe next
comparisons betweercharactelT (8) andcharactet on theedgebelowtat.

With this algorithm, when nfurthermatches are possiblenayincreasdy morethan
one, avoidinghe reexaminationof character®f T to the left of ¢, andyet we may be
sure that every occurrenoga patterrin P that begingtcharactec — Ip(v) of T will be
correctly detectedOf course(just as in KnuthMorris-Pratt),we haveto argue thathere
are no occurrence®f patternsof P starting strictlybetween theld / andc — {/p(v) in
T, and thud canbeincrementedo ¢ — /p(v} without missinganyoccurrences. With the
given assumptiothat no patternin ‘P is a proper substringf anotherone, thaargument
is almostidenticalto the proof of Theorem2.3.2in the analysi®f Knuth-Morris-Pratt,
and it is left amnexercise.

Whenip(v) = 0, then! is increasedo c andthe comparison®eginat theroot of K.
Theonly case remaining is when the mismatch occutiseabot. In thiscasec mustbe
incrementedoy 1 andcomparisong@gainbeginat the root.

Thereforethe useof functionv — n, certainly acceleratdle naivesearchor patterns
of P. Butdoesit improve theworstcaserunning timeBy thesamesortof argumenused
to analyze the search time (not the preprocessing dbfméjuth-MorrisPratt(Theorem
2.3.3), it is easily established that the search timeAbo-Corasickis O(m). We leave
this as an exercise. However have yeto showhow toprecomputéhefunctionv — n,
in linear time.

3.4.5. Linear preprocessing forthe failure function

Recallthatfor anynodev of K, n, isthe uniquenodein X labeledwith the suffixof L(v) of
lengthi p(v). Thefollowing algorithmfinds noden, for eachnodev in X, usingO(r) total
time. Clearlyjf v istherootr or v isone characteaway fromr, thenn, = r. Supposefor
somek, n, hasbeencomputedor every nodehat isexactlyk or fewer charactergedges)
fromr. Thetasknowis to computen, for anodev thatisk + 1 characterfomr. Let V' be
the parenof v in X and letx bethe character othev’ tov edgeasshownin Figure3.17.
We arelooking for the noden, and the(unknown)string £(»,} labeling thepath toit
from theroot;weknow noden, because’ isk characters from. Just agn theexplanation

Figure 3.17: Keyword tree usedto computethe failure function for node v.

56 EXACT MATCHING: A DEEPERLOOK AT CLASSICAL METHODS

stringa.By the constructionof 7 no two paths spelbut thesame stringsothis pathis
unique andhelemmais proved. O

Definition Foranodev of K letr, bethe uniquenodein K labeledwith the suffixof
L(v) of length!p(v). Whenip(v} = 0 thenn, is the rootof K.

Definition We call theorderedpair (u,n,) afailure {ink.

Figure3.16shows thekeywordtreefor P = {potato, tatoo,theater, other).Failure
links are shown apointersfrom every nodev to noden, wherelp(v) > 0. The other
failure links point to theroot andarenot shown.

3.4.4. The failure links speedup the search

Supposedhatwe know the failure linkv — n, for eachnodev in K. (Laterwe will show
how to efficiently find those links.How dothe failure links help speagpthesearch? The
Aho—Corasick algorithm uses thlinctionv — n, in away thatdirectly generalizeghe
use of thdunctioni H sp; in the KnuthMorris-Pratt algorithmAs before,we use! to
indicate the startingositionin T of the patterns being searched Wealsouse pointec
into T toindicatethe" current charact&rof 7 to becomparedvith a characteon K. The
following algorithm uses the failutmks tosearchHor occurrencem T of patterns fronf:

Algorithm AC search

=1,
c:=1
w :=rootof K;
repeat
While there isanedge(w, w') labeled charactéf(c)
begin
if W is numberedy pattern; then
report that?; occursin T starting at positiof
w:=w andc.=c + 1;
end;
w :=n, and! :=c — Ip(w);
until ¢ > m:

To understandhe useof the functionv — n,, supposeve havetraversedhe treeto
nodev butcannot continuéi.e., charactef (¢) doesnotoccuron anyedgeout of v). We
know thatstring £(v) occursin T startingat positionl and ending aposition c— 1. By
the definition of thefunctionv — n,, it is guaranteedhatstring £(»,) matchesstring
T[c—=Ip(v)..c —1]. That is, thealgorithmcould travers& from theroot tonoder, andbe
sureto match allthecharactersn this path with the charactensl starting fromposition
c — Ip(v). Sowhenlp(v) = 0,1canbeincreasedo c — Ip(v), c can be left unchanged,
andthereis no needto actuallymake the comparisoran the pathfrom the rootto node
n,. Insteadthe comparisons shoulbeginat nodea, ,comparing character of 7 against
the charactersn theedges oubf n,.

For example, consider the tedt = xxporatrooxx and the keyword tree showrnn
Figure3.16. Whend = 3, the text matcheshe string peotat but mismatchesat the next
characterAt this pointc = 8, andthe failurelink from the nodev labeledpotar points

3.4. EXACT MATCHING WITH A SET OF PATTERNS 59

I
Figure 3.18: Keyword tree showing a directed path from potatto at through tat,

Repeatinghis analysidor every pattern inP yieldstheresultthatall thefailure links
are establisheth time proportionalto thesum ofthe patternlengthsin P (i.e., in O(n)
totaltime). O

3.4.6. The full Aho-Corasick algorithm: relaxing the
substring assumption

Until now we haveassumedhatno patternin P is asubstring ofanothematternin P. We
now relax thatassumptionlf onepatternis a substringof anotherandyet Algorithm AC
search(pages6) useshesamekeywordtreeasbefore, then thalgorithmmay make! too
large.Considerthe casewhen? = {acatt,ca)andT = acatg.As given, the algorithm
matchesT alonga pathin K until characterg is the current charactethat pathendsat
thenodev with £(v) = acat.Now noedgesoutof v are labeledy, andsinceno proper
suffix of acatis a prefix of acattor ac,n, is the rootof . Sowhenthe algorithmgets
stuckat nodev it returnsto the rootwith g asthe current characteandit sets/ to 5. Then
afteroneadditionalcomparisorthe current character pointeill besettom= 1 andthe
algorithm will terminatewithoutfinding the occurrencef cain T . This happendecause
thealgorithm shift{increase$) soasto match thdongestsuffix of £{v) with a prefix of
somepattern inP .Embeddedccurrencesf patterns inC(v) thatarenot suffixes ofC(v)
havenoinfiuence on how muchl increases.

It iseasyto repair thisproblemwith thefollowing observationsvhoseproofswe leave
to the reader.

Lemma 3.4.2. Supposein a keywordtree K there isa directed path of failure links
(possiblyempty)from a nodev to a nodethat is numberedwith pattern i. Then pattern P;
mustoccurin T endingat position ¢ (thecurrent character) whenevenodev is reached
during the searchphaseof the Aho—Corasick algorithm.

ForexampleFigure3.18 showshekeywordtreefor P = (potato,pot, tatter,at)along
with someof the failurelinks. Thoselinks form adirected patHrom the node labeled
potat to the numberedhodelabeledat. If the traversabf X reaches thenT certainly
containsthe patternstat andat endat thecurrentc.

Conversely,

Lemma 3.4.3. Supposea node v has beenreachedduring the algorithm. Then pattern

58 EXACT MATCHING: A DEEPER.OOK AT CLASSICAL METHODS

of the classic preprocessiiigr Knuth-Morris-Pratt, £(n,) mustbea suffixof L(n,) (not
necessarily propeifpllowed by character. Sothefirst thing to checkis whetherthere
is anedge(n,, W) outof noden, labeledwith characte. If thatedgedoesexist,then
n, is nodew' andwe are donelf thereis nosuchedgeoutof n,, labeled with character
x, thenL(n,) is apropewuffix of L(n,/) followed by x. Sowe examinen,, next toseeif
thereis anedgeoutof it labeled withcharactex. (Noden, , is known because,, isk or
feweredges frontheroot.) Continuingin this way, with exactlythesamejustification as
in the classicpreprocessindgor Knuth-Morris-Pratt, we arrive atthefollowing algorithm
for computingn, for anodev:

Algorithm n,

v’ isthe parent ob in X;

x isthe characteon the edgév’, v);

W i=ny,

While thereis noedgeoutof w labeledx andw # r
dow :=n,

end(while);

If thereisanedge(w, w’) outof w labeledx then
R, - =W',

else
n,:=r;

Notethe importancef theassumptiorthatn, is alreadyknown for every node uhat
isk orfewercharactergromr.

To findn, for everynodev, repeatedlyapply the abovealgorithm tothenodesin K in
a breadtHirst manner starting ate root.

Theorem 3.4.1.Let n be thetotal lengthd all thepatternsn P. Thetotal time usedby
Algorithm n, whenappliedto all nodesin X is O (n).

PROOF Theargumentis a direct generalization of the argumensedto analyze time
in theclassicpreprocessingor Knuth-Morris-Pratt. Considea single patternP in P of
lengtht andits pathin K for patternP.We will analyzethetime usedn thealgorithmto
find the failurelinks for thenodes orthis path,asif the pathsharesno nodeswith paths
for any otherpatternin P. Thatanalysiswill overcount thectualamountof work done
by thealgorithm, butit will still establisha linear time bound.

Thekeyisto seenow {p(v) variesas the algorithnis executed orachsuccessiveode
v downthe patifor P. Whenv isone edge from theoot, thenip(v) is zero.Now let v be
an arbitrary nodenthepathfor P and letv’ bethe parenof v. Clearly,ip(v) < Ip(v') T 1,
sooverall execution®f Algorithm n, fornodesonthe pathfor P ,Ip() isincreasediy a
total of at mostt. Now considethow Ip() candecreaseDuring the computatiorf n, for
anynodev, w starts atn,,» andsohasinitial node depth equdb /p(v"). However,during
the computationof n,, the nodedepthof w decreasegvery timean assignment to is
made(insidethe whileloop). Whenn, is finally set,!p(v) equalsthe currentdepthof w,
soif w is assigned times, then'p(v) < Ip(v') — k and!p() decreasedy at leask. Now
{p() is never negativeand duringall thecomputationsalongpath P, Ip() canbeincreased
by atotal of at mostt. It follows thatover all the computationdonefor nodeson the path
for P,the numberof assignmentsnadeinside the while loop is at mostt. Thetotal time
usedis proportionalto the numberf assignments inside tHeop, and hence all failure
links on the pathfor P are sein O() time.

3.5. THREE APPLICATIONS OF EXACT SETMATCHING 61

of anoutputlink leadsto the discoveryf a patternoccurrence, sthe totaltime for the
algorithmis O(n+m-+k), wherek isthetotal numbeof occurrencedn summarywehave,

Theorem3.4.2. If P isa setdf patternswith total lengthz and T is a text of total length
m, thenonecanfind all occurrencesn T d patterns from P in O(n) preprocessing time
plus O(m k) searchtime,wherek is thenumberaf occurrencesThis s true evenwithout
assuming that the patternsin P are substringfree.

In alaterchapter (Sectio6.5)we will discuss further implementation issues that affect
the practicalperformancef boththe Aho—Corasickmethod, and suffix tree methods.

& Three applicationsof exactsetmatching
3.5.1. Matching against a DNA or protein library of known patterns

Thereare a numberof applicationsin molecular biology whera relatively stableii-
brary of interestingor distinguishingDNA or proteinsubstringshave beertonstructed.
The Sequencdaggedsites(STSs)and Expressedsequenceugs (ESTS) provideur first
importantllustration.

Sequencdaggedsites

The concept oh Sequencéaggedsite (STS)is oneof the most useful byproductsthat
hascomeout of the HumanGenomeProject[111, 234, 399]. Without goinginto full
biologicaldetail,an STSis intuitively a DNA stringof length200-300nucleotides whose
rightand lefends of length20-30 nucleotides eaclccuronly oncein the entire genome
[111,317]. ThuseachSTSoccursuniquelyin theDNA of interestAlthough this definition
IS notquite correct,it is adequate foour purposesAn earlygoal of theHumanGenome
Projectwasto selectandmap (locate othegenomepsetof STSssuchthatany substring
in the genomeof length 100,0000r morecontains at leastne of those STSsA more
refinedgoal isto makeamapcontainingESTs (expresseskequence tagsyhichareSTSs
thatcomefrom genegatherthan parts of intergenedDNA. ESTsareobtainedrom mRNA
andcDNA (seeSection118.3 for moredetailon cDNA) and typically reflecthe protein
coding partof agene sequence.

With an STSmap,onecanlocateon the mapanysufficientlylong stringof anonymous
butsequence®NA - the problemis just oneof finding which STSsare containeéh the
anonymou®NA. Thuswith STSs,map locatiorof anonymous sequenc&NA becomes
astringproblem anexactsetmatchingoroblemTheSTSsor the ESTs providecomputer
basedsetof indicesto whichnewDNA sequencesan bereferenced. Presently, hundreds
of thousandf STSsand tensof thousandof ESTshave beerfound and placedh
computeidatabasef234]. Notethat the total lengtbf all theSTSsand ESTss verylarge
comparedo the typical sizeof ananonymouspieceof DNA. Consequentlythekeyword
treeandthe Aho—-Corasick method(with a searchtime proportional to théengthof the
anonymou®NA) areof directusein this problem fotheyallow very rapid identification
of STSsor ESTsthatoccurin newly sequencebNA.

Of course theremay besomeerrorsin eitherthe STSmapor in the newly sequenced
DNA causingtroublefor this approach(see Sectior 6.5for a discussiorof STSmaps).
Butin this application, the numbef errors shouldeasmall percentagef the lengthof
theSTS,andthat will allow moresophisticated exact (amdexact)matching methods to
succeedWe will describesomeof thesein Sections7.8.3, 9.4, and12.20f the book.

60 EXACT MATCHING: A DEEPERLOOK AT CLASSICAL. METHODS

P; occursin T endingat posion ¢ only if v 8 numberedi or there is a directed path of
failure ks from v to the nodenumberedi.

Sothefull search algorithm is

Algorithm full AC search
l=1;

c:=1;
W :=r00t;
repeat
While thereis anedge(w, w') labeledT (¢)

begin
if w' is numberedy patterni or thereis
adirected path of failurénks fromw to anode numberedith :
thenreportthat #; occursin T endingat positionc;

W:=w andc := ¢t 1;
end,;

W :=n, andl := ¢ — Ip(w);

until ¢ > n;

Implementation

Lemmas3.4.2and3.4.3specify ata highlevelhowto find all occurrencesf the patterns
in the text. buspecificimplementationdetailsarestill neededThe goalis to be able to
build the keyword treedetermine functions — »,, andbe ableto execute the fulAC
search algorithrall in O (m k) time. To do this we addan additional pointercalledthe
outputlnk, to eachnodeof K.

The outputlink (if thereis one)at a nodev pointsto that numberedode (a node
associatedvith the endof a patternin P)otherthanv that is reachablérom v by the
fewestfailure links. Theoutput links carbedeterminedn O(n) time during the running
of the preprocessing algorithm. When then, valueis determinedthe possibleoutput
link from nodev is determinedasfollows: If #, is a numberechodethenthe output link
from v pointsto n,; if n, is not numbered but has an outpink to a nodew, then the
outputlink from v pointsto w; otherwisev hasno outputlink. In this way, an output
link pointsonly to a numbered nodend thepathof outputlinks fromany nodev passes
throughall the numbered nodes reachalilem v via apathof failurelinks. For example,
in Figure 3.18the nodes fotat andpotat will have their outputlinks set to the node for
at, Thework of addingoutputlinks adds only constaritme pernode,sotheoverall time
for algorithmn, remainsO(n).

With the output links, athccurrences T of patternof P canbedetectedn O(m k)
time. As before,wheneveia numbered nodes encounteredluring thefull AC search, an
occurrencas detected and reporteBut additionally, whenevea nodev is encountered
that hasan outputlink from it, thealgorithmmust traverséhe path ofoutput linksfrom
v, reportinganoccurrencesndingat positionc of T for eachlink in the path.Whenthat
path traversal reachesnode withno outputlink, it returnsalongthe pathto nodev and
continuesexecutingthe full AC searchalgorithm. Sinceno charactecomparisonsare
doneduringany output linktraversalpverboththeconstructiorandsearctphase®f the
algorithmthe number otharacter comparisoissstill boundedy O(n +m). Furthergven
thoughthenumberof traversals of outpuinks canexceedhat lineabound gachtraversal

3.5. THREE APPLICATIONS OF EXACT SET MATCHING 63

text T. For eaclstarting locationj of P; in T,
incrementthe countn cell j — {; +1ofC by one.

{Forexample|f the second copygf stringabis foundin T
starting atposition18,thencell 12 of C is incrementedy one.)

3.ScanvectorC for anycell with valuek. Thereis anoccurrencef P
in T startingat position p if and onlyif C(p) = k.

Correctnessindcomplexityof themethod

Correctness Clearly, there igmnoccurrence of in T startingat position p if andonly
if, for eachi, subpatterrP; € Poccurs apositionj = p+[; — 1 of T. Theabove method
uses thisdeain reverself patternP; € Pis foundto occur starting at 'positionof T,
and patternP; starts at positio#y in P,thenthis provides onBwitness' that P occurs at
T starting at positionp = j — f; + 1. HenceP occursin T starting atp if and onlyif
similar witnessedor positionp arefound foreach of thek stringsin P .The algorithm
counts,at position p,the numbeof witnesses thaitbserveanoccurrencef P beginning
at p.This correctlydetermines whethelP occurs startingt p because eaddtring in’P
cancause at most onecrement to cellp of C .

Complexity Thetime usedby the Aho-Corasick algorithmto build the keyword tree
for P is O(n). Thetime to search for occurrencisT of patterns fronPis O(m¥ z),
where|T| = m andz is the numbebf occurrencesWe treat each pattern iR asbeing
distinct evenf there are multipleopiesof it in 7. Thenwheneveran occurrence oh
patternfrom P is foundin T, exactlyonecellin C is incremented; furthermoracell can
beincrementedo at mostk. Hencez mustbe boundedoy km, and the algorithnmunsin
O (km) time. Although the numbeof character comparisonsedis just O(m), km need
not be O (m) andhencethenumber of timeg is incremented mayrow fasterthan O(m),
leading toa nonlinearO (km) time boundBut if kis assumed tbeboundedindependent
of | P|}, thenthe method does run ilineartime. In summary,

Theorem3.5.1. If the numberof wild cardsin pattern P is boundedby aconstant,then
the exactmatching problemwith wild cardsin the Pattern canbesolvedin O (nFtm)time.

Later,in Section9.3,we will return to the problenof wild cardswhentheyoccurin
either thepattern text,or both.

3.5.3. Two-dimensionalexactmatching

A second classiapplicationof exactset matchingoccursin a generalizatiorof string
matching to twedimensionalexactmatching.Supposewe havea rectangulardigitized
pictureT , whereeach point is givea number indicating its color and brightnegée are
also givera smallerrectangular picturd®, whichalsois digitized, andve wantto find all
occurrencegpossiblyoverlapping)of the smaller pictura thelargerone Weassume that
the bottonmedgef thetwo rectangleareparallel to eaclother.This isatwo-dimensional
generalization of the exact string matching problem.

Admittedly, this problems somewhatontrived. Unlikethe onedimensionalexact
matchingproblem,which truly arises in numerous practical applicatiaosnpelling ap
plicationsof two-dimensional exact matching are hardiid. Two-dimensionamatching
thatis inexact, allowing somerrors,is a more realistic problenut itssolutionrequires

62 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

A related applicatiomomesfrom the"BAC-PAC" proposal[442] for sequencinghe
human genoméseepage418).In that method, 600,008trings(patterns)f length500
would first be obtainedand enteredinto the computer.Thousand=f times thereatfter,
onewould lookfor occurrence®f any ofthese600,000patternan textstringsof length
150,000. Note that theotal length of the patternss 300 million characterswhich is
two-thousand times dargeasthetypical text to besearched.

3.5.2. Exactmatching with wild cards

As an applicatiorof exactsetmatching,we returnto the problem ofexact matchingvith
asinglepatternbutcomplicatethe problema bit. We modify theexactmatchingproblem
by introducing a charactef, calleda wild card,that matchesanysingle characteGiven
a patternP containingwild cards,we wantto find all occurrence®f P in a textT. For
examplethe pattermbggceg occurs twican thetextxabvccbababcaxXNote that inthis
versionof theproblemno wild cards appean T andthateachwild card matcheenly a
singlecharacteratherthana substringof unspecifiedength.

The problemof matchingwith wild cards shoulcheed little motivating, as itis not
difficult to think uprealistic caseswherethe pattern containgild cards.Onevery im-
portant casevheresimple wild cardsoccur isin DNA transcriptionfactors. A tran
scription factoiis a proteinthat bindsto specific locationsn DNA andregulates, either
enhancingor suppressingthe transcriptionof the DNA into RNA. In this way, pre
duction of the protein that theDNA codesfor is regulated.The study of transcription
factorshasexploded inthe pasdecademany transcriptionfactorsare now knownand
canbeseparatednto families characterizetly specific substringsontainingwild cards.
For example, the Zind=ingeris a commontranscription factor thabhas the following
signature:

CYSoppCYSPppp9pdpdddpddHISp@HIS,

whereCY Sis theaminoacid cysteine andHIS is theamino acidhistidine. Anotherim-
portanttranscriptiorfactor is theLeucine Zipper,which consist®f four to seveneucines,
eachseparatedy six wild card aminacacids.

If the numbeiof permittedwild cardsis unboundedit is not known if the problem
canbesolvedin lineartime. Howeverjf the numbef wild cardsis boundedby a fixed
constant (independenf the size of P) then the following method, basedon exact set
patternmatching, runsgn lineartime:

Exactmatchingwith wild cards
0. Let C bea vectorof length|T| initialized to all zeros.
1.LetP ={P, P, ..., P;} be the (multi)setof maximal

substring®f P thatdo notcontainanywild cards.Let!;, &, ...,k
be the startingpositionsin P of eachof these substrings.

(Forexamplejf P = ab¢ppcpabgpe thenP = (ab,c,ab)and
l] = 1,12 = 5,13 = 7,)

2.Usingthe Aho—Corasick algorithm (orthesuffix treeapproachto be discussed
later),find for eachstring P; in P, all startingpositionsof P; in

3.6. REGULAR EXPRESSIONPATTERNMATCHING 65

3.6. Regular expressiorpattern matching

A regularexpressions a way to specifyasetof related stringssometimeseferredto asa
pattern.> Many importantsetsof substringgpatterns) foundh biosequences, particularly
in proteins,can bespecifiedas regularexpressions, and sevemtabasesave been
constructedo hold suchpatternsThe PROSITE database, developdsyy Amos Bairoch
[41,421is the major regularexpression databaser significant patterns in proteingsee
Section15.8for moreon PROSITE).

In this section, wexaminethe problemof finding substringof atextstringthat match
oneof the stringsspecified bya given regulaexpressionThese matchesrecomputedn
the Unix utility grep,and severaspecial programbave beemevelopedo find matches
to regularexpressionsn biological sequence@79, 416, 422].

It is helpful to start first withan exampl®f asimpleregularexpressionA formal defi-
nition of a regular expressios givenlater.Thefollowing PROSITE expressiorspecifies
a setof substrings, somef which appeaiin a particulafamily of granin proteins:

(ED]-[EN]-L-[SAN]-x-x-[DE]-x-E-L.

Every string specifiedby this regularexpressiorhasten positions, whichare separated
by a dashEachcapital letter specifiesa single aminacacid and agroupof amino acids
enclosedoy bracketsindicates that exactlgneof thoseamino acidsnustbe chosen. A
smallx indicatesthatanyoneof the twenty amino acids from thgroteinalphabetanbe

choserfor that positionThisregular expressiodescribes 192,00@minoacidstrings,but

only afew of these actuallyappeaitin any known proteing-or example ENLSSEDEEL

is specifiedby theregularexpressiorandis foundin human granin proteins.

3.6.1. Formal definitions

Wenowgivea formal, recursive definitiofor a regular expressidormed from an alphabet
Z. For simplicity, and contraryto the PROSITE example ,assumehat alphabetC does
notcontainany symbolfrom the followinglist: =, +,(,), €.

Definition A single characteirom C is aregularexpressionfhesymbole isaregu

lar expressiorA regularexpression followedly anotheregularexpressions aregular
expressionTwo regular expressions separatgdthe symbol “+* form a regularex-

pressionA regularexpressiomnclosedn parenthesds aregularexpressionA regular
expressiorenclosedn parentheseandfollowed by the symbol**” is aregularexpres

sion.Thesymbol* is called the Kleene closure.

Theserecursiverulesare simpleo follow, butmayneedsomeexplanationThesymbol
€ represents themptystring(i.e., thestringof lengthzero).If R isa parenthesized regular
expressionthen R* meansthat the expressionR canbe repeated anypwumberof times
(includingzerotimes).Theinclusion ofparentheseas parbf aregularexpression (outside
of C)isnotstandardbutis closerto theway thatregular expressions are actually specified
in many applications.Note thatthe examplegiven above ilPROSITE format doesnot
conformto the present definition butaneasilybe convertedo do so.

As anexample,let £ bethe alphabebdf lower caseEnglish charactersThen R =
(@t ¢+ nykk(p T @) vdrd + 2+ €)(pg) is a regular expressioover T, and S =

* Note thatin thecontextof regularexpressionsthe meaningf the word" patterr' is different fromits previousand
generalmeaningin this book.

64 EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

morecomplex techniquesf thetype we will examinein Partlll of thebook.Sofor now,
we view two-dimensionalexact matchingsanillustration of howexact sematching can
be usedn morecomplexsettingsandasanintroductionto more realistic twedimensional
problemsThemethod presented follows thasicapproachgiven in[44] and[66]. Since
then, manyadditional methodshavebeen presentesincethat improveon thosepapers
in various waysHowever, becausehe problemas stated is somewhatnrealistic,we
will not discuss thenewer, more complex, methods. For a sophisticated treatnoént
two-dimensionamatchingsee[22] and[169].

Let m be thetotal numberof pointsin T, let n be the numbeof pointsin P ,and letn’
be the numbeof rowsin P.Justasin exact stringmatchingwe wantto find thesmaller
picturein the largeronein O(n+ m) time, where O(nm) is the timefor the obvious
approach. Assumi@r now thateachof therows of P aredistinct; laterwe will relax this
assumption.

Themethodis dividedinto two phasesln thefirst phasesearchor all occurrencesf
eachof therowsof P amongtherowsof T. Todothis,addanendof row marker (some
charactemot in the alphabet)to eachrow of T and concatenatéhese rows togetheo
form a singletext string T' of length O(m). Then,treatingeachrow of P asa separate
pattern, use thdho—Corasickalgorithmto searchfor all occurrencesn T' of any row
of P.Since P is rectangularall rows havethe samewidth, andso no row is a proper
substringof anotherand we caruse thesimplerversionof Aho—Corasick discussedn
Section3.4.2. Hence thdirst phasedentifiesall occurrence®f completerows of P in
completerowsof T and takeO(n + m) time.

Wheneveman occurrencef rowi of Pisfound startingtposition(p, q) of T, write the
numberi in position(p,q) of anotherarrayM with thesamedimensions a3 . Because
eachrow of Pisassumedo bedistinctand becaus® is rectangular, amnostonenumber
will bewritten in any cell of M.

In thesecond phasescan eacltolumnof M, looking for an occurrencef the string
1,2,...,n" in consecutiveellsin asingle columnForexample,f this stringisfoundin
column6, startingatrow 12andendingat rown' + 12,thenP occursin T when itsupper
left corneris at position(6,12). Phasdwo canbeimplementedn 0(»' +m)= O(n+m)
time by applyingany lineartime exact matchinglgorithmto each columrof M.

This givesan O(n + m) time solution to the two-dimensionalexact set matching
problem.Notethesimilarity betweerthis solutionandthe solutionto the exactmatching
problemwith wild cards discusseid the previousection.A distinctionwill bediscussed
in the exercises.

Now suppose that theows of P arenotall distinct. Then,first find all identicalrows
andgive themacommonlabel (thisis easilydoneduringtheconstructiorof thekeyword
treefor the rowpatterns) Forexamplejf rows3, 6, and10 arethesamethen we mighgive
them allthelabelof 3. Wedoasimilarthingfor anyotherrowsthatareidentical. Thenin
phaseone,only lookfor occurrencesf row 3, andnot rows6 and 10. Thisensureghata
cellof M will haveat mostonenumberwrittenin it during phasel. In phase2, don't look
for thestringl, 2, 3,..., n"in thecolumns ofM, butratherfor astring where3 replace
and 10gtc. It is easy toverify thatthis approaclis correct andhatit takesjust O(n ¥ m)
time. Insummary,

Theorem3.5.2. If T andP arerectangularpicturesith mandn cells,respectively, then
allexactoccurrencesf P in T canbefound in O(n+ m) time,improving upon the naive
method,which takesO(nm) time.

3.7. EXERCISES 67

3.7. Exercises

Evaluate empirically the speed of the Boyer-Moore method against the Apostolic+
Giancarlo method under different assumptions about the text and the pattern. These as-
sumptions should include the size of the alphabet, the "randomness" of the text or pattern,
the level of periodicity of the text or pattern, etc.

. In the Apostolico—Giancarlo method, array M is of size m, which may be large. Show how

to modify the method so that it runs in the same time, but in place of M uses an array of
size n.

In the Apostolico—Giancarlc method, it may be better to compare the characters first and
then examine M and N if the two characters match. Evaluate this idea both theoretically
and empirically.

In the Apostolico—Giancarlo method, M(;} is set to be a number less than or equal to the
lengthof the (right-to-left) match of Pand T starting at position jof T. Find examples where
the algorithm sets the value to be strictly less than the length of the match. Now, since the
algorithm learns the exact location of the mismatchin all cases, M(;) could always be set
to the full length of the match, and this would seem to be a good thing to do. Argue that this
change would resultin a correct simulationof Boyer—Moore. Then explain why this was not
done in the algorithm.

Hint: tt's the time bound.

5. Prove Lemma 3.2.2 showing the equivalence of the two definitions of semiperiodic strings.
6. For each of the n prefixes of P, we want to know whether the prefix P[I..i] is a periodic

10.

11

12.

13.

string. That is, for each 1 we want to know the largest k > 1 (if there is one) such that
P[I..i} can be written as a* for some string a. Of course, we also want to know the period.
Show how to determine this for all n prefixes in time linear in the length of P,

Hint: Z-algorithm.

. Solve the same problem as above but modified to determine whether each prefix is

semiperiodic and with what period. Again, the time should be linear.

. By being more careful in the bookkeeping, establish the constant in the O(m) bound from

Cole's linear-time analysis of the Boyer—Moore algorithm.

. Show where Cole's worst-case bound breaks down if only the weak Boyer—-Moore shift

rule is used. Can the argument be fixed, or is the linear time bound simply untrue when
only the weak rule is used? Consider the example of T = abababababababababab and
P = xaaaaaaaaa without also using the bad character rule.

Similar to what was donein Section 1.5, showthat applying the classical Knuth-Morris-Pratt
preprocessingmethodto the string P$T gives a linear-time method to find all occurrence of
Pin T. In fact, the search part of the Knuth-Morris-Pratt algorithm (alter the preprocessing
of P is finished) can be viewed as a slightly optimized version of the Knuth-Morris-Pratt
preprocessing algorithm applied to the T part of P$T. Make this precise, and quantify the
utility of the optimization.

Using the assumption that P is substringfree (i.e., that no pattern P, € P is a substring of
another pattern P, € P), complete the correctness proof of the Aho—Corasick algorithm.
That is, prove that if no further matches are possible at a node v, then / can be set to

¢ — Ip(v} and the comparisons resumed at node n, without missing any occurrencesin T
of patterns from P.

Prove that the search phase of the Aho—Corasick algorithmruns in O(m) time if no pattern
in P is a proper substring of another, and otherwise in O(m+ k) time, where k is the total
number of occurrences.

The Aho—Corasick algorithm can have the same problem that the Knuth-Morris-Pratt algorithm

EXACT MATCHING: A DEEPERLOOK AT CLASSICAL METHODS

Ly
-~

Figure 3.19: Directedgraphfor the regularexpressiorid+ o+ g)((n + o)w)*(c + | +e}(c +).

aykkpqppvdtpds astring specifiedby R. Tospecify.S, thesubexpression (p+q) of R was
repeatedour times, andheemptystring € wasthe choicespecifiedby the subexpression
(tzte.

It is very usefulto represent aegularexpression Ry a directedgraphG(R) (usually
called anondeterministic, finite state automaton)An exampleis shownin Figure3.19.
The graphhasa start nodes anda termination nodet, andeachedgeis labeled witha
singlesymbol from £ U €. Each s to tpathin G(R) specifies atring by concatenating
the character®f C that label the edgesof the path. The setof strings specifiedby all
suchpathgs exactlythe setof strings specifiedby theregularexpression®. The rulesfor
constructingG(R) from R aresimpleandareleft asanexerciselt is easy tashow that
if a regulaexpressionR hasn symbols, therG(R} can beconstructed using at ma2h
edgesThedetailsareleft asanexercise andanbefoundin [10] and[8].

Definition A substring T' of string T matcheghe regular expressioR if thereis an
s tot pathin G(R) thatspecifiesT".

Searching formatches

To search for a substring T that matches theegular expressioR, wefirst considerthe
simpler problenof determining whethersome(unspecifiedprefix of T matches RLet
N(0) bethe setof nodesconsistingof nodes plus all nodesof G(R) thatarereachable
from nodes by traversingedgedabelede. In general, a nodeisin setN(i), fori > 0, if
v canbereachedrom somenodein N(i — 1) by traversinganedgelabeledT (i) followed
by zeroor moreedges labeled. Thisgivesa constructiveule for finding setN (i) from
setN(i — 1) andcharactef (i). It easilyfollows by inductiononi thatanodev isin N(i)
if andonly if there is pathn G(R) from sthatendsatv andgenerateshestring T[1..i].
Therefore prefix T[I ..i} matchesR if andonly if N (i) containsnodet.

Given the abovediscussion, tdind all prefixesof T that match Rgomputethe sets
N(i) for i from 0 tom, the lengthof T. If G(R) containse edges, then the tinfer this
algorithm is O(me), wherem is the length of the texstring T. The reason is that each
iterationi [finding N (i) from N(i — 1) andcharactef (i)} canbeimplemented to run in
O(e) time (seeExercise 29).

To searchfor a nonprefix substring of T that matchesR, simply searchfor a prefix
of T that matcheshe regularexpressionC*R. C* representany numberof repetitions
(including zero)f anycharactein . With thisdetail, we now have thdollowing:

Theorem 3.6.1. If T is d lengthm, andthe regularexpressionR containsn symbols,
thenit ispossibleto determine whether T contains a substringmatchingR in O(nm) time.

27.

28.

29.

30.

31

32.

33.

3. EXERCISES 69

(i, j— i T 1). Then declare that P occurs in T with upper left corner in any cell whose
counter becomes n- (the number of rows of P). Does this work?

Hint: No.
Why not? Can you fix it and make it runin O(n+ m) time?

Suppose we have q > 1 small (distinct) rectangular pictures and we want to find all oc-
currences of any of the g small picturesin a larger rectangular picture. Let n be the total
number of points in all the small pictures and m be the number of points in the large
picture. Discuss how to solve this problem efficiently. As a simplification, suppose all the
small pictures have the same width. Then show that O(n+ m) time suffices.

Show how to construct the required directed graph G{ R) from a regular expression R. The
construction should have the property that if A contains n symbols, then G{ A) contains at
most O(n) edges.

Since the directed graph G({A) contains O(n) edges when R contains n symbols, | N(i)| =
O(n) for any i.This suggests that the set N(/) can be naively found from N(i— 1) and T(/)
in O(ne) time. However, the time stated in the text for this task is O(e). Explain how this
reduction of time is achieved. Explain that the improvementis trivial if G(R) containsno
edges.

Explain the importance, or the utility, of € edges in the graph G(A). If Rdoes not contain
the closure symbol“*", can € edges aiways be avoided? Biological strings are always finite,
hence “*” can always be avoided. Explain how this simplifies the searching algorithm.

Wild cards can clearly be encoded into aregular expression, as definedin the text. However,
it may be more efficient to modify the definition of a regular expression to explicitly include
the wild card symbol. Develop that idea and explain how wild cards can be efficiently
handled by an extension of the regular expression pattern matching algorithm.

PROSITE patterns often specify the number of times that a substring can repeat as a
finite range of numbers. For example, CD(2—4) indicates that CD can repeat either two,
three, or four times. The formal definition of a regular expression does not include such
concise range specifications, but finite range specifications can be expressed in a regular
expression. Explain how. How much do those specifications increase the length of the
expression over the length of the more concise PROSITE expression? Show how such
range specificationsare reflected in the directed graph for the regular expression (¢ edges
are permitted). Show that one can stilt search for a substring of T that matches the regular
expressionin OQ(me) time, where rn is the length of T and e is the number of edges in the
graph.

Theorem 3.6.1 states the time bound for determiningif T containsa substring that matches
aregularexpression R. Extendthe discussionand the theoremto cover the task of explicitly
finding and outputting all such matches. State the time bound as the sum of a term that is
independent of the number of matches plus a term that depends on that number.

68

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

EXACT MATCHING: A DEEPER LOOK AT CLASSICAL METHODS

has when it only uses sp values rather than sp’ values. This is shown, for example, in
Figure 3.16 where the edge below the character a in potatois directed to the character a
in tattoo. A better failure function would avoid this situation. Give the details for computing
such an improved failure function.

Give an example showing that k, the number of occurrencesin T of patternsin set P, can
grow faster than O(n+ m).Be sure you account for the input size n. Try to make the growth
as large as possible.

Prove Lemmas 3.4.2 and 3.4.3 that relate to the case of patterns that are not substring
free.

The time analysis in the proof of Theorem 3.4.1 separately considers the path in C for
each pattern Pin 7. This resultsin an overcount of the time actually used by the algorithm.

Performthe analysis more carefully to relate the running time of the algorithm to the number
of nodesin X.

Discuss the problem (and soiution if you see one) of using the Aho—Corasick algorithm
when a, wild cards are permitted in the text but not in the pattern and b. when wild cards
are permitted in both the text and pattern.

Since the nonlinear time behavior of the wild card algorithm is due to duplicate copies of
stringsin P ,and such duplicates can be found and removed in linear time, it is tempting to
“fix up" the method by first removing duplicates from 7. That approach is similar to what is
done in the two-dimensional string matching probiem when identical rows were first found
and given a single label. Consider this approach and try to use it to obtain a linear-time
method for the wild card problem. Does it work, and if not what are the problems?

Show how to modify the wild card method by replacing array C (which is of length m > n)
by a list of length n, while keeping the same running time.

In the wild card problem we first assumed that no pattern in P is a substring of another
one, and then we extended the algorithm to the case when that assumption does not hold.
Could we instead simply reduce the case when substrings of patterns are atiowed to the
case when they are not? For example, perhaps we just add a new symbol to the end of
each string in P that appears nowhere else in the patterns. Does it work? Consider both
correctness and complexity issues.

Suppose that the wild card can match any length substring, rather than just a single char-
acter. What can you say about exact matching with these kinds of wild cards in the pattern,
in the text, or in both?

Another approach to handling wild cards in the pattern is to modify the Knuth-Morris-Pratt
or Boyer—Moore algorithms, that is, to develop shift rules and preprocessing methods that
can handle wild cards in the pattern. Does this approach seem promising? Try it, and
discuss the problems (and solutions if you see them).

Give a complete proof of the correctness and O(n+ m)time bound for the two-dimensionat
matching method described in the text (Section 3.5.3).

Suppose in the two-dimensionalmatching problem that Knuth-Morris-Prattis used once for
each patternin P ,rather than Aho—Ceorasick being used. What time bound would result?

Show how to extend the two-dimensional matching method to the case when the bottom of
the rectangular pattern is not parallel to the bottom of the large picture, but the orientation
of the two bottoms is known. What happens if the patternis not rectangular?

Perhaps we can omit phase two of the two-dimensional matching method as follows: Keep
a counter at each cell of the large picture. When we find that row i of the small picture
occursin row j of the large picture starting at position (i’,), increment the counter for cell

4.2. THE SHIFT-AND METHOD

oOorRr P OROO
PR orRrOOLR

1 0
Figure 4.1: Column j — 1 before and after operation Bit-Shift{j — 1).

4.2.1.How to constructarray M

Array M is constructeccolumn by column adollows: Column oneof M is initialized to
all zero entriesf T(1) # P(1). OtherwisewhenT(l) = P(l) itsfirstentryis 1andthe
remaining entries ai@ After that, the entriekor columnj > 1are obtainedrom column
j —landtheU vectorfor charactefT (). In particular,thevectorfor column j is obtained
by thebitwise AND of vectorBit-Shift(j — 1) with theU vectorfor characteiT (j). More
formally, if we let M(j) denote thejth columnof M, then M (j) = Bir-Shift(j — 1) AND
U(T(j)). Forexamplejf P =abaacandT = xabxabaaxahenthe eighthcolumnof M is

ol Sl el

0

becauseprefixes of P of lengthsone and threeend at position seven ofl . The eighth
charactemnf T ischaractea, which hasa U vectorof

O PR o

Whentheeighthcolumnof M is shifted down andén AN Dis performedwith U (a), the
resultis

o= O O P

which is the correctninth columnof M.

To seein generalwhy the Shift-And methodproduceghecorrectarrayentriesobserve
thatfor anyi > | thearrayentryfor cell (i, j) shouldbe 1if and onlyif thefirsti — 1
characterof 2 matchthei — | characterof T endingatcharacterj — 1 andcharacter
P(i) matches characteéf(j). The first condition is true whenthe array entry for cell
(I =1,j = 1)is 1, and thesecond conditions truewhen theith bitof theU vector for
characterT (j) is 1. By first shifting columnj — 1, thealgorithm ANDs togetherentry

(i — 1, j — 1) of columnj — 1 with entryi of the vectorU(T (j}). Hencethe algorithm
computeghe correct entriekor array M.

4

Seminumerical StringMatching

.

4.1. Arithmetic versus comparisorbasedmethods

All of the exact matchinghethodsn the firstthreechaptersaswell asmostof themethods
that have yet tbediscussedh this book are examplesf comparisorbasednethods. The
main primitiveoperationin eachof those methods the comparison ofwo characters.
Thereare, however string matchingmethodsbasedon tf operationsor on arithmeric,
ratherthan charactecomparisons. Thesmethodsthereforehavea very differentflavor
than thecomparisorbasedapproachesgventhoughone can sometimes seeharacter
comparison$iddenatthe innerevel of these“seminumerical” methodsWe will discuss
threeexamples ofthis approach:the Shift-And methodand its extension ta program
called agrep to handleinexactmatching; theuseof the Fast FouriefTransformin string
matching; andherandomfingerprintmethodof Karp and Rabin.

4.2. The Shift-And method

R. BaezaYates ands. Gonnet[35] devised asimple,bit-orientedmethod that solvethe
exactmatchingproblemvery efficiently for relatively smallpatterngthelength ofa typical
Englishwordfor example) Theycall this methodheSkift-Or method butit seemanore
naturalto call it Shift And. RecallthatpatternP is of sizer and the text" is of sizem.

Definition Let M beanr by m+ 1 binaryvalued arraywith indexi running from1to
n andindex j running from| tom.Entry M (i, j)is | if andonly if the firsti charactersf
P exactlymatchthei charactersf T endingatcharacterj. Otherwise thentryis zero.

In otherwords, M(i,) is 1if andonly if P[1..i} exactly matchesT[j — i F 1..jl.
For example,if T = california and P = for, then M(1,5) = M(2.6) = M(3,7) = I,
whereasM (i, j) = Ofor all othercombinations of, j. Essentially, thentrieswith value
lin rowi of M showall the placesn T whereacopyof P[I..i] ends, ancdolumn j of
M showsall the prefixesof P thatend atposition j of T.

Clearly,M(n, j) = | if andonly if anoccurrenceof P ends aposition j of T; hence
computingthe last row of M solvesthe exactmatching problemFor the algorithmto
computeM it first constructs am-length binary vector U (x) for each character of the
alphabetU(x) is setto 1 for the positionsin P where character appearsForexample,
if P=abacdealbhentU(a) = 10100010.

Definition DefineBit-Shift(j — 1) asthevectorderivedby shifting the vectofor column
j — 1 down by one positionandsettingthatfirst to |. The previousbit in position»

disappeardn otherwords,Bit-Shift(j — 1) consistof 1 followed by thefirst n — | bits
of columnj — 1.

Forexample Figure4.1showsacolumnj — 1 beforeandafterthe bit-shift.

4.3. THE MATCH -COUNT PROBLEM AND FAST FOURIER TRANSFORM 73

zerocolumnof eacharrayis againinitialized to all zerosThenthe jth column of M' is
computedoy:

M'(j) = M"'(j) OR [Bir-Shif(M'(j — 1)) AND U(T(jn] ORM'™'(j - 1).

Intuitively, this just says thathe first i characterof P will match a substringof T

ending at positiony, with at most/ mismatchesif and onlyif oneof thefollowing three
conditionshold:

e Thefirsti character®f P matcha substringof T ending atj, with at most! — 1 mis-
matches.

e Thefirsti — 1 characterof P matcha substringof T ending atj — 1, with at most!/
mismatches, anthe next pairof charactersn PandT are equal.

e Thefirsti — 1 character®f P matchasubstringof T ending atj — 1, with atmost/ — 1
mismatches.

It is simpleto establish thatheserecurrencesirecorrect,and ovetheentire algorithm
thenumberof bit operationss O(knm). Asin the Shift-And methodthe practical efficiency
comes fronthe factthatthevectorsatebit vectors(againof lengthn) and the operations
are verysimple- shifting byonepositionandANDing bit vectors.Thuswhenthe pattern
is relatively small,sothata columnof any M' fits into afew words, andk is also small,
agrepis extremelyfast.

4.3. The match-count problem and Fast Fourier Transform

If we relaxthe requirementhatonly bit operationsare permitted andallow eachentry
of array M to hold an integerbetween0 andn, then we caneasily adapthe Shift-And

methodto computefor eachpair i, j the numberof charactersof P[1..i] that match
T[j—i F1../]. This computatioris againaform of inexactmatching.which isthefocus
of Partlll. However,as wastrue of agrep,the solutionis so connectedo the Shift-And

methodthatwe considerit here.In addition,it is a naturalintroductionto thenexttopic,

matchcounts.For clarity, let usdefinea newmatrix MC.

Definition The matrix MC is an n by m + 1 integervalued matrix, where entry
MCUi, j)is the numbebf charactersf P[1..i} that matchr [j —i F 1..j].

A simplealgorithmto computematrixMC generalizes th8hift-And method replacing
the AND operationwith the incrementby one operation.The zerocolumn of MC starts
with all zeros, but each/C(i, j) entry now issetto MC(i — 1, — 1)if PU) # T(j),
andotherwiseit is setto MC(i — 1, — 1)t 1. Any entry withvaluen in the lastrow
againindicatesan occurrencef P in T, but valueslessthann counttheexact number
of characterghat matchfor eachof different alignmentof P with T. This extension
uses®(nm) additions anccomparisonsalthougheachaddition operations particularly
simple,justincrementingby one.

If wewantto computetheentireMC array ther®(nm) time is necessary, buhe most
importantinformationis containedn the lastrow of MC. For eachpositionj = n in
T, thelastrow indicatesthe numberof characterghat matchwhentheright endof P is
aligned withcharacterj of T. The problemof finding thelastrow of MC is called the
match-count problem.Match-countsare usefulin severalproblemsto be discussedater.

72 SEMINUMERICAL STRING MATCHING

4.2.2. Shift-And is effectivefor small patterns

Although the Shift-And methodis very simple,and in worstcasethe numberof bit oper
ations isclearly ®(mn), the methods very efficientif » is lessthanthe sizeof asingle
computerword. In that casegvery column of M andevery U vector canbe encoded
into a singlecomputerword, and boththe Bit-Shift and theAND operationcanbedone
assingleword operationsThesearevery fast operationsn most computerandcanbe
specifiedin languagesuchasC. Evenif n is severaltimesthe size ofasinglecomputer
word, only a few woraperationsareneededFurthermore, only two columnsof M are
needed aanygiventime.Columnj only depend®ncolumnj—1,soall previous columns
canbeforgotten. Hencefor reasonablesizedpatternssuchassingleEnglish wordsthe
Shift-And methodis very efficient in both timeand spaceregardlesof the sizeof the
text. Froma purely theoretical standpoiittis nota lineartime method, but it certainlys
practicaland would behe methodf choicein manycircumstances.

4.2.3. agrep:The Shift-And method with errors

S.Wu andU. Manber[482] deviseda method, packaged int® program calleégrep,
that amplifiesthe Shift-And methodby finding inexactoccurrence®f a patterrin a text.
By inexactwe mean that theatterneither occursexactlyin the text or occurswith a
"small’ numberof mismatche®r insertedor deletedcharacterskorexample, thg@attern
atcgaaoccursin thetextaatatccacaa with two mismatchestartingat positionfour; it
also occursvith four mismatchestarting atpositiontwo. In this sectionve will explain
agrepandhowit handles mismatche$hecaseof permittedinsertions and deletionsill
be left asanexercise For a small numberof errorsand forsmall patternsagrepis very
efficient and canbe usedin the coreof more elaboratéext searching methods. Inexact
matchingis the focusof Partlll, but the ideas behindgreparesoclosely relatedto the
ShifttAndmethod thait is appropriateto examineagrepat this point.

Definition For two strings P and T of lengthsr andm, let M* be a binaryvalued

array,whereM*(i, j)is 1 if andonly if at leasi — k of the firsti charactersf P match
thei characteraip through charactey of T.

Thatis, M*(i, j)isthe natural extensioof thedefinition of A/ (i, j)toallow uptok mis-
matches. Thereforgf is thearrayM usedin the Shift-And method.If M*(n, j)= 1then
thereis anoccurrenceof Pin T endingat position j thatcontainsat mostk mismatches.
We let M*(j) denotethe jth column of M*.

In agrep,the userchoosesa valueof k andthenthe arraysM, M', M2, ..., M* are
computed.The efficiency of the methoddependson the sizeof k - the largerk is, the

slowerthemethod.For many applicationsavalueof k assmallas3or 4 is sufficient,and
the methodis extremely fast.

4.2.4. How to compute M*

Letk bethe fixedmaximumpermittednumberof mismatchespecifiedby the user.The
methodwill computeM’ for all valuesof ! between0 andk. There areseveral wayso
organizethe computatiorandits description put for simplicity we will computecolumn
j of eacharray M' beforeanycolumns pasf wiil becomputedin any arrayFurther, for
every j we will compute columrj in arraysM' in increasing ordeof /. In particular, the

4.3. THE MATCH-COUNT PROBLEMAND FAST FOURIERTRANSFORM 75

The high-levelapproach

We breakup thematchcountprobleminto four problemspne foreach characten the
alphabet.

Definition Define V,{(e, B, i) to be thenumberof matchesof character-a that occur
whenthe startof stringa is positioned opposite positiarof string 8. V,{(«,) is the
(n * m)-length vectoholding these values.

Similar definitionsapplyfor theotherthreecharactersWith these definitions,
Via, B, i) = Vala, B, i) + Vile, B, i) + Ve, B, i) + Vila, B, 1)

and
Via, B) = Vala, B) + Vi(a, B) + V(a, B) + V;(a, B).

The problem thenbecomeshow to computeV,(«, B, i) for eachi. Convert thetwo
stringsinto binary stringsy, andj,, respectivelywhereeveryoccurrencef charactem
becomes 4, andall other charactersecomdls. Forexampleet a beacaacggaggtat and
B be accacgaag. Thenthe binarystringsa, and 8, are101100010001@Gnd 10010Q.10.
To computeV,(a, 8. i), position B, to startat positioni of &, andcount thenumberof
columns wheréothbits areequalto 1. Forexamplejf i = 3thenwe get

1011000100010
10010110

andtheV,(a,f, 3) = 2. If i = 9thenwe have

1011000100010
10010110

andV (o, 5,9)= 1.

Anotherway to view this isto considereach spaceppositea bitto be a0 (soboth
binarystringsarethe same lengthjjoabitwise AND operation withthestrings, andhen
addtheresulting bits.

Toformalize thisidea,padtheright endof B (thelargerstring) with n additional zeros
and padthe right endof @ with m additionalzeros.The two resultingstrings thereach
havelengthn+ m. Also, forconveniencerenumber théndicesof bothstringsto runfrom
Oton+m— 1. Then

j=n+m—1
Vale, i)=Y da(j) x Bali + j),
j=0

where theindicesin the expressionare taken modulon + m. The extrazerosare there
to handlethe caseswhenthe left endof a is to the leftend of 8 and,conversely,when
theright end ofa is to theright endof 8. Enough zeros were padded thatwhen the
right endof ais right of theright end of 8, thecorrespondindits in thepaddedy, areall
oppositezeros Henceno" illegitimate wraparoundof aandp is possible, and,(«, 8, i)
is correctlycomputed.

Sofar, all we havedoneis to recode the match-count problem,and this recoding
doesn'tsuggestway tocomputeV,(a, 8) moreefficiently thanbeforethe binarycoding
and paddingThisis where correlatiorandthe FFT comein.

SEMINUMERICAL STRING MATCHING

4.3.1. A fast worst-casamethodfor the match-count problem?

Cananyof the lineartime exact matchingnethodsliscussedh earlierchapters be adapted
to solvethe matchcountproblem inlinear time?That isanopenquestionThe extension
of the Ship-And methoddiscussedbovesolvesthe matchcountproblem butusesd(nm)
arithmetic operations all cases.

Surprisingly,the matchcount problentanbesolvedwith only O(mlogm) arithmetic
operationsf we allow multiplication anddivision of complexnumbers.The numbers
remainsmall enoughto permit the unitime modelof computation (thats, no number
requiresmore than O(log m) bits), but the operationsare still more complex than just
incrementingby one.The O(m log m) methodis basedon the FasrFourier Transform
(FFT). Thisapproachwasdevelopedy FischerandPatersor{157] andindependentlyn
thebiological literatureby FelsensteinSawyer,andKochin {152]. Other workthat builds
on this approachis found in {3], [58], [59], and[99]. We will reducethe matchcount
problemto aproblem thatanbeefficiently solvedby the FFT, butwe treatthe FFT itself
asablackbox andleaveit to anyinterestedreaderto learnthe detailof theFFT.

4.3.2. Using Fast Fourier Transformfor match-counts

The matchcount problemis essentially thabf finding the last row of the matrix MC.
Howeverwe will not work onMC directly, but rathemwewill solvea morggeneraproblem
whosesolution containghe desiredinformation. For this moregeneralproblemthe two
stringsinvolved will bedenotedx and S ratherthan P and T, since theroles ofthe two
stringswill becompletelysymmetric.We still assumehowever, thafe| = n < m = ||.

Definition Define V(a, 8. i) to be thenumberof charactersf « and 8 that match
whentheleft endof stringe is oppositeposition: of string 8. DefineV («, 8) to be the
vectorwhosei th entryis V(e, 8, i).

Clearly,whena = P andg = T thevectorV(«, B) containstheinformation needed
for thelastrow of MC. Butit containsmoreinformationbecausave allow theleft end of
a to be totheleft of theleft endof 8, andwe alsoallow the rightend of a to be to the
right of therightendof 8. Negativenumbers specifypositionsto theleft of the leftendof
B, andpositivenumbers specifgheother positionsForexample whena is alignedwith
B asfollows,

21123456789
B: accctgtcc
A: aactgccg

thentheleft endof ais alignedwith position—2 of 8.

Index i rangesfrom —» * 1 to m. Notice thatwheni > m — n, theright endof « is
right of theright end of 8. Foranyfixed i, V(«, 8, i) can bedirectly computedin O(n)
time (for any , just directlycountthe numberof resulting matches andnismatches)so
V(a, B) canbe computedn O(nm) total time.

We now show how tocomputeV{(a, 8) in O(mlogm) total time by using the Fast
Fourier TransformFor mostproblemsof interestiogm < n, sothis technique yields
largespeedupFurther, theres specializedhardware foFFT thatis very fast,suggesting
a way to solve theseproblems quicklywith hardware The solution will work for any
alphabetput it is easiestto explain iton a smallalphabetFor concreteness wase the
four-letter alphabed, t, c,g of DNA.

44. KARP-RABIN FINGERPRINTMETHODS FOR EXACTMATCH 77

wherefor eachcharacterx, V. («, 8, 1) is computedby replacing eaclwild card with
charactex. In summary,

Theorem 4.3.1. The matchcountproblemcan besolvedin O(mlogs) time evenif an
unboundechumberd wild cardsareallowedin either Por T.

Later,afterdiscussinguffix treesandcommon ancestorse will presenin Sectior9.3
a different, morecomparisorbased approach to handling wild catldatappeain both
strings.

4.4. Karp -Rabin fingerprint methods for exactmatch

The ShiftAnd methodassumes thatve can efficiently shift a vectorof bits, and the

generalized Sh{#And methodassumedhat we can efficiently incrementan integerby

one.If we treata (row) bit vectorasan integer number thexleft shift by one bit results
in thedoublingof the numbefassumingio bitsfall off theleft end).Soit is not much of
an extension to assume additionto being ablgo increment amteger, thatve can also
efficiently multiply anintegerby two. With that added primitive operation vean turn

theexactmatch problenfagain withoutmismatchesinto an arithmetic problenT.hefirst

result will bea simple lineastime method thahasa very small probabilityof making an

error.That methodwill thenbetransformednto onethatnevermakesan errorput whose
running time is only expected twe linear. We will explain these resultasinga binary

string P anda binarytext T. Thatis, the alphabeis first assumedo bejust {0, 1}. The

extensiono largeralphabets ismmediateandwill beleft to thereader.

4.4.1. Arithmetic replaces comparisons

Definition Foratextstring T, let T denotethe n-lengthsubstringof T startingat
character. Usually,n is known by contextand7* will bereplacedoy 7.

Definition Forthe binarypatternP ,let

i=n

H(P) = 22"-",0(;').

i=l

Similarly, let
H(T,)=Y 2'T(r+i- 1.
i=1

Thatis, considerP to bean n-bit binary number Similarly, conside;" to beann-bit
binary numberFor examplejf P = 0101 thenn = 4andH(P) =2’ x 0+ 2 x 1+
2! x0+2°x 1=5;if T=101~01016,= 4,andr = 2, thenH(T,) = 6.

Clearly,if thereis anoccurrenceof P startingat positionr of T then H(P) = H(T,).
However the converseés alsotrue,so

Theorem 4.4.1. Thereis an occurrenced P startingatpositionr o T if andonly if
H(P)= H(T).

SEMINUMERICAL STRINGMATCHING

Cyclic correlation

Definition LetX andY betwo z-lengthvectorswith real numbecomponents indexed
from 0 to z — 1. Thecyclic correlation of X andY is an z-lengthreal vectorW (i) =
Zj.:f)"" X(j) x Y(+ j),wheretheindicesin theexpressiomretakenmoduloz.

Clearly, the problemf computingvectorV,(«a, g) is exactlytheproblemof computing
the cyclic correlationf padded stringa@, and3,. In detail, X = &,, Y = B,,z=n+m,
andW = V,(a, B).

Now analgorithm basednly onthedefinition of cyclic correlation would requir®(z?)
operationssoagainno progressis apparentBut cyclic correlation isa classicproblem
knownto be solvable inO(z logz) time using the Fast Fouri@kansform. (The FFT is
more often associated witheconvalutianproblem fortwo vectorsputcyclic correlation
andconvolutionarevery similar. Infact, cyclic correlation is solvelly reversingoneof
the inputvectorsand thercomputingthe convolutiorof thetwo resultingvectors.)

The FFT method,and its usein the solution of the cycliccorrelation problemis
beyondthe scopeof this book, but thekey is that it solveghecyclic correlationproblem
in O(zlogz) arithmeticoperationsfor two vectors eaclof lengthz. Henceit solvesthe
matchcountproblemusing only O (mm logm) arithmetic operations hisis surprisingly
efficient and a definite improvement ovethe ®(nm) bound givenby the generalized
Shift-And approach. However, tHe=T requires operations over compleMmbersaandso
eacharithmeticstepis moreinvolved (andperhaps more costly) tham the moredirect
Shift-And method.’

Handling wild cardsin match-counts

Recall thewild carddiscussionbegunin Section3.5.2, wherethe wild card symbok
matchesany othersingle character. For examplé,« = ag¢¢ctpa andB = agctctgt,
thenV(a. B. 1) = 7 (i.e., all positionsare counted asmatchexcept theast). How dowe
incorporatehese wildcard symbols intahe FFT approach computingnatchcountsaf
thewild cards only occuin oneof thetwo strings, say8, thenthesolutionis very direct.
WhencomputingV,(«a, 8, i) for every positioni and charactext, simply replace eacwild
cardsymbolin 8 with the characteix. This works becausdor anyfixed startingpointi
andany position j in g8, the jth position will contributea 1 to V. («, 8, i) for at most one
charactek, dependingpn what characteis in positioni + j — 1 of a(i.e., what character
in ais opposite thg positionin g).

Butif wild cardsoccurin botha andg, then this direct approaatill not work.If two
wild cards are oppositach othewhena startsat positioni, thenV, («, 8. 1) would be
too large, sincéhosetwo symbolswill becountedasamatchwhencomputingV,(a, 8, i)
foreachx = a,t, ¢, andg.Soif for afixedi there ar& placeswheretwo wild cardsline
up, thenthecomputed} _, V.(«, B.i) will be3k largerthanthe correctV(«, 8, i) value.
How canwe avoidthis overcount?

Theanswer igo find whatk is and thercorrectthe overcountThe ideas to treatp as
areal character, amtbmputeVy(a, B8, i) for eachi. Then

Via, B.i) =) Vila, B, i) — 3V, B,),
#FP

! A related approac|$8] attempts to solvéhe matchcount problemin O(m logm) integer(noncomplex) operations
by implementing thé"FT overalfinite field. In practice. thisspproachs probablysuperiorto the approactbasedn
complexnumbersalthoughin termsof pure complexity theory theclaimedO(m logm)boundis notcompletely
kosher becausi¢ usesa precomputed tablef numberghat is only adequatdor values ofm up to a certain Size.

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 79

Forexamplejf P = 10111landp = 7,thenH(P) = 47 andH,(P) = 47 mod7 = 5.
Moreover,this canbe computedasfollows:

I1x2mod7+0=2
2x2mod7+1=5
Sx2mod7+1=4
4x2mod7+1=2
2x2mod7+1=5
5mod7=>5.

Thepointof Homer's rulds not only that thenumberof multiplications andadditions
requiredis linear, but thatthe intermediate numbers are alwayeept small.

Intermediate numbersarealsokeptsmallwhencomputingH,(7,) for any r, sincethat
computatiorcanbeorganizedthe way thatH,(P) was.However,even greateefficiency
ispossibleForr > 1, H,(T,) canbecomputedrom H,(T,_;) with only asmallconstant
number of operations§ince

Hp(T,) = H(T,) mod p
and
H(T,) =2x H(T,_1) _2’Tr -)T T(r+n-1),
it follows that
Hy(T,) = [(2 x H(T,—1) mod p) — (2" modp) x T(r — D+ T(r +n - 1)] modp.
Further,
2" modp =2 x 2" modp) modp.

Therefore eachsuccessivgpowerof two taken modp andeach successive valug,(7,)
canbecomputedn constanttime.

Prime moduli limit false matches

Clearly, if Poccursin T startingat positionr thenH,(P) = H,(7,), butnow theconverse
doesnot hold for every p. That is, we cannotnecessarilyconcludethat P occursin T
startingatr just becaused,(P) = H,(T,).

Definition I H,(P)= H,(T,) but P doesnotoccurin T startingat positionr. then
we saythereis a falsematchbetweenP and T at positionr. If thereis some positionr
suchthatthereis afalse match betweeR andT atr, then we sayhereis a faise match
betweenP andT.

The goal will be to choosea modulusp small enoughthat the arithmetic is kept
efficient, yetlargeenoughthat the probability of a falsematchbetweenP andT is kept
small. The key comes fromchoosingp to be a prime numberin the properrangeand
exploiting propertieof prime numbers.We will statethe needed propertiesf prime
numberswithout proof.

Definition Fora positiveintegeru, () is the numberof primes that are less than
equalto u.

Thefollowing theorem's a variant ofthe famousprimenumber theorem.

Theorem4.4.2. & < w(u) < 1.265:%, whereln(u) is the basee logarithmof 4 [383].

78 SEMINUMERICAL STRING MATCHING

Theproof, whichwe leaveto the reader,is animmediateconsequence ahe factthat
everyintegercan be writtenin a uniqueway asthe sumof positivepowersof two.

Theoremd.4.1convertgheexactmatch probleninto a numerical problemgomparing
thetwo numberdH(P) and H(T;) ratherthandirectly comparingcharactersBut unless
the patternis fairly small, thecomputationof H(P)andH(7,) will not be efficient.' The
problemis that the required power®f two usedin the definition of H(F) and H(T})
grow large too rapidly. (From thestandpoint of complexityheory,the useof such large
numbersviolatesthe unit-time randomaccessmachine(RAM) model. In that model,
the largestllowed numbersmustbe representeth O[log(n + m)] bits, but the number
2" requiresn bits. Thusthe required number@e exponentiallytoo large.) Evenworse,
when thealphabeis not binary but say hast charactersthennumbersaslargeas:” are
needed.

In 1987 R.Karp and M. Rabin {266] publisheda method (devise@lmostten years
earlier),called therandomizedingerprint method,that preserveghe spirit of theabove
numericalapproachputthatis extremelyefficientaswell, usingnumberghat satisfythe
RAM model.It isarandomized method whetkeonly f partof Theorem4.4.1 continues
to hold, buttheif part doesnot. Instead theif part will hold with high probability.Thisis
explained indetailin the nextsection.

4.4.2. Fingerprints of P and T

Thegeneraideais that,insteadof working with numbers akargeasH(P) andH(T,), we
will work with thosenumbers reducehoduloa relatively smallntegerp. Thearithmetic
will thenbedone omumbers requiringnly a smallnumberof bits,andsowill beefficient.
But thereally attractivefeatureof this methods a proofthat the probabilityof errorcan
be made smalif p is chosen randomly ia certain rangeThefollowing definitionsand
lemmasmake this precise.

Definition Forapositiveintegerp, H,(P) isdefinedasH (£) mod p.Thatis H,(P) is
theremainder of () afterdivision by p.Similarly, H,(7,) is definedas #(7,) mod p.
ThenumbersH,(P) and H,(T,) arecalled fingerprints of P andT,.

Already, the utilityof usingfingerprintsshould be apparentBy reducing H(P) and
H(T,)y moduloanumberp, everyfingerprint remainsn theranged to p— 1, sothesizeof
afingerprintdoesnot violatethe RAM model.But if H{P) and H(T,) mustbecomputed
beforethey canbe reducedmodulo p, then wehavethe sameproblem of intermediate
numbersthat are too large. Fortunately, modular arithmetic allows oneetluceat any
time (i.e., one cameverreduce too much), dbatthefollowing generalizatiorof Horner’s
rule holds:

Lemmad.4.1. H,(P) = [[...({[P(1)x2 mod p+ P(2)] x2 mod p+P(3)} x 2 mod p+
P(4))...] mod p+ P(n)} mod p,and nmumbereverexceeds 2 p duringthecomputation
of H,(P).

Z Onecanmore efficientlycomputeH (T,+1} from H(T;) thanby following the detinition directly (and we will need
that lateron). butthetimeto do the updatess nottheissue here.

4.4. KARP-RABIN FINGERPRINT METHODS FOR EXACT MATCH 81

Randomfingerprint algorithm

1. Choosea positive integel (to be discusseth moredetail below).

2. Randomlypick a prime number lesthanor equal to |, and computeH,(P). (Efficient
randomized algorithmaxistfor finding randomprimes[331].)
3. Foreach positior in T, computeH,(T,) andtest toseeif it equalsi,(P). If the numbers

areequal, then either declaeeprobablematchor check explicitlythat P occursin T
starting at that position

Giventhe factthateach#,(T,) canbecomputedin constantime from H,(7,..,), the
fingerprint algorithmrunsin O(m) time, excludingany time used toexplicitly checka
declarednatch.lt may,howeverpereasonabl@otto botherexplicitly checking declared
matchesdependingnthe probabilityof anerror.We will returnto theissueof checking
later.For now, tofully analyze theprobabilityof error,we have toanswerthequestionof
what/ should be.

How to choosel

Theutility of thefingerprintmethoddepend®nfinding agoodvaluefor I. As | increases,
the probabilityof a false matchbetweenP and T decreasedyut the allowedsizeof p
increasesincreasingthe effort neededto compute H,(P) and H,(7,). Is there agood
balanceThereareseveralgoodwaysto choosel dependingonn andm. Onechoiceis to
take/ = nm?. With thatchoicethelargest number used in taggorithmrequiresat most
4(logn + logm) bits, satisfyingthe RAM model requirementhat the numbersbe kept
smallasafunctionof thesizeof theinput. But, whabf the probability of a false match?

Corollary 4.4.2. Whenl = nm?, the probability ofafalsematchis at most2

m

PROOF By Theorem4.4.3and the prime number theorenfTheorem4.4.2), the pro
bability of afalsematchis boundedoy

r{nm) < 1.26£i_n_in(nmz) 1 1 []n(n) +2ln(m)] - 2.53- -
a(nm?) nm? In(nm) m | In(n) + In(m) m

A small examplefrom [266] illustrates thisbound.Taken = 250,m = 4000,and
hencel = 4 x 10° < 2%. Thenthe probability of a false matchis at most£2 < 107>
Thus,with justa32-bit fingerprint, forany P and7 the probability that everasingle one
of thealgorithm's declarations wrongis boundedby 0.001.

Alternately,if I = n'm thenthe probability of a falsematchis O(1/r), andsinceit
takesO(n) time todeterminewhethera matchis false or real, theexpectedverification
time would be constantThe resultwould be an O(n:) expected time methodthat never
hasa falsematch.

Extensions

If oneprimeis good,why notuseseveral?Vhy notpickk primesp,, pa. ..., p randomly
andcomputek fingerprints?Forany positionr, therecanbe an occurrencef P starting
atr only if H,(P)= H,(T,) for everyoneof thek selectedprimes.We now define a
false matchbetweenP and 7" to meanthat theres an » suchthat P doesnotoccurin T

startingatr, but H,.(P)= H,,(7,) for eachof thek primes. Whanow is the probability
of afalsematch betweer? and T? Oneboundis fairly immediateandintuitive.

80 SEMINUMERICAL STRING MATCHING

Lemmad44.2. |fu > 29,thenthe productofall the primesthatare lessthan or equalto
u'§ greater thar2" [383).

Forexamplefor u = 29the prime numberdessthanorequal to29are2. 5, 7, 11, 13,
17,19, 23, and29.Their productis 2,156,564,410 where2?® is 536,870,912.

Corollary 4.4.1.If u > 29andx isany numberessthanorequalto 2, thenx has fewer
than=z(«) (distinct) prime divisors.

PROOF Supposex doeshavek > m(u) distinct primedivisorsgq,, gz, ..., qx- Then
2' 2 x = q192...9; (thefirst inequality is from the statemenbf the corollary, and the
secondfrom thefact that someprimes inthe factorizationof X may be repeated)But
g19:z - . . g IS at leastslargeasthe product ofthesmallestk primes,whichis greaterthan
theproductof the firstz (1) primes (byassumption that > s (x)). However,the product
of theprimesless thamrequal ta: isgreater thad (by Lemma4.4.2).Sotheassumption

thatk > m(u) leadsto thecontradiction tha2' > 2%, andthelemmais proved. O

The central theorem
Now we arereadyfor the centraltheoremof the Karp—Rabin approach.

Theorem4.4.3. Let P and T beanystrings suchthat nm > 29, wheren andm are the
lengthsd P and T, respectively. Let beany positiveinteger If p 5 a randomly chosen

prime numberessthan or equal to |, thenthe probability of a falsematchbetweerP and

T is lessthan orequalto 22
()

PROOF Let R be the setof positionsin T where P doesnot begin.Thatis,s € R if
and onlyif P doesnotoccur inT beginning as.Foreachs € R, H(P) # H(T;). Now
consider theproductIl;cz (| H(P)Y — H(T,)|). Thatproductmustbe at mos2"” since for
anys, H(P) — H(T,) < 2' (recall thatwe haveassumed binary alphabet).Applying
Corollary 4.4.1, T,z (|H(P) — H(T;}]) has atmostm (nm) distinct prime divisors.

Now supposea false matchbetween P and T occurs assomepositionr of 7. That
meansthat H(Py modp = H(T,) modp and thatp evenly divides H(P) — H(T,).
Trivially then. p evenly divides I,z (| H(P) — H(T;)|), and sop is one of the prime
divisorsof that product|f p allows a falsematchto occurbetweenP andT, thenp must
beoneof asetof at mostz (rm) numbers. Butp was chosemandomlyfrom asetof z (/)

numberssotheprobability thatp isaprimethatallowsa falsematchbetween? andT isat

wi{nm)
most T2 [

Notice that Theorem4.4.3 holds for any choiceof patternP and textT such that
nm > 29.The probability in the theoremis not takenover choice®f P and T but rather
overchoice®f prime p.Thus,this theorendoesnot makeany(questionablejissumptions
aboutP or T being randonor generatedy a Markovprocessetc. It worksfor any P and
T! Moreover,thetheoremdoesn't jusbound the probabilitghata false matchoccursat
a fixed positionr, it boundsthe probability that there isevena singlesuchpositionr in
T. It is alsonotable thatthe analysisin the proof of the theorem feelSweak™. Thatis, it
only develops very weakpropertyof a prime p that allows dalse match, namelybeing
oneof at mostz (nm) numbersthatdivide Iz (| H(P)— H{(T,)|). Thissuggestshatthe
true probability of afalsematchoccurring betweer® and T is muchlessthanthe bound
establishedn thetheorem*

Theoremd.4.3 leadsto thefollowing random fingerprinalgorithmfor finding all oc-
currence®f Pin T.

4A. KARP-RABIN FINGERPR.INTMETHODS'FOREXACT MATCH 83

allows numeroudalse matchega demonseed)Theorem4.4.3 saysnothing abouthow
bad aparticularprimecanbe.But by pickinga new prime aftereacherroris detectedwe
canapply Corollary4.4.2 to eachprime, establishing

Theorem4.4.6. If a new prime is randomly choserufter the detectionof an error; then
for any patternand text the probability oft errorsis at most(%l)‘.

This probabilityfalls sorapidly that one is effectivelyprotectedagainsta long series
of errorson any particular probleminstance.For additional probabilisticanalysis ofthe
Karp—Rabinmethod,see[182].

Checkingfor error in linear time

All the variantof the Karp—Rabin method presented abohwave the propertyhatthey

find all true occurrence®f P in T, but they may alsofind false matches- locations
where P is declaredto be inT, even though its not there.If onechecksor P ateach
declared locationthis checkingwould seem to requir@(nm) worstcasetime, although
the expectedtime canbe madesmaller.We presentherean Q(m)-time method, noted
first by S. Muthukrishnan [336], that determined any of thedeclared locationarefalse

matchesThatis, the methodeitherverifies that thearp—Rabinalgorithmhas foundno

falsematches oit declares thathereis atleastonefalsematch(but it may notbe able to
find all the falsematches) inO(m) time.

ThemethodsrelatedoGalil's extensiomf the BoyerMoore algorithm(SectiorB.2.2),
butthereademeednothaveread that sectiorConsiden list £ of (starting) locations ifT
where theKarp—RabinalgorithmdeclaresP to befound. A run is a maximal intervabf
consecutivestarting locations,14;, ...,/ in £ suchthatevery twosuccessiveiumbers
in the intervaldiffer by at mostn/2 (i.e., l;; — ; < n/2). The method works oeachrun
separatelysowe first discusshow to check for falsematchesn asinglerun.

In a singlerun, themethodexplicitly checksfor the occurrenceof P at the firsttwo
positionsin therun, !, and!,. If P doesnot occurin both of thoselocations then the
methodhasfounda false matclandstops.Otherwise when P doesoccur at both; and
I, the methodlearns thatP is semiperiodionith periodl, — [; (seeLemma3.2.3). We
used to referto/, — {;, andwe showthatd is the smallestperiodof P.If d is not the
smallest periodthend mustbe a multipleof the smallestperiod, sayd'. (This follows
easilyfrom the GCD Theorem, which istatedin Section16.17.1) (page431). But that
implies that therels anoccurrenceof P startingat position!, + d' < d,, andsince the
Karp—Rabin methochever missesany occurrenceof F, that contradictshe choiceof /;
asthe seconaccurrenceof Pin theinterval betweer!, andl, Sod mustbethesmallest
periodof P ,andit follows that if thereareno falsematchesn therun, thenl;,, — ; = d
for eachi in therun. Hence,asa first check, the methoderifies that/;;, — {; = d for
eachi; it declaresa false match and stogsthis checkfails for somei. Otherwiseasin
the Galil method,to checkeachlocationin £, it sufficesto successivelgheckthe last?
charactersn eachdeclaredoccurrence ofP against the lasd character®f P. Thatis,
for position/;, the methodthecksthed characters of" startingat position; +n — d . If
any of thesesuccessivehecksfinds a mismatchthenthe methodhas found dalsematch
in the runandstops.Otherwise,P doesin fact occur starting ateachdeclaredlocation
in therun.

For the timeanalysis,notefirst that no characterof T is examined more thatwice
during a checkof a single run.Moreover, sincdwo runs are separated byt leastn/2
positions and eactunis atleastn positions longno characteof T canbe examinedn

82 SEMINUMERICAL STRING MATCHING

Theorem4.4.4. Whenk primesarechosenrandomlybetweerll and I andk fingerprints

areused, the@robabilityd afalse matchbetween P andT is atmost[”;'(';';’]"

PROOF Wesawin the proof of Theoremd.4.3thatif pisa primethatallows H,(P) =
H,(T,) atsomepositionr where P doesnot occurthenpisin asetof at mostz(nm)
integers. WhekR fingerprintsareused, dalsematchcanoccuronly if eachof thek primes
isin thatset, and since therimesare chosemandomly(independently), theoundfrom
Theorem 4.4.Joldsfor eachof the primes.Sothe probability thatall the primesarein
theset isboundedby [Z%7521%, andthe theorenis proved. o

As an exampleif k = 4 andn,m, and | areasin the previousexample,then the
probability of afalse match betweeR andT is at mostoy 10-!*. Thus, theprobability of
afalsematchis reduceddramatically from 103 to 10-'2, while thecomputationaéffort
of usingfour primes onlyincreasesy four times. For typicalaluesof n andm, a small
choiceof k will assure thathe probability of anerrordueto a false matcls lessthan the
probability oferrordueto a hardwaremalfunction.

Even lower limits on error

Theanalysisin the proof of Theoremd.4.4 is againvery weakbecause ijust multiplies
the probability thateachof thek primesallowsa falsematch somewher@ T. However,
for the algorithmto actuallymake an erroat somespecificpositionr, eachof the primes
mustsimultaneously allow &alse match athesamer. Thisis anevenlesslikely event.
With thisobservationwe can reducéhe probability of a falsematchas follows:

Theorem4.4.5. Whenk primesarechosenrandomlybetweeriland/ andkfingerprints

areused,theprobabilityd afalse matctbetweenP andT isatmostm[X7 1%,

PROOF Supposehat afalse matcloccursatsomefixed positionr. Thatmeanghat each
prime p; must evenlydivide |H(P) — H(T,)|. Since|H(P) — H(T;)| < 2", there are
at mostmw(n) primesthatdivide it. Soeachp; waschosenrandomlyfrom a setof = (/)
primesandby chance igartof asubsebf #(n) primes.The probability of this happening
atthat fixedr |stherefore[’“’”]" Sincetherearem possiblechoicedor r, the probability
of a false matclh)etweenP andT (i.e., the probability thatthereis suchanr) is atmost

m[Z5 1, and thetheoremis proved. O

Assuming,asbefore, thal = nm?, alittle arithmetic(which we leave tothe reader)
shows

Corollary 4.4.3.Whenk primes are choserandomlyandusedin the fingerprint alge
rithm, the probability ofa false match betweeP and Tis at most(1.26)*m~*-b(1+
0.6Inm)-.

Applying thisto the runningexampleof n = 250,m = 4000, and k= 4 reduceghe
probability of afalsematchto at most 2x 10722,

We mentiononefurtherrefinementiscussedn [266]. Returningto thecasewhereonly
a singleprimeis used,supposehe algorithmexplicitly checksthat P occursin T when
H,(P) = H,(T), andit finds thatP doesnotoccurthere. Theronemay be betteroff by
picking a new prime tousefor the continuationof thecomputationThis makesintuitive
sense. Theorem4.3 randomizes ovethe choice ofprimesandboundsthe probability
that arandomly pickedprime will allow afalse match anywhere iif . Butoncethe prime
hasbeenshownto allow afalse matchit is no longerandom. Itmaywell bea primethat

10.

12.

4.5. EXERCISES

specificationsbe efficiently handled with the Shift -And method or agrep? The answer partly
depends on the number of such specifications that appear in the expression.

(Open problem) Devise a purely comparison-based method to compute match-counts in
O(mlogm) time. Perhaps one can examine the FFT method in detail to see if complex

arithmetic can be replaced with character comparisons in the case ¢f computing match-
counts.

Complete the proof of Corollary 4.4.3.

The random fingerprintapproach can be extendedto the two-dimensionalpattern matching
problem discussedin Section 3.5.3. Do it.

Complete the details and analysis to convert the Karp—Rabin method froma Monte-Carl*
style randomized algorithm to a Las Vegas-style randomized algorithm.

There are improvements possible in the method to check for false matches in the Karp—
Rabin method. For example, the method can find in O{m) time all those runs containing
no false matches. Explain how. Also, at some point, the method needs to explicitly check
for Pat only /y and not ;. Explain when and why.

84 SEMINUMERICAL STRINGMATCHING

morethantwo consecutive rundt follows thatthetotal time forthe method, oveall runs,
is O(m).

With theability tocheckfor falsematchesn O(m) time, theKarp—Rabin algorithmcan
beconvertedrom a methodwith asmallprobability of errorthatrunsin ©(m) worstcase
time, to one thatmakesno error, but runsin O(m) expected time (a conversionfrom a
Monte Carlo algorithmto a Las Vegasalgorithm). To achieve thissimply (re)run and
(re)check the Karp-Rabin algorithmuntil no false matcheare detectedWe leavethe
detailsasanexercise.

4.4.3. Why fingerprints?

The Karp—Rabinfingerprint methodrunsin linear worstcasetime, butwith a nonzero
(thoughextremelysmall) chanceof error. Alternatively, it can bethoughtof asa method
that nevemakesanerrorandwhoseexpectedunning timeis linear. Incontrast, wehave
seen severahethodghatrun inlinearworstcasetime andnevermakeerrors.Sowhatis
the point of studyingthe Karp—Rabin method?

Therearethreeresponseso thisquestion. Firstirom apracticalstandpointthemethod
is simple and caibeextended to othgsroblemssuch agwo-dimensionalpatternmatch
ing with odd patternshapes- a problemthatis moredifficult for othermethodsSecond,
the methods accompaniedy concreteproofs, establishingignificant propertiesof the
method's performanceMethodssimilar in spirit to fingerprints (or filters) predatethe
Karp—Rabinmethod,but, unlikethe Karp—Rabinmethod theygenerallylackanytheoret
icalanalysisLittle hasbeenproven aboutheir performanceBut the main attractiors that
the methods basedon very differentideas thanthelineartime methods thaguarantee
no error. Thusthe methodis includedbecause centralgoal of this bookis to present
diversecollectionof ideasusedin a rangeof techniques, algorithmsand proofs.

4.5. Exercises

1. Evaluate empirically the Shift-And method against methods discussed earlier. Vary the
sizesof Pand T.

2. Extend the agrep method to solve the problem of finding an "occurrence” of a pattern P
inside a text T, when a small number of insertions and deletions of characters, as well as
mismatches, are allowed. That is, characters can be inserted into P and characters can
be deleted trom P.

3. Adapt ShiftAndandagrep to handle a set of patterns. Can you do better than just handling
each patternin the set independentty?

4. Prove the correctness of the agrep method.

5. Show how to efficiently handle wild cards (both in the pattern and the text) in the ShiftAnd
approach. Do the same for agrep. Show that the efficiency of neither method is affected
by the number of wild cards in the strings.

6. Extend the Shift-Andmethod to efficiently handle regular expressions that do not use the
Kleene closure. Do the same for agrep. Explain the utility of these extensions to collections
of biosequence patterns such as those in PROSITE.

7. We mentionedin Exercise 32 of Chapter 3 that PROSITE patterns often specify a range for
the number of times that a subpattern repeats. Ranges of this type can be easily handled
by the O{nmy) regular expression pattern matching method of Section 3.6. Can such range

PART 11

Suffix Treesand Their Uses.

S

Introduction to Suffix Trees

A suffix tree isadatastructurethatexposesheinternal structuref a stringin a deepeway
thandoesthefundamental preprocessing discusse8ectionl.3. Suffix trees catbe used
to solve theexactmatchingproblemin linear time (achieving theameworstcasebound
that theKnuth-Morris-Pratt andtheBoyer-Moorealgorithmsachieve)puttheir realvirtue
comedrom their usein lineartime solutionsto manystring problems more complex than
exactmatching. Moreovetaswe will detail in Chapter9), suffix trees providea bridge
betweerexactmatching problemghefocusof Partl, andinexact matching problems that
are thefocusof Partlil.

The classi@pplication forsuffix trees ighesubstringproblemOneis first givenatext
T of lengthm. After O(m), or linear, preprocessing timenemustbe preparedo takein
any unknownstring S of lengthn andin O(n) time eitherfind anoccurrencef S in T
or determinethat S is not containedin T. Thatis, the allowed preprocessing takes time
proportional tahelengthof the text, butthereafter, theearch fotS mustbedonein time
proportionalto thelengthof S,independentf thelengthof T. Theseboundsareachieved
with the useof a suffix tree.The suffix treefor the text is builin O(m) time duringa
preprocessing stage; thereaftehenevera string of length O(n) is input, thealgorithm
searchesor it in O(n) time usingthatsuffix tree.

The O(m) preprocessing and(n) searchresultfor the substring problem igery
surprisingand extremely usefulln typical applications, dong sequencef requested
stringswill be inputafterthe suffix tree is builtsothelinear time bound foeachsearch
is important. Thatbound isnot achievableby the Knuth-Moms-Prattor Boye~Moore
methods- thosemethods woulgreprocesgachrequestedtring oninput,and thertake
®(m) (worstcase)time to searchfor the string in the text.Because nmay be huge
comparedo n, thosealgorithmswould beimpracticalon anybut trivial-sized texts.

Oftenthe text isafixed setof strings,for example, aollectionof STSs or ESTs (see
Sections 3.5.5nd7.10), sothat the substringroblemis to determine whether the input
string isa substringof any of the fixed strings.Suffix trees work nicelyto efficiently
solve thisproblemaswell. Superficially, thiscaseof multiple text stringgesembleshe
dictionary problem discussed the contextof the Aho-Corasick algorithmThusit is
natural toexpectthatthe Aho—Corasick algorithmcould be applied.However,the Aho—
Corasick method doe®tsolvethe substringrroblemin thedesiredime bounds, because
it will only determinef the new strings afull stringin thedictionary,not whether itis a
substringof a stringin thedictionary.

After presenting the algorithmseveralapplicationsandextensionsill be discussed
in Chapter7. Thena remarkableesult,the constant-timéeast commonancesror method,
will be presentedn Chapter8. That method greatly amplifies the utilityf suffix trees,
aswill beillustratedby additionalapplications inChapter9. Someof thoseapplications
providea bridgeto inexactmatching;moreapplicationsof suffix trees willbe discussed
in PartIll, wherethefocus ison inexact matching.

89

5.3. A MOTIVATING EXAMPLE

X a bx ac
—® |

Figure 5.1: Suffix tree for string xabxac. The node labels uand w on the two interior nodes will be used
later.

of anothersuffix of S thenno suffix treeobeying theabovedefinition is possiblesince
the pathfor the firstsuffix would notendat a leaf. For example,if the lastcharacteof
xabxacis removed creatingstring xabxa,then suffixxa is a prefix of suffix xabxa,so
the pathspellingoutxa would notendat aleaf.

To avoidthisproblem,we assumgaswastrue in Figure5.1) that thelastcharacteof
Sappearsiowhereelsein S.Then, nosuffix of the resulting string cabe a prefix of any
othersuffix. To achieve this irpractice,we canadda charactetto theendof Sthatis not
in the alphabetthat string S is taken from.n this book we use$ for the " terminatior’
characterWhenit is importantto emphasizehe fact that this termination charactethas
beenadded,we will write it explicitly asin S$.Much of thetime, however, thiseminder
will not be necessargnd,unless explicitly stated otherwiseyery stringS is assumedo
be extended witlthetermination symbol$, evenif the symbois notexplicitly shown.

A suffix treeis relatedto the keywordree (without backpointersyonsideredn Sec
tion 3.4.Givenstring S, if set” is definedto be them suffixes ofS,thenthe suffix tree
for Scanbe obtainedrom the keywordtreefor 7 by merging any patlf nonbranching
nodes intcasingle edgeThesimplealgorithm givenin Section3.4for building keyword
trees couldbe used toconstructa suffix treefor Sin Q@m?) time, rather tharhe O(m)
boundwe will establish.

Definition The labelof a path from theroot thatendsatanodeis theconcatenation,
in order,of the substringkabelingtheedgesf that pathThe path-label of anudeis the
labelof thepath fromthe rootof 7 to thatnode.

Definition Forany nodev in a suffix tree, thestring-depth of v is the numberof
charactersn v’s label.

Definition A paththatendsin the middleof anedge(u, v) splitsthelabelon (u, v) at
adesignated poinDefine the labelof sucha pathasthelabel of « concatenated with
the charactersnedge(u, v) downto thedesignatedplit point.

Forexamplejn Figure 5.1stringxa labels the internalodew (sonodew haspathlabel
xa), stringa labels nodel, andstring xabx labelsa paththatendsinsideedgé w, 1), that
is, inside the leakdge touchindeaf 1.

3 A motivating example

Before diving into thedetailsof the methods to construct suffixees, let'slook at how
asuffix treefor a stringis usedto solvethe exactmatch problemGiven apattern? of

90 INTRODUCTIONTO SUFFIX TREES

5.1. A short history

Thefirst lineartime algorithm forconstructingsuffix treeswas givenby Weiner{473] in
1973,althoughhecalled histree apositiontree. A differentmorespace efficienalgorithm
to build suffix treesin lineartime wasgiven by McCreight [318] a fewyearslater. More
recently, Ukkonen{438] developeda conceptuallydifferent lineartime algorithm for
building suffix treesthat hasall the advantage®f McCreight's algorithm (and when
properly viewedcan be seenasa variant of McCreight's algorithmjut allowsa much
simplerexplanation.

Although more thantwenty years hav@assed since Weinergiginal result (which
Knuth is claimedto havecalled " thealgorithmof 1973 [24)), suffix treeshavenot made
it into themainstreanof computescienceeducation, anthey havegenerallyreceivedess
attentionand use thamight have beeaxpectedThisis probably because theo original
papersof the 1970s hava reputationfor beingextremelydifficult to understand. That
reputationswelldeservedutunfortunatepecaus¢healgorithmsalthough nontrivialare
nomorecomplicatedthanaremanywidely taughimethods And, whenmplementedvell,
the algorithmsrepracticalandallow efficient solutiongo manycomplexstring problems.
Weknow of noothersingledatastructure (othethanthoseessentiallyequivalento suffix
trees)that allowsefficientsolutionsto sucha wide rangeof complexstringproblems.

Chapter6 fully developsthelinear-time algorithms ofUkkonenandWeinerandthen
briefly mentions the highevel organizationof McCreight'salgorithm andts relationship
to Ukkonen's algorithmOur approachis to introduceeach algorithm ag high level,
giving simple jnefficient implementations. Thosenplementations arthenincrementally
improvedto achievelinear running times. We believe thathe expositionsind analyses
given hereparticularlyfor Weiner'salgorithm,are muchsimplerandclearerthan in the
original papersand wehope that these expositionssultin a wideruse ofsuffix treesin
practice.

5.2. Basicdefinitions

When describindhow to build a suffix tree for an arbitrary string, we willrefer to the

generic stringS of lengthm. Wedo not use P or T (denotingpatternandtext) because
suffix treesare usedin a wide rangeof applicationswhere the input string sometimes
plays therole ofa patternsometimesa text,sometimesoth, andsometimeseither. As
usualthealphabeisassumed finiteandknown. After discussingsuffix treealgorithms for

asinglestringS,we will generalizethe suffix treeto handlesetsof strings.

Definition A suffix tree 7 for an m-charactestring S is a rooteddirected tree with
exactlym leavesnumberedl to m. Eachinternal node, othethanthe root,hasat least
two children andeach edges labeledwith a nonempty substringf S. No twoedges
out of anodecanhaveedgelabelsbeginning with thesamecharacterThe key feature
of thesuffix treeis thatfor anyleaf i, the concatenatioof theedgelabelson the path

from the rootto leafi exactlyspellsout the suffix of S thatstarts at positioni. Thatis,

it spells outS{i..m}.

Forexample, the suffix trefor the string xabxats shownin Figure5.1. Thepath from
theroot to theleaf numberedl spellsout the full string§ = xabxac,while the pathto
theleaf numbered spellsout the suffixac, which startsn position5 of S.

As stated above, thdefinition of a suffix treefor S doesnotguarantee thaa suffix
treefor anystring Sactuallyexists.The problemis thatif onesuffix of S matchesa prefix

54. A NAIVE ALGORITHM TOBUILD A SUFFIX TREE 93

is proportionako the numbeof edgedraversedsothe timefor thetraversalis O(k), even
though the totastring-depthof thoseO(k) edgesmaybearbitrarily larger thark.

If only asingle occurrencef P is required, andhe preprocessings extendeda bit,
then thesearchtime canbe reducedfrom O(n + K) to O(n) time. Theideais to write
ateachnodeonenumber (saythesmallest)of aleaf in its subtree. Thiscanbe achieved
in O(m) time in the preprocessingtageby a depthfirst traversal of T . The detailsare
straightforwardand are lefto thereader. Thenin thesearch stagehenumberwritten on
the nodeator belowthe endof the matchgivesone starting positioof Pin T.

In Section7.2.1 we will againconsiderthe relativeadvantage®f methodsthat pre
process the textersusmethodsthat preprocesghe pattern(s). Later,in Section7.8, we
will alsoshow howto usea suffix treeto solvethe exacmatching problenusing O(n)
preprocessingand G(m) searchtime, achievingthe sameboundsasin the algorithms
presented ifPartl.

5.4. A naivealgorithm to build a suffix tree

To further solidify the definitionof a suffix treeand develop the readeristuition, we
present straightforwaralgorithmto build asuffix treefor stringS.This naivemethodfirst
enters a singledge forsuffix S[1..m]}$ (theentirestring)into the tree; theiit successively
enterssuffix S[i..m]$ into thegrowingtree fori increasingrom 2tom. Welet N; denote
theintermediate treethatencodes all theuffixesfrom 1 toi.

In detail, treelV, consistof asingle edgdetween theootof the tree and keaflabeled
1. The edgas labeledwith the string S$.Tree N.., is constructedrom N; asfollows:
Startingat theroot of N; find the longespathfrom the rootwhoselabel matches grefix
of Sli + 1..m]$. This pathis found by successively comparingnd matchingcharacters
in suffix S[i + 1..m]$ to characterslonga uniquepathfrom theroot, until no further
matches ar@ossible The matchingpathis uniquebecauseno two edgesout of a node
canhavelabels that beginvith the samecharacter. Asomepoint, no further matcheare
possiblebecausano suffix of $$ is a prefixof any othersuffix of S$. Whenthat pointis
reached, thalgorithmis eitherat a node,w say,or it is in the middleof anedge.If it is
in themiddleof an edge(u, v) say,thenit breaks edgéu, v) into two edgedy inserting
anew node,called w, just after thelast characteon the edgethat matched aharacter
in St 1..m) and justbefore thefirst characteon theedgethat mismatchedThe new
edge(u, w) is labeled withthe part ofthe (u, v) label thatmatchedwith S[i* 1..m], and
the newedge(w, v) is labeled withthe remainingpartof the (u, v) label.Then (whether
anewnodew was createdr whetheronealreadyexistedat the point where the match
ended), thalgorithmcreates a newdge (w, t 1) runningfrom w to a newleaf labeled
i + 1,andit labelsthe newedgewith the unmatchedart of suffixS[i+ 1..m}$.

The tree nowcontainsa unique pathfrom theroot to leafi + 1, andthis pathhas the
label S{i + 1..m)$. Note that alledgesout of the new nodew havelabelsthat beginwith
different firstcharactersandsoit follows inductively thathotwoedgesutof anodehave
labelswith the samefirst character.

Assumingasusual, ooundedsizealphabetthe above naivenethodtakes0 (m?) time
to build a suffix treefor the string Sof lengthm.

92 INTRODUCTION TO SUFFIX TREES

4

7

Figure 5.2: Three occurrences of aw in awyawxawxz. Their starting positions number the leaves in the
subtree of the node with path -label aw.

lengthn anda text T of lengthm, find all occurrencesf Pin T in O(n+ m) time. We
havealreadyseerseveral solution$o this problem.Suffix trees provide another approach:

Build a suffix tre€7 for text T in O(m) time.Then,matchthecharacteref P along
theuniquepathin 7" until either P is exhauste@r no morematches are possiblin
the lattercase,P doesnot appearanywheren T.In the former casegveryleaf in
thesubtree belowthe point of thelast matchis numberedwith a starting locatiorof
Pin T, andeverystarting locatiorof P in T numberssuch aleaf.

Thekeyto understandingheformercasgwhenall of P matches gathin T) istonote
that P occursin T starting atposition if andonly if P occursas aprefixof T'{;..m]. But
thathappensf and onlyif string P labels aninitial partof the pathfrom the rootto leaf
j. ltis theinitial paththatwill befollowed by the matchingalgorithm.

The matchingpathis uniquebecause ntwo edgesout of a commonnodecan have
edgelabels beginningvith the samecharacter And, becausave haveassumed finite
alphabetthework ateach nodéakesconstant timendsothetime to match P to a path
is proportionalto thelength of P.

Forexample, Figur®.2showsafragment of theuffix treeforstringT =awyawxawxz.
Pattern P = aw appears thregémesin T startingatlocationst, 4, and7.PatternP matches
a pathdownto the point shownby anarrow, andasrequired,the leave$elow that point
arenumbered, 4, and?7.

If Pfully matchesomepathin thetree,thealgorithm carfind all thestartingpositions
of Pin T by traversingthesubtree below theendof thematchingpath,collectingposition
numbers writterattheleavesAll occurrencesf Pin T canthereforebefoundin O(n+m)
time. This is the sameoveralltime bound achievetdy several algorithmsonsideredn
Partl, butthedistributionof work is different. Thoseearlier algorithmspendQ(n) time
for preprocessing® and thenO{(m) timefor thesearchln contrastthe suffixtreeapproach
spendsO(m) preprocessing timand thenO(n + k) searchtime, wherek is the number
of occurrencesf Pin T.

To collect thek starting positions oP, traverse thaubtree at the endof the matching
pathusing anylineartime traversal (deptfirst say), and notethe leaf numbers encoun
tered.Sinceeveryinternal node hast least two children, theumberf leavesncountered

6.1. UKKONEN'S LINEAR-TIME SUFFIX TREEALGORITHM 95

xa bxa $

Figure 6.2: Implicit suffix tree for string xabxa.

string S$ if andonly if atleastoneof the suffixesof § is a prefixof anothersuffix. The
terminalsymbol$ wasaddedto theendof S preciselyto avoidthis situation However,if
S ends witha character thaappearsiowhereelsein S, thentheimplicit suffix treeof S
will have a leafor eachsuffix andwill hencebea truesuffix tree.

As anexample considerthesuffix treefor stringxabxa$ shownin Figure6.1. Suffix
xa is aprefix of suffix xabxa,andsimilarly thestringa is a prefix of abxa.Therefore,
in the suffixtreefor xabxa the edgedeadingto leaves4 and5 arelabeledonly with $.
Removingtheseedges creates twoodes withonly onechild each,and theseare then
removedaswell. Theresultingimplicit suffix treefor xabxais shown inFigure6.2.As
anotherexample, Figuré.1 on page 91 showa treebuilt for the string xabxac.Since
charactec appear®nly at theendof thestring, the treein thatfigureis both asuffix tree
andanimplicit suffix treefor thestring.

Even thoughanimplicit suffix treemay nothavea leaffor eachsuffix, it does encodall
thesuffixesof S — eachsuffix is spelledoutby thecharacter&n somepathfrom theroot of
theimplicit suffix tree.However if thepathdoesnotendataleaf, therewill benomarker
to indicatethe path'send. Thusimplicit suffix trees,on their own, aresomewhatless
informative thantrue suffix treesWe will use themjustas a tool inUkkonen's algorithm
tofinally obtainthe true suffix treefor S.

6.1.2. Ukkonen's algorithm at a high level

Ukkonen’s algorithm constructsan implicit suffix tree Z; for each prefix S[l..i] of S,
startingfrom Z, and incrementing by oneuntil Z,, is built. The true suffix treefor §
is constructedrom Z,,, and the timdor the entire algorithmis O(m). We will explain

6

Linear-Time Construction of Suffix Trees

We will present two method®r constructingsuffix treesin detail, Ukkonen's method
and Weiner's method. Weinems thefirst to show thatuffix treescan be builtin linear
time, andhis methods presentedbothfor its historical importancendfor somedifferent
technicalideas thatt contains.However,Ukkonen'smethodis equallyfast and usefar
lessspacdi.e., memory)in practicethan Weiner'snethod.Hence Ukkonen is theethod
of choicefor most problemsequiringthe constructionof a suffix tree. We alsobelieve
that Ukkonen's method easierto understandTherefore,it will be presentedirst. A
reademnwho wishego study onlyonemethodis advisedto concentrat@nit. However,our
developmenotf Weiner'smethod doesotdependnunderstanding Ukkonen's algorithm,
andthetwo algorithms can be reatdependentlywith onesmall sharedectionnotedin
the descriptiorof Weiner's method).

6.1. Ukkonen's linear-time suffix tree algorithm

EskoUkkonen(438] deviseda lineartimealgorithm forconstructingasuffix tree thamay
betheconceptuallyeasiest lineatimeconstructioralgorithm.This algorithmhas apace-
savingmprovemenbverWeiner'salgorithm (whichwasachievedirstin thedevelopment
of McCreight’s algorithm),andit hasa certain™ on-line™ property that maye usefulin
somesituations We will describethaton-line propertybut emphasize thaéhe mainvirtue
of Ukkonen's algorithm is theimplicity of its description,proof, and time analysis.
Thesimplicity comesbecausehe algorithm canbe developedasa simple buinefficient
methodfollowed by " commonsensg implementationricks thatestablisha bettemworst

caserunning timeWe believethatthis lessdirectexpositionis moreunderstandablegs
eachstepis simpleto grasp.

6.1.1. Implicit suffix trees

Ukkonen'salgorithm constructs asequencef it suffix trees, thdast of which is
convertedto a truesuffix treeof thestring S.

Definition An implicit suffix treefor stringSis atree obtained frorthe suffixtree for
§$ by removingeverycopy of the terminal symbol$ from theedgelabelsof the tree,
then removingany edgethat has ndabel, andthen removingany node that doesnot
haveatleasttwo children.

An implicit suffix treefor aprefix S{1..i] of S is similarly definedoy taking thesuffix
treefor S[1..i)$ anddeleting$ symbols, edgesndnodes aabove.

Definition We denotetheimplicit suffix treeof the stringS{i..i} by Z;, for i from 1
tom.

Theimplicit suffix treefor any string S will have feweteaveshan the suffix treefor
94

& Eendw L

6.1. UKKONEN'S LINEAR-TIME SUFFIX TREEALGORITHM 97

Figure 6.4. Extended implicit suffix tree after the addition of character b.

As anexampleconsider the implicisuffix tree for S= axabx shownin Figure6.3.
Thefirst four suffixesendat leavesbutthesingle charactesuffix x endsinsideanedge.
When a sixth charactert is added tothe string, the first four suffixesget extendedby

applicationsof Rule 1, thefifth suffix getsextendedby rule 2,andthe sixthby rule 3. The
resultis shownin Figure6.4.

6.1.3. Implementationand speedup

Using thesuffix extensionrules given abovegncethe endof a suffix 8 of S[1..i] has
beenfoundin the currentree,only constant times neededo executeheextensiorrules
(to ensurethat suffix 8S(i + 1) isin thetree).Thekey issuein implementingUkkonen's
algorithmthenis howto locate theends of all the + 1 suffixes ofS[1..i].

Naively we couldfind the end ofanysuffix 8 in O(}81) time by walking from the root
of thecurrenttree.By thatapproachextensionj of phase + 1 would takeO(i+ 1 - j)
time, Z;;, could be createdfrom Z; in O(i?) time, and Z,, could be createih 0(m?3)
time. This algorithm may seem rathefoolish sincewe alreadyknow a straightforward
algorithmto build a suffix treein 0(m?) time (and anotheis discussed in thexercises),
butit is easiernto describe Ukkonen'®) (m) algorithm asa speedujf the 0(m?3) method
above.

Wewill reducetheabove0(m?3) time boundo O(m) time with afew observationsind
implementation tricksEach trickby itself looks like asensibleheuristicto accelerate the
algorithm, but acting individually these trickdo not necessarily reduce theorstcase

96 LINEAR-TIME CONSTRUCTIONOFSUFFIXTREES

Ukkonen's algorithnby first presentingan 0(m®)-time methodto build all treesZ; and
then optimizingts implementationto obtainthe claimedtime bound.

High-level description ofUkkonen's algorithm

Ukkonen's algorithnis divided into m phaseslin phase + 1, treeZ;,, is constructed
fromZ;. Each phas'e+ 1is further divided intd + 1 extensionsynefor eachof thei 1
suffixesof S{1..i +1]. In extension;j of phasd T 1, thealgorithmfirst finds theendof the
pathfrom theroot labeled withsubstringS[;..i]. It thenextendshe substringby adding
the characte8(i + D toits end,unlessS(i T+ 1) already appeathere.Soin phase +1,
string S{1..i + 17 s first putin the treefollowed by stringsS[2..i + 13, 3. 1.,
(in extensiond 2, 3, ..., respectively). Extensiont 1 of phasé + 1 extendsheempty
suffix of S[1..i], that is,it putsthesingle charactestring S(i * 1) into the trequnlessit

is already there). TreZ, is just the single edgdabeledby characteiS(1). Procedurally,
the algorithmis asfollows:

High-levelUkkonen algorithm

Construct tred,.
Fori fromltom—1do
begin {phase * 1}
For j from1toi 1
begin{extensionj}
Find theendof the pathfrom the rootlabeledS[;..i] in the
current treelf needed, extenthatpathby adding charactes(i + 1,
thus assuring thatring S{j..i + 1] isin thetree.
end,;
end,;

Suffix extension rules

To turn this high-leveldescription intoan algorithm, we mustspecify exactly howo

perform asuffix extensionLet S{j..i] = B beasuffix of §{1..71. In extensionj, when the
algorithm findgheendof g in thecurrenttree,it extends to be surghesuffix 8S(i + 1)

isin thetree.It does thisaccordingto oneof the following three rules:

Rule 1 In thecurrent treepathg ends at leaf. Thatis, the pathfrom theroot labeled
B extendsto the endof someleaf edge. Taupdatethe tree, characte$(i + 1) is added to
theendof thelabel on thateaf edge.

Rule 2 No pathfromtheendof string 8 startswith characterS(i + 1), but at leasbne
labeledpathcontinuesfrom theendof 8.

In this casea new leaf edgestartingfrom theendof 8 mustbe created andabeled
with characteS(i T 1). A newnodewill alsohave to be created theregiendsinsidean
edge.Theleaf attheendof the new leaf edgeis given the numbey.

Rule3 Somepathfromtheend ofstring 8 startswith characteS(it 1). In this casehe
string 8S(i + 1)is alreadyin thecurrenttree,so(remembering thah animplicit suffix
treethe endof asuffix need not bexplicitly marked)we donothing.

Welke WIARNIRWLILTAANY VJ AL VA 430N 2 20VA0 VWA & 240 R ANALARG A XAALRSWIEARL & L 4478

Following Corollary 6.1.1all internalnodesin thechangingireewill have suffix links
from them,except for the most recently add@aternalnode,which will receive itssuffix
link by theendof thenextextensionWe now showhow suffix links are usedo speedup
theimplementation.

Following a trail of suffix links to build Z;

Recall that irphase T 1 thealgorithm locatesuffix S[;..i] of S[1..i] in extensionj, for
j increasingfrom 1to i T+ 1. Naively, thisis accomplishedy matching thestring S[j..i]
along a pattirom the rootn thecurrenttree. Suffixlinks can shortcuthis walk andeach
extensionThefirst two extensiongfor j = 1and j = 2)in anyphase 1 are theeasiest
to describe.

The endof thefull string S[1..i] mustendat aleaf of Z; sinceS[1..i] is the longest
string representenh that treeThatmakest easyto find theendof thatsuffix (asthe trees
areconstructedye cankeepa pointerto theleaf correspondingo thecurrentfull string
S[1..i]), and itssuffix extensionis handledby Rule 1 of theextension rulesSo the first
extensionof any phasés specialand onlytakes constanime sincethealgorithmhasa
pointerto theendof thecurrent fullstring.

Let string S[1..i] be xa, wherex is a single characteand a is a (possiblyempty)
substringandlet (v, 1) bethe treeedgethat enterdeaf 1. The algorithm nextmustfind
theendof string S[2..i] = ain thecurrenttree derivedrom Z;. Thekey is that nodev is
eithertherootorit is aninterior nodeof Z;. If it is theroot, thento find theendof a the
algorithmjustwalksdownthe tree followingthe pathlabeleda asin the naivealgorithm.
Butif v is aninternal nodethen by Corollary6.1.2(sincev was inZ;) v has asuffix link
outof it to nodes(v). Further,sinces(v) has a pathabel thatis a prefix of stringa , the
endof stringa must end irthe subtree of s(v). Consequently, in searchirigr the endof
ain thecurrenttree, thealgorithm neednot walk down thesntire pathfrom theroot, but
caninsteadbeginthe walkfrom nodes(v). That is themainpointof including suffixlinks
in thealgorithm.

To describethe secondextensionin moredetail,let y denotethe edgelabel on edge
(v, 1). Tofind theend ofa, walk upfrom leaf 1 to nodeyv; follow thesuffix link from v to
s(v); and walkfrom s(v) downthe path (whichmay be morethana singleedge)labeled
y. Theendof that pathis the end ofx (seeFigure6.5). At theend ofpatha, the tree
is updated followingthe suffix extensionrules.This completely describethe first two
extension®f phase it 1.

To extend any strings[j..i] to S[j..i T 1] for j > 2, repeat thesamegeneralidea:
Startingat the endof string S[j — 1..i] in the currentree, walk upat mostonenodeto
eithertherootor to a node wthat hasa suffixlink from it; let y be theedgelabel of that
edge; assumingis nottheroot, traversehesuffix link from v to s(v); thenwalk downthe
treefrom s(v), following a path labeledy to the endof S[j..i]; finally, extend thesuffix
to S[j..i T 1] accordingto theextensiorrules.

There is oneninordifference betweeextensiongor j > 2 andthefirst two extensions.
In general, the endf S[j — 1..i] may beata node that itselhasa suffix link from it, in
which case thalgorithmtraverses thasuffix link. Notethat even wheextension rul&
applies in extensiorj — 1 (sothat theendof S[j — 1..i] is at a newly created internal
nodew), if the parentof w is not theroot, thenthe parendf w alreadyhas a suffix link
outof it, asguaranteedy Lemmasé.1.1. Thusin extensionj the algorithm nevemwalks
up morethanoneedge.

LAINDAR-LTUVIL WCUIND I RUGL LIVIN UT DU LA TIRLLLO

bound. However,taken togetherthey do achievea linear worstcasetime. The most
important elementf the accelerations the use ofsuffix links.

Suffix links: first implementationspeedup

Definition Letxa denotean arbitrary string, wheredenotes singlecharacteando
denotes (possiblyempty)substring. Foaninternal noder with pathlabel xe, if there
is anothemodes(v) with pathlabela ,thenapointer fromw to s(v) is called asuffix link.

Wewill sometimegeferto asuffix link from v to s(v) asthepair(v, s(v)). For example,
in Figure6.1 (on page95) let v be the node withpathlabel xa andlet s(v) bethe node
whosepathlabelis the single charactea . Thenthereexistsa suffix link from nodev to
nodes(v). In thiscasea is justa single character long.

Asaspeciatasejf aisempty,thenthesuffix link fromaninternal nodewith pathlabel
xa goesto theroot nodeTheroot nodeitself is notconsidered internadndhasno suffix
link from it.

Although definitionof suffix links doesnotimply thateveryinternal nodef animplicit
suffix treehasasuffix link fromit, it will, in fact, haveone Weactuallyestablisrsomething
strongerin thefollowing lemmasand corollaries.

Lemma6.1.1. If a newinternal nodev with pathlabel xa isaddedto the current treein
extensionj of somephasei * 1, theneitherthe path labeleda already ends at aiternal
nodeof the current treeor an internal nodeat the end of string a will be created(bythe
extensionrules)in extensionj + 1 in the samephasei + 1.

PROOF A new internal nodev is createdin extension;j (of phasei + 1) only when

extensionrule 2 applies.That meansthatin extensionj, the pathlabeledxa continued
with some charactestherthanS(i + 1), sayc. Thus,in extensionj + 1, thereis a path

labeledx in thetreeandit certainlyhas a continuatiowith character (althoughpossibly
with other charactergswell). Therearethentwo casego consider:Eitherthepath labeled
a continues onlywith characteg or it continues witrsomeadditionalcharacter. Whea

iscontinued onlyby ¢, extensiorrule 2 will create a node(v) attheendof patha.When

a s continued withtwo differentcharactersthentheremustalreadybe a nodes(v) at the
endof patha. TheLemmais proved in either case.n

Corollary 6.1.1. In Ukkonen’s algorithm,any newlycreatedinternal node will have a
suffix link from it by the endof thenextextension.

PROOF Theproofis inductiveandis true for treeZ; sinceZ, containsnointernalnodes.
Supposeheclaim is truethroughtheendof phase, andconsidemsinglephase +1. By

Lemma 6.1.1when anew nodev is createdn extensionj, the correctnodes(v) ending
thesuffixlink from v will befoundor created in extensioR + 1. No new internalnode
getscreated inthe lastextensionof a phasgthe extensionhandlingthe singlecharacter
suffix S(i T 1)), soall suffix links frominternal nodesreatedn phasei + 1 are known
by theendof the phaseand treeZ;,; has allits suffix links. O

Corollary6.1.1issimilarto Theoren6.2.5,whichwill bediscussedluringthetreatment
of Weiner'salgorithm,andstates ammportant facabouimplicit suffix treesandultimately
aboutsuffix trees. Foemphasiswe restatehecorollary in slightlydifferentlanguage.

Corollary 6.1.2. In any implicit suffix treeZ;, if internalnodev haspathlabelxq«, then
thereis a nodes(v) of Z; with pathlabela.

6.1. UKKONEN'SLINEAR -TIME SUFFIX TREE ALGORITHM 101

algorithm toQ(m?). This trick will also be centralin other algorithmso build anduse
suffix trees.

Trick number 1: skip/count trick

In Step2 of extensionj T 1 thealgorithmwalksdownfrom nodes(v) alonga pathlabeled
y. Recall that there surely mulsésuch ay pathfrom s(v). Directly implemented, this
walk along y takestime proportional tqy|, thenumberd characterson that path.But
a simple trick, called the skip/count trick, will reduce the traversaime to something
proportional tothe numberd nodes on the path. Iwill then follow thatthe time for all
thedownwalksin aphasds atmostQ(m).

Trick 1 Letg denote the lengtbf y, and recalthatno two labels of edgesutof s(v)can
startwith thesamecharactersothe first character gf mustappearmsthefirst character
on exactlyone edgeout of s(v). Letd denotethe numberof characteron thatedge.If
g’ isless thang, then thealgorithm doesot need tdook at any moref the characters
onthatedge; it simply skips tthe node at the endf theedge.Thereit setsgtog — d
setsavariableh to g' * 1, andlooksovertheoutgoingedgeso find the correchextedge
(whose firscharactematchesharacteh of y). In generalwhenthealgorithm identifies
the nextedgeon the patlit compareghe currenvalueof g to the numbeof characterg’
on thatedge. Whem is at least atarge asg’, the algorithmskipsto the nodeat the end
of theedge,setsg to g — g/, setsh to h + g', andfinds the edgewhosefirst character is
characteh of y andrepeatsWhen an edgis reached wherg is smallerthanor equal to
g', thenthe algorithmskips tocharacteig on theedge and quits, assuréetthey path
from s(v) endson thatedgeexactly g characterslownits label.(SeeFigure6.6).

Assumingsimpleand obvious implementation details (suctkaswing the numbeof
characters orpachedge, and beingble,in constant timeto extractfrom § the character
atanygivenposition)the effectof using theskip/count trick is to movefrom onenodeto
thenextnode on the/ pathin constanttime." The total time to traversiee paths then
proportional to the number abbdesonit ratherthan thenumber of charactem it.

Thisis auseful heuristicbutwhatdoesit buy in termsof worstcase boundsPhe next
lemmaleadsimmediatelyto the answer.

Definition Definethe nodedepthof a nodeu to be the numbenf nodes on the path
from therootto u.

Lemma6.1.2. Let (v, s(v)) be anysuffix link traversedduring Ukkonen’s algorithm. At
that momentthe nodedepthof v is at mostone greaterthanthe node depthof s(v).

PROOF Whenedge(v,s(v)) is traversedanyinternalancestoof v, whichhaspathlabel
xB say,hasa suffix link to a node with patHabel 8. But x8 is a prefix of the path tov,
so 8 isa prefix of the pathto s(v) andit follows that thesuffix link from any internal
ancestoof v goesto anancestor of(v). Moreover jf g is nonemptythenthenodelabeled
by 8 is aninternal node. Andbecausdhe nodedepthsof any two ancestoref v must
differ, eachancestoof v hasasuffix link to adistinct ancestor of(v). It follows thatthe
nodedepthof s(v} is at leasbne (for the root) plughe numberof internal ancestorof
v who have patHabels more thapnecharacteiong. Theonly extraancestothatv can
have(without a corresponding ancestor fdw)) is aninternalancestomwhosepathlabel

! Again, weare assuming aconstant -sized alphabet.

100 LINEAR -TIME CONSTRUCTION OFSUFFIX TREES

node s(v)

Figure 6.5: Extension j > 1in phase i+ 1. Walk up atmost one edge (labeled) from the end of the path
labeled Sfj—1..i]to node v; then follow the suffix link to s(v); then walk downthe path specifying substring
y; then apply the appropriate extension rule to insert suffix S[j.i + 1].

Singleextensionalgorithm: SEA

Puttingthese piecetogether,whenimplemented usinguffix links, extensionj > 2 of
phase + 1is:

Singleextensionalgorithm
Begin

1. Findthefirst nodev atorabovethe end ofS[j — 1..i] thateitherhasasuffix link from it
or is theroot. This requiresvalkingupat mosbneedgefrom theendof S[j— 1..i] in the
currenttree Lety (possibly empty) denothestring betweem andtheendof S[j—1..i].

2. If vis nottheroot, traversehe suffix link from v to nodes(v) and thenwalk downfrom
s(v) following the pathfor stringy . If v is the root,then followthe pathfor S{;..i] from
theroot (asin the naivealgorithm).

3. Using the extension rules, enstinatthe stringS[j..i11S(+ 1) isin thetree.

4. If anewinternalnodew wascreatedn extensionj — 1 (by extensiorrule 2), then by
Lemma6.1.1stringe must endat nodes(w), the endnodefor thesuffix link from w.
Createthe suffix link (w, s(w)) from w to s(w).

End.

Assuming the algorithm keepsa pointer to the currentfull string S[1..;], the first
extensionof phasei + 1 neednot do any up or down walking. Furthermore the first
extensionof phasei +1 alwaysappliessuffix extensiorrule 1.

What has beenachievedso far?

The useof suffix links is clearlya practicalimprovement ovewalking from the rootin
eachextensionasdonein the naivealgorithm.But doestheir useimprovetheworstcase
running time?

The answeris thatasdescribedthe useof suffix links doesnot yetimprovethe time
bound.However,here we introducea trick that will reducethe worstcasetime for the

6.1, UKKONEN'S LINEAR-TIME SUFFIXTREEALGORITHM 103

Figure 6.7: For every node v onthe path xa, the corresponding node s{v}is onthe path «. However, the
node -depth of s{v) can be one less than the node-depth of v, it can be equal, Orit can be greater. For
example, the node labeled xab has node -depth two, whereas the node -depth of abis one. The node -depth
of the node labeled xabcdefg is four, whereas the node-depth of abcdefg is five.

There arem phasessothefollowing isimmediate:

Corollary 6.1.3. Ukkonen’s algorithm canbe implementedwith suffix links to run in
0(m?)time.

Notethatthe 0 (m?2)time boundfor the algorithm wasbtainedoy multiplying theO (m)
time boundon a singlephaseby m (sincetherearem phases)This crudemultiplication
was necessarybecausehe timeanalysiswas directed tmnly a singlephase.What is
needed aresomechangedo the implementation allowin@ time analysisthat crosses
phaseboundariesThat will bedoneshortly.

At this pointthe reader mapea bit wearybecauseave seenmto havemadeno progress,
sincewe startedwith a naive O(m?*) method.Why all the work justto comebackto the
sametime bound?The answer ighat althoughwe have madeno progresson the time
bound,we have made greabnceptualprogresssothatwith only a few moresasy details,

the time will fall to O(m). In particular,we will needonesimpleimplementationdetail
andtwo morelittle tricks.

6.1.4. A simpleimplementationdetail

We nextestablishan O(m) time boundfor building a suffix treeThereis, however,one
immediate barrieto thatgoal:Thesuffix tree mayequire®(m?) spaceAsdescribed ofar,
theedgelabelsof a suffixtreemightcontain morehan®() charactersn total. Sincethe
timefor thealgorithmisatleastaslargeasthe sizeof its outputthatmanycharactersnakes
an O(m) time boundimpossible.Consider thestring § = abcdefghijklmnopqrstuywxyz.
Everysuffix beginswith adistinctcharacterhence there ar26edgesutof theroot and

102 LINEAR -TIME CONSTRUCTION OF SUFFIX TREES

Il I T

node s(v)

end of
suffix j—1

end of \
suffix j

Figure 6.6: The skip/count trick. In phase i + 1, substring ¥ has length ten. There is a copy of substring
y out of node s{v); it is found three characters down the last edge, after four node skips are executed.

haslength one(it has labek). Therefore,v canhave nodelepthat mostone more than
s(v). (See Figur&.7). O

Definition As thealgorithm proceedsthe current nodedepthof thealgorithmis the
node deptlof the node most recently visiteloly the algorithm.

Theoremé.1.1. Using the skip/count trick, any phaseof Ukkonen'salgorithm takesO (m)
ime

PROOF Therearei T 1 < m extensions irphasei. In a single extensiorthe algorithm
walksupatmostoneedgeto find a node witha suffixlink, traverse®nesuffix link, walks
downsomenumberof nodes, appliethe suffix extension rules, anchaybeaddsa suffix
link. We havealreadyestablishedhatall the operations othe¢han thedown-walking take
constantime perextensionsowe only needto analyzethetime forthe downwalks. We
do this by examining how theurrent nodedepthcanchangeoverthe phase.
Theup-walk inanyextension decreaséisecurrentnodedepthby at mostone(sinceit
movesupatmostonenode), eaclsuffix link traversal decreases the nedigpthby at most
another onéby Lemmaé.1.2), andeach edgeraversedn adownwalk movesto a node
of greaternodedepth.Thusovertheentire phasethe current nodedepthis decremented
at most2m times, and since no nodecan havedepthgreater thamm, thetotal possible
incrementto currentnodedepthis boundedby 3m overtheentire phase. Itollows that
overtheentire phasethe total numberof edgetraversals duringlownwalks isbounded
by 3m. Using the skip/count trick, the timeper down-edgetraversal isconstant,so the
total timein a phasdor all thedownwalking is O{m), andthe theoremis proved. O

6.1. UKKONEN'S LINEAR -TIME SUFFIX TREEALGORITHM 105

Gl Two more little tricks and we're done

We presenttwo moreimplementationtricks thatcomefrom two observationaboutthe
way the extensionrulesinteractin successive extensioasd phasesThesetricks, plus
Lemma6.1.2,will leadimmediatelyto thedesiredineartime bound.

Observationl: Rule 3isashowstopper In any phasdf suffix extension rul&applies
in extensionj, it will alsoapplyin all furtherextensiongj + 1toi + 1) until theendof
the phaseThereasonis that when rule3 applies,the path labeleds|;..i] in thecurrent
treemustcontinuewith characteiS(i + 1), andsothepath labeled j + 1./} doesalso,
andrule 3 againapplies inextensionsj 1, +2,...,i + 1.

When extensiomule 3 applies,nowork needgo be done sincthe suffixof interestis
alreadyin the tree. Moreover, aew suffix link needsto beaddedto the tree only after

anextensionin which extension rule applies.ThesefactsandObservatiorl lead tothe
following implementation trick.

Trick 2 Endany phase + 1 thefirst time thatextensionrule 3applies.If thishappensn
extensionj, thenthereis noneedto explicitly find theendof anystring S{k..i] fork > j.
The extensioni phase T 1 thatare "done" afterthefirst executiorof rule 3 aresaid
to be donerdd, This isin contrastto any extension wheretheend of S[;..i] is
explicitly found. An extensiorof that kindis called arexplicit extension.
Trick 2is clearly a goodheuristicto reduce workbut it's notclearif it leadsto abetter
worstcase time bound. For thate needbnemore observation antick.

Observation 2: Once a leaf, always a leaf Thatis, if at somepoint in Ukkonen's
algorithma leaf is created andiabeled j (for the suffix starting atposition j of S),then
that leaf will remain aleaf in all successive treaseatedduring the algorithm. This is
true because the algorithinasno mechanism foextendingaleaf edgebeyondits current
leaf. In moredetail, once theres a leaf labeled;, extensionrule 1 will alwaysapplyto
extensionj in anysuccessivhase Sooncealeaf,alwaysaleaf.

Now leaf | is created inphasel, soin any phasei thereis an initial sequence of
consecutiveextensions (starting with extensidin whereextensionrule 1 or2 applies.
Let j; denotethe lastextension inthis sequence. Sincany application of rul@ creates
a new leaf, it followsfrom Observatior? that j; < j;;;. Thatis, the initialsequenceof
extensions wherrmule 1 or 2 applies cannot shrinik successivgphasesThis suggestan
implementatiortrick that inphase + | avoidsall explicit extensions 1 through. Instead,
only constant timewill berequiredto dothose extensionsnplicitly.

To describethe trick, recall that the label on any edgan an implicit suffix tree(or a
suffix tree)canberepresentedy twoindicesp, g specifyingthesubstringS{p..q]. Recall
alsothat forany leaf edgeof Z;, indexq is equalto i andin phasei + 1 indexq gets
incremented toi + 1, reflectingtheadditionof characte§ * 1) to theendof eachsuffix.

Trick 3 In phase T I, when a leakdgeis first createcandwould normally be labeled
with substringS[p..i + 1], insteadof writing indices(p,i + 1) ontheedge write (p,e),
wheree is asymboldenoting"the currente nd.Symbole is a global index thatis setto
i + 10ncein eachphaseln phasé + 1, since thealgorithmknows thatrule 1will apply
in extensions 1 througlt at least,it needdo no additionalexplicit work to implement

104 LINEAR -TIME CONSTRUCTION OFSUFFIX TREES

S = abcdefabcuvw

Figure 68: The left tree is a fragment of the suffix tree for string S = abcdefabcuvw, with the edge-labels

written explicitly. The right tree shows the edge-labels compressed. Note that that edge with label 2, 3 could
also have been labeled 8, 9.

eachis labeled witha completesuffix, requiring26x27/2 charactersn all. For strings
longerthan the alphabetize,somecharactersvill repeatputstill onecanconstructstrings
of arbitrary lengthrm so that the resultingedgelabels have moréhan ® () characters
in total. Thus,an O(m)-time algorithmfor building suffix trees requiresomealternate
schemdo representheedgelabels.

Edgelabel compression

A simple alternateschemexistsfor edgdabeling.Insteadof explicitly writing asubstring
on anedgeof thetree,only write apaird indices on theedge specifyingbeginningand
end positionsof thatsubstringin $ (see Figures.8).Sincethe algorithm has copy of
string S, it canlocate anyparticular charactdn S in constantime givenits positionin the
string. Thereforewe may describeany particularsuffix treealgorithmasif edgelabels
were explicit,andyetimplementthatalgorithm withonly a constaninumberof symbols
written on anyedge (the indexair indicating thebeginning ancending position®f a
substring).

Forexamplejn Ukkonen’s algorithm whermatchingalonganedge thealgorithmuses
the index pair writtewnanedgetoretrieve the needesharacterfrom Sand therperforms
the comparisonsnthosecharactersTheextensiorrules are also easiljnplementedwvith
this labelingschemeWhen extensionule 2 appliesn aphaseé¥ 1, labelthenewly created
edgewith the index paifi + 1,i * 1), andwhenextensiorrule 1 applies(onaleafedge),
changehe index paionthat leafedgefrom (p,q) to(p,q 1 1). It iseasyto seeinductively
thatg hadto bei andhencethe newlabel(p,: + 1) representshe correctnew substring
for that leafedge.

By using an index pair to specifyan edgelabel, only two numbersare written on
any edge,and since the numberof edgesis at most2m — 1, the suffix tree usenly
O(m) symbolsandrequiresonly O(m) spaceThis makesit more plausibleghatthe tree
canactually be built in O(m) time." Although the fully implementedalgorithmwill not
explicitly write a substringon anedge,we will still find it conveniento talk about*“the
substring olabelon anedgeor path' asif the explicit substring was writtethere.

2 We make thestandardRAM model assumptionthat a number with up to log m bits canberead, written, or compared
in constant time.

6.2. WEINER’S LINEAR -TIME SUFFIX TREE ALGORITHM 107

Sincethereareonly m phasesand; is boundedby m, the algorithm therefore executes
only 2m explicit extensionsAs establisheaarlier, the time foan explicit extensionis

a constant plusometime proportionalto thenumberof nodeskipsit does duringhe
downwalkin that extension.

To boundthe total numbeof node skipslone during all the dowwalks, we consider
(similarto the proofof Theorem6.1.1)how the current nodelepthchanges duringuc
cessiveextensions, eveaxtensionsn different phaseshe key is that the first explicit
extension in any phagafter phasel) beginswith extensionj*,which wasthe last ex
plicit extensionn the previous phasélherefore thecurrent nodedepthdoesnot change
between thendof one extensiorand the beginningf the next. But (asdetailedin the
proof of Theoren®.1.1), in eachexplicit extensiorthecurrent nodedepthisfirst reduced
by at mosttwo (upwalking oneedgeand traversingnesuffix link), and thereafter the
downwalkin thatextension increasebe current nodeepthby oneat eachnodeskip.
Sincethe maximum nodedepthis m, and there arenly 2m explicit extensionsit follows
(asin the proof of Theoremb.1.1) that themaximumnumber ofnodeskipsdoneduring
all thedownwalking (andnotjustin asingle phase) is boundég O (). All work has
beenaccounted for, anthetheoremis proved. o

6.1.6. Creating the true suffix tree

Thefinal implicit suffix treeZ,, canbe convertetb atruesuffix treein O(m) time. First,
add a string terminal symbol $ to the endof S andlet Ukkonen's algorithm continue
with this characterTheeffectis that no suffix is now a prefix of any othersuffix, sothe
executionof Ukkonen'salgorithm resultsin an implicit suffix tree in whicheachsuffix
endsataleaf andsois explicitly represented. Thenly otherchangeneededs to replace
eachindex e on every leaf edgewith the number:. Thisis achievedby an O(m)-time
traversabf thetree, visitingeachleaf edge.When these modifications have beeade,
theresultingtree isa true suffix tree.

In summary,

Theorem 6.1.3. Ukkonen's algorithm builds a true suffix tree for S, along with all its
suffix linksn - O(m) time.

6.2. Weiner's linear-time suffix tree algorithm

Unlike Ukkonen'salgorithm,Weiner's algorithm startsith theentirestring S. However,
like Ukkonen'salgorithm, it entersonesuffix atatime into agrowing tree, although in
a very different orderIn particular,it first enters stringS(:)$ into the tree, then string
S[m - 1..m]8$, ..., and finally, itentersthe entire string'$ into the tree.

Definition Suff; denoteshe suffixS{i..m] of S startingin positioni.
Forexample Suff, is theentirestring §, andSuft,, isthe single charactef(:).

Definition Define7; to bethetreethathasm —i 4 2 leavesnumbered throughm +1
suchthatthe pathfrom the root tanyleaf j (i < j < m T 1) haslabel Suft;$. That is,
7; isatreeencodingall andonly thesuffixes of string S{i..m1]$, soit is a suffix treeof
stringS[i..m]$.

Weiner'salgorithm constructstrees from7Z,.,, down to 7, (i.e., in decreasingprder
of i). We will first implement themethodin a straightforward inefficientvay. This will

106 LINEAR -TIME CONSTRUCTION OFSUFFIX TREES

1 2 3 4 5 6 7 8
8§ 9 1011
11 12 13 14 15 16
16 17

Figure 6.9: Cartoon o a possible execution of Ukkonen's algorithm. Each line represents a phase of the
algorithm, and each number represents an explicit extension executed by the algorithm. In this cartoon
there are four phases and seventeen explicit extensions. In any two consecutive phases, there is at most
one index where the Same explicit extension is executed in both phases.

thosej; extensionsinstead,t only doesconstant work tancrement variable ,andthen
does explicitwork for (some)extensions starting witxtension;; +1.

The punch line

With Tricks 2 and 3, explicit extensionsn phasel + 1 (using algorithmSEA) arethen
only required from extensiog T+ 1 until thefirst extensionwhere rule3 applies(or until
extensioni + 1 is done).All otherextensiongbeforeandafterthose explicit extensions)
aredoneimplicitly. Summarizingthis, phase +1is implementedasfollows:

Singlephasealgorithm: SPA
Begin

1. Incrementindextoi t+ 1. (ByTrick 3 this correctly implementall implicit extensions
1 throughj;.)

2. Explicitly computesuccessive extensions (usialgorithm SEA) startingat j; I until
reachinghefirst extensionj* whererule 3 appliesor until all extensions ardonein this
phase(By Trick 2, this correctly implements all the additional implicit extensij:'fTb 1
throughi + 1.)

3. Setji41 o j* — 1,to prepare for th@extphase.
End

Step3 correctly setsj;,, becauseheinitial sequenc®f extensions where extension
rulet or 2 applies muséndatthe point where rule3 first applies.

The key featureof algorithmSPA is that phasei + 2 will begincomputing explicit
extensiongvith extensionj*, where j* wasthelastexplicit extension computeith phase
i + 1. Therefore two consecutivgphaseshareat mostoneindex (j*) wherean explicit
extension is executdgeerigure6.9).Moreover,phase t 1 endsknowing wherestring
S[j*..i + 1] ends,so the repeated extension gf in phasei * 2 canexecute the suffix
extension ruldor j* withoutanyup-walking, suffix link traversalspr nodeskipping. That

meanghefirst explicit extensionin any phaseonly takesconstant timelt is now easyto
provethe mainresult.

Theorem 6.1.2. Using suffix ks and implementatiortricks 1, 2, and 3, Ukkanen's
algorithm builds implicit suffix treesZ; throughZ,, in O(m) total time.

PROOF Thetime for all theimplicit extensionsn any phases constantandsois O (i)
over theentirealgorithm.

As the algorithmexecutegxplicit extensionsgonside@nindex j corresponding to the
explicit extensionthe algorithmis currently executing.Over the entireexecutionof the
algorithm, j neverdecreasesyutit doesremainthesamebetweentwo successivghases.

6.2. WEINER'SLINEAR-TIME SUFFIXTREEALGORITHM 109

Sinceacopyof stringHead(i) begins at somposition between + 1 andm, Head(i) is
also a prefibof Suff, for somek > i. It follows thatHead(i) is thelongestprefix (possibly
empty)of Suff; that is dlabelon somepathfrom therootin tree7; ;.

Theabovestraightforward algorithm tbuild 7; from 7;,; canbedescribed as follows:

Naive Weiner algorithm

1. Find theendof the path labeledfead(i) in tree7; .

2. If thereis no nodeattheendof Head(i) thencreateone,and letw denotethenode(created
or not) atthe endof Head(i). If w is created at this point, splittiranexistingedge then
split its existingedgelabel so thatw hasnodelabel Head(i). Then,createa new leaf
numbered andanewedge(w, i) labeledwith theremaining characters Suff; $. That is,
the newedgelabel shouldbethelastm —i + 1 — |Head(i)] charactersf Suff;, followed
by thetermination symbos.

6.2.2. Toward a more efficient implementation

It shouldbe clearthat the final suffix tree7 = 7| is constructedn O(m?) time by this
straightforwardapproach. Clearlythe difficult part of the algorithmis finding Head(i),
sincestep2 takes onlyconstant timdor anyi. So,to speedupthe algorithmwe will need
a more efficienway to find Head(i). But, asin thediscussionof Ukkonen’s algorithm,a
lineartime boundis not possibleif edgelabelsareexplicitly written on thetree.Instead,
each edgdabelis representedy two indices indicatinghe startand endpositionsof the
labelingsubstringThe readershouldreviewSection 6.1.4 athis point.

It is easyto implementWeiner's algorithrrusingan index paito label aredge. When
inserting Suff;, supposethe algorithmhas matched ufo the kth characteron an edge
(u, z) labeled with intervals, t}, but the nextharactelis amismatch.A new node wis
createddividing (u, z) into two edges(u, w) and(w, z), anda newedge isalsocreated
fromw toleafi. Edge(u, w) getslabeled(s, s + k — 1], edge(w, z) gets labeleds +k, t],
andedge(w, i) gets labeledi + d(w), m1$, whered(w) is the string-depth (number of
characterspf the pathfrom theroot down to nodew. Thesestring-depthscaneasily be
createdand maintainedsthe treds beingbuilt, sinced(w) = d(u) + k. Thestring-depth
ofaleafiism—i + 1.

Finding Head(i) efficiently

We now returnto the centralissueof how to find Head(i) efficiently. Thekey to Weiner's
algorithmare twovectorskept ateachnonleaf node(including theroot). Thefirst vector
is calledthe indicatorvector/ andthe seconds called theik vectorL. Each vectoiis
of lengthequalto the size of the alphabet,andeachis indexedby the characters othe
alphabetForexamplefor the Englishalphabeiugmentedvith $, each linkandindicator
vector will be of length27.

Thelink vectoris essentiallythe reverse othesuffix link in Ukkonen’s algorithm,and
thetwo links areusedin similar waysto accelerate traversaissidethe tree.

Theindicator vectoiis a bit vectorsoits entriesarejust 0 or 1, whereasach entryin
the link vectoris eithernull oris apointer toa tree nodd.et {,(x) specify theentryof the
indicatorvector at node indexedby character. Similarly, let L ,(x) specifythe entry of
thelink vectorat nodev indexedby charactex.

The vectorsl andL havetwo crucial properties thawill be maintained inductively
throughout thelgorithm:

108 LINEAR-TIME CONSTRUCTIONOFSUFFIXTREES

Figure 6.10: A step in the paive Weiner algorithm. The full string tat is added to the suffix tree for at. The
edge labeled with the single character $ is omitted, since such an edge is part of every suffix tree.

servetointroduceandillustrate important definitionandfacts.Then wewill speed ughe
straightforward constructioto obtain Weiner’s lineartime algorithm.

6.2.1. A straightforward construction

The first tree 7,41 consists simplyof a single edgeout of the root labeled with the
termination charactes. Thereafterfor eachi from m downto !, thealgorithm constructs
eachtree”; fromtree7;, andcharactef(i). Theideaof themethodsessentially theame
astheideafor constructing keyword treg$ection3.4), butfor a differentset of strings
andwithout puttingin backpointers. Ashealgorithmproceedsgachtree7; will have the
propertythat for any node in 7;, notwo edgesutof v haveedgelabelsbeginningwith
the samecharacterSince7,,,, only hasoneedge oubf the root,thisis trivially true for
T.+1- We assume inductively that thgropertyis truefor tree7;,; andwill verify that it
holds fortree7;.

In generalto create”; from 7;,,, startat the rootof 7;,, and walkas far agpossible
down apath whosdabel matchesa prefix of Suff;$. Let R denote that pathn more
detail,pathR isfoundby startingat theroot andexplicitly matchingsuccessive characters
of Suff;$ with successiveharacters along uniquepathin 7;,,. The matchingpath is
unique,sinceat anynodev of 7;4, notwoedgesutof v haveedgelabelsbeginningwith
thesamecharacterThusthematchingcontinuesn at most one edgeutof v. Ultimately,
becauseosuffixis a prefix of anothernofurthermatchwill bepossible.If nonodeexists
at that point,thencreate anew nodethere.In eithercase refer to the nodethere (oldor
new)asWw. Finally,addanedgeoutof w to a new leaf node labeled, andlabel the new
edge(w, {) with theremaining(unmatched)art of Suff;$. Since no further matchhad
beenpossible the firstcharacter on théabel for edge(w, i) doesnot occur asthe first
character omnyotheredge oubf w. Thustheclaimedinductive property isnaintained.
Clearly,the pathfrom therootto leafi has labeBuff;$. Thatis, that pathexactly spelis
outstring Suff;$, sotree7; hasbeencreated.

For exampleFigure6.10shows the transformatioof 7, to 7; for thestring tat.

Definition Foranypositioni, Head(i) denoteghe longesprefixof S{;..m} that matches
asubstringf S[; + 1..m1$.

Note that Head(i) could be the empty string.In fact, Head(m) is always theempty
stringbecauséli + 1..m] is theemptystring wheni + 1 is greaterthanm andcharacter

S(m) # §.

6.2. WEINER'S LINEAR -TIME SUFFIX TREE ALGORITHM 111

Suff; and Suff, both begin with string Head(i) == S(i)8 and differ after that.For
concretenessay Suff; beginsS(i)8a and Suff; beginsS(i)gb. But thenSuff;; begins
Ba andSuff,, beginsgb. Bothi + 1 andk + 1aregreaterthanorequaltoi + 1 andless
thanor equalto m, soboth suffixes are representdd tree7;,,. Therefore,in tree 7; .,
there musbe a pathfrom theroot labeled8 (possiblytheemptystring) thatextends in
two ways,onecontinuingwith charactea andtheotherwith characteb. Hence therésa
nodex in 7; 4, with pathlabel 8, and I,(S(i)) = 1 since therés a path(namely, arinitial
partof the patho leafk) labeledS(i)8 in 7Z;,. Further,nodex mustbeon the pathto leaf
i + 1sinces is a prefix of Suff, .

Now [,(8(i)) = 1 andv haspathlabela, so Head(i) must begin with§(i)x. That
means thad is a prefixof 4 andsonodewu, with pathlabel 8, must eithebev or belowv
onthe pathto leafi + 1. However,if u # v thenu would bea nodebelowv on the path
toleafi + 1, and/l,(S(i)) = 1. This contradictsthe choiceof nodev, SOV = u, ¢ = 8,
andthetheoremis proved.That is,Head(i) is exactlythestring S(i)ee. O

Note thatin Theorem6.2.1and itsproof we only assume thatodev exists. No as
sumption about' wasmade.This will be usefulin oneof thedegenerateases examined
later.

Theorem6.2.2. Assumeboth v andv’ havebeerfound andL.-(S(i)) pointsto nodev".

If i, = 0 thenHead(i) endsatv”; otherwise it endsafter exactlyi; characteronasingle
edgeout o Vv".

PROOF Sincev’ isonthepathtoleafi + 1andL,(S(i)) pointstonodev", the pathfrom
theroot labeledHead(i) mustincludev”. By Theoren6.2.1 Head(i) = S(i)a, SOHead(i)
must encexactly/; characterbelowv". Thus,wheni; = 0, Head(i) endsatv". But when
l; > 0, theremustbe anedgee = (v", z) outof v' whose label beginwith charactek
(thefirst of the/; characteron thepathfrom v" tov)in 7;,,.

Can Head(i) extend downto nodez (i.e., to a node belowv”)? Nodez must be a
branching node, foif it werea leaf thensomesuffix Suff;, for k > i, would bea prefix
of Suff,,whichis not possible.Let z have patHabel S(i)y. If Head(i) extendsdown to
branching node, thentheremust betwo substrings startingt or after position + 1 of
S that both begimwith string y. Therefore there wouldbea nodez’ with pathlabely in
7.+1. Nodez wouldthen bebelowv' on thepathtoleafi + 1, contradicting theselection
of v'. SoHead(i) mustnotreachz andmustendin theinterior of edgee.In particular, it
ends exactly; characterfrom v” on edgee. DO

Thuswhen{; = 0, we know Head(i) endsatv”, andwhen!; > 0, we find Head(i) from
v" by examiningtheedgesoutof v” to identify that uniqueedgee whose firstcharacter
isc. ThenHead(i) ends exactly; characterslowne from v”. Tree7; is thenconstructed
by subdividing edge, creatinga nodew atthis point,andadding anewedgefrom w to
leaf i labeledwith theremaindeof Suff;. Thesearchor thecorrectedgeoutof v” takes
only constantime since thealphabets fixed.

In summary,whenv andv’ exist, theabovemethod correctlcreatesZ; from 7,4,
although we musdtill discusshow to updatethe vectorsAlso, it may notyet beclearat
this point why thismethodis moreefficient than thenaivealgorithmfor finding Head(:).

Thatwill comelater.Let usfirst examinehow thealgorithm handleshedegenerate cases
whenv andVv donot bothexist.

110 LINEAR-TIME CONSTRUCTIONOF SUFFIXTREES

e Forany(single) character andany nodeu, I,(x) = 1 in 74 if andonly if there isa path
from therootof 7;+, labeledxa, wherec is the pathlabelof nodeu. The pathlabeled
xa neednotend ata node.

e Foranycharactex, L,(x) in T;y; pointsto (internal)node # in 7;+, if and onlyif & has
pathlabelxa, whereu haspathlabela.OtherwiseL,(x) is null.

Forexamplejn thetreein Figure5.1 (page91) considerthetwo internal nodes and
w with pathlabelsa andxa respectivelyThen71,(x) = 1 for thespecificcharacteix, and
L.(x)=w.Also, I,(b) =1, butL,(»)is null.

Clearly, for anynodeu« andany characterx, L,(x) is nonnull onlyif I.(x) = 1, but
the converse isot true. It is alsoimmediatethat if I,(x) = 1thenl,(x) = 1 for every
ancestomodev of «.

Tree7, hasonly one nonleaf nodenamelytherootr. In this treewe set/,(S(m)) to
one,set!,(x) tozero foreveryothercharacter, andsetall thelink entriesfor the rootto
null. Hencetheabovepropertieshold for 7,,. Thealgorithmwill maintain thevectorsas
the tree changeand wewill prove inductively thathe above propertigsold for eachtree.

6.2.3.The basicideaof Weiner's algorithm

Weiner’s algorithm usesthe indicatorand link vectorgo find Head(i) andto construct?;

moreefficiently. Thealgorithm mustake careof two degenerateasesput thesearenot
muchdifferent tharthegeneral'good' case wher@o degeneracgccurs Wefirst discuss
how to constructZ; from 7;, in the goodcase andthen wehandlethe degenerateases.

Thealgorithmin thegoodcase

We assumehat tree T;,; hasjust beenconstructecand we now want tobuild 7;. The
algorithm startsitleaf: +1 of 7;,., (theleaffor Suff., ;) and walks towardheroot looking
for the first nodev, if it exists,suchthat 7,(S(i)) = 1. If found, it thencontinues from
v walking upwardgowardthe rootsearching fothe first node it encountergpossibly
v) whereL,(S({)) is nonnull. By definition, L,.(S(i)} is nonnullonly if 1,(S(i)) = 1,so0
if found,V will alsobethe firstnode encountereon thewalk from leaf i + 1 suchthat
L,(S8(i)) isnonnull.In general,it may be that neitherv nor exist or that existsbut v’
doesnot. Note howeverthatv orv may be theroot.

The"goodcasé' is that bothv andV doexist.

Let/; be thenumberof charactern the pathbetweenv' andv, andif /; > 0 then let
c denotethe firstof thesel; characters.

Assumingthe goodcase,that bothv andV exist, we will provebelow thatif nodev
haspathlabel @ then Head(i) is precisely stringS(i). Further, wewill prove that when
L,(S(/)) points tonodeV" in 7;,,, Head(i) either endsatVv", if [; = 0, or elseit ends
exactly 1, characters below' onanedgeoutofv”. Soin either casel{ead(i) can be found
in constantime afterv is found.

Theorems6.2.1. Assumethat nodev hasbeenfound by the algorithm and thatit has
pathlabela.Thenthestring Head(i) is exactly S(i).

PROOF Head(i) is the longesprefix of Suff; that isalsoa prefix of Suff; forsomek > i.
Sincev wasfound with 7,(S(i)) = | there is apath in7i;, that beginswith S(i), so
Head(i) is at leastone character longtherefore,we can express#fead(i) as S(i)8, for
some(possiblyempty) strings.

6.2. WEINER'SLINEAR-TIME SUFFIX TREE ALGORITHM 113

on this path.If /; = 0 thenHead(i) endsatv”. Otherwisesearch fotheedgee out of v"
whose firstharacteis c. Head(i) endsexactlyi; characterdelow v onedgee.

4. If anode alreadyexists atthe endof Head(i), thenlet w denotethat nodeptherwise,
createa nodew at theendof Head(i). Createa new leaf numbered; createa new edge
(w, i) labeledwith the remainingsubstringof Suff; (i.e., thelastm — i + | — |Head(i)|

charactersf Suff,), followed with the terminationcharactei$. Tree 7; hasnow been
created.

Correctness

It shouldbe clear fromthe proof of Theorems5.2.1and6.2.2andthe discussiomf the
degenerateaseghatthealgorithmcorrectlycreates tre€; from 7;,, although beforé
can creat¢Z;_,, it mustupdatethe | and L vectors,

How to update the vectors

After finding (or creating) node w, we must update thé and L vectorsso that they
arecorrectfor tree7;. If the algorithmfound anodev suchthat 7,(5§(i)) = 1, then by
Theorem6.2.1nodew haspathlabel S(i)e in 7;, where noder has patHabele. In this
case,L,(5(i)) shouldbe setto point to w in 7;. This is the only update needetbr the
link vectorssince onlyonenodecan point via a link vector to any othernodeandonly
one new node wascreated.Furthermore, if nodew is newly createdall its link entries
for 7; shouldbe null. To seethis, supposéo the contrary that therie a nodeu in 7; with
pathlabel x Head(i), wherew haspathlabel Head(i). Nodeu cannotbe a leaf because
Head(i) doesnot contain thecharacters. But then theranusthave beera nodein 7;,,
with pathlabel Head(i), contradictingthe fact thahodew was insertednto 7; ., to create
7;. Consequentlythereis no noden 7; with pathlabel x Head(i) for any charactex and
all the L vectorvaluesfor w shouldbe null.

Now considerthe updatesneededto the indicator vectorfor tree7;. For everynode
u on thepath fromthe rootto leaf i + 1, I,(5(i) mustbe setto 1 in 7; sincethereis
now a pathfor string Suff; in 7;. It is easyto establishinductively thatif a nodev with
1.(S()) = 1 is foundduring the walk from leafi + 1, then every node abovev on
the path to the roatlreadyhas/,(5(i)) = 1. Therefore,only the indicator vectorfor
the nodes below on the pathto leafi + 1 needto be set.If no nodev wasfound, then
all nodeson the pathfromi F 1 to the root were traverseshdall of thesenodesmust
havetheir indicator vectoraupdated.The needed update®r the nodedelow v can be
made during the searcfor v (i.e., no separatgasss needed)During the walkfrom leaf
i+ 1, I,((S5()) is set tol for every node: encounteredn thewalk. Thetime to setthese
indicatorvectorsis proportional tothetime for the walk.

Theonly remainingupdateis to setthe | vectorfor a newly creatednodew createdn
the interior of aredgee = (v". z).

Theorem 6.2.3. Whena new node w is createdin the interior d an edge(v”, z) the
indicator vectofor w should be copiedrom theindicatorvectorfor z.

PROOF It isimmediate thaif /.(x) = 1theni,(x) mustalso bel in 7;. But canit happen
that 7, (x) shouldbe 1 andyet I.(x) is setto 0 at the moment thaw is created Ve will
see thatit cannot.

Let nodez havepathlabel y, andof course noder has patHabel Head(i), a prefixof
¥. The fact that therare no nodes between andz in 7;,, meanshat everysuffix from
Suff,, downto Suff;,, that begins with strinffead(i) must actuallybeginwith thelonger

112 LINEAR-TIME CONSTRUCTIONOFSUFFIX TREES

The two degenerate cases

Thetwo degenerateasesarethatnodev (and henceodeV') doesnotexistor thatv exists
butv' doesnot. We will seehow to find Head(i) efficiently in thesetwo casesRecallthat
r denotegheroot node.

Casel [I.(S(i)=0.

In this case thevalkendsat therootandno nodev wasfound. It follows thatcharacter
$(i) doesnot appear inany positiongreater than, for if it did appearthen somesuffix
in that rangevould beginwith §(i), somepathfrom the root would begin withS§(i), and
I, ($(7)) would have beerl. Sowhenl, (5(i)) = 0, Head(i) is the emptystring andends
at theroot.

Case2 1,(5(i)) = 1for somev (possiblytheroot), but v’ doesnot exist.

Inthis case thevalk ends at the root withL,(S(i)) null. Lett; be thenumbeof characters
from therootto v. From Theorem6.2.1 Head(i} endsexactly?; + 1 charactergrom the
root. Sincev exists,thereis someedgee = (r, z) whose edgéabel beginsvith character
S(i). This istruewhethert; = Qor¢; > O.

If r; = 0 thenHead(i) endsafterthe firstcharacter,S(i), onedge e.

Similarly, if #; > 0 thenHead(i) endsexactlys; + 1 character§rom therooton edge
e. For supposHead(i } extendsall theway tosomechild z (or beyond). Therexactlyas
in the proof of Theorem6.2.2,z mustbe a branchingnodeandthere musbe a nodez'
below the roobn the pathto leafi + 1 suchthat L,(S(i)) is nonnull, which would bea
contradiction.Sowhent; > 0, Head(i) endsexactlys; + | character$rom the rooton the
edgee out of theroot. Thisedgecanbefoundfrom the rootin constant time sincis first
charactelis S(i).

In eitherof thesedegenerate cas€asin thegoodcase) Head(i) is foundin constant
time after the walkreacheghe root.After theendof Head(i) is foundandw is createdor
found,the algorithm proceedsxactlyas inthegood case.

Note thatdegenerat€ase? is very similar tothe™ goodcase wherbothv andv” were
found, but differs in a smalldetail becausélead(i) is found#; T 1 characterslownon e
rather than; characters dow(the natural analoguef thegoodcase).

6.2.4. The full algorithm for creating Z; from 7; 4,
Incorporatingall the casegivesthefollowing algorithm:
Weiner's Tree extension
1. Startatleafi + 1of 7., (theleaf for Suft;,) andwalk towardtheroot searchingpr the
first nodev on thewalk suchthat7,(S(i)) = 1.

2. If the rootis reachecand!,.(S(i)) = O, thenHead(i) endsat the root. Go to Step4.

3. Letv bethenodefound(possibly the root) sucthat/,(S(i)} = 1. Thencontinue walking
upwardsearchingor thefirst nodev’ (possiblyv itself)such that., (S(i)) is nonnull.

3a. If the rootis reached and.,.(S(i)) is null, let #; be thenumberof characteron thepath
betweertherootandv. Search fotheedgee outof theroot whoseedgelabelbegins with
S(i). Head(i) endsexactlyt, *+ 1 character§rom therooton edgee.
Else {when the conditiom 3adoesnot hold)

3. If v was found such the.(S(i)) is nonnull,sayVv", thenfollow thelink (for S()) tov".
Let/; bethe numberof character®n thepath fromv' to v andlet ¢ be thefirst character

6.3. MCCREIGHT" S SUFFIX TREE ALGORITHM 115

PROOF Thecurrentnodedepthcanincreaséy one eachime anewnodeis created and
each time dink pointeris traversed Hencethe total number of increases thecurrent
nodedepthis at most2m. It follows that thecurrentnode depthcanalso onlydecreaseat
most2m timessincethecurrentnode depthstartsatzero ands nevernegativeThecurrent
nodedepthdecreaseateach move ufhewalk,sothetotal numberof nodesvisitedduring
all theupwardwalks isat most2m. Thetimefor thealgorithmis proportionalto the total
number ofnodesvisited during upwardwalks,sothe theorems proved. O

6.2.6. Last commentsabout Weiner's algorithm

Our discussion ofWeiner's algorithm establishesan importantfact aboutsuffix trees,
regardlesof how they areconstructed:

Theorem 6.2.5. If v is a nodein the suffix tree labeledby the string xa, where x is a
singlecharacter;¢en thereis a nodein thetreelabeledwith the string «.

This fact was alscestablishedas Corollary 6.1.2 during the discussiomf Ukkonen's
algorithm.

6.3. McCreight's suffix tree algorithm

Severalyearsafter Weiner publishedhis lineartime algorithm to construct asuffix tree
for astring S, McCreight [318] gaveadifferent methodthat alsorunsin linear time but
is more spaceefficient in practice.Theinefficiency in Weiner'salgorithmis the spaceit
needdor the indicatorandlink vectors,l andL, keptateach nodefor afixed alphabet,
this spaceis consideredinear in the length ofS, but the spaceused maybe large in
practice. McCreight'salgorithmdoesnot needhosevectorsand henceises lesspace.
Ukkonen's algorithnalsodoesnot use theectorsl andL of Weiner'salgorithm,and
it hasthe samespaceefficiency asMcCreight'salgorithm.? In fact, the fully implemented
version of Ukkonen’s algorithm canbe seen as somewhatdisguisedversion of Mc-
Creight'salgorithm.However,the high-level organizationof Ukkonenand McCreight's
algorithmsare quitedifferent, andthe connection betweethe algorithmss notobvious.
That connectionwassuggestedyy Ukkonen({438] and made explicitby Giegerich and
Kurtz [178]. SinceUkkonen's algorithnmhas allthe advantages of McCreight'andis
simpler todescribe we will only introduce McCreight's algorithrat the highlevel.

McCreight's algorithm at the high level

McCreight's algorithm builds the suffix tree 7 for rn-length string S by inserting the
suffixes in order, oneat a time, startingfrom suffix one (i.e., the complete strin).
(Thisis oppositeto the orderused inWeiner'salgorithm, and itis superficially different
from Ukkonen's algorithm.) It builds tree encoding all thesuffixes of S starting at
positions1 throughi T 1, from thetree encodingll thesuffixesof § startingat positions
1 throughi.

Thenaive construction methddimmediate andunsin O(m?) time. Usingsuffix links
and theskip/count trick, thattime canbe reduced t@® (m). We leave thigothe interested
readerto work out.

3 The space requirementskor Ukkonen and McCreight’s algorithms are determined by the needto representand

move around the tree quickly. We will be much more precise about spaceand practical impfementation issuesin
Section6.5.

114 LINEAR-TIME CONSTRUCTIONOFSUFFX TREES

string y. Hencein 7;4; therecanbe a path labeledxHead(i) only if thereis also apath
labeledxy, andthis holdsfor any characteix. Therefore|f thereis a pathin 7; labeled
xHead(i) (therequirement fod,,(x) to be 1} but no pathx y, then thehypothesized string
xHead(i) must beginat character of S. That meansthat Suff;;; must beginwith the
string Head(i). But sincew haspathlabel Head(i), leaf i + 1 mustbebeloww in 7; and
somustbebelowz in Ti4;. Thatis, z ison theroottoi + 1 path.However,thealgorithm
to constructZ; from 7, startsat leaf i + 1 andwalks towardtheroot, andwhenit finds
nodev or reacheghe root,theindicator entryfor x has beerset tol at every nodeon
the pathfrom theleaf i + 1. Thewalk finishesbeforenodew is created, andoit cannot
be that /,(x) = 0 at thetime whenw is created.Soif path xHead(i) existsin 7T;, then
I,(x) = 1atthe momentw is createdandthe theoremis proved. O

6.2.5. Time analysisof Weiner's algorithm

The time to construct/, from 7;,; and updatethe vectorsis proportionalto the time
needediuring thewalk from leafi + 1 (ending eitheat v' or the root). This walk moves
fromonenodeto its parent,and assuminghe usual parenpointers, onlyconstantime is
used to movéetween nodenly constanttimeis usedto follow aL link pointer,and
only constantime is usedafterthatto addw andedge (w,). Hence thdime to construct
'/,is proportionalto the numbenf nodesencounterean the walk from leaf i+ 1.

Recallthat thenodedepthof anodev is the numbenf nodeson the pathin thetree
from theroottov.

For thetime analysisnveimaginethatasthealgorithm runsvekeeptrack of what node
hasmostrecentlybeen encountered amhatits nodedepthis. Callthe nodedepthof the
most recentlyencounteredodethecurrentnodedepth. For examplayhenthe algorithm
begins,the current nodedepthis oneandjust after 7,, is createdthe current nodedepth
is two. Clearly, whenthe algorithmwalks up a path froma leaf the currentnodedepth
decreaseby oneateachstep. Alsowhenthe algorithmis at nodev" (or at theroot) and
thencreatesa new nodew below V" (or belowthe root),the current nodedepthincreases
by one.Theonly questionremaining ishow the current nodedepth changewhen a link
pointeris traversedrom anodey’ to v*'.

Lemma6.2.1. Whenthealgorithmtraverses link pointerfrom a nodeV toanodev"
in 7;,1, thecurrentnode depthincreasedy at moss one.

PROOF Letu beanonrootnode in7;;, onthe pathfrom the rootto v"', and suppose

has patHabel S(i)x for somenonemptystringa. All nodeson the rootto-v" pathareof

this type, exceptor the single node(if it exists)with pathlabelS(i). Now S(i)« is the
prefix of Suff; andof Suff, for somek > i, andthisstring extendslifferently inthetwo

cases. Since is on the pathfrom theroot to leaf i +1,ais aprefix of Suff; 1, and there
mustbea node (possiblyheroot) with path-labela onthe pathtov' in 7;.,. Hencethe
pathto v’ hasa nodecorrespondingo everynodeon the pathto v", exceptthe nod€if it

exists)with pathlabel S(i). Hence thedepth ofv" is at mostone morethanthe depthof

V', althoughit could beless. &

We cannow finish the time analysis.

Theorem6.2.4. Assuminga finite alphabet,Weiner'salgorithmconstructs the suffix tree
for astringd lengthm in O(m) time.

6.5. PRACTICAL IMPLEMENTATION ISSUES 117

X a bxa $

2,3 2,1 2.2

Figure 6.11: Generalized suffix tree for strings Sy = xabxa and Sz = babxba. The first number at a leaf
indicates the string; the second number indicates the starting position of the suffix in that string.

in theory by suffix trees, where the typical strirgizeis in the hundredf thousandspr
evenmillions, and/orwherethe alphabetsize isin the hundredsFor thoseproblems,a
"linear' time andspace bounds not sufficientassurancef practicality.For large trees,
paging caralsobea serious problernecause the#eesdo not have nice locality properties.
Indeed,by design,suffix links allow analgorithmto movequickly from one parbf the
tree toadistantpart of the treeThisis greatfor worstcasetime boundsbut itis horrible
for pagingif the tree isn't entirelin memory.Consequentlyimplementingsuffix trees to
reducepracticalspace use cabea seriousconcern.* The commentsnadeherefor suffix
treesapply aswell to keyword trees usead the Aho-Corasick method.

The main designissuesin all three algorithmsare how to represent and search the
branchesut of thenodesof the tree andow torepresenthe indicator andink vectors
in Weiner'salgorithm. Apracticaldesignmust balancethe constraintf spaceagainst
the needor speedboth in building thetree andin using it afterwardsWe will discuss
representing treedges, sinc¢he vectorissuesor Weiner's algorithnareidentical.

There ardour basicchoicespossibleto represent brancheshe simplest is to usan
array Of size®(|Z|) ateachnonleaf node. Themayatv is indexedoy singlecharacters
of thealphabetthecell indexedby characterx has apointerto achild of v if there is an
edge oubf v whoseedge-labebegins withcharactex andis otherwisenull. If there is
suchanedge,then thecell shouldalsohold thetwo indicesrepresentingts edgelabel.
This array allows constant-timerandomaccesses and updatasd. althouglsimple to
program,t can usean impracticakmountof spaceas! | andm get large.

An alternative tahearrayis to usea linked list at nodev of characterghatappeaiat
the beginningof edgelabelsout of v. Whena newedge fronmv is added tdhe tree,a new
character(thefirst characteion thenew edgelabel) isadded tahe list. Traversalfrom
nodev areimplementedby sequentially searchinthe listfor the appropriate character.
Sincethe listis searchedsequentiallyit costsno more tokeepit in sortedorder. This
somewhateducedheaveragdime tosearchfor a givencharacteandthusspeeds ugn
practice) the constructioaf the tree.The key pointis that it allowsa faster termination
of a searcHor a character that is nan thelist. Keepingthe listin sortedorderwill be
particularly usefuin someof applicationsof suffix trees tdbediscussedater.

‘A very different approachto limiting space.basedon changingthe suffix tree into a different data structure called
asuffix array. will be discussedn Section7.t4.

116 LINEAR-TIME CONSTRUCTIONOFSUFFIXTREES

6.4. Generalizedsuffix tree for a setof strings

We havesofar seenmethodsto build a suffix treefor asingle string in linear time. Those
methodsare easily extended to represent shéixesof aset{S;, Sz, ..., S,) of strings.
Thosesuffixesargepresenteth a treecalledageneralizeduffix tree, which willbeused
in many applications.

A conceptually easway to build a generalizeduffix tree isto appenda different end
of string marker toeachstring in the setthen concatenatall the strings together, and
build a suffix treefor the concatenatedtring. Theendof stringmarkers musbe symbols
that arenotusedin anyof thestrings. Theresultingsuffix tree will haveone leaffor each
suffix of the concatenated string and is built in tirpeoportionalto the sumof all the
stringlengths.Theleaf numbersaneasily be convertedo two numberspneidentifying
a string$; andtheother a startingosition inS,.

One defect with this way of constructing ageneralizedsuffix treeis that the tree
representsubstringqof the concatenated strintf)at sparmorethanone ofthe original
strings. These"syntheti¢' suffixesare notgenerallyof interest.However,because each
endof string marker iglistinct andis notin any of the original strings, th&abelon any
path fromtheroot to aninternal nodemustbe a substringof oneof the original strings.
Henceby reducingthesecond indexf the label orleafedgeswithoutchanginganyother
partsof the tree, all the unwantesyntheticsuffixes areemoved.

Under closeexaminationthe above method caesimulated without first concatenat
ing the stringsWe describethesimulationusing Ukkonen's algorithm and two stringis
ands$;, assumedo bedistinct. First buildasuffix treefor S, (assuming@naddedterminal
character)Then starting at the roof thistree,matchs, (again assuming treametermi-
nal character habeenadded)gainsta path in the treentil amismatchoccurs. Suppose
thatthefirsti characteref §, match.Thetree at thigpointencodes althe suffixesof §;,
andit implicitly encode®very suffix of the string S;[1..i3. Essentiallythe firsti phases
of Ukkonen’s algorithmfor §, havebeenexecuteddn topof thetreefor S;. So,with that
currenttree, resum&kkonen'’s algorithmon S, in phase + 1. Thatis, walk up at most
onenode fromtheendof $,[1..i], etc,WhenS$, isfully processedhetree will encodeall
the suffixes ofS; and all the suffixesf S; butwill have no synthetisuffixes.Repeating
this approach for eactf the stringsin the setcreatesghe generalized suffix trem time
proportionalto thesumof the lengthsf all the stringsin theset.

Thereare two minorsubtletieswith the secondapproach. One is that tllempressed
labelson differentedgesmay refer to different strings.Hencethenumberof symbolsper
edgeincrease$romtwo to threeputotherwisecauseso problem.Thesecondsubtlety is
that suffixedrom two stringsmay be identical, although will still be true thatno suffix
is a prefix of any other.In this case, deaf must indicate albf the stringsand starting
positionsof theassociateduffix.

As anexamplejf we addthestringbnbxbato thetree forxabxa(shownin Figure6.1),
the result ishegeneralizedsuffix tree showrin Figure 6.11.

6.5. Practical implementationissues

Theimplementatiordetailsalreadydiscussedn this chapteturn naiveguadratic (oeven
cubic)time algorithmsnto algorithmghat runin O (m) worstcase timeassumingfixed
alphabetz. But to make suffix trees truly practicamoreattentionto implementations
neededparticularlyasthe sizeof the alphabet grow3here are problems nicely solved

6.6. EXERCISES 119

many in molecularbiology, spaceis more of a constraintthan is time), thesize of the
suffix treefor astring maydictateusing thesolutionthat builds thesmallersuffix tree.So
despitetheaddedconceptual burderwe will discusssuch spaceeducingalternativesn
somedetailthroughoutthe book.

6.5.1. Alphabetindependenceall linearsare equal,but some are
more equalthan others

The key implementationproblems discussedboveareall relatedto multiple edges(or
links) atnodes. Thesareinfluencedby the sizeof thealphabef —thelargerthealphabet,
thelarger theproblem For thatreasonsomepeopleprefertoexplicitly reflectthealphabet
size inthe time and spaceboundsof keyword and suffix treealgorithms.Thosepeople
usuallyrefer totheconstructiontimefor keywordor suffix trees a®©(mlog | Z}), wherem
is thesizeof all the patterngn akeyword treeor the sizeof thestringin a suffix tree.More
completely, theAho—Corasick, Weiner, Ukkonen, andMcCreight algorithms alleither
require®(m|Z|) spacepr the O(m) time boundshouldbereplaced with theninimum of
O(mlogm)andG(mlog | Z|). Similarly, searching foa patternP usinga suffix treecan
bedone withG({ P|)comparison®nlyif weuse®(m|XZ|) spaceptherwise we must allow
the minimumof O(|P]logm)andO(|P]log|Z|) comparisons during a searfdr P.

In contrastthe exactmatching methodsingZ valueshas worsicasespace and compar
ison requirementthatarealphabetindependent the worstcasenumberof comparisons
(either charactersr numbersusedto computeZ valuesis uninfluenced by thsizeof the
alphabetMoreover, whenwo characterarecomparedthemethodonly checks whether
thecharacterareequalor unequalnot whetheronecharacter precedéiseotherin some
ordering.Hencenopriorknowledge abouthealphabeneedeassumedlrheseproperties
arealsotrue of the Knuth-Morris-Pratt andthe BoyerMoorealgorithms.The alphabet
independencef thesealgorithms makesheir linear time andspaceboundssuperior,in
somepeople'sview, to thelineartime andspace boundsf keyword and suffixreealgo-
rithms:"All linears arequalbutsomearemoreequalthanothers'. Alphabetindependent
algorithmshavealsobeendevelopedor a numberof problemsotherthanexact match
ing. Two-dimensional exacmatching is onesuchexample.The method presentedn
Section3.5.3for two-dimensionalmatching isbasedon keyword treeand hencas not
alphabet independent. Nevertheledghabetindependensolutionsfor thatproblemhave
been developedsenerally,alphabetindependeninethods arenorecomplexthan their
coarser counterparth this book we will not consideralphabetindependencenuch fur
ther,althoughwe will discussotherapproacheso reducing spacthatcanbeemployedif
largealphabetsauseexcessivespaceuse.

6.6. Exercises

1. Construct an infinite family of strings over a fixed alphabet, where the total length of the
edge-labels on their suffix trees grows faster than @(mj (mis the length of the string). That
is, show that linear-time suffix tree algorithms would be impossible § edge-labels were
written explicitly on the edges.

2. In the text, we first introduced Ukkonen's algorithm at a high level and noted that it could
be implemented in O(m?®) time. That time was then reduced to O(m?) with the use of
suffix links and the skip/count trick. An alternative way to reduce the O(n?) time to O{m?)
(without suffix links or skip/count)is to keep a pointer to the end of each suffix of S[1..7].

118 LINEAR-TIME CONSTRUCTION OF SUFFIX TREES

Keepinga linked list at nodev workswell if the numberof childrenof v is small,but
in worstcaseaddstime | X| to every node operatioi he O(m) worstcasetime bounds
are preserved sindX| is assumed tbe fixed, butif the numberof childrenof v is large
then little spacés savedover the arrayvhile noticeably degradinperformance.

A thirdchoice, a&compromiséetweerspace andpeed, isoimplement thdist at node
v assome sorbf balancedtree {10]. Additionsand searchethen takeG(log k) time and
O(k) space, wheré& is the numbenpf childrenof v. Due to thespaceand programming
overheadf thesemethodsthis alternativemakessense only when is fairly large.

Thefinal choiceis somesortof hashingschemeAgain,thechallengestofind a scheme
balancing spacwith speed butfor large trees and alphabdiashing isvery attractive
at least for somef the nodes. And, usingerfecthashing technique[167] the linear
worstcase timéboundcaneven bepreserved.

Whenm and £ are largeenoughto makeimplementatiordifficult, the best desigis
probablya mixture of the above choicefNodes near theoot of the tree tend to have
the mostchildren (theroot hasa child for every distinct characteappearingn S), and
soarrays are sensiblehoiceat thosenodes. Inaddition, if the treeis dense forseveral
levelsbelowtheroot, thenthose levelganbecondense@dnd eliminatedrom theexplicit
tree. For example, thereare 20° possibleamino acid substringsof length five. Every
oneof thesesubstringsexistsin someknown protein sequencareadyin the databases.
Thereforewhenimplementinga suffix treefor the proteindatabasegpnecanreplacethe
first five levelsof the treewith afive-dimensionahrray (indexedy substringf length
five), where arentry of the array points$o the place in the remaining tréleat extendshe
five-tuple, The samadeahasbeenapplied{320] to depthsevenfor DNA data.Nodesin
thesuffix tree toward théeaves tendo havefew children and lists ther@reattractive At
the extremeif w is aleaf andyv is its parent,theninformation aboutw may bebrought
up tov, removing theneedfor explicit representatiorof the edge(v, w) or the node
w. Dependingon the otherimplementation choiceghis canleadto a large savingsin
spacesinceroughly half the nodesn a suffixtreeare leaves. Auffix tree whosdeaves
aredeletedin this wayis calleda position tree.In a position tree,there isa oneto-one
correspondendeetween leavesf the tree andubstringghatare uniquelyoccurringin S.

For nodesn the middle of a suffix tree,hashingor balanced trees malye the best
choice.Fortunately,mostlarge suffixtreesare usedin applicationswhere S is fixed (a
dictionaryor databasefior sometime andthe suffix tree willbe usedrepeatedlyin those
applications, onbasthetime and motivationo experimenwith differentimplementation
choicesFora morean-depthlook atsuffix treeimplementationssuesand othesuggested
variantsof suffix trees,see[23].

Whateverimplementation is selected,is clearthat asuffix treefor a string will take
considerablymore spacehan the representatiorof the string itself." Laterin the book
we will discussseveralproblemsinvolving two (or more) stringsP and T, wheretwo
o(rP|t [T]) timesolutions existpneusing asuffix tree for Pand oneusinga suffix tree
for T. We will alsohaveexamplesvhereequallytime-efficient solutions existbut where
oneusesageneralizeduffix tree for twoor morestringsand theother uses jussuffix tree
for the smallestring.In asymptotiovorstcase timandspaceneitherapproachs superior
to the otherand usuallythe approaclthat buildsthe largertreeis conceptuallysimpler.
However, wherspaceis a seriouspracticalconcern(andin many problems, including

3 Although, we have built suffix treesfor DNA and amino acid strings more than one million charactersong that can
be completelycontained in the main memory of a moderatesize workstation.

14.

15.

16.

6.6. EXERCISES 121

Suppose one must dynamically maintain a suffix tree for a string that is growing or con-
tracting. Discuss how to do this efficiently if the string is growing (contracting) on the left
end, and how to do it if the string is growing (contracting) on the right end.

Can either Weiner's algorithm or Ukkonen's algorithm efficiently handle both changes to
the right and to the left ends of the string? What would be wrong in reversing the string so
that a change on the left end is "simulated by a change on the right end?

Consider the previous problem where the changes are in the interior of the string. If you
cannot find an efficient solution to updating the suffix tree, explain what the technicalissues
are and why this seems like a difficult problem.

Consider a generalized suffix tree built for a set of k strings. Additional strings may be
added to the set, or entire strings may be deleted from the set. This is the common case
for maintaining a generalized suffix tree for biological sequence data [320]. Discuss the
problem of maintaining the generalized suffix tree in this dynamic setting. Explain why this

problem has a much easier solution than when arbitrary substringsrepresentedin the suffix
tree are deleted.

120

10.

12.

13.

LINEAR -TIME CONSTRUCTION OF SUFFIX TREES

Then Ukkonen's high-level algorithm could visit all these ends and create Z;;1 fromZ; in
O(i) time, so that the entire algorithm would run in O(rr?) time. Explain this in detail.

The relationship between the suffix tree for a string S and for the reverse string S’ is not
obvious. However, there is a significant relationship between the two trees. Find it, state it,
and prove it.

Hint: Suffix links help.

Can Ukkonen's algorithm be implementedin linear time without using suffix links? The idea
is to maintain, for each index i,a pointer to the node in the current implicit suffix tree that
is closest to the end of suffix i.

In Trick 3 of Ukkonen's algorithm, the symbol “e” is used as the second index on the label
of every leaf edge, and in phase i + 1 the global variable e is set to i + 1. An alternative
to using “e” is to set the second index on any leaf edge to m (the total length of S) at the
point that the leaf edge is created. In that way, no work is required to update that second
index. Explain in detail why this is correct, and discuss any disadvantagesthere may be in
this approach, compared to using the symbol “¢”.

Ukkonen's algorithm builds all the implicit suffix trees /, through /, in order and ortline,
all in O{m) time. Thus it can be called a linear-time on-line algorithm to construct implicit
suffix trees.

(Open question) Find an on-line algorithm running in O(m) total time that creates all the
true suffix trees. Since the time taken to explicitly store these trees is 0(m?), such an
algorithm would (like Ukkonen's algorithm) update each tree without saving it.

Ukkonen's algorithm builds all the implicit suffix treesin O(m) time. This sequence of implicit
suffix trees may expose more informationabout S than does the single final suffix tree for
S. Find a problem that can be solved more efficiently with the sequence of implicit suffix
trees than with the single suffix tree. Note that the atgorithm cannot save the implicit suffix
trees and hence the problem will have to be solved in parallel with the construction of the
implicit suffix trees.

The naive Weiner algorithm for constructing the suffix tree of S (Section 6.2.1) can be
described in terms of the Aho—Corasick algorithm of Section 3.4: Given string S of tength
m, append $ and let P be the set of patterns consisting of the m + 1 suffixes of string
53%. Then build a keyword tree for set P using the Aho—Corasick algorithm. Removing
the backlinks gives the suffix tree for S. The time for this constructionis O(m7). Yet, in our
discussionof Aho—Corasick, that method was considered as a linear time method. Resolve
this apparent contradiction.

Make explicit the relationship between link pointers in Weiner's algorithm and suffix links
in Ukkonen's algorithm.

The time analyses of Ukkonen's algorithm and of Weiner's algorithm both rely on watching
how the current node-depth changes, and the arguments are almost perfectly symmetric.
Examine these two algorithms and arguments closely to make explicit the similaritiesand
differencesin the analysis. Is there some higher-level analysis that might establish the time
bounds of both the algorithms at once?

Empirically evaluate different implementation choices for representing the branches out
of the nodes and the vectors needed in Weiner's algorithm. Pay particular attention to
the effect of alphabet size and string length, and consider both time and space issues in
building the suffix tree and in using it afterwards.

By using implementation tricks similar to those used in Ukkonen's algorithm (particularly,
suffix links and skip/count) give a linear-time implementation for McCreight’s algorithm.

Flesh out the relationship between McCreight's algorithm and Ukkonen's algorithm, when
they both are implemented in linear time.

7.2. APL2: SUFFIX TREESAND THE EXACT SETMATCHING PROBLEM 123

searclcanbedonein O(m) time whenever dext T is specified.Cansuffix treesbe used
in thisscenariao achievahesametime bounds? Although is notobvious theansweris
"yes'. Thisreverseuse ofsuffix treeswill bediscussed along withmore general problem
in Section7.8. Thusfor the exactmatching problem (single patterrsyffix treescanbe
used taachieve thesametime andspaceboundsasKnuth-Moms-Pratt'andBoyer-Moore
whenthe patternis knownfirst or whenthe pattern andextareknowntogether,but they
achieve vastlysuperior performance itheimportant casehat thetextis knownfirst and
held fixed,while the patternsvary.

7.2. APL2: Suffix treesand the exact set matchingoroblem

Section3.4 discussedhe exactsetmatchingproblem,the problemof finding all occur
rencesfrom a setof strings? in atext T, where thesetis input allat once.Therewe
developed dineartime solutiondueto Aho and Corasick. Recalthat set? is of total
lengthn andthattext T is of length m.The Aho-Corasick methodfinds all occurrences
in T of any pattern fromP in O(n + m + k) time, wherek is the numberof occurrences.
This sametime boundis easily achievedising asuffix tree7 for T. In fact,we sawin
the previous sectiorthat when T is first known and fixed and the patternP varies,all
occurrence®f any specific P (of lengthn)in 7 can befoundin O(n ¥+ k) time, where
kp is the numberof occurrence®f P.Thustheexactsetmatchingproblemis actually a
simplercasebecausehe setP is inputatthesametime thetextis known.To solve it,we
build suffix tree’7 for T in O(m) time and then use this trée successivelgearcHor all
occurrences ofachpatternin 7. The total time neededn this approaclis O(n+ m + k).

7.2.1. Comparing suffix treesand keyword trees
for exactsetmatching

Here wecompareherelativeadvantagesf keyword treeversussuffix treesfor theexact
setmatching problem. Although the asymptotic tiame spaceounddor thetwo methods
are thesamewhenboth theset? andthe string Tarespecified togetheqgne methodnay
be preferableto theotherdependingon therelative sizesof P and T andon which string
canbe preprocessedl he Aho—Corasick methodusesa keywordtreeof size O(n), built
in O(n) time, andthencarriesoutthe searctn O(m) time. In contrastthesuffix tree7 is
of size O(m), takesO(m) time to build, andis used to searcim Q(n) time.Theconstant
termsfor the space boundandfor the searchtimesdependon the specific way the trees
are representef(see Sectiorb.5), but theyare certainlylarge enoughto affect practical
performance.

In thecasethat the seof patterngslargerthanthetext, thesuffix treeapproactusedess
spaceébuttakesmore timeto search(Asdiscussedn Section3.5.1 thereareapplicationsn
molecular biologywherethe patternlibrary is much larger than the typictdxtspresented
after thelibrary is fixed.) Whenthetotal sizeof the patternss smallerthan the text, the
Aho—Corasick methodusedessspacethan asuffix tree,but thesuffix tree usesess search
time, Hence, therés atime/space tradeoff and neither methods uniformly superiorto
theotherin time and space. Determinitige relative advantagesf Aho—Corasick versus
suffix treeswhenthe textis fixed and thesetof patternsvary is left to the reader.

There isoneway thatsuffix trees aréetter,or more robustthan keyword treefor the
exact sematchingproblem(in additionto other problems).We will show in Section7.8
how to usea suffix treeto solvethe exacsetmatching problenin exactly thesametime

-

First Applications of Suffix Trees

We will see many applicationsof suffix trees throughouthe book. Most of these
applicationsallow surprisingly efficient,lineartime solutionsto complex string prob-
lems.Someof the mostimpressiveapplicationsneedanadditionaltool, theconstanttime
lowestcommonancestor algorithmandsoare deferredintil thatalgorithmhas been dis
cussed(in Chapter8). Otherapplicationsarise inthe contextof specific problemsthat
will bediscussedn detaillater. But therearemany applicationsve cannow discusshat
illustratethe power and utilitypf suffix trees.In this chapterandin theexercises atsend,
severalof these applications wilbeexplored.

Perhapghe best wayto appreciate thpower of suffix treesis for thereaderto spend
sometime tryingtosolve the problemsiscussedelow,withoutusing suffix treesWithout
this effort or without some historical perspective, thavailability of suffix trees may
make certairof the problemsappeatrivial, even thoughineartime algorithms for those
problems wereinknown before thadventof suffix trees.Thelongestcommorsubstring
problemdiscussed isection7.4isoneclear example, wher€nuth hadconjecturedhat
alineartime algorithmwould not bepossible[24, 278], but wheresuchan algorithmis
immediatewith theuseof suffix trees. Another classic examplsthelongest prefix repeat
problemdiscussedn theexerciseswherealinear-time solutionusingsuffix trees iseasy,
but wherethe besprior methodranin O (nlogn) time.

7.1. APL1: Exactstring matching

Therearethree importantariants ofthis problem dependingn which string Por T is
known first andheld fixed. We havealready discussed (iBection5.3) the use ofsuffix
treesin the exactstring matching problemwhen thepatternand thetextareboth known
to the algorithmat thesame timeln that casethe useof asuffix treeachieves thsame
worstcase bound®(n+ m), asthe Knuth-Morris-Pratt or Boyer-Moorealgorithms.

But theexact matching problem oftertcurs inthe situationwhenthe textT is known
first andkeptfixed for sometime. After the text has beerpreprocessed, lang sequence
of patternsis input, andfor eachpattern P in thesequencethe search foall occurrences
of Pin T mustbedoneasquickly as possible. Let denotethe lengthof P andk denote
the numberof occurrences of in T. Using a suffix tree forT, all occurrencesan be
found in O(n + k) time, totallyindependenof thesizeof T. Thatany pattern (unknown
at the preprocessingtage)can be found in time proportional to its lengtlalone,and
after onlyspendindineartime preprocessing , isamazingand wagheprime motivation
for developing suffixrees.In contrastalgorithmsthat preprocesthe pattern wouldake
O(n+ m)time during thesearchfor any single patternp.

Thereverse situatior when thepatternis first fixed and carbepreprocessetiefore the
text is known - is the classic situatiornandledby Knuth-Morris-Prattor Boyer-Moore,
ratherthan by suffix trees.Those algorithms spen@(n) preprocessingime sothatthe

122

74. APL4 LONGESTCOMMON SUBSTRINGOFTWO STRINGS 125

§ is examinedMoreover,if S isasubstringof stringsin the database¢henthealgorithm
-an find all stringsin thedatabaseontainingS asa substring. ThistakesO(n+ K) time,
where Kk is the numberof occurrence®f the substring.As expectedthis is achievedby
raversing the subtree belowtheend ofthe matched patfor S. If the full string S cannot
»e matchedagainsta pathin 7, then S is notin thedatabaseand neitheis it contained
n anystringthere.However, thematchedpathdoes specify thiongestprefix of S thatis
ontained asa substringin thedatabase.

The substringproblemis oneof the classic applications oduffix trees.The results
obtained using asuffix treearedramaticandnotachieved usinghe Knuth-Morris-Pratt,
Boyer—Moore,or eventhe Aho—Corasick algorithm.

7.4. APL4: Longestcommonsubstring of two strings

A classicproblemin stringanalysisis to find thelongestsubstringcommonto two given
stringsS; ands$,. Thisis thelongestcommonsubstringproblem(differentfromthelongest
commonsubsequencgroblem,which will be discussedn Sectionsl1.6.2and 12.5of
PartIII).

Forexample,f Sy = superiorcalifornialives and S, = sealiver, thenthelongestcom-
mon substringf $; andS; isalive.

An efficientandconceptuallysimplewaytofind alongestcommonsubstrings tobuild
ageneralizeduffix treefor S, andS,. Eachleaf of thetree represents eithesaffix from
oneof the twostringsor asuffix thatoccursin boththe stringsMark eachinternal node
v with a 1(2)if thereis aleaf in the subtree of v representing suffix from §; (S;). The
pathlabel of any internalnode markedboth I and 2 is a substring commotio both S,
andS$-, and the longestuchstring isthe longestcommonsubstring Sothealgorithmhas
only to find the nodewith the greatesstring-depth (numberof character®on thepathto
it) thatis markedboth 1 and2. Constructionof the suffix tree camedonein linear time
(proportionalto the totallengthof §; andsS;), andthe node markingsindcalculationsof
string-depth canbedoneby standardineartime tree traversalmethods.

In summary we have

Theorem7.4.1. Thelongestcommonsubstringof two stringscan befound in linear time
using a generalizedsuffix tree.

Although the longestcommon substrimgpblemlookstrivial now,givenour knowledge
of suffix trees, itis very interestingto notethatin 1970Don Knuthconjectured that a
lineartime algorithmfor this problemwould be impossiblef24, 278]. We will returnto
this problemin Section7.9,giving a morespaceefficient solution.

Now recall the problemof identifying humanremainsmentioned irSection7.3.That
problemreduced tdinding the longessubstringin onefixed string thais alsoin some
stringin adatabasef strings.A solution tothatproblemis animmediate extensioof the
longestcommonsubstringproblemandis left to thereader.

7.5. APL5: RecognizingDNA contamination

Often thevarious laboratorprocessessedtoisolate,purify, clone, copyiaintain,probe,
or sequence DNA string will causeunwantedDNA to becomeinsertedinto the string
of interestor mixed togethewith acollectionof strings. Contaminatioof protein inthe
laboratorycanalsobeaserious problemDuring cloning,contaminationis often caused

124 FIRSTAPPLICATIONSOFSUFFIX TREES

and space boundsfor the Aho—~Corasick method- O(n) for preprocessingnd O(m) for
searchThisisthe reverse afhe boundshownabovefor suffix treesThe timelspacé&rade
off remainsbutasuffix treecanbe usedfor eitherof thechosenime/space combinations,
whereasosuchchoiceis availablefor a keywordtree.

7.3. APL3: The substring problem for a databaseof patterns

The substring problenwas introducedin Chapter5 (page89). In the mostinteresting
versionof this problem, asetof strings,or a databases first known and fixed. Later, a
sequencef stringswill be presentedndfor eachpresented strin, thealgorithm must
find all thestringsin the databaseontainingS asa substringThis is the reversef the
exactsetmatchingproblemwhere thdassueis to find which of thefixed patternsarein a
substringof the inputstring.

In the contexbf database$or genomic DNA data{63, 320], the problemof finding
substrings is real onethatcannotbe solvedby exactsetmatching.The DNA database
containsa collection of previouslysequencedNA strings.Whena new DNA string is
sequencedt could becontainedn an already sequencsatting, andanefficient method
tocheckthat is ofvalue.(Of course, the opposite caisealsopossible, thathe new string
contains onef thedatabase stringgut that isthecaseof exact setmatching.)

One somewhamorbidapplicationof thissubstringproblemis a simplified versiorof a
procedurdhatis in actual useo aidin identifying theremainsof U.S. military personnel.
Mitochondrial DNAfrom live military personnels collectedandasmall interval of each
person'sDNA is sequencedl he sequencednterval has twokey properties: It carbe
reliably isolatedby the polymerasechain reaction(seethe glossary pag&28) andthe
DNA string in it is highly variable(i.e., likely differs betweendifferent people).That
interval is thereforaisedasa " nearly uniqué' identifier. Later,if needed, mitochondrial
DNA is extractedfrom the remainf personnel whdave beerkilled. By isolating
andsequencinghe sameinterval, thestring from the remainscan be matchedagainst a
databasef stringsdetermined earlier(or matchedagainst anarrowerdatabasef strings
organized frommissingpersonnel)The substring variantof this problemarisesbecause
the condition of the remainsmay not allow completeextractionor sequencingof the
desiredDNA interval. In thatcase,onelooksto seeif theextracted andequenced string
is a substringf oneof the stringsin the database. Monealistically, becausef errors,
one might want tocompute the lengtbf the longest substring found both the newly
extractedDNA and inoneof thestrings inthe databaseThat longestommonsubstring
would then narrow thepossibilitiesfor theidentity of the personThe longest common
substringproblem will beconsideredn Section7.4.

Thetotallengthof all thestringsin thedatabasejenotedoy m,is assumed to barge.
What constitutesgooddatastructure and lookuplgorithm forthe substring problem?
Thetwo constraintarethatthe database shoube storedn a smallamountof spaceand
thateachlookup shouldbe fast. A thirddesired feature ithat thepreprocessingf the
databasehouldbe relatively fast.

Suffix trees yielda very attractive solution tdhis databasg@roblem. A generalized
suffix tree7 for thestringsin the databases built in O(m) time and, more importantly,
requires onlyO(m) space.Any single string$ of lengthn is found in the databaseor
declarednot to be there,in O(n) time. As usual, thisis accomplishedy matchingthe
stringagainsta pathin thetree startingrom theroot. Thefull string S is in thedatabase
if and onlyif thematching pathlreaches leafof 7 atthe point wherethelastcharacteof

7.6. APL6: COMMON SUBSTEUNGSOF MORETHAN TWO STRINGS 127

givenlengthl. These substringarecandidatesor unwanted piecesf S, thathave
contaminatedhedesiredDNA string.

This problemcaneasilybe solvedin lineartime by extendingthe approachdiscussed
abovefor the longestommon substrin@f two strings.Build a generalizeduffix tree
for §; and S:. Thenmarkeach internahodethat has inits subtree a leaf representing
suffix of S| and also &eaf representing suffix of S;. Finally, report allmarkednodeghat
havestring-depthof I or greater. Ifv is sucha markednode,thenthe path-labelof v is a
suspicioustringthatmaybecontaminating the desiredNA string.If therearenomarked
nodes with stringlepth above théhresholdl, thenonecanhavegreaterconfidencebut
notcertainty)thatthe DNA hasnot been contaminatebly the knowncontaminants.

More generally, onéhasan entiresetof known DNA stringsthat might contaminate
adesiredDNA string. The problemnow is to determinef the DNA string in handhas
any sufficiently long substrings (say lengthl or more) fromthe known set of possible
contaminantsThe approachin this caseis to build a generalizeduffix treefor the set
P of possible contaminant®getherwith S;, andthen markeveryinternal nodethat has
aleaf inits subtree representing a suffikom §, anda leaf representing guffix from a
pattern inP. All markednodes ofstring-depthl or more identify suspiciousubstrings.

Generalizeduffix treescanbebuilt in time proportionalto the total lengtiof thestrings
in the tree, andll theothermarking andsearching taskdescribed aboveanbeperformed
in lineartime by standardreetraversalmethods Hencesuffix trees carbe usedto solve
the contaminatiorproblem inlineartime. In contrast,t is notclearif the Aho—Corasick
algorithmcansolvethe problemin linear time, sincethatalgorithm isdesignedo search
for occurrencesf full patterndrom 7 in S, ratherthan for substring®f patterns.

As in thelongestcommonsubstring problem thereis a more spacefficient solution to
thecontaminatiorproblem, basednthe materiain Section7.8.Weleavethis tothe reader.

7.6. APL6: Common substringsof more than two strings

Oneof themost importanguestionsasked aboua set of stringss: Whatsubstrings are
commonto a large numbeof thedistinct strings?This isin contrastto the important
problem offinding substringghatoccurrepeatedlyin a single string.

In biological stringgDNA, RNA, or protein)theproblemof finding substrings common
to a large numbeof distinct stringsarisesn manydifferentcontexts.We will say much
more about thiswhen wediscuss databasearchingn Chapterl5 and multiple string
comparisorin Chapterl4.Mostdirectly, the problemof findingcommon substringarises
becausenutationsthatoccurin DNA aftertwo specieslivergewill more rapidlychange
those part®f the DNA or protein thatare lessfunctionally importantThe partsof the
DNA or proteinthat arecritical for the correct functioningf the moleculewill be more
highly conservedbecausenutationsthat occuin those regionsvill more likely belethal.
Therefore finding DNA or protein substringsthat occurcommonlyin a wide rangeof
speciedelps pointoregionsor subpatternghat may beriticalfor thefunctionor structure
of the biologicalstring.

Less directly, thgroblemof finding (exactly matching) common substrings a set
of distinct stringsarises as aubproblenof many heuristics developeth the biological
literaturetoalignasebf strings.Thatproblem, called multiple alignment, wilediscussed
in somedetail in Section14.10.3.

The biological applications motivatehe following exactmatchingproblem:Givena

126 FIRST APPLICATIONS OF SUFFIX TREES

by a fragmeni(substring)of a vector(DNA string) usedo incorporate thelesiredDNA

in a host organisngr the contaminations from the DNA of the host itself(for example
bacteriaor yeast).Contaminationcan also come froraery small amount®f undesired
foreign DNA that gets physicallymixed into the desiredDNA and then amplifiedby

PCR (the polymerasechain reaction)usedto makecopies ofthe desiredDNA. Without
going intotheseandotherspecific wayghat contaminatiomccurs,we referto thegeneral
phenomenorasDNA contamination.

contaminationis anextremelyseriousproblem,andtherehave beeembarrassingc-
currencef largescaleDNA sequencingefforts where the usef highly contaminated
clonelibraries resulted in Augeamount ofwastedsequencing. Similarlythe announce
ment afew yearsagothat DNA had beersuccessfully extractefiom dinosaurboneis
now viewedasprematureat best. The " extracted DNA sequencesvereshown,through
DNA databasesearchingto be more similar to mamm@&NA (particularly human)2]
thanto bird andcrockodilianDNA, suggestinghatmuchof the DNA in handwasfrom
human contaminatioand notfrom dinosaursDr. S.Blair Hedgespne of the criticsof
the dinosaur claimstated:"In looking for dinosaurDNA we all sometimedind material
thatatfirst lookslike dinosaumgenesutlaterturnsout to behuman contaminatiorsowe
moveon to other thingsBut this onewaspublished. [80]

Theseembarrassmentsighthave beemvoidedif thesequences werexaminedearly
for signsof likely contaminants before largescaleanalysiswas performed or results
published. RusselDoolittle [129] writes “...On a lesshappy note, more than a few
studieshave beerturtailedwhena preliminary searclof thesequenceevealedt to bea
common contaminant. . used inpurification. As arule,then,the experimentalisshould
searchearly andoften”.

Clearly, itis importantto know whetherthe DNA of interest haveencontaminated.
Besideghegeneral issue of the accuraafythesequencénally obtainedcontamination
can greatl}complicate theaskof shotgursequence assemijgiscussed Sectiond.6.14
and 16.15)in which shortstringsof sequence®NA are assemblethto longstringshby
looking for overlappingubstrings.

Often,the DNA sequences frommanyof the possiblecontaminantsireknown. These
includecloning vectorsPCRprimers, theompletegenomic sequencef thehostorganism
(yeastfor example),and otherDNA sourcesbeing worked within the laboratory.(The
dinosaur storyloesn'tquitefit herebecauséhereisn't yeta substantiaranscript ohuman
DNA.) A goodillustration comesfrom the studyof the nemotodeC. eleganspneof the
key modelorganismsof molecularbiology. In discussinghe needto use YACs (Yeast
Artificial Chromosomesjo sequencéhe C. eleganggenomethe contaminatiorproblem
andits potentialsolutionis statedas follows:

Themain difficulty isthe unavoidablecontaminationof purified YACs by substantialamounts
of DNA from the yeasthost, leading tomuch wasted timein sequencingand assemblingirrel -
evantyeastsequencesHowever, this difficulty should be eliminated (using).. . the complete
(yeast) sequence.. It will then become possibléo discard instantly all sequencingreadsthat
are recognizable as yeasDNA and focusexclusivelyon C. elegansDNA. [225]

This motivates thdollowing computational problem:

DNA contaminationproblem Given a string, (thenewlyisolated and sequenced
string of DNA) anda knownstring §; (thecombined sources of possible contam
ination), find all substringsof §; thatoccurin §; and that ardonger than some

7.7. APL7: BUILDING A SMALLER DIRECTED GRAPH FOREXACT MATCHING 129

7.6.1. Computing the C(v) numbers

In lineartime, it is easyto computefor each internal node the numberof leavesin v's

subtree. But that numbemay belargerthanC(v) sincetwo leaves irthesubtree may have
the sameidentifier. That repetitionof identifiersis whatmakes it hard tcomputeC (v)

in O(n)time. Thereforejnstead ofcounting thenumberof leavesbelow v, thealgorithm
usesQ(Kn) time to explicitly computewhichidentifiersare foundbelow anynode.For

each internahodev, a K-length bit vectoris created thahasa 1in biti if thereis aleaf

with identifier i in the subtree of v. ThenC(v) is justthe numbenof I-bits in thatvector.
Thevectorfor v isobtainedby ORing thevectorsof the children ofv. For/ children,this

takes! K time. Thereforeover the entiréree,since there aré&(n) edgesthetime needed
to build theentiretableis G (K n). We will return to this problemin Section 9.7wherean

O(n) time solutionwill be presented.

7.7. APL7: Building a smallerdirected graph for exactmatching

Asdiscussed beforén manyapplications spacis thecritical constraintandany signif-
icantreductionin spaceis of value.In thissectionwe considerhow tocompress suffix
treeinto adirected acycligraph(DAG) thatcanbe usedto solve the exaanatchingprob
lem (andothers)in linear timebut thatusedess spac¢han thetree. Thesecompression
techniqguescanalsobe usedto build adirectedacyclic wordgraph (DAWG), which is
the smallestfinite-statemachinethatcanrecognize suffixes o&givenstring.Lineartime
algorithmsfor building DAWGs aredevelopedn [70], (71}, and[115]. Thusthe method
presentedhereto compressuffix treescaneitherbeconsiderecasan applicationof suffix
treesto building DAWGSs or simply as atechnique t@ompactsuffix trees.

Considerthe suffix treefor a stringS = xyxaxaxa shownin Figure7.1. Theedge-
labeledsubtree belownodepis isomorphicto thesubtree below nodey,except forthe leaf
numbersThatis, for every pathfrom p thereis a pathfrom q with thesamepathlabels,
andvice versa.lf we only want todeterminewhethera patternoccursin a largertext,
rather tharlearningall the locationsof the patterroccurrence(s), we couldmergep into
g by redirecting the labeleddgefrom p's parento now gointo q, deleting thesubtree
of p asshownin Figure7.2.Theresultinggraphis not atreebut a directed acycligraph.

Clearly, after mergingtwo nodesin the suffix tree, the resulting directed grapban

Figure 7.1 Suffix tree for string xyxaxaxa without suffix links shown.

128 FIRST APPLICATIONSOFSUFFIX TREES

set of strings, findsubstrings'commonY' to a large numbeof those stringsThe word
“common” here mean$§occurring with equality*. A more difficult problem isto find
"similar* substringsin many given strings, wheré'similar* allows asmall number of
differences. Problemsf this typewill be discussedh PartIil.

Formal problem statement andfirst method
Supposewne havek strings whoséengthssumton.

Definition Foreachk betweer2 andK, we definel(k) to bethe lengthof thelongest
substring common to at leastk of the strings.

We wantto computea tableof X — 1entries, where entri gives/(k} andalsopoints
to oneof thecommon substringsf that length.For example, consider the set of strings
(sandollarsandlot,nandler,grand, pantry}. Then thd (k) values (without pointerto the
strings)are:

k I(k) onesubstring
2 4 sand

3 3 and

4 3 and

5 2 an

Surprisingly,theproblemcanbesolvedin linear, G(n}, time [236]. It really is amazing
thatsomuch informatioraboutthecontentsand substructuref thestringscanbeextracted
in time proportionato thetime needed justo readin the stringsThelineartime algorithm
will be fully discussedin Chapter9 after the constantime lowest common ancestor
methodhasbeen discussed*

To preparefor the O(n) result, we show herehow to solve theproblemin O(Kn)
time. Thattime bounds alsonontrivial butis achievedby a generalizatiowf the longest
commonsubstringmethodfor two strings First, build a generalizesuffix treeT for the
K strings. Eaclieaf of thetreerepresenta suffixfrom oneof the K strings ands marked
with oneof K uniquestringidentifiers,1 to K, to indicatewhichstringthe suffix is from.
Eachof the K stringsis given adistinct termination symbol, so that identical suffixes
appearingin more thanone string end at distinct leavesin the generalizeduffix tree.
Hence, eackeafin 7 hasonly onestringidentifier.

Definition Forevery internal nodev of 7, defineC(v) to be thenumberof distinct
string identifierghatappeasat the leavesn thesubtree of v.

Oncethe C(v) numbersareknown, and the string-depth ofeverynodeis known, the
desired!(k) valuescan beeasily accumulated witha lineartime traversalof the tree.
Thattraversalbuilds avectorV where, foreachvalueof k from 2 to K, V' (k) holdsthe
string-depth (and locationif desired)of the deepes(string-depth) nodev encountered
with C(v) = k. (When encountering nodev with C(v) = k, comparethe stringdepth
of v to thecurrent valueof V (k) andif v's depthis greaterthanV (k), changeV (k) to the
depthof v.) Essentially,V (k) reportsthe length of the longesstringthatoccursexactly
k times. ThereforeV(k} < I(k). To find /(k) simply scanV from largest to smallest
index,writing into eachposition themaximumV (k) value seenThatis, if V (k) is empty
or Vik) < V(k + 1) then setV(k) to V(k t 1). The resultingvector holds the desired
1(k) values.

L I UT LIV O A VI L LI TAINL U THEI VUTINANTT TUN LAAC T GVIALCULTILING § 1

By thesameeasoningif thereis a pathof suffix links from p toq going througla node
v, thenthe numbeof leaves inthesubtree of v must beat leastaslargeasthe numbein
thesubtree of p andnolarger than the numbar thesubtree of ¢. Tt follows thatif pandq
havethe samenumber of leaves in their subtre@igen all thesubtrees belownodesonthe
path havahe samewumberof leavesand all thesaubtrees areisomorphicto each other.

For the converse sidesuppose thathe subtrees of p andq are isomorphic. Clearly
thenthey havethe samenumberof leavesWe will showthatthereis a directed pattof
suffix links betweernp andg. Leta bethe pathlabelof p andg bethe pathlabelof g and
assume thag] < |a|.

SinceB # «, if B isasuffix of ait mustbea propersuffix. And, if g is aproper suffix
of a, thenby the propertiesf suffix links, thereis adirectedpathof suffix links from p
to q, andthe theorem would be prove&owe will prove, by contradiction, thag must
bea suffix of «.

Supposés is notasuffix of a.Consideanyoccurrencef ain T andlet y bethesuffix
of 7 justto the rightof thatoccurrencef a. Thatmeans tha&y isasuffixof T and there
is a pathlabeledy runningfrom nodep to aleaf in the suffix tree.Now sinceg is nota
suffix of a,nosuffixof T thatstartgust after aroccurrence o8 canhavelength|y|, and
thereforethereis no pathof length|y | from g to aleaf. But thatimplies that thaubtrees
rootedat p andatq arenotisomorphic,which isa contradiction. O

Definition Let Q bethesetof all pairs(p,q) suchthata) thereexistsasuffix link from
p tog in 7, andb) pandq have thesamenumberof leavesn their respectivaubtrees.

Theentire procedure t@ompacta suffix treecannow bedescribed.

Suffix tree compaction
begin

Identify theset Q of pairs(p,q)suchthatthere isasuffix link from p to ¢ andthe
number of leavem their respectivaubtrees is equal.

While thereis apair(p,g) in @ andboth p andg arein thecurrentDAG,
Mergenodep intoq.

end.

The" correctnessof theresultingDAG is statedformally in thefollowing theorem.

Theorem 72 Let T be the suffix tree for an input string S, and let D be the DAG
resulting from running the compactionalgorithm on 7. Any directed pathin Dftom the
root enumeratesa substring of S,and everysubstringd S is enumeratedoy somesuch
path. Therefore, the problem of determining whethera string is a substring of S can be
solvedin linear time using D insteadof 7.

DAG D can be usedto determinewhethera patternoccursin a text, but the graph
seemsto lose the location(s) wherethe patterrnbegins.lIt is possible however,to add
simple (linearspace)nformationto the graphsothat the locationsf all theoccurrences
canalsobe recovereavhenthegraphis traversedWe addresshis issue in ExercisgO.

It may besurprising thatin the algorithmpairsaremergedn arbitrary ordenVe leave
thecorrectnessf this,anecessaryat of the proofof Theorem7.7.2asan exerciseAs
a practicalmatterit makessenseto mergetop-down, never mergingyvo nodesthat have
ancestors ithe suffix tree thatcanbe merged.

L AANWZ 2 L3212 LJANAL RA AR I A TV L AL A AN NS

Figure 7.2: A directed acyclic graph used to recognize substrings of xyxaxaxa.

be usedto solvethe exact matchingroblemin the sameway a suffix treeis used.The
algorithm matchesharacterof the patternagainsta uniquepathfrom the root of the
graph; the patternccurs somewheri the text if and onlyif all the charactersof the
patternarematched alonghe path. However, th&eaf numbers reachabfeom theendof
the pathmayno longer give thexact startingpositionsof theoccurrencesT hisissuewill
be addressed in Exerci$®.

Sincethegraph isa DAG after thefirst merge, the algorithmmustknow howto merge
nodesn aDAG aswell as inatree.Thegeneral merge operation for bateesandDAGs
Is statedn thefollowing way:

A mergeof nodep into nodeg meanshatall edgesout of p areremoved, thathe
edgesnto p aredirectedto g but havetheir originalrespectiveedgelabels,and that
any partof the graph thaits now unreachable fronthe rootis removed.

Although the merges generalbccurin a DAG, thecriteriausedto determinewhich
nodes tanergeremain tiedo theoriginal suffix tree— nodep canbemergednto q if the
edgelabeledsubtree of p isisomorphicto the edgdabeledsubtree of g in thesuffix tree.
Moreover,p canbe merged intqag, or g into p, only if the twosubtrees are isomorphic.
Sothe key algorithmicissueis how to find isomorphicsubtrees in the suffix tree. There
aregeneral algorithméor subtree isomorphismbut suffix treeshaveadditionalstructure
making isomorphismdetectionmuchsimpler.

Theorem7.7.1. In a suffix tree 7 the edgelabeledsubtree belowa node p is isomorphic
to the subtree belowa node q if and only if there § adirected path of suffix linksfrom one
nodeto the other node, andhe numberd leavesin the rwe subtrees is equal.

PROOF First suppose hasadirectsuffix link to g and thoséwo nodes havéhe same
numberof leavesin their subtreesSincethere isa suffix link from p to g, nodep has
pathlabelxa while g haspathlabel . Foreveryleaf numbered in thesubtree of p there
is aleaf numbered T 1 in thesubtree of g, sincethe suffix of T startingati beginswith

xa only if thesuffix of T startingati * | beginswith a. Thereforefor every(labeled)
pathfrom p to aleaf in its subtree, thereis anidentical path(with thesame labeleddges)
from g to a leaf in its subtree. Now the numbersof leavesn the subtrees of p andq are
assumed tdeequal,soeverypathout of g is identicalto some patlout of p,and hence
thetwo subueesreisomorphic.

7.8. APL8: A REVERSEROLE FORSUFFIXTREES, MAJORSPACEREDUCTION 133

Thus the probleraf finding thematchingstatisticds ageneralizationf theexactmatching
problem.

Matching statisticslead to spaceeduction

Matching statisticganbe usedto reducethesizeof thesuffix treeneeded irsolutionsto
problemamorecomplex tharexactmatching.This use of matchingtatisticswill probably
be moreimportantthantheir useto duplicatethe preprocessing/search bounds ofKnuth-
Morris-Pratt and Aho—Corasick. The first exampleof spacereduction usingmatching
statisticswill begivenin Section7.9.

Matching statistics arealsoused ina varietyof otherapplications describeth the
book.Oneadvertisementve give here isto saythat matchingstatistics areentralto afast
approximate matchingethoddesignedor rapid database searchifdniswill be detailed
in Section12.3.3.Thus matching statisticgrovide one bridge betweerxactmatching
methodsand problemsf approximatestring matching.

How to computematching statistics

We wantto computemns(i), for eachpositioni in T, in O(m)time using only a suffitree
for P.First, build asuffix tree7 for P,thefixed shortstring,butdo not removethe suffix
links usedduring the constructionof the tree.(The suffix links areeitherconstructedoy
Ukkonen's algorithnor are thereverseof the link pointersin Weiner'salgorithm.) This
suffix tree will thenbe usedo find ms(i) for eachpositioni in T .

Thenaive waytofind asinglems(i) valueis to match eft to right, theinitial characters
of T[i..m] againstT, by following the unique pathof matchesuntil no furthermatches
arepossible However repeatinghis for each would not achievethe claimedineartime
bound. Insteadthe suffixlinks areusedto accelerate the entimomputationsimilar to
the way they accelerate thenstructionof 7 in Ukkonen'salgorithm.

To learnms(1), we matchcharacter®f string T against7, by following the unique
matching pattof T[l..m]. The lengthof that matchingpathis ms(1). Now supposén
generalthat the algorithmhasjust followed a matchingpathto learnms(i) fori < |m|.
That meanghatthealgorithmhaslocateda pointb in 7 such that the patto that point
exactlymatchesprefixof T [i..m], but nofurther matcheare possiblépossiblybecause
a leaf hadeenreached).

Havinglearnedms{i), proceed asollows to learnms(i + 1). If b is an internal node
v of 7 thenthe algorithmcanfollow its suffix link to a nodes(v). If bis notan interna!
node,then the algorithntan back ugo the nodev just aboveb. If v is theroot, thenthe
searchfor ms(i + 1) beginsat theroot. Butif v is not theroot, thenthealgorithmfollows
the suffix linkfrom v tos(v). The path-label ofv, sayxe, isa prefixof T[i..m], Soa must
bea prefix of T[i + 1..m]. But s(v) haspathlabela,andhence the patfrom the rootto
s(v) matchesa prefixof T[i T 1..m]. Thereforethesearch fors(i T 1) canstartat node
s(v) rather tharat the root.

Let 8 denotethestring between node and pointb. Thenxeg is thelongestsubstring
in Pthat matches substringstartingat positioni of T . Hencexg is astringin P matching
asubstring startingtpositioni + 1 of T . Sinces(v) haspathlabela , there must bapath
labeledB outof s(v). Insteadof traversingthat path by examiningeverycharacteron it,
the algorithmusesthe skip/count trick (detailedin Ukkonen's algorithmSection6.1.3)
to traverseit in time proportionalto the numberof nodeson the path.

When the endof that 8 path is reached,the algorithm continuesto match single
characterdrom T againstcharactersn the tree until eithera leaf is reachedor until

132 FIRST APPLICATIONS OF SUFFIX TREES

DAGs versus DAWGs

DAG D createdby the algorithmis nota DAWG asdefined in[70], [71], and[115]. A
DAWG representafinite-state machine and, as suehchedgelabelis allowedto have
only onecharacterMoreover,the main theoreticaleatureof the DAWG for astringSis
that itis the finite-statemachinewith the fewesinumberof stategnodes)that recognizes
suffixesof S. Of course,D canbe convertedto a finite-state machinéy expandingany
edgeof D whose labehas kcharactersnto kedgedabeledby one charactezach But the
resulting finitestatemachinewould not necessarily have tmeinimumnumberof states,
and hencé would not necessarilybe the DAWG for S.

Still, DAG D for string$ hasasfew (orfewer) nodesindedgeghandoesthe associated
DAWG for S,andsois ascompactasthe DAWG eventhough it may nobea finite-state
machine. Therefore;onstructionof the DAWG for S is mostly of theoreticalinterest.
In Exercisesl6 and 17 we considerhow to build thesmallest finitestate machinethat
recognizes substrings afstring.

7.8. APLS: A reverse rolefor suffix trees,and major space reduction

We have previouslghownhowsuffix treescan beusedto solvetheexactmatchingproblem
with Q(m) preprocessingime and space (building suffix tree ofsize O(m) for the text
T) and O(n * k) searchtime (wheren is the lengthof the pattern an# is thenumberof
occurrences)\Ve havealsoseenhow suffix treesareused to solve thexactsetmatching
problemin the sameime and space boundén is now the total size of all the patterns
in the set).In contrast,the Knuth-Morris-Pratt (or Boyer—Moore) methodpreprocesses
the patternn O(n) time and spaceand thersearches Q(m) time. The Aho—Corasick
methodachievesimilar boundsfor the set matchingroblem.

Asymptotically,the suffix tree methodsthat preprocesshe text areasefficient as the
methodsthat preprocesghe pattern- both runin O(n + m) time and used(n + m)
space(they haveto represent thatrings). However, thepracticalconstanton the time
and space bounds for suffireesoften maketheir use unattractiveompared taheother
methodsMoreover, thesituation sometimearises that theattern(s) will be given first
andheldfixed while the text variesln those cases is clearly superioto preprocesthe
pattern(s). Sothe question arisesf whetherwe can solvethoseproblemsby building a
suffix treefor the pattern(s), not the text. Thisis the reverseof the normal useof suffix
trees.In Section$.3and 7.2.1we mentionedhatsuch aeverse role wagossible thereby
using suffix treeso achieveexactlythesametime andspace boundgreprocessingersus
searchtimeandspace)sin the KnuthMorris-Prattor Aho—Corasick methodsTo explain
this, we will developa resultdueto Changand Lawler{94], who solveda somewhammore
generalproblem,called the matchingtatisticsproblem.

7.8.1. Matching statistics: duplicatingboundsand reducing space

Definition Definens(i) to bethe lengttof thelongest substringf T starting aposition
i that matcheasubstring somewhe(butwedon't know where)n P.Thesevaluesare
calledthematching statistics.

For example, if T = abcxabedex and P = wyabcwzgabedw thenms(1) = 3 and
ms(5) = 4.

Clearly, theresanoccurrencef P startingat positioni of T if andonly if ms(i) = |P|.

7.9. APL9: SPACE-EFFICIENT LONGEST COMMON SUBSTRING ALGORITHM 135

nodev with theleaf numberof oneof the leavesin its subtree. This takes timdinear in

thesizeof 7. Then,when usingT to find eachms(i), if thesearch stopata nodeu, the
desiredp(i) is the suffixnumbemwritten atu; otherwise (when the searcétopson anedge
(u,V)), p(i)is thesuffix numberwritten at nodev.

Back to STSs

Recallthediscussionof STSsin Section3.5.1. There itvas mentioned thathecause of
errors, exact matchingay not be an appropriateway to find STSsin new sequences.
But since the numbesf sequencing erroris generallysmall,we can expectong regions
of agreement between rew DNA sequencandany STSit (ideally) contains.Those
regionsof agreemenshouldallow thecorrectidentificationof theSTSsit contains.Using
a(precomputedyeneralized suffixree fortheSTSs(which play the role of P),compute
matchingstatistics for theewDNA sequencéwhichis T) andthe sebf STSsGenerally,
the pointerp (i) will pointtotheappropriate ST the suffix tree. We leavieto the reader
to fleshout the details. Note thathengiven anewsequence, the tinfer thecomputation
is justproportionalto the iength of the new sequence.

7.9. APL9Y: Spaceefficient longest commonsubstring algorithm

In Section7.4, wesolvedtheproblemof findingthelongesttommonsubstringof §; ands,
by buildinga generalizeguffix treefor thetwo strings.ThatsolutionusedQ (S|t [S.})
timeandspaceBut becausef the practicalspaceoverhead requiretb constructanduse
asuffix tree, a solution thdiuildsa suffix tree onlyfor the smalleiof thetwo strings may
bemuch moralesirable, eveii theworstcasespace bounds remainesame. Clearlythe
longestcommonsubstringhas length equdb the longestmatching statistiens(i). The
actual substringccursin thelongerstring startingat positioni andin the shorter string
startingat positionp(i). Thealgorithmof the previoussectioncomputesll thems(i) and
p(i) valuesusing only a suffix treefor the smaller of thewo strings,along with acopy
of thelong string.Hence the useof matchingstatisticsreduceghe spaceeededo solve
the longestommonsubstringproblem.

Thelongesttommon substring probleitiustratesoneof manyspace reducingpplica
tionsof matching statisticto algorithmsusingsuffix trees.Someadditionalapplications
will bementionedn thebook,but many morarepossible and we withotexplicitly point
each oneut.Thereader igncouragedo examinesvery usef suffix treesnvolving more
thanone stringto find thoseplaceswheresuch space reductias possible.

7.10. APL10: All -pairs suffix-prefix matching

Herewe present anorecomplexuseof suffix trees thats interestingin its own right and
that will be centralin the lineartime superstring approximation algorithtm be discussed
in Section 16.17.

Definition Giventwo stringssS; andsS;, anysuffix of §; thatmatches prefix of S, is
calleda suffix-prefix match of §;, S;.

Givenacollectionof stringss = §i, 51, ..., S; of total lengthm, theall-pairs suffix-
prefix problem is the problenof finding, for eachorderedpair 5;, S, in S ,thelongest
suffix-prefix matchof §;, S;.

134 FIRST APPLICATIONS OF SUFFIX TREES

nofurthermatches argossibleIn either casems(i T 1) is the stringdepthof theending
position. Note that the charactercomparisongloneafter reaching thendof the 8 path
begineitherwith thesamecharactein T thatendedthesearchfor ms(i) or with the next
character inl', dependingon whetherthatsearchlendedwith a mismatclor at a leaf.
There ionespeciatase thatan arisen Computingms(i'l'l). If ms(i) = lorms(i)=0
(sothatthe algorithm isatthe root)andT(i + 1) isnotin P,thenms(i T 1)= 0.

7.8.2. Correctnessand time analysisfor matching statistics

The proof of correctness of themethodis immediatesince itmerely simulatesthe naive
methodfor finding eachms(i). Now consider the time requireloy the algorithm.The
analysis isvery similar tothatdonefor Ukkonen’s algorithm.

Theorem7.8.1. Usingonly asuffix tredor Pandacopyd T, all the m matchingtatistics
canbefound in O(m) time.

PROOF ThesearcHor anyms(i 1) beginsby backingupat mostone edgérom position

b to a nodev andtraversingone suffiXink to nodes(v). Froms{v) a 8 pathis traversed
in time proportionato the numberof nodesonit, andthen a certain numbef additional

charactercomparisonsare doneThe backup andink traversalgake constanttime per

i andsotake O(m) time over the entire algorithm. To bound the totatime to traverse
the various8 paths,recall the notion of currentnodedepth from the timenalysisof

Ukkonen'salgorithm (page 102). Thereit was provedthata link traversalreduces the
currentdepthby at mostone (Lemmaé.1.2), and sinceeachbackup reduces thaurrent

depthby one, thetotal decrementso currentdepthcannotexceed2m. But sincecurrent
depthcannot exceedan or becomenegative,the total incrementsto currentdepth are
boundedby 3m.Therefore thetotal time usedor all the 8 traversalds at most3m since

the current depths increasedateachstepof any 8 traversal.lt only remaingto consider
the total time usedn all the characterromparisonglonein the “after-8” traversalsThe

key thereis that theafter-g character comparisons needed to computé + 1), for

I > 1, begin withthe charactelin T thatended the computation fees(i) or with the

nextcharacteiin T. Hencetheafter-g8 comparisons performeghencomputingms(i) and

ms(i + 1) shareat mostonecharactein common.lt follows that at mosm comparisons
in total are performedduring all the after-8 comparisonsThattakes car®f all thework

donein finding all the matchingstatisticsandthetheorem igproved. O

7.8.3. A small but important extension

The numberms(i) indicates thdength ofthe longest substringtartingat positioni of T
thatmatches substring somewheiia P ,butit doesnotindicatethe locatiorof anysuch
matchin P.For somepplicationgsuchasthosein Section9.1.2) we mustalsoknow, for
eachi, thelocationof atleastonesuch matching substringVe next modifythe matching
statistics algorithnsothatit providesthatinformation.

Definition Foreach positiori in T, the numberp(i) specifiesa startinglocationin P
suchthatthesubstring startingt p(i) matchesa substring startingt position: of T for
exactlyms(i) places.

In order to accumulatthe p(i) valuesfirst doadepthfirst traversal ofl” marking each

7.10. APL10: ALL-PAIRSSUFFIX-PREFIXMATCHING 137

7.10.1. Solving the all-pairs suffix-prefix problem in linear time

Forasingle paiof strings, the preprocessidgscussedh Section2.2.4 willfind thelongest
suffix-prefix match in timdinearin thelengthof thetwo strings.However, applyinghe
preprocessindo eachof the £* pairsof strings separatelgivesa total bound ofO(km)
time.Usingsuffix treest is possibleto reducghecomputatiortimeto O (m+4%), assuming
(asusual)that thealphabets fixed.

Definiton Wecallanedgeaterminal edgéf it islabeledonly withastringtermination

symbol. Clearlygveryterminal edgehasa leaf at oneend, but not ali edgestouching
leaves are terminal edges.

The maindatastructureusedto solve the aHpairssuffix-prefix problemis thegener
alized suffix tree7 (S) for thek stringsin setS. As 7(S) is constructedthe algorithm
alsobuilds a list L(v) for eachinternal nodev. List L(v) contains thendexi if andonly
if visincident with a terminaédgewhoseleafis labeledby a suffix of strings$;. That is,
L(v) holds index if andonly if the path labeko v is a completesuffix of string S;. For
exampleconsiderthe generalizeduffix tree shownn Figure6.11 (page 17).The node
with path-labelbahas anL list consistingof thesingleindex 2,thenodewith pathlabela
hasalist consistingof indicesl and2,andthe node with patabelxa hasalist consisting
of index1. All the otherlists inthisexampleare empty. Clearlythelistscanbeconstructed
in lineartime during (or after)theconstructionof 7(S).

Now considerafixed string S,, andfocuson thepath fromthe rootof 7 (S) to the leaf
j representinghe entirestring S;. The key observation is thefollowing: If visanodeon
this path and is in L(v), thenthe pathlabel of v is a suffix of S; that matches prefix
of S;. Sofor eachindexi, the deepesinodev on the pathto leaf j suchthati € L(v)
identifies thelongest matctbetween auffix of S; anda prefixof S;. The pathlabelof v
is thelongestsuffix-prefix matchof (S;, §;). It is easyto seethatby onetraversafrom the
rootto leaf j we canfind thedeepest noddsrall 1 <i <k (i # j).

Following the aboveobservationthe algorithmefficiently collectsthe needed suffix
prefix matchedy traversingZ (S) in a depthfirst mannerAsit doesjt maintainsk stacks,
one foreachstring.During the deptHirst traversal, when aodev is reached ira forward
edgetraversal,pushv ontotheith stack, foreachi € L(v). When aleaf j (representing
theentire stringS,) is reachedscanthe k stacksand recordor eachindexi thecurrent
topof theith stack.It is not difficult to seethatthe top of stacki containsthe nodev that
defines the suffixprefix matchof (S;, S,). If theith stack isempty,then therésnooverlap
betweerasuffix of stringS; anda prefix of string §;. Whenthedepthfirst traversabacks
up pasta nodewv, we pop theop of any stackwhose indexs in L(v).

Theorem7.10.1. All thek? longestsuffixprefixmatchesre found inO (m+ k?) timeby

thealgorithm. Since nis thesizeof theinputandk? is thesizeof the output,thealgorithm
s timeoptimal.

PROOF The total numberof indicesin all thelists L(v) is O(m). The numberof edges
in 7(S) is alsoO(m). Eachpushor popof astack isassociated with kaf of 7(S), and
each leafis associatedvith at mostonepop andonepush;hence traversind (S) and
updating thestackstakesQ(m) time. Recordingof eachof the 0 (k?) answerss donein

constant timgperanswer. O

Extensions

We note twoextensions. Leit' < k? bethe numbenf ordered pairsf stringsthat havea
nonzerdengthsuffix-prefix match.By usingdoublelinks, we can maintairalinked list of

136 FIRST APPLICATIONSOFSUFFIX TREES

Motivation for the problem

The main motivationfor the all-pairssuffix-prefix problemcomesfrom its usein imple-
mentingfast approximationalgorithmsfor the shortestsuperstring problem(to be dis-
cussedn Section16.17).The superstringproblem isitself motivatedby sequencingnd
mappingproblemsin DNA thatwill bediscussedn Chapterl6. Anothermotivationfor
the shortessuperstringproblem, anchence forthe allpairssuffix-prefix problem, arises
in datacompressionthis connectionwill be discussedn theexercisedor Chapterl6.

A different, direct applicatiorof the all-pairs suffix-prefix problemis suggestedy
computationgeportedin [190]. In that researcha setof around 1,400 ESTésee Sec
tion 3.5.1) fromthe organisnC.elegangwhich isaworm) were analyzefbr thepresence
of highly conserved substrings calladcientconservedegions(ACRs).Oneof themain
objectivesof the research wase estimatethe numberof ACRs thatoccurin the genesof
C. elegansTheir approachwasto extrapolatédrom the number of ACRs thepbserved
in the sebf ESTs.To describe theole of suffix-prefixmatching in thiextrapolation, we
needto remembeisomefacts abouESTSs.

Forthepurposesiere we can thinkof anESTasasequence®NA substringof length
around300nucleotidespriginatingin ageneof muchgreatedength.If ESTa originates
in genep, then the actualocationof substringx in 8 is essentiallyrandom,and many
different ESTs camecollectedfrom thesame gen@. However, inthe commonmmethod
usedto collect ESTs,one doesot learnthe identityof the originatinggene,and itis
not easyto tell if two ESTsoriginate from thesamegene.Moreover,ESTs are collected
more frequently fronsomegeneshanothers. CommonlyESTs will morefrequentlybe
collectedfrom geneghat are more highly expressedtranscribedYhanfrom genes that
are less frequently expresseWe can thusconsider ESTsasa biasedsamplingof the
underlying gene sequencé$ow we return tothe extrapolationproblem.

Thegoalis to usethe ACR data observeih the ESTsto estimate th@umberof ACRs
in the entire setof genes.A simple extrapolatiorwould be justified if the ESTswere
essentiallyrandom samples selected unifornilpm the entire setof C. elegansgenes.
However, genes amot uniformly sampled soa simpleextrapolation woulde wrongif
theprevalencef ACRsis systematicallydifferentin ESTsfrom frequentlyorinfrequently
expressedienesHow can that prevalendee determined®henanEST is obtained, one
doesn'tknow thegeneit comesfrom, or how frequentlythat gendas expressedso how
canESTsfrom frequentlysampled genese distinguishedrom theothers?

The approachtakenin [190] is tocomputethe “overlap” betweereach paiof ESTSs.
Sinceall theESTs aref comparable lengthhe hearbf that computatioconsistof solv-
ing theall-pairssuffix-prefix problemon the setof ESTs.An EST thathasno substantial
overlapwith another EST wasonsideredn thestudyto befrom aninfrequentlyexpressed
(andsampled) genayhereasan ESTthat hassubstantiabverlap withoneor moreof the
otherESTsis consideredo befrom afrequently expressegene.(Because therenay be
somesequencing errorgnd becauseubstring containment gossibleamongstringsof
unequal length, one shouddsosolve the all-pairs longestommonsubstring problem.)
After categorizinghe ESTs in this way, it waadeedfound that ACRsoccur morecom-
monly in ESTsfrom frequently expressedjenesmoreprecisely, fromESTs that overlap
otherESTSs).To explainthis, theauthors[190] conclude:

Theseresultssuggesthat moderatelyexpressed proteirgve on averagebeenmore highly
conservedn sequencever longevolutionary periodthanhaverarelyexpressed onesdin
particulararemorelikely to containACRs.Thisis presumably attributable part to higher
selectivepressure optimizethe activitiesandstructuresf those proteins. .

7.11. INTRODUCTIONTO REPETITIVESTRUCTURES 139

5 TCGACCGGTCGA3
,£ VOOLODOIVOIL €

Figure 7.3: A palindromein thevernaculard molecularbiology. The double strandedstringis the Same
afterreflectionaroundboththehorizontalan dvertical midpointsEachstrandis acomplemented palindrome
accordingto thedefinitionsusedin this book.

In thefollowing discussiorof repetitivestructuresn DNA and proteinwe divide the
structurednto three typestocal, smallscale repeatestringswhosefunctionor origin is
at leastpartially understoodsimple repeatdyoth localand interspersed, whofenction
isless clearandmore complexnterspersed repeatsttingswhose functions evenmore
in doubt.

Definition A palindromeis astring that read#he same backwardsforwards.

For emphasis, the RandoHpuse dictionarydefinition of "palindromé'is: a word,
sentencer verse readinghesame backwardssforwards{441]. Forexample the string
xyaayx is a palindromeunder thisdefinition. Ignoring spaceshe sentenceasit a cat i
sawis another example.

Definition A complementedpalindromisaDNA or RNA stringthat becomeapalin-
dromeif eachcharacteim onehalf of the stringis changedo its complementharacter
(in DNA, A — T arecomplementandC — G are complements} RNAA — U andC — G
are complementsforexample AGCTCGCGAGCT is acomplemented palindrome.

Smallscale locatepeatsvhosefunctionororiginis partially understoothclude:com
plemented palindromes both DNA and RNA, whichactto regulateDNA transcription
(thetwo partsof the complementegalindrome fold angbair toform a*hairpin loop’);
nestedcomplementedpalindromesin tRNA (transfer RNA)that allow the moleculeto
fold up into a cloverleafstructureby complementaryase pairing; tandemrraysof re-
peatedRNA thatflank retrovirusegviruses whos@rimary geneticmaterialis RNA) and
facilitate the incorporationof viral DNA (produced fronmthe RNA sequencéy reverse
transcription) intathe host's DNA;single copy inverted repeatthat flanktransposable
(movable)DNA in variousorganismsandthatfacilitate that movemenor the inversion
of the DNA orientation;shortrepeatedubstringgboth palindromicandnonpalindrornic)
in DNA that may help thehromosoméold intoa more compadtructure;repeatecgub-
stringsat the endsof viral DNA (in alinear state)that allow the concatenatiosf many
copiesof the viral DNA(a moleculeof thistypeis called aconcatamer); copies of genes
thatcodefor importantRNAs (rRNAs andtRNAs) thatmustbeproducedn largenumber;
clusteredgenesthat code for important proteins (suelshistone) that regulatehromo
some structurandmust bemadein large number;families of genes thatodefor similar
proteins(hemoglobinsaand myoglobinsfor example); similar genethat probablyarose
throughduplicationandsubsequenmutation(including pseudogeneshat have mutated

* The use ofthe word" palindromé' in molecular biologydoesnotconform to thenormal English dictionary definition
of theword. Theeasiestranslationof the moleculabiologist's" palindromé' to normalEnglishis: " complemented
palindromé&'. A more molecular view ishata palindromeis asegmenbf doublestranded DNAor RNA such that
both strandsread the samewhen both are readin the samedirection,say in the5' to 3' direction. Alternately, a
palindromeis a segmenbf doublestrandedDNA that is symmetric(with respecto reflection) around bottihe
horizontal axisandthe midpointof thesegment(SeeFigure?7.3). Since thetwo strands are complementagach
strand defines eomplemented palindromnie the senseleinedabove Theterm "mirror repedt is sometimesused
in themolecularbiology literatureto referto a*' palindromé’ asdefined by thedictionary.

138 FIRST APPLICATIONS OF SUFFIX TREES

the nonemptgtacksThenwhenaleaf of thetreeis reached duringhetraversal, onlythe
stackson thislist needbeexaminedIn thatway,all nonzero length suffiprefix matches
can be founih O(m k') time. Note that the positionf thestacksin the linked listwill
vary,sinceastackthatgoesrom emptyto nonempty mudielinkedatoneof theendsof the
list; henceve mustalso keegin thestack)the namef the string associated with that stack.
At the other extremesupposewe want to collect forevery pairnot just the longest
suffix-prefix matchputall suffix-prefix matches no mattéow long theyare.We modify
the abovesolutionsothat whenthe tops ofthe stacksare scanned, the enticententsof

each scanned stack is read. If theoutputsizeis k*, then thecomplexityfor thissolution
is O(m T k).

7.11. Introduction to repetitive structuresin molecular strings

Several sectionsf this book (Sections 7.12, 7.12.1,9.22.2, 9.5,9.6,9.6.1, 9.7, and
7.6), aswell asseverakxercisesaredevoted to discussing efficiealgorithmdor finding
various typeof repetitivestructuresin strings.(In fact, someaspectf one typeof
repetitive structure, tandemapeatshave already been discusgetheexercisesf Chapter
I, andmore will be discussedaterin the book.)The motivationfor the general topiof
repetitive structures strings comedsrom several sourcesut our principal interest is
in important repetitivstructureseenin biologicalstrings(DNA, RNA, andprotein).To
makethis concretewe briefly introduce somef those repetitivetructuresTheintent is
not to writea dissertatioron repetitive DNA or protein,but to motivate the algorithmic
techniquesve develop.

7.11.1.Repetitive structuresin biological strings

Oneof the moststriking featuresof DNA (and to desser degree, protein) is the extent
to which repeated substringsccurin thegenomeThis isparticularly trueof eukaryotes
(higher-order organismshoseDNA is enclosedn acell nucleus). Foexample most of
thehumanY chromosomeonsistof repeated substrings, and overall

Familiesdf reiterated sequenceaccount fomboutonethird of thehumangenome([317]
Thereis avast' literature on repetitiv@ructuresn DNA, and everin protein,
...reportof variouskindsof repeatsaretoocommoneven tdist. {128]

In an analysisof 3.6million basesof DNA from C. elegans, ovev¥,000 familiesof
repetitive sequencesereidentified [5]. In contrastprokaryotes (organismsichasbac
teriawhoseDNA is notenclosedn a nucleushavein total little repetitive DNA, although
theystill possess certainighly structured smabcalerepeats.

In additionto its sheerquantity,repetitive DNA is striking foithe variety of repeated
structuresit contains, forthe various proposed mechanisms explaining dhigin and
maintenancef repeats, anéor the biologicafunctionsthat somef therepeatanay play
(sedq 394} for one aspedaf geneduplication).In manytexts(forexample[317], [469], and
[315]) on genetic®r molecularbiology onecan find extensivediscussion®f repetitive
strings and their hypothesizddnctional and evolutionary roleFor an introductionto
repetitive elementm humanDNA, seef253] and[255].

I It is reported in [192] that a searchof the databaseMEDLINE usingthe key (repeatOR repetitive) AND (prorein
ORsequencejurned up over 6,000papers publishedin the preceding twentyyears.

Pt

7.11. INTRODUCTIONTO REPETITIVE STRUCTURES 141

and account foas muchas 5%of the DNA of human andther mammaliangenomes.
Alu repeatsaresubstringsof length aroundB00 nucleotidesandoccurasnearly (but not
exactly) identicatopies widelydispersedhroughouthe genome Moreover, thanterior

of an Alu string itself consistsof repeatedsubstringsof length around40, andthe Alu

sequences oftenflankedon eithersideby tandem repeatsf length7-10. Those rightand

left flanking sequenceare usuallycomplementegalindromiccopiesof eachother,So

the Alu repeatsvonderfullyillustratevariouskinds of phenomena thaiccurin repetitive

DNA. Foranintroductionto Alu repeatsee[254].

Oneof the mostfascinating discoveries molecular genetics a phenomenon called
genomic (Or gametic) imprintingwherebya particularallele of a gends expressed only
whenit isinheritedfrom onespecific parenf48, 227, 391]. Sometimes theequiredparent
is the motherand sometimeshe father. The allele will be unexpressedor expressed
differently, if inheritedfrom the"incorrect’ parent.Thisis in contradictionto the classic
Mendelianrule of equivalence- thatchromosomesotherthantheY chromosomehave
nomemoryof theparentheyoriginated fromand thathesamaeallele inheritedrom either
parentwill havethe same effean thechild. In miceand humans, sixtedmprinted gene
alleles have beefound to date[48]. Five of theserequire inheritancérom the mother,
andtherestfrom thefather.The DNAsequencesf thesesixteenimprinted geneall share
thecommonfeaturethat

They contain,or are closelyassociatedvith, a region richin directrepeats. These repeats
rangein sizefrom 25 to 120bp,* are uniqueo the respective imprintedegionsbut have
no obvioushomologyto eachotheror to highly repetitivemammaliarsequence3hedirect
repeatsnay be an importantfeatureof gameticimprinting,as they havebeenfound in all
imprinted genes analyz¢nldate ,and areiso evolutionarilyconserved48)

Thus, direct repeatseem tobe importantin genetic imprinting but like many other
exampleof repetitive DNA,thefunctionandorigin of these repeats remains a mystery.

7.11.2. Usesof repetitive structuresin molecular biology

At onepoint, most intersperserepeatedNA wasconsidere@dsa nuisance, perhaps$ no
functional orexperimentaValue.But today avarietyof techniques actuallgxploit theex-
istenceof repetitive DNA.Geneticmappingmentioned earlierequirestheidentification
of features (omarkers)in the DNA that arehighly variablebetween individualsindthat
areinterspersedrequentlythroughouthegenome. Tandem repeats argtsuchmarkers.
Whatvariesbetween individualss the numberof timesthe substring repeats anarray.
Hence theerm usedor this typeof markeris variable numbed tandemrepeatgVNTR).
VNTRs occur frequently andegularlyin manygenomes, includinghe humangenome,
and provide many of the markersneededor large-scalegenetic mappingTheseVNTR
markersare used during the genelievel (asopposedto the physicatlevel) searchfor
specificdefective genes and forensicDNA fingerprinting (sincethe number of repeats
is highly variable betweenindividuals, a small sebf VNTRs can uniquelycharacterize
individualsin a population) Tandemrepeatsonsistingof a very shortsubstring, often
only two characterdong, are callednicrosatellites and havdbecomehe preferred marker
in manygenetic mappingfforts.

* A detail not contained in this quote is that the direct (tandem) repeats in the genes studied [48] have a total length
of about 1,500 bases.

140 FIRST APPLICATIONS OF SUFFIX TREES

to the point that theyo longer function)common exon®f eukaryoticDNA that may
bebasic buildingblocksof manygenesandcommonfunctionalor structural subunits
protein(motifs anddomains).

Restrictionenzymecutting sitesillustrate anothertype of smallscale, structuredge-
peatingsubstringof great importanceéo molecularbiology. A restrictionenzymeis an
enzyme that recognizes a specific substimthe DNA of both prokaryotes anghkary-
otes and cutgor cleaves) the DNA every plasceherethat patterroccurs(exactlywhere
it cutsinsidethe patternvaries withthe pattern).Therearehundredsof known restriction
enzymesandtheir usehas been absolutebyitical in almostall aspect®f modemmolec
ular biology andrecombinantDNA technology. For example, trsurprisingdiscovery
thateukaryotic DNAcontainsintrons (DNA substringghatinterruptthe DNA of protein
coding regions)or which Nobel prizesvereawardedn 1993,was closelycoupledwith
the discoveryanduseof restrictionenzymesn thelate 1970s.

Restrictionenzyme cuttingsites are interestingxamplef repeats becausbeytend
to be complemented palindromic substringsForexample, theestrictionenzymeEcoR[
recognizegzhe complementegalindromeGAATTC andcuts betweerthe G andthe ad
joining A (the substringTTCwhen reversedndcomplementeds GAA). Otherrestriction
enzymesecognizeseparatedor interrupted)complemented palindromeSor example,
restrictionenzymeBgli recognize$&SCCNNNNNGGC whereN standdor any nucleotide.
Theenzymecuts between thiasttwo Ns. Thecomplemented palindromitructurehas
beenpostulatedo allow the two halvesof the complementedoalindrome (separated or
not) tofold andform complementaryairs.Thisfolding thenapparently facilitatesither
recognitionor cutting by the enzyme. Becaus# the palindromic structureof restric
tion enzymecutting sites, people have scannedDNA databasesooking for common
repeats of thiform in orderto find additionalcandidatesor unknown restrictioenzyme
cutting sites.

Simple repeatghatare less welunderstoodften arise agandemarrays(consecutive
repeatedstrings,also called'direct repeatd) of repeateddNA. For example the string
TTAGGG appearsittheendsof everyhumanchromosomen arrayscontainingoneto two
thousanatopieg332]. Sometandemarraysmayoriginateandcontinue ta@row by a postu-
latedmechanisnof unequalcrossingoverin meiosis, although thelis seriousopposition
to that theoryWith unequalkcrossingoverin meiosis the likelihood that more copiesill
beaddedn a singlemeiosisincreasessthe numberof existingcopiesincreases. A num
ber of geneticdiseaseqFragile X syndrome, Huntington'disease, Kennedy's disease,
myotonicdystrophy,ataxia)arenow understoodo be causedby increasing numbersf
tandemDNA repeatof a stringthreebasedong. Thesdriplet repeats somehointerfere
with the proper productiorof particular proteins. Moreovethe numbenf triplesin the
repeatincreaseswith successivayenerations, whiclappeardo explainwhy thedisease
increasesn severitywith eachgenerationOtherlong tandemarrays consistingf short
stringsarevery commonandarewidely distributedin the genomeof mammalsThese
repeatsare calledsatellite DNA (further subdividedinto micro and minisatellite DNA),
and theirexistencehas beerheavily exploitedin geneticmappingandforensics.Highly
dispersed tandemrraysof lengthtwo stringsare commonln additionto tri-nucleotide
repeatspthermini-satellite repeatalsoplay a rolein human genetidisease$236].

Repetitive DNAthatis interspersedhroughout mammalian genomesid whose func
tion andorigin is lessclear,is generallydivided into SINEs (short interspersed nuclear
sequences) andINEs (long interspersechuclear sequenceshhe classicexampleof a
SINEis theAlu family. The Alu repeatoccurabout 300,00€imesin the humangenome

7.12. APLI 1: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 143

7.12. APL11: Finding all maximal repetitive structures
in linear time

Beforedeveloping algorithméor finding repetitivestructureswe mustcarefully define
thosestructures A poor definitionmay leadto an avalanchef output. For example,if
a string consistsof n copiesof the same charactegn algorithmsearching forll pairs
of identical substringganinitially reasonablalefinition of a repetitive structure) would
output @(n*) pairs, an undesirableresult. Other poor definitions may not capture the
structuresof interest,or they may make reasonirapout thosestructuredifficult. Poor
definitionsareparticularlyconfusingwhendealing withthe sebf all repeat®f aparticular
type.Accordingly,thekey problemis to definerepetitivestructuresn a waythatdoesnot
generateoverwhelmingoutputandyetcapturesll the meaningfulphenomenan aclear
way. In this section, weaddresshe issuethroughvarious notions otraximality. Other
ways of definingand studyingepetitivestructuresareaddresseth Exercises6, 57, and
58in thischapter; in exercises in othelmaptersandin Section9.5, 9.6, and9.6.1.

Definition A maximal pair (or a maximalrepeated paiy in astring S is a pair of
identical substringsa and 8 in S suchthatthecharactetto the immediatéeft (right) of
ais differentfrom thecharacteto theimmediateeft (right) of 8. That is, extending
andg in eitherdirection would destroyheequality of the two strings.

Definition A maximalpair is representetby the triple (pi, p».n’), wherep, and p»
give thestartingpositionsof the two substrings and gives their length. Fa stringS,
we defineR(S) to bethesetof all triples describing maximal pains §.

Forexample considerthe stringS = xabcyiiizabcqubeyrxar, where therarethree
occurrencesf thesubstringabc.Thefirstand second occurrencelsabcform a maximal
pair(2,10,3),andthesecondandthird occurrencealsoform a maximalpair (10, 14, 3),
whereaghe firstand thirdoccurrencesf abcdonotform a maximalpair. Thetwo occur
rencef the stringabcyalsoforma maximal paif2, 14, 4). Notethat the definitiorallows
the two substrings ira maximal pair to overlapeachother. For examplegxxaxxaxxb
containsa maximal pairwhosesubstrings xxaxx.

Generally,we also wanto permita prefix or a suffix of Sto bepartof a maximal pair.
For example, two occurrences xa in xabcyiiizabcgabeyvrxar shouldbe considered
as amaximalpair. To modelthis case simply adda charactero the starof S andoneto
theendof S thatappear nowherelsein S.Fromthis pointon, we will assumehat has
beendone.

It maysometimeseof interestto explicitly find andoutputthefull setR(S). However,
in some situation#.(S) maybetoo large tobeof use,anda morerestricted reflectiomf
the maximal pairsmay be sufficientor evenpreferred.

Definition Defineamaximal repeataasa substringf S that occursn amaximal pair

in S. Thatis, ais a maximal repeah Sif thereis atriple (p;, p2, |@|) € R(S) ande

occursin Sstarting afposition p; and p,. Let R'(S) denotethe sebf maximal repeats

inS.

Forexample,with Sasabove,both stringsabcandabcy are maximal repeats. Note
thatno matterhow manytimesa stringparticipatesn a maximalpair inS, it is represented
only oncein R'(S). Hence|R'(S)| is less tharor equalto |R(S)| andis generallymuch
smaller.Theoutput is more modesandyet itgivesagoodreflectionof the maximalpairs.

In someapplications, thelefinition of a maximal repeatioesnot properly modethe
desirednotion of a repetitive structureForexample,in S = aabxayaab, substringa is

142 FIRST APPLICATIONS OF SUFFIX TREES

Theexistence of highly repetitiM@NA, such a\lus, makes certain kinds large-scale
DNA sequencingnoredifficult (seeSectionsl16.11and 16.16), but their existencecan
alsofacilitate certaincloning, mappingandsearchingefforts. Forexample, one general
approachto low-resolution physicamapping (finding on a true physicalscale where
features of interestrelocatedin thegenome)rtofindinggenes causingiseasemvolves
inserting pieces of humaDNA that may containa featureof interestinto the hamster
genome. This techniquecalledsomaticcell hybridization.Eachresultinghybrid-hamster
cell incorporates differerpartsof the humarDNA, andthese hybrictellscanbetested
to identify a specificcell containing the human featuoé interest.In this cell, onethen
hasto identify the partsof the hamster's hybriggenomethatare humanBut whatis a
distinguishingfeaturebetweenhumanandhamste®NA?

Oneapproachkexploitsthe Alu sequences. Alu sequencgeecificto humanDNA are
socommon inthehuman genoméhat mostfragmentsof humanDNA longerthan20,000
baseswill containan Alu sequencdg317]. Therefore,the fragmentsof humanDNA in
the hybrid can be identified byprobing the hybridor fragmentsof Alu. The sameidea
is usedto isolate humanoncogenes(modified growth-promoting genesthat facilitate
certaincancersfrom human tumorskFragments of humaBNA from the tumorarefirst
transferredo mousecells.Cellsthatreceive the fragment dfumanDNA containing the
oncogene becomeansformed andeplicatefasterthan cells that do not. This isolates
the human DNAfragmentcontainingthe oncogenefrom the other human fragments,
but then the humanDNA has tobe separatedrom the mouseDNA. The proximity of
the oncogene tan Alu sequence is againsed to identifythe humanpart of thehybrid
genorie [471]. A related techniqueagainusing proximity toAlu sequenceds described
in [403].

Algorithmic problems on repeatedstructures

We consider specifiproblems concerning repeatsgtucturesn stringsin severakections
of the book.* Admittedly, not every repetitivestring problem that we will discussis
perfectly motivated by a biological problemor phenomenorknown today. Arecurring
objectionis that the first repetitive string problemswe consider concermexact repeats
(althoughwith complementatioandinversion allowed)whereas mostase®f repetitive
DNA involve nearly identical copiesSometechniques fohandling inexacpalindromes
(complementear not) andinexactrepeatswill be consideredn Sections9.5 and 9.6.
Techniqueghat handlemoreliberal errorswill beconsideredater in thebook. Another
objectionis that simple techniquessuffice forsmaltlength repeats. Foexample,f one
seekgepeatingDNA of lengthten,it makes sensw first builda tableof all the4!® possible
strings andhen scan theargetDNA with alength-ten templatehashingsubstring locations
into the precomputed table.

Despite thesebjections, thdit of the computationaproblemswe will discussto
biological phenomenas good enougltio motivate sophisticated techniquies handling
exactor nearlyexactrepetitionsThosetechniquegassthe" plausibility” testin thatthey,
or the ideasthat underliethem, may be of future usein computationalbiology. In this
light, we nowconsidemproblemsconcerning exactlyepeatedgubstringsn a singlestring.

4 In a sensethe longest commonsubstring problem and the k-common substring problem (Sections?7.6 and 9.7)
alsoconcern repetitive substrings. However, the repeats those problems occur across distinct stringgather than
inside the samestring. That distinction is critical, both in the definition of the problemsand Far the techniques used
to solvethem.

7.12. APLLI: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 145

Note that being left diverse &property thatpropagatesipward.Ilf a nodev is left
diverse.so areall of its ancestorén thetree.

Theorem7.12.2. Thestring a labelingthepathto a nodev d 7 is a maximal repeat
andonly if v is left diverse.

PROOF Supposdirst thatv is left diverse.That means theraresubstringsca andy a
in S, wherex and y representifferent charactersLet the first substringbe followed
by characterp. If the secondsubstringis followed by any characterbut p, thena is a
maximal repeaandthe theorem is provedsosupposehat thetwo occurrencesrexap
andyap.But sincev is a (branchinghodethere mustlsobeasubstring ¢g in S for some
character thatis differentfrom p. If thisoccurrenceof aq is precededy character x
thenit participatesn a maximal pair with string yap,andif it is precededy y thenit
participates ira maximalpair withxap.Eitherway,a cannotbe precededy bothx and
y, soa mustbe parof a maximal paieand hence& mustbe a maximal repeat.
Conversely,if a is a maximal repeathenit participatesin a maximalpair and there
mustbe dccurrencesf a that have distinct leitharactersHencev mustbe left diverse.

O

The maximalrepeatscan be compactly represented

Sincethe propertyof being left diverse propagates upwamndl , Theoreni7.12.2implies
that the maximal repeatof S are representedy someinitial portion of the suffix tree
for S. In detail, a nodeis called a "frontier’ nodein 7 if it is left diversebut noneof
its children areleft diverse.The subtree of 7 from the rootdown to the frontier nodes
preciselyrepresentshe maximal repeats that everypathfrom therootto anodeator
above thdrontierdefinesa maximal repeat. Conversely, every maximal repedefined
by onesuch pathThis subtree, whose leaveare thefrontier nodesin 7, is a compact
representatiohof the setof all maximal repeatsf S. Note that the total length of the
maximalrepeatsouldbeas large a®(n?), butsincethe representatiois asubtree of 7
it hasO(n) totalsize(includingthe symbols useth represent edge label§oif theleft
diversenodescanbefoundin O(n) time,thenatree representation fdnesetof maximal
repeatscan be constructedn O(n) time, even thouglthe total lengthof thosemaximal
repeatcould be ©(n*). We now describeanalgorithmto find the left diverse node 7T .

Finding left diversenodesin linear time

Foreachnodew of 7, thealgorithm eitherecords that is left diverseor it recordsthe
characterdenotedk, thatis the left characteiof everyleaf in v'ssubtree. The algorithm
startsby recordingtheleft characteof eachleaf of thesuffix tree7 for S.Tnenit processes
thenodesin 7 bottomup. To processa nodev, it examineghechildrenof v. If any child
of v hasbeenidentified asbeing left diverse, theih recordsthatv is left diverself none
of v's children are left diverse, theit examinesthe characters recordead v’s children.
If theserecordedcharacters arall equal, sayx, thenit records character at node v.
However,if they arenot all x, thenit recordsthat v is left diverseThe timeto checkif
all children of v havethe samerecordedcharactelis proportionalto the numberof v’s
children.Hencethe total time for the algorithmis O(#). To form thefinal representation

of thesetof maximal repeatsimply deleteall nodesfrom 7 that are noteft diverse.In
summarywe have

3 Thiskind of treeis sometimes referretb asa compact trie, butwe will not usethatterminology.

144 FIRST APPLICATIONS OF SUFFIX TREES

a maximalrepeat buso isaab,which is a superstring of string a, althoughnot every
occurrencef a is containedn that superstringlt may not always beesirableto report
a asa repetitivestructure sincethe larger substringabthatsometimes containg may
be moreinfornative.

Definition A supermaximalrepeatis amaximal repeahatneveroccurs assubstring
of anyother maximatepeat.

Maximalpairs,maximal repeatgnd supermaximaepeatsre only thre@possiblevays
to define exact repetitivetructuresof interest.Othermodelsof exact repeatare given
in the exercisesProblemsrelatedto palindromesand tandenmrepeatsare considereth
severabectionghroughouthe book. Inexaaepeatswvill beconsideredn Section®.5and
9.6.1. Certain kind®f repeatsare elegantly representedgraphicaformin adevicecalled
alandscape{104]. An efficient programto constructthe landscapebasedessentiallyon
suffix treesjs alsodescribedn that paperln the nexsectionsve detail howto efficiently
find all maximal pairsmaximal repeatsand supermaximalepeats.

7.12.1. A linear-time algorithm to find all maximal repeats

The simplest problem ighat of finding all maximal repeatsUsing a suffix tree,it is
possibleto find themin O(r) time for a stringof lengthn. Moreover,thereis a compact
representation of all thmaximal repeatsndit canalsobeconstructed irQ(z) time,even
thoughthe total length of all themaximal repeats maye Q(n*). The following lemma
states anecessargonditionfor asubstringto bea maximalrepeat.

-Lemma 7.12.1. Let 7 bethe suffix tree forstring S. f a string a s a maximal repeatin
S then a is the path-label of a nodev in 7.

PROOF If aisa maximal repeat then themaustbeatleasttwo copiesof ain § wherethe
charactetto theright of the first copydiffersfrom the characteto the right of the second
copy. Hence is thepathlabel of a nodevin 7. O

The key pointin Lemma?.12.1 is that patha mustendat anode of 7. This leads
immediatelyto thefollowing surprisingfact:

Theorem7.12.1. Therecan be at mosts maximal repeatsin any stringof lengthn.

PROOF Since7 hasn leaves,andeachinternal node othethan theroot musthaveat

least two children7 can have amosts internal nodes. Lemma 7.12thhenimpliesthe
theorem. O

Theorem7.12.1 would bea trivial fact if at mostonesubstring startin@t any position
i could be partof a maximal pair. But thatis not true. For example,in the string S =
xabcyitizabegabeyr considered earliehoth copiesof substringabcey participatein
maximalpairs, whileeach copyof abc alsoparticipatesn maximal pairs.

Sonow we knowthatto find maximalrepeatsve only need taonsider stringshat end
at nodesin the suffixtree7". But which specifimmodes corresponi maximalrepeats?

Definition Foreachposition: in stringS,characteS(i — 1) is calledtheleft character
of i. Theleft character & a leaf Of T is theleft character of thesuffix position represented
by that leaf.

Definition A nodev of 7 is calledleft diverseif at leasttwo leavesn v’s subtree have
different leftcharactersBy definition.a leaf cannotbe left diverse.

7.12. APL11: FINDING ALL MAXIMAL REPETITIVE STRUCTURES 147

by x and succeedelly vy, is not containedin a maximal repeat,and so witnessesthe
near-supermaximality ofa. O

In summary,we can state

Theorem?7.12.4. A leftdiverseinternal nodev represents nearsupermaximal repeaa
if and only if one of v’s children isa leaf (specifyingpositioni, say)and its left character,
S(i — 1), is the left characterof no other leaf belowv. A left diverseinternal node v
represents supermaximal repeatafi and onlyfi all of v'schildren areleavesand each
hasa distinct leftcharacter:

Therefore all supermaximal andnearsupermaximatepeatsanbeidentified inlinear
time. Moreover, we can definde degreeof nearsupermaximalityof a asthe fraction
of occurrences of that witnessits nearsupermaximality.That degreeof eachnear-
supermaximalepeat caralsobecomputedn lineartime.

7.12.3. Finding all the maximal pairsin linear time

We now turn tothe questiorof finding all the maximal pairs.Since therecanbe more
than O(n) of them,therunning time ofthealgorithmwill bestated in termsf thesize of
the output. The algorithmis an extensiowf the method giverearlierto find all maximal
repeats.

First, build asuffix treefor S. Foreacheaf specifyingasuffix i, recordits left character
S(i — I). Now traversethetreefrom bottomup, visitingeachnodein the tree.In detail,
work from the leaves upwardyisiting a nodev only after visiting everychild of v. During
thevisit to v, createatmosto linked listsateachnode, where is thesize of the alphabet.
Each listisindexedby a leftcharactex. Thelist atv indexedby x containsall the starting
positions of substrings S that matchthe stringon the path tov andthat havethe left
characterx. Thatis, the listat v indexedby x is just the listof leaf numbers below that
specifysuffixesin S thatareimmediatelyprecededy charactei.

Letting n denotethelength of S, it is easyto create(but not keep)these lists inO(n)
total time, working bottomup in the tree. Tocreatethe listfor characterx at nodev,
link together(but do notcopy)the lists for character thatexistfor eachof v's children.
Becausdhesizeof thealphabeits finite, the time for all linkingis constantteachnode.
Linking without copyingis requiredin orderto achievethe O(n) time bound. Linking
a listcreatedat a nodeVv to someotherlist destroysthelist for v'. Fortunately,the lists
createdat v* will not be neededafterthelistsfor its parentare created.

Now weshowin detailhow to use thdists availableat v's children tofind all maximal
pairs containingthe string thatlabelsthe path tov. At the startof the visit to nodev,
beforev’s lists havebeencreated, thalgorithmcanoutput all maximapairs(p,. p:.a),
wherea is the stringlabeling thepathtov. For each character andeachchild v' of v,
the algorithmforms the Cartesianproductof the list forx at v' with the unionof every
list for a characteother thanx at achild of v otherthanv'. Any pair inthis listgivesthe
starting position®f a maximalpair for stringa. The proof of this isessentiallythe same
asthe proofof Theorem 7.12.2.

If therearek maximal pairs, thenthe methodworksin O(n + k) time. The creation
of the suffix tree,its bottom up traversal, andall the list linking take O{n) time. Each
operation usedh a Cartesianproductproducesa maximal pair not producedanywhere
else,so O(k) time isusedin thoseoperations.If we only wantto count the numbeof

146 FIRST APPLICATIONS OF SUFFIX TREES

Theorem 7.12.3. All the maximal repeatsin S can befound in O(n) time, and a tree
representatiorfor themcan be constructedrom suffix tree 7 in O(n) time aswell.

7.12.2. Finding supermaximal repeats in lineartime

Recallthatasuperrnaximatepeatisa maximal repeahatis nota substringof any other
maximalrepeatWe establish herefficient criteriato find all thesupermaximatepeatsn

a stringS.To do this, we solvethe moregeneralproblemof finding nearsupermaximal
repeats.

Definition A substringa of Sis arear-supermaximal repeatif a is a maximal repeat
in S thatoccursat least oncen alocationwhereit is not containeth anothemaximal
repeatSuchanoccurrenceof a is saidto witnessthe near-supermaximality of a.

For example, in thetringaabxayaabxab, substringais a maximalrepeatbut nota
supermaximabranearsupermaximatepeatwhereasn aebxayaab, substringais again
not supermaximal, but it is nearsupermaximalThe second occurrence @& witnesses
that fact.

With this terminology, asupermaximaltepeata is a maximal repeatn which every
occurrenceof a is a witnessto its nearsupermaximality.Note thatit is not true thatthe
set of neassupermaximafepeatdss thesetof maximal repeats thaitre not superrnaximal
repeats.

Thesuffix tree7 for S will be used tdocatethe nearsupermaximabndthe supermax-
imal repeats. Let bea nodecorrespondingo a maximalrepeata ,andlet w (possiblya
leaf) be oneof v’s children, The leavesin the subtree of 7 rootedat w identify the loca
tionsof some (bunot all) of the occurrencesf substringa in S.Let L(w) denotethose
occurrencesDo any of those occurrenced a witnessthe near-supermaximality of a?

Lemma 7.12.2. If node w is an internal nodein 7, then none of the occurrencesof a
specified by L(w) witnessthe near-supermaximalityof a.

PROOF Let y bethe substringlabelingedge(v, w).Every index inL{w) specifiesan
occurrenceof ay.But w is internal,so|L{(w)| > 1 anday is the prefix of a maximal:
repeat.Therefore,all the occurrencesf a specifiedby L(w) arecontainedn a maximal
repeat thabeginsay,andw cannotwitnessthe nearsupermaximalityof ««. [0

Thusnooccurrenceof ¢ in L{w) canwitness thenearsupermaximalityf a unlessw
isaleaf.If wisaleaf,thenw specifies single particulaoccurrencef substring = ay.
We now considerthat case.

Lemma7.12.3. Suppose wis a leaf, and leti bethe (single)occurrenceof g represented
by leaf w. Let x be theleft character of leuf w. Then the occurrenceof « at position i

witnesseshe near-supermaximalisy of a if and only if x is the left characterof no other
leaf belowv.

PROOF If thereis anotherccurrenceof @ with a precedingharacter, thenxa occurs
twiceandsois eithera maximalrepeatr is containedn one.In thatcase, theccurrence
of @ ati is contained in anaximalrepeat.

If there is no otheroccurrenceof a with a precedingx, then xa occursonly once
in §. Now let ¥ be the firstcharacteron the edgefrom v to w. Sincew is a leaf,ay
occurs onlyoncein §. Therefore,the occurrence o& startingat i, which is preceded

7.14. APL13: SUFFIX ARRAYS - MORE SPACEREDUCTION 149

linearizationof the circularstring.If 1 = 0 orl = n + 1, thencut the circular string
betweercharacter: andcharacterl. Eachleafin thesubtree of this pointgivesa cutting
point yielding the samelinear string.

Thecorrectnes®f this solutionis easy to establish and is leftamsexercise.

This method runsn linear time andis thereforetime optimal. Adifferent lineartime
methodwith a smallerconstantwasgivenby Shiloach[404].

7.14. APL13: Suffix arrays — more spacereduction

In Section 6.5.1we sawthat when alphabet size is includedhe timeandspacebounds,
the suffix treefor a stringof length m either require®(m|Z|) spaceor the minimum
of O(mlogm) and O(mlog!|Z|) time. Similarly,searching for gatternP of lengthn
usinga suffix tree canbe donein O(n) time onlyif @(m{X|) spaces usedfor thetree,
or if weassumehatupto|X| charactecomparisons cost onlyonstantime. Otherwise,
the searchtakesthe minimum of O(nlogm) and O(nlog|X|) comparisonsFor these
reasonsa suffix tree mayrequiretoo muchspaceto be practicalin someapplications.
Hencea morespace efficienapproachs desired that still retains masit theadvantages
of searchingwith asuffix tree.

In thecontextof the substringproblem (see Sectioh3)whereafixed stringT will be
searched many times, they issuesarethe time neededor thesearchandthespaceused
by thefixed datastructurerepresenting’ . The spaceusedduringthe preprocessingf T
is of lessconcern, althought shouldstill be™ reasonablé.

Manber andMyers [308] proposed anew datastructure,called a suffix array, that
is very spaceefficient and yet can be usedto solve the exactmatching problem othe
substring problem almost as efficiendgwith asuffix tree. Suffix arrays are likelp be
animportant contributiorto certainstring problemsn computationamolecularbiology,
where thealphabetanbelarge(we will discusssomeof thereasons fofarge alphabets
below). Interestingly,although the more formal notion of a suffix array and the basic
algorithmsfor building and using it were developedn [308], many of the ideaswere
anticipatedn thebiological literatureby Martinez[3103.

After defining suffix arrayswe show how to converta suffix tree toa suffix array
in lineartime. It is importantto be clearon the setting of the problem.String T will
be held fixed for along time, while P will vary. Therefore the goalis to find a space-
efficientrepresentatiofior T (a suffix array)that will be heldfixed andthat facilitates
searchproblemsin T. However, the amourf space used during the constructabrihat
representation iaotsocritical. In the exercisesve consider anore spaceefficient way
to build the representatiaiself.

Definition Givenanm-character string7, a suffix arrayfor T, calledPos, is anarray
of theintegersin therangel to m, specifyingthe lexicographimrderof them suffixes
of string T.

That is,the suffix startingat positionPog(1) of T is the lexically smallessuffix, and
in general suffixPos (i) of T is lexically smallerthan suffixPos (i T+ 1).

As usual, we will affix a terminalsymbol$ to the endof S, but now we interpret
it to be lexically less than angthercharactein the alphabetThis is in contrastto its
interpretationin theprevious section. Aanexampleof a suffix array, if T is mississippi,
thenthesuffix array Posid 1, 8, 5,2, 1, 10,9, 7, 4, 6, 3. Figure7 .4liststheeleversuffixes
in lexicographic order.

148 FIRSTAPPLICATIONSOFSUFFIXTREES

maximal pairs, therthe algorithmcanbe modified torunin O(n) time. If only maximal
pairsof a certainminimum lengtharerequestedthis would be theypical case irmany
applications)then thealgorithmcan be modified to run inO(n + k,,,) time, wherek,, is
the numberof maximal pairsof length atleastthe required minimum. Simphstopthe
bottom-up traversalat any nodewhose stringdepthfalls below thatminimum.

In summarywe have the followingheorem:

Theorem?7.12.5. All the maximal pairscan bdound in O(n + k) time,wherek is the
numberd maximalpairs. If thereareonly &, maximalpairsd length abovea given
threshold,thenall thosecanbefound in O(n T k) time.

7.13. APL12: Circular string linearization

Recallthe definitionof a circularstring S given in Exercise2 of Chapterl (pagell).

Thecharacter®f S areinitially numbered sequentiallirom 1to n startingatan arbitrary
pointin S.

Definition Givenanorderingof thecharacters ithe alphabetastring §; is lexically
(or lexicographically) smallethanastring S; if S, would appeabeforeS, in anormal
dictionary orderingf thetwostrings. Thats, startingfrom theleft end of thetwostrings,
if i is thefirst position wherghe twostringsdiffer, thenS, is lexically lessthan $; if
andonly if §;(i) precedes:(i) in theorderingof the alphabetisedin thosestrings.

To handlethe casethat S, is a properprefix of S, (and shouldeconsideredexically
lessthan §;), wefollow the conventiorthata spaces takento bethe firstcharacteof the
alphabet.

Thecircularstring linearization problemfor a circularstring S of n characterss
the following: Choosea placeto cut § sothatthe resulting linearstring is the lexically
smallestof all the npossiblelinear stringscreatedby cutting S.

This problemarisesn chemical datdasegor circularmolecules. EacBuchmolecule
is representedby a circular string of chemicalcharacters; tallow faster lookupand
comparison®f molecules,onewantsto storeeachcircular stringby a canonicallinear
string.A single circulamoleculemayitself bea part ofa more complex moleculspthis
problemarisesin the "innerloop™ of morecomplex chemicatetrieval andcomparison
problems.

A naturalchoicefor canonical linear strings theonethatis lexically leastWith suffix
trees,thatstringcanbefoundin O(n) time.

7.13.1. Solution via suffix trees

Arbitrarily cutthecircularstring S, giving alinear stringL. Then, doubld., creatingthe
stringL L, and build the suffix tre@ for LL. As usual,affix the terminal symbol$ atthe
endof LL, butinterpretit to be lexically greaterthanany charactein the alphabetused
for S. (Intuitively, the purposeof doubling Lis to allow efficient consideratiorof strings
thatbegin witha suffix of L andendwith a prefixof L.) Next, traverse tre@ with the
rule that, at every node, the traversalfollows the edgewhose firstcharacteris lexically

smallest oveall first characters on edges aiftthe node.This traversalcontinuesuntil

the traversed path has stridgpthn. Suchadepthwill alwaysbereachedwith theproof
left to the reader)Any leaf / in the subtree at that point can be used tocut the string.
If 1 <! < n, thencutting S betweencharacterd — 1 andl creates dexically smallest

7.14. APL13: SUFFIX ARRAYS - MORE SPACE REDUCTION 151

Figure 7.5: The lexical depth -first traversal of the suffix tree visits the leaves in order 5, 2, 6, 3,4, 1.

Forexample thesuffix tree forT = tartarisshownin Figure 7.5Thelexical depthfirst
traversalvisits thenodesin theorders, 2, 6, 3, 4, 1, defining thevaluesof arrayPos.

As animplementatiordetail,if the branche®utof eachnodeof the treeareorganized
in asortedlinked list (asdiscussedn Section 6.5pagel16)then theoverheado do a
lexical depthfirst searchis thesameasfor anydepthfirst searchEvery timethe search
mustchoose aredgeout of a nodev to traverse, itsimply picks the nextedgeon v's
linked list.

7.14.2.How to searchfor a pattern usinga suffix array

Thesuffix arrayfor string T allowsa very simplealgorithmtofind all occurrencesf any
patternPin T. Thekeyis thatif P occursin T thenall thelocationsof thoseoccurrences
will be groupedconsecutively ifPos.Forexample,P = issi occursn mississippstarting
at locations2 and5, which areindeedadjacent inPos (seeFigure7.4). Soto searchHor
occurrencesf Pin T simplydobinary search ovehesuffix array. In moreletail,suppose
that Pislexically lesshanthesuffix in themiddle positionof Pos (i.e., suffix Pos([m /21)).
In thatcase thefirst placein Posthat contains a positiowhere P occurs inT mustbe
in the first half ofPos. Similarly, if Pis lexically greaterthan suffixPos([m/2]), thenthe
placeswhereP occursin T mustbein the second haléf Pos. Using binarysearchpne
cantherefore findhe smallest indekin Pos (ifany)such that? exactly matcheghefirst
n characters o$uffix Pos(i). Similarly, onecan findthe largest index with that property.
ThenpatternP occursin 7 startingat every locatioryiven by Pos(i) throughPos{i").
Thelexical comparisomf P to any suffix takestime proportionalto thelengthof the
commonprefix of thosetwo strings.Thatprefix haslengthat mostn; hence

Theorem7.14.2. By using binarysearchonarrayPos, all theoccurrencesf Pin T can
befound in O(nlogm) time.

Of course thetrue behaviorwof the algorithmdependon how manylong prefixesof
P occurin T. If very few long prefixes of P occurin T thenit will rarelyhappen that a
specificlexical comparisonactuallytakes®{n) time andgenerallythe O(nlogm) bound
is quitepessimisticIn "randon strings(even onlargealphabetsjhis methodshouldrun
in O(n*logm)expectedime.In casesvhere manyong prefixesof Pdooccur inT, then
the methodcan beimprovedwith thetwo tricksdescribedn the next twosubsections.

150 FIRST APPLICATIONS OF SUFFIXTREES

1 [
ippi
issippi
ississippi
mississippi
pi
ppi
sippil
sisippi
ssippi
ssissippi
Figure 7.4: The eleven suffixes o mississippilisted in lexicographic order. The starting positions of those
suffixes define the suffix array Pos.

.
oA NOORNOXR

w

Noticethat the suffixarray holdonly integers anttence containsoinformationabout
thealphabetusedin string T. Therefore the spacerequiredby suffix arrays is modest-
for a stringof lengthm, the arraycanbestoredin exactlym computemwords, assuming
word sizeof at leastogm bits.

When augmentedith anadditional2m values(called Lcp valuesand definedlater),
the suffix array can beisedto find all the occurrencem T of a pattern P in O(n +
log, m) singlecharacteicomparison and bookkeepimgerations. Moreover, this bound
isindependentf thealphabesize.Sincefor mostproblemsof interestog, mis O(n), the
substringproblemis solvedby usingsuffix arraysasefficiently asby using suffixtrees.

7.14.1.Suffix tree to suffix array in linear time

We assumehat sufficientspace isavailable to builca suffix treefor T (this isdoneonce
duringa preprocessing phasd)ut that the suffix treecannotbe keptintact to be usedin
the (manypubsequerdearches for patteris T. Instead we convert thesuffix treeto the
more spacefficient suffix array. Exercises 5354, and 55 developan alternative, more
spaceefficient (but slowermethod for building a suffix array.

A suffix array for T can be obtained fromthe suffix tree 7 for T by performing

a "lexical" depthfirst traversal of7. Once the suffix arrayis built, the suffix tree is
discarded.

Definition Defineanedge(v, u) to belexically lessthan anedge(v, w) if and onlyif
thefirstcharacteonthe(u, u) edgeis lexically lessthan theiirst character orfv, w). (In
thisapplicationtheendof stringcharactes is lexically lessthan anyother character.)

Sinceno twoedges oubf v havelabelsbeginningwith thesame charactethereis a
strict lexical orderingof theedgesout of v. This orderingimpliesthatthe pathfrom the
rootof 7 following thelexically smallesedgeoutof eachencounterediode leads taleaf
of 7 representinghelexically smallestsuffix of 7. More generally adepthfirst traversal
of 7 that traverses thedgesout of eachnodev in theirlexical orderwill encounterthe
leavesof 7 in thelexical orderof thesuffixesthey represent. Suffiarray Posis therefore
just the orderedist of suffix numbersencounteredt the leaves off during the lexical
depthfirstsearchThesuffix treefor T is constructedh lineartime,andthetraversalalso
takes onlylineartime, so wehave theollowing:

Theorem 7.14.1. Thesuffix array Posfur astringT o lengthm canbeconstructedn
O(m) time.

7.14. APL13: SUFFIX ARRAYS -MORE SPACE REDUCTION 153

lep(L, M)

n g 8 Z

m f f y

e e["""777TTTTRTTT e x
d d d d

c ¢ c

b b b b

a a a a

P L M R

Figure 7.6: Subcase 1 of the super-accelerant. Pattern Pis abcdemrshown vertically running upwards
from the first character. The suffixes Pos{L), Pos{M), and Pos(R) are also shown vertically. In this case,
Lep(t, M) > 0and/ > r. Any starting location of Pin T must occur in Pos to the right of M, since Pagrees
with suffix Pos(M] only up to character I.

o If Lcp(L,M)> 1, thenthe commonprefix of suffix Pos(L) and suffixPos(M) is longer
thanthe commonprefix of P and Pos(L). Therefore,P agreeswith suffix Pos(M) up
through charactér In other wordsgcharacterg + 1 of suffix Pos(L) and suffixPos(M)
are identicabndlexically lessthan charactert 1 of P (thelastfact follows sinceP is
lexically greatethansuffix Pos(L)). Henceall (if any) starting locationsf £ in 7 must
occurto the right of position M in Pos. Soin any iterationof the binary search where
this case occurgpexamination®f P areneededy just getschangedo M, andl andr
remainunchanged. (See Figure6.)

o If Lcp(L., M) < 1, then thecommonprefix of suffix Pos(L) andPos(M) is smaller than
the commonprefix of suffix Pes(L) and P. Therefore,P agreeswith suffix Pos(M) up
through charactdicp (L,M).ThelLcp(L,M)+ 1 charactersf P and suffixPos(L) are
identicaland lexicallyless thancharactef.cp (L, M) 1 of suffix PosiM). Henceall (if
any) starting locationsf P in T must occutto theleft of position M in Pus.Soin any
iterationof the binarysearchwherethis caseoccurs,noexaminationsf P areneededr
is changedo Lep (L. M), 1 remainsunchanged, an& is changedo M.

o If Lep(L,M)=1, thenP agreewith suffix Pos(M) upto charactet. Thealgorithm then
lexically comparesP to suffix Pos(M) startingfrom position1 + 1. In the usualmanner,

the outcomeof thatlexical comparisordetermineswvhich of L or R changealongwith
the corresponding changélorr.

Theorem7.14.3. Using the Lcp values, the searchalgorithm doesat mostO (nt logm)
comparisonsand runsin that time.

PROOF First, by simplecaseanalysisit is easyto verify thatneitherl norr ever decrease
duringthe binary searchAlso, everyiterationof thebinary search terminatéke search,
examineqo character®f P, or endsafter thefirst mismatch occurs thatiteration.

In the two cases({ = r or Lep(L,M) = 1 > r) wherethe algorithmexaminesa
character duringheiteration,thecomparisonstartwith charactemax(f, r)of P.Suppose
there are&k characteref P examinedn thatiteration.Thentherearek — 1 matchesluring
the iteration, and atthe end of the iteration max({, r) increasesby k — 1 (eitherl or r
is changedto that value).Henceat the start ofany iteration, charactemax(/, r) of P
may have alreadyeenexamined put the nextcharacteiin P has not beermfhatmeansat
mostoneredundantomparisorperiterationis done.Thusnomore tharlog, m redundant
comparisonaredoneoverall.Thereareatmostn nonredundardomparisonsf characters

152 FIRSTAPPLICATIONSOFSUFFIX TREES

7.14.3. A simple accelerant

As the binary search proceedset L and R denotethe left andright boundariesf the
"currentsearchinterval’. At thestart,L equalsl and R equalsm. Thenin eachiteration
of the binarysearch,a queryis made atiocation M = [(R + L)/2] of Pos.The search
algorithmkeepdrackof thelongestprefixesof Pos(L) andPos(R) that matcha prefix of
P.Let/ andr denote thoséwo prefix lengths,respectivelyand letrnlr = min(/, r).

Thevaluernlr canbeusedto accelerate thiexical comparisomf P andsuffix Pos(M).
SincearrayPos gives the lexicalrderingof the suffixesof T, if i is any indexbetween
L and R, thefirst rnlr charactersof suffix Pos(i) must be the same aghe first mir
character®f suffix Pos(L) andhence ofP.Therefore, thdexical comparisornof P and
suffix Pos(M) canbegin from position mir + 1 of the two strings,ratherthan starting
from thefirst position.

Maintainingm{r during thebinarysearchadddittle additionaloverhead to the algorithm
butavoids many redundant comparison&t the start othesearchwhen L= 1landR = m,
explicitly compareP to suffix Pos(1) and suffixPos(m) tofind /, r, andmlir. However,
theworstcasetime for this revisedmethodis still O(n logm). MyersandManberreport
thatthe use ofnlr aloneallowsthesearchto run asfastin practiceas theO(n +logm)
worstcasemethod thatvefirst advertised. Stillif only becausef its elegancewe present
the full method thagjuaranteeshatbetterworstcasebound.

7.14.4. A superaccelerant

Call an examinationof a characterin P redundanif that characterhasbeenexamined
before.The goalof the acceleration igo reducethe numbewof redundant charactex-
aminationgo at mostone periteration of thebinary search- henceO(logm) in all. The
desired timebound, O(n + logm), follows immediately. The useof rnir alone doesiot
achievethis goal.Since rnlris the minimumof 1 andr, wheneverl # r, all characters
in P from rnlr + 1 to the maximumof { andr will have alreadybeenexamined Thus
any comparison®f those characters wile redundantWhatis neededs a wayto begin
comparisons athe maximumof / andr.

Definition Lcp (i, j) isthelengthof the longestommonprefix of the suffixes specified
in positionsi and j of Pos. Thatis, Lcp(i, j) is thelengthof the longesprefixcommon
to suffix Pos(i} andsuffix Pos(j) .Theterm Lcp stands folongest commorprefix.

Forexample, whel = mississippi, suffixPos (3) is issippi, suffix Pos(4) is ississippi,
andsoLcp(3, 4) isfour (see Figurer.4).

To speedup thesearch, the algorithrasesLcp(L. M) andLcp (M, R) for eachtriple
(L, M, R) thatarisesduring the executionof thebinary searchFor now, we assuméhat
thesevaluescanbe obtainedin constantime when neededandshow howthey help the
search. Latewe will showhow to computethe particularLep valuesneededdy thebinary
searchduringthe preprocessing of .

How to useLcp values

Simplest case In any iteration of thebinary searchjf { = r, thencompare P to suffix
Pos(M) startingfrom positionrnlr + 1 =1+ 1 =r + 1, asbefore.

Generalcase When! # r, let usassumewithout lossof generalitythat! > r. Then
there are three subcases:

7.14. APL13: SUFFIX ARRAYS - MORE SPACEREDUCTION 155

If we assuméhatthestring-depthsof the nodes are known (thesanbeaccumulated
in linear time) thenby theLemma,thevaluesLep (i, i + 1) for i from 1tom — 1 areeasily
accumulatedn O¢m) time.Therestof theLcp valuesareeasyto accumulatebecausef
thefollowing lemma:

Lemma7.14.2. Foranypaird positionsi, j, wherej isgreaterthan: +1, Lep (i, /)is
thesmallestvalued Lep (k, k T 1), wherek rangefrom i to j — 1.

PROOF Suffix Pos(i} and Suffix Pos(j) of T havea commonprefix of length lep(i, j).
By thepropertiesf lexical ordering, foreveryk between and j, suffix Pos(k) must also
havethatcommonprefix. Therefore fcp (k, k +1)=lep (i, j) for every kbetween and
j— 1

Now bytransitivity,Lcp (i, i +2) mustbe ateastas largeasthe minimunof Lcp (i, i+ 1)
andLcp (i +1,it 2).Extendingthis observationLcp (i, j) mustbe at leastaslargeas
the smallesicp (k, k + 1) for k fromi to j — 1. Combinedwith theobservationin the
first paragraph, the lemmaproved. O

GivenLemma7.14.2 theremainingLcp valuesfor B canbefound by working upfrom
theleavessettingtheLcp valueatany nodev to the minimumof thelcp values ofits two
children.Thisclearly takegust O(m) time.

In summary, thed(n + log m)-time string and substring matchirajgorithm usinga
suffix array must precomputéehe 2m — 1 Lep values associated withe node®f binary
tree B. The leaf valuescanbe accumulated duringhe lineartime, lexical, depthfirst
traversabf 7 usedto constructhesuffix array. Theremaining valuearecomputed from
theleaf values in lineatime by a bottom-up traversalof B, resultingin thefollowing:

Theorem7.14.4. All the needed Lcpualites canbe accumulatedn O(m) time, andall
occurrencesf P in T canbefound using asuffix arrayin O(n+logm) time.

7.14.6.Where do large alphabetproblemsarise?

A largepartof the motivationfor suffix arrayscomesfrom problems thagrise in using
suffix trees whenthe underlying alphabet ifarge.So it is naturalto ask where large
alphabet®ccur.

First, therearenaturallanguagessuchas Chinesewith large™alphabet$ (usingsome
computerrepresentatiorof the Chinesepictograms.)However,mostlarge alphabetsof
interestto us arise because th&tring containsnumbers,eachof which is treatedasa
characterOnesimpleexamples a stringthatcomes froma picturewhereeachcharacter
in the stringgives thecolor orgray level of a pixel.

String and substringmatching problemswhere the alphabet containlumbers,and
wherePandT arelarge,also arisén computational problemis molecular biologyOne
exampleis the mapmatchingproblem.A restrictionenzymemapfor a singleenzyme
specifiesthe locationsin a DNA string wherecopiesof a certain substrin@a restriction
enzymerecognitionsite) occurs. Eactsuch sitemay be separatedrom the nextone
by many thousand®f basesHence,therestrictionenzyme magor thatsingleenzyme
is representeds a string consistingof a sequencef integersspecifyingthe distances
betweensuccessivenzyme sitesConsideredas a stringeachinteger is acharacterof a
(huge) underlying alphabdWlore generallyamapmaydisplay the sitesf many different
patternsof interest (whetheor not they arerestrictionenzyme sitesgothestring (map)

154 FIRST APPLICATIONSOFSUFFIX TREES

1,8

1,1 1,2 23 34 45 56 67 7,8

Figure 7.7: Binary tree 8 representing all the possible search intervals in any execution of binary search
in alist of length m = 8.

of P,giving atotalboundof n +logm comparisonsAll the otherwork in thealgorithm
canclearly bedonein time proportionalto thesecomparisons. g

7.14.5.How to obtain the L¢p values

TheLcp valuesneededo accelerate searches arecomputedn the preprocessinghase
during the creatiorof the suffix array. Wefirst considerhow many possibleLcp values
areeverneededoverany possible executioof binary search). For convenience, assume
m is apowerof two.

Definition Let B bea completebinary tree withvn leaves, where each nodeB is
labeledwith a pair of integers(i, j), 1 < i < j < m. Therootof B is labeled(1, m).
Everynonleaf node(i, j) hastwo children; theeft oneis labeled(i, (i + 73/2h, and
the rightoneis labeled([(; * j)/2], j).Theleavesof B are labeledi, i + 1) (plus one
labeled(1, 1)) andare ordered lefto right in increasing ordeof i. (See Figure 7.7.)

Essentially,the node labels specifyhe endpoints(L, R) of all the possible search
intervalsthatcould arisein the binary search ofanorderedlist of lengthm.SinceB isa
binary treewith m leaves,B has2m — 1 nodesdn total.S othereareonly O(m} Lcp values
that needbe precomputed. it therefore plausible that thos@luescanbe accumulated
during the O(m)-time preprocessin@f T ; but howexactly?In the nextlemmawe show
thatthe Lcp valuesat the leaves oB areeasyto accumulatealuring the lexical deptffirst
traversabf 7.

Lemma7.14.1. In the depthfirst traversal of 7, considerthe internal nodes visited
betweenthe visits to leaf Pos(i) and leaf Pos(i T 1), that is, betweenthe ith leaf visited
and the next leaf visited. From among those internahodes,let v denotethe one that is
closest tahe root. Then Lepfl, i + 1) equals the string-depthof nodeuw.

Forexample, consider agathe suffix treeshownin Figure7.5(pagel5l). Lcp(S,6)
is the stringdepthof the parentof leaves 4 and.. Thatstring-depthis 3, sincethe parent
of 4 and 1 is labeleavith thestringtar. Thevaluesof Lep(i, i + 1) are2, 0, 1, 0, 3for i
from1tos.

Thehardespartof Lemma7.14.1linvolvesparsingt. Oncedone, theroof isimmediate
from propertief suffix trees, andt is left to thereader.

7.16. APL15: A BOYER-MOOREAPPROACHTO EXACT SETMATCHING 157

suffix treesto speedup regularexpressiorpatternmatching(with errors)is discussedn
Section 12.4.

Yeast Suffix treesarealsothecentraldata structuren genome-scale anaisof Saccha-

romycescerevisiae(brewer'syeast),doneat the Max-PlankInstitute [320]. Suffix trees
are"particularlysuitablefor finding substring patterns sequencelatabases[320]. So
in thatproject, highly optimizeduffix trees calledhashedpositiortreesare usedo solve
problemsof " clusteringsequencelatainto evolutionary related protein familiedyucture
predictionand fragmenassembly [320]. (See Section 16.16r adiscussiorof fragment
assembly.)

Borrelia burgdorferi Borrelia burgdorferi is the bacterium causing Lyme disease.
Its genomeis about one million baseslong, and iscurrently being sequenced #he
BrookhaverNationalLaboratory using directedsequencingpproach tdill in gaps after
an initialshotgun sequencing phase (Seetion 16.14)ChenandSkieng 100} developed
methods basedn suffix treesandsuffix arraysto solve the fragment assembly problem
for this project. In fragmentassembly, onenajor bottleneckis overlapdetection, which
requiresolving avariantof the suffixprefix matching problem (allowingpme errorsfor

all pairs ofstringsin alargeset(seeSection16.15.1). The Borreliawork [100] consisted
of 4,612fragments (stringsptaling 2,032,740 basddsingsuffix trees anduffix arrays,
the neededverlaps were computdd aboutfifteen minutes.To comparethe speed and
accuracyof the suffix tree methodsto pure dynamigrogrammingmethoddor overlap
detection(discussedn Section 11.6.4nd 16.15.1), Chenand Skienaclosely examined
cosrnid-sizedlata. Thetestestablishedhatthe suffix tree approaclivesa 1,000times
speedup over thslightly) moreaccuratedynamic programming approadmding 99%

of thesignificant overlapsound by using dynamic programing.

Efficiency is critical

In all three projectstheefficiencyof building, maintaining, and searchitige suffix trees
isextremely important, and the implementation det#isection 6.%recrucial, However,
because thsuffix trees are verlarge(approachin@0million charactersn thecaseof the
Arabidopsis project)additionalimplementation effort is needed, particulanyrganizing
the suffix tree ondisk, so that the numberof disk accessess reducedAll three projects
havedeeplyexploredthat issueand havefound somewhat different solutiorisee[320],
[100] and[63] for details.

7.16. APL15: A Boyer-Moore approachto exact set matching

The Boyer—Moore algorithm for exact matching(single pattern) will often makdong
shiftsof the pattern,examining only amall percentagef all the characteri the text.
In contrast, KnuthMorris-Pratt examinesall charactersn the text in order tofind all
occurrences ofhe pattern.

In the caseof exactsetmatching,the Aho—-Corasick algorithm is analogout Knuth-
Morris-Pratt- it examinesll charactersf thetext. Sincethe Boyer-Moore algorithmfor
asinglestringis far more efficient in practickhanKnuth-Morris-Pratt, one would like to
havea Boyer—Mooretypealgorithmfor theexact set matching problem, thatasnethod
for theexactset matching problerthat typically examineenly asublinear portiorof T.
No knownsimple algorithm achieves thigoal andalsohas alinear worstcase running

156 FIRSTAPPLICATIONS OF SUFFIX TREES

consistf charactergrom afinite alphabet (representirtge known patternof interest)
alternatingwith integers giving thalistancesbetween such site¥he alphabet is huge
becausehe range of integersis huge,and sincedistancesare oftenknown with high
precision,the numbers araot roundedoff. Moreover the variety of known patternsof
interest is itself largésee[435]).

It often happenthata DNA substringis obtained andtudied without knowing where
that DNA is locatedin the genomeor whetherthat substringhas beerpreviouslyre-
searchedlf boththe newandthe previouslystudiedDNA arefully sequence@dndput in
a databasethen theissueof previous workor locationswould be solvedby exactstring
matching.But mostDNA substringghatare studiedare not fully sequenced mapsare
easier and cheapty obtainthansequences. Consequenthefollowing matching prob
lemonmapsarises and translatésan matchingproblemon stringswith large alphabets:

Givenanestablished (restrictioeanzyme)mapfor a large DNA string and amap
from asmaller string, determiné thesmallerstringis asubstringpf thelarger one.

Sinceeach map is represented asalternating stringf characters and integeithe
underlying alphabeis huge. This provides onemotivationfor using suffix arraysfor
matchingor substring searchini placeof suffix trees.Of course, theroblems become
moredifficult in the presencef errors,when the integerm thestringsmay not beexact,
or whensitesare missingor spuriouslyadded.That problem, callednapalignment,is
discussed ivection16.10.

7.15. APL14: Suffix treesin genomescaleprojects

Suffix trees, generalizesuffix treesandsuffix arraysare now beingusedas the central
datastructuresn three genomecaleprojects.

Arabidopsisthaliana An Arabidopsisthalianagenomeproject,® at theMichigan State
University andthe University of Minnesotais initially creatingan EST mapof the Ara-
bidopsiggenomgsee Sectio.5.1for a discussionf ESTs andChapter 6for adiscussion
of mapping).In that project generalized suffireesareusedin several way$63, 64, 65].

First, each sequenced fragmentheckedo catchany contaminatiorby known vector
sequencesThe vectorsequences arkept in a generalizedsuffix tree, as discussedn
Section7.5.

Secondeachnewsequenced fragmerstcheckedagainst fragments alreadgquenced
to find duplicatesequencesr regionsof high similarity. Thefragmentsequenceare kept
in an expanding generalized suffix tréer this purpose Sincethe project will sequence
about 36,00@ragments, eacbf lengthabout400basesthe efficiencyof thesearche$or
duplicates andior contamination ismportant.

Third, suffix treesare usedin the searchor biologically significant patternsin the
obtainedArabidopsis sequences. Patternginterestare often represented as regular ex
pressions, and generalizedffix treesare usedto accelerateegularexpression pattern
matching, wherasmall numbeof errors ina match arallowedAn approach that permits

8 Arabidopsis thaliana isthe " fruit fly" of plant geneticsi.e., the classicmodelorganismin studyingthe molecular
biology of plants.lIts sizeis about100million basepairs.

7.16. APL15: A BOYER-MOOREAPPROACHTO EXACT SETMATCHING 159

patternsandm is thesizeof the text.The more efficient algorithnwill increase by more
thanonewhenever possible, usinglesthatare analogout the badcharacter andood
suffix rules of Boyer—Moore. Of course,no shift can be greaterthanthe length of the
shortest patter® in P,for such a shiftouldmiss occurrencesf P in'T.

7.16.2. Bad character rule

The bad characterrule from Boyer—Moore can easily be adaptedto the set matching
problem.Supposéghetestmatchessomepath inXC” againstthecharacters frommdownto

j < iin T butcannot extend the pathmatch charactef (j — 1). A direct generalization
of the bad characterule increases to the smallest indek > i (if it exists) such that
some patter? fror® hascharactefT (j — 1) exactlyi, — j + 2 positionsfrom its right
end.(See Figureg.8and7.9.)With thisrule, if ; exists,thenwhentherightendof every
patternin P is alignedwith positioni, of T, characterj — 1 of T will be opposite a
matchingcharactein string P from P.(Thereis aspecial case to considéthetest fails
on the first comparisori.e., atthe rootof X’. In thatcasesetj =i T 1 beforeapplying
theshift rule.)

The above generalizatioof thebad charactawule fromthe twastringcase isnotquite
correct.The problem arisebecausef patterns ir? that are smallethan? . It mayhappen
thati, is solargethatif therightendsof all thepatterns are aligneuaiith it, then thdeft end
of thesmallestpatternP,,;, in Pwould be alignedvith a position greatethanj in T. If that
happensit is possiblethatsome occurrencef Py, (with its left endoppositea position
beforej + 1in T) will be missed.Hence,usingonly the bad character information (not
thesuffix rules tocome next)j shouldnot beset largetthanj — 1+ | Pun|- In summary,
thebadcharacterule forasetof patterns is:

If i, doesnot exist,thenincreasei to j — 1+ | Pny,|; otherwiseincreasd to the
minimum of iy and j — 1+ | Proinl-

ji-1 i
X

T Ll
x [}
P, :
X '
P2 ‘
Py Y
1
P, —_—
1
PS
Figure 7.8: No further matchis possible at position j— 1 of T.
ji-1 [
T X
R i
P, -
X] 1
P, i
P —
1]

|

Figure 7.9: Shift when the bad character rule is applied

158 FIRST APPLICATIONSOFSUFFIXTREES

time. However,a synthesisof the Boyer-Moore andAho—Corasick algorithms dueo
Commentz-Walter [109] solvestheexactsetmatchingproblem in thepirit of the Boyer—
Moore algorithm. Itsshift rulesallow manycharacter®f T to gounexamined. We will
not describe the Commenrt#Valter algorithm but insteaduse suffixtreesto achieve the
sameresultmoresimply.

For simplicity of exposition,we will first describe aolutionthat usestwo trees- a
simplekeyword tregwithoutback pointers) togetheavith asuffix tree.Thedifficult work

is doneby the suffixtree,After understanding theleas,we implementthe methodising
only the suffix tree.

Definition Let P" denotethe reverse o patternP, and letP” bethe setof strings
obtainedby reversingevery patternP from aninputset?.

As usual, thealgorithmpreprocessethe setof patterns and then ustte resultof the
preprocessingo accelerate theearchThefollowing expositioninterleaves the descrip
tionsof the searcimethod and thereprocessing thaupports theearch.

7.16.1. The search

Recallthatin the BoyerMoorealgorithm,whentheendof the patterns placedagainst
apositioni in T, thecomparisorof individual characterproceedsight to left. However,
indexi is increasedateachiteration.Thesehigh-level feature®f Boyer-Moorewill also
hold in the algorithmwe present for exact sebatching.

In the case omultiple patterns,the search iscarried outon a simple keyword tree
K" (without backpointers) thaencodesthe patternsn P'. The search agairthooses
increasingvaluesof index i anddeterminedor eachchosen whetherthereis a pattern
in set? endingat position: of text T. Details aregivenbelow.

The preprocessindgime neededto build X" is only O(n), the total length of all the
patternsin P. Moreover, becausao backpointers areeeded, th@reprocessings par
ticularly simple.The algorithmto build K" successivelynsertseachpatterninto thetree,
following asfar aspossiblea matchingpathfrom the root, etcRecall thatachleaf of X"
specifiesoneof thepatternsn P.

The testat position

TreeK" canbeusedto test,for anyspecific positioni in T, whetheroneof the patterns in
P endsat position. To makethistest, simplyfollow apathfrom theroot of K", matching
charactersn the pattwith characters in T, startingwith 7(¢) andmoving righttoleft as in
Boyer—Moore.lf aleafof X' isreached before tHeft end ofT is reachedthenthe pattern
numberwritten at the leafspecifiesa pattern thatmustoccurin T endingat positioni.
Converselyjf thematchedpathendsbefore reaching keaf andcannotbe extendedthen
no patternin P occursin T endingat positioni.

Thefirst test beginsvith positioni equalto the length of themallestpatternin 7. The
entirealgorithmends when is set largethan:n, thelength of T.

When thdestfor a specifigoosition: is finished the algorithnmncreases andreturnsto
therootof X" tobeginanothetest. Increasingisanalogouso shifting the singlepatternin
theoriginal BoyeMoorealgorithm.But by howmuch should beincreased™creasing
I by oneis analogous tohe naivealgorithm forexact matchingWith a shift of only one
position, nooccurrencesf any patternwill bemissed, buttheresultingcomputationwill
be inefficient. Inthe worstcase|it will take ®@(rnm) time, wheren is the total sizeof the

7.16. APL15: A BOYER-MOORE APPROACH TO EXACT SET MATCHING 161

J i
T | a I
p L o1)

)
[

1

Lol

Py !
¥

P4 —]

p, L]

5

Figure 7.10: Substringa in A matched from position idown to position jof T; no furthermatchis possibfe
to the left of position j.

Figure 7.11: The shift when the weak good suffix rule is applied. In this figure, pattern A3 determines the
amount of the shift.

from theendof P,theni shouldbe increasetly exactlyr positions,thatis, i, shouldbe
set toi + r.(SeeFigure7.10andFigure7.11.)

We will solve the problemof finding i,, if it exists, using a suffix tree obtained by
preprocessingetP’. The key involvesusingthesuffix treeto search fora patternP" in
P’ containinga copyof «” starting closesto its left endbut not occurringasa prefix of
P'. If thatoccurrencef «” startsat positionz of patternP', thenan occurrencef a ends
r = z — 1 positiondrom theendof P.

During thepreprocessinghasebuild a generalizesuffix tree7” for the set of patterns
Pr. Recallthatin a generalizedsuffix tree eachleaf is associatedwvith both a pattern
P" € P" anda numberz specifying thestarting position ofa suffix of P'.

Definition Foreachinternal nodeu of T", z, denotes the smallest numlzegreater
than 1 (if any) suchthatz is a suffix positionnumberwritten ata leaf in thesubtree of
v. If nosuchleaf exists thenz, is undefined.

With this suffix tree7 ", determinethe numberz, for each internahodev. Thesetwo
preprocessing taskseeasily accomplishedh linear time by standard methodand are
left to the reader.

As an example ofhe preprocessing, considéreset? = {wxa, xaqq. gxax} andthe
generalizeduffix treefor P shownin Figure 7.12Thefirst numbermoneachleaf refers to
a string inP", andthesecondnumberrefersto asuffix starting positionn thatstring.The
numberz, is thefirst (oronly) numbemritten ateveryinternalnode(thesecondhumber
will beintroducedater).

We cannowdescribenow 7" is usedduring thesearcho determine valuei,, if it exists.
After matchinge” alonga path inX", traverse the pattabeleda” from therootof 7.
That pathexistsbecause is a suffix of somepatternin P (thatis whatthe searchin X

160 FIRST APPLICATIONSOFSUFFIXTREES

The preprocessingeededo implementthe badcharacterule issimpleandis left to
the reader,

Thegeneralization of the bazharacterule tosetmatching iseasybut, unlikethe case
of asingle patternyseof the badcharacterule alonemay notbe very effective. As the
numberof patternggrows, the typical sizef i; — i is likely to decreaseparticularly if
the alphabets small. This is becausa&ome pattern is likelyto havecharacterT (j — 1)
close tobut left of, the pointwherethe previousmatchesend.As noted earlierin some
applicationsn molecular biologythe total lengthof the patternsn P is largerthanthe
sizeof T, makingthebad charactemule almosuselessA badcharacterule analogougo
thesimpler, unextended badharacter ruléor a singlepatternwould be evenless useful.
Thereforejn thesetmatchingcasea rule analogous to thgoodsuffix rule is crucialin
makinga Boyer-Mooreapproacteffective.

7.16.3. Good suffix rule

To adaptthe (weak)goodsuffix rule to the set matchingproblemwe reason aollows:

After a matchedpath inX" is found (eitheffinding anoccurrencef a patternpr not) let
j betheleft-mostcharacteiin T that was matchedlongthe path,and leta = T[;..i]

be the substringof T that was matchedby the traversal (butound in reverseorder). A

direct generalizatior(to setmatching)of the two-string goodsuffix rule would shiftthe

right endsof all the patternsin P to the smallestvaluei, > i (if it exists)such that
T[j..i] matches substringof somepatternP in P.PatternP mustcontainthe substring
« beginning exactly, — | + 1 positionsfrom its rightend. Thisshift is analogougo the
good suffix shift for two patterns,but unlike the two-pattericase,that shift may be too

large. The reasois againdueto patterns thaare smallethan P.

Whenthereare patternssmallerthan 2, if the right endof every pattern moves tg, it
may happen that thkeft endof the smallestpattern P,;, would be placedmorethan one
positionto theright of i. In that caseanoccurrenceof P, in T could be missedEven
if thatdoesn't happerthereis anotherproblem.Supposédhata prefix 8 of somepattern
P' € P matchessuffix of a. If P'issmallerthan P, thenshiftingthe rightendof P' to i,
may shift the prefix g of P' pastthesubstrings in T. If thathappensthenanoccurrence
of P in T couldbemissed.Soleti; bethe smallest indegreaterthani (if /3 exists)such
that whenall the patternsn P arealignedwith positioni; of T, a prefix of at leastone
patternis alignedoppositea suffix of a in T. Notice that becausf containsmorethan
one patternthatoverlapmight not be the largesbverlapbetweena prefix of a patternin
P andasuffixof a. Thenthe goodsuffix ruleis:

Increase to theminimum of iy, i3, O i + | Pnil. Ignorei, and/or i3 in thisrule, if
either or botrare nonexistent.

7.16.4. How to determinei, and i;

Thequestionnowis howto efficiently determine,; andi; when neededuringthe search.
We will first discuss;. Recallthate denotes the substrirgf T that wasmatchedn the
searchjustended.

To determing,, we needto find which patternP in P contains acopy of a ending
closestto its rightend,but not occurringasasuffix of P. If that copyof « endsr places

7.16. APL 15: A BOYER-MOORE APPROACH TOEXACT SET MATCHING 163

The proof is immediate ands left to the reader. Clearlyi; can be foundluring the
traversabf thea" path in 7" usedto search for,. If neitheri; nori; exist,theni should
beincreasedy thelength ofthe smallespatternin P.

7.16.5. An implementation eliminating redundancy

The implementation aboveuilds two treesin time and spaceroportional to the total
sizeof thepatternsn P.In addition,everytimeastringa is matchedn X" only O(jal|)
additionaltime is used tasearchor i, andis. Thusthetime toimplementtheshifts using
the two treesis proportionalto the time usedto find the matchesFroman asymptotic
standpointthe twotreesareassmallasone, and the two traversadse asfast asone.
But clearly thereis superfluous workn this implementatiorr a single tree ana single
traversalpersearchphaseshouldsuffice.Here'show.

Preprocessingor Boyer-Moore exactsetmatching
Begin

1. Build ageneralizeduffix tree7” for thestringsin 7. (Eachleafin the treeis numbered
both by aspecificpatternP" in P" andby a specificstarting positionz of a suffixin P".)

2. ldentifyandmarkevery nodén 7”,incudng leavesthatisanancestoof aleaf numbered
by suffix positionone(for somepatternP" in P"). Note thata nodeis consideredo be
anancestoof itself.

3. Foreach markedodev, setz, to be the smallestsuffix position number greaterthan
one(if thereis one)of any leafin Vv's subtree.

4. Findeveryleaf edggu, z) of 7" thatis labeledonly by the terminalcharactes, andset
d, =z.

5. Foreachnodev in 77 setd, equalto thesmallestvalueof 4, for anyancestor (including
v) of v.

6. Removethesubtree rootedat any unmarked nodéncludingleaves)f 7. (Nodeswere
markedin step2.)

End.

Theabove preprocessingsks areeasily accomplisheith lineartime by standardree
traversaimethods.

Using £ in the searchphase

Let C denotethe treeat the end of the preprocessing. Trel:is essentially the familiar
keywordtree/C" butis more compactedAny pathof nodes with onlyonedescendertas
beenreplacedwith asingleedge Hence, foranyi, thetest to sed a patternof P endsat
positioni can beexecuted using treC rather tharkC". Moreover, unlikek’", eachnodev
in £ now has associated wiil the values needed to computeandi; in consrant time.
In detail, after the algorithmmatchesa stringe in T by following the path in L, the
algorithmchecksthe firstnodev ator beneath thendof the pathin L. If z, is defined
there theni; exists andequals + z, — 1. Nextthealgorithmchecksthe firstnodev at or
abovetheendof the matched pattf. ¢/ is definedthere then; existsandequald +d’ - 1.
The searchphase will notmissany occurrencef a patternif either the gooduffix
ruleor the bad characteule is usedby itself. Howeverthetwo rules can be combined
increment by the largestamountspecifiedby eitherof thetwo rules.
Figure7.13shows treeL correspondingo the tre€7” shownin Figure7.12.

162 FIRSTAPPLICATIONS OF SUFFIX TREES

2,2

Figure 7.12: Generalized suffix tree T* for the set P = {wxa, xaqq, gxaxj.

determined)soa isa prefixof somepatternin 77. Let v be thefirst nodeator belowthe
endof that path inT".If z, is defined, then, canbeobtained fromit: Theleaf defining
z, (ie., theleaf wherez = z,) is associateavith astring P* € P" thatcontainsacopy of
a" startingto the right of positionone. Ovemll suchoccurrence®f a” in thestrings of
P, P" containsthecopy ofa’' starting closest tats left end.Thatmeans thaP contains
acopy of « thatis not a suffixof P,andover allsuchoccurrencesf «, P containsthe
copy of@ endingclosestto its right end. P is thenthe stringin P thatshouldbe used
to seti;. Moreover,aendsin P exactlyz, — 1 charactergrom theendof P.Hence,as
argued above, should be increaseay z, — 1 positions.In summary, we have

Theorem 7.16.1.If the first nodev in 7" at or bdow the end of patha” hasa defined
value z,, theni, equalsi + z, — 1.

Usingsuffix tree7 ", the determinatioiwnf i; takesO(]a|) time,only doubling the time
of the search used fmd «. However,with proper preprocessinghesearch usetb find
i» canbeeliminated.Thedetailswill begivenbelowin Section7.16.5.

Now we turn to thecomputation of;. Thisis againeasyassuminghe proper prepro
cessing ofP. Again we usethe generalizeduffix tree7” for P". To getthe ideaof the
method letP € P beany patterrsuchthat asuffix of a is a prefix of P.That meanshat
aprefixof «” is a suffix of P'. Now considerthe path labeled” in 7. Sincesome suffix
of « is a prefixof P,someinitial portion of thea" path in7" describes auffix of P".
Therethus must bea leafedge(u, z) branchingoff that path, wheréeaf z is associated
with patternP” andthelabelof edge(u,z) isjustthe terminatharactes. Converselylet
(4, z) beanyedgebranchingoff thee” pathandlabeled with theingle symbob. Thenthe
patternP associated witk musthave aprefix matchinga sufix of a.Theseobservations
leadto thefollowing preprocessing angskarchmethods.

In the preprocessingphasewhen 7 is built, identify everyedge(u, z) in T" thatis
labeled onlyby theterminal characters. (Thenumberz is usedboth asaleaf name and
asthe startingposition of the suffix associated with that leafor eachsuchnodeu, set
avariabled, to z. Forexample,n Figure7.12,d, is the seconchumber writtenateach
nodeu (d, is notdefinedfor therootnode).In thesearchphase after matchingastringe
in T, the valueof i3 (if neededyanbefoundasfollows:

Theorem 7.162. Thevalued i; shouldbesettoi +d, — |, whered,, is the smallestd

valueat a nodeon the ¢” pathin 7". If no nodeon that pathhasa d value defined,then
i3 is undefined.

7.17. APL16: ZIV-LEMPEL DATA COMPRESSION 165

Notethatwhenl, > O,thecopyof Prior, startingats; is totally containedn S[1..i — 1].

The zZiv—Lempel method usesomeof the!; ands; values to construa compressed
representationf stringS.Thebasic insights thatif thetextS[1..i — 1] hasbeerrepresented
(perhapsn compressed formand/; is greaterthan zero, thenthe next; characters o8
(substringPrior;) need not bexplicitly described. Rather, that substreanbedescribed
by thepair(s;, I;), pointingtoanearlieroccurrence of the substringollowing this insight,
a compressiormethodcould process S lefto right, outputting the pair(s;, ;) in place
of theexplicit substringS$[i..i + 1, — 11 when possible andoutputtingthe characterS(i)
whenneeded. Full detailaregivenin thealgorithm below.

Compressionalgorithm 1

begin
=1
Repeat
computel; ands;
if ; > 0then
begin
output(s;, ;)
i =i+
end
else
begin
outputS(i)
i=1i+1
end
Until i > n

end.

ForexampleS = abacabaxabeanbedescribedasab(l, 1)c(1, 3)x(1, 2)z. Of course,
in this example the number of symbolsisedto representS did not decreasebut rather
increasedThat's typical of small examples. Buas thestring lengthincreasesproviding
moreopportunity forrepeatingsubstringsthe compressionmproves.Moreover, theal-
gorithmcould chooséo output charactef(i) explicitly whenever; is*small* (theactual
ruledependsn bit-level considerations determindyy the sizeof thealphabetetc.).For
asmallexamplewhere positiveompressionsobservedgonsiderthecontrivedstring S=
ababababababababababababnbababatlepresentedas ab(l, 2)(1, 4)(1, 8)(1, 16).
Thatrepresentatiomses24 symbolsin placeof the original 32 symbols If we extendthis
exampleto containk repeated copiesf ab,thenthecompressedepresentatiorcontains
approximatelys log, k symbols- adramatic reductioin space.

To decompress compressedstring, processthe compressedstring left to right, so
thatany pair (s;, {;) in the representation pointe a substringthat hasalready beerfully
decompressedrlhat is,assumeinductively that the first j terms (single charactersr
s,! pairs) ofthecompressed stringave beemprocessed, yielding charactergshrough
i — 1 of theoriginal stringS. The nexttermin the compressedtring is either character
S 1), orit is a pair(s;, I;) pointing to a substringof S strictly beforei. In eithercase,
the algorithmhastheinformation neededtio decompresshe jth term,andsince thefirst

164 FIRSTAPPLICATIONSOFSUFFIX TREES

3,1

Figure 7.13: Tree £ correspondingto tree T for the set P = (wxa, X2gq. gxax)

1234567890 1234567890 1234567890 1234567890

gxaxtqqps gxaxtqgpg gxaxtqqpd gxaxtqqpgs

wxa wxa m a m a
xaqq xaqq xagg Xagq
gxax gxax gxax gxax

Figure 7.14: The first comparisons start at position 3 of T and match ax. The value of z, is equal to two,
so a shift of one position occurs. String gxax matches; z, is undefined, but d;, is defined and equais 4, so
a shift of three is made. The string qq matches, followed by a mismatch; 2, is undefined, but d; is defined
to be four, so a shift of three is made, after which no further matches are found and the algorithm halts.

To seehow £ is usedduring the search /et T be gxaxtqgpst. The shifts of the P are
shownin Figure7.14.

717, APL16: Ziv-Lempel data compression

Large text or graphics files ar®ften compressed imrder tosavestoragespaceor to
speedup transmissiomvhenthefile is shipped Mostoperating systemisavecompression
utilities, and soméle transferprograms automatically compreskjp, anduncompresthe
file, without userintervention.Thefield of text compressionsitself thesubject ofseveral
books(for example, seg423]) and will not behandledin depthhere.However, a popular
compressionmethoddueto Ziv-Lempel[487, 488] hasanefficientimplementation using
suffix trees[382], providing another illustration of themtility.

TheZiv-Lempel compression method widely used(it is thebasisfor the Unix utility
compress)although therareactually severalariantsof the methodthatgo by thesame
name(see[487] and[488]). In this section,we presenta variantof the basicmethod and
anefficient implementatiorof it using suffix trees.

Definition Forany positioni in astring S of lengthm, define thesubstringPrior, to
bethe longesprefixof S[:i..m] thatalso occurasa substringof S[1..i — 1].

Forexamplejf § = abaxcabaxabz thenPrior; isbax.

Definition For anypositioni in S, definel; as the lengtbf Prior;. For{; > 0, define
s; asthestartingpositionof the leftmost copyof Prior;.

In theaboveexample/; = 3ands; = 2.

7.18. APL17: MINIMUM LENGTH ENCODING OF DNA 167

7.17.3. Thereal Ziv-Lempel

Thecompressiorschemeagivenin Compression algorithr althoughnot the actualZiv—
Lempel method, doagsemble iandcaptureits spirit. TherealZiv—Lempelmethodis a
one-pass algorithnwhoseoutput differsfrom the outputof Compression algorithm | in
that, whenever it outputspair (s;, I;), it then explicitlyoutputsS(i +-1;), thecharactefol -
lowing thesubstringForexampleS = abababababababababababababababald
be compressedio ab(l, 2)a(2, 4)b(1, 10)a(2, 12)b, rather than as ab(1, 2)(1, 4)(1, 8)
(1,16). The one-passversionof Compressioralgorithm1 can trivially be convertedto
implementZiv-Lempel inlineartime.

It is not completely cleawhy the Ziv—Lempelalgorithm outputgheextracharacter.
Certainly forcompactionpurposesthis characteris not needed andeems extraneous.
One suggestedeasonfor outputting an explicittharacter afteeach(s,) pair is that
(si, 1;)S(i + ;) defines theshortest substring startireg position: thatdoesnot appear
anywhere earliein thestring, whereagqs;, {;) definesthe longessubstringstartingat :
that doesappearearlier. Historically, it may have been easid¢o reasonaboutshortest
substrings thatlo notappear earliem the stringthan toreasonabout longessubstrings
thatdo appeaearlier.

7.18. APL17: Minimum length encodingof DNA

Recently, several moleculbrology and computescienceresearclhgroupshaveusedthe
Ziv-Lempelmethodto compres®DNA strings,not for the purposeof obtaining efficient
storage but ratherto compute ameasureof the' complexity’ or “information content'
of thestrings[14, 146,325,326, 386]. Withoutfully defining thecentral technicalerms
"complexity*, "informatiori’, "'entropy", etc., we statethe basiddea,which is thatsub
stringsof greatestbiological significanceshouldbe more compressabligan substrings
thatareessentiallyrandomOneexpectghatrandom stringsvill have too littlestructureto
allow highcompression, sindeigh compression isasedn finding repetitivesegmentsn
thestring. Thereforeby searchingor substringghat are more compressaltanrandom
strings,one may be able to find stringsthat havea definite biologicalfunction. (Onthe
otherhand, mostepetitiveDNA occursoutsideof exons.)

Compressiorhasalsobeenused to study thérelatedness of two stringsS, ands; of
DNA [14, 324]. Essentially, theédeais to build a suffix treefor §, andthencompresstring
S> usingonly thesuffix treefor ;. Thatcompressiorf S, takes advantagef substrings
in S, thatappearn §;, butdoesnot take advantagef repeatedsubstringsn S, alone.
Similarly, §; can becompressedsing onlyasuffix treefor S,. These compressiomsflect
andestimatethe"relatednessof §; ands,. If thetwo strings are highly relatethenboth
computationshould significantlycompresghe string at hand.

Another biological usefor Ziv—-Lempel-like algorithms involves estimating the
"entropy' of shortstrings inorderto discriminatebetween exons and intromseukaryotic
DNA [146]. Farach et al. [146] report that the average compressiof intronsdoes not
differ significantly fromthe average compressiasf exons, anchencecompressionby
itself doesnot distinguishexonsfrom introns, However,they also report thefollowing
extensiorof that approacho beeffectivein distinguishingexonsfrom introns.

7 Qther, more common ways o study the relatednessor similarity of strings of two stringsae extensivelydiscussed
in Part I11.

166 FIRST APPLICATIONS OF SUFFIX TREES

term in thecompresseaduingis thefirst character o5, we concludeby inductionthat the
decompression algorithmanobtaintheoriginal stringS.

7.17.1. Implementation usingsuffix trees

The key implementationquestionis how to computel; ands; eachtime the algorithm
requestghose values$or a positioni. Thealgorithm compresse$ left to right anddoes
not requests;, {;) for anypositioni alreadyin the compressepart of S. Thecompressed
substrings are thereformnoverlappingandif eachrequestegair(s;, /;} canbe foundin
O(l;) time, thentheentire algorithmwould runin O(m) time. Using a suffix tree forS,
the O(!;) time boundis easilyachievedor any request.

Before beginninghe compressionthealgorithmfirst buildsa suffix tree” for § and
thennumberseachnodev with the number,. This number equals the smallesaffix
(position)numberof any leafin v’s subtree, andit givesthe left-moststartingpositionin
Sof any copyof the substring that labelthe pathfrom r to v. The tree canbe built in
O(m) time, andall thenode numbersanbeobtainedin O(m) time by any standardree
traversalmethod(or bottomup propagation).

Whenthealgorithmneedgo computds;, {;) for somepositioni, it traverses thanique
path in7 thatmatchesa prefix of S[i..m]. The traversalends apoint p (not necessarily
a node)wheni equals the stringlepth ofpoint p plusthe numberc,, whereuv is the first
nodeator below p. In either casethe pathfrom therootto p describeghe longesprefix
of S[i..m] thatalsooccursin S[1..i]. So,s; equalsc, and/; equals the stringlepthof
p . Exploiting thefact thatthe alphabet idixed, thetime to find (s;, £;) is O(l;). Thusthe
entire compressioalgorithmrunsin O(m) time.

7.17.2. A onepassversion

In theimplementatiorabove weassumed to be known aheaaf timeandthat a suffixree
for Scouldbebuilt beforecompressiorbegins.Thatworksfine in manycontexts butthe
methodcanalsobemodifiedto operateon-line ass is being inputpne characteat a time.
Essentially, thalgorithmis implementedothat thecompactiorof § is interwovenwith

theconstructiorof 7', Theeasiestway to seehow to dothisis with Ukkonen'slineartime

suffix treealgorithm.

Ukkonen's algorithnbuildsimplicit suffix treeson-line as charactergre addedo the
rightend ofthegrowingstring. Assumethatthecompactiorhas beemonefor S[I..i — 1]
andthatimplicit suffix treeZ;__, for string S[1..i — 1} hasbeenconstructed. Athat point,
thecompactioralgorithmneedgo know(s;, /;). It canobtainthatpairin exactlythesame
way thatis donein the aboveimplementationf the ¢, valueshavebeenwritten ateach
nodev in Z;_,. However,unlike the above implementatiomhich establisheshosec,
valuesin a linear timetraversal of7, the algorithm cannottraverseeachof the implicit
suffix trees sincethatwould take morethanlineartime overall.Instead, whenevexnew
internalnodev is createdn Ukkonen'salgorithm by splitting an edge(u, w) ,c, is setto
¢, andwheneveranewleaf v is createdg, isjust thesuffix number associatedith leaf
v. In this way, only constanttime is neededo update the, valueswhen anew nodes
addedto the treeln summary,we have

Theorem7.17.1. Compressioralgorithm1 canbeimplemented tounin lineartimeas
aonepass, ofinealgorithmto compressanyinputstring S.

10.

11.

12.
13.

14.

15.

16.

7.20. EXERCISES 169

Discuss the relative advantages of the Aho—Corasick method versus the use of suffix trees
for the exact set matching problem, where the text is fixed and the set of patterns is varied
over time. Consider preprocessing, search time, and space use. Consider both the cases
when the text is larger than the set of patterns and vice versa.

. In what way does the suffix tree more deeply expose the structure of a string compared

to the Aho—Corasick keyword tree or the preprocessing done for the Knuth-Morris-Pratt or
Boyer-Moore methods? That is, the sp values give some information about a string, but
the suffix tree gives much more information about the structure of the string. Make this
precise. Answer the same question about suffix trees and Z values.

. Give an algorithm to take in a set of k strings and to find the longest common substring

of each of the (;) pairs of strings. Assume each string is of length n. Since the longest
common substring of any pair can be foundin O(n) time, 0 (k2n)time clearly suffices. Now
suppose that the string lengths are different but sum to m.Show how to find all the longest
common substrings in time O(kmy). Now try for O(mtk?) (I don't know how to achieve this
last bound).

. The problem of finding substrings common to a set of distinct strings was discussed sep-

arately from the problem of finding substrings common to a single string, and the first
problem seems much harder to solve than the second. Why can't the first problem just be
reduced to the second by concatenating the strings in the set to form one large string?

By modifying the compaction algorithm and adding a little extra (linear space) information
to the resulting DAG, it is possible to use the DAG to determine not only whether a pattern
occursin the text, but to find all the occurrences of the pattern. We illustrate the idea when
there is only a single merge of nodes p and g. Assume that p has larger string depth than
g and that v is the parent of p before the merge. During the merge, remove the subtree of
pand put a displacement number of —1 on the new u to pg edge. Now suppose we search
for a pattern Pin the text and determine that Pis in the text. Let i be a leaf below the path
labeled P (i.e., below the termination point of the search). If the search traversed the u to
pq edge, then Poccurs starting at position i — 1; otherwise it occurs starting at position i.

Generalize this idea and work out the details for any number of node merges.

In some applications it is desirable to know the number of times an input string P occurs
in a larger string S. After the obvious linear-time preprocessing, queries of this sort can
be answeredin O(| P|) time using a suffix tree. Show how to preprocess the DAG in linear
time so that these queries can be answered in O(] P|) time using a DAG.

Prove the correctness of the compaction algorithm for suffix trees.

Let S be the reverse of the string S. Is there a relationship between the number of nodes
in the DAG for S and the DAG for S"? Prove it. Find the relationship between the DAG for
S and the DAG for S' (this relationship is a bit more direct than for suffix trees).

In Theorem 7.7.1 we gave an easily computed condition to determine when two subtrees
of a suffix tree for string S are isomorphic. An alternative condition that is less useful for
efficient computation is as follows: Let « be the substring labeling a node p and g be the
substringlabeling a node q in the suffix tree for S. The subtrees of p and g are isomorphic
if and only if the set of positions in S where occurrencesof o end equals the set of positions
in § where occurrences of g end.

Prove the correctness of this alternative condition for subtree isomorphism.

Does Theorem 7.7.1 still hold for a generalized suffix tree (for more than a single string)?
If not, can it be easily extended to hold?

The DAG Dfor astring Scanbe converted to a finite-state machineby expanding each edge
with more than one character on its label into a series of edges labeled by one character

168 FIRST APPLICATIONS OF SUFFIX TREES

Definition For any positioni in string S, let ZL(i) denotethe lengthof the longest
substringoeginning ai that appearsomewherén the stringsS[1..i].

Definition GivenaDNA string$ partitionedinto exonsandintronstheexonaverage
ZL value is the averageZL(i) taken over everypositioni in theexonsof S. Similarly,
theinrronaveragel is theaverageZL(i) takenover positionsn intronsof S.

It shouldbeintuitive at thispointthat the exoraverageZL value andheintron-average
ZL valuecanbe computedin O(n) time, by usingsuffix treesto computeall the ZL(i)
values. The techniqueesembleshe way matchingstatisticsarecomputedbut is more
involved since thsubstringstarting ai mustalso appeato the leftof positioni.

The mainempirical resulof [146] is that theexonaverageZL valueis lower thanthe
intron-averageZL value bya statistically significant amounthatresultis contraryto the
expectation stateabove thabiologically significansubstringgexons in this case) should
be more compressable than more randonsubstrings (which intronare believedto be).
Hence, théull biological significancef stringcompressabilityemains an open question.

7.19. Additional applications

Many additionalapplicationsof suffix trees appear ithe exercisedelow,in Chapter9,
in Sectionsl2.2.4,12.3,and12.4,andin exercise®f Chapterl4.

7.20. Exercises

1. Givenaset S of k strings, we want to find every string in S that is a substring of some other
string in S. Assuming that the total length of all the strings is 1, give an O(n)-time algorithm

to solve this problem. This result will be needed in algorithms for the shortest superstring
probiem (Section 16.17).

2. For a string S of length n, show how to compute the N(i}, L(7), L(i} and spi values (dis-
cussed in Sections 2.2.4 and 2.3.2) in O(n) time directly from a suffix tree for S.

3. We can define the suffix tree in terms of the keyword tree used in the Aho—Corasick (AC)
algorithm. The input to the AC algorithmis a set of patterns P, and the AC tree is a compact
representation of those patterns. For a single string S we can think of the n suffixes of S
as a set of patterns. Then one can build a suffix tree for S by first constructingthe AC tree
for those n patterns, and then compressing, into a single edge, any maximal path through
nodes with only a singte child. If we take this approach, what is the relationship between
the failure links used in the keyword tree and the suffix links used in Ukkonen's algorithm?
Why aren't suffix trees built in this way?

4. A suffix tree for a string S can be viewed as a keyword tree, where the strings in the
keyword tree are the suffixes of S. In this way, a suffix tree is useful in efficiently building
a keyword tree when the strings for the tree are only implicitly specified. Now consider the
following implicitly specified set of strings: Given two strings Sy and S;, let D be the set of
all substrings of Sy that are not containedin S;. Assuming the two strings are of length n,
show how to construct a keyword tree for set Din O(n) time. Next, build a keyword tree for
D together with the set of substrings of S; that are not in S;.

5. Suppose one has built a generalized suffix tree for a string S along with its suffix links (or
link pointers). Show howto efficiently convert the suffix tree into an Aho-Corasick keyword
tree.

22.

23.

24.

25.

26.

27.

28.

7.20. EXERCISES 171

compute matching statistics ms(j) for each position jin P. Number ms(j) is defined as
the length of the longest substring starting at position jin Pthat matches some substring
in T. We could proceed as before, but that would require a suffix tree for the long tree T.
Show how to find all the matching statistics for both 7 and Pin O(F|) time, using only a
suffix tree for P.

In our discussion of matching statistics, we used the suffix links created by Ukkonen's algo-
rithm. Suffix links can also be obtained by reversing the link pointers of Weiner's algorithm,
but suppose that the tree cannot be modified. Can the matching statisticsbe computed in
linear time using the tree and link pointers as given by Weiner's algorithm?

In Section 7.8 we discussed the reverse use of a suffix tree to solve the exact pattern
matching problem: Find all occurrences of pattern P in text T. The solution there com-
puted the matching statistic ms(i) for each position i in the text. Here is a modification of
that method that solves the exact matching problem but does not compute the matching
statistics: Follow the details of the matching statistic algorithm but never examine new char-
acters in the text unless you are on the path from the root to the leaf labeled 1. Thatis, in
each iteration, do not proceed below the string ey in the suffix tree, until you are on the
path that leads to leaf 1. When not on this path, the algorithm just follows suffix links and
performs skip,/count operations until it gets back on the desired path.

Prove that this modification correctly solves the exact matching problem in linear time.

What advantages or disadvantages are there to this modified method compared to com-
puting the matching statistics?

There is a simple practical improvementto the previous method. Let v be a point on the
path to leaf 1 where some search ended, and let v” be the node on that path that was next
entered by the algorithm (after some number of iterations that visit nodes off that path).
Then, create a direct shortcut link from v to v’. The point is that if any future iteration ends
at v, then the shortcutlink can be taken to avoid the longer indirect route back to v'.

Prove that this improvement works (i.e., that the exact matching problem is correctty solved
in this way).

What is the relationship of these shortcut links to the failure function used in the Knuth-
Morris-Prattmethod? When the suffix tree encodes more than a single pattern, what is the
relationship of these shortcut links to the backpointers used by the Aho—Corasik method?

We might modify the previous method even further: In each iteration, only follow the suffix
link (to the end of «) and do not do any skip/count operations or character comparisons
unlessyou are onthe path to leaf 1. At that point, do all the needed skip/count computations
to skip past any part of the text that has already been examined.

Fill in the details of this idea and establish whether it correctly solves the exact matching
problem in linear time.

Recallthe discussionof STSsin Section 7.8.3, page 135. Show in more detail how matching
statistics can be used to identify any STSs that a string contains, assuming there are
"modest" number of errors in either the STS strings or the new string.

Given a set of k strings of length n each, find the longest common prefix for each pair
of strings. The total time should be O(kn + p), where pis the number of pairs of strings
having a common prefix of length greater than zero. (This can be solved using the lowest
common ancestor algorithm discussed later, but a simpler method is possible.)

For any pair of strings, we can compute the length of the longest prefix common to the
pair in time linear in their total length. This is a simple use of a suffix tree. Now suppose
we are given k strings of total length nand want to compute the minimum length of all the
pairwise longestcommon prefixes over all of the (’2‘,) pairs of strings, that is, the smallest

170 FIRST APPLICATIONS OF SUFFIX TREES

17.

18.

19.

20.

21.

each. This finite-state machine will recognize substrings of S, but it will not necessarily be
the smallest such finite-state machine. Give an example of this.

We now consider how to build the smallest finite-state machine to recognize substrings of
S. Again start with a suffix tree for S, merge isomorphic subtrees, and then expand each
edge that it labeled with more than a single character. However, the merge operationmust
be done more carefully than before. Moreover, we imagine there is a suffix link from each
teaf i to each leaf i + 1, for i < n. Then, there is a path of suffix links connecting all the
leaves, and each leaf has zero leaves beneath it. Hence, all the leaves will get merged.

Recallthat Qs the set of all pairs (p,q) such that there exists a suffix link from pto q in
7T, where p and g have the Same number of leaves in their respective subtrees. Suppose
(p.q)is in Q. Let v be the parent of p, let y be the label of the edge (v. p) into p. and
let 8 be the label of the edge into . Explain why |y| > |&]. Since every edge of the DAG
will ultimately be expanded into a number of edges equal to the length of its edge-label,
we want to make each edge-labelas small as possible. Clearly, & is a suffix of ¥, and we
will exploit this fact to better merge edge-labels. During a merge of p into q, remove all
out edges from pas before, but the edge from Vv is not necessarily directed to q. Rather,
if|6] > 1, then the § edge is split into two edges by the introductionof a new node u. The
first of these edges is labeled with the first character of é and the second one, edge (¢, q),
is labeled with the remaining characters of §. Then the edge from v is directed to u rather
than to q. Edge (v, u) is labeled with the first |y | — |8] + 1 characters of ¥.

Using this modified merge, clean up the description of the entire compaction process and
prove that the resulting DAG recognizes substrings of S. The finite-state machine for S
is created by expanding each edge of this DAG labeled by more than a single character.
Each node in the DAG is now a state in the finite-state machine.

Show that the finite-state machine created above has the fewest number of states of any
finite-state machine that recognizes substrings of S. The key to this proof is that a deter-
ministic finite-state machine has the fewest number of states if no state in it is equivalent
to any other state. Two states are equivalent if, starting from them, exactly the same set of
strings are accepted. See [228].

Suppose you already have the Aho—Corasick keyword tree (with backlinks). Can you use it
to compute matching statisticsin linear time, or if not, in some "reasonable” nonlinear time
bound? Can it be used to solve the longest common substring problem in a reasonable
time bound? If not, what is the difficulty?

In Section 7.16 we discussed how to use a suffix tree to search for all occurrences of a
set of patterns in a given text. If the length of all the patterns is n and the length of the
text is m, that method takes O(n + m) time and O(m) space. Another view of this is that
the solution takes O(m) preprocessingtime and O(n) search time. In contrast, the Aho—
Corasick method solves the problemin the same total time bound but in G{(n) space. Also,
it needs O(n) preprocessingtime and O(m) search time.

Because there is no definite relationship between n and m, sometimes one method will
use less space or preprocessingtime than the other. By using a generalized suffix tree,
for the set of patterns and the reverse role for suffix trees discussed in Section 7.8, it is
possible to solve the problemwith a suffix tree, obtaining exactly the same time and space
bounds obtained by the Aho—Corasick method. Show in detail how this is done.

Using the reverse role for suffix trees discussed in Section 7.8, show how to solve the
general DNA contamination problem of Section 7.5 using only a suffix tree for S;, rather
than a generalized suffix tree for S, together with all the possible contaminants.

In Section 7.8.1 we used a suffix tree for the small string P to compute the matching
statistics ms(/) for each position / in the long text string T. Now suppose we also want to

35.

36.

37.

38.

39.

40.

41.

7.20. EXERCISES 173

efficiently find all interesting substrings in the database. If the database has total length m,

then the method shouldtake time O(m) plus time proportional to the number of interesting
substrings.

(Smallest k-repeat) Given a string Sand a number k, we want to find the smallest substring
of S that occurs in § exactly k times. Show how to solve this problem in linear time.

Theorem 7.12.1, which states that there can be at most n maximal repeats in a string of
length n, was established by connecting maximal repeats with suffix trees. It seems there
should be a direct, simple argument to establish this bound. Try to give such an argument.
Recall that it is not true that at most one maximal repeat begins at any positionin S.

Given two strings S; and S; we want to find all maximal common pairs of S; and S;. A
common substring C is maximal if the addition to C of any character on either the right or
left of C resultsin a string thatis not commonto both $; and S;. For example, if A = aayxpt
and B = agyxpw then the string y xp is a maximal common substring, whereas y x is not.
A maximal common pair is a triple {ps, p>,n’}, where p; and p, are positions in $; and
S;, respectively, and n’ is the length of a maximal common substring starting at those
positions. This is a generalization of the maximal pair in a single string.

Letting m denote the total fength of S, and Sz, give an O{m + k)-time solution to this
problem, where k is the number of triples output. Give an O(m)-time method just to count
the number of maximal common pairs and an O(n + /)-time algorithm to find one copy
of each maximal common substring, where / is the total length of those strings. This is a
generalization of the maximal repeat problem for a single string.

Another, equally efficient, but less concise way to identify supermaximal repeats is as
follows: A maximal repeatin S represented by the left-diverse node v in the suffix tree for
S is a supermaximal repeat if and only if no proper descendant of v is left diverse and no
node in v's subtree (including v) is reachable via a path of suffix links from a left diverse
node other than v. Prove this.

Show how to use the above claim to find all supermaximal repeats in linear time.

In biological applications, we are often not only interested in repeated substrings but in
occurrences of substrings where one substring is an inverted copy of the other, a com-
plemented copy, or (almost always) both. Show how to adapt all the definitions and tech-
niques developed for repeats (maximal repeats, maximal pairs, supermaximal repeats,
near-supermaximal repeats, common substrings) to handle inversion and complementa-
tion, in the same time bounds.

Give a linear-time algorithm that takes in a string S and finds the longest maximal pair in
which the two copies do not overlap. That s, if the two copies begin at positions oy < p»
and are of length n', then p; +n < P2-

Techniques for handling repeats in DNA are not only motivated by repetitive structures
that occur in the DNA itself but also by repeats that occur in data collected from the DNA.
The paper by Leung et al. {298] gives one example. In that paper they discuss a problem
of analyzing DNA sequences from E coli, where the data come from more than 1,000
independently sequenced fragments stored in an E. cofi database. Since the sequences
were contributed by independent sequencing efforts, some fragments contained others,
some of the fragmentsoverlapped others, and many intervals of the E. coligenome were yet
unsequenced. Consequently, before the desired analysis was begun, the authors wanted
to "clean up” the data at hand, finding redundantly sequenced regions of the E. coligenome
and packaging all the available sequencesinto a few contigs, i.e., strings that contain all
the substrings in the data base (these contigs may or may not be the shortest possible).

Using the techniques discussed for finding repeats, suffix-prefix overlaps, and so on, how

172

29.

30.

31.

32.

33.

34.

FIRST APPLICATIONS OF SUFFIX TREES

length of the pairwise pairs. The obvious way to solve this is to solve the longest common
prefix problem for each of the (’;) pairs of strings in O(k? + kn) time. Show how to solve
the problem in O(n) time independent of k. Consider also the probtem of computing the
maximum length over all the pairwise common prefixes.

Verify that the all-pairs suffix-prefix matching problem discussed in Section 7.10 can be
solved in O(km) time using any linear-time string matching method. That is, the O(km)
time bound does not require a suffix tree. Explain why the bound does not involve a term
for k2.

Consider again the all-pairs suffix-prefix matching probtem. It is possible to solve the prob-
lem in the same time bound without an explicit tree traversal. First, build a generalized
suffix tree T(S) for the set of k strings S (as before), and set up a vector V of length k.
Then successively initialize vector V to contain all zeros, and match each string in the set
through the tree. The match using any string S; ends at the leaf labeled with suffix 1 of
string ;. During this walk for S;, if a node v is encounteredcontaining index i in its list L(v},
then write the string-depth of node v into position i of vector V. When the walk reaches

the leaf for suffix 1 of S, V/{(/), for each i, specifies the length of the longest suffixof §; that
matches a prefix of S;.

Establish the worst-case time analysis of this method. Compare any advantages or dis-
advantages (in practical space and/or time) of this method compared to the tree traversal
method discussedin Section 7.13. Then propose modificationsto the tree traversal method
that maintain all of its advantages and also correct for its disadvantages.

A substring a is called a prefix repeatof string Sif a is a prefix of S and has the form
pA for some string 8. Give a linear-time algorithm to find the longest prefix repeat of

an input string S. This probiermm was one of Weiner's motivations for developing suffix
trees.

Very frequently in the sequence analysis literature, methods aimed at finding inter-
esting features in a biological sequence begin by cataloging certain substrings of
a long string. These methods almost always pick a fixed-length window, and then
find all the distinct strings of that fixed length. The result of this window or g-gram
approach is of course influenced by the choice of the window length. In the fol-
lowing three exercises, we show how suffix trees avoid this problem, providing a
natural and more effective extension of the window approach. See also Exercise 26
of Chapter 14.

There are m?/2 substrings of a string 7 whose length is m. Some of those substrings are
identical and so occur more than once in the string. Since there are ®(m?) substrings, we
cannot count the number of times each appearsin T in O(m) time. However, using a suffix
tree we can get an implicit representation of these numbers in O(m) time. In particular,
when any string P of length n is specified, the implicit representation should allow us to

compute the frequency of Pin Tin O(n) time. Show how to construct the implicit frequency
representationand how to use it.

Show how to count the number of distinct substrings of a string T in O(m) time, where
the length of T is m. Show how to enumerate one copy of each distinct substringin time
proportional to the length of all those strings.

One way to hunt for "interesting" sequences in a DNA sequence database is to look for
substrings in the database that appear much more often than they would be predicted to
appear by chance alone. This is done today and will become even more attractive when
huge amounts of anonymous DNA sequences are avaitable.

Assumingonehas a statistical model to determine how likely any particular substring would
occur by chance, and a threshold above which a substring is "interesting"”, show how to

45.

46.

47.

48.

49.

50.

51.

52.

53.

720. EXERCISES 175

Prove the correctness of the method presentedin Section 7.13 for the circular string lin-
earizationproblem.

Consider in detail wiether a suffix array can be used to efficiently solve the more complex
string problems considered in this chapter. The goal is to maintain: the space-efficient
properties of the suffix array while achieving the time-efficient properties of the suffix tree.
Therefore, it would be cheating to first use the suffix array for a string to construct a suffix
tree for that string.

Give the details of the preprocessing needed to implement the bad character rule in the
Boyer—Moore approach to exact set matching.

tn Section 7.16.3, we used a suffix tree to implement a weak good suffix rule for a Boyer~
Moore set matching algorithm. With that implementation, the increment of index i was
determinedin constant time after any test, independent even of the alphabet size. Extend
the suffix tree approach to implement a strong good suffix rule, where again the increment
to i can be found in constanttime. Can you remove the dependence on the alphabet in this
case?

Prove Theorem 7.16.2.

In the Ziv—Lempel algorithm, when computing {s;, f;) for some position i, why should the
traversal end at point pif the string-depth of p plus ¢, equals i? What would be the problem
with letting the match extend past character /?

Try to give some explanation for why the Ziv—Lempel algorithm outputs the extra character
compared to compressionalgorithm 1.

Show how to compute all the n values ZL(J}, defined in Section 7.18, in O(n) time. One
solutionis related to the computation of matching statistics (Section 7.8.1).

Successive refinement methods

Successive refinementis a general algorithmic technique that has been used for a number
of string problems [114, 199, 265]. In the next several exercises, we introduce the ideas,
connect successiverefinementto suffix trees, and apply successiverefinementto particular
string problems.

Let S be a string of length n The relation E, is defined on pairs of suffixes of S. We say
| Ex jif and only if suffix i and suffix jof S agree for at least their first k characters. Note that
E« is an equivalence relation and so it partitions the elements into equivalence classes.

Also, since S has n characters, every class in £, is a singleton. Verify the following two
facts:

Factl Foranyi# j, iEqjifandoniyif iEqjand i+ 1E4j+1.

Fact 2 Every Ei,, class is a subset of an E; class and so the Eg. partitionis a refinement
of the Ej partition.

We use alabeledtree T, called the refinement tree, to represent the successive refinements
o the classes of E; as k increases from 0 to n. The root of T represents class &; and
contains all the n suffixes of S. Each child of the root represents a class of £; and contains
the elements in that class. In general, each node at level I represents a class of E; and its
children represent all the E;., classes that refineit.

What is the relationship of T to the keyword tree (Section 3.4) constructed from the set of
n suffixes of S?

Now modify Tas follows. If node v represents the same set of suffixes as its parent node
v', contract V and v’ to a single node. In the new refinement tree, T’, each nonleaf node
has at least two children. What is the relationshipof T' to the suffix tree for string S? Show
how to convert a suffix tree for S into tree T' in O(r?) time.

174

42.

43,

44.

FIRST APPLICATIONS OF SUFFIX TREES

would you go about cleaning up the data and organizing the sequences into the desired
contigs?

(Thisapplicationis instructive because E. cofi, as in most prokaryotic organisms, contains
little repetitive DNA. However, that does not mean that techniques for handling repetitive
structures have no applicationto prokaryotic organisms.)

Similar clean-up problems existed in the yeast genome database, where, in addition to
the kinds of problems listed above, strings from other organisms were incorrectly listed
as yeast, yeast strings were incorrectly identified in the larger composite databases, and
parts of cloning vectors appeared in the reported yeast strings. To further complicate the
problem, more recent higher quality sequencing of yeast may yield sequences that have
one tenth of the errors than sequences in the existing databases. How the new and the
old sequencingdata should be integratedis an unsettledissue, but clearly, any large-scale
curation of the yeast database will require the kinds of computationaltools discussed here.

k-cover problem. Given two input strings S; and S; and a parameter k, a k-cover Cis a
set of substrings of Sy, each of length k or greater, such that S; can be expressed as the
concatenation of the substrings of C in some order. Note that the substrings contained in
C may overlapin Sy, but notin &. Thatis, S, is a permutation of substrings of S; that are
each of length k or greater. Give a linear-time algorithm to find a k-cover from two strings
S; and &, or determine that no such cover exists.

Ifthere is no k-cover, then find a set of substrings of 8;, each of length k or greater, that
cover the most characters of S,. Or, find the largest k’ < k (if any) such that there is a
k’-cover. Give linear-lime algorithms for these problems.

Consider now the problem of finding nonoverlapping substringsin Si, each of length k or

greater, to cover S;, or cover it as much as possible. This is a harder problem. Grapple
with it as best you can.

exon shuffling. Ineukaryoticorganisms,a geneis composed of alternating exons, whose
concatenation specifies a single protein, and introns, whose function is unclear. Similar
exons are often seen in a variety of genes. Proteins are often built in a modular form,
being composed of distinct domains (units that have distinct functions or distinct folds
that are independent of the rest of the protein), and the same domains are seen in many
different proteins, although in different orders and combinations. It is natural to wonder if
exons correspond to individual protein domains, and there is some evidence to support
this view. Hence modular protein construction may be reflected in the DNA by modular
gene construction based on the reuse and reordering of stock exons. It is estimated tha!
all proteins sequenced to date are made up of just a few thousand exons [468]. This
phenomenon of reusing exons is called exon shuffling, and proteins created via exon

shuffling are called mosaic proteins. These facts suggest the following general search
problem.

The problem: Given anonymous, but sequenced, strings of DNA from protein-coding re-
gions where the exons and introns are not known, try to identify the exons by finding
common regions (ideally, identical substrings) in two or more DNA strings. Clearly, many
of the techniques discussed in this chapter concerning common or repeated substrings
could be applied, although they would have to be tried out on real data to test their utility
or limitations. No elegant analytical result should be expected. in addition to methods for
repeats and common substrings, does the k-cover problem seem of use in studying exon
shuffling? That question will surely require an empirical, rather than theoretical answer.
Although it may not give an elegant worst-case result, it may be helpful to first find ail the
maximal common substrings of length k or more.

Prove Lemma 7.14.1.

56.

57.

.40, CACKUISES Lri

of the (singleton) classes describes a permutation of the integers 1 to n. Prove that this
permutation is the suffix array for string S. Conclude that the reverse refinement method
creates a suffix array in O(nlog n) time. What is the space advantage of this method over
the O(n)-time method detailed in Section 7.14.1?

Primitive tandem arrays

Recall that a string a is called a tandem array if a is periodic (see Section 3.2.1), i.e., it
can be written as g/ for some 1 > 2. When I = 2, the tandem array can also be called a
tandem repeat. A tandem array a = 8' contained in a string S is called maximalif there
are no additional copies of 8 before or after a.

Maximal tandem arrays were initially defined in Exercise 4 in Chapter 1 (page 13) and
the importance of tandem arrays and repeats was discussed in Section 7.11.1. We are
interested in identifying the maximal tandem arrays contained in a string. As discussed
before, it is often best to focus on a structured subset of the strings of interestin order to
limit the size of the output and to identify the most informative members. We focus here on
a subset of the maximal tandem arrays that succinctly and implicitly encode all the maximal
tandem arrays. (In Section 9.5, 9.6, and 9.6.1 we wilt discuss efficient methods to find all
the tandem repeats in a string, and we allow the repeats to contain some errors.)

We use the pair (8, 1) to describe the tandem array 8'. Now consider the tandem array
o = abababababababab. It can be described by the pair (abababab, 2), or by (abab, 4),
or by (ab, 8). Which description is best? Since the first two pairs can be deduced from the
last, we choose the later pair. This "choice" will now be precisely defined.

A string 8 is said to be primitive if 8 is not periodic. For example, the string ab is primitive,
whereas abab is not. The pair (ab, 8) is the preferred description of abababababababab
because string ab is primitive. The preference for primitive strings extends naturally to the
description of maximal tandem arrays that occur as substrings in larger strings. Given a
string S, we use the triple (i, 8, I) to mean that a tandem array {8, |) occursin S startingat
position i. A triple (i, 8, 1) s called a pm-tripleif 8 is primitive and 8’ is a maximal tandem
array.

For example, the maximal tandem arrays in mississippi described by the pm-triples are
(2,is8,2),(3,5.2),(3,55,2).(6,s,2) and (9, p.2). Note that two or more pm-triples can have
the same first number, since two different maximal tandem arrays can begin at the same
position. For example, the two maximal tandem arrays ss and ssissi bath begin at position
three of mississippi.

The pm-triples succinctly encode all the tandem arrays in a given string S. Crochemore
[114] (with different terminology) used a successive refinement method to find all the pm-
triplesin O(nlogn) time. This implies the very nontrivial fact that in any string of length n
there can be only O{nlog n) pm-triples. The method in {114] finds the E partition for each
k. The following lemma is central:

Lemma 7.20.1. There is a tandem repeat of a k-length substring 8 starting at position i
of S if and only if the numbers i and i + k are both containedin a single class of £, and
no numbers between i and i + k are in that class.

Prove Lemma 7.20.1. One direction is easy. The other direction is harder and it may be
usefulto use Lemma 3.2.1 (page 40).

Lemma 7.20.1 makes it easy to identify pm-triples. Assume that the indices in each class
of E; are sorted inincreasing order. Lemma 7.20.1 implies that {/,8, j) is a pm-triple, where
g is a k-length substring, if and only if some single class of £; contains a maximal series
of numbersi,itk,i+ 2k,i + Jk, such that each consecutive pair of numbers differsby
k. Explain this in detail.

54. Severalstring algorithms use successive refinement without explicitly finding or represent-

55.

ing all the classes in the refinement tree. Instead, they construct only some of the cfasses
or only compute the tree implicitly. The advantage is reduced use of space in practice or
an algorithm that is better suited for parallel computation [116]. The original suffix array
construction method [308] is such an algorithm. In that algorithm, the suffix array is ob-
tained as a byproduct of a successive refinement computation where the E, partitionsare
computed only for values of k that are a power of two. We develop that method here. First
we need an extension of Fact 1:

Fact3 Foranyi# j,iExjifandonlyif iEcjand i + KE,j+ k.
From Fact 2, the classes of Exx refine the classes of Ey.

The algorithm of [308] starts by computing the partition &;. Each class of E; simply lists all
the locationsin S of one specific character in the alphabet, and the classes are arranged
in lexical order of those characters. For example, for S =mississipp/, E1 has five classes:
{12}].{2,5,8, 11}, {1}, {9, 10}, and {3, 4,6, 7}. The class {2. 5, 8, 11) lists the position of all
the i's in S and so comes before the class for the single m, which comes before the class
forthe s's, etc. The end-of-string character $ is consideredto be lexically smaller than any
other character.

How E, is obtained in practice depends on the size of the alphabet and the manner that it
is represented. It certainly can be obtained with O (nlog n) character comparisons.

For any k > 1, we can obtain the Ep, partition by refining the E, partition, as suggested in
Fact 3. However, it is not clear how to efficiently implement a direct use of Fact 3. Instead,
we create the E;, partition in Q{n) time, using a reverse approach to refinement. Rather
than examining a class C of Ej to find how C should be refined, we use C as a refinerto
see how it forces other Ej classes to split, or to stay together, as follows: For each number
i > k in C, locate and mark number i — k. Then, for each Ex class A, any numbersin A
marked by C identify a complete E, class. The correctness of this follows from Fact 3.

Give a complete proof of the correctness of the reverse refinement approach to creating
the Exx partition from the E; partition.

Each class of E, for any k, holds the starting locations of a k-length substring of S. The
algorithm in [308] constructs a suffix array for S using the reverse refinement approach,
with the added detail that the classes of Ex are kept in the lexical order of the strings
associated with the classes.

More specifically, to obtain the E, partition of S = mississipp®, process the classes of
E; in order, from the lexically smallest to the lexically largest class. Processing the first
class, {12}, results in the creation of the E; class {11}. The second E, class {2,5,8,11)
marks indices {1,4,7} and {10}, and hence it creates the three E; classes {1},{4,7} and
{10}. Class {9,10} of E; creates the two classes (8) and (9).Class {3,4,6,7) of E; creates
classes {2,5} and {3,6} of E,. Each class of E; holds the starting locations of identical
substrings of length one or two. These classes, lexically ordered by the substrings they
represent, are: {12},{11},{8},12,5},{1},110).{9),{4,7}.{3,6). The classes of E,, inlexical order
are: {12},{11},{8),{2,5},{1},{10},{9},{7},(4},{6}.{3). Note that {2,5} remain in the same Ea
class because {4,7} were in the same E; class. The E; classes of {4,7} and {3,6) are each
refinedin E,. Explain why.

Although the generalidea of reverse refinement should now be clear, efficient implemen-
tation requires a number of additional details. Give complete implementation details and
analysis, proving that the E,, classes can be obtained from the E, classes in O{n) time.
Be sure to detail how the classes are kept in lexical order.

Assume 11 is a power of two. Note that the algorithm can stop as soon as every classis a
singleton, and this must happen within log, niterations. When the algorithm ends, the order

7.20. EXERCISES 179

The above problems can be generalized in many different directions and solved in es-
sentially the same way. One particular generalizationis the exact matching version of the
primer selection problem. (In Section 12.2.5 we will consider a version of this problem that
allows errors.)

The primer selection problem arises frequently in molecular biology. One such situation is
in "chromosome walking", a technique used in some DNA sequencing methods or gene
location problems. Chromosome walking was used extensively in the location of the Cys-
tic Fibrosis gene on human chromosome 7. We discuss here only the DNA sequencing
application.

In DNA sequencing, the goal is to determine the complete nucleotide sequence of a long
string of DNA. To understand the application you have to know two things about existing
sequencingtechnology. First, currentcommon laboratory methods can only accurately se-
quence a small number of nucleotides, from 300 to 500, from one end of a longer string.
Second, it is possible to replicate substrings of a DNA string starting at almost any point
as tong as you know a small number of the nucleotides, say nine, to the left of that point.
This replication is done using a technology called polymerase chain reaction {PCH), which
has had a tremendous impact on experimental molecular biology. Knowing as few as nine
nucleotides allows one to synthesize a string that is complementary to those nine nu-
cleotides. This complementary string can be used to create a "primer", which finds its way
to the point in the long string containing the complement of the primer. It then hybridizes
with the longer string at that point. This creates the conditions that allow the replication
of part of the original string to the right of the primer site. {Usually PCR is done with two
primers, one for each end, but here only one "variable" primer is used. The other primer is
fixed and can be ignored in this discussion.)

The above two facts suggest a method to sequence a long string of DNA, assuming we
know the first nine nucleotides at the very start of the string. After sequencing the first
300 (say) nucleotides, synthesize a primer complementaryto the last nine nucleotides just
sequenced. Then replicate a string containing the next 300 nucleotides, sequence that
substring and continue. Hence the longer string gets sequenced by successively sequenc-
ing 300 nucleotides at a time, using the end of each sequenced substring to create the
primer that initiates sequencing of the next substring. Compared to the shotgun sequenc-
ing method (to be discussed in Section 16.14), this directed method requires much less
sequencing overall, but because it is an inherently sequential process it takes longer to
sequence a long DNA string. (In the Cystic Fibrosis case another idea, called gene jump -
ing, was used to partially parallelize this sequential process, but chromosome walking is
generally laboriously sequential.)

There is a common problem with the above chromosome walking approach. What hap-
pens if the string consisting of the last nine nucleotides appears in another place in the
larger string? Then the primer may not hybridize in the correct position and any sequence
determined from that point would be incorrect. Since we know the sequence to the left of
our current point, we can check the known sequence to see if a string complementary to
the primer exists to the left. If it does, then we want to find a nine-length substring near the
end of the last determined sequence that does not appear anywhere earlier. That substring
can then by used to form the primer, The result will be that the next substring sequenced
will resequence some known nucleotides and so sequence somewhat fewer than 300 new
nucleotides.

Problem: Formalize this primer selection problem and show how to solve it efficiently using
suffix trees. More generally, for each position i in string a find the shortest substring that
begins at i and that appears nowhere else in « or &.

58.

59.

60.

61.

e aasw a 48s L ASnMAWUIND U OUDDIA L KERD

By using Fact 1 in place of Fact 3, and by modifying the reverse refinement method de-
veloped in Exercises 54 and 55, show how to compute all the & partitions for all k (not
just the powers of two) in O(n?) time. Give implementation details to maintain the indices
of each class sorted in increasing order. Next, extend that method, using Lemma 7.20.1,
to obtain an O(nz)-lirhe algorithmto find all the pm-triplesin a string S.

To find all the pm-triplesin O{nlogn) time, Crochemore [114] used one additional idea. To
introduce the idea, suppose all E; classes except one, C say, have been used as refiners
to create Ex,1 from Ej. Let p and q be two indices that are together in some Ej class. We
claim that if p and g are not together in the same Ei., class, then one of them (at least)
has already been placedin its proper Ex+4 class. The reasonis that by Fact 1, p +1 and
g + 1 cannot both be in the same E; class. So by the time Cis used as a refiner, either p
or q has been marked and moved by an E, class already used as refiners.

Now suppose that each E, class is held in a linked list and that when a refiner identifies
a number, p say, then p is removed from its current linked list and placed in the linked
list for the appropriate E,1 class. With that detail, if the algorithm has used all the Ex
classes except C as refiners, then all the Eg.1 classes are correctly represented by the
newly created linked lists plus what remains of the original finked lists for E¢. Explain this
in detail. Conclude that one Ex class need not be used as a refiner.

Being able to skip one class while refining &g is certainly desirable, but it isn't enough to
produce the stated bound. To do that we have to repeat the idea on a larger scale.

Theorem 7.20.1. When refining Ex to create E,,, suppose that for every k > 1, exactly
one (arbitrary) child of each E, ; class is skipped {i.e., not used as a refiner). Then the
resultinglinked lists correctly identify the Ec,¢ classes.

Prove Theorem 7.20.1. Note that Theorem 7.20.1 allows complete freedom in choosing
which child of an Ek..4 class to skip. This leads to the following:

Theorem 7.202. If, for every k > 1, the largest child of each E,_. class is skipped, then
the total size of all the classes usedas refinersis at mostnlog, n.

Prove Theorem 7.20.2. Now provide all the implementation details to find all the pm-triples
in Sin O(nlogn) time.

Above, we established the bound of O{nlogn) pm-triples as a byproduct of the algorithm
to find them. But a direct, nonalgorithmicproof is possible, still using the idea of successive

refinement and Lemma 7.20.1. In fact, the bound of 3nlog, nis fairly easy to obtain in this
way. Do it.

Folklore has it that for any position j in S, if there are two pm-triples, (/,3,/), and (.81,
andif |8’} > |8, then |8’] > 2)8|. That would limit the number of pm-triples with the same
firstnumber to log, n, and the O{nlogn) bound would be immediate.

Show by example that the folklore belief is false.
Primer selection problem

Let S be a set of strings over some finite alphabet . Give an algorithm (using a generalized
suffix tree) to find a shorteststring S over © that is a substring in none of the strings of S.
The algorithm shoutd run in time proportional to the sum of the lengths of the stringsin S.

A more useful version of the problem is to find the shortest string S that is longer than a
certain minimum length and is not a substring of any string of S. Often, a string a is given
along with the set S. Now the problem becomes one of finding a shortest substring of «
(if any) that does not appear as a substring of any string in S. More generally, for every i,
compute the shortest substring (if any) that begins at position i of &« and does not appear
as a substring of any stringin &.

38

Constant-Time Lowest Common Ancestor Retrieval

8.1. Introduction

We now beginthediscussiorof anamazingresultthat greatlyextendghe usefulnesof
suffix trees(in addition tomanyotherapplications).

Definition In arootedtree 7 ,anodeu is anancestorof a nodev if « isontheunique
pathfrom the root to v. With this definition a nodeis an ancestoof itself. A proper
ancestorof v refersto anancestor thas notwv.

Definition In arootedtree T, thelowestcommonarcestor (lca) of twonodesr and y
is thedeepeshodein 7 thatis anancestoof bothx andy.

Forexamplejn Figure8.1thelca of nodes and10 isnode5 while thelca of 6 and3
is 1.

The amazingresultis thataftera linear amountof preprocessingf arootedtree,any
two nodes carthen be specifiedand their lowestcommonancestorfound in constant
time. Thatis, arootedtree withr nodesis first preprocesseth O(n) time,andthereafter
any lowestcommonancestoquery takeonly constanttime to solve,independentof n.
Without preprocessinghe bestworstcasetime boundfor a singlequeryis ©&(n), sothis
isamostsurprisinganduseful result. Thelca result was first obtainebly Harel andTarjan
[214] andlatersimplified bySchieber and/ishkin [393]. Theexpositionhereis basedon
the laterapproach.

8.1.1. What do ancestorshaveto do with strings?

The constantime searchresultis particularly usefulin situationswhere manylowest
common ancestagueriesmustbe answeredor a fixed tree.Thatsituationoften arises
when applying the resultto string problems.To geta feel for the connectiorbetween
stringsandcommonancestorsnotethatif the pathsfrom the root to two leaves i and j
in asuffix treeareidentical downto a nodev, thensuffix i andsuffix j shareacommon
prefix consistingof thestringlabelingthe pathto v. Hencethelowest commorancestor
of leaves and j identifies thelongest commomprefix of suffixesi and j. The ability to
find suchalongesttommonprefix will beanimportant primitivean manystringproblems.
Someof thesewill be detailedin Chapter9. That chapter cabe readby taking the lca
resultasa black box, if the reader preferso review motivatingexamples befordiving
into the technicatletailsof thelca result.

The statementf the lca resultis widely known, butthe detailsarenot. Theresult is
usually takenasa black box in the string literature,and thereis a general“folk™ belief
thattheresultis only theoretical, not practicalhisis certainlynot trueof the Schieber
Vishkin method- it isavery practical, lowoverheadnethod,whichis simpleto program
andveryfastin practicelt shoulddefinitelybein thestandardaepertoireof stringpackages.

180 FIRST APPLICATIONS OFSUFFIX TREES

62. In the primer selection problem, the goal of avoiding incorrect hybridizations to the right of
the sequencedpart of the stringis more difficult since we don't yet know the sequence. Still,
there are some known sequencesthat should be avoided. As discussed in Section 7.11.1,
eukaryotic DNA frequently contains regions of repeated substrings, and the most com-
manly occurring substrings are known. On the problem that repeated substrings cause for
chromosome walking, R. Weinberg® writes:

They were like quicksand; anyone treading on them would be sucked in and then propelled,
like Alice in Wonderland, through some vast subterraneantunnel system, only to resurface
somewhere else in the genome, miles away from the starting site. The genome was rid-
dled wih these sinkholes, called "repeated sequences.” They were guaranteed to slow any
chromosomal walk to a crawl.

So a more general primer problemis the following: Given a substring of 300 nucleotides
(the last substring sequenced), a string 8 of known sequence (the part of the long string
to the left of a whose sequence is known), and a set § of strings (the common parts of
known repetitive DNA strings), find the furthest right substring in a of length nine that is
not a substring of g or any string in set S. If there is no such string, then we might seek a
string of length larger than nine that does not appear in 8 or S. However, a primer much
larger than nine nucleotides long may falsely hybridize for other reasons. So one must
balance the constraints of keeping the primer length in a certain range, making it unique,
and placing it as far right as possible.

Problem: Formalize this version of the primer selection problem and show how to apply
suffix trees to it.

Probe selection

A variant of the primer selection problem is the hybridizationprobe selection problem. [n
DNA fingerprinting and mapping (discussed in Chapter 16) there is frequent need to see
whichoigomers (shortpieces of DNA) hybridize to some target piece of DNA. The purpose
of the hybridizationis not to create a primer for PCR but to extract some information about
the target DNA. In such mapping and fingerprinting efforts, contamination of the target DNA
by vector DNA is common, in which case the oligo probe may hybridize with the vector DNA
instead of the target DNA. One approach to this problem is to use specifically designed
oligomers whose sequences are rarely in the genome of the vector, but are frequently found
in the cloned DNA of interest. This is precisely the primer (or probe) selection problem.

In some ways, the probe selection problem is a better fit than the primer problem is to
the exact matching techniques discussed in this chapter. This is because when designing
probes for mapping, it is desirable and feasible to design probes so that even a single
mismatch will destroy the hybrization. Such stringent probes can be created under certain
conditions {134, 177].

8 Racing to the Beginningof the Road; The Searchfor the Origin of Cancer. Harmony Books, 1996.

84. HOW TOSOLVE LCA QUERIES N B 183

100

4

010 A 2 6 A110

1 3 5 7
0oL 011 101 111

Figure 8.2: A binary tree with four leaves. The path numbers are written both in binary and in base ten.

thatencodepathsto them.The notation B will referto thiscompletebinary tree, and7
will referto anarbitrarytree.

Supposehat B is a rootedcomplete binartree with p leaves(n = 2p — 1 nodesin
total), so thatevery internalnode hasexactly twochildrenandthe numbeiof edges on
the pathfrom therootto any leafin B isd = log, p. Thatis, the treeés completeand
all leavesareat the samalepthfrom the root.Eachnodev of B is assigned a + 1 bit
number calledits path number thatencodeghe uniquepath fromthe root tov. Counting
from theleft-most bit, theith bit of the pathnumber forv correspondso theith edgeon
thepathfrom theroot tov: A O for theith bit from theleft indicatesthattheith edgeon
the pathgoesto a left child,anda lindicatesa rightchild." Forexample, a path thaoes
left twice, right onceand therleft again endat anodewhose path numbdregins (orthe
left) with 0010.The bits thatdescribethe pathare callecpathbits. Eachpathnumberis
thenpadded outod~1 bits byaddinga 1 to the rightof thepath bits followed basmany
additional0s asneededo maked T 1 bits. Thusfor examplejf d = 6, the nodewith
pathbits0010is namedby the7-bit number 0010100l heroot nodeford = 6 would be
1000000. Irfact, the rootnodealwayshasa numberwith left bit 1 followed byd 0s. (See
Figure8.2for an additionakexample.)We will referto nodesin 55 by their pathnumbers.

As the treein Figure8.2 suggests, path numbdrave anothewell-knowndescription
- that of inorder numbers.That is,whenthe nodesof B are numberedby an inorder
traversal (recursively number theft child, numbetheroot, and then recursivelpumber
theright child), the resultingnodenumbersareexactly thepathnumbersliscussed above.
We leavethe proof of thisfor the reade(it has little significancén ourexposition).The
path numberconceptis preferredsinceit explicitly relatesthe numbelof a node tothe
descriptionof the path tat from theroot.

8.4. How to solvelca queriesin 23

Definiton Foranytwonoded and j, welet lca(i,j) denotetheleasicommonancestor

of i andj.

Giventwo nodes and j, we want tofind lca(i,j) in B (rememberinghatbothi and j
are path numberskirst, whenlca(i,j) is eitheri or j (i.e., oneof these twonodesis an
ancestoof theother),thenthiscan bedetectedy a very simpleconstanttime algorithm,
discussedn Exercise3. Soassumehat lca(i,j) is neitheri nor j. The algorithm begins
by taking theexclusiveor (XOR) of thebinary numberfor i andthe binarynumberfor j,
denotingthe resulby x;;. TheX OR of two bitsis 1if andonly if the two bitsare different,
andthe XOR of twod F 1 bit numbers isbtainedby independentlyaking the XOR of

! Notethat normally whendiscussing binary numbers, tibits are numbered fromight (leastsignificant)to left
(most significant)This is opposite the lefto-right ordering usedor stringsandfor pathnumbers.

182 CONSTANT-TIME LOWEST COMMONANCESTOR RETRIEVAL

Figure 8.1: A general tree T with nodes named by a depth -first numbering.

However, althoughlthe methodis easyto programijt is not trivial to understanatfirst and
has beemlescribecasbasedon "bit magic'. Nonetheless, the resuias beersoheavily
appliedin manydiversestring methods,andits useis socritical in those methodgshat
a detaileddiscussiorof theresultis worthwhile. We hope théllowing exposition isa
significantsteptoward makingthe methodmore widelyunderstood.

8.2. The assumed machinenodel

Becauseconstant retrievafime is suchademandinggoal (and even lineapreprocessing
time requirecarefulattentionto detail), we mustbeclear onwhatcomputationalmodel
Is being usedOtherwisewe may be accusedf cheating- usingan overly powerful set
of primitive operationsWhat primitive operationsare permittedin constantime?In the
unit-costRAM modelwhentheinputtreehasn nodes, we certainlyanallow any number
with up toO(log n) bits to bewritten, readpr usedasan addresm constantime. Also,
two numbers withup to O(log n) bits can be compareddded subtractedmultiplied, or
dividedin constanttime. Numbersthat takemore than ®@{logr) bits to representannot
be operatedon in constanttime. Theseare standardinit-cost requirementsforbidding
"largé' numberdrom beingmanipulatedn constanttime. Thelca result (thatlca queries
canbeanswered igonstantime aftedineartime preprocessinganbeprovedin thisunit-
cost RAM model. However,the expositionis easiernf we assumehatcertainadditional
bit-leveloperationscanalsobe donein constantime, aslong as thenumbershave only
O(logn) bits.In particular, weassumehat theAND, OR,andXOR (exclusive or)f two
(appropriatesized) binary numbersanbe donein constanttime; thata binary number
can be shifted (leftor right) by up to O(logn) bits in constanttime; that a“mask”™ of
consecutivel-bitscanbe createdin constant time; anthat thepositionof the left-most
or right-most %bit in abinarynumbercanbefoundin constantime. On many machines,
and with severalhigh-level programminglanguagestheseare reasonableassumptions,
again assuminthatthe numberanvolvedarenevermorethan @(log n) bits long.But for
the purists,afterwe explainthe lca resultusingthesemore liberalassumptionsye will
explainhow to achievethe sameesultsusing onlythestandard unicostRAM model.

8.3. Completebinary trees: a very simple case

We begin thediscussion of théca resulton a particularlysimple tree whosenodesare
namedin a very special wayThetree isacomplete binantreewhosenodeshave names

85. FIRST STEPSN MAPPING7TO B 185

standarddepth-first numbering (preordemumbering)f nodeqseeFigure8.1).With this
numberingschemethe nodesin the subtree of any nodewv in '/ haveconsecutivelepth-
first numbers, beginning witthe numbefor v. Thatis, if thereareq nodesn thesubtree
rootedat v, and v getsnumbered kthenthe numbersgiven to the ather nodesin the
subtree arek * 1 throughk * ¢ — 1.

Forconveniencerom this poinbnthenodesn 7 will bereferred tdy theirdepthfirst
numbersThatis, whenwe referto nodev, v is botha node and a numbee carefulnot
to confusedepthfirst numbers usefor the generaltree 7 with pathnumbersusedonly
for the binary treeB.

Definition Forany numberk, A(k) denotesthe position (countingrom the right) of
theleastsignificantl-bit in the binary representatiaf k.

Forexample h(8) = 4 since8 in binary is 1000, ané(5) = I since5in binaryis 101.
Anotherway to thinkof thisis thatx(k) is oneplusthenumberof consecutiveerosatthe
rightendof k.

Definition In acompletebinary tree theweighs of a node isthe numberof nodeson
the pathfrom it to a leaf.Theheightof aleaf is one.

The following lemma states crucial fact that is easyto prove by induction onthe
heightof the nodes.

Lemma85.1. Foranynodek (nodewith path numberk) in B, h(k) equalsthe heightd
nodek in B.

For examplenode 8(binary 1000)is at height4, andthe path from it toa leaf hasfour
nodes (three edges).

Definition Foranodev of T, let /(v) bea nodew in T such tha#(w) is maximum
overall nodesin thesubtree of v (including v itself).

Thatis, over allthenodes inthesubtree of v, 7(v) isanode(depthfirst number)whose
binaryrepresentatiomas the largest numbeirconsecutiveeros at its righénd.Figure8.4
showsthe nodenumberdrom Figure8.1in binaryandbase 10Then/(1), /(5), and/(8)
areall 8, 7/(2) and/(4) areboth4, and/(v) = v for everyothernodein thefigure.

0001

0110 0111
6 7

9 10

Figure 8.4: Node numbers given in four-bit binary, to illustrate the definition of Kv).

184 CONSTANT-TIME LOWESTCOMMON ANCESTOR RETRIEVAL

100
3

010 £ 2 2 2110

1 1 i 1
001 011 101 111

Figure 8.3: A binary tree with four leaves. The path numbers are in binary, and the positon o the least-
significant 1-bit is given in base ten.

eachbit of the twonumbers.Forexample XOR of 00101 and 1001 is 10110. Sincei
and j areO(log n) bitslong, XOR is a constantime operatiorin our model.

The algorithm nextfinds the mostsignificant (left-most) 1-bit in x;;. If the left most
1-bit in the XOR of i and j is in positionk (countingfrom theleft), thentheleft most
k — 1 bitsof i and j arethesame,andthe pathstoi and j mustagreefor thefirstk — 1
edgesand therdiverge.it follows thatthe pattumberfor ica(i,j) consists otheleft most
k — 1 bitsof i (or j) followed by a 1-bit followed by d +1-k zeros.For examplejn
Figure8.2,theXOR of 101and111 (nodesand7)is 010,sotheir respectiveaths share
oneedge- the rightedgeout of the root.The XOR of 010and 101(nodes2 and5) is
111, sothe pathsto 2 and5 have noagreementand hencel00,the root,is their lowest
commonancestor.

Therefore to find Icafi,j), the algorithm mustXOR two numbersfind the left-most
1-bit in the result (sayt position k),shifti right by d+ 1 — k placesset theright mostbit
to a1, andshift it backleft by d + 1 — k placesBy assumption, eactf theseoperations
can bedonein constant timeand henceahe lowestcommonancestoiof i andj canbe
foundin constant timen 5.

In summarywe have

Theorem8.4.1. Inacomplete binaryree, afterlinear-time preprocessirigname nodes

by theirpathnumbersanylowestcommonancestoquerycan beansweredn constant
time.

This simple caseof a completebinary treeis very special,but it is presented both
to develop intuitionand because complete binary tremse usedin the descriptionof
the generalcase.Moreover, by actually usingcompletebinary trees, avery elegant and
relatively simple algorithmcan answerlca queriesin constant timejf ®(nlogn) time
is allowed forpreprocessing and®(n logn) space isvailableafterthe preprocessing.
That methodis exploredin Exercisel?2.

The ica algorithm we will present for general tredsuilds on the caseof a complete
binarytree.Theidea(conceptually)s tomapthe node®f a general tred to the nodesf
acompletebinary tree 3 in suchaway thatl/ca retrievalson B will help to quickly solve
Ica querieson 7. We first describethe generalica algorithm assuming thahe 7 to B
mappingis explicitly used,and therwe explain howexplicit mappingcanbe avoided.

8.5. First stepsin mapping 7 to 3

Thefirst thing thepreprocessing dods traverse7 in a depthfirst manner, numbering
the nodef v in the order that theyarefirst encounteredn the traversal. Thigs the

8.6. THE MAPPING OFT TO B 187

' 0110 * 1 011]

[} 1
..... d et

Figure 8.6: The partition of the nodes into seven runs.

1000

0100

0110 1010

0011 0111 1001
Figure 8.7: A node Vv in B is numberedif there is a node in 7 that maps to v.

Definition A runin 7 is a maximal subsetf nodesof 7, all of which have thesame
| value.

Thatis, two nodes« and v arein thesamerunif and onlyif | (u) = 1(v).Figure8.6
showsa partition of the nodes ofT into runs.

Algorithmically we canseti(v), for all nodes, using a linedime bottomup traversal
of T asfollows: For every leafv, I(v) = v. For everyinternalnodev, I(v) = v if A(v)
is greaterthan A(v") for everychild v' of v. Otherwise,I(v) is setto the f(v") value of
thechild v whoseh({(v')) valueis themaximumoverall childrenof v. Theresultis that
eachrunformsanupwardpath ofnodesn 7. And, sincetheh(1()) values nevedecrease
along any upwargbathin 7, it follows that

LemmaB.6.1. Foranynodev,node/(v)isthedeepeshodein theruncontaining node v.
Thesefactsareillustratedin Figure8.6.
Definition Definethehead of arun to bethenodeof therun closesto the root.

Forexample, in Figuré.6 nodel (0001)is the head ofrun of length three, nod2
(0010)s theheadof arun of lengthtwo, andeveryremainingnode(notin eitherof those
two runs)is the head ofa run consisting only oftself.

186 CONSTANT-TIME LOWEST COMMON ANCESTOR RETRIEVAL

! k i
u | 10 0
w 0 10 0
N 10 0
' '
! 1
1 1
1 1
Y t

bits / through k + 1 are
the samein u, w and N.

Figure 8.5: Numbers u, w, and N.

Clearly,if nodev is anancestor ot nodew thenh(I(v)) = h(I(w)). Anotherway to
say this is that thes(/(v)) values nevedecrease alongny upward path irl . This fact
will beimportant in severadf the proofdbelow.

In thetreein Figure8.4,nodel(v) is uniquely determinetbr each node. Thatis, for
eachnodev thereis exactlyonew in v’s subtree suchthat A(w) is maximum.Thisis no
accidentandit will be importantin thelca algorithm. We now provethis fact.

Lemma8.5.2. For any nodev in 7, thereis a unique nodew in the subtree of v suchthat
h(w) is maximum overall nodesin v’s subtree.

PROOF Supposenot,andlet u andw betwo nodesin the subtree of v suchthat h(u) =
h(w) > h(q) for everynodeq in thatsubtree. Assumeh(u) = i. By addingzerosto the
left endsif neededwe can considethe two numbersi andw to havethesamenumberof
bits, sayl. Sinceu # w, thosetwo numberanust differin somebit to theleft of i (since
by assumptiorbit i is 1in bothu andw, andall bits to the rightof i arezero inboth).
Assumeu > w,andlet k bethe left-most positionwhere such a differenceetween:
andw occurs.Considerthe numberN composedf theleft-mostl — k bits of « followed
by a 1 in bit k followed by k — 1 zeros(seeFigure8.5). Then N is strictly lessthan u
and greatethanw. Hence N mustbe the depthfirst numbergiven to somenodein the
subtree of v, becausdhe depthfirst numbersgiven to nodesbelowv form a consecutive
interval. But A(N) = k > i = h(u), contradictingthe factthath(u) > h(g) for all nodes
in thesubtree of v. Hencetheassumptiorthath(u) = h(w) leadsto a contradictionand
the Lemmais proved. O

The uniquenessf I(v) for eachv canbesummarizedy thefollowing corollary:

Corollary 8.5.1. Thefunctionv — I(v) is well defined.

8.6. The mappingof 7 to B

In mapping nodesf 7 to nodesof a binary tree3, we wantto preserveenoughof the
ancestry relationgn 7 so that lca relationsin B canbe usedto determinelca queries
in 7. Thefunctionv — I(v) will becentralin definingthat mapping.As a first stepin
understandinghe mapping,we partitionthe nodes of7 into classe®f nodeswhosel

value isthesame.

8.8. ANSWERING AN LCA QUERY IN CONSTANT TIME 189

What is this crazy mapping doing?

In the end, the programmingdetailsof this mapping(preprocessingare very simple,
and willbecomesimplerin Section8.9.The mappingonly requiresstandardineartime
traversals of tre& (aminorprogrammingxercisen a sophomordevelcourse). However,
for mostreaderswhatexactly themapping accomplishes euiite unintuitive, becauset
is a manyone mapping.Certainly,ancestryrelations in7 are notperfectly preservedy
the mappinginto B [indeed, howcould they be when thelepth of7 canben while the
depthof B is boundedy ®(logn)], but muchancestry informatios preservedasshown
in the next keyemma.Recallthata nodeis definedto beanancestoof itself.

Lemma8.7.1. If zisanancestod x in 7 thenl (z) isanancestodf I(x) in B. Stated
differently, f z isanancestod x in 7 theneitherz andx areon thesame rurin 7 or
nodel (z) isaproperancestof nodel (x) in B.

FiguresB.6 and8.7illustratethe claimin thelemma.

PROOF OF LEMMA 8.7.1 The proof is trivial if I(z) = I(x), SO assumehat theyare

unequalSincez is anancestonf x in 7, h(I(z)) = h(I(x)) by the definition ofl, but

equalityis only possiblef I(z) = I(x). Soh(I(z)) > h(I(x)). Now A{(I(z}) andh(I(x})

aretherespective heightsf nodesi(z) andI(x) in B, soI(z) is ata heightgreater than
the heightof 7(x)in B.

Let A(1(z)) bei. We claim that I(z) and I(x) areidentical in all bits to theleft of i
(recall that bits of a binary number arenumberedfrom the right). If not, then lek > i
be the left-most bit where I(z) and I{x) differ. Without lossof generality,assumethat
I(z) has bitl and(x) hasbit 0 in positionk. Sincek is the pointof left-mostdifference,
the bitsto theleft of positionk areequalin thetwo numbersjmplying thatZ(z) > I(x).
Now z is an ancestonf x in 7, sonodesi{z) and I(x) areboth in the subtree of z in
T. Furthermore, sincé(z) and I(x) aredepthfirst numberof nodesin the subtree of z
in 7, every numberbetween!/(x) and I (z) occursasa depthfirst numberof some node
in the subtree of z. In particular,let N be the numberconsistingof the bits to the left of
positionk in I(z) (or I(x)) followed by 1 followed by all 0s. (Figure8.5 helpsillustrate
the situation,althoughz playsthe role of « andx plays the rolef w, and biti in I(z)
is unknown.)ThenI(x) < N < I(z); therefore Nis alsoa noden thesubtree of z. But
k > i, SOh(N) > h(I(z)), contradictingthe definitionof I. It follows that/(z) and /(x)
must bedenticalin the bitsto theleft of biti.

Now bit i is the right most 1bit in I(z), sothe bits to the left of bit i describe the
complete patin B to nodel(z). Thoseidentical bitsto theleft of biti alsoform theinitial
part ofthedescriptionof the pathin 5B to nodeli(x), sincel(x) has al-bit to the rightof
biti. Sothosebitsarein the pathdescription®f both /(z) and/(x), meaning thathe path
to nodel(x) in B mustgo throughnodel(z). Therefore, nodé(z)is anancestoof node
I(x)in B, andthelemmais proved. O

Havingdescribedhe preprocessingf 7 and developedomeof the propertiesof the
tree map, weannow describethe way thati{ca queriesareanswered.

8.8. Answeringan lca query in constanttime

Let x andy be twonodesn 7 andlet z be thelca of x andy in 7. Supposave know the
height in B of the node that; is mappedto. That is,we know#{I(z)). Below we show,
with only thatlimited informationaboutz, how z canbefound inconstantime.

188 CONSTANT-TIME LOWESTCOMMON ANCESTORRETRIEVAL

Finally, we can definethe rree map.

Definition Thetreemap is the mappingof nodeof 7 to nodes ofacompletebinary
tree 3 with depthd = [logn] — 1. In particular,nodev of T mapsto nodel (v} of B
(recallthat nodesf B are namedby their path numbers).

Thetreemap iswell definedbecausd (v) is ad * 1 bit number, aneéachnodeof B is
namedby adistinctd + | bit number Every nodein arunof 7 maps tahesamenodein
B, butnot all nodes i3 generallyhavenodesin 7 mappingto them.Figure 8.7 shows
tree 3 for tree7 from Figure8.6.A nodev in B is numbered thereis a nodein 7 that
maps tov.

8.7. The linear-time preprocessingof 7

We cannow detail thelineartime preprocessingone ontree” .

Preprocessing Algorithm for T
Begin

1. Do adepth-firsttraversabf 7 to assigndepthfirst search numbets thenodes During
thetraversal computg(v) for eachnodev. For eacmode, sea pointerto its parent node
in 7.

2. Using thebottomupalgorithm described earli}gmputd (v) foreachv. For each number
k suchthat/(v) = k for somenodev, setL{k) to pointto the head(or Leader)of therun
containingnodek. {Note thatafter thisstep,the head ofthe run containingan arbitrary
nodev can beretrievedin constant timeComputel (v) andthenlook up L{/(v)).}

{Thiscaneasilybedonewhile computingthe/ valuesNodeu is identified aghe head
of its run if thel value ofv's parent is nof (v).}

3. LetB beacomplete binaryreewith nodedepthd = [log n] — |. Mapeach node in T
to nodel(v) in B.

(This mapping will beuseful becauset preservesenough(althoughnot all) of the
ancestryrelations from7 .}

{Theabovethreesteps fornthe coreof the preprocessindput thereis also onemore
technicalktepForeachnodev in 7, we wantto encodesomeinformationaboutwherein
B theancestorsf u get mappedrhatinformationis collectedn the nexistep.Remember
thath(l(g)) is the heightin B of nodel (q) andsoit is theheightin B of the nodethatq
getsmappedo.)
4. Foreachnodev in 7, createan O(log n) bit numberA,. Bit A,(i) is setto 1 if and only

if nodev hassomeancestom 7 that mapsto heighti in 3, i.e., if and onlyif v hasan
ancestou suchthath(l(u)) =i.

End.

This endghedescriptiorof the preprocessingf 7 and themappingof 7 to 5. To test
your understandingf A,, verify thatthe numbeof bitsset tol in A, is the numberof
distinct runsencountered on the pdittom the rootto v.Settingthe A numbergs easyby
alinear-time traversalf 7 after all thel values are knowrif V' is theparentof v thenA,
is obtainedby firstcopying A,, andthensettingbit A (i) to 1if A(I(v)) =i (thislaststep
will be redundanif v andv’ areon the samerun, butit is alwayscorrect). Asanexample,
consider nod@& (0011)in Figure8.6.A; = 1101(13)since3 (0011) mapsto height1, 2
(0010)mapsto height3, andl (0001)maps tdheight4in 5.

8.9. THEBINARY TREE IS ONLY CONCEPTUAL 191

Theorem88.2. Let j be the smallestposition greateror equal to i suchthat both A,
and A, have |-bitsin position j. Thennode I(z)§ at height j in B, or in otherwords,
h(1(z)) = j.

PROOF Supposd (z) is atheightk in B. We will showthatk = j. Sincez isanancestor
of bothx andy, both A, and A, havea 1-bit in positionk. Furthermore, since I(z) is
anancestor oboth I(x) and I(y) in B (byLemma 8.7.1), k > i, andit follows (by the
selectiorof j)thatk > j. Thisalsoestablishethatapositionj > i exists wherdoth A,
andA, have 1bits.

A, has al-bit in positionj andj = i, sox hasanancestok' in 7 such that/(x’) is
anancestonof /{x) in BandI(x") isatheightj > i, theheightof 5 in B. It follows that
I(x") is an ancestorof b. Similarly, thereis anancestory' of y in 7 such thatf(y’) is at
heightj andis anancestoof b in 3. Butif I{x") and/(y") are at thesameheight(j)and
both areancestorsf thesingle nodeb, thenit mustbethat/(x") = I(y), meaning that
X' andy' are onthe sameun. Being onthesamerun, eitherx' is anancestor ir7” of y'
or vice versaSay,withoutlossof generality, that’ is anancestoof y in 7. Thenx' is
acommon ancestaf X andy, andx' is an ancestoof z in 7. Hencex'’ mustmapto the
same heighor higherthanz in B. Thatis, j = k. But k > j wasalreadyestablishedso
k = j asclaimed,andthetheoremis proved. O

All the piecesfor lca retrieval in7 havenow beendescribedand eachtakesonly
constant timeln summarythe lowest commoancestor of anytwo nodest andy in 7
(assuming is neitherx nor y) canbefoundin constant timdy the following method:

Constanttime Ica retrieval
Begin
1. Find thelowest commorancestob in B of nodes/ (x) and /(y).

2. Find thesmallesposition j greaterthanor equalto A() suchthatboth numberss, and
A, havel-bitsin positionj. j isthenh{I(z)).

3. Find nodez, theclosestnodeto x on the samerun asz (althoughwe don't know z) as
follows:
3a. Find the positiori of the right-most1-bitin A,.

3b. If I = j, then sef = x {x andz areonthesamerunin 7} andgoto step4.
Otherwisgwhen| < j)

3c. Find the positionk of the left-most 1-bit in A, thatis to theright of position ;. Form
the number consistingf the bitsof /(x) to the leftof positionk, followed by a I-bit in

positionk, followed by all zeros. {Thahumberwill be I(w), eventhoughwe don't yet
know w.}

Look up nodeL(I{w)), which mustbe nodew. Setnodex to be the parentof nodew
in7.

4. Find nodey, thecloseshodetoy onthe sameunasz, by thesameapproactasin step3.
5. If ¥ < y thensetz to ¥, elsesetz to 3.
End.

8.9. The binary tree is only conceptual

Theastutereademwill noticethatthe binary tree B canbe eliminated entirelyfrom the
algorithm, althought is crucialin the exposition andhe proofs. Tree5 is certainly not

190 CONSTANT-TIME LOWEST COMMON ANCESTOR RETRIEVAL

Theorem88.1. Let z denotethelca d x and y in 7. If we know h(I(2)), thenwe can
findz in T in constant time.

PROOF Consider the rugontainingz in 7. Thepathup7 from x to Z entersthatrun at
somenodeX (possiblyz) andthencontinuesalongthatrun until it reache<. Similarly,
the pathup fromy to z entersherunatsomenodey and continues alonthatrun untilz.
It followsthatz is eitherX or 3. In fact, z is thehigher of those twanodesandsoby the
numbering scheme,= X if and onlyif X < ¥. For examplein Figure8.6 whenx = 9
(1001)andy = 6 (0110), thenx = 8 (1000)andy = z =5 (0101).

Giventheabovediscussionthe approach to findingfrom 2(1(z)) is touseh(I(z)) to
find X andy, since thoseodesletermine z. Wewill explainhowtofind *. Let2(I(2)) = j,
sotheheightin B of I(z)is j. By Lemma8.7.1,nodex (whichisin the subtree of z in
7T) mapsto anodel(x) in thesubtree of nodel(z) in 5, soif A(I(x)) = j thenx mustbe
onthesamaun asz (i.e., X =), andwe arefinished.Converselyif x = %, thenh(/(x))
mustbe j. So assum&om hereonthatx # X.

Let w (whichis possiblyx) denotethenodein 7 onthez-to-x path just belowoff) the
run containing. Sincex is notx, x is not onthesamerun asz, andw exists.Fromh(I(z))
(whichis assumedo be known) andA, (whichwascomputed duringhe preprocessing),
we will deducer(I{w)) andthenI{w), w, andx.

Sincew isin thesubtree of z in 7 andis noton thesamerun asz, w mapsto anodein
B with heightstrictly lessthantheheightof 7(z) (this followsfrom Lemma8.7.1). In fact,
by Lemma8.7.1, amongll nodeson the pathfrom x to z thatarenoton z’s run, w maps
to anodeof greatesheightin B. Thus,a(/(w)) (which isthe heightin B thatw maps to)
mustbe the largespositionlessthan j such thatA, hasa1-bit in thatposition.Thatis,
we canfind 2({(w)) (even thouglwe don't knoww) by finding themostsignificant %bit
of A, in apositionlessthanj. This can belone in constant timentheassumednachine
(startingwith all bitssetto 1, shiftright by d — j 1 positions AND this numbertogether
with A,, and then findheleft-most tbit in theresulting number.)

Let 2(1(w)) = k. We will now find 7 (w). Eitherw is x or w isa properancestonf x in
T, soeither{w) = I(x) or nodel(w) is a proper ancestaf node!(x) in B. Moreover,
by thepathencodingatureof thepath numbers irt3, numberd (x) andl (w) areidentical
in bits to theleft of k, and /(w) has a 1in bit k andall 0s to theright. So I(w) canbe
obtainedfrom I(x) (which we know) andk (which we obtainedasabovefrom A(I(z))
andA,). Moreover,/(w) canbe found from/(x) andA(/{w)} using constanttime bit
operations.

Given I{w) we can findw becausev = L(I (w)). Thatis,w wasjustoff thez run,so
it mustbethe headof the run thatit is on,and eacmodein 7 points tothe headof its
run. Fromw we find its parentt in constantime. O

In summary, assumingwe know h(/(z)), we canfind nodex, which is the closest
ancestoof x in 7 thatis on the samerun asz. Similarly, we find y. Thenz is eitherx
or y; in fact, z is the nodeamongthosetwo with minimum deptHfirst numberin 7", Of
coursewe mustnow explainhowto find j = h(I(z)).

How to find the height of I(z)

Let b bethelowestcommon ancestaf I{x) and/(y) in B. SinceB is acompletebinary
tree,b canbefound inconstant timexsdescribed earlier. Lét(b) = i. Thenh({(z)) can
be foundin constant timesfollows.

8.11. EXERCISES 193

8.11. Exercises

Using depth-first traversal, show how to construct the path numbers for the nodes of 5 in
time proportional to n, the number of nodes in B. Be careful to observe the constraints of
the RAM model.

Prove that the path numbers in B are the inorder traversal numbers.

The fca algorithm for a complete binary tree was detailed in the case that ica(i,j) was
neither i nor j. In the case that /ca(if) is one of i or j, then a very simple constant-time
algorithm can determine fcafij). The idea is first to number the nodes of the binary tree
B by a depth-first numbering, and to note for each node v, the number of nodes in the
subtree of v (including V) Let /(v) be the dfs number given to node v, and let s(v) be the
number of nodes in the subtree of v. Then node 1is an ancestor of node j if and only if
)= K(j) and 1(j) < 1)) +).

Prove that this is correct, and fill in the details to show that the needed preprocessing can
be done in O(n) time.

Show that the method extends to any tree, not just complete binary trees.

In the special case of a complete binary tree 8, there is an alternative way to handle the
situation when fcafi,j) is i or j. Using h(i) and h(j) we can determine which of the nodes
i and jis higher in the tree (say /) and how many edges are on the path from the root to
node i. Then we take the XOR of the binary for i and for j and find the left-most 1-bit as
before, say in position k (counting from the left). Node i is an ancestor of j if and only if k
is larger than the number of edges on the path to node i. Fill in the details of this argument
and prove it is correct.

. Explain why in the Ica algorithm for B, it was necessary to assume that /ca(i,j) was neither

i nor j. What would go wrong in that algorithm if the issue were ignored and that case was
not checked explicitly?

6. Prove that the height of any node k in B is h{k).
7. Write a C program for both the preprocessing and the /ca retrieval. Test the program on

10.

11.

large trees and time the results.

Give an explicit O(m)-time RAM algorithm for building the table containing the right-most
1-bit in every log, nbit number. Remember that the entry for binary number i must be in
the ith position in the table. Give details for building tables for AND, OR, and NOT for ﬂi’%ﬂ
bit numbersin O(n) time.

. It may be more reasonable to assume that the RAM can shift a word left and right in

constant time than to assume that it can multiply and divide in constant time. Show how to
solve the lca problemin constant time with linear preprocessingunder those assumptions.

In the proof of Theorem 8.8.1 we showed how to deduce /{w) from h(/{w)) in constant time.
Can we use the same technique to deduce I{z} from h({z))? If so, why doesn't the method
do that rather than involving nodes w, X, and ¥?

The constant-time Ica algorithm is somewhat difficult to understand and the reader might
wonder whether a simpler idea works. We know how to find the /ca in constant time in a
complete binary tree after O(n) preprocessing time. Now suppose we drop the assumption
that the binary tree is complete. So 7 is now a binary tree, but not necessarily complete.
Letting ¢ again denote the depth of 7, we can again compute d t 1 length path numbers
that encode the paths to the nodes, and again these path numbers allow easy construction
of the lowest common ancestor. Thus it might seem that even in incomplete binary trees,
one can easily find the /ca in this simple way without the need for the full Ica algorithm.
Either give the details for this or explain why it fails to find the Ica in constant time.

192 CONSTANTTIME LOWESTCOMMON ANCESTORRETRIEVAL

usedin steps3, 4, or 5 to obtainz from k(I(z)). However, it isusedin steplto find node
. bfromI(x)and/(y). But allwe [eaII)I/ needrom bis h(b) (step2),andthat carbegotten

from theright-moStcommoni-bit of 7(x} and/(y). Sothe mappindrom 7 to B iS only
conceptualmerely usedfor purpose®f exposition.

In summary, aftethe preprocessing off , when given nodes andy, the algorithm
findsi = k(b) (without first findingd) from the rightmost common21-bit in 7(x) and
I(y). Thenit finds j = A(I(z)) fromi andA, andA,,, andfrom j it findsz = lca(x,y).
Although the logic behind this method has bdéhcult to convey,a programfor these
operationgs very easyto write.

8.10. For the purists: how to avoid bit-level operations

We haveassumedhat themachinecando certain bitlevel operationsn constantime.
Many of theseassumptiongirereasonabléor existing machinesput some,suchasthe
ability to find the rightmost 1bit, do not seemasreasonabletHHow canwe avoidall bit-
level operations, executing the: algorithmon a standarcRAM model? Recalthat our
RAM can only readwrite, addressadd, subtractmnultiply, and divide in constant time,
and only on numbenwith O(log n) bits.

Theideais thatduringthelineartime preprocessing of 7, we alsobuild O(n)-size tables
thatspecify theresultsof the needed bHevel operationsBit-level operations oasingle
O(logn) bit numberarethe easiest. Shiftinteft by i = O(logn) bits is accomplished
by multiplying by 2, which is a permitted constanitime operation sinc&’ = 0O(n).
Similarly, shiftingrightis accomplishedby division.Now considetthe problemof finding
theleft-most1-bit. Construct dable withn entries,onefor eachflog, n1 bit numberThe
entry for binarynumber 1 has salueof I, theentries forbinary number® and3 have
value2, the next4 entrieshave value, etc. Eackentryis an O(log n) bit number sothis
table can easily bgeneratedn O(n) time on a RAM model. Generating the table for
right-most %bit is a little moreinvolved butcan be donein a relatedmanner,An even
smallertableof [log, n] entriesis neededor "masks. A maskof sizei consistsof i
0-bits on the rightendof [log, n] bits andls in all otherpositions.Thei mask isused
in the taskof finding the right-most 1-bit to the left of positiori. Mask [log, n] is the
binary numbep. In general,maski is obtainedfrom maski + 1 by dividing it by two
(shifting themaskto theright by oneplace),and then addin2&"1=! (which addsin the
left-most1-bit).

The tables thaseemmoredifficult to build are the tables fobinary operationson
O(log n) bit numberssuchasXOR, AND, andOR.Thefull table foranyof these binary
operations isf sizen? sincetherearen numberswith logn bits. Onecannot construct
ann?sizetablein O(n) time. The trick is thateachof the neededbinary operations are
donebitwise. For example XOR of two [logs1 bit numberscan be found by splitting
each number into two numbeos roughly —— bits each, doingKOR twice, and then
concatenating thenswergadditionaleasydetails araneeded to do this theRAM model).
Soit suffices to buildan XOR tablefor numberswith only [12217 bits. But2 ™" = /z,
sothe XOR tablefor thesenumbers has onlg entries,and hence iis plausible that the
entiretablecanbe constructedn O(n) time. In particular,XOR canbe implementecby
AND, OR,and NOT (bit complement) operations, amablesfor these can be buiih
O(n) time (we leavethis asanexercise).

13.

14.

8.11. EXERCISES 195

Step 2 For an arbitrary internal node vin 8, let 8, denote the subtree of 8 rooted at v, and
let Ly =, mo...., n; be an ordered list containing the elements of L written at the leaves of
B, in the same left-to-rightorder as they appear in 8. Create two lists, Pmin{v) and Smin{v),
for each internal node v. Each list will have size equal to the number of leaves in v's subtree.
The kth entry of list Pmin(v) is the smallest number among {n, ne, ..., Nk}. That is, the Ath
entry of Pmin{v) is the smallest number in the prefix of list L, ending at position k. Similarly,
the kth entry of list Smin{v) is the smallest number in the suffix of L, starting at position k.
This is the end of the preprocessing and exercises follow.

b. Prove that the total size of all the Pmin and Sminlists is O(mlog m), and show how they can
be constructedin that time bound.

After the O{mlogm) preprocessing, the smallest number in any interval I can be found in
constant time. Here's how. Let interval | in L have endpoints | and r and recall that these
correspondto leaves of 8. To find the smallest number in I, first find the leafl,r), say node v.
Let v/ and v"" be the left and right childrenof v in 8, respectively. The smallest number in |
can be found using one lookup in list Smin(v"), one lookupin Pmin{v’’), and one additional
comparison.

c. Give complete details for how the smallest number in K is found, and fully explain why only
constant time is used.

By refining the method developed in Exercise 12, the @(mlog m) preprocessing bound (time
and space) can be reduced to only &(mloglogm) while still maintaining constant retrieval
time for any ica query. (It takes a pretty big value of m before the difference between G{m)
and ®(mloglogm) is appreciable!) The idea is to divide list L into g blockseach of
size log m and then separately preprocess each block as in Exercise 12. Also, compute
the minimum number in each block, put these %,; numbers in an ordered list Lmin, and

preprocess Lminasin Exercise 12.

a. Show that the above preprocessing takes ®@(mloglog m) time and space.

Now we sketch how the retrievalis done in this faster method. Given an interval | with starting
and ending positions 1 and r, one finds the smallest number in | as follows: If landr are in
the same block, then proceed as in Exercise 12. If they are in adjacent blocks, then find the
minimum number from 1 to the end of I's block, find the minimum number from the start of r's
block to r, and take the minimum of those two numbers. If 1 and r are in nonadjacent blocks,
then do the above and also use Lmin to find the minimum number in all the blocks strictly
between the block containing | and the block containing r. The smallest number in | is the
minimum of those three numbers.

b. Give a detailed description of the retrieval method and justify that it takes only constanttime.

Can the above improvement from O(mlogm) preprocessing time to O(mloglog m)
preprocessing time be extended to reduce the preprocessing time to O(mloglog togm)
preprocessing time? Can the improvements be continued for an arbitrary number of loga
rithms?

194

12.

CONSTANT-TIME LOWEST COMMON ANCESTOR RETRIEVAL

If you believe that the above simple method solves the /ca problem in constant time for
any binary tree, then consider trying to use it for arbitrary trees. The idea is to use the
well-known technique of converting an arbitrary tree to a binary tree by modifying every
node with more than two children as follows: Suppose node v has children v, va, ..., k.
Replace the children of v with two children vy and v* and make nodes vz, ..., Vx children
of v*. Repeat this until each original child v; of v has only one sibling, and place a pointer
from v* to v for every new node v* created in this process. How is the number of nodes
changed by this transformation? How does the /ca of two nodes in this new binary tree
relate to the ica of the two nodes in the original tree? So, assuming that the d + 1 length
path labels can be used to solve the /ca problem in constant-time for any binary tree, does
this conversionyield a constant-time /ca search algorithm for any tree?

A simpler (but slower) fca algorithm. In Section 8.4.1 we mentioned that if @{nlog)
preprocessing time is allowed, and @&(nlogn) space can be allocated during both the
preprocessing and the retrieval phases, then a (conceptually) simpler constant-time /ca
retrievalmethodis possible. In many applications, ©{nlog n) is an acceptable bound, which
is not much worse than the O(n) bound we obtained in the text. Here we sketch the idea
of the ®(nlog n) method. Your problem is to flesh out the details and prove correctness.

First we reduce the general Ica problem to a problem of finding the smallest number in an
interval of a fixedlist of numbers.

The reduction of leato alist problem

Step 1 Execute a depth-firsttraversal of tree 7T to label the nodes in depth-first order and
to build a multilist L of the nodes in the order that they are visited. (For any node v other
than the root, the number of times v is in L equals the degree of v.) The only property of
the depth-firstnumbering we need is that the number given to any node is smaller than the
number given to any of its proper descendants. From this point on, we refer to a node only
by its dfs number.

For example, the list for the tree in Figure 8.1 (page 182) is
{1,2,3,2,4,2,1,5,6,5,7,5,8,9,8,10,8.5, 1}.

Notice that if 7 has n nodes, then L has O(n) entries.

Step 2 The Ica of any two nodes x and y can be gotten as follows: Find any occurrences
of X and yin L; this defines an interval B in L between those occurrences of x and y. Then
in L find the smallest number in interval B;that number is the Ica(x,y).

For example, if x is 6 and y is 9, then one interval / that they define is {6,5.7,5, 8, 9},
implying that node 5 is ica(6,9).

This is the end of the reduction, Now the first exercise.

a. Ignoring time complexity, prove that in general the ica of two nodes can be obtained as
described in the two steps above.

Now we continue to describe the method. More exercises will follow.

With the above reduction, each Icaquery becomes the problem of findingthe smallest number
in a interval 1 of a fixedlist L of O{n) numbers. Let m denote the exact size of L. To be able
to solve each lca query in constant time, we first do an O(mlogm)-time preprocessing of list
L For convenience assume that mis a power of 2.

Preprocessing of L

Step 1 Build a complete binary tree 8 with m leaves and number the leaves in left-to-right
order (as given by an inorder traversal). Then for / from 1 to m, record the ith element of L
at leaf i.

9.2. FINDING ALL MAXIMAL PALINDROMESIN LINEAR TIME /197

abcdefghzzz

{

,,,,, abcdefghijklmnop

J

Figure 9.1: The longest common extension for pair (i, j) has length eight. The matching substring is
abcdefgh.

Rg

9.1.2. Spaceefficientlongestcommon extension

When §; is much smallethan §;, we may notwish to build thegeneralizeduffix treefor
S and §; togetherBy only building thesuffix treefor the smallerof the two strings,we
will saveconsiderable spackutcanthe longestommonextension problerbeefficiently
solved using onlyhissmallertree?Theansweris yes,with theaid of matching statistics.

Recallfrom Section7.8.1that the matching statistie(i) is the lengthof the longest
substringof S, startingat positioni that matchesa substring startingt somepositionin
S», andthat p(i) is one ofthosestarting positionsn S.. In Sections/.8.1and7.8.3we
showedhow to computem(i) and p(i) for eachi in O(}S;]) total time,usingonly a suffix
treefor S, anda copy of ;.

Thelongestcommonextensiomueryfor anypair (i, j) is solvedby first finding thelca
v of leavesp(i) andj in thesuffixtreefor S,. Thelengthof the longestommon extension
of (i, j) is then the minimunof m(i) andthe stringdepthof nodev. The proof of thisis
immediateandis left to the reader.Sinceany Ica computationtakes onlyconstant time,
we havethefollowing:

Theorem 9.1.1. Aftera preprocessinghase thatakeslinear rime, any longestcommon
extensionguery can beansweredin constanttime using onlythe space requiredoy the

suffix tree for §, (thesmallerof the two strings)plus 2{8;| words tohold the valuesm(i)
and p(i).

The spaceefficientsolution of the longestommonextensionproblemusuallyimplies
a spaceefficient solution to the various applicationsof it. This will not be explicitly
mentionedin everyapplicationandthe detailswill beleft to thereader.

9.2. Finding all maximal palindromesin linear time

Definition An evenlengthsubstringS of S is a mgximal palindromeof radiusk if,
startingin themiddleof S', S' reads thsamein both directions fok characterdut not
forany k' > k charactersAn oddlength maximalpalindromeS' is similarly defined
afterexcluding themiddlecharacteof S'.

For examplejf S= aabactgaaccnathenbothabaandaaccaaare maximal palin
dromesin S of radiione andhree,respectivelyandeachoccurrence of aais a maximal
palindromeof radius one.

Definition A string is calleda maximal palindromeif it is a maximal palindromeof
radiusk for somek.

Forexamplejn thestringcabaabadbothabaandabaabaaremaximalpalindromes.

Any palindromeis containedin somemaximal palindromewith the same midpoint,
so the maximalpalindromesarea compactway to representhe setof all palindromes.
Moreover,in most applicationsthe maximal palindromesare theones of interest.

9

More Applications of Suffix Trees

With the ability to solve lowestcommonancestolqueriesin constanttime, suffix trees
can be usetb solvemanyadditional stringproblemsMany of thoseapplicationsmove
from the domaimnof exact matching tothe domainof inexact,or approximatematching
(matchingwith someerrors permitted). This chapterillustratesthat point with several
examples.

9.1. Longestcommon extensiona bridge to inexactmatching

The longestcommon extension problem is solvedas a subtask in many classic string
algorithms.It is attheheartof all butthelast application discussed ihis chapteand is
centralto thek-differencealgorithm discussedn Section12.2.

Longestcommonextension problem Two stringsS, andS, of total lengthn are
first specifiedin a preprocessinghase. Latera long sequenceof index pairsis
specified. For eachpecified index paifi, j),we musfind thelengthof the longest
substringof S, starting at position that matchea substringf S, starting at position
j. Thatis, we mustfind thelengthof thelongestprefix of suffix i of S, that matches
a prefix of suffix j of S, (seeFigure9.1).

Of course,any time an index pairis specified, the longestommonextensioncan
be found by direct searchn time proportionalto the lengthof the match.But the goal
is to computeeachextensionin constanttime, independenf the length of the match.
Moreover,it would be cheatindo allow more tharineartime to preprocess; and ;.

To appreciate the powef suffix treescombinedwith constantime Ica queries,the

reader shouldgain try firstto devise a solutioto the longestommon extensioproblem
without thosewo tools.

9.1.1.Linear-time solution

Thesolutionto thelongestcommonextensionproblem first buildghe generalizeduffix
tree” for S, andS,, andthenprepare& to allow constanitime /ca queries.During this
preprocessingif alsocomputeshestring-depthof v for every noder of 7. Building and
preprocessing takesO(n) time.

Given any specific indeypair (i, j), the algorithmfinds the lowestcommonancestor
of the leave®f 7 thatcorrespondo suffix i in §; andsuffix j in S,. Let v denotethat
lowest commorancestor nodelhe key pointis that thestring labeling the patko v is
precisely the longestubstringof S, startingati that matches a substringf S, starting
at j. Consequentlythe string-depthof v is thelengthof thelongest common extension.
Hence each longesbmmonextensionguerycan beanswered in constatime.

9.3. EXACT MATCHING WITH WILD CARDS 199

althoughin the biologicaliterature thedistinction between separated amhseparated
palindromess sometimeslurred. The problemof finding all separategalindromesds
really oneof finding all invertedrepeatyseeSection/.12)and henceis morecomplex
thanfinding palindromes. Howeveif thereis afixed boundon the permitted distance
of the separatiorthenall the separateg@alindromescanagain befoundin linear time.
Thisisan immediate applicatioof thelongestcommon extension problem, theetailsof
which are left to theeader.

Another variantf thepalindromeproblem called thek-mismatch palindromproblem,
will beconsideredelow,afterwe discussmatchingwith afixed numberof mismatches.

9.3. Exact matching with wild cards

Recall the problem discussed $®ections4.3.2and 3.5.20f finding all occurrence®f
patternP in text 7 whenwild cardsare allowedin either string.This problem wasot
easily handleavith Knuth-Morris-Pratt or Boyer-Moore-typemethods, although the Fast
Fourier transform, matebountmethodcould be modified tohandle wildcardsin both
strings. Usinghe abovemethodto solve the longestommon extensioproblem,when
therearek wild cards distributedhroughoutthetwo strings,we can findall occurrences
of Pin T (allowinga wild cardto matchany single characterjn O(km) time, where
m > nisthelengthof T andn is the lengthof P.

At the high levelthealgorithm incrementsfrom 1 tom — » + 1 andchecksfor each
fixed i, whetherP occursin T startingat positioré of T. Thewild cardsymbolis treated
asanadditional characten thealphabetTheidea of themethodis to align the lefiendof
P against position of T andthenwork eft to right throughthetwo strings, successively
executing longest cammaxtensiorqueriesandchecking thaeéverymismatchoccursat
aposition containingwild card.After O(n +m) preprocessingme (for longestcommon
extension queriesynly O (k) timeis usedby thealgorithmfor anyfixed i. Thus,O(km)
time isusedoverall. Thefollowing detailedalgorithmworksfor afixed positioni of T:

Wild -card match check
Begin
1. Setjtol andi' toi.

2. Compute théength/ of thelongestcommonrextensionstartingat positionsj of P and:’
of T.

3. If j*1=n*1thenPoccursin T siarting at:; stop.

4. Checkif awild cardoccursin positionj *1of P or positioni' +1 of T. If sothenset j
toj+!t1, seti"toi’ +1 % 1. andgotostep2. Else, P doesnotoccurin T startingati;
stop.

End.

The spaceneededy this methodis O(n +), sinceit usesa suffix tree for the two
strings.Howeveras detailedn Theoremd.11, only asuffix treefor P plus the matching
statistics for7 areneededalthoughwe must still storéheoriginal strings)Sincem > n
we have

Theorem 9.3.1. The exact matchingproblem with k wild cardsdistributedn the two
strings can besolvedin O(km) time and O(m) space.

170 MURE APPLICAITONS OF SUFFIX TREES

Palindrome problem: Given a string § of lengthn, the palindromeproblemis to
locateall maximalpalindromesn S.

9.2.1. Linear-time solution

We will explain how to find all the everrlength maximal palindromesn linear, O(n)
time - a rather severgoal. The odd-length maximal palindromes can be fouly a
simplemodification of theevenlengthcase.

Let S" bethereverseof string S.Now, suppose there @nevenlength maximapalin-
dromein § whosemiddle occurgust after charactery of S. Let k denotethe lengthof
the palindromeThat meansthereis a string of lengthk starting at positiomq + 1 of §
thatis identicalto a string startingat positionn — q + 1 of §". Furthermorepecauséhe
palindromeis maximal, the nextcharactergin positionsq + & + 1 andn — g +k+1,
respectively)are not identical. This implies thatk is the lengthof the longestcommon
extensiorof positionq +1inSand positiom —g +1in S'. Hencefor anyfixed positiong,
thelengthof themaximal palindroméif thereisone)with midpointatg canbecomputed
in constantime.

Thisleadgothefollowing simplelineartime methodtofind all the even lengtimaximal
palindromesn S:

1. Inlinear time, creatéhe reversestring S' from $ and preprocedbetwo strings sahat
anylongest common extensiguery canbe solvedin constantime.
2. Foreachg from 1 ton — 1, solvethelongest common extension qudoy the index pair

qtin-g+ 1) in § andS", respectivelylf the extensiomasnonzerdengthk, then
thereis a maximalpalindromeof radiusk centered adj .

Themethod take®)(n) time since thesuffix treecan bebuilt and preprocesseih that
time, andeachof the O(n) extension querieis solvedin constant time.
In summarywe have

Theorem9.2.1. All the maximal evenlength palindromesin asting can beidentifiedin
linear time.

9.2.2. Complementedand separated palindromes

Palindromes were briefldiscussedn Section7.11.1, during the generaldiscussionof
repetitivestructuresn biological strings. Therat wasmentioned thain DNA (orRNA)
the palindromef interestare complementedThat meansthat the two halvesof the
substringform a palindrome(in the normal Englishuseof theword) onlyif the characters
in onehalfare convertetb their complement charactetisatis, A andT (orU in thecaseof
RNA) are complementgndC andG arecomplementskorexample ATTAGCTAAT
Is a complementegalindrome.

The problemof finding all complemented palindromé&sastring canalsobesolvedin
linear time. Lett (S") bethe complementf stringS' (i.e., whereeachA is changedo T,
eachT to A, eachC to G, andeachG to C). Thenproceedss in the palindromeroblem
usinge(S") in placeof S7.

Anothervariantof the palindromeproblem thatomesfrom biologicalsequencets ta
relax theinsistencehatthetwo halvesof the palindrome (complemented not) be adja-
cent.Whenthetwo halvesarenotadjacentthestructure isalledaseparated palindrome,

9.5. APPROXIMATE PALINDROMES AND REPEATS 201

4. If count< k, thenincrementcount by one,set; to j +1+ 1, seti' toi- +1+ 1, andgo
to step2.
If count= k + 1, thena k-mismatchof P doesnotoccur starting at; stop.
End.

Notethat thespace requiretbr this solution igust O(n+ m), andthat themethod can
beimplementedusing asuffix tree forthe smallstring P alone.

We should note a different practicalapproachto the kmismatch problem, basezh
suffix treesthatisin usein biologicaldatabassearch320]. Theideais to generatevery
string P' that can be derivedirom P by changing upo k characterof P,andthento
search forP" in asuffix treefor T. Usinga suffix tree, thesearch forP'takestime just
proportionalto the lengthof P'(andcanbe implemented to bextremely fast)so this
approaclcanbea winnerwhenk andthesizeof the alphabearerelatively small,

9.5. Approximatepalindromesand repeats

We havediscussectarlier (Sectior7.11.1) theimportanceof palindromesin molecular
biology. That discussion providesiostof the motivationfor the palindromeproblem.
Butin biological applicationsthe twopartsof the" palindromé' arerarelyidentical.This
motivatesthe k-mismatch palindrome@roblem.

Definition A k-mismatchpalindromeis asubstringhat becomea palindrome aftek
or fewercharacters arehangedFor exampleaxabbcca is a 2-mismatch palindrome.

With this definition, a palindromeis just a 0O-mismatchpalindrome.lIt is now an easy
exerciseto detail an O(kn)-time methodto find all k-mismatchpalindromesn a string
of lengthn. We leavethatto thereader,andwe moveon to the more difficultproblemof
finding tandem repeats.

Definition A tandemrepeate is a string that can be written as 88, wheref is a
substring.

Eachtandemrepeats specifiedby a starting positionf therepeatndthe lengthof the
substring8. This definition doesnot requirethat 8 be ofmaximal length. For example,
in the string xabnbababytherearea totalof six tandenrepeatsTwo of these begirat
position two:ababandababababln thefirst case,8 isab,andin thesecond cases is
abab.

Usinglongest commoextensiorgueriesit isimmediate thaall tandem repeatsanbe
foundin O(n?*) time —justguessa startpositioni anda middleposition j for thetandem
anddoalongest common extensiajuery fromi andj. If theextensiorfromi reacheg
or beyondthen theras atandem repeaif length2 (j — i +1) startingat positioni . There
are®(n?) choices fori and j, yielding the O(n?) time bound.

Definition A k-mismatch tandenmrepeat is a substringthat becomea tandenrepeat
afterk or fewer characters achangedForexampleaxabaybb is a2-mismatch tandem
repeat.

Again, all k-mismatchtandemrepeats carbe found in Q(kn?) time, and thede-
tails are leftto the reader.Below we will presenta method that solvethis problem
in O(kn log(n/k)) time. Tosummarizewhatwe havesofar is

Theorem 9.5.1. All the tandem repeatsn § in which the two copiesdiffer by at most
k mismatchescan be found in Q(kn?) rime. Typically, k is a fixed number, and the time
bound is reportedas Q(n?).

P AVAN/ANLY ML LA AL AN W QUITTIA LRERD

9.4. Thek-mismatch problem

The generalproblem of inexactor approximate matchingmatchingwith someerrors
allowed)will beconsidered ietailin Partlll of the book (in Section12.2), wherethe
techniqueof dynamic programming wilbe central.But dynamicprogrammingis not
alwaysnecessaryandwe havehereall thetools to solveoneof theclassic“benchmark”
problemsin approximate matching: tHemismatchproblem.

Definition Givena patternP,a text T, anda fixed numbelk that isindependenof
the lengthef Pand T, ak-mismatch ofP is a | P1-lengthsubstringof T that matches
atleast| P| — k charactersf P.Thatis, it matchesP with at mostk mismatches.

Note that thedefinition of a k-mismatchdoes notallow any insertionsor deletionsof
characters, jushatchesand mismatched.ater,in Section12.2,we will discuss bounded
error problemsthatalsoallow insertionsand deletion®f characters.

Thek-mismatch problem is to find all k-mismatcheof Pin T.

For examplejf P = bend, T = abentbananaen@dndk = 2, thenT containsthree
k-matches ofP: P matchesubstringbenrwith onemismatchsubstringbanawith two
mismatches, ansubstringaendwith onemismatch.

Applicationsin molecular biologyfor the k-mismatchproblem,alongwith the more
generak-differencegroblem,will bediscussedn Section12.2.2.The kmismatchprob-
lem is a special casef the matchcount problemconsideredin Section4.3, and the
approachediscussedhere applyBut becausd is a fixednumberunrelatedo thelengths
of P andT, faster solutions havieeenobtained.In particular,LandauandVishkin [287]
and Myers[341] were the first tashow anO(km)-time solution, whereP and T have
lengthsn andm > n, respectively.The value of k can neverbe more thann, but the
motivation forthe O(km) resultcomesfrom applicationswherek is expectedo be very
smallcomparedo ».

9.4.1.The solution

The ideais essentially thesameasthe ideafor matchingwith wild cards(althoughthe
meaningof k in thesetwo problemsis different).For any position; in T, we determine
whethera k-mismatchof P beginsat positioni in Q(k) time by simply executingup to
k (constanttime)longestcommon extensiogueries.If thoseextensiongseachthe endof
P ,then P matchedhesubstringstartingati with at most kmismatcheslf the extensions
do not reachthe endof P,then more thark mismatches areeeded. Ireithercase, at
mostk extension queries are solved &myi, and O (k) time suffices tadeterminevhether
a k-mismatchof P begins ai. Overall positionsin T, the methodthereforerequiresat
most Q(km) time.

k-mismatch check
Begin
1. Setjtolandi' toi,andcount toQ.

2. Computethe lengtH of thelongestcommon extension startiagjpositionsj of P and:’
of T.

3. If j+! = n+ 1, thenak-mismatchof P occursin T starting at (in fact, only count
mismatches occur); stop.

9.6. FASTERMETHODS FORTANDEM REPEATS 203

A B

Figure 9.2: Any position between A and B inclusiveis a starting point of a tandem repeat of length 2/.
As detailed in Step 4, if /; and % are both at least one, then a subinterval of these starting points specify
tandem repeats whose first copy spans h.

3. Computethelongesttommon extensiom the reversedirectionfrom positionsh — 1 and
g — 1. Let!; denote théengthof that extension.

4. Thereis atandem repeat dength 21 whose first copy spans positibnif andonly if
1,1, > 1andbotht, and!, areatleastone.Moreover,if thereis suchatandem repeat of
length21, thenit can begiratany positionfrom Max(k — {3, h— 17+ 1) toMin(k +i1,-1,n)
inclusive. Thesecondopyof therepeat beginsplacesto the right. Outpueachof these
startingpositions alongvith the length2l. (See Figuré®.2.)

End,

To solve annstanceof subproblen8 (finding alltandenrepeats whose firsopyspans
positionh), just run theabove algorithnfor eachl from 1 to h.

Lemma9.6.1. The above method correctly solves subprobl8ror a fixed h. That is, it
finds all tandemrepeatswhose first copyspans positiorh. Further; for fixed h, its running
time is O(n/2) + z,, wherez, is the numberof suchtandemrepeats.

PROOF Assumdirstthatthereis atandem repeathosefirst copy spans position, andit
hassomdength,say2l.Thatmeanghatpositionq = h+| in thesecondopycorresponds
to positionh in the firstcopy.Hencesomesubstring startingth must match aubstring
starting afg, in orderto provide the suffix of eachcopy. Thissubstringcanhavelengthat
mostl,. Similarly,theremustbeasubstringending ah — 1 thatmatchessubstringending
atg — 1, providingthe prefix of eachcopy.Thatsubstringcanhave lengtlat most/,. Since
all characterdetweenh andq are containedn oneof the two copies,i, + /, mustbeat
least/. Converselyby essentially the sanreasoningif |, +4, < | andboth/, and!; areat
leastonethenonecanspecifya tandenrepeat of lengtt2l whosefirst copy spansh. The
necessaryndsufficientconditionfor theexistenceof sucha tandenis therefore proved.

The converseproof thatall starting positions falin the stated range involvesimilar
reasoningndis left to the reader.

Forthe time analysis,notefirst thatfor a fixed choiceof h, the method takesonstant
time perchoiceof | to execute the commoextension queriegndsoit takes O(n/2)
time for all thosequeries.Forany fixed {, the methodtakes constaritme pertandemthat
it reports,andit neverreportsthe samedandem twicesinceit reports adifferent starting
point foreachrepeatof length21.Sinceeachrepeats reportedas astartingpointanda
length,it follows thatover allchoicesof {, thealgorithmneverreports anygandem repeat
twice. Hencethetime spentto reporttandem repeats proportionalto zj, the numberof
tandem repeatwhosefirst copy spanspositionh. 0O

Theorem 9.6.1. Every tandem repeain § is found by the executionof subproblemsl
through 4 and is reportedexactly onceThetimefor thealgorithmis O (nlogn+2z), where
z is the total numberof tandem repeatsn S.

202 MORE APPLICATIONS OFSUFFIX TREES

9.6. Fastermethodsfor tandemrepeats

Thetotal numbeiof tandem repeats andrkismatchtandem repeai@venfor fixed k) can
growasfastas®(n?) (takethecase of alk characterdeingthe same)So,noworstcase
bound bettethan O(r?) is possiblefor the problemof finding all tandemrepeatsBut
a method whoseunning time dependon the numbebof tandemrepeats containeth
the string is possiblefor boththe exactandthe k-mismatch versionsf the problem. A
different approactwas exploredn Exercises 5657, and58 of Chapter7, whereonly
maximalprimitive tandem arrays werdentified.

LandauandSchmidt[288] developeda methodto find all k-mismatchtandemrepeats
in O(kn log(3)+z) time, whereZ is thenumber ok-mismatch tandemepeatsn thestring
S.Now z canbeaslargeas®(n?), butin practicez is expectedo besmallcomparedo
n?, sothe O(kn log($) + z) boundis a significantimprovement.Note that we will still
find all tandem repeatbutthe runningtime will dependn theactualnumberof repeats
andnotontheworstcase possiblaumberof repeats.

We explain the methodby first adaptingit to find all tandemrepeats (withno mis
matches)n O(nlogn T z) time, wherez is now the totahumberof tandemrepeatsin
S. Thattime boundfor the casef no mismatchesvas firstobtainedin a paperby Main
andLorenz [307], who useda similar ideabutdid not use suffixrees.Their approachs
exploredin Exercise8.

TheLandau-Schmidisolution isa recursive, dividandconquemlgorithm thaexploits
the ability to computelongestcommonextensionqueriesin constantime. Leth denote
L5J. At the highestevel, the Landau-Schmidt method dividethe problemof finding all
tandem repeaisto four subproblems:

1. Findall tandemrepeats contained entirelly thefirst half of S (up to positionh).

2. Find all tandenrepeats contained entirely the second hatéf S (after positiorh).
3. Findall tandenrepeats where thigst copy spans (containgdsitionh of §.

4. Findall tandenrepeatsvherethe second copgpans positioh of S.

Clearly, naandem repeatill befoundin morethanoneof thesdour subproblemslChe
first two subproblems arsolvedby recursively applyinghe Landau-Schmidt solution.
The secondtwo problems aresymmetricto eachother,so we consider onlythe third

subproblem.An algorithm for that subproblemtherefore determines thagorithm for
finding all tandem repeats.

Algorithm for problem 3

We wantto find all thetandem repeats where thiest copyspangbutdoesnot necessarily
beginat) position#. The ideaof the algorithm isthis: For any fixechumber!, onecan
testin constanttime whether theras a tandemrepeatof length exactly2l suchthat the
first copy spans positiom. Applying this testfor all feasiblevalues of/ meansthatin
O(n) time we can findall the length®f tandemrepeats whoskrst copyspangpositionh.
Moreover, foreachsuchlengthwe can enumeratell the startingpointsof thesetandem
repeats, irtime proportionalto thenumberof them.Here ishow to test anumberi.

Begin
1. Letg=h+1.

2. Computethelongest common extension (ihe forwarddirection)from positionsh and
g.Let!/; denote théengthof that extension.

9.7. A LINEAR-TIME SOLUTION 205

andtandemrepeatproblemsto allow for string complementation and boundeédtance
separatiorbetweercopies.

9.7. A linear-time solution to the multiple common
substring problem

All of the aboveapplicationsare similar,exploiting the ability to solvelongestcommon
extension queriefn constanttime. Now we examineanotheruseof suffix trees with
constanitime Ica that isnot of this form.

Thek-commonsubstringoroblem wadirst discussed in Sectioh6(the readeshould
reviewthat discussion beforgoingon).In thatsection, ageneralized suffix tred was
constructedor the X stringsof total lengthn, and the tableof all thel(k) valueswas
obtainedby operation®n 7. That methodhada running timeof O(Kn). In this section
we reducehetime to O(n). Thesolutionwas obtainedy LucasHui {236].!

Recall thafor any nodev in 7, C(v) is thenumberof distinct leaf stringdentifiersin
thesubtree of v, andthata tableof all the/(k) valuescanbecomputedn O(n) timeonce
all the C(v) valuesare known.Recall alsothat S(v) is the total number oleaves inthe
subtree of v andthat S(v) caneasilybe computedn ©(») time for all nodes.

Certainly,S(v) = C(v)for anynodeuv, andit will be strictly greater whenherearetwo
or moreleavesof thesamestring identifierin v's subtree. Ourapproachio finding C(v) is
to computeboth S(v) anda correctionfactor U (v), which countshow many"duplicaté'
suffixesfrom the samstringoccurin v’s subtree. ThenC(v) is simply S(v) — U(v).

Definition n;(v) is thenumberof leaveswith identifieri in thesubtree rooted atnode
v. Let n; bethe totalnumberof leaveswith identifieri.

With that definition, wammediatelyhavethe following:

Lemma9.7.1. U(w) =3 o(n;(v) —)andC(v) = S(v) = U(v).

We show below that allthe correctionfactorsfor all internalnodes carbe computed
in O(n) total time. That thengives an Q(n)-time solution to thek-commonsubstring
problem.

9.7.1. The method

The algorithmfirst does a deptfirst traversalof 7, numberingthe leavesn the order
that theyare encountered:hat numberinghasthefamiliar property thafor anyinternal
nodev, the numbergyiven to the leavesin the subtree rooted atv areconsecutive(i.e.,
theyform a consecutive interval).

For purposesf theexposition,let usfocuson the singleidentifieri andshow howto
computen;(v) — 1 for eachinternal nodev. Let L; be the listof leaves withidentifier
i, in increasing ordeof their dfs numbers.For examplejn Figure9.3,the leaves with
identifier i areshownboxedandthecorresponding.; is 1, 3, 6, 8, 10. By the properties
of depthfirst numberingfor the subtree rooted atany internal node, all then;(v) leaves
with identifieri occurin aconsecutiventervalof list L;. Call that intervalL,(v). If x and

' In the introduction of an earlier unpublished manuscript ~ [376], Pratt claims a linear -time solution to the problem
but the claim doesn't specify whether the problem isfor a fixed k or for all values of k. The section where the details
were to be presented is not available and was apparently never finished [375].

204 MORE APPLICATIONS OF SUFFIX TREES

PROOF That alltandem repeatsrefoundis immediate fronthe fact that every tandem
is of aform consideredby oneof the subproblem4 through4. To showthat no tandem
repealfs reportedwice, recallthatfor h = n/2, notandemis of theform consideredby
morethanoneof the foursubproblemsThis holdsrecursively forsubproblemd and2.
Further,in the proof of Lemma 9.6.1we establishedhat no execution of subprobler8
(and also 4) reports tlEametandem twice. Hencaver theentireexecutionof the four
subproblemsno tandem repeas reported twicelt also followsthat thetotal timeused
to outputthetandenrepeatds O(z).

Tofinish theanalysis,we considethe time takerby the extensiomueries.This time
is proportionato the numbeof extensionqueriesexecutedLet T(n) denotethe number
of extensiormueries executed for a stringf lengthn. Then, T(n) = 2T(n/2) + 2n, and
T(n) = O(nlogn)asclaimed. O

9.6.1. The speedupgfor k-mismatchtandemrepeats

Theideafor the O(kn log(3)+ z) algorithmof LandauandSchmidt{288] is animmediate
extensiorof the O(nlogn + z) methodfor finding exact tandem repeats, but the imple
mentations a bit moreinvolved. The method is again recursive, and again the importan
part is subprobler8 (or 4), finding all k-mismatchtandenrepeatsvhosefirst copy spans
positionh. The solution to thgproblemis to run k successive longesbmmonextension
queries forward fronhh andq and to rurk successive longesbmmon extensiogueries
backward fromh — 1 andqg — 1. Now focus on the interval betwednandq. To find

all k-mismatchtandemrepeats whosérst copy spandy, find every position t(if any)

in that intervalwhere thenumberof mismatchegrom h to t (found during the forward
extensionplus thenumberof mismatches from+ 1toqg - 1 (foundduringthebackward
extension) isat most k. Anysuch tprovidesa midpointof the tandem repeat\Ve leave
the correctness thatclaim tothe reader.

To achieve thelaimed time boundjye mustfind all the midpointf the kmismatch
tandenrepeats whose first compans hin time proportionalto the numberof them.But
unlikethecase oéxact tandemepeats, the sef correct midpoints need not be contiguous.
How aretheyfound?We sketchtheideaand leave the detaiéssan exerciseDuring the
k forward extensiomueries, accumulatn ordered lisof the positions in intervalh,g]}
wherea mismatchoccurs,anddo the same duringhe backwar@xtension querie§hen
merge (inleft to right order)those two lists and calculater each position in the list the
total numberof mismatchego it from h andto q — 1. Since each list ifound in order,
the time taobtain themerged list andhe totals isO (k). Thetotal numberf mismatches
can change onlgt a positiorthat isin the merged listhencean O (k) time scanof that
list specifies alsubintervals containingermitted midpointef the k-mismatchtandem.
In addition,everypoint in such aubinterval isa permitted midpointThus,for afixed
h, the total query timefor subproblem3 is O(k) andthe total output timeis kz,. Over
the entirealgorithm, the total outputime is O(kz) andthe numbenf queriessatisfies
T(n) =2T(n/2)+ 2k. Thus, atmostO(kn log n) queries are done. In summawe have

Theorem9.6.2. All k-mismatch tandemepeatsn a stringd lengthn canbefound in
O(knlogn ¥ z) time.

Theboundcanbesharpened t&(kn log(n/ k) + z) by the observatiorthatany! < k
neednot be testedin subproblems3 and4. We leave the detailasanexercise.
We alsoleaveit to the readeto adaptthe solutions forthe k-mismatchpalindrome

98. EXERCISES 207

5. Foreachdentifieri, computdheica of eachconsecutive paof leavesn L;, andincrement
h(w) by oneeach timehatw is the computeéta.

6. With a bottomup traversal of7, compute,for each node v, S(v) and U(v) =
2 in solni(v) — 11 =Y [A(w) : w isin thesubtree of v].

7. SetC(v) = S(v) — U(v) for eachnodeuv.

8. Accumulate the tablef i(k) valuesasdetailedn Section7.6.

End.

9.7.2. Time analysis

Thesizeof the suffix treeis O(n) andpreprocessing athetree forlca computationss
donein O(n)time. There ardhenzgil In; — 1| < nlcacomputations done, eaolfiwhich
takesconstant timeso allthe lca computationgake O(n) timein total. Hence onlyO(n)
time isneeded t@omputeall C(v) valuesOncetheseareknown, only O(»n) additional
time is needed tdouild the outputtable.That partof thealgorithmis the sameasin the
previouslydiscussed?(K n)-time algorithmof Section7.6. Therefore we can state

Theorem9.7.1. LetS beasetof K stringsoftotal lengthn, andlet (k) denote the length
of thelongestsubstringthat appearsin at leastk distinctstringsof &. A table of all (k)
valuesfork from2to K, canbe built in O(n) time.

Thatsomuchinformation aboutthe substringsf S canbeobtainedn time proportional
to the timeneedequst to read thestringsis veryimpressive. livould beagood challenge
to try toobtain this resultvithout the useof suffix trees(ora similardatastructure).

9.7.3. Relateduses

Themethodologydevelopedor the k-commonsubstring problemanbeeasily extended
to solverelated andmportantproblems abouwsets ofstrings.

Forexample suppose yoaregiven two setf stringsS andP, andyou wantto know
for eachstring A ¢ 7, in how many stringsf S doesA appearlLet n denotethe total
sizeof all the strings inS andm denotethe totalsizeof all the stringsn P.The problem
canbesolved inO(n+ m) time, the sameime boundattainablevia the Aho—Corasick
methodOr one coulcconsidemanotherproblem: Giveralengthl,find the stringof length
at least that appears in theoststringsin asetgivenof strings. That isfind the most
common substrin@f length at least!. That problemhas applications in many multiple
alignment methodsSeeExercise26in Chapterl4.

9.8. Exercises

1. ProveTheorenmo.1.1.

2. Hl in all the detailsand provethe correctnessf the spaceefficient methodsolvingthe
longestcommonextensionproblem.

3. Givethedetailsfor finding all oddlengthmaximalpalindromes a stringin lineartime.

4. Showhowto solveall the palindromeproblemsn lineartime usingjusta suffix treefor the
string S ratherthanfor both Sand s'.

5. Givethedetailsfor searchingor complemented palindromesa linearstring.

206 MORRBPPLICATIONS OF SUFFIXTREES

lca(3,6)

Figure 9.3: The boxed leaves have identifier i. The circled internalnodes are the lowest common ancestors
of the four adjacent pairs of leaves from list L;.

y areany two leaves inL;(v), thenthelca of x andy is a node inthe subtree of v. Soif
we computethe lca for eachconsecutivepair of leavesin L;(v), thenall of then;(v) — 1
computedicas will befoundin the subtree of u. Further,if x andy are not bothin the

subtree of v, thenthelca of x andy will not bea nodein v’s subtree. This leadsto the
following lemma and method.

Lemma9.7.2. If we computethe Ica for each consecutivepair of leavesin L;, then for
any nodev, exactlyn;(v) — 1 of the computed Icaswill lie in the subtree of v.

Lemma9.7.2is illustratedin Figure9.3.

Given thelemma,we cancomputen;(v) — 1 for eachnodev asfollows: Computethe
lca of eachconsecutivepair of leaves inL;, and accumulatéor eachnodew acount of
the numbenpf timesthatw is thecomputedca. Let h(w) denotethatcountfor nodew .
Thenfor any nodev,n;(v) — 1lis exactly® [A(w) : w isin thesubtree of v]. A standard
O(n)-time bottomup traversal of canthereforebeusedto find n#;(v)— 1 for eachnodev.

Tofind U(v), wedon'twantn;(v) — 1 butrather)_,[n;(v} — 1]. However,thealgorithm
mustnot do a separate bottorup traversalfor eachidentifier, since therthe timebound
would thenbe O(K n). Instead the algorithm shouldleferthe bottomup traversal until
eachlist L; hasbeenprocessedandit shouldlet #(w) countthe totalnumberof times that
w is thecomputedca overall of thelists. Only thenis asinglebottomup traversabf 7
done.At thatpoint, U(v) = 3., _oln:i(v) — 1] = 3 [A(w) : Wisin thesubtree of v].

We can now summarizethe entireQ(n) methodfor solving the k-common substring
problem.

Multiple common substring algorithm

Begin

1. Build ageneralizedsuffix tree7 for theK strings.

2. Numbertheleavesof 7 astheyare encountereid a depthfirsttraversalof 7.

3. Foreach string identifieir, extract the ordered list, of leaveswith identifieri. (Theminor
implementatiordetail needed taothisin O(xn) total timeis left to the reader.)

4, Foreachnodew in 7T seth(w) to zero.

PART II1I

Inexact Matching, Sequence Alignmentand
Dynamic Programming

208

6.

MORE APPLICATIONS OF SUFFIX TREES

Recall that a plasmid is a circular DNA molecule common in bacteria (and elsewhere).
Some bacterial plasmids contain relatively long complemented palindromes (whose func-
tionis somewhatin question). Give alinear-time algorithm to find ali maximal complemented
palindromesin a circular string.

7. Show how to find all the k-mismatch palindromes in a string of length nin O{(kn) time.
8. Tandem repeats. In the recursive method discussed in Section 9.6 (page 202) for find-

10.

12.

13.

ing the tandem repeats (no mismatches), problem 3 is solved with a linear number of
constant-time common extension queries, exploiting suffix trees and lowest common an-
cestor computations. An earlier, equally efficient, solution to probiem 3 was developed by
Main and Lorenz [307], without using suffix trees.

The idea is that the problem can be solved in an amortized linear-time bound without
suffix trees. In an instance of problem 3, his held fixed while g = h+ 1— 1 varies over
all appropriate values of 1. Each forward common extension query is a problem of finding
the length of the longest substring beginning at position q that matches a prefix of S[hA
... n]. Alt those lengths must be found in linear time. But that objective can be achieved by
computing Z values (again) from Chapter 1, for the appropriate substring of S. Flesh out
the details of this approach and prove the linear amortized time bound.

Now show how the backward common extensions can also be solved in linear time by

computing Z values on the appropriately constructed substring of S. This substring is a
bit less direct than the one used for forward extensions.

. Complete the details for the O(kn logn * z)-time algorithm for the k-mismatch tandem

repeat problem. Consider both correctness and time.

Complete the details for the O(kn log(n/k) * z) bound for the k-mismatch tandem repeat
method.

Try to modify the Main and Lorenz method for finding all the tandem repeats (without errors)
to solve the k-mismatch tandem repeat problem in O(kn logn + z) time. If you are not
successful, explain what the difficulties are and how the use of suffix trees and common
ancestors solves these problems.

The tandem repeat method detailed in Section 9.6 finds all tandem repeats even if they are
not maximal. For example, it finds six tandem repeats in the stringxababababy, even though
the left-most tandem repeat ababis contained in the longer tandem repeat abababab. De-
pending on the application, that output may not be desirable. Give a definition of maximality

that would reduce the size of the output and try to give efficientalgorithms for the different
definitions.

Consider the following situation: A long string S is given and remains fixed. Then a se-
quence of shorter strings Sy, Ss. ..., Sk is given. After each string S; is given (but before
5.1 is known), a number of longest common extension queries will be asked about S, and
S. Let r denote the total number of queries and n denote the total length of ail the short
strings. How can these on-line queries be answered efficiently? The most direct approach
is to build a generalized suffix tree forboth & and S; when §; is presented, preprocessit (do
a depth-first traversal assigning dfs numbers, setting I() values, etc.) for the constant-time
lca algorithm, and then answer the queries for S;. But that would take ®{k|S} + n + r)
time. The k|S| term comes from two sources: the time to build the k generalized suffix
trees and the time to preprocess each of them for /ca queries.

Reduce that k{8| term from both sources to | S|, obtaining an overalt bound of O{}S] +
n + r).Reducing the time for building all the generalized suffix trees is easy. Reducing the
time for the fea preprocessing takes a bit more thought.

Find a plausible application of the above result.

INEXACT MATCHING, SEQUENCEALIGNMENT, DYNAMIC PROGRAMMING 211

The role of exact matching

The centrality olipproximate matchingin molecular biology is undisputed. However, it
doesnot follow that exactmatchingmethods have little applicatidhere,and severabi-
ological applicationsf exactmatchingwere developeth Partd andIl. Asone example,
recallfrom Section7.15,that suffixtreesarenow playingacentralrole in severabiolog-
ical databasefforts. Moreover, several exact matching techniques sterenearlier to
directly extendrapplyto approximatenatching problems (the matcount problem, the
wild-card problem,the k-mismatchproblem,the kmismatch palindrome problem, and
the k-mismatchtandem repegtroblem).In PartsIIl andIV we will developadditional
approximatematching techniques that rely a crucialway onefficient exactmatching
methods, suffix treestc. We will alsoseeexact matching problentisatarise as subpreb
lemsin multiple sequenceomparisonin large-scale sequence comparisondatabase
searching, andh other biologically important applications.

210 INEXACT MATCHING, SEQUENCEALIGNMENT, DYNAMIC PROGRAMMING

At this pointwe shiftfrom the generahreaof exact matchingandexactpattern dis
covery to the generabreaof inexact, approximatenatching,and sequencealignment.
" Approximaté' meansthatsomeerrors,of varioustypesdetailedlater, are acceptablen
valid matches:"Alignment’ will be given a precise meaning latdryt generallymeans
lining up character®f strings,allowing mismatchess wellas matches, andllowing
charactersf onestring to be placedopposite spaces madeopposing strings.

We also shiftfrom problemsrimarily concerning substrings twoblemsconcerning
subsequenceA. subsequencdiffersfrom a substringn thatthecharacters i substring
mustbe contiguous,whereashe characters a subsequencembeddedn a string need
not be." Foexamplethestring xyz is asubsequencdyut nota substring,in axayar,The
shift from substringsto subsequencets a natural corollaryof the shiftfrom exactto
inexact matchingr his shift of focusto inexactmatchingandsubsequenceomparisons
accompaniedy ashift in rechnique. Most of the methods wewill discuss irPartlll, and
many of themethodsn PartlV, rely on the toolof dynamic programming, a toolthat was
not neededn Partsl andIl.

Much of computational biology concernssequencealignments

Theareaof approximatematchingandsequenceomparisons central incomputational
molecularbiology both becausef the presencef errorsin moleculardata andoecause
of active mutationalprocesses thasub)sequence comparison methodsseekto model

andreveal. This will be elaborated inthe nextchapter and illustrated throughotite

book. On theechnicalside,sequencalignmenthasbecome theentraltool for sequence
comparisonn molecular biology. HenikofandHenikoff [222] write:

Amongthe most usefulcomputerbasedcoolsin modern biologyare thosethat involvese
guencealignmentsof proteins sincethesealignmentoftenprovideimportant insighténto
gene angbroteinfunction.Thereare several differertypesof alignmentsglobal alignments
of pairsof proteinsrelatedby common ancestrihroughout theitengths, locablignments
involving relatedsegmentsf proteinsmultiple alignmentsf membersf protein families,
andalignmentsnadeduringdatabasesearcheo detect homologies.

Thisstatemenprovidesaframeworkfor much ofPartlIll. We will examinein detailthe
four typesof alignments (and severahriants) mentioned aboveé/e will alsoshowhow
thosdlifferentalignmentmodels addregdifferent kindsof problemsn biology. We begin,
in Chapterl0, with a moredetailedstatement ofvhy sequenceomparisonhasbecome
centralto currentmolecularbiology. Butwe won't forget theole of exactmatching.

' It is acommonandconfusing practicén the biological literature taefer to a substringas a subsequencedut
techniquesnd results for substring problencan be very differentfrom techniquesindresultsfor the analogous
subsequence problensg it is importantto maintaina clear distinctionin this book we will never usethe term
"subsequencevhen' substring' is intended.

THEIMPORTANCE OF COMPARISON IN MOLECULAR BIOLOGY 213

And fruit flies aren'tspecial Thefollowing isfrom abook reviewon DNA repair[424]:

Throughoutthe presenwork we seethe insights gained through our abilitp look for
sequence homologiey comparisonof the DNA of different species. Studies geastare
remarkable predictod the humarsystem!

So'"redundancy, and" similarity" are central phenomemabiology. Butsimilarity has
its limits — humansandflies do differ in somerespectsThesedifferencesmakeconserved
similarities even more significant, which in turm makescomparisonand analogy very
powerfultoolsin biology.Lesk[297] writes:

It is characteristiof biological systemshat objectsthat we observeio havea certainform
aroseby evolution from related objectwith similar but not identical from. They must,
therefore be robust,in that they retairthe freedonto tolerate some variatioklVe cantake
advantagef this robustness our analysisBy identifyingandcomparing related objects,
we candistinguish variable and conserved featuaes, therebyleterminewhatis crucial to
structure and function.

The important'relatedobjects’ to compare include much more thaaquence data,
because biological universalibgcursatmanylevels ofdetail. However |t isusuallyeasier
to acquireandexaminesequencethanit is to examinefine detailsof geneticsor cellular
biochemistryor morphology.Forexample therearevastlymore proteirsequenceknown
(deducedrom underlying DNAsequenceghanthere are knowmhreedimensionajpro-
teinstructuresAnd it isn't justa matter ofconvenience that makesquences important.
Rather the biologicalsequenceencodeandreflectthe morecomplex commomnolecular
structuresand mechanisms thadappearasfeaturesat the cellular or biochemicallevels.
Moreover,'nowhere irthebiologicalworld is the Darwinian notiorof 'descentwith mod
ification' more apparenthanin the sequences genes and genaroduct$' [130]. Hence
a tractable, thougpartly heuristic,way to searchor functionalor structural universality
in biological systemss to searchfor similarity and conservatio@t the sequenceevel.
The powerof thisapproach is madeearin thefollowing quotes:

Today themostpowerfulmethod for inferringhe biologicalfunctionof agene (or therotein
thatit encodesjs by sequence similarity searchiog protein andDNA sequence databases.
With the developmenof rapid methodgor sequence comparisoboth with heuristic a
gorithms andpowerful parallel computers, discoverieasedsolely on sequence homology
havebecome routind360]

Determining function foa sequencis a matterof tremendous complexity, requiring biolog
ical experiment®f the highestorderof creativity. Neverthelesayith only DNA sequencéd

is possibleto executea computerbasedalgorithmcomparing the sequentea databasef
previously characterizegenes.In about50%o0f the cases, such mechanicatomparison
will indicatea sufficientdegreeof similarity to suggest putativeenzymatic or structural
functionthat might be possessedty the unknowngene [91]

Thuslarge-scalesequence comparisonsuallyorganizedasdatabasesearchjs a very
powerful toolfor biologicalinferencan modem molecular biologynd thattool is almost
universallyused bymolecularbiologists.It is nowstandard practice, whenevenawgene
Is clonedandsequencedto translateits DNA sequence into an amiraeid sequencend
thensearctor similaritiesbetweent and member®f the protein databaselN.oonetoday
would eventhink of publishingthe sequencef a newly cloned genevithout doing such
database searches.

10

The Importance of (Sub)sequence Comparisonin
Molecular Biolog

Sequence comparison, particulanpencombinedwith thesystematic collectiorgurra
tion, and searchof databasesontainingbiomolecularsequenceshas becomessential
in modemmolecularbiology. Commenting otthe (then)nearcompletionof theeffort to
sequenceheentire yeastgenomegnow finished) StepherOliver says

In ashorttimeit will be hardto realizehow wemanagedvithoutthesequencdataBiology
will neverbe thesameagain [478]

Onefact explaingheimportanceof molecularsequencelataand sequenceomparison
in biology,

Thefirst factof biologicalsequencanalysis

Thefirst fact of biologicalsequence analysisin biomolecular sequences (DNRINA,
oramino acidsequenceshighsequence similaritysuallyimplies significant functional
or structural similarity.

Evolution reuseshuildson, duplicates, andnodifies™ successful structuregproteins,
exons,DNA regulatory sequencesmorphologicalfeatures, enzymaticpathways etc.).
Life is based orarepertoireof structured andnterrelatedmolecularbuilding blocksthat
are shared and passaund. Thesameand related moleculatructures andnechanisms
show up repeatedlyn the genomeof a singlespeciesand across &ery widespectrum
of divergent species:Duplicationwith modificatiod® [127, 128,129, 130} is thecentral
paradigmof proteinevolution,whereinnew proteinsand/or new biologicalfunctionsare
fashionedrom earlierones.Doolittle emphasizeshis pointasfollows:

Thevastmajorityof extantproteingarethe resulof acontinuouserief genetic duplications
andsubsequentodificationsAs a result,redundancys a built-in characteristiof protein

sequencesnd we should not be surprisedhat so many new sequences resemladeady
known sequence$!29]

He adds that
... all of biology is basedbn anenormousedundancy. ..[1301

The following quotesreinforce this view and suggest thatility of theenormous
redundancy in the practiceof molecularbiology. Thefirst quoteis from Eric Wieschaus,
cowinner of the 1995 Nobel prize in medicindor work on the geneticsof Drosophila
developmentThe quoteis takenfrom an AssociatedPress articleof October9, 1995.
Describingthe work doneyearsearlier, Wieschausays

We didn't know it at the time, but we foundout everythingin life is so similar thatthe same
geneshat work in flies arethe oneghatwork in humans.

11

Core String Edits, Alignments, and Dynamic
Programming

11.1. Introduction

In this chapterwe considerthe inexact matchingnd alignmenproblems thatorm the
coreof thefield of inexactmatchingand otherghatillustrate themost general techniques.
Someof those problems and technique#l be furtherrefined and extended iime next
chapters. Wetartwith adetailedexaminatiorof the most classioexact matchingroblem
solvedby dynamicprogramming.the edit distanceproblem.The motivationfor inexact
matching (and, more generally,sequencecomparison)in molecular biologywill be a
recurringthemeexplored throughoutherestof the book.We will discussmanyspecific
examplef how string comparisorand inexactmatching areusedin currentmolecular

biology. However,to begin, weconcentraten thepurely formal andtechnical aspecisf
definingandcomputinginexactmatching.

11.2. Theedit distancebetweentwo strings

Frequently,onewantsa measureof thedifferenceor distance betweentwo strings(for
example,n evolutionary,structural,or functionalstudiesof biological strings; in textual
database retrieval; am spellingcorrection methods) hereareseveral wayso formalize
thenotionof distance betweestrings.Onecommonandsimple formalization{389, 299],
callededitdistancefocuse®ntransforming (or editing)onestringinto the otheby aseries
of edit operations on individugharactersThe permittededitoperationsareinsertion of
a characternnto the firststring, thedeletionof a characterfrom the first string, or the
substitution(or replacementpf a charactein the firststringwith a charactein thesecond
string. Forexample, lettind denote thénsertoperation,D denotethedeleteoperationR
thesubstitute (or replace) operaticamd M the nonoperatiorof ""match;’ then thestring
"vintner" canbe edited tdbecomé writers" asfollows:

RIMDMDMMI
V intner

wri t ers

Thatis, v is replacedby w, » isinserted; matches angs unchanged sincié occursin
bothstrings,nisdeleted¢ is unchangeds isdeleted,er matchand are unchanged, afie
nally s isinserted Wenow moreformally defineedit transcriptand string transformations.

Definition A string over the alphabgtD, R, M that describeatransformation of one
string toanother is calle@nedit transcriptor transcript for shorif the twostrings.

In generalgiventhetwo input stringss; ands,, and giveranedittranscript forS; and
$3, thetransformation is accomplishdxy successivelapplyingthespecified operatiom
the transcripto the nextcharacter(s) in theappropriatestring(s). In particular letzext; and

215

214 THE IMPORTANCE OF COMPARISON IN MOLECULAR BIOLOGY

Thefinal quotereflectsthe potentialtotal impact onbiology of the first fact and its
exploitation inthe form of sequence database searchitgs from an article [179] by
Walter Gilbert, Nobel prize winner for the coinventionof a practicalDNA sequencing
method. Gilbert writes:

The new paradigmnow emerging, isthat all the 'genes' will be known (in the senseof being
residentin databasesavailableelectronically), and that the starting point of biological inves
tigation will be theoretical. An individual scientistwill begin with a theoretical conjecture,
only then turning to experiment tofollow or testthat hypothesis.

Already,hundredgif notthousands)f journalpublicationsappeaeach year that report
biologicalresearchwhere sequence comparisand/ordatabase searchanintegralpart
of the work. Manysuch examplethatsupport andllustrate the first fact aredistributed
throughout théook. Inparticular, severaih-depth examples are concentratedChap
ters14and 15 wherenultiple string comparisoranddatabasesearcharediscussedBut
beforediscussing thosexamplesywe mustfirst develop,in the nextseverakthapters, the
techniquesusedfor approximatematchingand(sub)sequence comparison.

Caveat

Thefirst fact of biological sequenceanalysisis extremely powerful, andits importance
will befurtherillustrated throughout thbook. However,thereis nota oneto-one corre
spondence betweaequencandstructureor sequencand function, becaugke converse
of thefirst fact is not true.Thatis, highsequenceimilarity usually implies significant
structuralor functional similarity (the first fact), but structural ofunctional similarity
doesnot necessarilymply sequencsimilarity, Onthe topicof proteinstructure F. Cohen
[106] writes“...similar sequencegield similar structures, but quite distinsequences
canproduce remarkably similastructureS. This converseissueis discussedn greater
depthin Chapterl4, whichfocuses on multiple sequencemparison.

11.3. DYNAMIC PROGRAMMING CALCULATION OFEDIT DISTANCE 217

Anotherexampleof analignmentis shownon page215 wherevintner andwriters are
alignedwith eachotherbelow theiredit transcript.That examplalsosuggests duality
betweenalignmentandedit transcriptthat will bedevelopedelow.

Alignment versus edit transcript

Fromthemathematical standpoirgnalignment andnedittranscriptare equivalentvays
to describea relationshipbetween twastrings. Analignment carbeeasily converted to
theequivalenedittranscript andrice versaassuggestedby thevintner-writers example.
Specifically, two opposing characterthat mismatchin an alignmentcorrespondto a
substitutionin the equivalentedit transcript;a spacein an alignment containedn the
first string corresponds in thanscript toan insertionof the opposingcharacterinto
the firststring; and aspacen thesecondstringcorrespondso a deletionof theopposing
charactefromthefirststring.Thustheeditdistanceof twostringsis givenby thealignment
minimizingthenumbeof opposingharacters thahismatchplus thenumberof characters
opposite spaces.

Although analignmentand an edit transcriptare mathematically equivalenfrom a
modeling standpoingn edit transcriptis quite differentfrom an alignmentAn edit tran-
scriptemphasizethe putativemutational eventgpoint mutationsn themodelsofar) that
transformonestringto anotherwhereasnalignmenbnly displaysarelationshipbetween
the two strings.Thedistinctionis oneof processversusproduct. Differentevolutionary
modelsareformalized viadifferent permitted stringperationsandyetthesecanresult
in thesamealignment.Soanalignment alone blurthe mutationamodel.Thisis oftena
pedantic point but provdselpfulin somediscussion®f evolutionarymodeling.

We will switchbetweenthe languageof edittranscriptand alignmenas isconvenient.
However,thelanguagef alignmentwill oftenbepreferredsinceitis moreneutralmaking
no statementeboutprocessAnd, the languagef alignmentwill be more naturalin the
areaof multiple sequenceomparison.

11.3. Dynamic programming calculationof edit distance

We now turn to the algorithmic questionof how to compute,via dynamicprogramming,
theedit distancef two strings alongvith the accompanyingdit transcriptor alignment.
The generalparadigmof dynamic programmingis probablywell known to thereaders
of this book. However,becausat is sucha crucial tool and isusedin so many string
algorithms,it is worthwhile to explainin detail both the generadynamicprogramming
approachandits specificapplicationto the edit distanc@roblem.

Definition FortwostringsS, andss, D(i, j)isdefinedto bethe edit distancef §,[1..i]
andS;[1..5].

Thatis, D(i, j)denotegsheminimumnumberof editoperationsieededo transform the
first i characters of intothefirst j character®f S;. Usingthisnotationjf S; hasn letters
and S, hasm letters,thentheedit distanceof S, and S, is preciselythe valueD(n, m).

Wewill computeD(n, m)by solvingthemoregeneral problemotomputingD(:,) for
allcombination®fi andj,wherei rangefrom zerotonand j rangegrom zeroto m.This
is the standarddynamic programming approach useth a vastnumberof computational
problems.The dynamic programmingapproachhas threeessentialcomponents- the
recurrence relation, the tabular computation, and the traceback.We will explaineach
onein turn.

216 CORESTRING EDITS,ALIGNMENTS, AND DYNAMIC PROGRAMMING

next; be pointers inta$, andsS,. Both pointerdeginwith valueone.Theedittranscriptis
readandappliedleft to right. Whensymbol”|" is encountered;haracterext; isinserted
beforecharacterext; in Sy, and pointemext; is incrementednecharacterWhen"D" is
encounteredsharactemext, isdeletedrom $; andnext, isincrementedy onecharacter.
When eithersymbol “R” or "M" is encounteredcharactemext; in S, is replacedor
matchedby charactemext2from $,, andthenboth pointersareincrementeddy one.

Definition Theeditdistancebetween two strings definedasthe minimum number
of edit operationsinsertions, deletions, and substitutiemgededo transfornthe first
string into the second. For emphasis, note tetthes areot counted.

Edit distanceis sometimes referretb as Levenshtein distancein recognition ofthe
paper{299] by V. Levenshteinvhereedit distancewasprobably firstdiscussed.

We will sometimes refeto an edit transcriptthat uses theninimum number okdit
operations aanoptimal transcript. Note that theremay be morethan oneoptimal tran
script. Thesewill becalled"cooptimal’ transcriptswhenwe wantto emphasizehefact
that thereis more tharoneoptimal.

Theedit distanceproblemisto computetheeditdistance betweemvo givenstrings,
alongwith anoptimaledit transcript that describele transformation.

The definition of edit distancampliesthat all operationaredoneto onestring only.
But editdistances sometimes thougluf asthe minimum numbeof operationgdoneon
eitherof the twostringsto transformbothof theminto a commorthird string. This view
is equivalentto the above definitionsince aninsertionin onestring canbe viewedasa
deletionin the other andiice versa.

11.2.1. String alignment

An edittranscriptisaway torepresenta particulanransformation of onestringto another.

An alternate(andoften preferred)way is by displayinganexplicit alignment of the two
strings.

Definition A (global)alignmentof two stringsS, and $; is obtainedby first inserting
chosen spaces (or dashes), eithey or at theendsof S, and S;, andthen placingthe
two resultingstrings one abovieother sothat everycharacter or spage eitherstring
is oppositea uniquecharacteor auniquespacen theotherstring.

Theterm™global' emphasizes thiact thatfor eachstring,the entire stringis involved
in thealignment.Thiswill be contrasted with localignmentto bediscussedater. Notice
thatour useof theword' alignment' is now muchmore precis¢han itsusein Partsl and
IT. There,alignmentwasused inthe colloquialsensdo indicatehow onestring isplaced
relativeto the otherandspaces weraot thenallowedin either string.

As anexample ofaglobal alignment, consider tladignmentof thestringsqacdbdand
gawxbshown below:

g a ¢ d b d
q a w x . b _

In this alignmentcharacter is mismatchedwith w, boththedsandthe x areopposite
spacesandall othercharacters match their counterpantsheopposite string.

11.3. DYNAMIC PROGRAMMING CALCULATION OFEDIT DISTANCE 219

Sincethelasttranscriptsymbolmust eithebel, D, R, or M, wehavecoveredall cases
and establishethelemma. O

Now we lookattheotherside.
Lemmall.3.2. D(. j) < min[D(i -1, HT1, D, j- 1)+ 1,D(i-1,j- 1)+t(i, 1.

PROOF Thereasonings very similarto that usedn the previous lemmdyut itachievesa
somewhat different goallheobjectivehere is talemonstrate constructivellgeexistence
of transformationschievingeachof the three valuespecified in thanequality. Then
sinceall threevalues ardeasible, theiminimumis certainly feasible.

First, it is possibleto transformS;[1..i] into $;[1.. /] with exactly D(i, j — 1) + 1 edit
operationsSimply transform§;[1..i] to §;[1.. j — 1] with the minimum numberof edit
operationsandthen useone moreto insert charactes,(;) atthe end By definition, the
number ofeditoperationsn that particularway to transformsS; to S, is exactly D(i, | —
1)+ 1. Secondit is possibleto transformsS; [1..i] to $;[1.. j] with exactlyD(i — 1,j) T 1
edit operations. Transfor$y[1..i — 1] to $,[1..7] with the fewesbperationsandthen
delete characte$;(i). The numberof edit operationsin that particulartransformation
is exactly D(i — 1,)+ 1. Third, it is possibleto do the transformationwith exactly
D(— 1, — 1) T, j) edit operationsysingthe samergument. [J

Lemmasll.3.1and11.3.2immediatelyimply thecorrectnessf thegeneralrecurrence
relationfor D{i, j).

Theorem 11.3.1. Whenbothi and j arestrictly positive, D(i, j) = min[D(i — 1, j) T
1,DG, j-1)T1,Di—-1,7— 1t).

PROOF Lemmall.3.1saysthat D(i, j} mustbe equalo oneof thethreevaluesD(i —

1,)41, DG, j—+1orD@i—1, j—1)+t(i, j). Lemmall.3.2 says thaD(i, j) mustbe
lessthanorequalothesmallesofthosethreevalues. It followshatD(i, j) musttherefore
beequalto the smallestof thosethreevalues,and we have proven thikeorem. O

This completeghe firstcomponentf the dynamigrogramming methotbr edit dis-
tance, the recurrence relation.

11.3.2. Tabular computation of edit distance

Thesecond essentiabmponenbf any dynamigrogramis to usethe recurrenceelations
to efficiently computethe value D(n, m). We could easilycodethe recurrencerelations
and baseonditiondfor D(i, j) asarecursive computeroceduraising anyprogramming
languagehatallowsrecursionThenwe could call thatprocedurewith inputm, n andsit
back and waifor theanswer.'This top-down recursiveapproacho evaluatingD{n, m) is
simpleto programbutextremely inefficienfor large value®f n andm.

The problem isthat thenumberof recursivecalls grows exponentiallyith n andm
(an easyexerciseto establish).But thereare only(n + 1) x (m + 1) combinationsof i
and j, sothereareonly (n + 1) x (m + 1) distinct recursivecalls possibleHencethe
inefficiency ofthe topdownapproachs dueto a massivenumberof redundantecursive
callsto the procedureA nicediscussiorof this phenomenonms contained in[112]. The
key to a (vastly) moreefficientcomputationof D(n, m) is to abandonthe simplicity of
top-down computation andgnsteadcomputebottomup.

I and wait, andwait, . . .

218 CORE STRINGEDITS, ALIGNMENTS. AND DYNAMIC PROGRAMMING

11.3.1. The recurrencerelation

Therecurrence relatioastablishes a recursivelationship between thealueof D(i, j),
fori and j both positive,andvaluesof D with index pairs smaller thain j. Whenthere
arenosmaller indicesthe valueof D(i, j) mustbe stated explicitlyin whatare calledhe
baseconditions forD(i, j).

For theedit distanceproblem,the baseonditionsare

D, 0)=1i
and
DO, j) = |.
The base conditiorD{(i, 0) = i is clearly correc{that is, it gives th@umberrequired

by the definitionof D(i, 0)) becausdhe onlyway totransform the first characterof
S; to zero charactersf §; is to delete allthei characterof S,. Similarly, thecondition
D(0, j) = j is correctbecausg charactersnustbeinserted to converterocharactersf
S, to j charactersf §,.

Therecurrence relatiofor D(i, j) when bothi and j are strictly positives
DG, jy=min[DG — 1,)+ 1,DG j- 1)+ 1. DG -1 j- D+,)],

wheret(i, j) is definedto have valuel if Si(i) # S:(j), and (i, j) hasvalue 0 if
51y = $20)).

Correctnessof the generalrecurrence
We establisicorrectness the nextwo lemmasusing theconceptof anedit transcript.

Lemma11.3.1.Thevalued D(i, j) mustbeD(i, j — 1)+ 1,D(i —1,j) +1,0rD(i -
1,j — 1)t G, j). Thereareno othempossibilities.

PROOF Consider aredit transcriptfor the transformationof S;[1..i] to Sz[1..] using
the minimum number ogdit operationsand focus on the last symbol in that transcript.
Thatlast symbolmusteitherbel, D, R, or M. If the last symbol i@n | thenthe last
edit operation isthe insertion of characteiS,(;) onto the end of the (transformed)first
string.lt follows that thesymbolsin the transcript before thhtmustspecifythe minimum
numberof edit operations to transforn§[1..i] to $;[1..j — 1] (if they didn't, thenthe
specified transformatioof S;[1..i] to $;[1..j] would use more than theinimumnumber
of operations)By definition, thatlatter transformatiotakesD(i, j — 1) edit operations.
Henceif the lastsymbolin thetranscriptis I, thenD(i, j) = D(, j — 1) + 1.

Similarly, if thelastsymbolin the transcripts a D, then the lasedit operations the
deletionof §,(i), and thesymbolsin the transcript to the lefof that D mustspecify the
minimum numbeof editoperationgo transformS,[1..i — 1] to S;[1..j]. By definition,
that latter transformatiotekes D(i — 1, j) edit operationsSoif the lastsymbolin the
transcriptis D, thenD(, j) = DG — 1,j) T 1.

If the lassymbolin thetranscriptis an R, then the last edit operatioaplacess, (i) with
$,(j), andthesymbols to the lefof R specify the minimum numbeof editoperationgo
transforms;[1..i — 1]to S5[1..j — 1]. In that caseD(i, j) = D(i — 1, j — 1) T 1. Finally,
and by similar reasoningif thelastsymbolin the transcripts anM, then §;(i} = $:(j)
andD(i, j) = D(i — 1, j — 1). Using the variable(i, j) introducedearlier [i.e., that
1(i,) = 0if Si(i) = S2(j); otherwiset(i, j) = 1] we can combine thesasttwo cases
as onelf thelasttranscriptsymbolis R or M, thenD(. j) = D(i — 1. j — 1)t (i, j).

11.3. DYNAMIC PROGRAMMING CALCULATION OFEDIT DISTANCE 221

D(, j) writers“
01_2__3_‘_4567
001_2—_;—4567
viltfji{1]2]3|4)5)16|7
i{2)2(2§2f1213]415]6
n|3113]3]3131314]|5]6
t 1444|414 *
I n|S5|t5s
e|6]6
re7)7

Figure 11.2: Edit distances are filled in one row at a time, and in each row they are filled in from left to
right. The example shows the edit distances IXi, j) to coumn 3 of row 4. The next value © be computed is
D(4, 4), where an asterisk appears. The value for cell (4, 4)is 3, since §1(4)= Sz(4) =tand D(3,3)= 3.

The reader shoulteableto establishthat the tableouldalsobefilled in columnwise
insteadof rowwise, afterrow zeroandcolumn zerdhave beemomputedThatis, column
one couldbe first filledin, followed by columntwo, etc. Similarly,it is possibleto fill in
the tableby filling in successive antiliagonals\We leave thedetailsasanexercise.

11.3.3.Thetraceback

Once thevalueof the editdistance habeencomputedhow is theassociatedptimaledit
transcriptextractedThe easiestvay (conceptually)s to establisipointersin the tableas
the tablevaluesarecomputed.

In particular, wherthe valueof cell (i, j) is computedseta pointerfrom cell (i, j)
to cell(i, j — 1) if DG, j) = DG, | — 1) T 1; set apointerfrom (i, j) to (i — 1,j) if
D@, j) = D(i — 1, j) T 1; and seta pointer from(i, j) to (i — 1, — 1)if DG, j) =
D(i — 1,j — 1) T 1, j).Thisrule applieso cellsin row zeroandcolumnzeroaswell.
Hence for mostobjectivefunctions, eacleell in row zeropointsto thecell to its left, and
each celin column zero pointso the cell justaboveit. Forothercells,it is possible (and
common)that morethanonepointer issetfrom (i, j). Figure 11.3 showanexample.

The pointers allow easyecoveryof anoptimal edittranscript:Simply follow any path
of pointersfrom cell(n,m) to cell (0, 0). Theedit transcripis recoveredrom thepathby
interpretingeach horizontaddgein thepath fromcell(i, j) tocell(i, j— 1), asaninsertion
(1) of characterS,(j) into S,; interpreting each vertical edge, frofn j) to (i — 1,j),
asa deletion (D) of $,(i) from §;; andinterpretingeachdiagonaledge, from(i, j) to
(i-1, j—1),asamatc{M)if $;(i)= S»(j)andasasubstitutior(R)if Si(i) # S:(j). That
thistracebaclpathspecifiesanoptimaledittranscript carbe provedin a mannesimilar to
the waythattherecurrence$or editdistancesvereestablishedWeleave thissanexercise.

Alternatively,in terms ofaligning S| andS$, eachhorizontaledgein thepath specifies
a spaceinserted intoS;, eachvertical edgespecifiesa spaceinsertedinto $;, andeach
diagonakdgespecifiexitheramatchoramismatchdependingn thespecificcharacters.

For exampletherearethreetracebackathsfromcell (7, 7) to cell(0, 0) in theexample
givenin Figure11.3.The pathsareidenticalfrom cell (7, 7} to cell (3, 3), at which point

220 CORE STRINGEDITS. ALIGNMENTS, AND DYNAMIC PROGRAMMING

D(i,j)jwrirers

4

-
SN]lwn e WN
SNl |wn]l & jwiN

r

Figure 11.1: Table to be used to compute the edit distance between vintnerand writers. The values in row
zero and column zero are already included. They are given directly by the base conditions.

Bottom-up computation

In thebottomup approach, wéirst computeD(, j) for thesmallest possiblgaluesfor i
andj, andthencomputevaluesof D(i, j) for increasingvaluesof i andj. Typically, this
bottomup computation isrganizedvith adynamicprogrammingtableof size(n + 1) x
(m+1).ThetabIehoIdsthe/aluesof D, j)forall the choicesfiandj (seeFigurell.l).
Notethatstring$, corresponds tthe verticabxisof the tablewhile stringS; corresponds
to thehorizontalaxis. Becaustherangesf / and j beginat zerothetablehasazerorow
and azero columnThevaluesin row zeroand columreero ardilled in directly from the
baseconditions forD(i, j). After that, theremainingn x m subtable isfilled in onerow at
time, in orderof increasing. Within eachrow, thecellsarefilled in orderof increasingj.

Toseehowtofill in thesubtablenotethatby thegeneral recurrence relatiéor D(, j),
all thevaluesneededor thecomputatiorof D(1, 1) areknownonceD(0, 0), D(1,0), and
D(0, 1) have beerromputedHenceD(1, |I) canbecomputedafterthezerorow andzero
columnhave beeriilled in. Then, agaimy the recurrenceelations, afte(1, 1) hasbeen
computedall thevaluesneededor the computatiof D(1, 2) areknown. Following this
idea,we seethat thevalues forrow onecanbe computedn orderof increasingndex j.
After that, all the valuesneededto compute thevaluesin row two are knownandthat
row can befilled in, in orderof increasingj. By extensionthe entiretablecan be filled
in onerow atatime,in orderof increasingi, andin eachrow thevaluescanbecomputed
in order of increasing (seeFigure 11.2).

Time analysis

How much workis doneby this approach? When computirige valuefor a specificcell
(i, j)onlycells(i—1,j—1)(,j—1),and(i — 1,j) areexamined, alongvith the
two characters$S:(i) and S;(j). Hence,to fill in onecell takes a constanmtumberof cell
examinations, arithmetic operatioasidcomparisons. Ther@eO(nm) cellsin thetable,
sowe obtain thefollowing theorem.

Theorem 11.3.2. Thedynamicprogramming tabléor computing theedit distancebe-
tweenastringof length nandastringd length mcanbe filled in with O(nm) work. Hence,
usingdynamicprogrammingtheedit distanceD(n, m) canbecomputedn Q(nm) time.

11.4. EDIT GRAPHS 223

>
=
=

0
A 2
km \ l
N3 ®
Figure 11.4: Edit graph for the strings CANand ANN.The weight on each edgeis one, except for the three
zero-weight edges marked in the figure.

operations. Converselgny optimal edit transcrips specifiedby such a path.Moreover;
sinceapathdescribe®nly onetranscript,thecorrespondencerneeen pathsandoptimal
transcriptss one-to-one.

Thetheoremcanbe proven by essentiallhe samereasoninghat established the cer
rectnes®f the recurrence relatiorier D(i, j),andthisis left to the readerAn alternative
way to find the optimaledit transcript(s), without using pointers. is discussedn Exer-
cise9. Oncethe pointershavebeen establishe@dl the cooptimal edit transcripts carbe
enumeratedn O(n + m) time pertranscript.Thatis the focus of Exercisel2.

11.4. Edit graphs

It is often usefulto representynamicprogrammingsolutionsofstring problemsin terms
of a weightededir graph.

Definition ~ Giventwo stringsS; and Sz of lengthsn andm. respectivelya weighted
editgraphhas(n + 1) x (m * 1) nodes, eactabeledwith a distinct pair(i, j) (0 < i <
n,0 < j < m). Thespecificedgesand theiredge weightsdependon thespecific string
problem.

In the caseof the editdistanceproblem,the editgraphcontains a directededge from
each noddi, j) toeachof the nodes(i, j + D, i+1, j),and(i + 1,jT D, provided
thosenodesexist. The weighton thefirst two of theseedgesis one;the weighton the
third (diagonal)edge is(i + 1, j T 1). Figure11.4showstheeditgraph forstringsCAN
andANN.

Thecentralproperty ofaneditgraphis thatanyshortest path (onewhose total weighits
minimum)from start nod€0, 0) to destinationnode(n, m) specitieanedittranscript with
theminimumnumberof editoperationsEquivalently,anyshortesipath specifies global
alignment ofminimum total weight. Moreover, thdollowing theorem and corollargan
bestated.

Theorem11.4.1. An edittranscripfor S, $; hasthe minimumnumberd editoperations
if and only if it correspondso ashortestpatfrom (0, 0) to (n, m) in theedit graph.

Corollary 11.4.1. The setof all shortest paths froni0, 0) to (n,m) in the edit graph
exactlyspecifieshesetof all optimaledittranscripts ofS, to S,. Equivalently, it specifies
all theoptimal (minimumweight) alignment®f §; ands,.

Viewing dynamic programmingasashortesipathproblem is oftenusefulbecause there

222 CORESTRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

FD(i’j)w w r i t e r :[l
| 0 1 2 3 4 5 6 7
I o]l 0] « 1] ~— 2 —3] —a] ~5| 6] <7
{ VITHT 1] ~ 1IN e 2] ~e3N e 4N =S5 INe— 61N 7
I ilaflt 2l t 2] ~ 2] ~ 2| « 3| —4| —s5| <
nf30T3INT 3N T 3] ~13] ~ 3|Ne—4INe=5|Ne—6
r4:Hl:4\T4'\T4 ~T4] ~ 3NN 5|N<6
alstsiNt siNT sl ~1s| 1 4] ~ a|~Nes[N—6
el6lIT6[NT 6{N1T 6] ~16 T 5] ~4|N—=5[\N—6
FPINT 7N 7] o~ 6N~ 17 T 6 T 51 ~ 4| <5

Figure 11.3: The complete dynamic programming table with pointers included. The arrow <« in cell (7, j)
points to cell (i, j— 1}, the arow 1 points to cell {f — 1, j), and the arrow % points to cell (i — 1, j= 1).

it is possibletoeithergoupor to godiagonally.Thethree optimal alignments are:

w or it _ s
v i n t n -
r i t e r S
v - 1 n t n € r -
and
w r i t e r S

If thereis morethanonepointerfrom cell (n, m), thena pathfrom (n,m) to (0, 0) can
startwith eitherof thosepointers.Eachof themis on a path from(n, m) to (0, 0). This
propertyis repeatedrom any cell encounteredHencea traceback patfrom (», 7) to
(0, 0) canstartsimply by following any pointeroutof (n, m); it canthenbe extendedyy
following any pointeroutof any cell encounteredMoreover, every celexcept(0, 0) has
a pointeroutof it, sono path from(n, m) cangetstuck. Sinceany pathof pointersfrom
(n, m) to (0, 0) specifies aroptimal edit transcriptor alignment,we havethefollowing:

Theorem11.3.3. Once thedynamigprogrammingablewith pointershasbeencomputed,
anoptimaledittranscriptcanbefoundin O(n + m) time.

Wehavenowcompletely described the three crucial componeiitsegeneral dynamic
programmingparadigmasillustratedby theeditdistanceproblem We will later consider
ways to increasehe speedof thesolutionanddecreasés neededspace.

The pointers representall optimal edit transcripts

The pointersthatarebuilt up whilecomputingthe valuesof the tabled o morethan allow
one optimal transcript (or optimal alignment) tobe retrieved. Theyallow all optimal
transcriptsto be retrieved.

Theorem 11.3.4. Any path from (n, m) to (0, 0)following pointersestablisheduring
vmnetation of DU QN wperifies an edit transcript With the minimum number d edit

b
T

i

11.6. STRING SIMILARITY 225

The operationweight edit distanceproblemcan alsadbe representeénd solvedasa
shortest patiproblemona weightededitgraph, whereheedgeweightscorrespondn the
naturalway tothe weights otheedit operationsThe detailsare straightforward andre
thusleft to the reader.

11.5.2. Alphabet-weightedit distance

Anothercritical, yetsimple, generalizatiorof editdistancds to allow theweightor score
of a substitutionto dependon exactly which character in trephabet ideing removed
and whichis beingadded. For exampldé, may bemorecostly to replacean A witha T
than witha G. Similarly, we may want theveightof a deletionor insertion todepend on
exactly which characten the alphabets being deletedr insertedWe call this form of
edit distancehealphabetweight editdistanceto distinguish itfrom theoperationweight
edit distanceproblem.

The operationweight edit distanceproblemis a special casef the alphabetweight
problem,andit is trivial to modify thepreviousrecurrenceelations(for operatioaweight
edit distance)o computealphabetweight edit distancélVe leavethatasanexercise We
will usually usethesimple termweightededitdistancewhen we mean tredphabetweight
version. Noticahatin weightededitdistance, theveightof anoperationdepends omvhat
charactersareinvolvedin an operationbut not onwhere those characterappearin the
string.

Whencomparing protein§theedit distancé almost alwayseans thalphabetweight
edit distancever thealphabetof aminoacids.Thereis anextensiveliterature(and con
tinuing researchpn whatscores shoulthe usedfor operationn amino aciccharacters
andhow they shouldbe determinedThe dominant aminacid scoringschemesre now
the PAM matricesof Dayhoff [122] and the newer BLOSUM scoringatricesof the
Henikoffs [222], although thesenatricesareactuallydefinedin terms of a maximization
problem (similarity)ratherthanedit distance.’ Recently,a mathematical theorplasbeen
developed 16, 262] concerning thevay scores shouldbe interpretedandhow a scoring
scheme shouldelate botho the datat is obtainedfrom andto the typesof searched is
designedor. We will briefly discusshisissue againn Sectioni5.11.2.

WhencomparingDNA strings, unweighted or operatiaveightedit distanceis more
often computedFor example, thegopulardatabase searchimpgyogram, BLAST,scores
identitiesas+5 and mismatcheas—4. However, alphabeteighted editdistancds also

of interestandalphabetbasedscoring schemdsr DNA have been suggestéadr example
see[252]).

11.6. String similarity

Edit distanceas oneof the waysthatthe relatednessf two strings has bediormalized.
An alternate,and often preferredway of formalizing the relatedness divo stringsis
to measuretheir similarity ratherthan theirdistance.This approachis chosen in most
biological application§or technicalreasons that shoulskclearlater.Whenfocusing on

3 In a pure computer scienceor mathematical discussionof alphabetweight edit distance we would prefer to usethe
generalterm"weight matrix" for the matrix hotding the alphabetdependent substitution scoreddowever, molecular
biologists usethe terms "amino acid substitution matrix" or " nucleotide substitutionmatrix" for thosematrices,and
they use theterm "weight matrix" for a very different object (SeeSection14.3.1). Therefore, to maintain generality.
and yet tokeepin someharmony with the molecularbiology titerature, we will use the generalterm" scoring matrix " .

224 CORESTRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

aremanytools forinvestigatingand compactlyepresentinghortest paths graphs. This
view will beexploitedin Section13.2 whensuboptimal solutionarediscussed.

11.5. Weighted editdistance

11.5.1. Operationweights

An easy, yetrucial,generalization of edidistances to allow anarbitraryweightor cost
or scoré to beassociated witlevery editoperation,aswell aswith a match. Thusany
insertionor deletionhas aweight denotedl, a substitution has weightr, anda match
has aweighte (whichis usuallysmall comparedo the other weights ands often zero).
Equivalently, anoperationweight alignment is one whereeachmismatchcostsr, each
matchcostse, andeachspace costd.

Definition With arbitrary operation weighttheoperationweight edit distancerob
lemis to find anedit transcript that transforms striiginto S, with the minimum total
operation weight.

In theseterms, the editdistanceproblemwe haveconsidered star is just the problem
of finding the minimum operationweight edittranscript whed = 1,r = 1, ande = 0.
But, for examplejf eachmismatch has weightof 2, each space has a weigift4, and
eachmatch a weighof 1, thenthe alignment

hasatotal weightof 17 andis an optimalalignment.
Because the objectivieinction is to minimize total weightand because a substitution
canbeachievedoy a deletionfollowed by aninsertion, ifsubstitutionsare to be allowed

thena substitutionweightshouldbe lessthan the sumof the weights for a deletiomplus
aninsertion.

Computing operation-weightedit distance

The operationweight edit distanceproblemfor two stringsof lengthn andm can be
solvedin O(nm) time by a minor extensiorof the recurrences foedit distance D{i, j)
nowdenotes theninimum totalweightfor editoperationgransformingS[1..i]to S;[1.. /1.
We again use(i, j) to handleboth substitutiorand equalitywherenow t(i, j) = eif
31(i) = 82(/); otherwiser(i, j) = r. Thenthe baseonditionsare

D(i,0)=ixd
and

Thegeneralrecurrenceas

D@, j)=min[D(G, j =D +d,D(i = 1,j)+d. D - 1, j — 1)+, j)].

¥ The terms " weight' or " cost' are heavily usedin the computer scienceliterature, while the term " score' is used
in the biological literature. We will usetheseterms moreor lessinterchangeablyin discussingalgorithms, but the
term " score" will be used when talking aboutspecific biologicalapplications,

11.6. STRING SIMILARITY 227

Definition Vi, j)isdefined as thealue of theoptimal alignmenbf prefixessS[! ..i]
ands;{1..j].

Recall thata dash(“-") is usedto represena space insertethto astring. The base
conditions are

VO,)= Y s S:k)

Isk=<j
and
Vi, 00 =) s(Sik),-).

I<k<i

Fori and | bothstrictly positive,the general recurrenas
Vi,) =max{V(i — 1, j — 1)+ s(5:0), 2000, V(i — 1, j) + s(81 (), -),
Vi, j— D+ s, 20001

Thecorrectnessf thisrecurrencas establishethy arguments similato those useébr
edit distanceln particular, inany alignmentA, there are three possibilitiesharacters
S,(i) andS,(j) arein thesameposition (opposite each otherS,(i) is in a position after
S2(4), or $,(i) isin apositionbeforeS,(j). Thecorrectnessf therecurrences basedn
thatcaseanalysis. Detailareleft to thereader.

If §; ands$, areof lengthn andm ,respectivelythenthe valueof their optimalalignment
isgivenbyV (n,m). That value, and thentiredynamic programming tableanbeobtained
in O(nm)time, since only threeomparisonsindarithmetic operations are needpdrcell.
By leaving pointersavhile filling in the tableaswasdonewith edit distancean optimal
alignment carbe constructedby following any pathof pointers from cel(n,m) to cell
(0, 0). Sotheoptimal (global) alignmenproblemcanbesolvedin O(nm) time, thesame
time asfor editdistance.

11.6.2. Specialcaseof similarity

By choosing an appropriageoring schemeamany problems can be modeled as special
casesof optimal alignmenbr similarity. One importanéxampleis thelongestcommon
subsequenceroblem.

Definition 1n astring S, a subsequences definedasa subsetf the character®f S
arrangedn their originalrelativé' order.More formally, asubsequena# astring S of
lengthn is specifiedby alist of indicesi; < iz < i3 < ... < i, forsomek < n. The
subsequencspecifiedby thislist of indicesis thestring S(i;)S(i2)S(i3) . .. SG).

To emphasizeagain, asubsequenceneednot consistof contiguouscharactersn S,
whereas the charactersadubstring mustbecontiguous.* Of courseasubstring satisfies
the definition forasubsequence. Fexample;'its" is asubsequencef "'winters' but not
asubstring, whereasnter" is botha substring ané subsequence.

Definition Giventwo stringsS; ands,, acommonsubsequencés asubsequencinat
appears bot S; andS;. The longestcommonsubsequenc@roblemis to find alongest
common subsequengles) of S, and.s;,.

4 The distinction between subsequencand substring is often lost in the biological literature. But algorithms for
substringsare usually quite different in spirit and efficiency than algorithms for subsequencessothe distinction is
an important One.

226 CORE STRING EDITS, ALIGNMENTS, ANDYNAMIC PROGRAMMING

similarity, thelanguageof alignmentis usuallymoreconvenient thahe languagef edit
transcript.We now beginto develop grecise definitiorof similarity.

Definition Let £ bethealphabetised for stringsS, andS, and letC' be C with the
addedcharacter'.” denotinga spaceThen,for any two characters, y in ', s(x, y)
denoteghe value(or score)obtainedoy aligning character againstcharactep.

Definition ForagivenalignmentA of §; ands;, let §| andS; denote thetringsafter
thechoseninsertionof spacesandlet1 denotethe (equal)lengthof the twostringssS;
ands; in A. Thevalueof alignmentA is definedas¥";_, s(S](i), S3(i)).

Thatis, every position in .A specifiesapairof opposing characteis the alphabek’,
and the valuef A is obtainedby summingthe valuecontributedby eachpair.

ForexampleletL = (a,b,c, d} andlet thepairwise scorede defined in the following
matrix:

s |a b C d -
all -1 =2 0 -1
b 3 =2 -1 0
c 0 -4 =2
d 3 -1
- 0
Then thealignment
c a ¢ . d b d
c a b b d b _

hasatotal valueof 0+ 1 - 2+0+3+3-1=4.

In string similarity problems, scoringnatrices usuallgets(x, y) to be greaterthanor
equalto zeroif characters, y of £’ match and less thaeroif they mismatchWith such
a scoringschemepne seeksan alignmentwith aslargea valueaspossible.Thatalign-
mentwill emphasize matchdsr similarities)between theéwo stringswhile penalizing
mismatche®r insertedspacesOf course the meaningfulnessf theresultingalignment
may depend heavilpn the scoring schemased anchow matchscores compar® mis-
matchandspace scores. NumeroaBaracteipair scoringmatriceshave been suggested
for proteins and foDNA [81, 122,127,222,252,4001andno singleschemas right for
all applicationsWe will returnto this issuen Sectionsl3.1,15.7, andl5.10.

Definition Givena pairwise scoringmatrixoverthealphabeC', thesimilarity of two
stringsS, ands$; is definedasthe valueof thealignmentA of §; andS, thatmaximizes
totalalignment valueThis is alsocalledthe optimalalignmentvalueof S, and S;.

String similarity is clearly relatedto alphabetweight edit distanceanddependingon
thespecific scoringmatrix involved,onecan oftentransform oneproblem intotheother.
An importantdifference betweenrimilarity andweightededitdistancewill become clear
in Sectionl11.7, after we discusdocal alignment.

11.6.1. Computing similarity

The similarity of two stringssS; and S;, and the associatedptimal alignmentcan be
computedoy dynamicprogrammingwith recurrences thahouldby nowbeveryintuitive.

11.6. STRING SIMILARITY 229

Oneexamplewhere endspaceshouldbefreeis inthe shotgun sequenassembly (see
Sectionsl6.14and 16.15). In thisproblem, onéhasa largesetof partially overlapping
substrings thatome frommanycopiesof one original butinknownstring; the problemis
to usecomparisons of pairsof substringgo infer the correcoriginal string. Tworandom
substringgromthesetareunlikely tobeneighbors irtheoriginal string, andhisis reflected
by a lowendspace free alignment scdi@ thosetwo substringsButif two substringslo
overlapin the originalstring, thena " goodsized' suffix of oneshould align taa “good-
sized' prefix of theotherwith only a small numberof spaces andhismatchegreflecting
asmall percentagef sequencingerrors).This overlapis detectedoy an end-space free
weighted alignment with high score. Similarly theasewhen one substring contains
anothercanbedetected in thisvay. The procedurdor deducing candidateeighbor pairs
is thusto computethe endspace frealignment betweeevery pair of substrings; those
pairswith high scoresarethenthe best candidatedVe will returnto shotgun sequencing
andextend thigliscussionn PartlV, Section 16.14.

Toimplement freeend spaces inomputingsimilarity, use the recurrencdsr global
alignment(whereall spaces countjetailed onpage227, but changethe baseconditions
to V(i,0) = V(0,)) = 0, for everyi and j. That takescareof any spaces othe left
endof the alignmentThenfill in the tableasin the caseof globalalignment.However,
unlikeglobal alignmentthe valueof theoptimalalignmentis not necessarily founéh cell
(n,m). Ratherthe valueof the optimalalignmentwith freeendsis the maximumvalue
overall cells inrow n or columnm. Cellsin row n correspondo alignmentsvherethelast
charactenf string S, contributes tdhe valueof thealignment, but characters S, to its
right do not. Thosecharacters arepposite end spaces, whiahefree.Cellsin columnm
have asimilar characterizationClearly, optimalalignmentwith free endspacess solved
in O(nm) time, thesametime asfor global alignment.

11.6.5. Approximate occurrencesofP in T

We now examineanother importantvariantof globalalignment.

Definition Given a parametes, a substringT' of T is said to be an approximate
occurrenceof P if andonly if the optimal alignmendf P to 7' hasvalue at least.

The problemof determiningif thereis an approximateoccurrenceof P in T is an
importantand natural generalizatiaf theexact matchingproblem.It canbe solvedas
follows: Usethe samerecurrences (given opage227)asfor global alignment between
P andT andchangeonly the baseconditionfor V(0, j) to V(0, j) = Ofor all j. Thenfill
in the table (leaving the standardbackpointers). Usinghis variantof global alignment,
thefollowing theoremcanbe proved.

Theorem 11.6.2. Thereis anapproximate occurrenc#® P in T endingatposition | o
T ifand only if V(n, j) > 6. Moreover;T[k.. j] isanapproximate occurrena Pin T if
andonlyf V(n, j) > 6 andthereisapathd backpointerrom cell (n, j) to cell (0, k).

Clearly,the table camefilled in using O(nm) time, butif all approximateoccurrence
of Pin T areto be explicitly output,then ®(nm) time may not be sufficient.A sensible
compromiseis to identify every positionj in T such thatV (s, j) > 6, and then for
eachsuch j, explicitly output onlytheshortesapproximateoccurrenceof P thatendsat
position j. ThatsubstringT" is foundby traversing thébackpointergrom (n, j) until a

228 CORESTRING EDITS,ALIGNMENTS, AND DYNAMIC PROGRAMMING

The Icsproblemis importantin its own right, andwe will discusssomeof its usesand
some ideas foimproving itscomputation in Section12.5. Fornow we showthat it can
bemodeled andolvedasan optimal alignment problem.

Theorem11.6.1. With ascoringschemethatscoresa onefor each matchanda zerofor
eachmismatchorspace, the matchetharactersn analignmentd maximumvalugorm
alongestcommonsubsequence.

The proof is immediateandis left to the reader.lt follows that the longestcommon
subsequence atringsof lengthsn andm, respectively, cabbecomputedn O(nm) time.

At this point we seethe first of manydifferencesbetweensubstringand subsequence
problems andvhy it is importantto clearly distinguishbetweenthem. InSection7.4 we
establishedhat thelongest common substring coubefoundin O(n+ m) time, whereas
herethe bound establisheébr finding longest commorsubsequences O(n X m) (al-
thoughthis boundcanbereducedsomewhat)Thisis typical - substringandsubsequence
problemsaregenerally solvedy different methodsand havedifferent timeand space
complexities.

11.6.3. Alignment graphs for similarity

As was thecase foredit distance the computationof similarity canbe viewedasa path

problem onadirected acycligraphcalledanalignment graphThe graphis thesameas
theedit graphconsidered earlier, but theeightson theedges ar¢he specific valuetor

aligninga specific paiof character®r a characteragainsta spaceThestart nodeof the

alignment graphs againthe nodeassociated with cell0, 0), andthe destinationnodeis

associatedvith cell (n, m) of thedynamic programmingable,but the optimal alignment
comes fronthelongest startodestination path rathéinanfromtheshortest path. isagain
truethat the longespathsin thealignment graplarein one-to-onecorrespondenceith

theoptimal (maximumvalue)alignments. In general, computit@gngestpathsin graphs
is difficult, butfor directedacyclic graphsthe longestpathis foundin time proportional
to the numberof edgesin the graph, usinga variantof dynamic programming(which

should comesno surprise). Henckor alignment graphshelongestpathcanbefound

in O(nm) time.

11.6.4.End-space freevariant

Thereisacommonlyused varianof stringalignmentcalledendspacéree alignment. In
this variant,any spacesat the endor the beginningf the alignment contribute weight
of zero,no matterwhat weight othespacesontribute.For example,in the alignment

- . ¢ a ¢ - d b d
! t+t ¢ a b b d b _

the two spaceat the left endof the alignmentarefree,asis thesinglespaceat the right
end.

Makingend spacefree intheobjectivefunction encouragesne stringto alignin the
interior of the other,or the suffix of onestring to align with a prefix of theother.This is
desirable wheonnebelieves thathose kind®f alignmentgeflectthetrue" relationshipof
thetwostrings. Without amechanisntoencouragsuchalignmentstheoptimal alignment
might havequite adifferentshapeand not capturethe desiredrelationship.

11.7. LOCAL ALIGNMENT: FINDING SUBSTRINGSOFHIGH SIMILARITY 231

stringsmay berelated Whencomparingproteinsequencedopcal alignments alsocritical
becauseproteinsfrom very different families ar@ften made upf the samestructuralor
functional subunitg(motifs or domains),andlocal alignmentis appropriatdn searching
for these(unknown)subunits.Similarly, different proteinsare often madefrom related
motifs that form the inner core of the protein, but the motifsare separated by outside
surfacelooping regionsthatcanbe quitedifferentin different proteins.

A very interesting examplef conserved domainsomesfrom the proteingncodedby
homeoboxgenesHomeoboxgeneq319, 381] showup in a wide variety of speciesfrom
fruit flies to frogs to humansThesegenesregulatehigh-level embryonic development,
andasinglemutationin thesegenes canransformonebody part into anothefoneof the
original mutationexperimentscauses fruifly antennato developaslegs, butit doesn't
seemto bother thefly very much). The protein sequenceshat thesegenes encodare
very differentin eachspeciesexceptin oneregioncalledthe homeodomainThe home-
odomainconsistsof aboutsixty aminoacidsthat form the part of theregulatoryprotein
that bindsto DNA. Oddly, homeodomainsnadeby certain insecandmammalian genes
areparticularlysimilar, showing aboub0 to 95% identity in alignmentswithout spaces.
Proteinto-DNA binding iscentralin how those proteins regulate embryo development
andcell differentiation Sotheaminoacidsequencén the mosbiologically critical part of
thoseproteinsis highly conserved, where@iseotherpartsof the proteinsequenceshow
very little similarity. In cases suchsthesejocal alignmentis certainly amoreappropriate
way to compareproteinsequenceshanis global alignment.

Local alignmentin protein isadditionallyimportantbecausearticular isolatecchar
actersof relatedproteins maybe more highly conserved than theest of theprotein (for
example, theaminoacidsat theactive site of anenzymeor the amino acidsn the hy-
drophobiccoreof a globular proteirarethe mosthighly conserved)Local alignmentwill
more likelydetecttheseconserved charactetisan will globalalignment. A googtxample
is thefamily of serine proteases whereafew isolated,conservedminoacids characterize
thefamily. Another exampleomes fronthe Helix-Turn-Helix motif, which occurs fre
quentlyin proteinsthatregulateDNA transcriptionby bindingto DNA. Thetenthposition
of the Helix-Turn-Helix motif is very frequently occupiedy theamino acidglycine, but
the restof the motif is more variable.

Thefollowing quotefrom C. Chothia[101] further emphasizethe biological impor-
tanceof protein domains and henoglocal stringcomparison.

Extant proteindave beenproduced frontheoriginal sethot just by point mutationgnsertions
and deletiondutalsoby combinationof genes tgivechimericproteinsThisis particularly
true of the very largeproteins produceth the recentstagesf evolution.Many of theseare
built of different combinationsf protein domainshat havebeenselectedrom a relatively
small repertoire.

Doolittle [129] summarizeghe point: " The underlying messages that one must be
alertto regionsof similarity even whertheyoccurembeddedn anoverallbackgrouncdf
dissimilarity."

Thus, the dominant viewpoint todays that local alignmentis the mostappropriate
typeof alignment foromparing proteinfom different protein families. Howeveit has
also been pointedut[359, 360] thatoneoftensees extensivglobal similarityin pairsof
protein stringsthat are firstrecognizedasbeingrelatedby stronglocal similarity. There
arealsosuggestion$316] that insomesituationsglobalalignmentis more effective than
local alignmentin exposingmportantbiologicalcommonalities.

230 CORE STRINCEDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

cell in row zerois reached, breakinges by choosinga vertical pointerover a diagonal
oneandadiagonal oneverahorizontalone.

11.7. Local alignment: finding substringsof high similarity

In many applications,two strings may not be highlgimilar in theirentirety but may
containregionsthatare highlysimilar. The task isto find andextracta pair of regions,
onefrom eachof thetwo givenstrings,thatexhibit highsimilarity. This iscalled thdocal
alignmentor local similarity problemandis definedformally below.

Local alignment problem Given two strings $; and $», find substringsx and
B of §; and S,, respectivelywhose similarity(optimal global alignment valua$
maximumoverall pairsof substrings frons; andsS,. We usev* to denotethe value
of anoptimalsolutionto thelocal alignmentproblem.

For example, consider th&tringsS, = pqraxabcsrvgand$, = xyaxbacsll.If we
giveeachmatch avalueof 2,each mismatchvalueof —2,andeachspaceavalueof —1,
thenthetwo substringsx = axabcsandg = axbacsof §; andS$;, respectively, havéhe
following optimal(global) alignment

a x a b _ ¢ s
x _ b a c¢ s

which hasavalueof 8.Furthermore, oveall choicesof pairsof substringspnefrom each
of thetwo strings,thosetwo substringdhavemaximumsimilarity (for the choserscoring
scheme)Hence,for that scoringschemethe optimallocal alignmentof S, and $z2 has
value8 andis definedby substringaxabcsandaxbacs.

It shouldbeclear whylocal alignments definedin terms of similarity, which maximizes
an objectivefunction, rather thamn terms of edit distance, whichminimizes anobjec
tive. Whenoneseeks a paiof substringso minimizedistance, th@ptimal pairs would
be exactly matchingsubstrings undemost naturalscoringschemesBut the matching
substrings mighbe just a single character longnd would not identify a regionof high
similarity. A formulation suchaslocal alignment,where matchesontribute positively

and mismatchesndspacegontributenegatively,is morelikely to find moremeaningful
regionsof high similarity.

Why local alignment?

Global alignment of proteirsequencess often meaningfulwhen the two stringsare
member®of thesameproteinfamily. Forexampletheproteincytochrome c has almosthe
samdengthin mostorganismshatproducet, andoneexpectsoseearelationshipbetween
two cytochromegrom any twodifferent speciesverthe entire lengttof the twostrings.
The sameis true of proteinsin the globin family, suchasmyoglobin and hemoglobin.In

thesecases, globallignment is meaningfulVhentrying to deduceevolutionaryhistory
by examiningproteinsequenceimilarities anddifferences, onasuallycomparegroteins
in thesame sequence family, asdglobal alignmenis typically meaningfulandeffective
in thoseapplications.

However,in manybiologicalapplications|ocalsimilarity (localalignment) igar more

meaningfulthanglobal similarity (global alignment).This s particularly true whenlong
stretcheof anonymousDNA are compared, sincanly someinternal sections ofthose

11.7. LOCAL ALIGNMENT: FINDING SUBSTRINGSOF HIGHSIMILARITY 233

Theorem11.7.2. Ifi'.'| is an index pair maximizing v(i, j) overall i, pairs, thena
pair of substringsselving the local suffix alignment problem fof | alsosolvesthelocal
alignment problem.

Thusa solutionto the localsuffix alignmentproblemsolvesthe localalignmentproblem.
We now turn our attentionto the problenof finding max[v(i,j) :i <n,j < m]anda
pair of stringswhose alignmenthasmaximumvalue.

11.7.2.How to solvethe local suffix alignment problem
First,v(i, 0) = 0andv(0,]) =0foralli |, sincewecan always choossemptysuffix.
Theorem11.7.3. Fori > 0 and| > O, the proper recurrence fow(,j) is
v(i, j)=max[0,v(i — 1, j — 1) +s(S51(), S2(/)),
v(i — 1, j) + s(S1(),), v, j — 1) + s, S20))1.

PROOF Theargumenissimilar tothejustificationsof previous recurrence relatioriset
a and g be thesubstringof §, and S, whose globahklignment establishes tlogtimal
localalignment. Since andg arepermittedto beemptysuffixesof S,[1..i] andS$,[1..]],

it is correctto include0 asa candidatevaluefor v(i,) However,if the optimakx is not
empty,thencharacterS;(i) musteither bealignedwith a spacer with characterS,(;).
Similarly, if the optimals is notempty,then S:(j) is alignedwith a space owith S(i).
Sowe justify therecurrencebasedon the way characters; (i) and S-(j) maybealigned
in theoptimal local suffix alignmentfor i, j.

If Sy(i) is alignedwith S;(j) in theoptimallocali, | suffix alignmentthenthosetwo
characters contributgsS, (i), S2(j)) to v(i,), andtheremaindernof v(i,]) is determined
by thelocal suffix alignmentfor indicesi — 1,] — 1 Thatlocal suffixalignmentmustbe
optimal andsohasvaluev(i — 1,j — 1). Thereforejf (i) and $:(j) arealigned with
eachother,v(i,j) =v(i -1, | — D+ s(S:1(), S20/)).

If $,(i) is alignedwith a space,then by similar reasoningv(i,j) = v(i — 1,j) +
s(5,(i),-), andif S»(j) is alignedwith a spacethenv(i,j) = v(i,j — 1) Fs(_, $:(5)).
Sinceall cases arexhaustedywe haveproven that(i,|) must eithebe zercor be equal
to oneof thethreeotherterms intherecurrence.

On theotherhand, foreach ofthefour termsin the recurrenceheres away tochoose
suffixes of §|[1..i] and $,[1..j] sothat an alignmentof those two suffixes hathe value
given by the associated ternHencethe optimalsuffix alignmentvalueis at leastthe
maximumof the four terms inthe recurrenceHaving proved that:(i,j) mustbe oneof
thefour terms,andthatit mustbe greaterthanor equal tathe maximunof thefour terms,
it follows thatv(i,) mustbeequalto the maximumwhich proves théheorem. O

The recurrencedor local suffix alignmentare almostidentical to thosdor global
alignmentTheonlydifferences theinclusion of zeran thecaseof localsuffix alignment.
This makegntuitive senseln bothglobal alignment and local suffix alignmeat prefixes
S\[1..i1and $:[1..j] theend characteref any alignmenfare specified, buh the caseof
local suffix alignment, anynumberof initial characters cabeignored.The zeroin the
recurrence implementhis, actingto ""restart’ therecurrence.

GivenTheoreml 1.7.2, the methodto compute* is to computethedynamic program
ming tablefor v(i, j) and then findthe largestvaluein any cell in the tablesayin cell
(i*, j*). As usual,pointersare createdwhile filling in the valuesof the table After cell

232 CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

11,7.1. Computing local alignment

Why not lookfor regions ofhigh similarity in two stringsby first globaly aligningthose
strings? A global alignmentbetweentwo long strings will certainly be influencedby
regions of high similarity, andan optimalglobal alignmenimight well align thosecorre-
sponding regions witheachother. But moreoften, local regionsof high local similarity
would getlost in theoverall optimal globahlignment. Thereforeto identify high local
similarity it is moreeffective to search explicitlfor local similarity.

We will show thatif the lengthsof stringsS; and §; aren and m, respectively then
the local alignmentproblem canbe solvedin O(nm) time, the same timeasfor global
alignment. Thisefficiency is surprising because theage @(n*m?) pairsof substringsso
evenif a globalalignmentcould be computedin constant timdor each chosempair, the
time boundwould be ®(n*m?). In fact, if we naivelyuseO(k!) for theboundon thetime
to align stringsof lengthsk andl, thentheresultingtime boundfor the localalignment
problemwould be O(n*m?), instead ofthe O(nm) boundthat wewill establish. The
O(nm) time boundwasobtainedby Temple Smith andichael Waterman [411] using
the algorithm we will describebelow.

In the definition of local alignmentgiven earlier, any scoringschemewas permitted
for the global alignment oftwo chosensubstrings.One slight restrictionwill help in
computinglocal alignment. We assumethat the global alignment oftwo empty strings
hasvaluezero.Thatassumptions usedto allow thelocal alignmentalgorithmto choose
two empty substringgor a and 8. Beforedescribingthe solutionto the localalignment
problem. it will behelpful to considerfirst a morerestrictedversionof the problem.

Definition Givenapairof indicesi < nandj < m, thelocalsuffix alignmentproblem

is tofind a(possiblyempty)suffix a of 5)[1..i}anda(possiblyempty)suffix 8 of $,[1..j]

such that/ (e, 8) is the maximum over all pairsf suffixesof S;[1..i] and $;[1..j]. We

useu(i. j) todenote the valuef the optimal locabuffix alignmentfor the givenindex

pairi. j.

Forexample supposehe objective functioncounts2 for eachmatchand —1 for each
mismatchor space. IfS; = abcxdexand $; = xxxcde,thenv(3.4) = 2 (the two cs
match)v(4, 5) = 1 (cx alignswith cd), v(5, 5) = 3 (x—d alignswith xcd), andv(6, 6) =5
{(x—de aligns withxcde).

Sincethedefinition allowseither or bothof the suffixesto beempty, v(i, j) is always
greater thanor equalto zero.

Thefollowing theoremshowsthe relationship between thlecal alignmentproblem
and thelocal suffixalignmentproblem. Recall that* is the valueof the optimallocal
alignmentfor two stringsof lengthn andm.

Theorem11.7.1.v* = max[v(i,3):i <n,j <m].

prOOF Certainly v* > max[v(i, j) 1 i < n,j < m], becausegheoptimal solutionto the
local suffix alignmentproblem forany i, j is a feasiblesolution to the local alignment
problem. Converselyeta, 8 bethesubstringsn anoptimalsolutionto thelocal alignment
problemandsupposea endsat positioni* andg endsat j*.Thenea, g alsodefinesa local
suffix alignmenforindexpairi*, j*,andsov* < v(i*, j*)< max[v(i, j):i <n,j < m],

and bothdirections ofthelemmaareestablished. O

Theorem11.7.1 only specifiesthe value v*, but its proof makesclear how to find
substrings whosealignment havehat value.n particular,

11.8. GAPS 235

¢c ¢t t t a a ¢ . . a . a ¢
¢c - . - ¢ a ¢ ¢ ¢ a t . ¢

Figure 11.5: An alignment with seven spaces distributed into four gaps.

with similarity (global alignment valuepf v(i, j). Thus,an easyway to look for a set
of highly similar substringss tofind a setof cellsin thetablewith a valueabovesome
setthreshold.Not all similar substringswill beidentified in thisway, butthis approachs
commonin practice.

The needfor good scoringschemes

The utility of optimallocal alignment isaffectedby thescoringschemeused.For exam

ple,if matchesarescoredasone, andmismatches and spacaszero,thenthe optimal
local alignmentwill bedeterminedby the longest commorubsequenceConversely,if

mismatchesndspaces are givelarge negativescores, and each matshgiven ascore
of one,thenthe optimallocal alignmentwill bethe longest commosubstring.In most
casesneitherof these is théocal alignmenbf interestand someareisrequired tdind an
applicationdependenscoringschemethatyields meaningful locahlignmentsForlocal
alignment, the entriein the scoringmatrix musthaveanaverage score that negative.
Otherwisethe resulting"local"* optimal alignmenttends to bea globalalignment.Re-
cently,several authors haweveloped rather elegartheoryof whatscoringschemesor
local alignmentmean inthe contextof database search ahdw theyshouldbe derived.
We will briefly discusghis theory inSection15.11.2.

11.8. Gaps

11.8.1.Introduction to Gaps

Until now the centralconstructausedto measurehe valueof analignment (ando define
similarity) havebeenmatchesmismatchesandspacesNow weintroduce another impor
tantconstructgaps Gapshelp creatalignmentghat betteconformto underlyingbiolog-

ical modelsandmore closelyit patternghatoneexpectdofind in meaningfulalignments.

Definition A gapis anymaximal, consecutivaun of space# asingle stringof agiven
alignment.’

A gapmay beginbeforethe startof S, in whichcaset is borderedon theright by the
first character ofS, or it may beginafter theendof S, in which caseit is borderedon
the left by the lastcharactenf S. Otherwise,a gap mustbe borderedon both sidesby
characteref S.A gapmay beassmallasa single space. Aanexampleof gaps,consider
thealignmentin Figure 11.5, which hasfour gapscontaining a totadf severspaces. That
alignment wouldedescribedishavingfive matchespnemismatchfour gaps,andseven
spaces. Notice that thastspacein thefirst stringis followed by a spacein the second
string, but thosetwo spaces ari two gapsanddo not form a singlegap.

By including aterm in the objectivefunction that reflectsthe gaps inthe alignment
onehassomeinfluenceon thedistribution of spacesn analignmentandhenceon the
overall shapeof the alignment. Inthe simplestobjective function thatincludesgaps,

5 Sometimesin the biology literature the term " space” (aswe useit) is not used.Rather, the term" gap' is usedboth
for " space"and for " gap’ (aswe havedefinedit here). This cancause muchconfusion, and in this book the terms
"gap' and "space’ have distinctmeanings.

234 CORE STRING EDITS, ALIGNMENTS,AND DYNAMIC PROGRAMMING

(i*, J*)is found, the substringsx and 8 giving the optimallocal alignmentof S, and $;
are foundby tracing back thepointersfrom cell (i*, j*) until anentry (i’, j') is reached
that hasvalue zero. Then the optimal locablignmentsubstrings arer = S;[i’..i*] and
B = S:[j"-J*].

Time analysis

Sinceit takes onlyfour comparisonsandthree arithmetic operationeercell to compute
v(i, J), it takes only O(nm) time to fill in the entiretable. The searchfor v* and the
traceback clearlyequire onlyQ(nm) time aswell, sowe have establishethe following

desired theorem:

Theorem 11.7.4. For two strings S, and S, of lengthsn and m, the local alignment
problem canbe solvedin O(nm) time, the same timeasfor global alignment.

Recall thatthe pointersin the dynamic programmingdable for edit distance, global
alignment, angimilarity encode altheoptimal alignmentsSimilarly, the pointersin the

dynamic programming table fdocal alignment encode the optimal loaignmentsas
follows.

Theorem 11.7.5. All optimal local alignments oftwo strings arerepresentedn the dy-

namic programmingtablefor v(i, j)and can befound by tracing any pointersback from
any cell with value v*.

We leave the prooasanexercise.

11.7.3.Threefinal commentson local alignment
Terminology for local and global alignment

In the biological literature, global alignment (similarity) isoften referredto as a

NeedlemarWunsch{347] alignment after theuthorswho first discussed global sim
ilarity. Local alignmentis often referredo asa Smith—-Waterman[411] alignment after
theauthorswhointroducedlocal alignment.There is however,someconfusionin thelit-

erature betweeNeedlemar Wunsch andmith-Watermanasproblem statementandas
solution methodsTheoriginal solutiongiven by NeedlemarWunschruns in cubic time
and israrely used.Hence" NeedlemarWunsch' usually refergo the globalalignment
problem.The Smith-Watermanmethod runs imquadratic timeandis commonlyused,so
" Smith-Watermari often refers to their specific solution a®ll asto the problemstate

ment. But there arsolution methodsto the (Smith—Waterman) locadlignmentproblem

that differ from theSmith—Watermansolutionand yet are sometimesalsoreferredto as
" Smith-Watermari.

Using Smith-Waterman to find several regionsof high similarity

Very oftenin biologicalapplicationst is notsufficienttofind just asingle paiof substrings
of input stringsof §, and S, with theoptimal local alignmentRather whatis required is to
find all or""many"’ pairsof substringghathavesimilarity above soméhreshold A specific
applicationof thiskind will bediscussedn Section18.2,andthe generalproblemwill be
studiedmuch moredeeplyin Section13.2.Herewe simply pointout that,in practice,the
dynamic programmintpbleusedto solvethe localsuffix alignmentproblemis oftenused
to find additionalpairs of substringswith "high™ similarity. The key observationis that
foranycell(i, j) in thetable,onecanfind a pair of substringsf $, andS, (by traceback)

11.8. GAPS 237

Figure 11.6: Each of the four rows represents part of the RNA sequence of one strain of the HIV-1 virus.
The HIV virus mutates rapidly, so that mutations can be observed and traced. The bottom three rows are
from virus strains that have each mutated from an ancestral strain represented in the top row. Each of the
bottom sequences is shown aligned to the top sequence. A dark box represents a substring that matches
the corresponding substring in the top sequence, while each white space represents a gap resulting from
a known sequence deletion. This figure is adapted from one in [123].

long string

piecesof shorterstringinterspersed with gaps

Figure 11.7: In cDNA matching, one expects the alignment of the smaller string with the longer string to
consist of a few regions of very high similarity, interspersed with relatively long gaps.

shows upas a gap when two proteins arealigned.In somecontexts,many biologists
considerthe properdentification of the major(long) gaps ashe essential problenof
proteinalignment.If the long (major)gapshave beerselectedcorrectly, the resof the
alignment- reflectingpoint mutations- is thenrelativelyeasyto obtain.

An alignmentof two stringsis intended taeflectthe cost (otikelihood) of mutational
events needed toansformonestring toanother.Sincea gapof more thanone space
can be createdby a single mutationakvent, thealignmentmodel shouldeflectthe true
distribution of spacesinto gaps,not merelythe numberof spacesn the alignment.It
follows thatthe modelmustspecify how to weightgapssoasto reflecttheir biological
meaning.In this chapterwe will discusdifferent proposed schemdgr weightinggaps,
andin laterchapters wavill discussadditionalissuedn scoringgaps.Firstwe considera
concreteexamplellustrating theutility of thegapconcept.

11.8.3.cDNA matching: a concreteillustration

One concrete illustrationof the use ofgapsin the alignment model comesfrom the
problem ofcDNA matching.In this problem,onestring is muchlongerthan the other,
and thealignmentbestreflecting their relationshiphouldconsistof afew regionsof very
high similarity interspersed witHlong" gapsin theshorterstring (see Figuré1.7). Note
that the matchingregionscanhave mismatches argpacesbut these shoulde a small
percentagef the region.

236 CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

eachgapcontributes aonstant weigh¥,, independenof how long thegap is.Thatis,
eachindividual spacas free, sothats{x, _) = s5(—, x) = 0 for everycharactex. Using
the notationestablished irSection11.6,(page226), we writethe valueof an alignment
containingk gapsas
|
> s(S(), $3)) — kW,
i=]

Changingthe valueof W, relative to the otherweightsin the objectivefunction can
changehow spacesaredistributedin the optimal alignment.A large W, encourageshe
alignmentto have fewgaps, andhealigned portion®f thetwo strings willfall into afew
substrings. A smalleW, allows more fragmentedlignmentsTheinfluence ofW, onthe
alignmentwill bediscussednore deeplyin Section13.1.

11.8.2. Why gaps?

Most of the biologicaljustifications givenfor the importanceof local alignment (see
Sectionl1.7)apply aswell to justify thegapasanexplicit concepin stringalignment.

Just asspacedn analignmentcorrespondso aninsertionor deletionof asinglechar
acter intheedittranscript, agap instring S, oppositesubstringa in string §; corresponds
to eithera deletionof « from §; or to aninsertionof « into §,. Theconceptof agap in
analignmentis thereforeimportantin manybiologicalapplications becaudbeinsertion
or deletionof anentire substringparticularlyin DNA) often occurassingle mutational
event.Moreover, many othesesingle mutational events caneategapsof quite varying
sizeswith almost equal likelihoo@within a wide, but boundedangeof sizes)Muchof the
repetitive DNAdiscussed ilsection7.11.1is causeddy singlemutationaleventghatcopy
andinsertlongpiecesof DNA. Othermutational mechanisnthat makdonginsertionsor
deletionsn DNA include: unequal crossingverin meiosis (causingninsertionin one
string and a reciprocaleletionin the other);DNA slippageduring replication(wherea
portionof the DNAIs repeatedn the replicateadopy becausehereplication machinery
losesits place onthe template, slipping backwards amepeating a sectionjnsertionof
transposablelements (jumpinggenes)into a DNA string; insertionsof DNA by retro
viruses; andranslocations of DNA between chromosomg301, 317]. See Figurell.6
for anexampleof gapsin genomic sequence data.

Whencomputingalignmentdor the purposef deducingevolutionaryhistory overa
long period of timejt isoften thegapsthat arethe mostinformative part ofthealignments.
In DNA strings, singlecharacter substitutiordueto point mutationsoccur continuously
and usuallyat a much fasterrate than (nonfatal) mutationaleventscausinggaps.The
analogous gene (specifyirige* sameé' protein)in two speciegan thusbe very different
attheDNA sequencéevel, makingit difficult to sort outevolutionaryrelationship®nthe
basis ofstring similarity(without gaps)But large insertionsanddeletionsin molecules
thatshow up asgapsin alignmentsoccur lesdrequentlythan substitutionsTherefore,
common gaps pairsof alignedstringscansometimedethe keyfeaturesusedtodeduce
theoverall evolutionary historpf a setof strings[45, 405]. Later,in Section17.3.2,we
will seethatsuchgapscanbeconsidered as evolutionacharactersn certain approaches
to building evolutionarytrees.

At the protein level,recall thatmany proteins arBbuilt of differentcombinations of
proteindomainsthathavebeenselected frona relativelysmall repertoire”[101]. Hence
two protein strings mighberelatively similar overseveralintervalsbutdiffer in intervals
whereonecontainsaprotein domain thaheotherdoesnot. Suchan intervaimostnaturally

11.8. GAPS 239

Certainly, you don't wantto seta large penaltyfor spacessincethatwould align all
thecDNA stringclose togethematherthanallowing gapsin thealignmentcorresponding
to the long intronsYou would alsowant aratherhigh penalty for mismatcheAlthough
there maybe a few sequencingerrorsin the data,so that somemismatcheswill occur
evenwhen thecDNA is properly cut up to match the exonghereshouldnot bea large
percentag®f mismatchesln summary,you want small penaltiesor spaces, relatively
large penaltiesor mismatchesandpositivevaluesfor matches.

What kindof alignmentwould likely result usingan objective function that hasw
spacepenalty, high mismatch penaltppsitive matchvalue of course, andho termfor
gaps?Remembethat the long stringcontainsmore thanone gene,thatthe exonsare
separatedy longintrons, andthat DNA has aralphabetof only four letters presenh
roughlyequalamountsUnderthese conditionghe optimalalignmentwould probablybe
thelongest commorsubsequencdetween the shodDNA stringand thdonganonymous
DNA string. And becausehe intronsarelong and DNA hasonly four charactersthat
common subsequence wodiklely matchall of the charactersn the cDNA. Moreover,
becausef small butrealsequencing errors, theue alignmenbf thecDNA to its exons
would not matchall thecharacters. Hendée longestommonsubsequence would likely
have ahigher scorethanthe correctalignmentof the cDNA to exons. Buthe longest
commonsubsequence woufdagmentthecDNA string overthe longeDNA andnotgive
analignmentof thedesiredform - it would notpick outits exons.

Putting a term for gapsin the objectivefunction rectifies the problemBy addinga
constantgapweight W, for eachgapin the alignment,and settingW, appropriately (by
experimentingwith different valuesof W,), the optimalalignmentcan beinducedto cut
up thecDNA to matchits exonsin the longerstring.® As before, thespace penaltis set
to zero,the matchvalueis positive, and thenismatchpenaltyis sethigh.

Processegseudogenes

A more difficult version of cDNA matchingarisesin searching anonymouBNA for
processepseudogenedA pseudogenes anear copy o working genghathas mutated
sufficiently from theoriginal copysothatit can no longefunction. Pseudogenes arery
commonin eukaryotic organismandmay play anmportantevolutionaryrole, providing
a readypool ofdiverse€'near genés. Following the view thahewgenesarecreatecby the
processof duplication with modification of existing gened 127, 128, 130], pseudogenes
either representrial genes thafailed or future genesthatwill function afteradditional
mutations.

A pseudogenmaybelocatedveryfarfromthegenet correspondso, everona different
chromosomeentirely, but it will usually containboth the intronsandthe exons derived
from its working relative.The problemof finding pseudogeneis anonymousequenced
DNA is thereforerelatedto thatof finding repeated substrings a very longstring.

A more interestingype of pseudogenehe processed pseudogeremntainsonly the
exon substrings fronits originating genelLike cDNA, theintronshavebeenremovedand
theexonsconcatenatedt is thoughtthata processed pseudogene originatesn mRNA
thatis retranscribedackinto DNA (by theenzymeReverse Transcriptasapd inserted
into thegenomeat arandom location.

Now, given a longstring of anonymou®NA that might contain botla processed
pseudogenandits working ancestorhow could the processegseudogenebe located?

® This really works, and it is a very instructive exerciset try it out empirically.

238 CORESTRING EDITS ALIGNMENTS, AND DYNAMIC PROGRAMMING

Biological setting of the problem

In eukaryotes, a gene thabdesfor a proteinis typically madeup of alternatingexons
(expressed sequenceshich contributeto thecodefor the protein,andintrons(interven
ing sequences)yhich do not. The numberof exons(and hencalsointrons) isgenerally
modest (fourto twentysay), but the lengthsof theintronscan be hugecomparedo the
lengths oftheexons.

At averycoarsdevel,theproteinspecifiedoy a eukaryotigeneis maden thefollowing
stepsFirst, an RNAmoleculeistranscribedfrontheDNA of thegene ThatRNA transcript
isa complemendf the DNA inthegenein thateachA in the gene iseplacedoy U (uracil)
in theRNA, eachT isreplacedby A, eachC by G, andeachG by C.Moreover,the RNA
transcriptcovers theentire genejntronsaswell asexons.Then,in a processhatis not
completely understoo@achintron-exon boundaryin thetranscriptis located,the RNA
correspondindo theintrons is spliceaut (or snurped out by a moleculacomplex called
asnrp [420]), andthe RNA regionsorresponding texonsareconcatenatedAdditional
processing occurs thate will not describe.The resulting RNA moleculeis called the
messengeRNA (mMRNA); it leavesthe cellnucleusandis usedto createthe protein it
encodes.

Eachcell (usually)containsa copy of all the chromosomes and hencef all thegenes
of theentireindividual, yetin eachspecialized cel{aliver cell for examplenly a small
fractionof thegenesareexpressedrl hatis, only a smallfractionof theproteinsencodedn
thegenomareactually produced ithat specializedell. A standardnethodto determine
which proteinsareexpresseth the specializedell line,andto huntfor the locatiorof the
encodinggenesjnvolvescapturingthe mRNA in thatcell after it leaveghecell nucleus.
ThatmRNA is thenusedto createa DNA stringcomplementaryoit. This string iscalled
cDNA (complementary DNA)Comparedto the original genethe cDNA stringconsists
only of the concatenationf exonsin thegene.

It is routineto capturemRNA and makecDNA libraries(completecollectionsof a
cell'smRNA) for specificcell linesof interest.As more librariesarebuilt up,onecollects
areflectionof all thegenesin thegenomeand a taxonomyf thecellsthatthegenesare
expressedn. In fact,a major componenof the HumanGenome Projectl11], [399] is
to obtaincDNAs reflecting mostof thegenesin the humargenome.This effort is also
being conductedby several privateompaniesand hasled to someinteresting disputes
over patentingcDNA sequences.

After cDNAis obtainedtheproblem isodeterminavhere thegene associated withat
cDNA residesPresentlythis problem ismostoften addressed witthaboratory methods.
However,if the cDNA s sequencedr partially sequenced (and the Human Genome
Projectfor examplethe intentisto sequence partsf eachof theobtainedcDNAs), andif
onehas sequencettie part ofthegenomecontainingthe gene associated withat cDNA
(as,for example one wouldhaveafter sequencingheentire genome), thethe problem
of finding the genesite given acDNA sequencéecomesa stringproblem.It becomes
oneof aligningthecDNA stringagainsthelongerstringof sequenced®NA in away that
revealsheexons.t becomes theDNA matchingproblem discussedbove.

Why gapsare neededin the objective function

If the objective functionncludesterms only for matches, mismatcheand spaceshere
seemsno wayto encouragehe optimal alignment tobe of thedesiredform. It’s worth a
moment'seffort toexplainwhy.

11.8. GAPS 241

The alphabetweight versionof the affine gap weight modelagain setss(x,-) =
s{—, x) = 0 and hagheobjectiveof finding analignmentto

!
maximize (Z[S(Si (1), S5(i))] — W,(# gaps) — W,(# spaces)))
i=}

The affine gapweight model is probablyhe most commonly usedapmodelin the
molecular biologyliterature,although there isonsiderable disagreemeattout what¥,
andW; shouldbe[161] (in addition to questions aboWt,, andW,,;). For aligningamino
acidstrings,thewidely usedsearch prograrRASTA {359] haschoserthedefault settings
of W, = 10andW, = 2. We will returnto thequestionof thechoiceof thesesettingsin
Section13.1.

It hasbeensuggestefb7, 183, 466] thatsomebiological phenomena are betteodeled
by agapweightfunction whereeachadditionalspace in @apcontributes lesto thegap
weight than the precedingpace(a function with negativesecondderivative).In other
words,a gapweightthatis aconvex,® but notaffine, function of its length. An exampleis
thefunction W, +lo0g, g, whereq is thelengthof the gapSomebiologistshavesuggested
thata gapfunctionthatinitially increase$oa maximum valuandthendecreases to near
zero wouldreflect a combinationof different biologicalphenomendhat insertor delete
DNA.

Finally, themostgeneragapweightwewill consideris thearbitrary gapweight,where
theweightof a gapis anarbitraryfunction w(g) of its lengthg. Theconstant, affineand
convexweight modelsreof coursesubcases of thearbitrary weight model.

Time boundsfor gapchoices

As might be expectedthe time needed tmptimally solvethe alignmentproblemwith

arbitrarygapweightsis greater than fothe other modelsln thecasethatw(g) is a totally
arbitrary function of gaplength, the optimal alignment carbe foundin 0(nm? + nm)

time,wheren andm > n arethelengthsof thetwo strings.In thecasethatw(g) is convex,
we will show that the timeanbereducedo O(nm logm) (afurther reductions possible,
butthealgorithmis muchtoocomplexfor ourinterests)In the affinglandhenceconstant)
casethe timeboundis O(nm), which is thesame time bound establishi thealignment
model without the concepf gaps.In thenextsections we wilfirst discussalignmentfor

arbitrarygapweightsandthenshowhow toreducethe runningtime for thecaseof affine

weight functions.The O(nm log m)-time algorithmfor convexweightsis more complex
than theothersand is deferreduntil Chapterl3.

11.8.5. Arbitrary gapweights

This casewasfirst introducedandsolvedin theclassic papeof NeedlemarandWunsch
[347], althoughwith somewhatifferent detail and terminologyhan used here.

For arbitrary gapweights,we will develop recurrenceghat aresimilar to (but more
detailed than) thenes used iGectionll.6.1 for optimalalignmentwithoutgaps.Thereis,
howeverasubtlequestiomboutwhetherthese recurrences correctly model the biologist's
view of gaps.We will examine thatssuein Exercise45.

Toalign stringsS; andS,, consider, assualthe prefixess[1..iJof §; andS;[1..j]}of S;.
Any alignmentof thosetwo prefixesis oneof thefollowing three typegsee Figurel1.8):

8 Some cali this concave.

240 CORESTRING EDITS, ALIGNMENTSAND DYNAMIC PROGRAMMING

Theproblemis similar tocDNA matchingbut moredifficult becauseone doesiot have
the cDNAIn hand.We leaveit to the readeto exploretheuse ofrepeat findingmethods,
local alignmentandgapweightselectionin tackling this problem.

Caveat

Theproblemsof cDNA and pseudogene matchiiigstrate the utilityof includinggaps in
the alignment objectivlunction andtheimportanceof weightingthe gapsappropriately.
It shouldbe noted, however, thah practiceonecanapproach thesenatchingproblems
by a judicious useof local alignmentwithout gaps.The idea ighatin computinglocal
alignment,onecanfind not only themostsimilar pair of substringsut manyotherhighly
similar pairsof substrings(seeSections13.2.4,and 11.7.3).In the contexiof cDNA or
pseudogene matchinthesepairswill likely be the exons,andso the neededmatchof
cDNA toexons caie piecedogether fromanumberf nonoverlappindocal alignments.
Thisis themore typicalapproachn practice.

11.8.4. Choicesfor gap weights

As illustrated by the exampleof cDNA matching,the appropriateuse of gapsin the
objectivefunction aids inthe discoveryof alignmentghat satisfyanexpectedshapeBut
clearly,thewaygapsareweightedcritically influences theeffectivenessf thegapconcept.
We will examinein detail four generaltypesof gapweights:constantaffine, convex, and
arbitrary.

Thesimplesthoice igheconstangapweightintroducecarlier whereeachindividual
spacss free, anegtachgapis givena weightof W, independendf the numberof spacesn
the gap.Letting W,, and W, denote weight$or matchesand mismatchesrespectively,
theoperatorweightversionof the problemis:

Find an alignment A to maximize [W,.(# matches)—W,,(# mismatches)
- W, (# gaps)].

More generally, if we adoptthe alphabetlependent weights fomatchesand mis
matches, thebjectivein the constangapweight modelis:

Find analignmentA to maximize(2f=l[s(5'[(i), SEN] — Wg(#gaps)),

wheres(x,) = s(—, x) = 0 for everycharacter, andS; and S, represent thetringss:
and$; after insertionof spaces.

A generalizatiorof theconstangapweight modeis to adda weightW; for eachspace
in the gapln thiscase,W, is calledthegapinitiation weightbecause itanrepresenthe
costof starting agap, andw; is calledthegapextension weighbecausé& canrepresenthe
costof extendinghegapby onespaceThenthe operatomweight versiorof the problemis:

Findanalignmentto maximize[W,,(# matches)- W,,,(# mismatches) — W (# gaps)
—W,(# spaces)].

Thisis calledtheaffine gapweight model becauseghe weightcontributedby a single
gapof lengthq is given by theaffine function W, + 4 W, Theconstantpapweightmodel
is simply the affinemodel withw, = O.

7 Theaffine gapmodelis sometimesalled thefinear weight model,and| preferthat term.However, “affine” has

becomethe dominant termin the biological literature, andlinear’ thereusually refergo an aftine function with
w, =0

11.8. GAPS 243

whereG(0, 0) = 0,but G(i, j) is undefinedwhen exactlyoneof i or j is zero.Notethat
V{0, 0) = w(0), which will most naturallybeassignedo bezero.

Whenend spacesndhencesndgaps, aréree, thertheoptimalalignmentvalue isthe
maximumvalueoverany cell in row n or columnm, andthebasecasesre

V(i,0) =0,
V@, j) =0,

Time analysis

Theorem11.8.1. Assumingthat{$;| = nand|S;| = m, therecurrencesanbeevaluated
in O(nm? + ntm) time.

PROOF Weevaluateherecurrenceby theusualapproactof filling in an(nt1) x (n+1)
size tableonerow at time whereeachrow isfilled from left toright. Foranycell (i, j), the
algorithmexamine®neothercell toevaluateG(i, j), j cellsof rowi to evaluate£ (i, j),
andi cellsof column j to evaluateF (i, j). Therefore, formny fixed row, m(m + 1)/2 =
@(m?) cells are examined to evaluatethk E valuesin that row,and forany fixedcolumn,
©(n?) cells are examinetb evaluate althe F valuesof that column. Thetheoremthen
follows since theraren rows andn columns. O

Theincreasen running timeoverthe previouscase(O(nm) time whengapsarenotin
themodel) is causetly the needto look j cellsto the leftandi cellsaboveto determine
V(i,|). Before gapsvereincludedin the modelV{i, j) dependedanly on thethreecells
adjacento(i, j),andsoeachV (i, j) valuewas computedéh constantime. We will show
nexthow to reducethe numberof cell examinationdor the caseof affine gapweights;
laterwe will showa morecomplexreductionfor thecaseof convexgapweights.

11.8.6. Affine (and constant)gap weights

Herewe examinein detail the simplestaffine gapweight modeland show thatptimal
alignmentsin that modelcan be computedin O(nm) time. Thatbound isthe sameas
for the alignmentmodel without a gapterm in the objectivefunction. So althoughan
explicit gaptermin theobjective functiormakes the alignmembodelmuch richer, iloes
notincrease theunningtime used (in armsymptotic,worstcasesense) tdind anoptimal
alignment.Thisimportantresultwasderivedby severalifferentauthorge.g., [18], [166],
[186]). The sameresultthenholdsimmediatelyfor constangapweights.
Recallthatthe objectives to find analignmentto

maximizeW,, (# matches) — W, (# mismatches) — W, (# gaps) — W,(# spaces)].

We will usethesamevariablesV (i, j),E(, j), F(i, j),andG(, j) usedin therecur
rencesfor arbitrary gapweights. The definition and meaningsf these variables remain
unchangedhuttherecurrenceelationswill bemodified forthe casef affinegapweights.

Thekey insightleadingto greaterefficiencyin the affinegapcase ighattheincreasen
the totalweightof agapcontributedby eachadditionalspaces a constan¥, independent
of thesizeof thegaptothat point. Imotherwords,in theaffinegapweight modeto(g +1)-
w(q) = W, foranygap lengthg greaterthan zeroThisis incontrasto thearbitrary weight
case where theisnopredictable relationshigetweens(g) andw(g +1).Because thgap
weightincreasedy thesameW; for eachspaceafter thefirst one,when evaluating=(i, j)
or F(i, j) we neednot beconcernedwith exactlywhere a gap begins, but only whetlter

242 CORESTRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

S, !

1 E
S, /
S, i

2 i F
s, /
S, !

3 j G
SZ

Figure 11.8: The recurrences for alignment with gaps are divided into three types of alignments: 1. those
that align Sy(i)to the left of Sx(), 2. those that align S;(i)to the right of Sx{;), and 3. those that align them
opposite each other.

1. Alignmentsof S;[1..iJandS»{1..j] wherecharacteiS, (i) is aligned toacharactestrictly
to theleft of characterS,(j). Thereforethealignment endsvith a gapin ;.

2. Alignmentsof thetwo prefixes wheres) (i) is aligned strictlyto theright of S2(j). There
fore,thealignment endsvith agapin S,.

3. Alignmentsof the twoprefixeswherecharacters, (i) andS,(j) are aligned oppositsach
other.This includes botlthecasethat S (i) = S»(j) andthatS;(i) # S:(j).

Clearly, thesethree type®f alignments coveall the possibilities.

Definition Define E(i, j) asthe maximumvalueof any alignmentof type 1; define
F(i, j)asthemaximumvalueof anyalignmentf type2;defineG(i, j)as themaximum
valueof anyalignmentof type3; andfinally defineV (i, j) as thanaximumvalueof the
three termsE(, j), F(, j), G, j).

Recurrencesfor the caseof arbitrary gap weights

By dividing thetypesof alignmentsnto threecases, aabove,we can writethe following
recurrences thastablishV (i, j):

V(l, j) = maX[E(h J)a F([1 .])a G(lv J')]$

G,)=V -1,j=1D+s(85:6), $20)),

EG, j)= max {V(i k)—w(j-Kk)],
O<k<j-—1

F, j)= max [V, j) - wi@ =D}

To completetherecurrenceswe needo specify the baseasesandwheretheoptimal
alignmentvalueis found.If all spacesre includedn theobjectivefunction,evenspaces
thatbeginor endan alignment,then theoptimal valuefor the alignment isfoundin cell
(n,m), and thebase case is

Vi, 0) = —w(i),
V(0, j) = —w()),

FQ, j) = —w(j),

11.9. EXERCISES 245

11.9, Exercises

1. Write down the edit transcript for the alignment example on page 226.

10.

11.

12.

13

The definition given in this book for string transformation and edit distance allows at most
one operation per positionin each string. But part of the motivation for string transformation
and edit distance comes from an attempt to model evolution, where there is no restriction
on the number of mutations that could occur at the same position. A deletion followed
by an insertion and then a replacement could all happen at the same position. However,
even though multiple operations at the same position are allowed, they will not occur in the
transformationthat uses the fewest number of operations. Prove this.

In the discussion of edit distance, all transforming operations were assumed to be done to
one string only, and a "hand-waiving"argumentwas givento show that no greater generality
is gained by allowing operations on both strings. Explain in detail why there is no loss in
generality in restricting operations to one string only.

. Give the details for how the dynamic programming table for edit distance or alignment can
be filled in columnwise or by successive antidiagonals. The antidiagonal case is useful in
the context of practical parallel computation. Explain this.

. In Section 11.3.3, we described how to create an edit transcript from the traceback path

through the dynamic programming table for edit distance. Prove that the edit transcript
created in this way is an optimal edit transcript.

. In Part | we discussed the exact matching problem when don't-care symbols are allowed.
Formalize the edit distance problem when don't-care symbols are allowed in both strings,
and show how to handle them in the dynamic programming solution.

. Prove Theorem 11.3.4 showing that the pointers in the dynamic programming table com-

pletely capture all the optimal alignments.

Show how to use the optimal (global) alignment value to compute the edit distance of two
strings and vice versa. Discuss in general the formal relationship between edit distance

and string similarity. Under what circumstances are these concepts essentially equivalent,
and when are they different?

The method discussed in this chapter to construct an optimal alignment left back-pointers
while filling in the dynamic programming (DP) table, and then used those pointers to trace
back a path from cell (n. m) to cell (0, 0). However, there is an alternate approach that
works even if no pointers are available. If given the full DP table without pointers, one can
construct an alignment with an algorithm that "works through" the table in a single pass
from cell (n, m) to cell (0, 0). Make this precise and show it can be done as fast as the
algorithm that fills in the table.

For most kinds of alignments (for example, global alignment without arbitrary gap weights),
the traceback using pointers (as detailed in Section 11.3.3) runsin O(n+ m) time, which
is less than the time needed to fill in the table. Determine which kinds of alignments allow
this speedup.

Since the traceback paths in a dynamic programmingtable correspond one-to-one with the
optimal alignments, the number of distinct cooptimal alignments can be obtained by com-
puting the number of distinct traceback paths. Give an algorithm to compute this number
in O(nm) time.

Hint: Use dynamic programming.

As discussed in the previous problem, the cooptimal alignmentscan be found by enumerat-
ing all the traceback paths in the dynamic programming table. Give a backtrackingmethod
to find each path, and each cooptimal alignment, in O(n + m) time per path.

. In a dynamic programming table for edit distance, must the entries along a row be

244 CORESTRING EDITS.ALIGNMENTS, AND DYNAMIC PROGRAMMING

has alreadypegunor whethera new gapis beingstarted(eitheropposite characterof S,
or opposite charactey of $3). Thisinsight,asusual,is formalizedin asetof recurrences.

The recurrences

For thecase wherend gapsareincludedin the alignmentvalue,the baseaseis easily
seento be

V(i,0) = E(i,0) = —W, — iW,,
V(O’ j) = F(Ov j) = _Wg -—jWS!

sothatthe zeraow andcolumnsof thetablefor V canbe filledin easily.Whenend gaps
are freethenV (@, 0)=V(0,) =0,
Thegeneral recurrences are

V{, j) =max{E(. j), F(,j), GG,),
o V(i —1,j—=1)+ Wy, if §;() = $2(j)
GG, j) =) i .))
V(@i —1,j = 1) = Wy, if $1(i) # $:()),

E(, j) =max[E@G, j— 1D, VU, j—1)— W] - W,
FG, j) =max[FG = 1,)), V(i = 1,j) - W,] = W, .

To better understanthese recurrencespnsidertherecurrenceor E(i, j). By defini-
tion, S, (i) will be alignedto the leftof S;(j). Therecurrencesaysthateither 1. §,(i) is
exactly oneplaceto the leftof $,(j), in which caseagapbeginsin S, opposite character
S:(j),and E(i, j) = V({, j -1)—W,— W, 0r2.5,(i) istotheleftofS,(j —1),in whichcase
the sameapin S; is oppositeboth S,(j — 1) andS(j), andE(, j) = E@, j — 1) — W,.
An explanationfor F(i, j) is similar, and G(i, j) is the simple caseof aligning S;(i)
oppositeS,(j).

As before thevalueof theoptimalalignmentis foundin cell (n,m) if rightendspaces
contribute to the objective functio@therwisethe valueof the optimal alignmenis the
maximumvaluein thenth row or mth column.

Thereadeishouldbeableto verify thattheserecurrences are correotit might wonder
why V(i, j — 1) andnot G(i, j — 1) is usedin therecurrencdor E(i, j).Thatis, why is
E@, jynotmax[E(G, j— 1), G, j — 1) — W1 — W,? Thisrecurrencevould beincorrect
becausdt would not consideralignmentsthat havea gapin S; bordered on théeft by
characterj — 1 of §; andendingopposite characterof §y, followedimmediatelyby agap
in $1. Theexpanded recurrenc&(i, j) = max[E(i, j — 1), G, j — 1) — W, , V(. j —
1) = W,] — W, would allowfor all alignments andvould becorrect,but the inclusionof
themiddleterm(G (i, j — 1) — W,) is redundanbecausehelastterm(V (i, j — 1) — W,)
includes it.

Time analysis

Theorem 11.8.2. The optimal alignmentwith affine gap weightscan be computed in
O(nm) time, thesametime asur optimalalignmentwithouta gapterm.

PROOF Examinationof therecurrenceshowsthatfor any pair (i, j), eachof theterms
Vi,]), EG,j), F(, j),andG(, |) is evaluatedoy a constant number of references
previouslycomputedvalues,arithmeticoperations, andomparisonsHenceQ(nm) time
sufficestofill in all the(n + 1) x (m + I) cellsin the dynamic programmintable. o

29.

30.

31.

32.

33.

11.9. EXERCISES 247

do not contribute to the cost of the alignment. Show how to use the affine gap recurrences
developedin the text to solve the end-gap free version of the affine gap model of alignment.
Then consider using the alternate recurrences developed in the previous exercise. Both
should run in O(nm) time. Is there any advantage to using one overthe other of these
recurrences?

Show how to extend the agrep method of Section 4.2.3 to allow character insertions and
deletions.

Give a simple algorithm to solve the local alignment problem in O{nm} time if no spaces
are allowed in the local alignment.

Repeated substrings. Local alignment between two different strings finds pairs of sub-
strings from the two strings that have high similarity. It is also important to find substrings
of a single string that have high similarity. Those substrings represent inexact repeated
substrings. This suggests that to find inexact repeats in a single string one should locally
aiign of a string against itself. But there is a problem with this approach. If we do local
alignment of a string against itself, the best substring will be the entire string. Even using
all the values in the table, the best path to a cell (i,) for i # j may be strongly influenced
by the main diagonal. There is a simple fix to this problem. Find it. Can your method pro-
duce two substrings that overlap? Is that desirable? Later in Exercise 17 of Chapter 13, we
will examine the problem of finding the most similar nunoverlapping substringsin a single
string.

Tandem repeats. Let P be a pattern of length n and T a text of length m. Let P™ be
the concatenation of P with itself m times, so P™ has length mn. We want to compute a
local alignment between P™ and T. That wilt find an interval in T that has the best global
alignment (according to standard alignment criteria) with some tandem repeat of P. This
problem differs from the problem considered in Exercise 4 of Chapter 1, because errors
(mismatches and insertions and deletions) are now allowed. The particular problem arises
in studying the secondary structure of proteins that form what is called a coiled -coil [158].
In that context, Prepresents a motif or domain (a pattern for our purposes) that can repeat
in the protein an unknown number of times, and T represents the protein. Local alignment
between P™ and T picks out an interval of T that “optimally” consists of tandem repeats
of the motif (with errors allowed). If P™ is explicitly created, then standard local alignment
will solve the problem in O (nnP?)time. But because P™ consists of identical copies of P,
an O{nm)-time solution is possible. The method essentially simulates what the dynamic
programming algorithm for local alignment would do if it were executed with P™ and T
explicitly. Below we outline the method.

The dynamic programming algorithm will fill in an m+ 1 by n + 1 table V, whose rows
are numbered 0 to n, and whose columns are numbered ¢ to M.Row ¢ and column O are
initialized to all 0 entries. Then in each row i, from 1 to m, the algorithm does the following:
It executes the standard local alignment recurrencesin row f; it sets V(i, 0) to V(i, n);and
then it executes the standard local alignment recurrences in row i again. After completely
filling in each row, the algorithm selects the cell with largest V value, as in the standard
solution to the local alignment problem.

Clearly, this algorithm only takes O{nm) time. Prove that it correctly finds the value of
the optimal local alignment between P™ and T. Then give the details of the traceback to
construct the optimal local alignment. Discuss why Pwas (conceptually) expanded to A"
and not a longer or shorter string.

a. Given two strings S; and S, (of lengths n and m)and a parameter 8, show how to construct
the following matrix in O(nm) time: M(i,) = 1 if and only if there is an alignment of S
and S; in which characters S,(i) and Sz(j) are aligned with each other and the value of the

246

14.

15.

16.

17.
18.
19.

20.

21

22.

23.

24

25.

26.

27.

28.

CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

nondecreasing? What about down a column or down a diagonal of the table? Now dis-
cuss the same questions for optimal global alignment.

Give a complete argument that the formula in Theorem 11.6.1 is correct. Then provide
the details for how to find the longest common subsequence, not just its length, using the
algorithm for weighted edit distance.

As shown in the text, the longest common subsequence problem can be solved as an
optimal alignment or similarity problem. It can also be solved as an operation-weight edit
distance problem.

Let u represent the length of the longest common subsequence of two strings of lengths
nand m. Using the operation weights of d = 1, r = 2, and e = 0, we claim that Xn, m)=
m+N- 2uor u = (m+4n- D(n, m))/2. So, D{(n, M)is minimized by maximizing v. Prove this
claim and explain in detail how to find a longest common subsequence using a program
for operation-weight edit distance.

Write recurrences for the longest common subsequence problem that do not use weights.
That is, solve the Ics problem more directly, rather than expressing it as a special case of
similarity or operation-weighted edit distance.

Explain the correctness of the recurrences for similarity given in Section 11.6.1.
Explain how to compute edit distance (as opposedto similarity) when end spaces are free.

Prove the one-to-one correspondence between shortest paths in the edit graph and mini-
mum weight global alignments.

Show in detail that the end-space free variant of the similarity problemis correctly solved
using the method suggested in Section 11.6.4.

Prove Theorem 11.6.2, and show in detail the correctness of the method presented for
finding the shortest approximate occurrence of Pin Tending at position j.

Explain how to use the dynamic programming table and traceback to find all the optimal
solutions (pairs of substrings) to the local alignment problem for two strings Sy and S;.

In Section 11.7.3, we mentioned that the dynamic programming table is often used to
identify pairs of substrings of high similarity, which may not be optimal solutions to the
local alignment problem. Given similarity threshold ¢, that method seeks to find pairs of
substrings with similarity value t or greater. Give an example showing that the method
might miss some qualifying pairs of substrings.

Show how to solve the alphabet-weightalignment problem with affine gap weightsin O{nm)
time.

The discussions for alignment with gap weights focused on how to compute the vatues in
the dynamic programming table and did not detail how to construct an optimal alignment.
Show how to augment the algorithm so that it constructs an optimal alignment. Try to limit
the amount of additional space required.

Explainin detail why the recurrence E(i, j) = max[E(/, j—1). G(i, | - 1) — W, V(i, - 1) -
Wyl — Ws is correct for the affine gap model, but is redundant, and that the middle term
(G(i, j— 1) — W,) can be removed.

The recurrences relations we developed for the affine gap model follow the logic of paying
W, T W; when a gap is "initiated" and then paying W, for each additional space used in
that gap. An alternative logic is to pay W, + W, at the point when the gap is "completed."
Write recurrences relations for the affine gap model that follow that logic. The recurrences

should compute the alignment in O(nm) time. Recurrences of this type are developed in
[166].

In the end-gap free version of alignment, spaces and gaps at either end of the alignment

37,

38.

39.

119. EXERCISES 249

Usually a scoring matrix is used to score matches and mismatches, and a affine (or linear)
gap penalty model is also used. Experiments [51, 447} have shown that the success of this
approachis very sensitive to the exactchoice of the scoringmatrixand penalties. Moreover,
it has been suggested that the gap penalty must be made higher in the substrings forming
the a and 8 regions than in the rest of the string (for example, see [51} and [296]). That
is, no fixed choice for gap penalty and space penalty (gap initiation and gap extension
penalties in the vernacular of computational biology) will work. Or at least, having a higher
gap penalty in the secondary regions will more likely result in a better alignment. High
gap penalties tend to keep the « and 8 regions unbroken. However, since insertions and
deletions do definitely occur in the loops, gaps in the alignment of regions outside the core
should be allowed.

This leads to the following alignment problem: How do you modify the alignment model
and penalty structure to achieve the requirements outlined above? And, how do you find
the optimal alignment within those new constraints?

Technically, this problemis not very hard. However, the applicationto deducing secondary
structure is very important. Orders of magnitude more protein sequence data are available
than are protein structure data. Much of what is "known" about protein structure is actually
obtained by deductions from protein sequence data. Consequently, deducing structure
from sequence is a central goal.

A multiple alignment version of this structure prediction problem is discussed in the first
part of Section14.10.2.

Given two strings §; and S; and a text T, you want to find whether there is an occurrence
of & and S; interwoven (without spaces) in T. For example, the strings abac and bbc
occurinterwovenin cabbabccdw. Give an efficient algorithm for this problem. (It may have
a relationship to the longest common subsequence problem.)

As discussed earlier in the exercises of Chapter 1, bacteria! DNA is often organized into
circular molecules. This motivates the following problem: Given two linear strings of lengths
n and m, there are n circular shifts of the first string and m circular shifts of the second
string, and so there are nm pairs of circular shifts. We want to compute the global alignment
for each of these nm pairs of strings. Can that be done more efficiently than by solving
the alignment problem from scratch for each pair? Consider both worst-case analysis and
"typical” running time for "naturally occurring” input.

Examine the same problem for local alignment.

The stuttering subsequence problem [328). Let P and T be strings of n and m char-
acters each. Give an O(m)-time algorithm to determine if P occurs as a subsequence
of T.

Now let P’ denote the string P where each character is repeated i times. For example,
if P = abc then P? is aaabbbccc. Certainly, for any fixed i one can test in O(m) time
whether P' occurs as a subsequence of T. Give an algorithm that runsin O(mlogm) time
to determine the largest / such that P! is a subsequence of T. Let Maxi(P. T) denote the
value of that largest i.

Now we will outline an approach to this problem that reduces the running time from
O(mlogm) to O{m). You will fill in the details.

For a string T, let d be the number of distinct charactersthat occur in T. For string T and
character X in T, define odd(x) to be the positions of the odd occurrences of X in T, that
is, the positions of the first, third, fifth, etc. occurrence of x in T. Since there are d distinct
charactersin T, there are d such odd sets. For example, if T=0120002112022220110001
then odd(1) is 2,9,18. Now define half T) as the subsequence of T that remains after
removing all the characters in positions specified by the d odd sets. For example, ha/f T)

248

34.

35.

36.

CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

alignmentis within 6 of the maximum value alignmentof $; and S;. Thatis, if V{8;, 5;)isthe
value of the optimal alignment, then the best alignment that puts S, (i)opposite Sz fy should
have vaiue at least V(S;, Sz) — 6. This matrix M is used [490] to provide some information,
such as common or uncommon features, about the set of suboptimal alignments of Sy and
S,. Since the biological significance of the optimal alignment is sometimes uncertain, and
optimality depends on thechoice of (often disputed) weights, it is useful to efficiently produce
or study a set of suboptimal (but close) alignments in addition to the optimal one. How can
the matrix M be used to produce or study these alignments?

b. Show how to modify matrix M so that A/, j) = 1 if and only if S;(/) and Sz(}j) are aligned
in every alignment of S; and S, that has value at least V{S;, ;) — 8. How efficiently can this
matrix be computed? The motivation for this matrix is essentially the same as for the matrix
describedin the preceding problem and is used in [443] and {445].

Implement the dynamic programming solution for alignment with a gap term in the objective

function, and then experiment with the program to find the right weights to solve the cDNA
matching problem.

The processby which intron-exon boundaries (called splice sites) are found in mBNA s not
well understood. The simplest hope —that splice sites are marked by patterns that always
occur there and never occur elsewhere — is false. However, it is true that certain short
patterns very frequently occur at the splice sites of introns, In particular, most introns start
with the dinucleotide G T and end with AG. Modify the dynamic programming recurrences
used in the cDNA matching problem to enforce this fact.

There are additional pattern features that are known about introns. Search alibrary to find
information about those conserved features — you'll find a lot of interesting things while
doing the search.

Sequence to structure deduction via alignment

Animportantapplication for aligning protein stringsis to deduce unknown secondary struc-
ture of one protein from known secondary structure of another protein. From that secondary
structure, one can then try to determine the three-dimensional structure of the protein by
model building methods. Before describing the alignment exercise, we need some back-
ground on protein structure.

A string of a typical globular protein (a typical enzyme) consists of substrings that form
the tightly wrapped core of the protein, interspersed by substrings that form loopson the
exterior of the protein. There are essentially three types of secondary structures that appear
in globular proteins: a-helixes and g-sheets, which make up the core of the protein, and
loops on the exterior of the protein. There are also turns, which are smaller than loops.
The structure of the core of the protein is highly conserved over time, so that any large
insertions or deletions are much more likely to occur in the loops than in the core.

Now suppose one knows the secondary (or three-dimensional) structure of a protein from
one species, and one has the sequence of the homologous protein from another species,
but not its two- or three-dimensional structure. Let S; denote the string for the first protein
and S; the second. Determining two- or three-dimensional structure by crystallography or
NMR is very complex and expensive. Instead, one would like to use sequence alignment of
S, and S$; toidentify the @ and B structuresin S.. The hope s that with the proper alignment
model, scoring matrix, and gap penalties, the substrings of the a and 8 structures in the
two strings will align with each other. Since the locations of the & and 8 regions are known
in 81, a "successful"alignment will identify the & and g regionsin &,. Now, insertions and
deletions in core regions are rare, so an alignment that successfully identifies the o« and
B regions in S should not have large gaps in the ¢ and g regions in S;. Similarly, the
alignment should not have large gaps in the substrings of S, that atign to the known a and
B regions of S;.

11.9. EXERCISES 251

Figure 11.10: A rough drawing of a cloverleaf structure. Each of the small horizontal or vertical lines inside
a stem represents a base pairing of a-u or c—g.

42.

43.

44,

Transfer RNA (tRNA) molecules have a distinctive planar secondary structure called the
cloverleaf structure. In a cloverleaf, the string is divided into alternating stems and loops
(see Figure 11.10). Each stem consists of two parallel substrings that have the property
that any pair of opposing characters in the stem must be complements (a with u; ¢ with
g). Chemically, each complementary stem pair forms a bond that contributes to the overall
stability of the molecule. A ¢c— g bond is stronger than an a— ubond.

Relate this (very superficial) description of tRNA secondary structure to the weighted
nested pairing problem discussed above.

The true bondingpattern of complementary bases (in the stems) of tRNA molecules mostly
conforms to the noncrossing conditionin the definition of a nested pairing. However, there
are exceptions, so that when the secondary structure of known tRNA moleculesis repre-
sented by linesthrough the circle, a few lines may cross. These violations of the noncrossing
condition are called psuedoknots.

Consider the problem of finding a maximum cardinality proper pairing where a fixed num-
ber of psuedoknots are allowed. Give an efficient algorithm for this problem, where the
complexity is a function of the permitted number of crossings.

RNA sequence and structure alignment. Because of the nested pairing structure of
RNA, it is easy to incorporate some structural considerations when aligning RNA strings.
Here we examine alignments of this kind.

Let P be an RNA pattern string with a known pairing structure, and let T be a larger RNA
text string with a known pairing structure. To representpairing structure in P, let Og{i) be the
offset (positive or negative) of the mate of the character at position i, if any. For example, if
the character at position 17 is mated to the character at position 46, then Cp(17) = 29 and
O(46) = —29. If the character at position i has no mate, then Og(i) is zero. The structure
of Tis similarly represented by an offset vector Or. Then Pexactly occursin T starting at
position jif and only if A/} = T(j+i—1) and Op(i) = Or(j+i—1), foreach positioniin P.

a. Assuming the lengths of P and Tare n and m, respectively, give an O(n+ m)-time algorithm
to find every place that Pexactly occursin T.

b. Now consider a more liberal criteria for deciding that P occurs in T starting at position j.
We again require that P(f) = T{j* i - 1) for each position i in P, but now only require that
Op{i) = Or(j*i— 1) when Og(#) is not zero.

250

40.

41.

CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

8
C

Figure 11.9: A nested pairing, not necessarily of maximum cardinality.

above is 0021220101. Assuming that the number of distinct symbols, d, is fixedahead of
time, give an O(m)-time algorithm to find ha/f{ T). Now argue that the length of half{T) is
at most m/2. This will be used later in the time analysis.

Now prove that |Maxi(P, T} — 2Maxi(P, half(T))| < 1.
This fact is the critical one in the method.

The above facts allow us to find Maxi(P, T) in O{m) time by adivide-and-conquerrecursion.
Give the details of the method: Specify the termination conditions of the divide and conquer,
prove correctness of the method, set up a recurrence relation to analyze the running time,
and then solve the relation to obtain an O{m) time bound.

Harder problem: What is a realistic application for the stuttering subsequence problem?

As seen in the previous problem, it is easy to determine if a single pattern P occurs as a
subsequencein a text T. This takes O{m) time. Now consider the problem of determining
if any pattern in a set of patterns occurs in a text. If n is the length of all the patterns in the
set, then O(nm) time is obtained by solving the problem for each pattern separately. Try for
a time bound that is significantly better than O{nrm). Recall that the analogous substring
set problem can be solvedin O(n+ m) time by Aho—Corasik or suffix tree methods.

The tRNA folding problem. The followingis an extremely crude version of a problem
that arises in predicting the secondary (planar) structure of transfer RNA molecules. Let
S be a string of n characters over the RNA alphabet a, ¢, u, g. We deiine a pairing as
set of disjoint pairs of charactersin S. A pairing is called proper if it only contains (a,u)
pairs or (c,g) pairs. This constraint arises because in RNA a and v are complementary
nucleotides, as are ¢ and g. If we draw S as a circular string, we define a nested pairing as
a proper pairing where each pair in the pairing is connected by a line inside the circle, and
where the lines do not cross each other. (See Figure 11.9). The problem is to find a nested
pairing of largest cardinality. Often one has the additional constraint that a character may
not be in a pair with either of its two immediate neighbors. Show how to solve this version
of the tRNA folding problem in O{n®) time using dynamic programming.

Now modify the problem by adding weights to the objective function so that the weight of
an a-—u pair is different than the weight of a c— g pair. The goal now is to find a nested
pairing of maximum total weight. Give an efficient algorithm for this weighted problem.

119. EXERCISES 253

two adjacent gaps where each is in a different string. For example, the alignment

X X a b c y y
X X i d e y y

would never be found by these modified recurrences.

There seems no modeling justificationto prohibit adjacent gaps in opposite strings. In fact
some mutations, such as substring inversions (which are common in DNA), would be best
represented in an alignment as adjacent gaps of this type, unless the model of alignment
has an explicit notion of inversion (we will consider such a model in Chapter 19). Another
example where adjacent spaces would be natural occurs when comparing two mRNA
strings that arise from alternative intron splicing. In eukaryotes, genes are often comprised
of alternating regions of exons and introns. In the normal mode of transcription, every intron
is eventually spliced out, so that the mRNA molecule reflects a concatenation of the exons.
But it can also happen, in what is called alternative splicing, that exons can be spliced out
as well as introns. Consider then the situation where all the introns plus exon i are spliced
out, and the situation where all the introns plus exon i + 1 are spliced out. When these two
mRNA strings are compared, the best alignmentmay very well put exon i against a gap in
the second string, and then put exon i + 1 against a gap in the first string. In other words,
the informative alignment would have two adjacent gaps in alternate strings. In that case,
the recurrences above do not correctly implement the second viewpoint.

Write recurrences for arbitrary gap weights to allow adjacent gaps in the two opposite
strings and yet prohibit adjacent gaps in a single string.

252 CORE STRING EDITS, ALIGNMENTS, AND DYNAMIC PROGRAMMING

Give an efficientalgorithm to find all locations where Poccurs in T under the more liberal def-
inition of occurrence. The naive, O{nm)-time solution of explicitly aligning P to every starting
position | and then checking for a match is not efficient. An efficient solution can be obtained
using only methods in Part | and Il of the book.

c. Discuss when the more liberal definition is reasonable and when it may not be.

45. A gap modeling question

The recurrences givenin Section 11.8.5 for the case of arbitrary gap weights raise a sub-
tle question about the proper gap model when the gap penalty w is arbitrary. With those
recurrences, any single gap can be considered as two or more gaps that just happen to
be adjacent. Suppose, for example, w(g) = 1 for g < 5, and w(g) = 10 for i > 5. Then,
a gap of length 10 would have weight 108 if considered as a single gap, but would only
have weight 2 if considered as two adjacent gaps of length five each. The recurrencesfrom
Section 11.8.5 would treat those ten spaces as two adjacent gaps with total weight 2. Is
this the proper gap model?

There are two viewpoints on this question. In one view, the goal is to model the most likely
set of mutation events transforming one string into another, and the alignment is just an
aid in displaying this transformation. The primitive mutational events allowed are the trans-
formation of single characters (mismatches in the alignment) and insertion and deletion of
blocks of characters of arbitrary lengths (each of which causes a gap in the alignment).
With this view, it is perfectly proper to have two adjacent gaps on the same string. These
are just two block insertions or deletions that happen to have occurred next to each other.
If the gap weights correctly model the costs of such block operations, and the cost is a
concave increasing function of length as in the above example, then it is much more likely
that a long gap will be created by severalinsertion or deletion events than by a single such
event. With this view, one should insist that the dynamic program allow adjacentgaps when
they are advantageous.

In the other view, one is just interested in how "similar” two strings are, and there may be
no explicit mutational model. Then, a given alignment of two strings is simply one way to
demonstrate the similarity of the two strings. In that view, a gap is a maximal set of adjacent
spaces and so should not be broken into smaller gaps.

With arbitrary gap weights, the dynamic programming recurrences presented correctly
model the first view, but not the second. Also, in the case of convex (and hence affine or
constant) gap weights, the given recurrences correctly model both views, since there is
no incentive to break up a gap into shorter gaps. However, if gap weights with concave
increasing sections are thought proper, then different recurrencesare required to correctly
model the second view, The recurrences below correctly implement the second view:

Vi, jy = max[E(i. j), F(.)). GU.)1,

G(i, j) = V(i =1, j= 1) + s(51(i}, Se(),

E(i, j) = max[G(i, k) — w(j— k)] (over0 < k < j—1),

F(i. j) =max[G(/,) —w(i—)] (overC <1 <i-1).
These equations differ from the recurrences of Section 11.8.5 by the change of V({i. k) and
V(/, i) to G(i, k) and G/, j) in the equations for £(i, j) and F{i, j), respectively. The effect

is that every gap except the left-most one must be preceded by two aligned characters;
hence there cannot be two adjacent gaps in the same string. However, this also prohibits

12.1. COMPUTINGALIGNMENTS IN ONLY LINEAR SPACE 255

Slr __________ ! n

J m
§; me=e-=mmmmm--eeo-
S n-1_.______1 N
S _______________
2 m-—j m

Figure 12.1: The similarity of the first i characters of S{ andthe first jcharactersof] equals the similarity
of the last / charactersof Sy and the last j charactersof S2. (The dotted lines denote the substrings being
aligned.)

single rowof thefull tablecanbefoundandstoredin thosesametime andspacebounds.
This ability will be critical in the methodo come.

As afurtherrefinementof thisidea,the space needed chereduced tmnerow plus
oneadditionalcell (in addition to the spacir the strings)Thusm +1 spaces all that
is neededAnd, if n < m thenspace useanbe further reducedon + 1. We leavethe
detailsasanexercise.

12.1.2.How to find the optimal alignmentin linear space

The aboveideais fine f we only want the similarityV (s, m) or just wantto store one
preselected rovof the dynamic programminigble.But what canwe do if we actually
want analignmentthat achieves valu& (n, m)?In mostcases iis suchan alignment
thatis sought,not just its value. Inthe basicalgorithm,the alignmentwould be found

by traversingthe pointerssetwhile computingthefull dynamicprogrammingtablefor

similarity. However,the above linear spacmethoddoesnot storethe wholetable and
linearspace isnsufficientto storethe pointers.

Hirschberg's highevel schemdor finding theoptimal alignmenin only linearspace
performsseveral smaller alignmergbmputationseachusingonly linearspace aneéach
determining ait moreaboutanactual optimaklignmentThe netresultof thesecompu
tationsis afull descriptionof anoptimalalignment.We first describenow theinitial piece
of thefull alignments found using onljinearspace.

Definition Foranystringa,letd denote theeverseof string:.

Definition Given stringsS, ands,, defineV'(i, j) asthesimilarity of thestringcon
sistingof the firsti characterof §7, andthestring consistingf thefirst ; characters
of 5. Equivalently,V"(i, j) is thesimilarity of thelasti charactersf S; andthelast j
characters of; (see Figurel2.1).

Clearly, the tableof V'(i, j) valuescanbe computedin O{nm) time, andany single
preselected rowf thattablecanbecomputedandstoredin O(nm) time usingonly O(m)
space.

Theinitial pieceof thefull alignmentiscomputed idinearspacebycomputingV (n, m)
in two partsThefirst partusesheoriginalstrings;the secongbart uses the revers&ings.
Thedetailsof this two-partcomputationaresuggestedh thefollowing lemma.

Lemma12.1.1. V(n, m) = MaXgk<m[V(n/2, &)+ V7 (n/2,m —K)].

12
Refining Core String Edits and Alignments

In this chaptemwe look at anumberof importantrefinements that havieeendeveloped
for certain corestring edit andalignmentproblems.Theserefinementsitherspeedup a
dynamicprogramming solutionreducedts spacerequirements, oextend itsutility.

12.1. Computing alignmentsin only linear space

Oneof thedefectsof dynamic programmindor all the problemswe havediscussed is
thatthedynamicprogramming tables use(nm) spacevhenthe inputstringshavelength
n and m. (Wherwe talk aboutthe spaceusedby a method,we refer to the maximum
spaceeverin usesimultaneouslyReusedspace doesot add to theountof spaceuse.)
It is quitecommon thathelimiting resourcen stringalignment problemss nottime but
space. Thalimit makegt difficult to handlelarge stringsnomatterhow long wemay be
willing to waitfor thecomputation tdinish. Thereforeijt is very valuableto havemethods
thatreducethe useof spacewithout dramaticallyincreasinghetime requirements.
Hirschberg224] developednelegantandpractical spaceeductiormethod that works
for many dynamicprogramming problemd~or several stringalignment problemsthis
method reducetherequired spacGdom &{nm) to O(n) (for n < m) while only doubling
the worstcasetime bound. Miller and Myersexpanded orthe ideaand broughtit to
the attentiorof thecomputational biology communitj344]. The method has sindsen
extendedand appliedo many more problemg97]. We illustratethe methodusing the

dynamicprogrammingsolution to the problermf computingtheoptimal weighted global
alignmentof two strings.

12.1.1. Space reductiorfor computing similarity

Recallthat thesimilarity of two stringss anumber,andthatunderthesimilarity objective
functionthereis anoptimal alignmentwhosevalue equalshat number. Nowf we only
require the similarity V(n, m), and not an actual alignment withthat value, then the
maximumspace needefin additionto the spacdor the strings) carbe reduced t@m.
Theideais thatwhencomputingV valuesor row i, the onlyvaluesneededrom previous
rowsarefromrowi — 1; any rows beforé — 1 canbediscardedThis observatioms clear
from therecurrencesor similarity. Thus, we can implementhe dynamic programming
solution using onlytwo rows, one calledrow C for current, andone calledrow P for
previous.In eachiteration,row C is computedisingrow P,therecurrencesandthe two
strings.Whenthat rowC is completelyfilled in, thevalues inrow P are no longer needed
andC getscopiedto P to preparefor the next iteration After n iterations, rowC holds
the valuesfor row n of the full table and henc&(n, m) islocatedin the last cellof that
row. Inthis way, V(rn, m) canbecomputedin O¢m) spaceand O(nm) time. In fact, any

254

12.1. COMPUTING ALIGNMENTS IN ONLY LINEAR SPACE 257

k‘ kt) ,7’1

nf2 -1
ni2 N

nf2+1

ks

Figure 12.2: After finding k*, the alignment problem reduces to finding an optimal alignment in section A
d the table and another optimal alignment in section B d the table. The total area of subtables A and Bis
at most cnmy/2. The subpath L,,2 through celi (17/2, k*)is represented by a dashed path.

pathfrom cell (n/2, k*) to a cell k, in row n/2 + 1. Thatpathidentifies asubpath of an
optimal pathfrom (n/2, k*) to (n, m). Thesewo subpaths taken togetheform thesubpath
L, thatis part ofanoptimal pathL from (0, 0) to (n, m). Moreover,that optimal path
goes througlell (n/2, k*). Overall, O(nm) timeandO{m) spaceas used tdind k*, k|, k2,
andL,. O

To analyzethe full method tocome,we will expressthe time neededto fill in the
dynamic programming table sizep by q ascpq,for someunspecifiecconstant, rather
thanas O(pq). In that view,the n/2 row of the first dynamicprogram computatioms
foundin ¢cnm /2 time, asis then /2 row of thesecond computatioThus,a totalof cnm
time is neededo obtainandstoreboth rows.

The key point to noteis that with a cnm-time and O(m)-space computation, thel-
gorithm learnsk*, ki, k;, and L, 2. This specifies parbf an optimalalignmentof S, and
$2, and notjust thevalue V(n, m). By Lemmal2.1.1 itlearnsthat thereis an optimal
alignmentof §, and §; consistingof an optimalalignmentof the firstn/2 charactersof
S, with thefirst k* charactersof S,, followed by an optimal alignmentof the last n/2
charactersf §, with thelastm — k* characterf $,. In fact, sincethealgorithmhas also
learned thesubpath (subalignment)L,,/;, the problemof aligning S, and $; reducesto
two smalleralignmentproblems,onefor thestringsS,[1..n/2 — 1] and $»[1..k,], andone
for thestringsS;[(n/2 + 1..n] and S, [k...m]. We call the firstof thetwo problems theop
problemand the second the bottopnoblem.Note thatthe topproblemis analignment
problemon strings oflengths at most /2 andk*, while the bottom problem i®n strings
of lengthsat mostn/2 andm — k*.

In termsof the dynamigprogrammingtable,thetop problemis computedn sectionA
of the original n by m tableshownin Figure12.2, andthe bottom problemnis computed
in section B of thetable.Therest ofthe tablecanbeignored.Again, we candetermine
thevaluesin the middlerow of A (or B} in time proportional tahetotal sizeof A (or B).
Hencethe middlerow of thetop problem camedeterminedat mostck™n /2 time, andthe
middle row in the bottomproblem carbedeterminedn at moste(m — k*)n/2 time.These
two timesaddto cam /2. This leadsto thefull ideafor computingtheoptimal alignment
of Sy and $,.

256 REFINING CORESTRING EDITS AND ALIGNMENTS

PROOF This result isalmost obviousandyet it requiresa proof. Recalthat S,[!..i} is
the prefix of string §; consistingof thefirst i characterandthat $7[1..f] is the reverse
of the suffix of §; consistingof thelasti characterf §;. Similardefinitionshold for S,
andSs;.

For any fixed positionk' in §,, thereis an alignmentof §, and S, consistingof an
alignment of §;[1..n/2] andS$;[1..k'] followed by a disjoint alignmentof S[n/2 + 1..n)
and $;[k' T 1..m]. By definition of V and V', the best alignmenof the first type has
valueV(n/2, k') and thebestalignmentof thesecond type hagalueV’(n/2, m — k'), so
the combinedalignmenthasvalue V{n/2, k') + V'(n/2,m — K) < max,[V(n/2, k)+
V'(n/2,m—k)] < V(n, m).

Converselyconsidetanoptimal alignment of; andsS.. Letk' be thaight-most position
in 8, thatis alignedwith acharacterat or before positiom/2 in §;. Thenthe optimal
alignmentof §; and .S, consistsof analignment ofS§,[1..n/2] and $;[1..k’} followed by
analignmentof $;(n/2 + 1..n] and S, [k’ T 1..m]. Let the valueof thefirst alignmentbe
denotedp andthe value of the second alignment béenotedq. Then p must beequal
to V(n/2, k"), for if p < V(n/2,K) we could replacethe alignment ofS;[1..n/2] and
$;[1..k"] with the alignmentof $,[1..n/2] and S2[1..k} that hasvalue V{(n/2, k'). That
would createan alignmentof §; and S; whosevalueis largerthan theclaimedoptimal.
Hencep = V(n/2,k'). By similar reasoningg = V'(n/2,m = k). So V(n,m) =
V(n/2,k) + V'(n/2,m = k) < maxi[V(n/2, k) F V'(n/2, m — k)].

Having showrbothsidesof the inequality weconcludehatV(r, m) = max,[V (n/2, k)
v, m=-k). O

Definition Letk* bea positionk that maximize§V(n/2, k) ¥ Vr(n/2,m — k).

By Lemma12.1.1, thereis an optimal alignmentvhosetracebackpath in thefull
dynamic programminggable (ifone hadilled in the full n by m table)goes througlctell
(n/2,K). Another wayto saythisis that thereis an optimal(longest)pathL from node

(0, 0) to node(n, m) in the alignment graphhat goesthrough nodén/2, k*). Thatis the
key feature ofk*.

Definition LetL,,, bethesubpath of L thatstartswith thelastnode ofL inrown /2 —1
and endswith the first nodeof L in rown/2 + 1.

Lemma12.1.2. A positionk* in row n/2 can befound in O(nm) timeandO(m) space.
Moreover,a subpath L, canbefound andstoredin thosetime andspace bounds.

PROOF First, executedynamicprogramming tacomputethe optimalalignmentof S,
ands$z, but stop afteiterationn/2 (i.e., afterthe valuesin row n/2 have beewomputed).
Moreover,whenfilling in row n/2, establishand savethe normal traceback pointerfor
the cellsin that row. At this point, V(n/2, k) is knownfor every0 < k < m. Following
theearlier discussion, onl@{m) space is\eededo obtainthe valuesindpointersin rows
n/2. Second pegincomputingtheoptimal alignmenbf S7 and S5 butstopafter iteration
n/2. Saveboththevalues for cellsn row n/2 alongwith thetraceback pointer®r those
cells. Again, O(m) spacesufficesandvalue V'(n/2, m — k) is knownfor everyk. Now,
foreachk, addV(n/2,k) to V'(n/2,m —k), andlet £* beanindex kthatgivesthelargest
sum.Theseadditionsandcomparisongake Q(m) time.

Usingthefirst setof savedpointers,follow any tracebaclpath from celkn/2, k') toa
cellky inrown /2 — 1. Thisidentifies asubpath thatisonan optimapathfrom cell (0, 0) to
cell (n/2, k*). Similarly, usingthesecondsetof traceback pointer$pllow any traceback

12.2. FASTERALGORITHMS WHEN DIFFERENCES AREBOUNDED 259

mostcnm/2'~'. Thefinal dynamicprogramming past describethe optimal alignment
takescnm time. Therefore we have the following theorem:

Theorem 12.1.1. Using Hirschberg'sprocedureOPTA, an optimal alignmentd two
stringsd lengthn andm canbefoundin 3% cnm /2=! < 2cnm timeandO(m) space.

For comparisonfecall thatcnm time isusedby the originalmethodof filling in the
full n by m dynamicprogramming table.Hirschberg'smethod reducethespace usérom
B(nm) to ®(m) while onlydoubling theworstcasetime neededor thecomputation.

12.1.5. Extensiorto local alignment

It is easyto apply Hirschberg's lineaspace methodor (global)alignmentto solve the
local alignmentproblemfor strings$, andS$,. Recall that the optimdbcal alignment of
S, andS$; identifies substringa and 8 whose globahlignmenthasmaximum valuever
all pairsof substrings. Hencef substrings: and8 canbefoundusing only lineaspace,
thentheir actualalignmentcan befoundin linear spaceusingHirschberg'smethodfor
global alignment.

From Theorem11.7.1, the value of the optimal local alignments found in the cell
(i*, j*) containingthemaximumv value.Theindicesi* and;* specify theends ofstrings
a and 8 whoseglobalalignmenthasa maximumsimilarity value.Thev valuescanbe
computedrowwise, and thealgorithm musstore valueor only tworowsatatime. Hence
theend positionsi* and j* canbe foundin linear spaceTo find the starting positionsf
thetwo strings, thealgorithm carexecutea reverselynamicprogramusinglinearspace
(we leavethis to thereaderto detail). Alternatively, the dynamigrogrammingalgorithm
for v canbe extendedo seta pointerk(i, j) for eachcell (i, j),asfollows: If v(i, j) is
setto zero,thensetthe pointer (i, j) to (i, j);if v(i, j) is setgreaterthanzero, andif
thenormal tracebackpointerwould pointto cell (p,q), thenseth(i, j) to A{p, q).In this
way, h(i*, j*) specifiesthestarting position®f substringsa and g, respectivelySincea
andg canbefoundin linearspace the localalignment problentanbe solved inQ(nm)
time and O(m) space. Mor@n this topic canbefoundin [232] and[57].

12.2. Fasteralgorithms whenthe number of differences isbounded

In Section®.4and9.5weconsidered several alignment and matclprablemswyherethe

number of allowed mismatchesasboundedoy a parameter k, andie obtainedlgorithms
thatrunfasterthan without themposedobound Oneparticularproblemwasthek-mismatch
problemfindingall places in dext T whereapatternf occurswith at mosk mismatches.
A direct dynamigprogrammingsolutionto this problemruns inO(nm) time for a pattern
of lengthn andatextof lengthm. Butin Sectior@.4 wedevelopedan O(km)-time solution

basedon the useof a suffix tree withoutany needor dynamicprogramming.

The O(km)-time resultfor thek-mismatch problemis usefulbecausenanyapplications
seekonly exactor nearlyexactoccurrenceof £ in T. Motivatedby the samekinds of
applications(and additionalonesto be discusseth Section12.2.1), we now extendthe
k-mismatchresulttoallow bothmismatcheandspaceginsertionsand deletiongérom the
viewpointof editdistance) We use theerm™ difference$ toreferto bothmismatches and
spaces.

258 REFININGCORESTRING EDITSAND ALIGNMENTS

12.1.3. Thdull idea: userecursion

Having reducedthe original n by m alignmentproblem (forS$, and $;) to two smaller
alignmentproblems(the top and bottom problems)using O(nm) time and O(m) space,
we now solve thetop and bottom problemsby a recursive applicatioof this reduction.
(For now, we ignore thespaceneededto save thesubpaths of L.) Applying exactlythe
sameideaaswasusedto find k* in the n by m problem,thealgorithmusesO(m) space
to find the bestcolumnin row n/4 to breakup the topn/2 by k&, alignment problem.
Thenit reuses0(m) spaceto find the bestolumn tobreak upthe bottomn /2 by m — &,
alignmentproblem.Stated anotheway, we havetwo alignmentproblems,oneona table
of sizeat mostn/2 by k¥ andanotheron a tableof size atmostn/2 by m — k*. We can
therefordind the bestolumn inthemiddlerow of eachof thetwo subproblems at most
cnk*/2+F cn(m — k*)/2 = cnm/2 time, andrecurse from therewith four subproblems.

Continuingin thisrecursiveway, we canfind anoptimalalignmentof thetwo original
stringswith log, n levelsof recursion, and atotime doweeverusemore thanO{m) space.
Forconvenience, assunteat n is a powerof two sothateach successivealving gives a
whole number.At eachrecursive callwe alsofind andstore asubpath of anoptimal path
L, but thesesubpaths areedgedisjoint,andsotheirtotal lengthis O(n+ m). In summary,
the recursive algorithrwe needis:

Hirschberg's linear-spaceoptimalalignment algorithm

Procedur@PTA{, ', r, 1");

begin

h:=({ —-0/2;

In 0’ —) = O(m) spacefind anindex k* betweent and/’, inclusively, suchthat
thereis anoptimal alignmenof $,[{..'] and S, [r..r'] consistingdf anoptimal alignment of
Si[1..h] and Sy[r..k*] followed by anoptimal alignmenof §;[2 +1..07 andS,[k* T 1..r1.
Also find andstorethe subpath L, thatis partof anoptimal (longest)pathL' from cell
(1, r) tocell (1, r') andthat begins witithe lastcell k; on L' in row h — 1 andendswith
thefirst cell k; on L' in row h T 1. Thisis doneasdescribeckarlier.

Call OPTA{I, h — 1,1, ky); (newtop problem)

Outputsubpath L;;

Call OPTA(h + 1,1, ky, r'); (newbottomproblem)

end.

Thecall that beginghe computations to OPTA(1, n, 1, m). Note thatthe subpath L,
is outputbetweenthetwo OPTA calls andthatthe topproblemis calledbefore the bottom
problem,Theeffect isthat the subpaths are outpuin orderof increasing hvalue,sothat
theirconcatenatiomescribesnoptimalpathL from (0, 0) to(n, m),andhenceanoptimal
alignmentof §, and S,.

12.1.4. Timeanalysis

We haveseenthat the first level of recursionusescnm time and thesecondlevel uses
at mostenm/2 time. At the ith level of recursion, wehave?2!~! subproblems, eacbf
which hasn/2=! rows buta variablenumberof columns.However thecolumnsin these
subproblemsre distinctso the total size ofall the problemss at mostthe total number
of columns, mfimesn/2:~!. Hencethe total time used atheith level of recursionis at

12.2. FASTERALGORITHMS WHEN DIFFERENCE®RE BOUNDED 261

12.2.2. lllustrations from molecular biology

In biologicalapplication®f alignmentjt may belessapparenthata boundonthenumber
of allowed(or expected) differences between strirmgsverjustified.Ilt has beemxplic-
itly statedby somecomputerscientiststhat boundedlifference alignment'methotigve
no relevancean biology. Certainly, thanajor openproblemsin aligningandcomparing
biologicalsequencearise fromstrings (usually proteirthat have venlittle overallsim-
llarity. Thereis no argumenbn that point, Still, thereare many sequencéroblemsin
molecularbiology (particularly problemsthatcome fromgenomicsand handlingDNA
sequences rathénan proteins)whereit is appropriateo restrictthe numberof allowed
(or expected) differences few hoursof skimmingbiology journalswill turn up many
such examplesWe havealreadydiscussed one applicatiahat of searchingor STSs
andESTs in newly sequence®NA (see Sectiofi.8.3). We havealso mentionethe ap-
proximatePCR primerproblem,which will bediscussedn detailin Section12.2.5.We
mentionhereafew additionakexamplesof alignmentproblemsin biology wheresetting
abound on theaumberof differencess appropriate.

Changand Lawler [94] point out that presenDNA sequencassemblymethodsee
Sectiond 6.14and16.15.10lveamassivenumbelof instancesf theapproximatsuffix-
prefix matching problenThesemethods compute, fewvery paiwof stringssy, S, in alarge
setof strings the bestnatchof asuffix of S, with aprefixof §;, wherethe match ipermitted
to containa ""modest percentagef differencesUsing standardlynamicprogramming
methods, thossuffix-prefix computationdraveaccounted fosver90% of thecomputation
time usedn past sequence assembly projégés]. Butin thisapplicationtheonly suffix-
prefix matche®f interestarethose witha modestumberof differences. Accordingly, it
Is appropriatdo useafasteralgorithmthatexplicitly exploitsthatassumptionA related
problemoccursin the"BAC-PAC" sequencing methadvolving hundred®f thousands
of sequence alignmenfseeSection 16.13.)1

Anotherexamplearisesin approaches to locatingeneswhose mutatiorcausesor
contributedo certaingeneticdiseasesT he basic idea igo first identify (throughgenetic
linkage analysis functional analysis,or othermeans)a gene,or a regioncontaininga
gene thatis believedo causeor contributeto thediseas®f interest. Copiesf that gene
or region are then obtaineshdsequenced frompeoplewho areaffectedby the disease
and people(usually relatives)who are not. The sequencdaNA from the affected and
unaffectedndividuals is compared tdind anyconsistentlifferences. Sincenanygenetic
diseases are causég very small changesn a gene (possiblya single basechange,
deletion,or inversion),the problem involves comparing stringisat havea very small
numberof 'differences. Systematic investigatioingenepolymorphismédifferences)s
anactiveareaof researchandthere are databashsldingall thedifferentsequences that
havebeenfound forcertain specifigenes. These sequengeserallywill be very similar
to oneanothersoalignmentandstring manipulatiomoolsthatassume boundechumber
of differenceshetweerstrings are usefuh handlingthosesequences.

A similar situatiorarisesn theemergingfield of " molecular epidemiologywhereone
tries to tracethe transmission history of a pathogenusuallya virus) whosegenomeis
mutatingrapidly. Thisfine-scaleanalysisof thechangingviral DNA or RNA givesriseto
string comparisonbetween vergimilar strings.Aligning pairsof thesestringsto reveal

' | recently attended meetingconcerning th&dumanGenome Projectvhere numerousxamples were presented
in talks.I stopped takingotes after théenth one.

260 REFINING CORESTRINGEDITS AND ALIGNMENTS

Two specific bounded differencgproblems

We studytwo specificproblems: thé&-difference globalalignmentproblemandthe more
involved kdifferenceinexactmatching problemThis materialwasdeveloped originallyn
the papersof Ukkonen[439], Fickett[155], Myers[341], andLandauand Vishkin [289].
The latter paper wasxpandedand illustrated with biological applicationsby Landau,
Vishkin, and Nussino\290]. Thereis much additionahklgorithmic workexploiting the
assumptiorthat thenumberof differencesmay besmall (341, 345, 342, 337, 483, 94, 93,
95,373,440, 482, 413,414,415]. A related topic, algorithms whosxpectedrunning
time isfast,is studiedin Section12.3.

Definition Given strings S, and S, and a fixed numberk. the k-differenceglobal
alignmenproblemis to find the bestglobal alignmenbf S, andS, containingat most
k mismatches anglpaces (ibne exists).

The k-differenceglobal alignment problem i specialcaseof edit distanceand is
usefulwhenS§; and$; are believedo befairly similar.It alsoarisesasa subproblemn
morecomplex stringprocessing problems, such the approximatéPCR primerproblem
consideredn Section12.2.5. Thesolutionto thek-differenceglobal alignment problem
will alsobe usedto speedup global alignmentwhenno boundk is specified.

Definition Givenstrings? andT, thek-difference inexactmatching problem is tofind

all ways(if any) to matchP in 7 usingat mostk character substitutions, insertioasd
deletionsThatis, find all occurrencesf Pin 7 usingatmostk mismatches and spaces.
(Endspacedn T but not P are free.)

Theinclusionof spacesjn addition to mismatchesllows a morerobustversion of
the k-mismatch problem discussedn Section9.4, butit complicateghe problemUnlike
our solution to the k-mismatch problem, thek-differences problemseems taequirethe
useof dynamicprogrammingTheapproaciwe takeis tospeedup the basic O (nm)-time
dynamicprogrammingsolution,making usef theassumptiorthatonly alignmentswith
atmostk differencesareof interest.

12.2.1. Wheredo bounded differenceproblemsarise?

There isalarge (andjrowing)computescience literaturen algorithmswvhoseefficiencyis
based on assumirdounded numbeaf differences(Seg 93] for a surveyand comparison
of someof these,along with an additionalmethod.)It is thereforeappropriate,before
discussing specifiglgorithmicresults,to ask whetheboundedifferenceproblemsarise
frequently enouglo justify the extensiveresearcleffort.

Boundeddifferenceproblemsarise naturallyin situations where &ext is repeatedly
modified (edited)Alignment of thetext beforeand aftermodification can highlight the
placesvhere changeweremade A relatedapplication[345] concernsupdatingagraphics
screen after incrementehangedavebeenmadeto the displayedtext. The assumption
behind incrementacreenupdates thatthe texthaschangedy only asmall amountand
that changinghetexton thescreen islow enoughto beseenby the userThealignment
of theold andnewtext thenspecifiesthefewest change® theexistingscreenneededo
display thenewtext. Graphicdisplayswith random access caxploitthis information to
very rapidly updateghescreen. Thisipproachhasbeen takery a numberof texteditors.
Theeffectsof thespeedumreeasily seermandareoften quitedramatic.

12.2. FASTER ALGORITHMS W H E NDIFFERENCES ARE BOUNDED 263

AN

two cellsoff the main diagonal
main diagonal
Figure 12.3: The main diagonaland a strip that is k = 2 spaceoff the main diagonat on eachside.

comparisons with all sequencesn SwissProt ... Sequencedelonging to the samespecies
and having more than 98 percent similarity over 33 amino acidswere combined.

A similarexamplds discussedn [399] whereroughly 170,000DNA sequence$were
subjected t@noptimal alignment procedurto identify sequenceairs withat least97%
identity”. In thesealignmentproblemspnecanimposea boundon thenumber ofallowed
differences Alignmentsthatexceedthatboundarenot of interest- thecomputation only
needsto determine whethetwo sequenceare " sufficiently similar* or not. Moreover,
becausetheseapplications involvea large numberof alignments(all database entries
against themselves), efficienoy the methodis important.

Admittedly, noteveryboundeddifferencealignmentproblemin biology requiresaso-
phisticatedalgorithm. Butpplications areocommon thesizesof someof theapplications
aresolarge, andhespeedsupsogreat,thatit seemsaunproductiveto completelydismiss
the potential utility to molecularbiology of boundeddifferenceand boundedmismatch
methodsWith this motivation,we now discussspecific techniqueshat efficiently solve
boundeddifferencealignmentproblems.

12.2.3. k-differenceglobal alignment

The problemis to find the best globalalignment subjecto the addedcondition that
the alignment containgt mostk mismatchesandspaces, foa given valuek. The goal
is to reduce theime boundfor the solutionfrom O(nm) (basedon standarddynamic
programming)to O(km). The basic approacis to computeheedit distanceof S, and S,
usingdynamic programmindput fill in only an O(km)-size portionof thefull table.

The key observationis the following: If we define themain diagonalof the dynamic
programming table as theells (i, i) fori < n < m, thenany path in the dynamic
programmingtablethatdefinesa k-differenceglobal alignment mustotcontainanycell
(i,i +1yor(i,i — 1) where 1is greaterthan k(seeFigure 12.3). Tainderstand thisnote
that any pattspecifyinga global alignmentbeginson the maindiagonal(in cell (0, 0))
andendson, or to the rightof, the maindiagonal(in cell (n, m)). Therefore the pathmust
introduceonespacein the alignmentfor every horizontal movéhat the pathmake soff
themaindiagonal. Thus,only those pathshatarenevermorethank horizontalcellsfrom
the main diagonalare candidatesor specifyinga k-differenceglobal alignment.(Note

262 REFINING CORESTRING EDITSAND ALIGNMENTS

their similaritiesanddifferencess afirststepin sorting outheirhistoryandthe constraints
on how they can mutate.The history of their mutationsis then representedn the form
of an evolutionary treg¢see Chaptel7). Collections ofHIV viruseshave beenstudied
in thisway. Anothergoodexampleof molecular epidemiology348] arisesin tracingthe
history of Hantavirus infectionsin the southwestUnited Statesthat appeared duringhe
early 1990s.

Thefinal two examplescomefrom the milestone papef162] reportingthefirst com
pleteDNA sequencingf afree-living organismthebacteriaHaemophilus influenzae Rd.
Thegenomeof this bacteria consists of 1,830,1B@se pairs anids full sequencevasde-
terminedby pureshotgun sequencingithoutinitial mapping(see Sectiori6.14).Before
thelarge-scalesequencingroject, many smalldisparatepieces of the bacterial genome
hadbeensequencedtby differentgroups,andthesesequences weia theDNA databases.
Oneof the waysthe sequencersheckedthe quality of their largescalesequencingvas
to compare when possible, theinewly obtainedsequenceo the previouslydetermined
sequencdf theycould notmatchthe appropriateewsequenceto theold oneswith only
a small number ofdifferencesthen additional stepwere takento assurethat thenew
sequencewverecorrect.Quotingfrom [162], " Theresultsof suchacomparison showhat
oursequencés 99.67 percentidentical overalto thoseGenBanksequenceannotatedhs
H. influenzae Rd”.

Fromthestandpoint ohlignment, the problendiscussed abows to determinewhether
or notthe newsequencematchthe oldoneswith few differencesThis applicationillus-
trates bottkinds of boundeddifference alignment problemstroduced earlielWhen the
locationin thegenomeof the databaseequences known, the correspondingstring in
thefull sequencecanbeextracted forromparisonThe resultingcomparisorproblemis
thenaninstance otthe k-difference global alignmentproblemthat will be discussedext,
in Section12.2.3.Whenthe genomelocation of the database sequend®is nor known
(and this izommon) thecomparisornproblemis tofind all the places inhefull sequence
where P occurswith a verysmall number of allowedlifferencesThat isthenaninstance
of the kdifferenceinexactmatching problem, whickill be consideredn Section12.2.4.

Theabovestory of H. influenzae sequencingvill berepeated frequentlgssystematic
large-scaleDNA sequencingof various organisms becomesiore common. Eachull
sequencewill bechecked againghe shortesequences fathatorganismalreadyin the
databases. This will be donenot only for quality controlof the largescalesequencing,
but alsoto correctentriesin the databasessinceit is generallybelievedthatlarge-scale
sequencings moreaccurate.

Thesecond applicatiofrom [162] concernduildinganonredundantiatabasef bac
terial proteindNRBP).Fora numberof reasongfor examplefo speedupthe searclorto
better evaluate theatistical significance of matchakatare found), iis helpful to reduce
the numberof entriesin a sequencalatabase (irthis case,bacterialprotein sequences)
by culling out,or combiningin someway, highly similar," redundarit sequences. This
wasdonein the workpresentedn [162], and a"nonredundant versionof GenBankis

regularlycompiled afThe National Center foBiotechnologyInformation. Fleischmann
etal. [162] write:

Redundancywasremoved from NRBRit twostagesAll DNA coding sequencesereex-
tractedfrom GenBank ... andsequenceffom the samespeciesveresearched againsach
other.Sequences havingnore than 97 percentidentity over regions longer thah0 au-
cleotideswere combined.In addition, the sequences were translataed usedin protein

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 265

0 1 2 3 4 5 67 8 9 10 11 12

) N
i A N

Figure 12.4: The numbered diagonals of the dynamic programming table.

12.2.4. Thereturn of the suffix tree: k-differenceinexact matching

We now considerthe problemof inexactly matchinga patternP to a text T, whenthe
numberof differences igequired tobeat mostk. Thisis anextensionof thek-mismatch
problem but is moredifficult becauset allows spacesin addition to mismatchesThe
k-mismatchproblemwassolved usinguffix treesalone butsuffix treesarenotwell struc
turedto handle insertiorand deletiorerrors.The k-differenceinexactmatching problem
isalsomoredifficult thanthe k-differenceglobalalignment problenbecauseve seekan
alignmentof P andT in whichtheendspace®ccurringin T arenot counted. Therefore,
thesizesof P andT canbe very differentandwe cannot restricattention topaths that
stay withink cellsof the maindiagonal.

Evenso, wewill againobtainan O(km) timeandspace method;ombining dynamic
programming with theability to solvelongestcommonextension queriegn constant
time (seeSection9.1). The resulting solution will be the first of severalexamplesof
hybrid dynamicprogramming,where suffix treesare usedto solve subproblemswithin
theframeworkof adynamic programmingomputationThe O(km)-time result wadirst
obtainedby Landau andVishkin [287] and Myers [341} and extendedn a numberof
papersGood survey®f many methoddor this problemappear in93] and[421].

Definition As before, themain diagonalof ther by m dynamicprogrammingtable
consists ofcells (i, i) for 0 < i < r < m.Thediagonals abovéhe maindiagonalare
numbered throughrn; the diagonalstartingin cell (0, ¢) is diagonali. Thediagonals
belowthe maindiagonal aramumbered- 1 through—n; thediagonaktarting in cell (i, 0)

is diagonal—i. (SeeFigure12.4.)

Sinceend spacem the textT arefree,row zeroof thedynamicprogrammingableis
initialized with all zero entriesThatallowsaleft endof T to be oppositea gap without
incurring any penalty.

Definition A d-pathin thedynamicprogramming tablés apath thastartsin row zero
andspecifiesa total of exactlyZ mismatchesnd spaces.

Definition A d-pathisfarthestreachingin diagonali if it is ad-paththatends in
diagonali, andtheindex of it's endingcolumnc (alongdiagonali) is greaterthanor
equal to thending columrof any other d-path ending diagonali.

Graphically,ad-path isfarthestreachingn diagonali if no othed-pathreachescell
further alongdiagonali.

Lo4 REFINING CORE STRING EDITS AND ALIGNMENTS

thatthis implies thatm — n < k is a necessary conditiofor there tobe any solution.)
Therefore,to find any k-differenceglobal alignment, it sufficesto fill in the dynamic
programming table imstrip consistingf 2k + 1 cellsin eachrow, centered orthe main
diagonal, When assigningluesto cellsin that strip, the algorithm follows the established
recurrence relationr edit distanceexcept forcells onthe upperand lower bordeof the
strip. Any cellonthe upper bordeof thestripignoresthetermin therecurrenceelation
for the cell above it (sincet is out of the strip); similarly,any cell on the lower border
ignorestheterm in therecurrenceelationfor thecell toits left. If m = n, thesizeof the
stripcanbereducedby half (Exercised).

If thereis noglobal alignmenbf S, andS$, with k or fewerdifferencesthenthe value
obtainedor cell (n, m) will be greater thaik. Thatvalue,greaterthank, is not necessarily
the correctedit distanceof §; andS;, but it will indicatethat thecorrectvaluefor (n,m)
is greaterthank. Converselyjf thereis a global alignmentwith d < k differences,then
the corresponding patis contained inside thstrip andsothevalue incell (n, m) will be
correctlysettod. Thetotal areaof the stripis Q(kn) whichis O(km), becausen andm
candiffer by at mostk. In summary, we have

Theorem 12.2.1. Thereis a globalalignmentd §; andS; with at mostk differences
f andonly f theabovealgorithmassignsa valueof k or less to celln, m). Hencethe
k-difference global alignmentproblencanbesolvedin O(km) rimeandO(km) space.

What if k is not specified?

The solution presente@bovecan be usedin somewhatifferent context.Supposethe
editdistance ofS, and S, is k*, but we don'tknow k* or any bound onit ahead oftime.
The straightforwarddynamic programmingolution to computethe edit distancek*,
takes®(nm) time and space.We will reduce thosdoundsto @(k*m). Sowhenthe edit
distanceis small, the methodruns fastand uses littlespace When the edit distances
large,the methodonly usesO(nm)-time andspacethe sameasfor the standarddynamic
programmingsolution.

Theideais tosuccessively guessboundk onk* anduseTheoreml2.2.1todetermine
if the guessed bound big enough.In detail, the methodstartswith k = 1 andchecksif
thereisaglobalalignment withat mostonedifferencelf so,then the begjlobal alignment
(with zeroor one differencehas beeriound. If not, thenthe method double& andagain
checksif thereis a k-differenceglobalalignment.At each successivuterationthe method
doublesk and checks whethehe currentk is sufficient. The processcontinuesuntil a
globalalignmentis found that hagat mostk differences, for the currentvalueof k. When
the method stopsthe besalignmentin the presentstrip (of width k on either sidef the
maindiagonal) mushavevaluek*. Thereason is that the alignmepéathsare divided into
two types:thosecontainedentirely in the present strigndthosethat gooutof the strip.
Thealignmentin handisthe besalignmentof thefirst type,andany paththatgoesoutof

the strip specifiesan alignmentwith morethank spacesit follows thatthe currentvalue
of cell (n,m) mustbek*.

Theorem12.2.2. By successively doubling k until thereisak-differenceglobalalignment,
the editdistance k* andits associatedl/ignment arecomputed in O(k*m) tine andspace.

PROOF Letk’ be thelargestvalueof k usedin the method.Clearly,k' < 2k*. Sothetotal
work in themethodis O(k'm T k'm/2tk'm/a+ ... +m)=0®m) =0Kk'm). O

12.2. FASTER ALGORITHMS WHEN DIFFERENCES ARE BOUNDED 267

Figure 12.6: The dashed line shows path R', the farthest -reaching (d — 1)-path ending on diagonal i.
The edge M on diagonal f just past the end of R’ must correspond to a mismatch between Pand T (the
characters involved are denoted P(k) and T{k’)in the figure).

Theorem12.2.3. Eachd thethreepathsR,, R;, andR; ared-pathsendingondiagonal
I. Thefarthestreachingd-pathon diagonali is thepath Ry, R, or R; thatextendsthe
furthestalong diagonai.

PROOF Eachof thethree paths ianextensiorof a(d — 1)-path,andeach extension adds
eitherone morespaceor onemore mismatch.Henceeachis a d-path,and eaclends on
diagonali by definition. Sothe farthestreachingd-path ondiagonali musteither bethe
farthestreachingf R;, R,, andR;, orit must reacHartherondiagonali thananyof those
threepaths.

Let R' bethe farthestreaching(d — 1)-pathon diagonali. The edgeof thealignment
graph along diagonali that immediatelyfollows R' mustcorrespond ta mismatch,
otherwiseR' would not bethefarthestreachingd — 1)-pathont. Let M denotethatedge
(seeFigure 12.6).

Let R* denotethe farthesteachingd-pathon diagonal. SinceR* endson diagonali,
thereis a pointwhereR* enters diagonadlfor the lasttime andthenneverleavesliagonal
i. If R*enters diagonal for the lasttime aboveedgeM, then R* mustraverseedgeM,
otherwiseR* would notreachas far aR;. WhenR* reachedM (which marksthe endof
R, it mustalso havéd— 1) differencesif thatportionof R* hadless thara totalof (d — 1)
differencesthenit could traverse Mcreatinga (d — 1)-pathon diagonal ithat reached
fartherondiagonali thanR’, contradictingthedefinition of R'. It follows thatif R* enters
diagonali aboveM, thenit will haved differencesafterit traversesM, andsoit will end
exactly whereR; ends.Soif R*is not R;, then R* mustenterdiagonali belowedgeM.

SupposeR* entersdiagonali for the lasttime belowedgeM. Then R* musthaved
differences,at that point of entry;if it hadfewer differencesthen R' would againfail to
bethe farthestreaching(d — I)-pathon diagonali. Now R* entersdiagonali for thelast
timeeitherfromdiagonali — | ordiagonal +1, sayi + 1 (thecase of — 1 issymmetric).
SoR* traverses verticaledgefrom diagonal + 1 to diagonali, which addsa spaceto
R*.That meanghat the point where Réndson diagonal + 1 defines a(d — I)-pathon
diagonali + 1. HenceR* leavesdiagonali + 1 ator abovethe pointwhere thepath R,
does.Then R, and R* eachhaved space®r mismatchest the points whereghey enter
diagonali for thelast time,andthentheyeachrunalong diagonai until reaching aredge
corresponding ta mismatchlt follows that R* cannot reach farther alodlgagonali then
R, does.Soin this caseR* ends exactlywhereR; ends.

266 REFINING CORE STRING EDITS AND ALIGNMENTS

Figure 12.5: Path Ry consists of a farthest -reaching (d — 1)-path on diagonal i+ 1 (shown with dashes),
followed by a vertical edge (dots), which adds the dth difference to the alignment, followed by a maximal
path (solid line) on diagonal i that corresponds to (maximal) identical substrings in Pand T.

Hybrid dynamic programming: the high-level idea

At thehigh level, theO(km) methodwill run in k iterations,eachtaking G(m) time. In
every iteratiord < k, the methodinds theendof the farthesteachingd-pathondiagonal
i, for eachi from —n to m. Thefarthestreachingd-pathon diagonali is found fromthe
farthestreaching(d — 1)-pathsondiagonals — 1,i, andi + 1. Thiswill be explainedn
detail below.Any farthestreachingl-paththatreachesow n specifies thendlocation(in
T) of anoccurrencef P with exactlyd differences We will implementeachiterationin
ont m) time, yielding thedesiredQ (km)-time bound.Spacewill besimilarly bounded.

Details

To beginwhend = 0, thefarthestreaching0-pathendingondiagonali correspondso the
longest common extension @fi..m]} and P[1..n], sincea0O-pathallows no mismatches
or spaces. Thereforghe farthestreaching0-path endingon diagonali can be foundin
constantime, asdetailedin Section9.1.

Ford > 0, thefarthestreachingd-pathondiagonali canbefoundby consideringhe
following threeparticularpathsthatendon diagonali.

e PathR, consistof thefarthestreaching(d — 1)-pathon diagonali + 1, followed by a
verticaledge(a spacen text T) to diagonali, followed by the maximakxtensionalong
diagonal that correspond® identicalsubstringsn P andT. (See Figurd.2.5).SinceR;
beginswith a (d — 1)-pathandadds onemore spacéor the verticabdge,R, is ad-path.

e PathR; consists of thefarthestreachingd — 1)-pathon diagonali — 1, followed by a
horizontaledge(aspacein patternP)to diagonal, followed by the maximal extension
along diagonal thatcorrespondgo identical substringg Pand T. Path R, is a d-path.

o PathR, consists of thefarthestreaching(d — 1)-pathondiagonal, followed by adiagonal
edge correspondinigamismatch betweeacharactesf Pandacharacteof T,followed

by a maximalextension alongliagonali that correspond® identicalsubstrings fronP
andT. PathR; is a dpath.(See Figure 2.6.)

Each ofthe pathsR,, R;, and R; endswith a maximal extensioncorrespondingto
identical substringef P andT . In the cas®f R, (or R;), the starting positionsf thetwo
substringsaregiven by thelastentry pointof R, (or R;) into diagonak. In the casef Rj,
thestartingpositionis the positionjust past the last mismatain R;.

12.2. FASTERALGORITHMS WHEN DIFFERENCESARE BOUNDED 269

Theorem12.2.4. All locationsin T wherepattern P occurswith at most k differences
canbefound in O(km)-time and O(km) space Moreover;the actual alignmentof P and
T for eachof these locationgan be reconstructedn O(km) total time.

Sometimesthis k differences resulis reportedin a somewhasimpler but lessuseful
form, requiringlessspace.lf oneis only interestedn the end locationsin T where P
inexactly matchesin T with at mostk differences, thenhe Q(km) space boundanbe
reduced toQ(n + m).Theideais thattheendsof thefarthest-reachingd — 1)-pathsin
eachdiagonalwould thennot be needed after iteratiehandcould be discardedThus
only O(n + m) spacds neededo solvethe simplerproblem.

Theorem12.2.5. In O(km)-time and O(n+ m) space the algorithm can find all the end
locationsin T where P matchesT with at mostk differences.

12.2.5. The primer (and probe) selectionproblem revisited - An
application of bounded differencematching

In Exercise61 of Chapter/, we introducedanexactmatchingversionof the primer (and
probe) selectiomproblem.The simplestversionof that problem startsvith two stringsa
and 8. Theexactmatchingversionis:

Exactmatchingprimefandprobe) problem Foreachndex j pastsome starting
point, find the shortessubstringy of « (if any)that beginsat position j andthat
doesnot appearasasubstringof S.

Thatproblemcanbe solvedn time proportional tathe sumof thelengths,of a andg.

Theexactmatchingversionof the primer selectioproblemmay not fully model the
realprimer selectiorproblem(although asiotedearlier, theexactmatchingversionmay
be realistic for probeselection).Recall that primersre short substring®f DNA that
hybridizeto the desirecartof stringa andthatideally shouldnot hybridize toany parts
of anotherstring . Exactmatchingis not anadequatenodelof practicalhybridization
because substringof DNA canhybridize,undertherightconditions, tanother stringf
DNA even without exact matching; inexact matchofgheright type may beenoughto
allow hybridization. A more realistic version ahe primerselection problenmovesfrom
exact matchindo inexactmatchingasfollows:

Inexactmatching primemproblem Givena parameterp, find for eachindex |
(pastsomestartingpoint), theshortessubstringy of « (if any)that begingtpostion
j andthathasedit distanceatleast|y|/p from any substringn .

We solvetheaboveproblemefficiently by solving thefollowing-k-differenceproblem:

k-differenceprimer problem Givena parametek, find for each indexj (past
somestartingpoint), the shortessubstringy of « (if any)that beginsat position |
andthathaseditdistanceat leastk from any substringin 8.

Changingly [/ p tok in the problem statemefdonvertingthe Inexacmatching primer
problemto thek-differenceprimer problem) makes ttemlution easiebutdoesnotreduce
the utility of thesolution.Thereasonis thatthelength ofa practicalprimer mustbewithin
afixed andfairly narrowrange sofor fixed p,|yi/p alsofallsin asmallrange Hence for

~uu RECUNING LCUKE S TRING EDITS AND ALIGNMENTS

The cas¢hatR* entergdiagonali for the last time frondiagonali — 1 is symmetricand
R* endsexactly whereR, ends.In eachcasewe haveshownthatR*, theassumedarthest
reachingd-pathondiagonali, endsat theendingpointof eitherR(, R, or R;. Hence the
farthestreachingd-pathondiagonali is thefarthest-reachingf R, R;, andR;. O

Theoreml12.2.3is the keyto the O (km)-time method.

Hybrid dynamic programming: k -differencesalgorithm

begin

d:=0

fori :=0tomdo

find thelongestcommon extensiobetweenP [l..n] andT [i..m]. This specifiesthe
endcolumnof thefarthestreaching0-pathon diagonal:.

Ford=0tokdo
begin

Fori=—ntomdo
begin
usingthefarthestreaching(d — 1)-pathson diagonals, i — 1, andi * 1,
find theend,on diagonali, of pathsR, R;, and R;. Thefarthestreaching
of thesethreepathsis thefarthestreachingd-path ondiagonali;
end;

end,

Any paththatreachegow n in columnc say, defineaninexactmatchof P in

T thatendsat character of T andthatcontains at most differences.

end.

Implementation and time analysis

For eachvalueof d andeach diagonali, we record thecolumnin diagonali where the
farthest-reachingl-path endsSinced rangesfrom 0 to k andthereareonly O(n+ m)
diagonalsall of thesevaluescanbestoredin O(km) spaceln iterationd, thealgorithm
only needsto retrieve the valuescomputedin iteration (d — 1). Theentire setof stored
valuescanbe usedto reconstruct anglignmentof P in T with at mostk differencesWe
leave the detailsf thatreconstructiorasan exercise.

Now we proceedwith the time analysisFor eachd andeachi, the end of three
particular(d = 1)-pathsmustberetrieved.For afixed d andi, this takesconstantime,
so these retrievaldake O (km)-time over the entire algorithm.There are alsoQ(km)
pathextensionseachalonga diagonal,thatmustbe computed.But eachpath extension
correspondsto a maximal identical substringn P and T starting at particulaknown
positionsin P and T. Hence eaclpath extensionrequiresfinding the longest substring
startingata givenlocation inT that matchea substring startin@tagiven locationof P.
In otherwords,each pathextensionrequiresa longest commoextensiorcomputation.
In Section9.10n pagel96 weshowedthat any longestcommon extensionomputation
canbedonein constanttime, after lineapreprocessing of the stringdencethe O(km)
extensionsanall becomputed inG(n + m + km) = O(km) total time. Furthermore, as
shownin Section9.1.2,theseextensions cabeimplementedisingonly acopyof thetwo
stringsanda suffix treefor the smaller othetwo strings.In summary,we have

12.3. EXCLUSION METHODS:FAST EXPECTEDRUNNINGTIME 271

explainedandanalyzedn full detail. Two other method@Vu-Manber[482] andPevzner-
Waterman [373]) will alsobe mentioned. These methadis not completelyachievethe
goal ofprovablelinear and sublinear expected runningimes for all practicatanges of
errors (and thisemains asuperbopenproblem),but theydo achievethe goal when the
errorratek/n is"modest.

Let a bethesizeof thealphabetusedin P andT. As usual, nis thelengthof P and
m is the lengthof T. For the generaldiscussion, amccurrence ofP in T with at most
k errors(mismatcher differencesdependingn theparticularproblem)will be called
an approximate occurrence ofP.The high-level outline of mostof the methodsis the
following:

Partition approach to approximate matching
a. Partition T or P into consecutiveegionsof agivenlengthr (tobe specified later).

b. Search phase Usingvariousexactmatchingmethods, searchtofind lengthr intervals
of T (or regionsif T waspartitioned}hatcouldbecontainedn anapproximate occurrence
of P.Theseare calledsurviving intervals.The nonsurviving intervals are definitetpt
contained iranyapproximateoccurrenceof P,andthe goalof this phasés to eliminate
asmanyintervalsaspossible.

c. Check phase For each survivinginterval R of T, usesome approximate matching

method to explicithcheckif there is an approximate occurrewfd® in alarger interval
aroundRr.

The methodsdiffer primarily in the choiceof r, in the choiceof string to partition,
andin theexactmatchingmethodsusedin the searchphase.The methodsalsodiffer in
the definition of aregion butare not generally affectedby the specificchoice of checking
algorithm. The point of the partition approacts to excludea largeamountof T, using
only (sub)linear expectedime in the searclphasesothatonly (sub)linear expectedime
is neededo checkthe fewsurvivingintervals. Abalances needed betweesearching and
checkingbecauseareductionin thetime usedin onephasecausesnincreasen thetime
used intheotherphase.

12.3.1. TheBYP method

Thefirst specificmethodwe will look atis due toR. BaezaYatesandC. Perleberg [36].
Its expectedunningtimeis O(m) for modest error ratgsnade precise below).

Letr = |£+], andpartition P into consecutive-lengthregions (the lastegionmay
be of length lesshanr). By the choiceof r, there are k- 1 regionsthat havethe full
lengthr. The utility of this partitionis suggestedn thefollowing lemma.

Lemmal2.3.1, Suppose® matchesa substringT' d T with atmost kdifferences. Then
T’ mustcontainatleast one intervadf length r thatexactly matchesoned ther-length
regionsd thepartitiond P.

PROOF Inthe alignmenof Pto T', eachregionof P alignstosomepartof T' (seeFigure
12.7), definingk + 1 subalignmentslf eachof those kt 1 subalignments wer® contain
at leastone error (mismatchor space),then there woulde more than kdifferencesin
total, acontradictionTherefore oneof the firstk 4+ 1 regionsof P mustbe alignedto an
intervalof T' withoutany errors. O

Note thatthelemma alsoholdsevenfor the k-mismatch problem(i.e., whennospace

270 REFINING CORESTRINGEDITS AND ALIGNMENTS

a specifiedp, thek-differenceprimer problemcanbe solved fora small rangeof choices
for k and stillbeexpected tgick out useful primercandidates.

How to solvethek-differenceprimerproblem

We follow the approachintroducedn [243]. The methodexaminesachposition j in a
separately. Foany position j, the kdifferenceprimerproblem becomes:

Find theshortest prefibof stringa(j..n] (if it exists)that hasedit distanceat least k
from everysubstringin 8.

The problem for a fixedj is essentiallythe "reversé€ of the k-differencesinexact
matching problem. Irthe kdifferenceinexact matching problemwe want to find the
substring®f T that P matcheswith atmostk differencesBut now,we wantto rejeciany
prefix of e j..n} thatmatches substringf 8 with lessthan kdifferencesTheviewpoint
is reversed, buthesamemachineryworks.

The solutionis to run the k-differences algorithnwith stringa(j..n] playing the role
of P andp playingtheroleof T. Thealgorithmcomputeghe farthestreaching dpaths,
ford = k, in each diagonallf row n is reachedby any d-pathfor d < k — 1, then the
entirestringa(j..n} matches substringof 8 with lessthan kdifferencessonoacceptable
primercan star@at j. But, if noneof thefarthestreachingk — 1)-paths reachow n, then
there ianacceptabl@rimerstartingatposition j. In detail,if noneof thefarthestreaching
of thed-pathsford = k — 1 reachrow r < n, thenthe substrings = «[j..r] hasedit
distanceat least kfrom everysubstringin 8. Moreover ,if r is thesmallestrow with that
property thenaf j..r) is the shortessubstringstarting atj thathaseditdistance ateastk
from every substringn 2.

The abovealgorithmis appliedto eachpotentialstartingposition j in a, yielding the
following theorem:

Theorem12.2.6, If « haslengthn and g8 haslength m, then the k-differences primer
selectiomproblemcanbesolvedin O(knm) totaltime.

12.3. Exclusion methods:fast expected running time

The k-mismatch ank-difference methodwe havepresentedso far allhaveworstcase
running timeof @(km). Fork « n,thesespeedups arggnificantimprovementoverthe
&(nm) boundfor straight dynamig@rogramming. Still, even greater efficienisydesired
whenm (the sizeof the textT) is large.Thetypical situationis that7T represents large
database of sequencesyd the problem isto find an approximatematchof a patternP
in T.Thegoalisto obtain methodshat are significantlyfasterthan ®{ks) not in worst
case butin expected runningtime. Thisis reminiscenof the way thatthe Boyer-Moore
method,which typically skips over alargefraction of thetext, hasan expectedrunning
time thatis sublinear in the size ofthe text.

Several methodsave beeudevisedor approximate matching problem#oseexpected
running timesarefasterthan®@(k). In fact, somef themethodshave arexpectedunning
time that issublinear in m, fora reasonable rangé k. Thesemethods artfullymix exact
matchingwith dynamicprogrammingand explicitly usemanyof theideasin Partsl and
II of the book.Although the detailsdiffer considerably, althe methodswe will discuss
have a similahigh-level flavor. We focuson methodslue toBaezaYatesandPerleberg
[36], ChangandLawler [94], and Myers[342], althoughonly the first methodwill be

123 EXCLUSION METHODS: FAST EXPECTED RUNNING TIME 273

takesonly O{kn) worstcasetime. If no spacesre allowedn the alignmenbf Pto T’
(only matchesand mismatches) then teampler O (kn)-time approachbased orlongest
commonextensionSection9.1)canbeused,or if attentionis paid toexactly wheren P
any matchis found, then O(n) time sufficesfor eachcheck.

12.3.2.Expectedtime analysisof algorithm BYP

Sincestepsh andc runin O(m) worstcasetime, weonly needo analyze steg. Thekey
is to estimatethe expectedizeof set2.

In thefollowing analysiswe assuméhateach charactesf T isdrawn uniformly(i.e.,
with equal probabilityjrom analphabebf sizea.However,P canbe anarbitrarystring.
Considerany patterrp € P. Sincep haslengthr, and T containsroughly m substrings
of lengthr, theexpectechumberof exactoccurrencesf pin T ism/o". Thereforethe
expectedotal numbeiof occurrences in T of patterndrom P (i.e., theexpected sizef
Tyismk T 1)/0".

Foreach e Z.thealgorithm spend®(n?) time (or lessf fastermethods are used) in
thechecking phas&otheexpectecthecking timeds mn*(k + 1)/o". Thegoalis to make

theexpecteccheckingtime linearin m for modestk, sowe mustdetermine what values
of k make
mn(k 1)

<cm,
O—r

for someconstant.
To simplify theanalysisreplacek by n — 1, andsolve forr in

mn3:

Gr

cm.

Thisgivesa’ = %, sor =log, n® - log, ¢. Butr = [%], s0

Theorem12.3.1. AlgorithmBYPrunsin O(n) time fork = O(%).

Stated anotheway, as longas the error rate is less tharonein log, » characters,
algorithmBYP will runin linear timeasa functionof m.

Thebottleneckin theBY P methodis the®{s) time required taun the Aho-Corasik
algorithm. Usingthe BoyerMoore setmatching methoghouldreducethat timein prac
tice, butwe cannotpresent time analysidor thatapproachHowever, theChang-Lawler
methodhasanexpectedime boundthatis provablysublinearfork = O ().

logn

12.3.3. The Chang-Lawler method

For easeof exposition,we will explainthe ChangLawler (CL) method[94] for the &-
mismatcheproblem;we leavethe extensionto k-differencesasanexercise.

In CL, it is string T, not P,thatis partitioned intaconsecutivdixed regionsof length
r = n/2.Theseregionsarelargecomparedothe regions irBYP. The purposeof thelength
n/2 istoassurdghatno matter howp isaligned toT (withoutinsertedspaces)at leasbne
of the fixedregionsin T's partition is completelycontainedn theinterval spannedy P
(seeFigurel2.8).Thereforejf P occursinr” with at mosk mismatches, themaustbeone
regionof T that isspannedy that occurrencef P and,of course that regionmatches
its counterpartin P with at mostk mismatchesBasedon this observation, thesearch
phaseof CL examines eachegionin the partition ofT to find regionsthatcannot match

272 REFINING CORESTRING EDITS AND ALIGNMENTS

n
P] 1. 1 I
1 k+1
Figure 12.7: The first k 1 regions of Pare eachof length r = L]

insertionsareallowed). Lemmal2.3.1leadsto thefollowing approximate matchingl-
gorithm:

Algorithm BYP

a. LetP bethesetofk +1 substring®f P takenfrom thefirstk + 1 regionsof P’s partition.
b. Build akeywordtree (Sectior8.4)for thesetof " patterns P.

C. Usingthe Aho-Corasik algorithm (Sectiors.4), find Z, the setof all starting locations
T whereany patternin P occurs exactly.
d. Foreachndexi € 7 useanapproximate matching algorithfasually basecon dynamic

programmingjolocate thendpointsof all approxitnate occurrencefsP in thesubstring
T{i —n - k..i + n T K] (i.e.. in anappropriatdengthintervalaround).

By Lemmal2.3.1, it is easyto establishthatthe algorithmcorrectlyfinds all approx
mateoccurrencesoPin T. Thepointisthattheinterval arouneach is'largeenough to
alignwith anyapproximate occurrenad P thatspans, andthere carbeno approximate
occurrenceof P outsidesuchaninterval. A formal proofis left asan exercise.Now we
focuson specificimplementatiordetails andime analysis.

Building the keyword tre&akesO(n) time,andtheAho-Corasik algorithm take§ ()
(worstcase) time (SectioB.4).Sostepsb andc take O(n + m) time. Therearea number
of alternate implementations fetepsb andc. Oneis to build a suffix treefor 7, and
then usat tofind everyoccurrencen T of apatternin P (seeSection7.1). However that
would beveryspace intensived spaceefficientversionof thisapproachs to constructa
generalizeduffix treefor only P, andthen matchrl toit (in thewaythatmatching statistics
are computedn Section 7.8.1)Both approaches tak&{n + m) worstcase timeputare
nofasterin expected timdecause evergharacteiin T isexaminedA fasterapproachn
practice is tause the BoyerMoore setmatchingmethodbasedn suffix trees whichwas
developedn Section7.16. Thatalgorithmwill skip over parts of T, andhenceit breaks
the ®(m) bottleneck.A different variation waslevelopedoy Wu andManber[482] who
implementstepsb and c using the ShiftAnd method(Section4.2)on a setof patterns.
Another approactpundin thepaperof Pevznernd Waterman {373] andelsewhereyses
hushingto identify long exactmatchingsubstringsof P and T. Of course,onecan use
suffix treesto find long commonsubstringsand one could develop a Karp—Rabin type
method asvell. Hashing,or approachebasedn suffix treesthatlook directly for long
commonsubstrings betweeP and T, seema bit morerobustthanBYPbecausehere is
nostringpartition involved But theonly stated time bounda [373] are thesameasthose
for BYP.

In the checking phasetepd, the algorithm executessome approximate matching
algorithm betweenP andanintervalof T of length O(»), for eachindexin Z. Naively,each
of thesecheckscanbedonein O (n?) time by dynamicprogramming(global alignment).
Even this time boundwill be adequatdo establishan expectedO{m) overall running
time for the rangeof error ratesthat will be detailed below. Alternately,the Landau-
Vishkin method(Section12.2) basedon suffix treescould be used,so thateachcheck

12.3. EXCLUSIONMETHODS: FASTEXPECTEDRUNNING TIME 275

The CL searchis executedon 2m/n regionsof 7. For any regionR let j' bethelast
valueof j (i.e., thevalueof j whencn reachek or whenj — j* exceed#/2). Thus,in
R, matching statistics are computed for theerval of length | — j* < n/2. With the
matchingstatistics algorithnin Section7.8.1, the time usedto computethose matching
statisticsis O(j’ — j*). Now the expectedalueof j' — j*is lessthanorequal tok times
theexpected valuef ms(i), for anyi. Let E(M) denotethe expectedalueof a matching
statistic,and let e denotethe expected number of regioiisat survive thesearch phase.
Thenthe expectedime for thesearch phass O(2mkE(M)/n), and theexpectedtime
for thecheckingphases O (kne).

In thefollowing analysiswe assumehat P isarandomstring where eacbharacteiis
chosen uniformly fronanalphabet of sizea.

Lemma12.3.3. E(M), theexpectedvalueof a matching statisticis O(log, n).

PROOF Forfixed lengthd, there aregoughly nsubstrings ofengthd in P ,and thereare
o? substringsof lengthd that canbe constructedSo,for any specificstringa of length
d, the probability thata is found somewherén P is less thann/o9. Thisis truefor any
d,but vacuouslytrue until ¢ = n (i.e., whend = log, n).

Let X bethe randonvariablethat hasvaluelog, nfor ms(i) < log, n;otherwise ithas
valuems(i). Then

>0
l
E(M) < E(X) < log,n + 2 — = log, n+ 2.
I=log,n o

Corollary 12.3.1. Theexpected timéhatCL spends ithe searclphases O(2mk log, n/n),
which is sublineain m for k < n/log, n.

a

Theanalysisfor e, the expectechumberof survivingregionsis too difficult to present
here. It isshownin [94] thatwhenk = O{n/log, n), then e= m/n*, sothe expected
time that CL spendsin thechecking phasis Q(km/n?) = o{m). Thesearchphaseof CL
is soeffectivein excluding regions of thatthechecking phase hasery smallexpected
runningtime.

12.3.4.Multiple filtration for k-mismatches

Both theBYP andtheCL methodsusefairly simplecombinatorial criteriain their search
phasedo excludeintervalsof T. Onecandevise morestringentconditionsthat are nec
essaryfor an intervalof T to be containedin an approximateoccurrenceof P.In the
contextof the kmismatchegproblem,conditionsof this type(calledfiltration conditions)
were develope@ndstudiedby Pevznerand Waterman [373]. These conditiongreused
togetherwith substring hashing to obtain anotHerear expectedime methodfor the
k-mismatch problem. Empirical results ajigenin [373] that show fasterunningtimes
in practicethanothermethoddor thek-mismatch problem.

12.3.5. Myers's sublinear-time method

GeneMyersl1342,337#levelopedanexclusion methodhatis more sophisticated thahe
oneswe havediscussedsofar andthat runsin sublinear time fola wider rangeof error
rates.The methodhandlesapproximatamatching withinsertionsanddeletionsas well as
mismatchesThefull algorithm andits analysis ardoo complex for detailedliscussion

REFINING CORE STRING EDITS AND ALIGNMENTS

T } i t
P

1 L - = -
J {

P

Figure 12.8: Each full regionin T has length r = n/2. This assures that no matter how Pis aligned with
T, P spans one full region.

r | 'r

P —B—=- "
Figure 12.9: Blowup of one region in T aligned with one copy of P.Each black box shows a mismatch
between a characterin P and its counterpartin T.

any substringof P with at mostk mismatchesTheseregionsareexcluded,andthenan
intervalaroundeachsurviving regions checkedisinganapproximatematching method,
asin BYP. Thesearchphase ofCL relies heavily on the matching statisticsdiscussedn
Section7.8.1,

Recallthat thevalueof matching statistiens(i) is the lengthof the longessubstring
startingat positioni of 7 that matchesa substringsomewhergan unspecifiedlocation)
in P.Recall alsothatfor any string S, all the matching statisticéor the positions inS
can becomputedn O(}S)) total time.Thisis trueevenwhenSis a substring ofa larger
string T.

Nowlet T' bethesubstringof oneof theregions ofT's partition thatmatchessubstring
P'of P with at mostk mismatches (sekigure12.9).Thealignmentof P'and T' canbe
dividedinto at mostk F 1 intervalswhereno mismatchesccur,alternating withintervals
containingonly mismatchesLet i be thestartingpositionof any oneof thosematching
intervals, andet! beitslength.Thenclearly,ms(i) = /. TheCL searchphase exploitthis
observationlt executeghe following algorithmfor eachregionR in the partition of T:

The CL search in region R
Set j to thestartingposition j* of regionR in T.

cn:=0,

Repeat

computems(j),

j=itms(hyty,

cn:=cnt1;

Until en =k orj — j* > n/2.

If j — j* > n/2thenregionR survives, otherwise it excluded.

If R is asurviving region,then inthe checkingphaseCL executesan approximate
matchingalgorithm for P againsta neighborhoodf T thatstartss /2 positionsto the left
of R and ends:/2 positionsto its right. This neighborhoods of size3n /2, andsoeach
checkcanbeexecutedn O(kn) time.

Thecorrectnessf theCL methodcomes fronthe following lemma, andhe fact that
theneighborhoodarelarge enough.

Lemma12.3.2. When the CL searchdeclaresa region R excluded, then therds no
occurrenceof P in T with at mostk mismatcheshat completely containsegion R.

Theproof iseasyandis left to the readems isits usein aformalproofof thecorrectness
of CL. Now we considerthetime analysis.

12.3. EXCLUSION METHODS: FAST EXPECTEDRUNNING TIME 277

Sincetheintervalsof interestdoublein length,the time usedper interval growsour fold
iIn each successive iteratioHowever,the numberof surviving matches iexpectedto
fall hyperexponentiallyin eachsuccessivéeration, more tharoffsettingtheincreasen
computation timeoerinterval.

With this iterativeexpansionthe effort expendedo checkanyinitial surviving match
is doled out incrementallthroughoutthe O(log -3} iterations,andis not continued
for any survivingmatchpast aniteration where it is excluded/Ne now describein a bit
moredetail how theinitial surviving matches are foundnd howthey areincrementally
extendedn successivéerations.

The first iteration

Definition ForastringS andvalueof ¢, let d = €|S|. Thed-neighborhoodof Sis the
setof all stringsthate-match S.

For example,over thetwo-letter alphabet{q,b}, if § = abaandd = 1, then the
1-neighborhoodf § is {bba,aaa,abb, aabaabaapabaabbaababba,aa,ab}.It is
createdfrom S by the operationsof mismatch insertion and deletion respectivelyhe
condensed-gieighborhoof § is created fronmthe d-neighborhoodof S by removing
any substringthat isa prefix of anotherstring in the d-neighborhoodThe condensed
1-neighborhoo&is (bba,aaa,aabaabaa,baba, abbaabab}.

Recall that patter® is initially partitionedinto subpatternef lengthlog, m (assumed
to beaninteger).Let P bethesetof these subpatternin the firstiteration, thealgorithm
(conceptually)onstructshe condensedl-neighborhoodor eachsubpatternn 2, and
thenfinds all locations ofsubstringgn text T that exactly matcloneof the substrings
in oneof the condensed-neighborhoodsin this way, the method findsall substringsf
T thate-match oneof the subpatterns ifP, These6-matchedorm the initial surviving
matches.

In actuality,the tasksof generatinghe substringsn the condensed-neighborhoods
and ofsearching fottheir exact occurrence®m T are intertwined and require teXt to
have been preprocessatb someindexstructure This structure couldea suffix tree,a
suffix array or a hashtableholding shortsubstringof T. Detailsarefound in{342].

Myers[342] showsthatwhen the lengtiof the subpatternss O(log, m), thenthe first
iterationcanbeimplemented to run ilO (km?©’ logm)expectedime. Thefunction p(e)
iIscomplicatedbut itis convexnegativesecond derivative) increasing, andreases more
slowly as the alphabstzegrows.For DNA, it hasvaluelessthanonefor ¢ < % andfor
proteinsit hasvaluelessthanonefor € < 0.56.

Successive iterations
To explain the central idea, lat = @y, where|ag| 1s assumed equéb [« |

Lemma 12.3.4. Suppose €-matches 8. Theng can bedividedinto two substringsg,
and B, suchthatB = BB, andeitherag e-matches By or e, e-matches B,.

This lemma(usedin reverse)is thekey to determininghow toexpandthe intervals
aroundthesurviving matches ieachiteration. Forsimplicity, assuméhatn is a power of
two andthatlog, m isalso apowerof two. Let B bea binarytree representinguccessive
divisionsof P intotwoequalsizeparts,until each part has lengtlog, m (see Figuré2.10).
Thesubstringswrittenat theleavesarethesubpatternsisedn the firstiterationof Myers's
algorithm. Iteration of the algorithmexaminesubstringof P thatlabel(some)nodes
of B i levelsabovetheleaves(countingthe leavesslevel 1).

276 REFINING CORE STRING EDITS AND ALIGNMENTS

here,but we can introducesomeof theideasit usesto address deficiencidas the other
exclusion methods.

Therearetwo basicproblemswith the BaezaYatesPerlbergand theChang-Lawler
methodgandtheother exclusion methodse havementioned)First,theexclusioncriteria
they usepermit a largeexpectednumberof surviving regionscomparedo the expected
number oftrue approximatematches.That is,not everyinitial surviving regionis actu
ally containedin anapproximate matchand the ratio of expected survivorsexpected
matchesgs fairly high (for randompatternsand text). Further, thehigherthe permitted
errorrate, themoreseveras theproblem. Secondyhenasurvivingregionisfirst located,
themethodsmovedirectly tofull dynamicprogramming computatior(®rsomeotherrel-
atively expensiveperations}o checkfor anapproximatematch in darge intervalround
the surviving regionHencethe methodsire requiredodoa largeamount of computation
for a largenumber ofintervalsthatdon't containany approximatematch.

Comparedotheother exclusion methodslyers'smethodcontains twalifferentideas
to make itboth moreselective (finding feweinitial surviving regions)andlessexpensive
to test theonesthatarefound. Myers'salgorithmbeginsin a mannersimilar to the other
exclusion methodslt partitions P into short substringgto be specifiedlater) andthen
finds all locationsin T wherethesesubstrings appeawith a small numberof allowed
differencesThe detailsof thesearch areuite differentfrom the othermethods,but the
intent (to excludea large portionof 7 from further consideration)s the sameEachof
these initialalignmentsof a substringof P thatis found(approximately)in T is called
a survivingmatch.A surviving matchroughly playstherole ofa surviving region inthe
otherexclusionmethods, butt specifiestwo substrings(onein P andonein T) rather
than just a singlsubstring,asasurviving regiondoes. Anotherway to thinkof a surviving
regionis as aroughlydiagonalsubpath in thealignment graplior PandT.

Havingfoundtheinitial surviving matchegorsurviving regions)all theotherexclusion
methodswe havementionedwould nextcheckafull intervalof length roughly2n around
eachsurviving region inT to seeif it containsan approximate matcho P.In contrast,
Myers'smethodwill incrementally extendndchecka growing intervahround eachitial
surviving matchto createlongersurvivingmatchesr to excludea surviving matchfrom
further consideration hisis donein aboutO(log n) iterations.(Recallthat n is the length
of the patterrandm is thelengthof thetext.)

Definition Foragivenerrorratee, astringS e-matches a substringof T if S matches
thesubstring usingit moste|S| insertionsdeletionsandmismatches.

Forexamplelet § = abaande = 2/3. Thenac e¢-matches § usingone mismatchand
onedeletionoperation.

In the firstiteration,the pattern P is partitionedinto consecutivenonoverlappingub-
patternof lengthlog, m (assumedo beaninteger), andhealgorithmfinds allsubstrings
in T that e-match one of these shorsubpatterns (discuss@d more detailbelow). The
lengthof thesesubpatternss shortenoughthatall the e-matches canbefoundin sublin-
earexpected timéor a wide range ok values.Thesee-matches are the initialsurviving
matches.

Thealgorithm next tries to extend eaclnitial surviving matchto becomean e-match
betweensubstringg(in P and T) thatareroughly twiceaslong asthosein the current
surviving match.Thisis doneby dynamicprogrammingn anappropriate intervedround
the survivingmatch.In eachsuccessivéeration, themethodappliesa moreselectiveand
expensivdilter, trying to doublethelengthof the e-match around each survivingatch.

12.4. SUFFIXTREES AND HYBRID DYNAMIC PROGRAMMING 279

12.3.6.Final commenton exclusion methods

Thefastexpectedtimeexclusionmethodshaveall beendeveloped witithe motivation of
searchindarge DNAand proteirdatabasefor approximate occurrences$ querystrings.
But the provemresultsareabit weakfor thecaseof proteindatabase searchecauserror
ratesashigh as85% (the so-called twilight zone) areof great interest whenomparing
proteinsequence$l27, 360]. In the twilight zone,evidenceof common ancestrynay
still remain, but it takessomeskill to determineif a given matchis meaningfulor not.
Anotherproblemwith theexclusionmethods presented hesghatnot allof the methods
or analysesextendnicely to thecaseof weightedor local alignment.

Nonetheless, thesesultsare promising,and the openproblemof finding sublinear
expecteetime algorithmsfor higher erroratesis very inviting. Moreoverwe will seein
Chapterl5ondatabassearchinghatthe most effectivpracticadatabase searchethods
in usetoday (BLAST, FASTA, andvariants)canbe consideredisexclusionmethodsand
are basedn ideas similar teomeof the moreformal methods presentédxbre.

12.4. Yet more suffix treesand more hybrid dynamic programming

Although the suffix tresvasinitially designecandemployedto handlecomplexproblems
of exactmatching,it canbe usedto greatadvantage in varioyzroblemsof inexact match
ing. This hasalreadybeen demonstrateid Sections9.4 and 12.2vherethe k-mismatch
and kdifferenceproblemswere discussed. Thsaiffix treein thelatter applicatiorwasused
in combinationwith dynamicprogramming tgproducea hybrid dynamic programming
method thats fasterthan dynamicprogramming alone. Ordeficiencyof thatapproach
is thatit doesnotgeneralize nicely tproblemsof weightedalignment.n thissectionwe
introducea differentway to combinesuffix trees wittdynamic programmingpr problems
of weightedalignment.Theseideashavebeenclaimedto be veryeffectivein practice,
particularly for largecomputationalprojects. However, themmethodsdo not alwayslend
themselves tgreatlyimproved provable,worstcasetime boundsThe ideaspresented
here looselyfollow the publishedwork of Ukkonen[437] and an unpublishednote of
Gonnet and Baezdates([34]. The thesisby Bieganski [63] discusses a related idea for
usingsuffix treesin regularexpressionpattern matching (witlerrors)andits large-scale
applicationin managinggenomicdatabasesl'he methodof GonnetandBaezaYateshas
been implemented arektensivelyused for largescale proteiromparison$57], [183).

Two problems

We assuméheexistence ol scoringmatrix usedo computethe value ofany alignment,
and hencé'edit distanc& here refers tawveightededit distance.We will discusstwo
problemsin the textandintroduce twamore relategroblems intheexercises.

1. The P-againstall problem Given strings? and T, computeheedit distancdetween
P andeverysubstringT' of T.

2. Thethresholdall-againstall problem GivenstringsP and T andathresholdd, find
everypair of substringsP' of P andT' of T such that theditdistance betweeR and
T' b lessthand.

Thethresholdall-againstall problemissimilarto problemanentioned irSection12.2.1
concerning theonstructionof nonredundant sequence databalesvever,thethreshold
all-againstall problemis harder, becauseasks for thalignmenbf all pairs ofsubstrings,

278 REFINING CORESTRINGEDITSAND ALIGNMENTS

abcdefgh

abcd efgh

ab cd ef gh

Figure 12.10: Binary tree B defining the successive divisions of Pand its partition into regions of length
log, m (equal to two in this figure).

Supposatiterationi — 1 thatsubstringsP' andT' in thequeryandtext, respectively,
form asurviving match(i.e., arefound to align toform ane-match). Let P' bethe parent
of P intreeB. If P isa left childof P”, thenin iterationi, thealgorithmtriesto e-match
P' toasubstringf T in aninterval that extend§' to the right.Conversely, ifP: is a right
child of P", thenthe algorithm trieso e-match P” with a substring iran interval that
extendsT" to itsleft. By Lemmal2.3.4,if thee-match of P’ to T' is partof ane-match
of P toa substringf T, thenP” will e-match theappropriate substringf T . Moreover,
the specified intervaln T that must be&eomparedagainstP' is justtwice aslong asthe
intervalfor T'. Theendresult, agletailedin [342], is thatall of thechecking,andhence
theentirealgorithm,runsin O (km”© log m) expectedime.

Final comments onMyers's method

Thereareseveralpoints toemphasize. First, thexpositiongiven aboves only intended
to beanoutlineof Myers'smethod, withoutiny analysisThefull detailsof thealgorithm
andanalysis aréoundin {342]; [337] providesan overview, in relation tother exclusion
methodsSecond, unlikeéhe BYPandCL methodstheerror rateshatestablish sublinear
(or linear) runningimesdo notdependon thelengthof P. In BYP andCL, thepermitted
error ratedecreasessthe lengthof P increasesln Myers'smethod the permittederror
ratedependsnly on the alphabet sizeThird, although the expected running tinfes
both CL andor Myers's methodare sublineaffor theproperrange oferrorrates), there
is an important differencan the natureof these sublinearitiedn the CL method,the
sublinearityis dueto a multiplicative factorthatis lessthanone.Butin Myers'smethod,
the sublinearityis dueto an exponenthatis less tharone.Soasa functionof m, theCL
boundincreasedinearly (althoughfor anyfixed valueof m the expected runningme is
lessthanm), while thebound forMyers's method increasesublinearly inm. Thisis an
important distinctiorsincemanydatabasearerapidly increasingn size.

However,Myers's methodassumes that the tekthasalreadybeen preprocessed into
somendex structure, anthetimefor that preprocessing@vhile linearin m)is notincluded
in theabove time bound#n contrast, the runningmesof theBYP andCL methods include
all thework neededor thosemethods Finally, Myershasshown thain experimentson
problemsof meaningfulsizein molecular biologypatternof length800n textsof length
3 million), thek-difference algorithmef Sectionsl2.2.4and12.2.3 run 100to 500times
slowerthan hisexpected sublineanethod.

1&4.9. SU'MIA LTKEEDS ANV AQAYBKID DY NANMIU FPROURAIVIVILING

Figure 12.11: A cartoon of the dynamic programming tables for computing the edit distance between P
and substring T' (top) and between P and substring T’/ (bottom). The two tables share the subtable for P
and substring A (shown as a shaded rectangle). This shaded subtable only needs to be computed once.

root

T.'f

Figure 12.12: A piece of the suffix tree for T. The traversal from the root to node v is accompanied by the
computation of subtable A (from the previous figure). At that point, the last row and column of subtable A
are stored at node v. Computing the subtable 8 correspondsto the traversal from v to the leaf representing
substring T'. After the traversal reaches the leaf for T', it backs up to node v, retrieves the row and column

stored there, and uses them to compute the subtable C needed to compute the edit distance between P
and T".

betweenP andeverysubstringbeginningat position: of 7. Whenthedepthfirst traversal
backs upo a nodev, andv hasan unvisitedchild v', therow and column stored atare
retrievedandextendedasthe traversafollows anew(v, v') edge (see Figurg2.12).

It shouldbeclearthatthissuffix-tree approacdoescorrectly computéheedit distance
betweenP and every substring ofT, and it doesexploit repeatedsubstrings (smalbr
large)that may occur inT. But how effectiveis it comparedo the 8(nn¥)-time dynamic
programmingapproach?

A ANALA A2 VAL TN N ASANAS AP L ANALYO ALLSE L SMYLZ ALAVIIIYILIN LD

not just the alignmentof all pairsof strings.This critical distinctionhasbeen thesource
of someconfusionin the literature{50], [56].

12.4.1.The P-againstall problem

The P-againstall problem is anexampleof a large-scalealignment problem that asks for
a great amounbf relatedalignment informationlf not donecarefully, its solution will
involve a large amourtdf redundantcomputation.

Assumethat P haslengthn andT haslengthm > n. The most naivesolution to
the P-againstall problemis to enumerateall (';‘) substringsof T, and then separately
compute theedit distance betweeP andeachsubstringof T . This takes®(nm*) total
time.A moment's thought leads animprovement. Insteaof choosingall substringsof
T, we needonly chooseeachsuffix § of T andcomputethe dynamicprogrammingedit
distancetablefor stringsP andS.If Sbegins atpositioni of T, thenthelastrow of that
table givegheeditdistancebetweenP andevery substringf T thatbegins at position.
Thatis, the edidistancebetweenP andT [i.. j]is foundin cell(n, j =i + 1) of thetable.
This approachtakes®(nm?) total time.

We areinterestedn the P-againstall problem whenl is very long. In thatcase the
introductionof asuffix treemaygreatlyspeed ughe dynamic programming computation,
dependingon how muchrepetition iscontainedin string 7.> (Seealso Sectior7.11.1)
To get the basiddea of the method;onsidertwo substringsT' and T" of T that are
identical for their first 1 charactersin the dynamic programmingapproach above, the
edit distancedetweenP andT' andbetweenP and T" would becomputedseparately.
But if we computeedit distancerolumnwise (insteadof in the usualrowwise manner),
then wecan combinghetwo editdistancecomputationgor the firstd columnsgsince the
firstn character®f T' andT" arethe same(seeFigure 12.11)lt would be redundanto
computethefirstn by 1 subtable separatelyfor the twoedit distancesThisideaof using
thecommonalityof T' and T" canbe formalized andfully exploitedthroughthe use o
suffix treefor string T .

Considemsuffix treeT for stringT andrecallthat anypathfrom therootof 7 specifies
somesubstring$ of T . If we traverse a patfrom the root of 7, and we letS denotethe
growing substring corresponding tisat path,then during thdraversal wecanbuild up
(columnwise)the dynamic programmindable for the edit distance betweeR and the
growing substringS of T. Thefull ideathenis to traverse in a depthfirst manner,
computingtheappropriate dynamiprogramming columgfrom thecolumntoitsleft) for
everysubstringS specified by the currentpath. Whenthe traversateaches nodev of
7, it stores ther¢helast(mostrecentlygenerated) columandlastsubrow of thecurrent
subtable (thelastrow will alwaysbe rown). Thatis, if § is thesubstringspecifiedby the
pathto a nodev, then what willbe storedat v is the lastrow andcolumnof thedynamic
programmingtablefor theedit distance betweeR andS.Whenthedepthfirst traversal
visits achild v’ of v, it addscolumns(one foreachcharactewon the (v, v') edge)to this
tableto correspondo theextensiorof substringS.Whenthe deptHfirst traversalreaches
aleafof 7 correspondingo the suffixstartingata positioni (say)of T , it canthenoutput
the values inthe last row of the currenttable. Thosevalues specifithe edit distances

2 Recentestimatesput the amount of repeatedhuman DNA at 50to 60%.That is, 50 to 60%o0f allhuman DNA is
containedin nontrivial lengrh, structured substringsthat show up repeatedlythroughout the genome Similar levels
of redundancy appearin many other organisms.

12.4. SUFFX TREES AND HYBRID DYNAMIC PROGRAMMING 283

in DNA) shouldgive riseto suffix trees withlengthsthataresmallenough tomake this
method usefulWeexamined this questioempirically for DNA stringsup to onemillion
charactersandthelengthsof the resultingsuffix treeswerearoundm?/10.

12.4.2. The (threshold) allagainstall problem

Now we considera moreambitiousproblem: Given stringsP and T, find everypair of
substrings wheréheeditdistance idbelowa fixed thresholdd . Computation®f this type
have beerronductedvhen P andT arebothequal tothe combinedetof proteinstrings
in the databas&wissProt[183]. Theimportanceof this kind of large-scalecomputation
and theway in which its resultsareused araliscussedn [57]. The way suffix trees are
usedto acceleratehe computations discussedn [34].

SinceP andT haverespectivdengthsof n andm, thefull all-against-alproblem (with
thresholdoo) callsfor thecomputatiorof n?m? piecesof output.Hencenomethodfor this
problemcanrun fasterthan ©(n?m?) time. Moreover, thatime boundis easily achieved:
Pick a pair of startingpositionsin P and7 (in nm possibleways),andfor each choicef
starting positiong, j fill in thedynamicprogrammingablefor theeditdistanceof P[i..n]
andT[j..m] (in O(nm)-time). Foranychoiceof i and j, theentriesin thecorresponding
tablegive theeditdistancefor everypair of substringshat beginatposition: in P and at
position j in T. Thus, achieving th@(n?m?) boundfor the full all-against-allproblem
doesnot requiresuffix trees.

Butthe full all-againstall problem callgor an amounof outputthat isoftenexcessive,
and theoutputcanbe reducedby choosinga meaningful threshold)r the criteria for
reportinga substringpair mightbea function of both length ancdit distance Whatever
the specific reporting criteriaf it is nolonger necessaro report the edit distanceof
everypair, itis no longercertainthat @ (n2m?) timeis required.Here wedevelopa method
whose worstcaserunningtimeisexpresse@sO (C+ R), whereC is acomputation time
thatmay belessthan®(n*m*) andR is theoutputsize(i.e., the numberof reported pairs
of substrings)In this setting, theuseof suffix trees may be quitealuabledependingon
thesizeof the outputandtheamountof repetitionin thetwo strings.

An O(C T+ R)-time method

Themethod useasuffix tree7, for string Panda suffix treeZ; for string T. Theworst-
case timefor the method willbe shownto be O(C + R), whereC is the length of7
timesthe lengthof 77 independenbf whatever theoutputcriteria areandR is thesize
of the output. (Thedefinition of the lengthof a suffix treeis foundin Section 12.4.1.)
That is, the methodwill computecertaindynamicprogrammingcell values,which will
bethe sameno matterwhattheoutputcriteriaare,andthen wheracell valuesatisfiesghe
particularoutputcriteria, thealgorithmwill collectthe relevant substrings associateith
thatcell. Henceourdescription of themethod holdgor the full all-againstall problem,
thethresholdversionof the problem,or anyother version witfifferent reportingriteria.

To start, recalthateach nodén 7, represents substringof P andthateverysubstring
of Pisaprefix of asubstringrepresentedy a nodeof 7. In particular,each suffixof P
is represented by leaf of 7. Thesameis true of T and77.

Definition Thedynamicprogrammingablefor a pairof nodequ, v) ,from 7 and77,
respectively,s definedasthe dynamigorogramming tabléor the edit distance between
thestring representedby nodeu andthe string representdaly nodev.

LO0L KEFINING CORE S TRING EDITS ANDALLGNMENTS

Definition Thestringlength of anedgelabel ina suffix treeis thelengthof the string
labeling thatedge (evehoughthelabel is compactlyepresentetly aconstannumber
of characters). The lengtti a suffix treeis the sumof the string-lengthgor all of its
edges.

Thelengthfor a suffixtree7 forastringT of lengthm canbeanywhere betwee®(m)
and®(m*), dependingon how muchrepetitionexistsin 7. In computational experiments
using longsubstringof mammalianDNA (length arouna@nemillion), the stringlengths
of theresultingsuffix trees havebeenaroundm?/10. Now the numberof dynamicpro-
grammingcolumnsthataregeneratediuring the depthfirst traversalof 7 is exactlythe
lengthof 7. Eachcolumn take$(n) time to generateandsowe can state

Lemmal2.4.1. Thetimeusedto generateheneedeaolumnsin thedepthfirst traversal
isO(n x (lengthd 7)).

We must als@ccount forthe timeandspaceused towrite the rowsandcolumnsstored
at eacmodeof 7. In asuffix treewith m leaves therare®(m) internalnodes anasingle
row andcolumntakeat mostO(m + n) time andspaceto write. Therefore the time and
spaceneededor the rowand columrstoresis @(m?> + nm)= G(m?) . Hence,we have

Theorem12.4.1. Thetotaltimefor thesum-treeapproactis ©(n x (lengthd 7)+ m?),
andthemaximum space usei ®(m?).

Reducing space

The sizeof the requiredoutputis 0(m?), sincethe problem callsfor the editdistance
betweenP andeachof ®(m?) substringf T, makingthe ®(m?®) termin thetime bound
acceptableOn theotherhand,the space used seemscessivesince thespaceneededy
the dynamicgprogrammingsolutionwithout usinga suffix treeis just @(nm) andcan be
reducedto O(m). We now modify thesuffix-tree approach talsouse only @(n + m)
spaceandthesametime bounds adefore.

First, there isno needto storethe currentcolumnat eachnodev. Whenbackingup
from a child v' of v, we can usethe current columrat v andthe string labeling edge
(v, v") to recomputethecolumnfor nodev. This doeshowever,double thetotal time for
computingthe columnsThere isalsono needto keepthe currentrow n ateachnodev.
Insteadonly O{n) space isieededor row entriesThekeyidea isthatthe currentableis
expandedolumnwise soif thestring-depthof v is j andthestring-depttof v' is j +d,
then therow n storedat v andv’ would beidenticalfor the first j entries.We leave itas
anexercise tavork out the detailsIn summary, wehave

Theorem12.4.2. Thehybridsuffix-tree/dynamic programming approach tothe P-against-
all problemcanbe implementedo run in ®[n(length & 7)+ m?] time and O(n T m)
space.

Theabove timand space bounds shouldcomparedo the®@(nm?) timeandO(n+m)
spacebounds thatesultfrom astraightforwardapplicationof dynamicprogrammingThe
effectivenesé practice of thisnethoddepend®n thelengthof 7 for realisticstrings|t is
known thatfor randomstrings,thelengthof 7 is ®(m?), making themethodunattractive.
(Forrandom stringsthe suffix treeis bushyfor string-depthsof log, m or less, where
is the size of the alphabet.But beyond that depth, thauffix treebecomesvery sparse,
sincethe probability is very low thata substringof length greater thaiog, m occurs
morethanoncein thestring.) However,stringswith morestructuredepetitions (a®ccur

124, SUMXTREES AND HYBRID DYNAMIC PROGRAMMING 285

suffix tree for P suffix treefor T

Figure 12.14: The suffix trees for Pand T with nodes numbered by string-depth. Note that these numbers
are not the standard suffix position numbers that label the leaves. The ordered list of node pairs begins
(1,13,(1,2),(1,3)... and ends with (6,8).

Details of the algorithm

First,numberthenonrootnodesof 7, accordingto stringdepth,with smaller stringdepth
first.* Separately, numbehe nodes of7; accordingto string-depth. Thenform alist L of
all pairsof nodenumbersponefrom eachtree,in lexicographic orderHence,pair (u, v)
appears beforpair(p,q)in thelist if andonly if « islessthanp,orif « isequalto p and
vislessthang. (SeeFigure12.14).1t follows thatif «’ is the parent ofu in 7, andv' is
the parent ofv in 77, then(u’, v") appearsefore(u, v).

Next, process eacpair of nodes(u, v) in theorder thait appearsn L. Assumeagain
thatu’ is theparentof , thatv' is the parenof v, andthatthelabels ontherespectiveedges
area and 8. To process anodepair (U, v), retrievethe value inthe singlelowerright cell
from the storedpartof the (u', v') table;retrieve thecolumnstoredwith the pair (u, V'),
andretrievethe row storedwith the pair(u', v). Thesethree pairof nodes have already
beenprocessed, du® thelexicographic orderingf the list. Fromthose retrievedalues,
and from thesubstringsa and 8, compute thenew |«| by [8| subtable completing the
(u, V) table.Storewith pair(u, v) thelastrow and columnof newly computed subtable.

Now supposecell (i, j) is in the new || by |8] subtable,andits value satisfieshe
output criteria.The algorithm mustfind andoutputall locationsof the two substrings
specifiedby (i, j).As usual, adepthfirst traversal taheleaves below andv will then
find all the starting positions othosestrings.Thelengthof the stringss determinedby
i and j. Hence,when itis requiredto outputpairsof substringghat satisfy theeporting
criteria, thetime to collectthe pairsis just proportionalto the numberof them.

Correctnessand time analysis

Thecorrectnessf themethodfollows fromthe fact thaatthehighestevel of description,
themethodcomputedheeditdistancefor every pair ofsubstringspnefrom eachstring.
It doesthis by generatingandexaminingeverycell in the dynamicprogramming table
for every pairof substringgalthoughit avoids redundargxaminations)Theonly subtle
point is thatthe methodgeneratesndexamineghecellsin eachtablein anincremental
mannerto exploitthecommonalitiedbetween substringandhencet avoidsregenerating
and reexaminingany cell thatis partof morethanonetable. Further, whethe method
findsa cell satisfyingthereportingcriteria(a functionof valueandlength),it canfind all

3 Acually, any topologicalnumbering will do, but string-depth hes someadvantages when heuristic accelerations
are added.

KEFINING CORE S IRING EDITS AND ALIGNMENTS

suffix tree for P

X w Yy v B v
z
u!
New part
o of the {u, v)

table

U

Figure 12.13: The dynamic programming table for {u,v) is shown below the suffix trees for Pand T. The
string on the path to node ¢ is Za and the stringto node v is XY8. Every cellin the {(u,V) table, except any
in the lower right rectangle, is also in the (u,v’), (v',v), or (u',v r) tables. The new part of the {v,v) table
can be computed from the shaded entries and substrings « and 8. The shaded entries contain exactly one
entry from the (v, v’) table; ja| entries from the last column in the (u,v’) table; and 8| entries from the last
row in the (¢',v) table.

The thresholdall-againstall problemcould be solved (ignoringtime) by computing
the dynamic programmingtable for each pair of leavespne fromeachtree, andthen
examiningevery entry in eachof thosetables.Henceit certainly would be solved by
computingthe dynamic programmingtable for eachpair of nodesand then examining
eachentry in thosetables.This is essentiallywhat we will do, but we proceedin a way
thatavoidsredundantomputationand examinationT hefollowing lemmagivesthekey
observation.

Lemma 12.4.2, Let U be theparentof nodeu in 7, and let « be the string labeling
the edge betweerthem.Similarly, let v’ bethe parentof v in 7 and let 8 be thestring
labelingtheedgeberween them. Thenall but the bottormight ||| 8] entriesin thedynamic
programmingtable for the pair (u,v) appearin oneof thetablesfor (u', v'), (u',v), or
(u,V). Moreover, that bottomright partof the(u,v) table canbeobtainedfrom the other
threetables in O(|a||B]) time. (SeeFigure 12.13.)

The proof of thislemmais immediatefrom the definitions and thedit distancerecur-
rences.

Thecomputatiorfor the new partof the(u,v) tableproduces aia| by |8 rectangular
subtable that forms thelower right section ofthe (u, v) table. In the algorithm to be
developedbelow,we will store andassociate witleachnode pair(u, v) the lastcolumn
andthelastrow of this |«]| by |8] subtable.

We cannow fully describethealgorithm.

125. A FASTER ALGORITHM FOR LONGEST COMMON SUBSEQUENCE 287

clearerdescriptionof it we cannotdefinepreciselywhatspecific altagainstall problem
wassolved.

12.5. A faster (cornbinatorial) algorithm for longest
commonsubsequence

The longestcommonsubsequenceroblem(lcs)is a specialcaseof generalweighted
alignmentor edit distanceandit can besolvedin &(nm) time eitherby applying those
generalmethodsor with more directrecurrences (Exercise6 of Chapterl1). However,
thelcs problemplays aspecialrole in the field ofstring algorithmsand merits additional
discussionThis ispartly for historicalreasongmanystringandalignmentideaswere first
workedout for thespecial case oks) andpartly becausdcs often seemdo capturethe
desiredrelationship betweethestringsof interest.

In this sectionwe presentinalternative (combinatoriainethodor Ics thatis not based
on dynamic programmingFor twostringsof lengthsz andm > n, the method runsn
O(r logn) worstcasetime,wherer isa parameter thas typically smallenough tanake
thisboundattractivecomparedo @(nm). The mainideais to reduce theéscs problemto a
simplersoundingproblem thelongestincreasing subsequencproblem(lis). Themethod
canalso be adaptetb compute thdengthof thelcsin O(rlogn) time,using onlylinear
spacewithoutthe needfor Hirschberg'smethodThatwill beconsideredn Exercise23.

12.5.1. Longestincreasing subsequence

Definition LetI1 bealist of » integersnot necessarily distincn increasing ~ subse
quenceof IT is asubsequencef [1 whosevaluesstrictly increasdrom left to right.

Forexample,if [T =5,3,4,9,6,2,1,8,7, 10then{3, 4,6, 8, 10)and{5, 9, 10} are
bothincreasing subsequendedT. (Recallthedistinction betweesubsequencesdsub
strings.)We areinterestedn the problemof computingalongestincreasing subsequence
in T1. The methodwe developherewill later be usedto solvethe problemof finding the
longestcommonsubsequencef two (or more)strings.

Definition A decreasingsubsequencef I is asubsequenaoaf [1 wherethe numbers
arenonincreasingirom left to right.

For example,underthis definition, {8, 5.5, 3, 1, 1} is a decreasing subsequenue
thesequencet,§,3,9,5,2,5, 3, 10,1, 9, 1, 6. Note theasymmetryin the definitionsof
increasingand decreasingsubsequenced.he term " decreasing is slightly misleading.
Although™ nonincreasingis moreprecise, iis too clumsyatermto usein high repetition.

Definition A coverof IT is a setof decreasingubsequences I that contairall the
numbersof TT.

Forexample(s, 3, 2, 1}; {4}: {9, 6}: {8, 7}; {10} isacoverof [= 5,3,4,9,6,2,1,8,7,
10.1t consistof five decreasingubsequences, tvab which containonly asinglenumber.

Definition Thesze of thecoveris thenumberof decreasing subsequenaes, anda
smallest coveris acover with minimurrsizeamongall covers.

We will develop anO(#n log n)-time methodthat simultaneously constructsiangest
increasingsubsequencgis) andasmallest coveof I1. Thefollowing lemmais thekey.

¥} \ REFINING CORESTRING EDITS AND ALIGNMENTS

of substringspecifiedby thatcell usinga traversal taa subsetf leavesin the
trees.A formal proof of correctnesss left to the readeasanexercise.
ime analysis, recalthatthe lengthof 75 is thesumof lengthsof all theedge
.. If Phaslengthn, then thdengthof 7, ranges betweenandn?/2,depending
-1t how repetitive P is. The lengthof 77 is similarly defined and rangdsetweenn and
m?/2,wherem is thelengthof T.

Lemmal2.4.3. The time usedbythe algorithm for all the neededdynamicprogramming
computations andell examinationsis proportional to the productof the lengthd 7 and
the lengthof 7r. Hencethat time, defined as C, rangesbetweemm and n’m?.

PROOF In the algorithmgeachpair of nodesis processed exactly oncAt the point a
pair (u, v) is processed, the algorithm sper0(lai|B}]) time tocompute asubtable and
examine it,wherex and 8 arethe labels on theedgesinto « and v, respectively. Each
edgelabel in7p therefore forms exactlgpne dynamigprogramming tablevith eachof
theedgelabelsin 7. Thefre to build thosetablesis |«|(length of 77). Summing over
all edgesn 7 gives theclaimedtime bound. 0

The above lemmaountsall the time used ithe algorithm except the time usé¢d
collectand reporpairsof substringgby their startingposition, lengthandeditdistance).
But since the algorithneollects substrings wheit seesa cell value that satisfies the
reportingcriteria, the timalevotedo outputis justthetime needed to traverigetreeto
collect outputpairs.We have already seen thifitis time is proportionalto the numbenf
pairs collectedR. Hence we have

Theorem 12.4.3. The completetimefur the algorithm is O(C+ R).

Wow effectiveis the suffix tree approach?

As in the P-againstall problem,the effectivenesof this methodin practice depends
on the lengthef 7, and7;. Clearly,the productof those lengthsC, falls as P and
T increasen repetitivenessWe havebuilt a suffix treefor DNA stringsof total length
around onenillion bases anttaveobserved that the tree lengslaroundonetenthof the
maximum possibleln that case,C is aroundn?m?/100, soall elsebeing equal (which
Is unrealistic), standard dynamic programmiagtheall-againstall problem shoulaun
aboutonehundred timeslowerthan thehybrid dynamicprogramming approach.

A vastly largerall-againstall" computationon aminoacid stringswas reportedin
[183]. Although their descriptiotis very vague, they essentiallysedthe suffix tree ap
proachdescribechere,computingsimilarity insteadof edit distance. Butiatherthana
hundredfold speedupthey claim to have achieved nearly million-fold speedupver
standarddynamicprogramming.® That level of speedups not supportedy theoretical
considerationgrecall thafor arandomstring S of lengthm, asubstringof length greater
thanlog, m is very unlikely to occurin § morethanonce).Nor is it supportedby the
experimentave havedone . Theexplanation may be the incorporation of an early stoppin
rule describedh [183] only by thevague statemenifTime is savedbecausdhe matching
of patricia® subtrees is abortedwhen thescorefalls below a liberally chosensimilar-
ity limit". Thatrule is apparentlyvery effective in reducingunning time, but withoua

* They finish a computationin 406 cpu daysthat they claim would otherwisehave taken more than a million cpu
yearswithout the useof suffix trees.
3 A patricia tree is a variant of a suffix tree.

12.5. A FASTERALGORITHM FORLONGEST COMMONSUBSEQUENCE 289

We will shortly seénowtoreducethe timeneededo find the greedy covep O(nlogn),
butwefirst showthat thegreedy coveis asmallestoverof I1 andthatalongestincreasing
subsequenceaneasily beextractedrom it.

Lemmal2.5.3. Thereisan increasingsubsequencé of I1 containing exactlyonenumber
from eachdecreasing subsequendae the greedycoverC. Hencel is thelongest possible,
and C is the smallestpossible.

PROOF Let x beanarbitrary numbeplacedintodecreasing subsequencs 1 (counting
from the left)by thegreedy algorithmAt thetime x wasconsideredthelastnumbery of
subsequence- 1 must have beesmallerthanx. Also, sincey was placedeforex was,
y appears beforg in I1, and{y ,x} formsanincreasing subsequengell. Sincex was
arbitrary, thesameargument applie®wy, andif i — 1 > 1 then there mudtea numberz
in subsequencie—- 2 suchthatz < y andz appeardeforeyin I1. Repeating thisrgument
until thefirst subsequencis reachedwe concludethatthereis an increasingubsequence
in [1 containingone numbefrom eachof thefirst i subsequenceas the greedycoverand
endingwith x. Choosingx to be any numberin the lastdecreasingsubsequencproves
thelemma. O

Algorithmically, we canfind a longesincreasing subsequenge/enthegreedycover
asfollows:

Longest increasing subsequencdgorithm

begin

0. Seti to be the numberof subsequenceas thegreedy cover. Sdt to the emptylist; pick
any numberx in subsequenceandplace it onthe frontof list I.

1. Whilei > 1do
begin

2. Scanningdownfrom thetop of subsequende— 1, find the first numbey thatis smaller
thanx.

3. Setxto y andi toi — I.

4. Placex onthefrontof list I.
end

end.

Sinceno numberis examinedtwice during this algorithm,a longesincreasing subse
guencecanbefoundin O(n) time given thegreedycover.

An alternate approacis to usepointers. Asthe greedy coveis being constructed,
whenevera numberx is addedto subsequencie connecta pointerfrom x to the number
at the currentend of subsequende— 1. After the greedyalgorithmfinishes, pickany
numberin thelastdecreasing subsequence and folkbunique pathof pointers starting
from it andendingat the firstsubsequence.

Faster constructionof the greedycover

Now we reducethe time to construct greedycoverto O(nlogn), reducingthe overall
running timeto find alongest increasing subsequence@ logn)aswell.

At any point duringthe running ofthe greedycoveralgorithm,let L be the ordered
list containingthe lastnumberof eachof the decreasingubsequencdsuilt sofar. That

288 REFINING CORESTRING EDITS ANDALIGNMENTS

4 9 8 10

N w o
o
~

1
Figure 12.15: Decreasing cover of {5,3,4,9,6,2,1,8,7, 10}

Lemma 12.5.1./f | is an increasing subsequenad [T with length equal to the sizeof a
coverof I, call it C, then I is a longestincreasingsubsequence of [1 and C is a smallest
coverof I1.

PROOF Noincreasingsubsequencef 1 cancontain moreéhanone numbecontainedn
anydecreasing subsequendfdl, sincethe numberf an increasingubsequencrictly
increasdeft to right, whereaghenumbersn a decreasing subsequemcenonincreasing
left to right. Hencenoincreasingsubsequencef I1 canhave lengthgreaterthanthe size
of anycover of[1.

Now assumeéhat thdengthof | isequalto thesizeof C. Thisimplies thatl isalongest
increasing subsequenakll becausaootherincreasing subsequencanbelongerthan
the sizeof C. Conversely,C must bea smallestcoverof I1, for if therewere asmaller
coverC’ thenl would be longerthanthe sizeof C', whichis impossible. Hencef the
lengthof I equalsthesizeof C, thenl is a longestincreasingsubsequencand C is a
smallestcover. O

Lemmal2.5.1is the basisof a method tdfind a longestincreasingsubsequence and
a smallest coveof I1. Theideais to decomposdl into acoverC suchthat there isan
increasing subsequendecontainingexactly one numberfrom each decreasingubse
quencein C. Without concernfor efficiency, a coverof 1 canbe built in the following
straightforwardway:

Naive cover algorithm Starting fromtheleft of 1, examine eackuccessive num
berin IT andplace itat theendof thefirst (left-most)decreasingubsequencéhatit
can extendIf there areno decreasingubsequences canextend, then stad new
(decreasing) subsequencethe rightof all the existing decreasing subsequences.

Toelaborateif x denoteghecurrent number fronll beingexaminedthenx extends a
subsequenceif x is smallethanorequalto thecurrentnumber at the end slibsequence
i, andif x is strictly larger tharthe last numbeof eachsubsequenceo theleft of i.

Forexamplewith [T asbeforethe first two numbersxamined are puhtoa decreasing
subsequencg, 3}. Then thenumber4 is examinedwhichisin position3 of I1. Number
4 cannotbe placedat the end of the first subsequencbecauset is largerthan 3. So4
begins anewsubsequencef its own to the rightof the firstsubsequence. Nexhenumber
9is considered and sincedannotbe addedto the endof either subsequendé,3} or 4,
it beginsa third subsequence. Nex,is consideredit canbe addedto 9 but notto the
endof any of the twosubsequences theleft of 9. Thefinal coverof I producedby the
algorithmis shownin Figure 12.15, whereachsubsequenceuns vertically.

Clearly, thisalgorithmproducesa coverof 1, which we callthe greedy cover.To see
whethera numberx canbe addedto any particular decreasing subsequence, we bake
tocomparex tothe number, say, currentlyattheendof the subsequeneex canbeadded
if and onlyif x <y. Henceif therearek subsequencest the timex is consideredthen
the timeto addx to thecorrect subsequencedsk). Sincek < n,we have the following:

Lemma12.5.2. The greedycoverof [1 can be builtin 0(n?)time.

125. AFASTERALGORITHM FORLONGESTCOMMON SUBSEQUENCE 291

thelist associateavith thecharacters,(i). Forexample, list I1(S,, ;) for the above two
stringsis 6, 3,2,4, 1, 6, 3, 2,5.

To understantheimportancef I[1(S;, S,), weexaminewhatanincreasingsubsequence
in thatlist meansn termsof theoriginal strings.

Theorem 12.5.2. Everyincreasing subsequenten T1(Sy, S,) specifies anequallength
commonsubsequencd S, andsS; andvice versa. Thus longestommonsubsequence
d S; and$; corresponds ta longest increasing subsequeinctnelist T1(S,, S3).

PROOF First, givenanincreasing subsequendeof I1(S;, S;), we cancreatea stringsS
andshowthats isasubsequencef bothS; ands;. String S is successively built uguring
a left-to-right scanof 1. During this scan,also constructwo lists of indicesspecifying
asubsequencef §; anda subsequenaa ;. In detail,if humberj is encountered i
duringthescanandnumber;j is containedn the sublist contributedby character of S,
then addcharacterS, (i) to theright endof S, add number to theright endof thefirst
index list,andadd j to the rightendof theotherindex list.

Forexample, considdr = 3, 4, 5 in therunningexample The number3 comesfrom
thesublist for charactef of S;, the numbe# comes fronthesublist for characte2, and
the numbef comes fronthesublist for characted. Sothe strings isabc.That stringisa
subsequencef S; foundin positionsl, 2, 4 and isasubsequenad S, found inpositions
3,4,5.

Thelist I(S;, S-) containsonesublist for every positionn Sy, andeach sucBublist in
[1(S;, Sy) is in decreasing ordeSoat mostonenumber fromany sublist isin | and any
position inS; contributes at mosinecharactetto S. Furtherthem listsarearranged left
to right correspondingp theorderof the characteri S), soS is certainlya subsequence
of §;. Thenumbersn | strictly increase and correspotu positionsn S2,so S is alsoa
subsequencef S,.

In summarywe haveproven thatvery increasing subsequenicell(S;, S;) can be
usedto createanequallengthcommonsubsequencia S, andS,. The converse argument,
thata common subsequence yields an increasing subsequeneay similar and is left
asanexercise. O

[1(S,, S,) isalistof r integers, and the longest increasing subsequence problem can be
solved inO{(r log!) time on anr-length list when thelongestincreasing subsequentcse
of lengthl. If n < m thenl < n, yielding the followingtheorem:

Theorem12.5.3. Thelongest commosubsequengaroblem carbesolvedin O(r logn)
time.

The O(r logn) result forlcs was first obtainedoy Hunt and Szymanski {238]. Their
algorithm issuperficially verydifferent than th@neabove butin retrospecbnecansee
similar ideasembodiedn it. Therelationshipbetween thécs andlis problemswaspartly
identifiedby Apostolico andGuerra {25, 27] andmade expliciby Jacobsorand Vo [244)
and independentlgy PevzneandWaterman [370].

Thelcs method basedon /is is an example ofvhatis calledsparselynamigrogram
ming, where thénputis a relatively sparse sef pairsthatare permittedto align. This
approachandin fact the solution technique discusdeere,hasbeenvery extensively
generalizedoy a numberof peopleandappearsn detailin [137] and[138].

290 REFINING CORESTRINGEDITS AND ALIGNMENTS

is, the lashumber fromany subsequence— 1 appearsn L beforethelast number from
subsequence

Lemma 12.5.4. At any pointin the executiond thealgorithm, thelist L is sortedin
increasingorder.

PROOF Assume inductively that tHemma holdsthrough iteratiorkk— 1. When examining
the kthnumberin T, call it x, supposex is to beplacedattheendof subsequence Let
w bethecurrent number at thendof subsequencie- 1, let y be thecurrentnumberat
theendof subsequenci(if any),andlet z bethe numberattheend of subsequencer 1
(if it exists).Thenw < x <y by the workings of thalgorithm,andsincey < Z by the

inductive assumptiony < z also.In summary,w < x < z, so the new subsequenck
remains sorted. O

Note that L itself need notbe (andgenerallywill not be) anincreasingsubsequence
of T1. Althoughx < z, x appeardo theright of z in I1. Despite thisthe fact that L is
in sorted order mearnthat we can usebinary searcho implementeachiteration of the
algorithm building thegreedycover. Eachiterationk considers thé&th numberx in IT1
andthe current list tofind theleft-mostnumberin L largerthanx. SinceL isin sorted

order, thiscanbe donein O(logn) time by binary searchThelist [T hasn numbersso
we have

Theorem 12.5.1. The greedy covercan be constructedn O(nlogn) time. A longest

increasingsubsequencanda smallestcoverd I1 cantherefore befound in O(nlogn)
time.

In fact, if pisthelength ofthe lis, then icanbefoundin O(n log p)time.

12.5.2.Longest common subsequencgeducesto longest
increasing subsequence

We will now solve thelongestcommonsubsequencgroblem fora pair of strings,using
themethod forfinding alongestincreasing subsequenaea listof integers.

Definition Givenstrings$, and S, (of lengthm andn, respectivelypveran alphabet
Z, letr(i) bethe number of times th#teith characteof string S; appearsn string Ss.

Definition Let r denotethesum ", r(i).

Forexample,supposewe are using the normal English alphabet; wh&n= abacx
and$; = baabcahenr(1) = 3,r(2) = 2,r(3) =3,r(4)=1, andr(5) = 0, sor = 9.
Clearly, for anytwo strings,r will fall in theranged tonm.Wewill solve thdcs problemin
O(rlogn) time (wheren < m), whichis inferior to O(rnm) whenther islarge. However,

r is often substantiallysmallerthan nm, dependingn the alphabetZ. We will discuss
this morefully later.

The reduction

Foreach alphabetharacteix thatoccursat leasioncein §,, create dist of the positions
wherecharacterx occursin string S;; write this listin decreasingrder. Two distinct
alphabet charactessill havetotally disjoint lists.In the abovexample(S, = abacxand
S, = baabcal}helist for charactem is 6, 3, 2 andthelist for b is 4, 1.

Now createalist called T1(S,, §z) of lengthr, in whicheach character instanaeS; is
replacedwith theassociated lidfor that characteiThatis, for each position in S;, insert

12.6. CONVEXGAP WEIGHTS 293

abacxand S, = banbca(asabove)and S, = babbac thenthe list for character as
(6,5),(6,2),(3,5).(3.2),(2,5),(2,2).

The lists for eachcharacterare againconcatenatedh the order thatthe characters
appeaiin string §y, forming the sequencef pairsTi(S;, S,, 5;). We define anincreasing
subsequence if1(S;, S,, $3) to be a subsequencef pairssuch thathe first numbersn
eachpair form an increasingsubsequencef integers,and thesecondnumbersin each
pair also forman increasingsubsequencef integersWe can easily modifithe greedy
coveralgorithm to find a longestincreasingsubsequencef pairs under this definition.
This increasing subsequenceusedas follows.

Theorem12.5.4. Everyincreasingubsequenda I1(S,, S, S3) specifiesanequallength
commonsubsequence S, S,, S; andvice versa.Therefore,a longestcommonsubse
quenced S, 52, S3 corresponds to alongest increasingsubsequence in T1(S), Sz, S3).

The proof of thistheoremis similar to thecaseof two strings and is lefas arexercise.
Adaptatiorof the greedgoveralgorithmandits timeanalysis fothecaseof threestringsis
alsoleftto thereaderExtension to moréhanthree stringssimmediateThecombinatorial

approach to computinigs alsohasa nice spacefficiencyfeaturethatwe will explorein
theexercises.

12.6.Convexgap weights

Overwhelminglytheaffinegap weighimodelis themodel mostommonly usedby molec

ularbiologiststoday.Thisis particularlytruefor aligning amino acidequencesdowever,
arichergapmodel,theconvexgapweight,wasproposedndstudiedoy Waterman in 1984
[466], andhas beemoreextensivelyexamined sincéhen.In discussing theommonuse
of the affinegapweight,Benner,Cohenand Gonnet statéThere isnojustificationeither
theoreticalor empiricalfor this treatment [183] andforcefully arguethat™a non-linear
gappenaltyis the only one that is groundedn empiricaldata™ [57]. They propose{57]

thatto align two proteinsequenceshat ared PAM units divergedsee Section5.7.2), a
gapof lengthq should be given the weight:

35.03 — 6.88log,nd + 17.02log)5 g

Underthis weightingmodel, thecost to initiatea gapis at most35.03, and declines
with increasing evolutionaryPAM) distance betweethe two sequencedn addition to
this initiation weightthe function addsl7.02 log, g for theactual lengthg, of thegap.

It is hardto believethat a function this precise couldbe correct, but the key pointis
that, forafixed PAM distance, theroposedjapweightis aconvexfunction of its length.’

The alignment problenwith convex gap weightis moredifficult to solve tharwith
affine gap weightshput it is not asdifficult as the problemwith arbitrarygapweights.In
this sectionwe developa practicalalgorithmto optimally aligntwo stringsof lengthsn
andm > n, whenthe gap weightsare specifiedy a convexfunction of the gaplength.
Thealgorithm runsn O(#m logm) time,in contrasto the O(nm)-time boundfor affine
gap weights anthe O(nm?) time for arbitrary gap weightshe speedup for the convex
casewasestablishedy Miller andMyers[322] and independentlgy Galif and Giancario

! Unfortunately,thereis no standarcagreementn terminology,and someof the papers refeto the modehsthe

"convexX' gapweight model,while otherscall it the' concav& gapmodel.In this book. aconvex functionis one
with a negativeor zero secondlerivative,anda concavefunction is onewith a positivesecond derivative.

292 REFINING CORE STRING EDITS AND ALIGNMENTS

12.5.3.How goodis the method

How goodis thelcsmethodbasednthelis comparedo theoriginal ®(nm)-time dynamic

programmingapproach® dependonthesize ofr. Leta denotethesizeof the alphabet
Z. A very naiveanalysis would sathatr canbeexpectedo beaboutim /o. Thisassumes
thateach character il appearswith equalprobability andhence iexpectedto appear
n/o timesin theshort string.That meansthat», = n/o for eachi. Thelong string has

lengthm, sor is expected to bem/a. But of course, equadistributionof characterss

not reallytypical, andthe valueof r is thenhighly dependentn the specific strings.

For the Romanalphabetwith capital lettersdigits, andpunctuationmarksadded,a
is around 100put the assumptionof equal distributionis clearly flawed. Still, one can
askwhether(nm/100)logn looks attractivecomparedto nm.For suchalphabets, the
speedumloesn't looksocompelling, although thmethodretains its simplicityandspace
efficiency.Thusfor typical Englishtext,thelis-based approacimay notbe muchsuperior
to the dynamicprogrammingapproachHowever, in manyapplications,the "alphabet
sizeis quite largeand grows with the size of the text.® This is true,for example,n the
unix utility diff whereeachline in thetextis consideredas acharactein the"alphabet
usedfor the lcs computation.In certainapplicationsin molecularbiology the alphabet
consistsof patternsor substrings, rathethanthe fourcharacter alphabetf DNA or the
twenty-charactealphabetf protein These substringsightbegenesexons, orestriction
enzymerecognitionsequencedn those caseghealphabet sizées largecomparedo the
stringsize,sor is smallandr logn is quite attractive comparet nm.

Constrainedlcs

Thelcs method basednlis hasanother advantageverthestandardlynamigprogramming
approachln someapplicationghere are additional constraintsposedon which pairsof
positionsarepermittedto alignin thelcs. That is, inaddition to the constraint thposition

i in §; canalign with positionj in §; only if §;(i) = S2(j), someadditional constraints
mayapply.Thereduction oficsto/is canbeeasily modifiedoincorporatetheseadditional
constraints, andve leave the details tthe reader.Theeffectis to reducethesizeof r and

consequently to speagp the entirelcs computationThisis another example andariant
of sparse dynamiprogramming.

12.5.4.Thelcs of more than two strings

Oneof the nicefeatures ofthe Icsmethodbasedon lis is thatit easilygeneralizes tdhe
Ics problem for more thatwo strings.Thatproblemis aspecial casef multiple sequence
alignment,acrucial problemin computationaimolecularbiology thatwe will more fully
discussn Chapterl4.The generalizatioirom two tomany stringswill be presented here
for threestrings,Si, Sz, andS;.

The ideais to againreducethe ics problem tothe lis problem. As before,we start
by creating alist for eachcharacterx in S;. In particular, the listfor x will contain
pairs of integers,each pair containinga positionin S, where xoccursand a position
in §; wherex occurs. Furtherthe list for characterx will be orderedso that the pairs
in the list arein lexically decreasingorder. That is, if pair (i, j) appearsbefore pair
(i’, ') in the listfor x, then eitheri > i ori = i" andj > j'. Forexample,f §; =

® This is oneof the few placesin the book wherewe deviate fromthe standard assumptionthat the alphabetis fixed.

12.6. CONVEX GAP WEIGHTS 295

thoserecurrenceskFor conveniencewe restatethe general recurrenceder arbitrary gap
weights.

VG, j) = max(EG. /), FG,), GG,)L
Gl)= V(i = 1 j = D +5(Si0) $:0)),
EG,)= max [VG.k) = w(j = K],

F@, jy= Osrps@_(,[va, Jj)—wi = D],

V@i, 0) = —w(i),
VO, j) = —w(j,
E(i, 0) = —w(i),

F(0, j) = —w(}).

G(i, j) is undefinedvheni or j is zero.

Evenwith arbitrarygapweights the workrequiredby thefirstandsecond recurrences is
O(m) perrow, whichis within ourdesiredime bound.lt is therecurrences foE (i, j)and
F(i, |) thatrespectivelyrequire®(m?) time perrow and®(n?) time percolumn when the
functionw is arbitrary,Hence,it is the evaluatioof E andF for anygivenrow or column
that will beimproved inthe casewherew is convex.We will focuson the computation
of E for asinglerow. The computatiorof F and theassociatedime analysisfor a single
columnis symmetric,with onecaveatto bediscussedater.

Simplifying notation
The valueE(i, j) dependoni only throughthevaluesV (i, k) for k < i. Hence,in any

fixed row, we can dropthe referencedo therow indexi, simplifying therecurrence foE.
Thatis, in any fixedrow we define

E(j) = 0<rp<a}§l[V(k) - w(j —).

Further,we introducethe following notationto simplify therecurrence:
Cand(k, |) = V(k) — w(j — k);
therefore,
E(j)= Osur;%l Cand(k, J).

Theterm Cand standdor " candidat®; the meaningof this will become clear later.

12.6.1. Forward dynamic programming

It will be usefulin the expositionto changethe way we normally implementdynamic
programming. Normallywhen settingthe valueE(j), we would look backwards in the
row tocompareall the Cand(k, j) values fokk < j, takingthelargestone tobethe value
E(j). But an alternativgforward-looking implementation isalso possible and is more
helpfulin thisexposition.?

8 GeneLawter pointedout thatin somecirclesforward and backwarimplementations are referréd as" push you

-pull me" dynamicprogramming.The readermay determine which termenotesforwards and which denotes
backwards.

294 REFINING CORESTRING EDITSAND ALIGNMENTS

- - -
e = - = -

VR ————
- .- -

q9 gq+d g gq'cd

Figure 12.16: A convex function w.

[170]. However, thesolutionin thesecond papds given in term®f edit distanceather
thansimilarity. Similarityis often more useful thaaditdistance becausedanbe usedto
handlethe extremely importantaseof local comparisonHencewe will discussconvex
gap weights intermsof similarity (maximumweighted alignment) and leavetd the
reader to derivéhe analogousalgorithms for computingdit distancewith convexgap
weights. More advanceaesultson alignmentwith convex or concave gap weights appear
in [136], [138], and[276].

Recall fromthe discussiorof arbitrarygap weightsthat w(g} is the weightgivento a

gapof lengthq. Thatgapthencontributes a penaltygf —w(q) to thetotal weightof the
alignment.

Definition Assumethatw(q) is a nonnegative functioof . Thenw(g) is convexif
andonly if w(g T 1)— w(g) < w(g) — w(g — 1) for everyq.

Thatis,asagap lengthncreasesheadditionalpenalty contributelly thegapdecreases
for each additional unitf thegap.It follows thatw(g * d) — w(g) = w(g’ T d) — w(g")
forq < q'and any fixedl (sed~igure12.16).Note thathefunctionw can have regiornsf
both positive and negativelope, althouglany regionof positiveslopemust beto the left
of theregionof negativeslope. Notethat the definition allowsu(g) to become negative
for large enougm andm. At thatpoint, —w(g) becomegositive, which is probably not
desirable. Hencggapweightfunctionswith negative slopenustbe usedwith care.

The convexgap weight wasintroducedin [466] with the suggestiornthat mutational
events that inserdr deletevarying lengthblocks of DNA can be more meaningfully
modeledby convexgapweights,compared taffineor constangapweights.A convexgap
penalty allowshe modeler more specificityn reflectingthecostor probabilityof different
gaplengths. and yet it cabe more efficiently handledhanarbitrarygapweights.One
particularconvexfunction thatis appealingn this contextis thelog function, althought
is notclear which basef thelogarithm might be most meaningful.

The argumenfor or against convegapweightsis still open, andheaffine gap model
remains dominann practice. Still, evenif the convexgapmodelneverbecomes popular
in molecular biologyit couldwell find applicationelsewhere. Furthermorthealgorithm
for alignmentwith convexgapsis of interestin itself, asa representativef a numberof
related algorithmn the general areaf "' sparsedynamicprogramming.

Speedingup the general recurrences

To solvethe convexgapweight caseve use thesamedynamic programming recurrences
developed for arbitrargap weights(page242), but reducethe time neededo evaluate

126. CONVEX GAP WEIGHTS 297

1 \J 1 LI
k J J i
Figure 12.17: Graphical illustration of the key observation. Winning candidates are shown with a solid

curve and losers with a dashed curve. If the candidate from jloses to the candidate from k atcell j’, then
the candidate from j will lose to the candidate from k at every cell j'/ to the right of j'.

12.6.2.The basisof the speedup

At the pointwhen E(j) is set,call cell j the currentell. We interpretCand(j, |') asthe
"candidate valué&for E(j') thatcell j "senddorwardtocell j'. Whenj is thecurrent cell,
it "senddorward’ m — j candidatevaluespnetoeachcell j* > j. Each suciCand(j, |')
valueis comparedto thecurrent E(j’); it eitherwins (when Cand(j, j') is greaterthan
E(j") or losesthecomparisonThe speedup worksy identifying andeliminating large
numbersf candidatevaluesthat havenochance of winninginy comparisonln this way,
thealgorithmavoidsa largenumberof uselesgomparisons. Thiapproach isometimes
called acandidatdist approach.The following is the key observation usedb identify
"losel’ candidates:

Key observation Let j bethe currentell. If Cand(j, j') < E(j') forsome j' > j,
thenCand(j, j") < E(j") for every j" > j'. Thatis, "onestrikeand you'reout",

Hence thecurrentcell j need notsend forwardany candidatevaluesto the right of
the firstcell j* > j whereCand(j, ') is less tharor equalto E(j’). This suggestghe
obviouspractical speedup atoppingtheloop labeledLoop 1} in the Forwarddynamic
programming algorithnassoonas j's candidate losesBut this improvementdoesnot
leaddirectly to a better(worstcase)time bound.For that, we will have to useone more
trick. But first, we provethe keyobservatiorwith thefollowing more preciséemma.

Lemma12.6.1. Letk < j < j" < j” be anyour cellsin thesamerow. If Cand(j, |') <
Cand(k, |') then Cand(j, |") < Cand(k, |"). SeeFigurel2.17or reference.

PROOF Cand(k, ') = Cand(j, |') impliesthat V(k) — w(j' — k) = V(j) — w(j' —),
so Vk) — V(j) = w(j’ — k) —w(} — /).

Trivially, (j' = k) = (j' = 3) T (j = k). Similarly, (j" = k) = (3" = j) t (j = k). For
futureuse,notethat(j' — k) < (j" — k).

Now let g denote (J= j), letq' denote(j" — j), andlet d denotg j — k). Sincej' < j”,
thenq < q'. By convexity,w(g + d) - w(g) > w(g’ +d) — w(g’) (seeFigure 12.16).
Translating backwe havew(j' — k) — w(j' —) = w(j” — k) — w(j” — J). Combining
thiswith theresultin thefirst paragraph givesV (k) — V(j) > w(j”" - k)= w(j” —j), and
rewriting gives V(k) — w(j" — k) > V(j) — w(j” = J), i.e., Cand(k, ") > Cand(j, "),
asclaimed. 0

Lemmal2.6.1immediatelyimplies thekey observation.

12.6.3. Cell pointers androw partition

Recallfrom thedetailsof theforward dynamicprogrammingalgorithmthat thealgorithm
maintainsa variableb(;") for each cellj’. Thisvariableis a pointerto the left-most cell

296 REFININGCORESTRINGEDITS AND ALIGNMENTS

In the forwardimplementationwe first initialize a variable E(j’) to Cand(0, j') for
eachcell j* > 0in the row.The E valuesareset leftto rightin the row, asin backward
dynamicprogramming. Howevelto set thevalueof E(j) (for any j > 0) the algorithm
merely setsE(j) to the currentvalueof E(j), sinceevery cellto the left of j will have
contributed acandidatevalueto cell j. Then, before settinghe valueof E (j T 1), the
algorithmtraversegorwards in therow to setE(j’) (for eachj’ > j) to bethe maximum

of the currentE(j') and Cand(j, j'). To summarizethe forwardimplementationfor a
fixed row is:

Forward dynamic programming for a fixed row

Forj:= 1ltomdo
begin

E(j) = Cand(0, j);
b(jy:=0

end;

Forj:=1tomdo

begin

E(j):= E(j);

V(j) = max[G(j), E(j), F(J));

{We assumeputdo notshowthat F(j)andG(j)
havebeencomputedor cell j in therow.}

Forj := j * 1tom do{Loop 1)
if E(j'y < Cand(j, |') then
begin
E(j') := Cand(j, |');
b(j’) :=j; (This setsa pointerfrom j' to j to beexplainedlater.}
end
end;

An alternativeway to think aboutforward dynamicprogrammingis to considerthe
weightededit graphfor thealignment problem (se®ectionl11.4). Inthat(acyclic) graph,
the optimalpath (shortesbr longestdistance dependingon thetype of alignmentbeing
computed) frontell (0, 0) tocell (n, m) specifiesan optimal alignmentience algorithms
thatcomputeoptimal distancesn (acyclic) graphs cabe usedto compute optimal align
mentsand distancalgorithms (suctasDijkstra’s algorithmfor shortesdistance)canbe
describedasforward looking. When thecorrect distancé(v) toa nodev has beercom-
puted,andthereis anedgefrom v to anodew whose correatlistances still unknown,the
algorithm adds{(v) to thedistanceon theedge(u, w) to obtaina candidatevalue forthe
correct distancéo w. Whenthecorrect distancesavebeencomputedo all nodes witha
direct edgdo w, andeachhascontributeda candidatevalue forv, thecorrect distancéo
v is the besbf thosecandidatevalues.

It shouldbeclearthatexactly thesamearithmeticoperations andomparisongre done
in both backwardandforward dynamicprogramming- the only differenceis the order
in which theoperationgake place. Itfollows that theforward algorithmcorrectly setsll
the E valuesin afixed row andstill requires®(m?) time perrow. Thusforward dynamic
programmingis no faster tharbackwards dynamiprogramming,but the conceptwill
helpexplain thespeedugo come.

12.6. CONVEX GAP WEIGHTS 299

l
[] {
01 2 m
vl 1z SR e U
b) ™] i
01 2 k m
/__\
9 . |
01 2 m

Figure t2.19: The three possible ways that the block partition changes after E(1)is set. The curves with
arrows represent the common pointer for the block and leave from the last entry in the block.

e Cells2 throughm might getdividedinto two blocks,wherethecommon pointefor the
first block isb = |, and thecommonpointerfor the second ib = 0. This happens (again
by Lemma12.6.1)if and onlyif for somek < m Cand(1, j*) > E¢j’) for j' from 2tok
andCand(1, j) < E(j") for j' fromk + 1tom.

s Cells2 throughm might remain inasingle block, buhow thecommonpointerb is setto
|. This happeni# and onlyif Cand(1, j*)> E(j)for j' from2tom.

Figure12.19 illustrates the three possibilities.

Therefore before makingany changeso the E values, thenew partition of the cells
from 2 to m can be efficiently computed agollows: The algorithmfirst compares&(2)
andCand(1, 2). If E(2) > Cand(1, 2) thenall thecellsto theright of 2 remainin asingle
block with commonb pointersettozero,However,f E(2) <Cand(1, 2)then thealgorithm
searchegor the left-mostcell j' > 2 suchthat E(j’) > Cand(1, j'), If j isfound,then
cells2throughj' — 1form a newblock with commonpointer tocell one,andtheremaining
cellsform anotherblock with commonpointerto cell zero.If no j' isfound,thenall cells
2 throughm remainin a single block,but thecommonpointer ischangedo one.

Now for the punch line:By Corollary 12.6.1, this searctor | canbedoneby binary
search.Henceonly O(log m) comparisons are used insearchingfor j'. And, sincewe
only recordoneb pointer perblock, at most onepointerupdate is needed.

Now considerthegeneralcaseof j > |. Supposeahat £(j) has justboeensetandthat
thecells j + 1,...,m are presentlyartitioned intor maximal blocks endingat cells
P1 < p; < ... < p, =m.Theblockendingat p; will becalled theith block. We useb;
to denotethecommonpointerfor cellsin blocki. We assumehat thealgorithmhasa list
of the end-of-block positionsp; < p» < --- < p, anda parallellist of common pointers
by > by >--->Db,.

After E(j) is set,the newpartitionof cells j +1 throughm is foundin thefollowing
way: First, if E(j T 1) > Cand(j. j T 1) then,by Lemmal2.6.1,E(j*) > Cand(j, j")
for all j* > j, sothe partition of cellsgreaterthan j remains unchange®therwise(if
E(T 1) < Cand(j, j T 1)), the algorithmsuccessivelgomparesE(p;) to Cand(j, p;)

298 REFINING CORESTRING EDITS AND ALIGNMENTS

{99 999]7 77 7]666 66613 311 1 1}
J
Figure 12.18: Partition of the cefls j+ 1 through minto maximal blocks of consecutive cells such that all

the cells in any block have the same b value. The common b value in any block is less than the common &
value in the precedingblock.

k < j' thathascontributedthe bestcandidateyet seerfor cell j*. Pointerd(j) is updated
every time the valuef E(j') changesThe useof thesepointerscombinedwith the next
lemma leads ultimatelyo thedesired speedup.

Lemma12.6.2. Considerthepointwhen j isthe currentell, but before j sendgorward
anycandidatevalues. Atthatpoint, b(j') > &(j T |)for everycell j'from | +1tom-1.

PROOF For notationalsimplicity, let#(j") = k andb(j' + 1) = k' Then,by these
lection ofk, Cand(k, j') = Cand(k', |'). Now suppose k< k'. Then,by Lemmal2.6.1,
Cand(k, j' + 1) > Cand(k’, j * 1), in which caseb(j’ T 1) should besetto k, notk’.
Hence k> k' andthelemmais proved. O

Thefollowing corollaryrestated emmal2.6.2in amore usefulway.

Corollary 12.6.1. At the point that j is the currentcell but before j sendsforward any
candidatesthevaluesof the b pointers forma nonincreasingequencérom left to right.

Therefore, cell§, j+1,j+2,...,m arepartitioned intanaximal blockof consecutive
cellssuch that allb pointersin the block havethe samevalue, and the pointer values
decline in successive blocks.

Definition The partition of cells j throughm referredto in Corollary 12.6.1 is called
thecurrentblock-partition. SeeFigure12.18.

Given Corollary12.6.1,the algorithm doesn'needto explicitly maintaina b pointer
for everycell butonly recordthecommonb pointerfor each blockThisfactwill next be
exploited to achieve theesired speedup.

Preparation for the speedup

Our goalis to reducethe time per row usedin computingthe E valuesfrom ©(m?) to
O(mlogm). The main workdonein a row is to updatethe £ valuesandto update the
current blockpartitionwith its associategointers.We first focus on updatinghe block-
partition and theb pointers; aftetthat, the treatmerdf the £ values will be easySofor
now, assume thaill the E valuesare maintained for free.

Considerthe point wherej is the currentcell, but before isenddorwardanycandidate
values. AfterE(j) (and F(j) andthen V{j)) havebeencomputed, the algorithrmust
update thdlock-partition andthe neededo pointers.To seethe newidea,take the casef
j = |. At this point,thereis only oneblock (containingcells 1 throughm), with common
b pointersetto cell zero(i.e., b(j') = 0 for eachcell j' in the block). After E(1) is set
to E(1) = Cand(0, 1), any E(j’) valuethatthen changes wikkause theblock-partition
to changeaswell. In particular,if E(j’) changesthenb(j’) changesrom zeroto one.
But sincetheb valuesn the newblock-partition mustbe nonincreasingrom left to right,
thereareonly threepossibilitiesfor the new block-partition:*

o Cells2 throughm might remainin asingleblock withcommonpointerb = 0. By Lemma
12.6.1, thishappengf andonly if Cand(1,2) < E(2).

® TheE values in thesethreecasesarethe values beforeany .??changes.

126. CONVEX GAP WEIGHTS 301
V(j) := max[G(j), E(j), F())I;
{As before we assume th#te needed and Gvalues have beetcomputed.)

{Now seehow j's candidates changgeblock-partition.}
Set j' equalto the firstentry on theendof-block list.

{look for thefirst indexs in theendof-block list where j loses)
If Cand(b(j"), j t 1) < Cand(j, j T 1) then{j's candidateninsone)

begin

While

Theendof-block list is not emptyand Cand(b(j'), J') < Cand(j, |') do
begin
removethefirst entry onthe endof-block list,
andremovethe correspondind-pointer
If theendof-block list is not empty then
setj' to the new firsentry ontheendof-block list.
end;

end{while},

If theendof-blocklist isemptythen

place m at théead ofthatlist;

Else {whentheendof-block listis notempty)
begin
Let p,; denotethefirst end-of-blockentry.
Using binary searchoverthecellsin blocks, find the
right-mostpoint p in that block suchhatCand(j, p) > Cand(bs, p).
Add p to theheadof the endof-blocklist;
end;

Add j to theheadof the b pointerlist.

end;
end.

Time analysis

An E valueis computedfor the currentcell, or when thealgorithmdoesa comparison
involved inmaintainingthecurrentblock-partition.Hence theotal time for the algorithm
IS proportionalto the number of thosecomparisonsin iteration j, when j is thecurrent
cell, the'comparisonsare divided intothoseusedto find block s and those useth the
binarysearch teplit blocks.If thealgorithmdoesl > 2 comparisonso find sin iteration
j, then ateastl — 1 full blocks coalesceto a single blockThebinarysearch then splits
atmostoneblock into two.Henceif, in iteration j, thealgorithm doe¢ > 2 comparisons
to find s, then thetotal numberof blocksdecreaseby at least! — 2. If it doesone or
two comparisonsthenthe total numbepof blocks atmostincreasedy one. Sincethe
algorithmbeginswith a single block and therearem iterations,it follows that over the
entirealgorithm therecan be at most O{m) comparisonglone tofind everys, excluding
thecomparisonsloneduring the binargearches. Clearlyhetotal numbeiof comparisons
usedin them binarysearchess O(mlogm). Hencewe have

Theorem12.6.1. Furany fixed row, all rhe E(;j) valuescanbe computedn O(mlogm)
total rime.

300 REFINING CORE STRING EDITS AND ALIGNMENTS

endof block positions

P P2 P3 Py Ps P

L | | | l | i

J ! ' I 1 1]
j+1 m
| 1 | | 1

! 1 i 1 !
j+1 coalesced block m

Figure 12.20: To update the block -partition the algorithm successively examinescell p; to find the first
index s where E{ps) >Cand(j, ps). In this figure, sis 4. Blocks 1 through s — 1 = 3 coalesce into a single
block with some initiai part of block s = 4. Blocks to the right of s remain unchanged.

for i from 1 to r, until eitherthe endof-block list isexhaustedor until it finds the first
indexs with E(p,) = Cand(j, p,). In thefirstcasethecellsj+1,..., mfall into asingle
blockwith common pointetocell j. In thesecondasetheblockss + 1 throughr remain
unchangedhutall theblocks1 throughs — 1 coalesceavith someinitial part (possibly all)
of blocks,forming oneblock with commonpointertocell j (see Figurd 2.20).Note that
everycomparisorbut the lastoneresultsin two neighboring blocksoalescingnto one.
Having found blocks, the algorithmfinds the properplace tosplit block s by doing

binary search over theellsin the block.This is exactly asn thecase alreadgiscussed
for j = 1.

12.6.4. Final implementationdetails andtime analysis

We havedescribedabovehow to update the bloclpartition andthe commond pointers,
but thatexpositionusesE valuesthatwe assumedould be maintainetbr free. We now
deal with thaproblem.

The key observationis that the algorithm retrievesE(j) only whenj is the current
cell and retrieve&(j') only whenexaminingcell j* in the processf updating theblock-
partition. But thecurrent cellj is alwaysin the first blockof thecurrentblock-partition
(whose endpoint isenotedp,), sob(j) = b, and E(j) equalsCand(b,, j),which can
be computedin constant timevhenneededIn addition,whenexaminingacell j' in the
procesf updating the bloclpartition, the algorithm knowthe block that j' falls into,
say block i, andhenceit knowsb;. Therefore,it can computeE(j’) in constant timeoy
computingCand(b;, j'). The resultis thatno explicit E values ever neetb be stored.
They are simplcomputedwhenneededin asensetheyare only an expositional device.
Moreover,the numberof E valuesthat needto be computed on thély is proportionako

the numbebof comparisonghat thealgorithmdoesto maintain the bloclpartition. These
observations areummarizedn the following:

Revisedforward dynamic programming for a fixed row

Initialize theend-of-block list to contain thesingle numbermn.
Initialize theassociategbointer listto contain thesingle numbero.

Forj:=1tomdo

begin
Setk to be the firspointeron the b-pointerlist.
E(j) :=Cand(k, |);

12.7. THE FOUR-RUSSIANS SPEEDUP 303

52 j jt4

n

Figure 12.21: A single block with t = 4 drawn inside the full dynamic programming table. The distance
values in the part of the block labeled F are determined by the values in the parts labeled A. B, and €

together with the substrings of 83 and S in Dand E. Note that A is the intersection dof the first row and
column of the block.

Considethestandard dynamiprogrammingapproacho computingheedit distancef
twostringsS; ands,. ThevalueD(i, j)giventoanycell(i,), wheni andj areboth greater
than0, is determinedby the values irits threeneighboring cells(i — I,] = 1), (i — 1, j),
and(i, j — 1), andby thecharacterin positionsi and; of the two strings By extension,
the values givento the cellsin anentiret-block, with upper lefthandcomerat position
(i, j) say,aredeterminedby the values in the first rovand columrof the tblock together

with thesubstrings $,[i..; Tt — 1] andS,[j..j Tt — 1] (see Figurel2.21). Another way
to statethis observations thefollowing:

Lemmal2.7.1. Thedistancevaluesn at-blockstartingin position(i, j)areafunction of
thevaluesin its first row andcolumnandthesubstringss; [i..i+t - I]andSz[j..j'i't— 1].

Definition GivenLemmal2.7.1,and usingthe notation showrin Figure 12.21, we

define the blockunction asthefunction fromthe five inputs(A, B, C, D, E) to the
Output £,

It follows thatthe valuesin the last ronandcolumnof a t-block arealso a functiorof
theinputs(A. B, C, D, E).Wecall the functionfrom those input$o the valuesn thelast
row andcolumnof a t-block, the restrictetlockfunction.

Notice that the totakizeof theinput and thesizeof the outputof the restrictedblock
function is O(#).

Computing edit distancewith the restricted block function

By Lemmal2.7.1, thexdit distancdetweerS, andS, canbecomputedising theestricted

block function.For simplicity, supposehat S, andS, arebothof lengthn = k(t — 1), for
some K.

JUL MNLCCUNING CUKE D LRINGU EDIEY AND ALIGNMENTS

The caseof F values is essentially symmetric

A similar algorithm andinalysisis used tocomputethe F valuesexceptthatfor F(i, j)
thelists partitioncolumn j from celli throughn. Thereis, howeveronepoint that might
causeconfusion: Although thenalysis forF focuseson the work ina single column
andis symmetricto theanalysis forE in asinglerow, thecomputation®f E and F are
actually interleavedince,by therecurrencesgachV (i, j) valuedepend®nboth E(i, |)
andF(i, j).Eventhoughboththe E valueandthe F valuesarecomputedowwise (since
V is computedrowwise),onerow after anotherE(i, j) is computed just prioto the
computationof E(i, j + 1}, while betweenthe computation of (i, j) and F(i + 1,9),
m — 1 other F valueswill be computedm — j in row i and j — 1in rowi * 1). So
althoughthe analysistreatsthework in a columnasif it is donein onecontiguous time
interval, thealgorithm actually breaks upe work in any givencolumn.

Only O(nm) total timeis neededo computethe G valuesandtocomputesveryV (i, j)
oncekE(i, j) andF(i, j)is known. Insummary wehave

Theorem12.6.2. Whenthegapweightw isaconvexfunctiond the gap length,anoptimal
alignmentcanbe computeth O(nm logm) time, where m> n arethelengthsdf theswo
strings.

12.7. The Four-Russiansspeedup

In this sectionwe will discussanapproachthat leadsbothto a theoreticahndto a prae
tical speedup ofmany dynamicprogramming algorithms.Theidea,comesfrom a paper
28] by four authors,Arlazarov, Dinic, Kronrod,andFaradzevconcerningboolean ma
trix multiplication. The general idedakenfrom this paperhascometo beknown in the
Westasthe FourRussians technique, evéimough onlyoneof the authorsis Russian.!®
The applicationsin thestring domainare quite different frommatrix multiplication, but
the general idea suggestén [28} applies.We illustrate the ideawith the specific prob
lem of computing(unweighted)edit distanceThis applicationwas firstworked outby
Masek andPaterson313] and was furthediscusseddy thoseauthorsin [312]; many
additionalapplicationsof the Four-Russiansdea have beerdevelopedsince then (for
example[340]).

12.7.1. t-blocks

Definition A t-blockis a: by t squarein the dynamic programming table.

Theroughidea ofthe Four-Russians methotb to partitionthe dynamic programming
tableinto t-blocks and computethe essential values the table ond-block at a time,
ratherthanonecell ata time. The goalis to spendonly Q(¢) time perblock (ratherthan
®©(r%) time), achieving dactor of t speedup ovethe standardlynamic programming
solution. In theexpositiongiven below, thepartition will not be exactlyachieved, since
neighboring tblockswill overlap somewhat. Still, th®ughidea giverheredoescapture
the basicflavor andadvantagef the method presentdztlow.Thatmethodwill compute
the editdistancein 0(n? logn) time, fortwo stringsof length n(againassuming fixed
alphabet).

¥ Thisreflectsourgeneralevel of ignoranceabout ethnicitiesin the then SovietUnion.

1s.t. | HE FOUR-RUSSIANS SPEEDUP 305

In the caseof editdistance the precornputatiorsuggestedy the FourRussians idea
is to enumerateall possibleinputsto therestrictedblock function (the propersizeof the
block will bedeterminedater),compute theesulting outpuvalues(at-lengthrow anda
t-length column¥or each inputandstore the outputsidexedby theinputs.Everytime
aspecificrestrictedblock function mustbe computedn step3 of; theblock editdistance
algorithm, the value of the functionis then retrievedrom the precomputed valueand
neednot be computed.This clearly works to computethe edit distancé(n, n), butis it
any fasterthan theoriginal O(n%) method?Astute readershouldbe skeptical,so please
suspendlisbelief fornow.

Accountingdetail

Assumefirst that allthe precomputatiorhasbeen doneWhat timeis neededo execute
the block editdistancealgorithm?Recallthat the sizesof theinput andtheoutputof the
restrictedblock functionare bothQ (). It is notdifficult to organizeheinput-output values
of the (precomputedjpestrictedblock functionso thatthe correct outpufor any specific
inputcanberetrievedin O(¢) time, Detailsareleft to thereaderThere aré(n? /%) blocks,
hencethe totaltime usedby the block edit distancealgorithmis O(n*/t). Settingt to
®(log n), thetime isO(n*/ log n). However,in theunit-costRAM modelof computation,
each outpuvalue canberetrievedin constant time since = O(logn). In thatcase,the
time for the method isreducedto 0(n?%/(log n)?).

But whataboutthe precomputation timePhe key issueinvolvesthe numberof input
choicesto the restrictedlock function. By definition, everycell hasanintegerfrom zero
ton, sothereare(n T 1)’ possiblevaluesfor any t-lengthrow or column.If thealphabet
hassizea ,thenthereares’ possible substringsf lengtht. Hencethe numberof distinct
inputcombinationgto therestricted blockunctionis (n + 1Y% . Foreachinput,it takes
@(:?) time to evaluatethe last row andcolumn of the resultingt-block (by runningthe
standard dynamiprogram).Thus the overall timeusedin this way to precomputethe
function outputs tall possibleinput choicesis ®((n T 1) +*). But r mustbe at least
one,so (n?) time is usedn this way.No progressyet! The idea isright, but we need
anothertrick to makeit work.

12.7.3.The trick: offset encoding

Thedominanttermin theprecomputatiortimeis (n + 1)%, sinceais assumed tbefixed.
Thatterm comesfrom the numberof distinct choices therarefor two t-length subrows
and subcolumnsBut (n+ 1)' overcountsthe numberof different t-lengthsubrows (or
subcolumns}hatcouldappearin arealtable, sincehe valuen acell is notindependent
of the valueof its neighborsWe next make this precise.

Lemma 12.7.2. {rn anyrow, column,ordiagonald thedynamic programming tablefor
edir distance pwo adjacent cellscan haveavalue thatdiffers by ar mostone.

PROOF Certainly,D(i, j) < D(, j — 1) + 1. Conversely,if the optimalalignmentof
Si[1..i7andS,[1..71 matchesS,(j) to some charactedf S,, thenby simply omitting S2(j)
andaligningits mateagainstaspace thedistance increasds/ at mostone.If S,(;) is not
matchedthen itsomissionreduceghe distancéy one,HenceD(i, j — 1) < D(, j)+ 1,
andthelemmais provedfor adjacentrow cells.Similar reasoningholdsalongacolumn.

In the caseof adjacentcells in a diagonal,it is easyto seethat D{i, j) < D(i — 1,
J — 1)+ 1.Converselyjf theoptimal alignmenbf §;[1..i1andS;[l..j} alignsi against/,

9

Figure 12.22: An edit distancetable for n = 9. With t == 4, the table is covered by nine overlapping blocks.
The center block is outlined with darker lines for clarity. in general, if n = k{i — 1) thenthe (n+1) by (n+1)
table wil be covered by k2 overtapping t-blocks.

Block edit distancealgorithm

Begin

1. Cover the(n + 1) by (n t 1) dynamicprogrammingtable witht-blocks,wherethe last
columnof everyt-blockis sharedwith the firstcolumn of thet-block to its right (if any),
andthe lastrow of every t-blockis shared with the firstow of the r-block below it (if
any). (Sed-igure 12.22)In this way, and sincen = k(r — 1), the tablewill consistof k
rowsandk columnsof partially overlapping-blocks.

2. Initialize the valuesin thefirst row and columnof thefull table accordingto the base
conditionsof the recurrence.

3. Inarowwisemannerpuse theestrictedlock functionto successivelgleterminghevalues
in the lastrow andlast columnof each blockBy the overlappinghatureof the blocksthe
valuesin thelastcolumn(or row) of a block arethe valuesn thefirst column (orrow) of
the blockto its right (or below it).

4. Thevaluein cell (n, n) is theedit distancef 5, and S:.
end.

Of course the heartof thealgorithmis step3, wherespecificinstance®f therestricted
block function mustbe computed.Any instanceof the restrictedblock function can be
computed0 (t?) time, but thatgains us nothing. So how is the restricted blockunction
computed?

12.7.2. The Four-Russiangdeafor the restricted block function

ThegeneralFour-Russians observatios thataspeeduganoftenbeobtainedby precom-
puting and storinginformation aboutall possibleinstancef a subproblemthat might
arisein solving a problem.Then,when solvingan instanceof the full problem and spe-
cific subproblemsre encounteredhecomputationcanbeacceleratedy lookingupthe
answers t@recomputedsubproblemsinsteadof recomputingthoseanswersIf thesub-
problemsarechosen correctlythetotal time takenby this methodincluding the time for
the precomputationsyill beless tharthe time takerby thestandardcomputation.

12.7. THE FOURRUSSIANSSPEEDUP 307

Four-Russiansedit distancealgorithm

1. Coverthen by n dynamicprogrammingtable witht-blocks, wherdhe lastcolumn of
everyt-blockis shared with the firstolumnof the tblocktoits right(if any), and the last
row of every tblock is shared with therst row of thet-block belowit (if any).

2. Initialize thevaluesin the first row and columwof the full table accordingo the base
conditionsof therecurrenceComputetheoffsetvaluesin thefirst row andcolumn.

3. In arowwise manner,use theoffset block function tosuccessivelgetermine the offset
vectorsof the lastrow andcolumnof eachblock.By theoverlapping naturef the blocks,
theoffset vector inthelastcolumn(or row) of a block provides thenext offset vectoiin
the first column (or row) of the blockto its right(or betow it). Simply changethe first
entryin the nextvector tozero.

4. LetQ be thetotalof theoffset values computddr cellsin rown. D(n,n) = D(n, O}+Q =
n+ Q.

Time analysis

Asin theanalysis ottheblock editdistancealgorithm,the executiorof thefour-Russians
edit distance algorithniakes O (n%/ logn) time (or O[a*/(logn)*] time in the unit-cost
RAM model) by setting tto ®@(logn). So again, the key issueis the time neededo
precompute the block offs@inction. Recallthatthefirst entryof an offset vectomustbe
zero,sothere are3?*~1 possibleoffsetvectors Thereares’ waysto specify asubstring
over analphabetwith o charactersand sahereare3**~Yo % ways tospecifytheinputto
the offsefunction.For anyspecificinputchoice,theoutputis computedn O(t*) time (via
dynamicprogramming)hencethe entire precomputatiortakesO(3* o *?) time. Setting
t equalto (log,, n)/2, theprecomputationime s just O(n(log n)?). In summary, wenave

Theorem12.7.2. The editdistanced twostringsd lengthn canbe computedh O (&)

time or O (@n)—?) time in the unit-costRAMmodel.

Extensionto stringsof unequallengthsis easy ands left as an exercise.

12.7.4.Practical approaches

Thetheoretical resulthateditdistanceeanbe computeéh O(kj‘;n) timehasbeen extended
and appliedto a numberof different alignmenfproblems.For truly large strings, these
theoreticakesultsareworth using.ButtheFourRussiansnethod isprimarily atheoretical
contributionand isnotusedin itsfull detail. Instead, the basideaof precomputingeither
the restrictedblock functionor the offsetfunctionis used, bubnly for fixed size blocks.
Generally, tis set toa fixed valueindependenodf » andoften a rectangular Dy t block
is usedin place ofa square blockThe pointis to pick ¢t sothatthe restrictedblock or
offsetfunctioncanbedetermined in constantime on practicalmachinesFor examplet
could be picked sothat the offset vectorfits into a singlecomputerword. Or, depending
on thealphabetandtheamount ofspaceavailable,onemight hashthe input choices for
rapid function retrievalThis shouldleadto acomputingtime ofO("Tz),aIthough practical
programmingissuesbecomeimportantat thislevel of detail. Adetailedexperimental
analysiof these ideag339] has showrthatthis approachs one of thenosteffective ways
tospeedupthe practicatomputation oeditdistanceprovidinga factoroft speedupver
the standardlynamic programming solution.

306 REFINING CORESTRING EDITSAND ALIGNMENTS

thenD(i—1, j—1) < D(, j)tLf theoptimal alignmentloesn'aligni againstj, thenat
leastoneof thecharacters$ (i) or $,(j), mustalignagainsta spaceandD(i — 1, j—1) <
DG,). O

GivenLemmal2.7.2, we can encodé¢he valuesn arow of a tblock by a t-length
vectorspecifyingthe valueof thefirst entryin therow, and therspecifyingthedifference
(offset)of eachsuccessiveell value toits left neighborA zero indicates equalityone
indicatesanincreaseby one, and aninusoneindicatesa decreaséy one.Forexample,
the row of distancess, 4, 4,5 would be encodedby the row of offsets5, —1, 0, +I.
Similarly, we canencodethe valuesin any columnby such offseencoding. Sinc¢here
are only (n+ 1)3*~! distinct vectorsof this type,a change to offse¢ncodingis surelya
movein theright direction. We carhowever, reducéhe numbeof possiblevectors even
further.

Definition Theoffset vectoris at-lengthvectorof values from{—1, 0, 1}, wherethe
firstentry mustbe zero.

Thekeyto makingtheFourRussiansnethodefficient isto compute edit distanaesing
only offsetvectorsrather tharactualdistancesaluesBecause the numbeirpossibleoffset
vectorsis muchless than the number giossible vectorsf distance valuesnuch less
precomputation wilbe neededWe nextshowthatedit distance&eanbe computedising
offsetvectors.

Theorem 12.7.1. Considera t-block with upperleft cornerin position (i, j). The two
offset vectorgor thelastrow andlastcolumnd theblockcan baletermineffom thetwo
offsetvectorgor thefirst row andcolumnof the block androm substringsS,[1..i} and
$>[1..j1 Thatis, no D valueis neededn theinputin orderto determine thoffset vectors
in thelast row andcolumnd the block.

PROOF Theproofis essentially &lose examinationf thedynamic programmingecur
rencedor editdistanceDenotethe unknowrvalueof D(i, j) by C. Then forcolumnq in
theblock, D(i, q) equalsC plusthetotalof theoffset valuedn row i from columnj +1t0
columng. Hence everif the algorithmdoesn'tkknow the valueof C ,it canexpressD(i, g)
asC plusaninteger thait candetermine EachD{(gq, j) canbesimilarly expressed.et
DG, jt 1) bec+ Jand letD(i + 1, j) beC * I, where the algorithm caknow | and
J.Now considercell (i + 1, j + 1). D(i 1, j + 1) is equal taD(i, j)= C if character
S1(i) matchesS,(j). OtherwiseD(; T 1, j + 1) equalsthe minimumof DG, j + 1)+ 1,
DGt 1,)+ 1, andDG, j) T 1 ie., theminimumof C+1+1,c+ 3+ 1, andC+ 1.
The algorithm can make this comparidgmncomparingl andJ (which it knows)to the
numberzero.Sothe algorithmcan correctly expres$ (i +1, it vasc,c +i1t+
ctat 1, or C t 1. Continuingin this way, the algorithm can correctlgxpresseach
D valuein the block as anunknownC plus some integer that can determine. Since
every term involveshe sameunknownconstantC, the offset vectors can be correctly
determineddy thealgorithm.

Definition The function that determiné®e twooffsetvectors forthe lastrow andlast
columnfrom thetwo offsetvectors forthe firstrow andcolumnof a block togethemith
substringss[1../] and$z[1../] is called thexffset function.

We now haveall the piece®f the FourRussianstype algorithmto computeedit dis
tance.We againassumefor simplicity, that each strinpaslengthrn = k(t — 1) for
somek.

11.
12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

12.8. EXERCISES 309

Prove the lemma and then show how to exploit it in the solution to the threshold P-against-
all problem. Try to estimate how effective the lemma s in practice. Be sure to consider how
the output is efficiently collected when the dynamic programming ends high in the tree,
before a leaf is reached.

Give a complete proof of the correctness of the all-against-all suffix tree algorithm.

Another, faster, alternative to the P-against-all problem is to change the problem slightly as
follows: For each position i in T such that there is a substring starting at / with edit distance
less than d from P, report only the smallestsuch substring starting at position i. This is the
(P-against-all) starting location problem, and it can be solved by modifying the approach
discussed for the threshold P-against-all problem. The starting location problem (actually
the equivalentending location problem) is the subject of a paper by Ukkonen [437]. In that
paper, Ukkonen develops three hybrid dynamic programming methods in the same spirit
as those presented in this chapter, but with additional technical observations. The main
result of that paper was later improved by Cobbs {105].

Detail a solution to the starting location problem, using a hybrid dynamic programming
approach.

Show that the suffix tree methods and time bounds for the P-against-all and the all-against-
all problems extend to the problem of computing similarity instead of edit distance.

Let Abe aregularexpression. Show how to modify the P-against-allmethod to solve the R-
against-all problem. That is, show how to use a suffix tree to efficiently search for a substring
in alarge text T that matches the regular expression R. (This problem is from [63].)

Now extend the method to allow for a bounded number of errors in the match.
Finish the proof of Theorem 12.5.2.

Show that in any permutation of n integers from 1 to n, there is either an increasing sub-
sequence of length at least /7 or a decreasing subsequence of length at least & . Show
that, averaged over all the n! permutations, the average length of the longest increasing
subsequenceis at least +/n/2. Show that the lower bound of /n/2 cannot be tight.

What do the results from the previous problem imply for the /cs problem?

If Sis a subsequence of another string S', then S is said to be a supersequence of S. If
two strings Sy and S, are subsequences of $’, then §’ is a common supersequenceof S,
and S;. That leads to the following natural question: Given two strings S; and Sz, what is
the shortest supersequence common to both S; and S,. This problem is clearly related to
the longest common subsequence problem. Develop an explicit relationship between the
two problems, and the lengths of their solutions. Then develop efficient methods to find a
shortest common supersequence of two strings. For additional results on subsequences
and supersequences see [240] and [241].

Canthe resultsin the previous problembe generalizedto the case of more than two strings?
Forinstance, is there a natural relationship between the longest common subsequence and
the shortest common supersequence of three strings?

Let T be a string whose characters come from an alphabet £ with ¢ characters. A sub-
sequence S of T is nondecreasing if each successive character in S is lexically greater
than or equal to the preceding character. For example, using the English alphabet let T =
characterstring;then S = aacrstis a nondecreasing subsequence of T. Give an aigorithm
that finds the longest nondecreasing subsequence of a string T in time O(ne), where nis
the length of T. How does this bound compare to the O(nlog n) bound given for the longest
increasing subsequence problem over integers.

Recall the definition of r given for two strings in Section 12.5.2 on page 290. Extend the

T DT TS LNy ALTOINVIEINTS

128 Exercises

Show how to compute the value V{n,m) of the optimal alignment using only min{n,m) + 1
space in addition to the space needed to represent the two input strings.

Modify Hirschberg's method to work for alignment with a gap penalty (affine and general)
in the objective function. It may be helpful to use both the affine gap recurrences developed
in the text, and the alternative recurrences that pay for a gap when terminated. The latter
recurrences were developedin the exercise 27 of Chapter 11.

Hirschberg's method computes one optimal alignment. Try to find ways to modify the
method to produce more (all?) optimal alignments while still achieving substantial space
reduction and maintaining a good time bound compared to the O(nm)-time and space
method? | believe this is an open area.

Show how to reduce the size of the strip needed in the method of Section 12.2.3, when
Im—nl <k

. Fill'in the details of how to find the actual alignments of Pin T that occur with at most k

differences. The method uses the O(km) values stored during the k differences algorithm.
The solution is somewhat simpler if the k differences algorithm also stores a sparse set of
pointers recording how each farthest-reaching d-path extends a farthest-reaching (d — 1)-
path. These pointers only take O{km) space and are a sparse version of the standard
dynamic programming pointers. Fill in the details for this approach as well.

The k differences problemis an unweighted (or unit weighted) alignment problem defined
in terms of the number of mismatches and spaces. Can the O{km) result be extended
to operator- or alphabet-weighted versions of alignment? The answer is: not completely.
Explain why not. Then find special cases of weighted alignment, and plausible uses for
these cases, where the result does extend.

7. Prove Lemma 12.3.2 from page 274.

8. Prove Lemma 12.3.4 from page 277.

9. Prove Theorem 12.4.2 that concerns space use in the P-against-all problem.

10.

The threshold P-against -all problem

The P-against-all problem was introduced first because it most directly illustrates one
general approach to using suffix trees to speed up dynamic programming computations.
And, it has been proposed that such a massive study of how Prelates to substrings of T
can be importantin certain problems {183)]. Nonetheless, for most applications the output
of the Pagainst-all problem is excessive and a more focused computation is desirable.
The threshold P-against-allproblem is of this type: Given strings Pand T and a threshold
d, find every substring 7/ of T such that the edit distance between Pand 7' is less than
d. Of course, it would be cheating to first solve the P-against-all problem and then filter
out the substrings of T whose edit distance to Pis d or greater. We want a method whose
speed is related to d. The computation should increase in speed as d falls.

The idea is to follow the solution to the P-against-all problem, doing a depth-first traversal

of suffix tree 7, but recognize subtrees that need not be traversed. The following lemma
is the key.

Lemma 12.8.1. Inthe P-against-allproblem, suppose that the current path in the suffix tree
specifies a substring S of T and that the current dynamic programming column (including
the zero row) contains no values below d. Then the column representing an extension
of S will also contain no values below d. Hence no columns need be computed for any
extensions of S.

32.

33.

35.

12.8. EXERCISES 311

method seems more justified. In fact, why not pick a “reasonable” value tor ¢, do the pre-
computation of the offset function once for that t, and then embed the offset function in

an edit distance algorithmto be used for all future edit distance computations. Discuss the
merits and demerits of this proposal.

The Four-Russians method presented in the text only computes the edit distance. How can
it be modifiedto compute the edit transcript as well?

Show how to apply the Four-Russians method to strings of unequal length.

What problems arise in trying to extend the Four-Russians method and the improved time
bound to the weighted edit distance problem? Are there restrictions on weights (other than
equality) that make the extension easier?

Following thelines of the previousquestion, showin detail how the Four-Russians approach
can be used to solve the longest common subsequence problem between two strings of
length n, in O(r?/log n) time.

—»—

310 REFINING CORE STRING EDITS AND ALIGNMENTS

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

definition for r to the longest common subsequence problem for more than two strings, and
use r to express the time for finding an /¢s in this case.

Show how to model and solve the /is problem as a shortest path problem in a directed,
acyclic graph. Are there any advantages to viewing the problem in this way?

Suppose we only want to learn the length of the fes of two strings §; and $;. That can be
done, as befare, in O(rlogn) time, but now only using linear space. The key is to keep only
the last element in each list of the cover (when computing the /is), and not to generate all
of I1{5,,83) at once, but to generate (in linear space) parts of I1(S;,S>) on the fly. Fill in
the details of these ideas and show that the length of the /¢s can be computed as quickly
as beforein only linear space.

Open problem: Extend the above combinatorial ideas, to show how to compute the actual
fcs of two strings using only linear space, without increasing the needed time. Then extend
to more than two strings.

(This problem requires a knowledge of systolic arrays.) Show how to implement the longest
increasing subsequence algorithm to run in Q(n) time on an O(n)-element systolic array
(remember that each array element has only constant memory). To make the problem
simpler, first consider how to compute the length of the /is, and then work out how to
compute the actual increasing subsequence.

Work out how to compute the fcsin O(n) time on an O(n)-element systolic array.

We have reduced the /cs problem to the fis problem. Show how to do the reduction in the
opposite direction,

Suppose each characterin S; and S is given an individual weight. Give an algorithm to
find an increasing subsequence of maximum total weight.

Derive an O(nmlog m)-time method to compute edit distance for the convex gap weight
model.

The idea of forwarddynamic programming can be used to speed up (in practice) the (global)
alignment of two strings, even when gaps are not included in the objective function. We
will explainthisin terms of computing unweighted edit distance between strings S; and S:
(of lengths nand mrespectively), but the basic idea works for computing similarity as well.
Suppose a cell (i, j) is reached during the (forward) dynamic programming computation
of edit distance and the value there is D{i, j}. Suppose also that there is a fast way to
compute a lower bound, L({,j),on the distance between substrings $;[/ T 1,...,n] and
S[it1,....ml If D, j)+ LG, j) is greater than or equal to a known distance between
S; and S; obtained from some particular alignment, then there is no need to propogate
candidate values forward from cell (¥j. The question now is to find efficient methods to
compute "effective” values of L{j,f). One simple oneis {n — m+ j— i|. Explain this. Try it
outin practice to see how effective it is. Come up with other simple lower bounds that are
much more effective.

Hint: Use the count of the number of times each character appears in each string.

As detailed in the text, the Four-Russians method precomputes the offset function for
32-Ng2t gpecifications of input values. However, the problem statement and time bound
allow the precomputation of the offset function to be done afterstrings S and S, are
known. Can that observation be used to reduce the running time?

An alternative encoding of strings allows the ¢2' term to be changed to (t + 2)! even
in problem settings where §; and S, are not known when the precomputation is done.
Discover and explain the encoding and how edit distance is computed when using it.

Consider the situation when the edit distance must be computed for each pair of strings from
a large set of strings. In that situation, the precomputation needed by the Four-Russians

