
Freeman

US $44.99

Shelve in
Web Design/HTML

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

The Definitive Guide to HTML5
The Definitive Guide to HTML5 covers everything you need to create standards-
compliant, semantic, modern websites. You’ll learn how to:

• Use all of the core features of HTML5.
• Make the most of the APIs that surround HTML5, such as Geolocation,
 Web Storage, and drag and drop.
• Leverage the media capabilities of the modern web: Canvas, audio, and video.

The Definitive Guide to HTML5 begins by tackling the basics of HTML5, ensuring that
you know best practices and key uses of all of the important elements, including those
new to HTML5. It covers extended usage of CSS3, JavaScript, and DOM manipula-
tion, making you proficient in all core aspects of modern website creation.

The final part of the book covers the associated W3C APIs that surround the HTML5
specification. You will achieve a thorough working knowledge of the Geolocation API,
Web Storage, creating offline applications, and the new drag and drop functionality.
The Definitive Guide to HTML5 also dives into the key media enhancements of HTML5
and its surrounding technologies: Canvas, video and audio.

Turn to The Definitive Guide to HTML5 and find the knowledge you need to start
creating the next generation of websites.

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

 About the Author.. xxxiii
 About the Technical Reviewers ... xxxiv
 Acknowledgments .. xxxv
 Part I: Getting Started...1
 Chapter 1: Putting HTML5 in Context..3
 Chapter 2: Getting Ready ..9
 Chapter 3: Getting Started with HTML ..13
 Chapter 4: Getting Started with CSS...39
 Chapter 5: Getting Started with JavaScript ..71
 Part II: The HTML Elements...103
 Chapter 6: HTML Elements in Context...105
 Chapter 7: Creating HTML Documents ..117
 Chapter 8: Marking Up Text ..151
 Chapter 9: Grouping Content...191
 Chapter 10: Creating Sections ..217
 Chapter 11: Table Elements ..251
 Chapter 12: Working with Forms..281
 Chapter 13: Customizing the Input Element ...311
 Chapter 14: Other Form Elements and Input Validation351
 Chapter 15: Embedding Content ...371
 Part III: Cascading Style Sheets..395
 Chapter 16: CSS in Context ...397
 Chapter 17: Using the CSS Selectors—Part I..411

 CONTENTS AT A GLANCE

v

 Chapter 18: Using the CSS Selectors—Part II ..437
 Chapter 19: Using Borders and Backgrounds...465
 Chapter 20: Working with the Box Model ...497
 Chapter 21: Creating Layouts ...531
 Chapter 22: Styling Text ...555
 Chapter 23: Transitions, Animations, and Transforms581
 Chapter 24: Other CSS Properties and Features ...611
 Part IV: Working with the DOM ...631
 Chapter 25: The DOM in Context ...633
 Chapter 26: Working with the Document Object...653
 Chapter 27: Working with the Window Object ..679
 Chapter 28: Working with DOM Elements...705
 Chapter 29: Styling DOM Elements ...735
 Chapter 30: Working with Events ...765
 Chapter 31: Using the Element-Specific Objects ..793
 Part V: Advanced Features ...819
 Chapter 32: Using Ajax – Part I...821
 Chapter 33: Using Ajax—Part II..849
 Chapter 34: Working with Multimedia..873
 Chapter 35: Using the Canvas Element – Part I ..897
 Chapter 36: Using the Canvas Element – Part II ..929
 Chapter 37: Using Drag & Drop...957
 Chapter 38: Using Geolocation..975
 Chapter 39: Using Web Storage ..987
 Chapter 40: Creating Offline Web Applications...997
 Index ...1015

P A R T I

1

Getting Started

Before you can begin to explore HTML5, you have some preparation to do. In the next five chapters, I’ll
describe the structure of the book, show you how to get set up for HTML5 development, and give you a
refresher in basic HTML, CSS, and JavaScript.

C H A P T E R 1

3

Putting HTML5 in Context

The Hypertext Markup Language (HTML) has been around since the early 1990s. My earliest encounter
was somewhere around 1993 or 1994, when I was working at a university research lab not far from
London. There was only one browser—NCSA Mosaic—and the number of web servers could be counted
on one hand.

When I think back to those days, I wonder why we were so excited about HTML and the World Wide
Web. (We had to laboriously type all three words in those days. There wasn’t the critical mass or current
sense of importance to refer to just “the Web.”

Everything was very basic. I remember some images of gemstones that we could watch load...slowly.
This was before the broadband revolution and the entire university had the kind of bandwidth that is
common on a mobile phone these days. But we were excited. Grant proposals were hurriedly rewritten
to embrace the new world, and there was a real sense that the world of technology had fractured into
before-Web and after-Web periods, even if all we could do was see pictures of a coffee pot in another
university not far from London (but too far to go for coffee).

Since then, the Web has become indistinguishable from the Internet for many users and we are long
past the point of being excited about pictures of gems. Along the way, HTML has been extended,
enhanced, twisted, tortured, fought over, litigated over, ignored, embraced, denigrated for being too
simple, hailed as being the future and, ultimately, settling into its current position as part of the
indispensable plumbing in the daily lives of billions of people.

This book is about HTML5—the latest version of the HTML standard and an attempt to bring order,
structure, and enhancement to a critical technology that has finally matured after years of difficult
adolescence.

The History of HTML
All HTML books have a section titled The History of HTML, and most use this section to give a careful
timeline of the HTML standard from the moment it was created until the present day.
If you need that information, I encourage you to find it on Wikipedia—although it isn’t very interesting
or useful. To understand how HTML has been shaped and how we ended up at HTML5, we care about a
small number of key turning points and one long-lived trend.

The Introduction of JavaScript
JavaScript (which, despite the name, has very little to do with the Java programming language) was
developed by a company called Netscape. It marked the start of client-side scripting embedded in the
web browser, moving HTML from a carrier of static content into something a little richer. I say a little
richer because it took a while for the kind of complex interactions we see in the browser today to emerge.

CHAPTER 1 PUTTING HTML5 IN CONTEXT

4

JavaScript isn’t part of the core HTML specification, but the association between web browsers,
HTML, and JavaScript is so close that it makes no sense to tease them apart. The HTML5 specification
assumes that JavaScript is available, and we need to use JavaScript to use some of the most interesting
new features that have been added to HTML5.

The End of the Browser Wars
There was a period where the browser market was hotly contested. The main competitors were
Microsoft and Netscape, and these companies competed by adding unique features to their web
browsers. The idea was that these features would be so compelling that web developers would build
their content so that it would work only on a particular browser—and this content would be so
compelling that users would prefer one browser over another and market domination would follow.

It didn’t quite work out that way. Web developers ended up using only features that were available
in all browsers or coming up with elaborate workarounds that used roughly comparable features in
each. It was pretty painful, and web development still bears the scars of this period.

In the end, Microsoft was found guilty of antitrust violations after giving away Internet Explorer for
free, undercutting Netscape’s paid-for Navigator product. Microsoft has been blamed for Netscape
going out of business. There may be some truth in this, but I consulted for Netscape for 18 months or so
during this period, and I have never encountered a company so bent on self-destruction. Some
companies are destined to be lessons to others, and Netscape is one such company.

The destruction of Netscape and the penalties given to Microsoft ended the browser wars and set
the scene for standards-based web browsing. The HTML specification was improved, and adherence to
it became the norm. These days, browsers compete on their level of compliance to the standards—a
complete turnabout that has made life easier for developers and users alike.

The Dominance of Plugins
Plugins have been a good thing for the web. They have allowed companies to provide support for
advanced features and rich content that cannot be easily achieved using HTML alone. Some of these
plugins have become so feature rich and so widely installed that many sites are just vehicles for that
plugin’s content. This is especially true for Adobe Flash, and I often encounter sites that are completely
implemented in Flash. There is nothing intrinsically wrong with this, but it does mean that the browser
and HTML are not being used beyond their ability to act as a Flash container.

Plugins make the creators of browsers uncomfortable because it puts control in the hands of the
plugin maker, and one key area of enhancement in HTML5 is an attempt to put the kind of rich content
that Flash is used for directly into the browser. Two companies in particular are driving the move away
from Flash: Apple and Microsoft. Apple does not support Flash in its iOS, and Microsoft has disabled
Flash from the Metro-style version of Internet Explorer in Windows 8.

The Emergence of Semantic HTML
Early versions of the HTML standard didn’t do much to separate the significance of content from the
way it was presented. If you wanted to indicate that a span of text was important, you applied an HTML
element that made the text bold. It was up to the user to make the association that bold content is
important content. This is something that humans do very easily and that automated agents find very
hard to do. The automated processing of content has become important in the years since HTML was
first introduced, and there has been a gradual effort to separate the significance of HTML elements from
the way that content is presented in the browser.

CHAPTER 1 PUTTING HTML5 IN CONTEXT

5

The Trend: The HTML Standard Lags Behind HTML Use
The process for creating a standard is always a long one, especially for something as widely used as
HTML. There are a lot of stakeholders, and each wants to influence new versions of the standard to their
commercial benefit or particular point of view. Standards are not laws, and standards bodies fear
fragmentation above all else—which leads to a lot of time-consuming reconciliation around how
potential features and enhancements may work.

The standards body for HTML is the World Wide Web Consortium (known as W3C). They have a
difficult job, and it takes a long time for a proposal to become a standard. It takes a very long time for a
revision to the core HTML specification to be approved.

The consequence of the lengthy standards process is that the W3C has always been following the
curve, trying to standardize what has already become accepted practice. The HTML specification has
been a reflection of leading-edge thinking about web content from several years ago. This has reduced
the importance of the HTML standard because the real innovation was happening away from the W3C,
partly in the browsers and partly in plugins.

Introducing HTML5
HTML5 isn’t just the latest version of the HTML specification. It is also an umbrella term that describes a
set of related technologies that are used to make modern, rich web content. I’ll introduce you to these
technologies in later chapters, but the three most important ones are the core HTML5 specification,
Cascading Style Sheets (CSS), and JavaScript.

The core HTML5 specification defines the elements we use to mark up content, indicating its
significance. CSS allows us to control the appearance of marked-up content as it is presented to the user.
JavaScript allows us to manipulate the contents of an HTML document, respond to user interaction, and
take advantage of some programming-centric features of the new HTML5 elements.

 Tip Don’t worry if none of this makes sense—I’ll introduce you to HTML elements in Chapter 3, familiarize you
with CSS in Chapter 4, and refresh your JavaScript in Chapter 5.

Some people (picky, obsessive, detail-oriented people) will point out that HTML5 refers to just the
HTML elements. Ignore these people—they are missing a fundamental shift in the nature of web
content. The technologies used in web pages have become so interconnected that you need to
understand them all to create content. If you use HTML elements without CSS, you create content that
users find hard to parse. If you use HTML and CSS without JavaScript, you miss the opportunity to give
users immediate feedback on their actions and the ability to take advantage of some of the new
advanced features that HTML5 specifies.

The New Standard(s)
To deal with the long standardization process and the way that the standard lags behind common usage,
HTML5 and related technologies are defined by a larger number of small standards. Some are just a
handful of pages focused on a very particular aspect of a single feature. Others, of course, are still
hundreds of pages of dense text that cover whole swathes of functionality.

CHAPTER 1 PUTTING HTML5 IN CONTEXT

6

The idea is that smaller groups can cooperate in developing and standardizing features that are
important to them and that less contentious topics can be standardized without being held up by
arguments about other features.

There are some positive and negative consequences to this approach. The positives are that
standards are being developed more quickly. The main negative is that it is hard to keep track of all of
the different standards in development and how they relate to one another. The quality of the
specifications has also fallen—there is ambiguity in some of standards, which leads to inconsistent
implementations in the browsers.

Perhaps the biggest drawback is that there is no baseline against which HTML5 compliance can be
assessed. We are still in the early days, but we can’t rely on features being implemented in all of the
browsers that our users might employ. This makes adopting features problematic and requires a careful
assessment of how widely adopted a standard has become. The W3C has released an official HTML5
logo, shown in Figure 1-1, but it doesn’t indicate support for any particular aspect of the HTML5
standard or its related technologies.

Figure 1-1. The official W3C HTML5 logo

Embracing Native Multimedia
A key enhancement in HTML5 is the support for playing video and audio files natively in the browser
that is, without needing a plugin). This is one part of the response from the W3C to the dominance of
plugins, and the integration between the native multimedia support and the rest of the HTML features
offers a lot of promise. I explain these features in Chapter 34.

Embracing Programmatic Content
One of the biggest changes in HTML5 is the addition of the canvas element, a feature that I describe in
Chapters 35 and 36. The canvas is another response to the domination of plugins, and it provides a
general-purpose drawing surface we can use to achieve some of the tasks that Adobe Flash is commonly
used for.

Part of the significance of this feature arises because we have to use JavaScript to work with the
canvas element. This makes programming a first-class activity in an HTML document, which is an
important change.

CHAPTER 1 PUTTING HTML5 IN CONTEXT

7

Embracing the Semantic Web
HTML5 introduces a number of features and rules to separate the meaning of elements from the way
that content is presented. This is an important concept in HTML5, and I cover it in more detail in
Chapter 6. This is a theme I will return to several times in this book, and it marks a new maturity in
HTML and reflects the diversity of ways in which HTML content is produced and consumed. This
change (which has been gradually introduced in earlier versions of HTML) creates slightly more work for
the web developer because we have to mark up content and then define its presentation, but there are
some useful new enhancements to make this process less burdensome.

The Current State of HTML5
The core HTML5 standard is still under development, and it is not expected to be finalized for some
time. This means there are likely to be some changes between the features I describe in this book and
the final standard. However, the standard is unlikely to be finished for several years and the changes are
likely to be minor.

Browser Support for HTML5
The most popular web browsers already implement many HTML5 features, and throughout this book I
show you how examples are displayed by viewing HTML5 documents in browsers such as Google
Chrome or Mozilla Firefox. Not all browsers support all features, however, and it is worth checking
whether support exists before using a feature in a real project. Some browsers, such as Chrome ad
Firefox, are updated on an almost continuous basis. I have lost count of the number of browser updates I
applied as I wrote this book, and each update brings some new feature or bug fix. This means I have
been unable to give definitive information about which features are supported by which browsers. But
given the fragmented nature of the HTML5 standards, it makes sense to check for features using a
JavaScript library such as Modernizr (http://www.modernizr.com). Modernizr allows you to
programmatically check to see if the browser the user has employed supports key HTML5 features,
giving you the ability to make decisions in the document about which features you rely on.

If you want to plan in advance, I recommend the site When Can I Use? (http://caniuse.com), which
provides detailed information about browser support and adoption rates and seems to be very well
maintained.

Site Support for HTML5
The number of sites that use HTML5 features is growing rapidly. Some are simply demonstration sites,
showing how a given HTML5 features appears, but there is an increasing number of more substantial
sites that can take advantage of an HTML5 browser. A good example is YouTube, which now offers
native HTML5 video support—although, of course, Flash video is used for older browsers.

The Structure of This Book
I have split this book into five parts. This part, Part I, contains the information you need to get ready to
use this book and a refresher in basic HTML, CSS, and JavaScript. If you haven’t done any web
development recently, you will find these chapters bring you up to speed.

Part II covers the HTML elements, including those that are new or modified in HTML5. Each
element is described and demonstrated, and you’ll find information about the default presentation for
elements.

http://www.modernizr.com
http://caniuse.com

CHAPTER 1 PUTTING HTML5 IN CONTEXT

8

Part III covers Cascading Style Sheets (CSS). These chapters describe all of the CSS selectors and
properties available for styling content, and you’ll find plenty of examples and demonstrations to help
put everything in context. In these chapters, I cover the latest version of CSS (CSS3), but I also show you
which features were introduced in CSS1 and CSS2.

Part IV describes the Document Object Model (DOM), which allows you to explore and manipulate
HTML content using JavaScript. The DOM contains a set of features that are essential to creating rich
web content.

Part V contains information about advanced HTML5 features, such as Ajax, multimedia, and the
canvas element. These are features that require more programming skill but offer significant
enhancements to your web content. You don’t have to use these features to take advantage of HTML5,
but they are worth considering for complex projects.

 Note One HTML5-related technology I have not covered in this book is Scalable Vector Graphics (SVG). SVG
allows you to create two-dimensional vector graphics using either markup or JavaScript. SVG is not a topic to be
taken on lightly. If you are interested in SVG, I recommend SVG Programming by Kurt Cagle, which is also
published by Apress.

Finding More Information About HTML5
I tried to be comprehensive in this book, but it is inevitable that you will encounter a problem I don’t
address or have a question that I don’t answer. When this happens, the first place to look is the W3C site
(w3c.org). Here you can peruse the standards and work out what should be happening in the browser.
The standards can be hard to read (and tend toward being self-referential), but they offer some useful
insights.

A friendlier, but less authoritative, resource is the Mozilla Developer Network
(developer.mozilla.org). There is a lot of useful information available about the different HTML
features, including some good HTML5 content.

Summary
In this chapter, I provided some context in which to explain HTML5, setting out the key turning points in
the history of HTML and explaining how HTML5 attempts to address them. In the next chapter, I’ll tell
you how to prepare for working through the many examples in this book. After that, we will start our
exploration of HTML5, beginning with the HTML elements themselves.

C H A P T E R 2

9

Getting Ready

Before you start, you need to do a small amount of preparation. You need some basic tools for all web
development, and there is one piece of software you will need if you want to re-create some of the
advanced examples later in the book.

The good news about web development tools is that there are plenty of free and open-source
choices available. All of the tools I used when developing the examples for this book are available freely.
Once you have made you selections, you can begin your HTML5 journey.

Selecting a Browser
The most important tool you’ll need for this book is a browser. Throughout this book, I refer to the
mainstream browsers, by which I mean the desktop versions of the following:

• Google Chrome

• Mozilla Firefox

• Opera

• Apple Safari

• Internet Explorer

These browsers are the most widely used, and the desktop versions are more frequently updated
and more feature rich than their mobile counterparts. Your preferred browser may not be on this list,
which doesn’t mean it won’t support the HTML5 features I demonstrate, but my advice is to stick to one
of the browsers on the list.

My favorite browser is Google Chrome. I like its simplicity, and it has pretty good developer tools.
For this reason, most of the figures in this book show Google Chrome displaying an HTML5 document. If
you are not a fan of Chrome, I suggest Firefox or Opera because their HTML5 support is on a par with
Chrome. Safari and Internet Explorer seem to lag behind.

Internet Explorer is in an interesting state at the moment. As I write this, Internet Explorer 9 is in
production and has some reasonable support for basic HTML5 features. There is a preview version of
Internet Explorer 10, which is much improved, but it is still missing support for key features. However, it
is becoming clear that Microsoft’s proposition for Windows 8 includes application development based
on HTML5 and JavaScript, which suggests that we can expect good levels of HTML5 support in the
Internet Explorer engine as we approach the Windows 8 release.

CHAPTER 2 GETTING READY

10

 Note Please don’t write to me explaining why your preferred browser is better than my preferred browser. I am
sure your browser is lovely and your choice is well made, and I wish you many years of browsing happiness. If you
really can’t let this go, I am prepared to sell you a remediation kit for only $50—it contains a pack of paper, a pair
of scissors, and some glue. These will allow you to print and cut out a template you can stick over all of the figures
in this book, showing your browser instead of Chrome. I think you will agree that this is a small price to pay for
peace of mind.

Selecting an HTML Editor
You will need an editor to write HTML documents. Any text editor will do, but I recommend an editor
that has specific support for HTML (and ideally HTML5). These usually offer syntax checking for your
markup, autocomplete to reduce the amount of typing you have to do, and a preview panel that shows
you the effect of changes as you type.

For this book, I used Komodo Edit from ActiveState (available from activestate.com)—a free, open-
source editor that has some pretty good HTML support and which suits my personal preferences about
how an editor should work. I have no relationship with ActiveState and no reason to promote Komodo
Edit, other than I have found it useful for this book and some other projects.

Selecting a Web Server
A web server isn’t essential to follow this book, but some features work differently if you load the HTML
documents from disk. Any web server is suitable for the examples in this book, and plenty of free and
open-source options are available. I used IIS 7.5, which is Microsoft’s web and application server. This
isn’t a free option, but I have a development server that runs Windows Server 2008 R2, so I already had
all the features I needed.

Obtaining Node.js
For a few of the chapters in this book, I needed to write code for a back-end server that the web browser
could communicate with. I chose Node.js for this task. Node.js has become something of a phenomenon
recently. It offers simple, event-driven I/O, which is ideally suited for high-volume, low-data-rate web
requests.

You don’t need to know about or worry about any of this. The reason I chose Node.js is that I write
server scripts using JavaScript, which means that I don’t have to introduce a second programming
language in this book. I am not going to explain how Node.js works—or even explain the detail of my
server scripts—but you should be able to use your JavaScript skills to figure out how they work if you
can’t treat them as a black box.

You can download Node.js from nodejs.org. I used version 0.4.11 in this book. Node.js seems to be
evolving very quickly, so you may find that there are later versions available by the time you read this. I
use Windows, and I obtained the precompiled binaries from http://node-js.prcn.co.cc.

http://node-js.prcn.co.cc

CHAPTER 2 GETTING READY

11

Obtaining the Multipart Module
Not all of the functionality you need is included in the core Node.js package. You also need the
multipart module, which is available from https://github.com/isaacs/multipart-js. Follow the
instructions to install this module—you will need it for Chapters 32 and 33 when we take a look at Ajax.

Getting the Sample Code
All of the example HTML documents I create in this book are available free of charge from apress.com.
You will find the examples organized by chapter, and they are provided with their supported resources
(except for the video and audio content I used in Chapter 34, because clearing media content is very
difficult).

Summary
In this chapter, I outlined the simple steps required to get ready for the chapters that follow. Web
development requires only a few simple tools, the most important of which is the browser and all of
which can be obtained free of charge. The next three chapters refresh your basic skills in HTML,
Cascading Style Sheets (CSS), and JavaScript.

https://github.com/isaacs/multipart-js

C H A P T E R 3

13

Getting Started with HTML

Every developer knows at least something about HTML. It has become all-pervasive in recent years, and
the chances are good that you have at least seen some HTML, even if you have never needed to write any.
In this chapter, I am going back to the basics of HTML to make sure you get the fundamentals right—
beginning with what HTML is for and how it works. I’ll define the basic terminology HTML uses and
show you some of the core HTML elements that pretty much every web page uses.

As its name suggests, HTML is a markup language. This markup takes the form of elements applied
to content, typically text. In the following sections, I’ll explain the different aspects of HTML elements,
explain how you can configure the elements with attributes, and describe the set of global attributes that
can be used on all HTML elements. Table 3-1 provides the summary for this chapter.

Table 3-1. Chapter Summary

Problem Solution Listing

Apply markup to content. Use an HTML element. 1-5

Fine-tune the way that a browser handles
HTML elements.

Apply one or more attributes to the
element.

6-10

Declare that a document contains HTML. Use the DOCTYPE and html elements. 11

Describe an HTML document. Use the head element to contain one or
more of the metadata elements (which
are described in Chapter 7).

12

Add content to an HTML document. Use the body element to contain text
and other HTML elements.

13

Add a shortcut key to select an element. Use the accesskey global attribute. 14

Classify elements together, either so that a
consistent style can be applied or so that
the elements can be located
programmatically.

Use the class global attribute. 15-17

CHAPTER 3 GETTING STARTED WITH HTML

14

Allow the user to edit the content of an
element.

Use the contenteditable global
attribute.

18

Add a context menu to an element. Use the contextmenu global attribute.
(Note that this attribute has no
browser support currently.)

-

Specify the layout direction of an element’s
content.

Use the dir global attribute. 19

Specify that an element can be dragged. Use the draggable global attribute.
(See Chapter 37 for details of HTML5
drag and drop.)

-

Specify that an element can be used as a
target on which to drop other elements .

Use the dropzone global attribute. (See
Chapter 37 for details of HTML5 drag
and drop.)

-

Indicate that an element and its contents
are not relevant.

Use the hidden global attribute. 20

Assign a unique identifier to an element so
that a style can be applied or so that the
element can be selected programmatically.

Use the id global attribute. 21

Specify the language in which the content
of an element is expressed.

Use the lang global attribute. 22

Specify whether the contents of an element
should be checked for spelling errors.

Use the spellcheck global attribute. 23

Define a style directly to an element. Use the style global attribute. 24

Specify the order in which the Tab key
moves between elements in an HTML
document.

Use the tabindex global attribute. 25

Provide additional information about an
element (which will typically be used to in a
tool tip).

Use the title global attribute. 26

Using Elements
Listing 3-1 shows a simple example of an HTML element applied to some text.

CHAPTER 3 GETTING STARTED WITH HTML

15

Listing 3-1. Example of an HTML Element

I like <code>apples</code> and oranges.

I have shown the element in bold—it has three parts. The first two are called tags. The start tag is
<code>, and the end tag is </code>. Between the tags is the element’s content (in this case, the word
apples). Together, the tags and the content form the code element, as shown in Figure 3-1.

Figure 3-1. The anatomy of an HTML element

Elements are the way you tell the browser about your content. The effect of the element is applied to
the element contents. Each of the HTML elements has a different and quite specific meaning—the code
element, for example, represents a fragment of computer code.

 Tip Element names are not case sensitive—browsers will recognize <CODE> and <code>, and even <CoDe>, as
start tags for the code element. In general, the convention is to adopt a single case format and stick to it. In recent
years, the more common style has been to use lowercase characters throughout. This is the format I will use in
this book.

HTML defines different types of element that fulfill various roles in an HTML document—the code
element is an example of a sematic element. Semantic elements allow us to define the meaning of our
content and the relationships between different parts of the content. I’ll explain more about this in
Chapter 8. You can see the effect of the code element in Figure 3-2.

Figure 3-2. The effect of the code element displayed in a broswer

Notice that the browser doesn’t display the element tags—its job is to interpret your HTML and
render a view to the user that takes your elements into account.

CHAPTER 3 GETTING STARTED WITH HTML

16

THE SEPARATION OF PRESENTATION AND CONTENT

Some HTML elements have an impact on presentation—meaning that when the browser encounters one
of these elements, it will change the way the content is displayed to the user. The code element is a good
example. As Figure 3-1 shows, when the browser encounters the code element, it displays the enclosed
content using a fixed-width font.

The use of HTML elements to manage the way content is presented is now strongly discouraged. The idea
is that you use HTML elements to define the structure and meaning of your content and Cascading Style
Sheets (CSS) to control the way the content is presented to the user. We’ll come to CSS in Chapter 4.

The elements that do affect presentation tend to be those that originated in the early versions of HTML,
when the idea of separating presentation and content were not so rigorously enforced. Browsers will apply
a default presentation style to these elements, such as the fixed-width font that is typically used for the
code element. As I’ll explain in Chapter 4, you can use CSS to override those default styles.

Understanding the Elements Used in This Chapter
To provide a refresher on HTML, I need to use some elements that I don’t describe until later chapters.
Table 3-2 lists these elements, along with a brief description and the chapter in which you can find full
details.

Table 3-2. Element Summary

Element Description Chapter

a Creates a hyperlink 8

body Denotes the content of an HTML document 7

button Creates a button for submitting forms 12

code Denotes a fragment of computer code 8

DOCTYPE Denotes the start of an HTML document 7

head Denotes the header section of an HTML document 7

hr Denotes a thematic break 9

html Denotes the HTML section of a document 7

input Denotes input supplied by a user 8

label Creates a label for another element 12

CHAPTER 3 GETTING STARTED WITH HTML

17

p Denotes a paragraph 9

style Defines a CSS style 7

table Denotes tabular data 11

td Denotes a table cell 11

textarea Creates a multiline text box to gather input from the user 14

th Creates a table header cell 11

title Defines the title for an HTML document 7

tr Denotes a table row 11

Using Empty Elements
You are not required to place any content between the start and end tags. If you don’t, you create an
empty element, like the one shown in Listing 3-2.

Listing 3-2. An Empty HTML Element

I like <code></code> apples and oranges.

Not all elements make sense when they are empty (and code is one of these), but even so, this is still
valid HTML.

Using Self-Closing Tags
You can express empty elements more concisely by using a single tag, as shown in Listing 3-3.

Listing 3-3. Expressing an Empty Element Using a Single Tag

I like <code/> apples and oranges.

You combine the start and end tag into one—the stroke character (/), which is usually used to
signify the start of the end tag, is placed at the end of the single tag. The element in Listing 3-2 and the
element in Listing 3-3 are equivalent—the single tag is a more concise way of expressing the empty
element.

Using Void Elements
There are some elements that must be expressed using a single tag—the HTML specification makes it
illegal to place any content in them. These are known as void elements. One such element is hr, which is
a grouping element and is used to denote a paragraph-level break in the content. (You’ll see the other
grouping elements in Chapter 9.) You can use void elements in one of two ways—the first is to specify
only a start tag, as shown in Listing 3-4.

CHAPTER 3 GETTING STARTED WITH HTML

18

Listing 3-4. Specifying a Void Element Using Just a Start Tag

I like apples and oranges.
<hr>
Today was warm and sunny.

The browser knows that hr is a void element and doesn’t expect to see a closing tag. You can also
include a stroke to make the element consistent with empty elements, as shown in Listing 3-5.

Listing 3-5. Expressing Void Elements Using the Empty Element Structure

I like apples and oranges.
<hr />
Today was warm and sunny.

This is the format I prefer and will use in this book. As an aside, the hr element is another example of
an element that had presentational meaning—in this case, to display a horizontal rule (hence the name).
You can see the default interpretation of the hr element in Figure 3-3.

Figure 3-3. The default presentation of the hr element

(NOT) USING OPTIONAL START AND END TAGS

Many HTML5 elements have special rules under which you can choose to omit one of the tags. As an
example, the html element (which I describe in Chapter 7) permits its end tag to be omitted if “the element
is not immediately followed by a comment and the element contains a body element that is either not
empty or whose start tag has not been omitted”. The text in italics comes from one of the official HTML5
specification documents. I encourage you to read these specifications (which you can get at w3c.org), but
be warned: they are all written in this lively style.

I think it is great that there is such flexibility in the markup, but I also think it is confusing and leads to
maintenance problems. The elements you apply to HTML are not just processed by browsers—they have
to be read by your colleagues and by future versions of yourself when you come back to maintain and
update your application. The browser may be able to determine why a given tag has been omitted, but it
won’t be as obvious to your colleagues or when you return to the HTML to make changes. To that end, I
don’t detail these special rules in this book and I use the start and end tags of an element unless there is a
compelling reason not to (in which case, I’ll explain why).

CHAPTER 3 GETTING STARTED WITH HTML

19

Using Element Attributes
You can configure your elements by using attributes. Listing 3-6 shows an attribute that applies to the a
element. This element lets you create a hyperlink that, when it’s clicked on, loads a different HTML
document.

Listing 3-6. Using an Element Attribute

I like apples and oranges.

Attributes can be added only to start tags or single tags—they can never be added to end tags.
Attributes have a name and a value, as shown in Figure 3-4.

Figure 3-4. Applying attributes to HTML elements

There are a set of global attributes that can be applied to any HTML element—I describe these in
later in this chapter. In addition to these global attributes, elements can define their own attributes that
provide configuration information that is specific to the role of the element. The href attribute is local to
the a element, and it configures the URL that is the destination of the hyperlink. The a element defines a
number of specific attributes, which I describe in Chapter 8.

 Tip I have used double quotes ("myvalue") to delimit the attribute value in the listing, but you can also use
single quotes ('myvalue'). If you want to specify a value for an attribute that itself must contain quotes, you use
both styles ("my'quoted'value" or 'my"quoted"value').

Applying Multiple Attributes to an Element
You can apply multiple attributes to an element by separating them with one or more space characters.
Listing 3-7 provides an example.

Listing 3-7. Defining Multiple Attributes in an Element

I like apples and oranges.

The order of the attributes is not important, and you can freely mix global attributes with the ones
that are element specific, which is what I have done in the listing. The class and id attributes are global.
(I explain these attributes later in this chapter.)

CHAPTER 3 GETTING STARTED WITH HTML

20

Using Boolean Attributes
Some attributes are Boolean attributes. You don’t have to specify a value for these attributes—just add
the attribute name to the element, as shown in Listing 3-8.

Listing 3-8. A Boolean Attribute

Enter your name: <input disabled>

The Boolean attribute in this example is disabled, and I have just added the attribute name to the
element. The input element provides a means for the user to enter data into an HTML form (which I
describe in Chapter 12). Adding the disabled attribute stops the user from entering data. Boolean
attributes are a little odd because it is the presence of the attribute that configures the element, not the
value you assign to the attribute. I didn’t specify disabled="true"—I just added the word disabled. You
can achieve the same effect by assigning the empty string ("") or by setting the value to be the name of
the attribute, as shown in Listing 3-9.

Listing 3-9. A Boolean Attribute Assigned the Empty String Value

Enter your name: <input disabled="">
Enter your name: <input disabled="disabled">

Using Custom Attributes
You can define your own attributes as long as the name you use is prefixed with data-. Listing 3-10
shows the use of such attributes.

Listing 3-10. Applying Custom Attributes to an Element

Enter your name: <input disabled="true" data-creator="adam" data-purpose="collection">

The proper name for these attributes is author defined attributes, which are sometimes referred to
as expando attributes, but I prefer the more commonly used term custom attribute.

Custom attributes are a formal definition of a widely used HTML4 technique where browsers would
ignore any attribute they didn’t recognize. You prefix these attributes with data- to avoid clashing with
attribute names that might be created by future versions of HTML. Custom attributes are useful when
working with CSS (introduced in Chapter 4) and with JavaScript (introduced in Chapter 5).

Creating an HTML Document
Elements and attributes don’t exist in isolation—you use them to mark up your content in an HTML
document. The simplest way to create an HTML document is to create a text file—the convention is that
these files have the .html file extension. You can then load the file into a browser, either directly from the
disk or via a web server. (In this book, I generally use a web server. My server is called titan, and you’ll
often see this name in browser windows shown in screenshots.)

CHAPTER 3 GETTING STARTED WITH HTML

21

BROWSERS AND USER AGENTS

Throughout this chapter (and for most of this book), I refer to the browser as the target for the HTML we
create. This is a convenient way of thinking about HTML and is the most common way that HTML is
consumed, but it doesn’t tell the full story. The collective name for software components and components
that might consume HTML is user agents. Although browsers are the most prevalent kind of user agent,
they are not the only kind.

Nonbrowser user agents are still quite rare, but they are expected to become more popular. The increased
emphasis on separating content and presentation in HTML5 is important because it recognizes that not all
HTML content is displayed to users. I’ll still refer to the browser in this book (because browsers are the
most important and dominant category of user agent), but it is useful to keep in mind that some other kind
of software might be what your HTML5 is delivering service to.

An HTML document has a particular structure—you need to have some key elements in place as a

minimum. Most of the examples in this book are shown as complete HTML documents—this means you
can quickly and easily see how an element is applied and the effect it has. I explain all of the elements in
the listings in later chapters, but as a quick jump start I am going to give you a tour of a basic HTML
document. I will also provide references to the later chapters where you can get more detail.

HTML VS. XHTML

Although this is a book about HTML, I would be remiss if I didn’t also mention XHTML (that’s HTML
preceded with an X). The HTML syntax allows you to do things that make for illegal XML documents. This
means it can be difficult to process an HTML document using a standard XML parser.

To solve this problem, you can use XHTML, which is an XML serialization of HTML (that is, you express
your content and HTML elements and attributes in a way that makes for valid XML and can be readily
handled by an XML parser). You can also create polyglot documents, which are valid HTML and valid XML,
although this requires using a subset of the HTML syntax. I don’t cover XHTML in this book, but you can
get more information about XHTML at the following URL:
http://wiki.whatwg.org/wiki/HTML_vs._XHTML.

The Outer Structure
There are two elements that provide the outer structure of an HTML document—the DOCTYPE and html
elements, as shown in Listing 3-11.

http://wiki.whatwg.org/wiki/HTML_vs._XHTML

CHAPTER 3 GETTING STARTED WITH HTML

22

Listing 3-11. The Outer Structure of an HTML Document

<!DOCTYPE HTML>
<html>
 <!-- elements go here -->
</html>

The DOCTYPE element tells the browser it is dealing with an HTML document. This is expressed
through the HTML boolean attribute:

<!DOCTYPE HTML>

You follow the DOCTYPE element with the start tag of the html element. This tells the browser that the
contents of the element should be treated as HTML all the way through until the html close tag. It may
seem odd that you use the DOCTYPE element and then immediately use the html element, but back when
HTML emerged as a standard there were other markup languages that were given equal weight and it
was expected that documents would contain a mix of markup types.

These days, HTML is the dominant markup language and most browsers will assume they are
dealing with HTML even if you omit the DOCTYPE element and html elements. That doesn’t mean you
should leave them out. These elements serve an important purpose, and relying on the default behavior
of a browser is like trusting strangers—things will be fine most of the time, but every now and again
something will go very badly wrong. See Chapter 7 for more details of the DOCTYPE and html elements.

The Metadata
The metadata region of an HTML document allows you to provide information about your document to
the browser. The metadata is contained inside a head element, as shown in Listing 3-12.

Listing 3-12. Adding the head Element to an HTML Document

<!DOCTYPE HTML>
<html>
 <head>
 <!-- metadata goes here -->
 <title>Example</title>
 </head>
</html>

In the listing, I have provided the minimum amount of metadata, which is the title element. All
HTML documents are expected to contain a title element, although browsers will generally ignore any
omissions. Most browsers display the contents of the title element in the menu bar of the browser
window or at the top of the tab that displays the page. The head and title elements are described fully in
Chapter 7, along with all of the other metadata elements that can be placed in the head element.

 Tip The listing demonstrates how you create comments in HTML document. You begin with the tag <!-- and
end with -->. The browser will ignore anything you put inside these tags.

CHAPTER 3 GETTING STARTED WITH HTML

23

In addition to containing elements that describe the HTML document, the head element is also used
to define relationships to external resources (such as CSS stylesheets), define inline CSS styles, and
define and load scripts. All of these activities are demonstrated in Chapter 7.

The Content
The third and final part of the document is the content, which you put inside a body element, as shown
in Listing 3-13.

Listing 3-13. Adding the body Element to an HTML Document

<!DOCTYPE HTML>
<html>
 <head>
 <!-- metadata goes here -->
 <title>Example</title>
 </head>
 <body>
 <!-- content and elements go here -->
 I like <code>apples</code> and oranges.
 </body>
</html>

The body element tells the browser which part of the document is to be displayed to the user—and,
of course, a lot of this book is given over to what you can put inside the body element. With the addition
of the body element, you have the skeletal HTML document I will use for most of the examples in this
book.

Understanding Parents, Children, Descendants, and Siblings
HTML elements have defined relationships with the other elements in an HTML document. An element
that contains another element is the parent of the second element. In Listing 3-13, the body element is
the parent to the code element, because the code element is contained between the start and end tags of
the body element. Conversely, the code element is a child of the body element. An element can have
multiple children, but only one parent.

Elements can contain elements that, in turn, contain other elements. You can also see this in Listing
3-13: the html element contains the body element, which contains the code element. The body and code
elements are descendents of the html element, but only the body element is a child of the html element.
Children are direct descendants. Elements that share the same parent are known as siblings. In Listing 3-
13, the head and body elements are siblings because they are both children of the html element.

The importance of the relationship between elements runs through HTML. As you’ll see in the
following section, elements have restrictions as to which other elements can be their parents or children.
These restrictions are expressed through element types. Element relationships are also essential in CSS—
which I introduce in Chapter 4—and one of the ways you select elements to apply styles to is through
their parent/child relationships. Finally, when you read about the Document Object Model (DOM) in
Part IV, you will find specific elements in a document by navigating through the document tree, which is
a representation of the relationships between elements. Knowing your siblings from your descendants is
an important skill in the world of HTML.

CHAPTER 3 GETTING STARTED WITH HTML

24

Understanding Element Types
The HTML5 specification groups elements into three categories: metadata elements, flow elements, and
phrasing elements.

Metadata elements are used to create the basic structure of an HTML document and to provide
information and direction to the browser about how the document should be processed. I describe the
metadata elements in Chapter 7.

The other two categories are slightly different—you use them to specify the valid set of parents and
children for an element. The phrasing elements are the basic building blocks of HTML. Chapter 8
contains descriptions of the most commonly used phrasing elements. The flow elements category is a
super-set of the phrasing elements—which is to say that all phrasing elements are also flow elements,
but not all flow elements are phrasing elements.

Not all elements belong to one of the element categories—those that don’t either have special
significance or can be used only in very restrictive circumstances. An example of a restricted element is
the li element, which denotes a list item and is limited to one of three parent elements: ol (which
denotes an ordered list), ul (which denotes an unordered list), and menu (which denotes a menu). You
can learn more about the li element in Chapter 9. I tell you which category each element belongs to as
part of the element descriptions that start in Chapter 6.

Using HTML Entities
As you can see from the examples in this chapter, there are some characters that have special meaning in
HTML document—the obvious ones being the < and > characters. You will sometimes need to use these
characters in your content without wanting them to be interpreted as HTML. To do this, you use HTML
entities. An entity is a code the browser substitutes for the special character. You can see some common
entities in Table 3-3.

Table 3-3. Commonly Used HTML Entities

Character Entity Name Entity Number

< < <

> > >

& &

€ € €

£ £ £

§ § §

© © ©

® ® ®

™ ™ ™

CHAPTER 3 GETTING STARTED WITH HTML

25

Each special character has an entity number that you can include in your content to represent the
character—for example, the ampersand character is . The more popular special characters also
have a name—for example, and & have the same meaning to the browser.

The HTML5 Global Attributes
Earlier in this chapter, I showed you how to configure elements using attributes. Each element can
define its own attributes—these are known as local attributes. When I begin describing elements in
detail in Chapter 6, I will give you a list of each of the local attributes that an element defines and show
you how to use them. Each local attribute gives you the ability to control some aspect of the unique
behavior of an element.

There is a second category of attributes—the global attributes. These configure the behavior that is
common to all elements. You can apply every global attribute to every element, although this doesn’t
always lead to a meaningful or useful behavior change. In the following sections, I describe each of the
global attributes and give a demonstration. Some of these attributes are linked to broader HTML
features that I cover in more depth later in this book. In these cases, I give a reference to the relevant
chapters.

The accesskey Attribute
The accesskey attribute lets you specify one or more keyboard shortcuts that will select the element on
the page. Listing 3-14 shows the use of this attribute in a simple form. Forms are the topic of Chapters 12
through 14, so you might want to come back to this example after reading those chapters.

Listing 3-14. Using the accesskey Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <form>
 Name: <input type="text" name="name" accesskey="n"/>
 <p/>
 Password: <input type="password" name="password" accesskey="p"/>
 <p/>
 <input type="submit" value="Log In" accesskey="s"/>
 </form>
 </body>
</html>

In this example, I have added the accesskey attribute to three input elements. (I describe the input
element in Chapters 12 and 13.) The idea is to enable users who are regular users of a page or site to use
keyboard shortcuts to move between commonly used elements. The key combination required to trigger
the accesskey setting differs between platforms—for Windows, it is the Alt key and the accesskey value
pressed together. You can see the effect of the accesskey attribute in Figure 3-5. I press Alt+n to focus on
the first input element and enter my name. I then press Alt+p to focus on the second input element and
enter my password. Alt+s presses the Log In button, which submits the form.

CHAPTER 3 GETTING STARTED WITH HTML

26

Figure 3-5. The effect of the accesskey attribute

The class Attribute
The class attribute is used to classify or categorize elements. You usually do this so that you can locate
elements in the document that belong to a given class or to apply a CSS style. Listing 3-15 shows how
you can apply the class attributes.

Listing 3-15. Applying the class Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 Apress web site
 <p/>
 W3C web site
 </body>
</html>

You can apply multiple classes to each element by separating the class names with a space. The
names of the classes that you create are arbitrary, but it is a good idea to make the names meaningful,
especially if you have a document that contains many classes. On its own, the class attribute doesn’t do
anything. Figure 3-6 shows the HTML displayed in a browser. As you can see, you just get a couple of
hyperlinks.

http://apress.com
http://w3c.org

CHAPTER 3 GETTING STARTED WITH HTML

27

Figure 3-6. A pair of a elements to which the class attribute has been applied

The first way you can take advantage of the class attribute is to create a style that targets one of
more of the classes you have defined. Listing 3-16 provides an example.

Listing 3-16. Defining a Style That Relies on Classes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 .class2 {
 background-color:grey;
 color:white;
 padding:5px;
 margin:2px;
 }
 .class1 {
 font-size:x-large;
 }
 </style>
 </head>
 <body>
 Apress web site
 <p/>
 W3C web site
 </body>
</html>

In this example, I used a style element to define two styles—the first is applied to elements that are
assigned to class2 and the second is applied to class1.

I explain the style element in Chapter 7, and I provide an introduction to styles and how they can
be used to target elements in different ways in Chapter 4.

When you load the HTML in a browser, the styles are applied to the elements. The effect is shown in
Figure 3-7. The advantage of using classes to assign styles is that you don’t have to duplicate the same
style settings on each element.

http://apress.com
http://w3c.org

CHAPTER 3 GETTING STARTED WITH HTML

28

Figure 3-7. Using the class attribute to apply styles

Another way to use the class attribute is in a script. Listing 3-17 provides a demonstration.

Listing 3-17. Using the class Attribute in a Script

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 Apress web site
 <p/>
 W3C web site
 <script type="text/javascript">
 var elems = document.getElementsByClassName("otherclass");
 for (i = 0; i < elems.length; i++) {
 var x = elems[i];
 x.style.border = "thin solid black";
 x.style.backgroundColor = "white";
 x.style.color = "black";
 }
 </script>
 </body>
</html>

The script in this example finds all of the elements that have been assigned to the otherclass class
and applies some styling. I explain the script element in Chapter 7, each of the style properties in
Chapters 19 through 24, and how to find elements in the document in Chapter 26. The effect of this
script is shown in Figure 3-8.

http://apress.com
http://w3c.org

CHAPTER 3 GETTING STARTED WITH HTML

29

Figure 3-8. Using the class attribute in a script

The contenteditable Attribute
The contenteditable attribute is new in HTML5 and allows the user to change the content in the page.
Listing 3-18 provides a simple demonstration.

Listing 3-18. Using the contenteditable Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p contenteditable="true">It is raining right now</p>
 </body>
</html>

I have applied the contenteditable attribute to a p element (which I describe in Chapter 9). Setting
the attribute value to true allows the user to edit the element contents, and setting it to false disables
this feature. (If you don’t specify a value, the element inherits the setting for this property from its
parent.) You can see the effect that the attribute has in Figure 3-9. The user clicks on the text and starts to
type.

Figure 3-9. Enabling editing with the contenteditable attribute

CHAPTER 3 GETTING STARTED WITH HTML

30

The contextmenu Attribute
The contextmenu attribute allows you to define context menus for elements. These menus pop up when
the user triggers them (for example, when a Windows PC user right-clicks). At the time of this writing, no
browser supports the contextmenu attribute.

The dir Attribute
The dir attribute specifies the direction of an element’s text. The two supported values are ltr (for left-
to-right text) and rtl (for right-to-left text). Listing 3-19 shows both values being used.

Listing 3-19. Using the dir Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p dir="rtl">This is right-to-left</p>
 <p dir="ltr">This is left-to-right</p>
 </body>
</html>

You can see the effect of the dir attribute in Figure 3-10.

Figure 3-10. Displaying left-to-right and right-to-left text

The draggable Attribute
The draggable attribute is part of the HTML5 support for drag and drop, and it is used to indicate
whether an element can be dragged. I explain drag and drop in detail in Chapter 37.

The dropzone Attribute
The dropzone attribute is part of the HTML5 support for drag and drop. It is the counterpart to the
draggable attribute I just described. I explain both elements in Chapter 37.

CHAPTER 3 GETTING STARTED WITH HTML

31

The hidden Attribute
The hidden attribute is a Boolean attribute that indicates an element is not presently relevant. Browsers
interpret this attribute by hiding the element from view. Listing 3-20 shows the effect of the hidden
attribute.

Listing 3-20. Using the hidden Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <script>
 var toggleHidden = function() {
 var elem = document.getElementById("toggle");
 if (elem.hasAttribute("hidden")) {
 elem.removeAttribute("hidden");
 } else {
 elem.setAttribute("hidden", "hidden");
 }
 }
 </script>
 </head>
 <body>
 <button onclick="toggleHidden()">Toggle</button>
 <table>
 <tr><th>Name</th><th>City</th></tr>
 <tr><td>Adam Freeman</td><td>London</td></tr>
 <tr id="toggle" hidden><td>Joe Smith</td><td>New York</td></tr>
 <tr><td>Anne Jones</td><td>Paris</td></tr>
 </table>
 </body>
</html>

I made this example somewhat more elaborate than it needs to be. I defined a table element that
contains a tr element (which represents a row in the table) for which the hidden attribute is present. I
also defined a button element that, when pressed, invokes the toggleHidden JavaScript function defined
in the script element. This script removes the hidden attribute when it is present and adds it otherwise.
Don’t worry about how this all works for the moment. I explain the table, tr, th, and td elements in
Chapter 11, the script element in Chapter 7, and events in Chapter 30.

I put this all in place to demonstrate what happens when the hidden attribute is applied, You can see
the effect of pressing the button in Figure 3-11.

CHAPTER 3 GETTING STARTED WITH HTML

32

Figure 3-11. The effect of removing and adding the hidden element

When the hidden attribute is applied to an element, the browser doesn’t render it at all. It is as
though it were not contained in the HTML, so the table is rendered with the reduced number of rows.

The id Attribute
The id attribute is used to assign a unique identifier to an element. These identifiers are commonly used
to apply styles to an element or to select an element with JavaScript. Listing 3-21 demonstrates how to
apply a style based on the value of the id attribute.

Listing 3-21. Using the id Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <style>
 #w3clink {
 background:grey;
 color:white;
 padding:5px;
 border: thin solid black;
 }
 </style>
 <body>
 Apress web site
 <p/>
 W3C web site
 </body>
</html>

To apply a style based on an id attribute value, you prefix id with the # character when defining the
style. I give more details about CSS selectors in Chapters 17 and 18, and I describe the various styles that
can be applied in Chapters 19 through 24. You can see the effect of applying the style in Figure 3-12.

http://apress.com
http://w3c.org

CHAPTER 3 GETTING STARTED WITH HTML

33

Figure 3-12. Applying a style based on an element’s id attribute value

 Tip The id attribute can also be used to navigate to a particular section in a document. If you imagine a
document called example.html that contains an element with an id attribute value of myelement, you can
navigate directly to the element by requesting example.html#myelement. This last part of the URL (the # plus the
element id) is known as the URL fragment identifier.

The lang Attribute
The lang attribute is used to specify the language of an element’s contents. Listing 3-22 demonstrates
how to use this attribute.

Listing 3-22. Using the lang Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p lang="en">Hello - how are you?</p>
 <p lang="fr">Bonjour - comment êtes-vous?</>
 <p lang="es">Hola - ¿cómo estás?</p>
 </body>
</html>

The value for the lang attribute must be a valid ISO language code. You can get full details of how to
specify languages at http://tools.ietf.org/html/bcp47. Be warned, though: dealing with languages can
be a complex and technical business.

The lang attribute is intended to allow the browser to adjust its approach to displaying an element.
This can mean changing quotation marks, for example, and also having to properly pronounce text
when a text-to-speech reader (or other accessibility) tool is used.

You can also use the lang attribute to select content of a given language—perhaps to apply a style or
display only content in a language the user selects.

http://tools.ietf.org/html/bcp47

CHAPTER 3 GETTING STARTED WITH HTML

34

The spellcheck Attribute
The spellcheck attribute is used to specify if the browser should check the spelling of an element’s
content. Using this attribute makes sense only when it is applied to an element the user can edit, as
shown in Listing 3-23. I describe the textarea element in Chapter 14.

Listing 3-23. Using the spellcheck Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <textarea spellcheck="true">This is some mispelled text</textarea>
 </body>
</html>

The permitted values for the spellcheck attribute are true (spellchecking is enabled) and false
(spellchecking is disabled). The way that spellchecking is implemented differs between browsers. In
Figure 3-13, you can see how Google Chrome handles this feature, which is a check-as-you-type
approach. Other browsers require the user to explicitly perform a spellcheck.

Figure 3-13. Spellchecking as implemented by Chrome

 Caution The current implementation of spellchecking in the most commonly used browsers ignores the lang
element I just described. Spellchecking will be performed using the language defined by the user’s operating
system or by a separate browser setting.

The style Attribute
The style attribute allows you to define a CSS style directly on an element (as opposed to in a style
element or external stylesheet). Listing 3-24 provides a demonstration.

Listing 3-24. Using the style Attribute

<!DOCTYPE HTML>
<html>

CHAPTER 3 GETTING STARTED WITH HTML

35

 <head>
 <title>Example</title>
 </head>
 <body>

 Visit the Apress site

 </body>
</html>

I describe CSS styles in more detail in Chapter 5, and you can learn about the different style options
available in Chapters 19 through 24.

The tabindex Attribute
The tabindex attribute allows you to control the order in which the Tab key moves the focus through the
HTML page, overriding the default order. Listing 3-25 demonstrates how to use this attribute.

Listing 3-25. Using the tabindex Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <form>
 <label>Name: <input type="text" name="name" tabindex="1"/></label>
 <p/>
 <label>City: <input type="text" name="city" tabindex="-1"/></label>
 </p>
 <label>Country: <input type="text" name="country" tabindex="2"/></label>
 </p>
 <input type="submit" tabindex="3"/>
 </form>
 </body>
</html>

The first element that will be selected is the one that has the tabindex value of 1. When the user
presses the Tab key, the element with a tabindex of 2 will be selected, and so on. A tabindex value of -1
ensures that an element will not be selected when the user presses the Tab key. The effect of the
tabindex values in the listing is that, as the Tab key is pressed, the focus shifts from the first input
element to the third and then to the Submit button, as shown in Figure 3-14.

http://apress.com

CHAPTER 3 GETTING STARTED WITH HTML

36

Figure 3-14. Controlling the focus sequence with the tabindex attribute

The title Attribute
The title attribute provides additional information about an element, which is commonly used by the
browser to display tool tip information. Listing 3-26 shows how the title attribute is used.

Listing 3-26. Using the title Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 Visit the Apress site
 </body>
</html>

Figure 3-15 shows how this value is handled by Google Chrome.

Figure 3-15. A title attribute value displayed as a tool tip

Useful HTML Tools
There are only two tools that I think help when working with HTML. The first is a good HTML editor,
which will highlight invalid elements and attributes and generally keep you on the right path. As I
mentioned in Chapter 2, I get on well with Komodo Edit, but there are innumerable editors available and
you are bound to find one that suits your working style (just be sure that it supports HTML5).

http://apress.com

CHAPTER 3 GETTING STARTED WITH HTML

37

The other tool is the View Source menu (or its equivalent), which is built into most browsers. Being
able to see the HTML markup behind a document is a great way to validate your own work and to learn
new techniques from others.

Summary
In this chapter, I gave you a quick tour through the structure and nature of an HTML document and
showed you how to apply HTML elements to mark up content and create an HTML document. I
explained how you can configure the way that elements are interpreted by the browser with attributes
and described the difference between local and global attributes. I described each of the global
attributes and briefly explained the basic elements and structure that make up an HTML document.

C H A P T E R 4

39

Getting Started with CSS

Cascading Style Sheets (CSS) are the means by which you specify the presentation (the appearance and
the formatting) of an HTML document. In this chapter, I’ll show you how to create and apply CSS styles,
explain why they are called cascading style sheets, and provide an overall foundation for future chapters.
Table 4-1 provides the summary for this chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Define a style. Use a property/value declaration. 1

Apply a style directly to an
element.

Use the style attribute to create an inline style. 2

Create a style that can be
applied to multiple elements.

Use the style element, and specify a selector and a
number of style declarations.

3, 4

Create styles that can be
applied to multiple HTML
documents.

Create an external stylesheet, and reference it using
the link element.

5-9

Determine which style
properties will be used for a
given element.

Apply the cascade order to your source of styles, and
calculate style specificity for tie-breaks.

10-12, 14-16

Override the normal style
cascade.

Create an important style. 13

Use a style property defined by
a parent.

Use property inheritance. 17, 18

Specify a property value in
terms of another property.

Use a relative unit of measure. 19-23

Calculate a property value
dynamically.

Use the calc function. 24

CHAPTER 4 GETTING STARTED WITH CSS

40

Defining and Applying a Style
A CSS style is made up of one or more declarations separated by a semi-colon. Each declaration consists
of a CSS property and a value for that property separated by a colon. Listing 4-1 shows a simple style.

Listing 4-1. A Simple CSS Style

background-color:grey; color:white

Figure 4-1 shows the declarations, properties, and values in this style.

Figure 4-1. The anatomy of a CSS style

In this example, the style has two declarations. The first sets the value grey for the background-color
property, and the second sets the value white for the color property.

There is a wide range of CSS properties available, and each controls some aspect of the appearance
of the elements to which it is applied. In Chapters 19 through 24, I describe the available CSS properties
and demonstrate their effect.

Understanding the CSS Properties Used in This Chapter
To demonstrate how CSS operates, I need to use some CSS properties that I don’t describe fully until
later chapters. Table 4-2 lists these properties, gives a very brief description of them, and shows you
which chapter contains full details.

Table 4-2. CSS Property Summary

Property Description Chapter

background-color Sets the background color of an element 19

border Defines the border that surrounds an element 19

color Sets the foreground color of an element 24

font-size Sets the font size of an element’s text 22

height Sets the height of an element 20

CHAPTER 4 GETTING STARTED WITH CSS

41

padding Specifies the amount of space between an element’s
content and its border

20

text-decoration Sets the decoration applied to an element’s text—
including underlining, as used in this chapter

22

width Sets the width of an element 20

Applying a Style Inline
It isn’t enough to just define a style— you also need to apply it, effectively telling the browser which
elements the style should affect. The most direct way to apply a style to an element is by using the style
global attribute (described in Chapter 3), as shown in Listing 4-2.

Listing 4-2. Applying a Style Using the Style Global Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

There are four content elements in this HTML document—two hyperlinks (created with the a
element) and a p element that contains a span element. I used the style global attribute to apply the
style to the first a element—the one that links to the Apress web site. (You can learn more about the a, p,
and span elements in Chapters 8 and 9. For the moment, you are interested only in applying styles.) The
style attribute acts upon only the element to which it has been applied, as you can see in Figure 4-2.

Figure 4-2. Applying a style directly to an element

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

42

The impact of the two CSS properties used in the example can be seen in the figure. The background-
color property sets the color of the background of the element, and the color property sets the color of
the foreground. The other two content elements in the HTML document are unaffected by the style.

THE ISSUE OF CSS RELIGION

CSS is a topic that seems to attract zealots. If you start reading any online discussion about how to achieve
a certain effect with CSS, you soon see an argument about which is the right way. I have no time for
people who make such arguments—the only right way to solve any problem is to use the knowledge and
tools you have available to support as many of your users as possible. Tying yourself in knots to achieve
CSS perfection is foolish. My advice is to ignore these arguments and adapt and develop the tricks and
techniques that suit you and that you find pleasing and effective.

Creating an Embedded Style
Applying styles to individual elements can be a useful technique, but it is an inefficient approach when
applied to a complex document that might require dozens of different styles. Not only do you have to
apply the correct style to each element, but you have to be careful to correctly apply updates, which is an
error-prone process. Instead, you can use the style element (as opposed to the style attribute) to define
an embedded style and direct the browser to apply the style using a CSS selector. Listing 4-3 shows how
you can use the style element with a simple CSS selector.

Listing 4-3. Using the Style Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 background-color:grey;
 color:white
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

I describe the style element and its attributes in Chapter 7. In this chapter, we are interested in how
to specify a style inside of the style element. You still use declarations, but they are wrapped in braces
(the { and } characters) and follow a selector, as shown in Figure 4-3.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

43

Figure 4-3. The anatomy of a style defined inside a style element

The selector in this example is a, which instructs the browser to apply the style to every a element in
the document. You can see how the browser does this in Figure 4-4.

Figure 4-4. The effect of the a selector

You can define multiple styles in a single style element—you just repeat the process of defining a
selector and a set of declarations. Listing 4-4 shows a style element that has two styles.

CHAPTER 4 GETTING STARTED WITH CSS

44

Listing 4-4. Defining Multiple Styles in a Single Style Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 background-color:grey;
 color:white
 }
 span {
 border: thin black solid;
 padding: 10px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

This new style has a selector of span (which means the browser will apply the style to all span
elements in the document and use the border and padding properties). The border property defines a
border around the targeted element, and the padding property creates some space around it. You can see
the effect in Figure 4-5. The selectors and the properties in these examples are very basic. I describe the
full range of selectors in Chapters 17 and 18 and the properties in Chapters 19 and 20.

Figure 4-5. Applying multiple styles

Using an External Stylesheet
Rather than define the same set of styles in each of your HTML pages, you can create a separate
stylesheet. This is an independent file, conventionally one that has the .css file extension, into which

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

45

you put your styles. Listing 4-5 shows the contents of the file styles.css, which you can find in the
source code download that accompanies this chapter and which is available from apress.com.

Listing 4-5. The styles.css File

a {
 background-color:grey;
 color:white
}
span {
 border: thin black solid;
 padding: 10px;
}

You don’t need to use a style element in a stylesheet— you just use the selector, followed by the
declarations for each style that you require. You can then use the link element to bring the styles into
your document, as shown in Listing 4-6.

Listing 4-6. Importing an External Stylesheet

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="styles.css"></link>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can link to as many stylesheets as you need—one per link element. I describe the link element
fully in Chapter 7. As with the style element, the order in which you import stylesheets is important if
you define two styles with the same selector. The one that is loaded last will be the one that is applied.

Importing from Another Stylesheet
You can import styles from one stylesheet into another using the @import statement. To demonstrate this
feature, I created a second stylesheet called combined.css, the contents of which are shown in Listing 4-
7.

Listing 4-7. The combined.css File

@import "styles.css";
span {
 border: medium black dashed;
 padding: 10px;
}

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

46

You can import as many stylesheets as you want, using one @import statement per stylesheet. The
@import statements must appear at the top of the stylesheet, before any new styles are defined. In the
combined.css stylesheet, I imported styles.css and then defined a new style for span elements. Listing 4-
8 shows the combined.css stylesheet being linked from an HTML document.

Listing 4-8. Linking to a Stylesheet That Contains Imports

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <link rel="stylesheet" type="text/css" href="combined.css"/>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The @import statement in combined.css has the effect of importing both of the styles defined in the
styles.css stylesheet and then overriding the style that will be applied to span elements. You can see the
effect shown in Figure 4-6.

Figure 4-6. Importing styles from another stylesheet

The @import statement isn’t widely used. This is partly because its existence isn’t well known, but it
is also because browser implementations have tended to deal with @import statements in such a way as
to offer slower performance than using multiple link elements and relying on the way that styles
cascade (which I explain in the next section).

Specifying the Character Encoding of a Stylesheet
The only thing that can come before an @import statement in a CSS stylesheet is an @charset statement,
which specifies the character encoding used by the stylesheet. Listing 4-9 demonstrates how to specify
the UTF-8 encoding (which is the most prevalent).

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

47

Listing 4-9. Specifying a Type of Character Encoding in a Stylesheet

@charset "UTF-8";
@import "styles.css";
span {
 border: medium black dashed;
 padding: 10px;
}

If you don’t specify a type of character encoding, the browser will use the encoding specified in the
HTML document that loaded the stylesheet. If there is no encoding specified for the HTML document,
UTF-8 will be used by default.

Understanding How Styles Cascade and Inherit
The key to understanding stylesheets is to understand how they cascade and inherit. Cascading and
inheritance are the means by which the browser determines which values should be used for properties
when they display an element. Each element has a number of CSS properties that will be used when the
browser needs to render the page. For each of those properties, the browser needs to navigate through
all of the sources of styles it has. You have seen three different ways you can define styles (inline,
embedded, and from an external stylesheet), but there are two other sources of styles that you need to
know about.

Understanding Browser Styles
The browser styles (more properly known as the user agent styles) are the default styles a browser applies
to an element if no other style has been specified. These styles vary slightly between browsers, but they
tend to be broadly similar. As an example, consider how a browser displays an a element—a hyperlink—
when there are no other styles defined in the HTML document. Listing 4-10 shows a simple HTML
document that contains no styles.

Listing 4-10. An HTML Document That Contains No Styles

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

This listing is just a variation of the previous example, without any styles. You can see how the
browser renders the a elements in Figure 4-7.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

48

Figure 4-7. The default style for hyperlink elements

We are so accustomed to seeing the style that browsers apply to links that it becomes invisible.
However, if you stop and consider what you are looking at, you can see details of the style. The text
content of the link is displayed in blue and is underlined. You can extrapolate from what you see and
assume the browser is applying a style similar to the one shown in Listing 4-11.

Listing 4-11. Extrapolating to Create the Default Browser Style for a Elements

a {
 color: blue;
 text-decoration: underline;
}

Browsers don’t have default styles for every HTML element, but many elements are displayed using
such styles. In each chapter of this book that describes HTML elements, I include the typical default style
you can expect common browsers to apply. You can see the description for the a element in Chapter 8.

Understanding User Styles
Most browsers allow users to define their own stylesheets. The styles that these stylesheets contain are
called user styles. This isn’t a widely used feature, but users who define their own stylesheets often attach
great importance in being able to do so—not least, because it provides a way of making pages more
accessible.

Each browser has its own mechanism for user styles. Google Chrome, for example, creates a file in
the user’s profile directory called Default\User StyleSheets\Custom.css. Any styles added to this file are
applied to any site the user visits, subject to the cascading rules I describe in the following section. As a
simple demonstration, Listing 4-12 shows a style I added to my Custom.css file.

Listing 4-12. Adding a Style to the User Stylesheet

a {
 color: white;
 background:grey;
 text-decoration: none;
 padding: 2px;
}

CHAPTER 4 GETTING STARTED WITH CSS

49

This style applies to a elements and overrides the default browser style. Figure 4-8 shows the effect
of my user style if I reload the HTML document in Listing 4-9.

Figure 4-8. Defining user styles

Understanding How Styles Cascade
Now that you have seen all of the sources of styles that a browser has to consider, you can look at the
order in which the browser will look for a property value when it comes to display an element. The order
is very specific:

1. Inline styles (styles that are defined using the style global attribute on an
element)

2. Embedded styles (styles that are defined in a style element)

3. External styles (styles that are imported using the link element)

4. User styles (styles that have been defined by the user)

5. Browser styles (the default styles applied by the browser)

Imagine that the user needs to display an a element. One of the things the browser needs to know is
what color the text should be displayed in. To answer this question, it will need to find a value for the
CSS color property. First, it will check to see if the element it is trying to render has an inline style that
defines a value for color, like this:

Visit the Apress website

If there is no inline style, the browser will look for a style element that contains a style that applies
to the element, like this:

<style type="text/css">
 a {
 color: red;
 }
</style>

If there is no such style element, the browser looks at the stylesheets that have been loaded via the
link element, and so on, until the browser either finds a value for the color property—and that means
using the value defined in the default browser styles if no other value is available.

http://apress.com

CHAPTER 4 GETTING STARTED WITH CSS

50

The first three sources of properties (inline styles, embedded styles, and stylesheets) are collectively
referred to as the author styles. The styles defined in the user stylesheet are known as the user styles, and
the styles defined by the browser are known as the browser styles.

Tweaking the Order with Important Styles
You can override the normal cascade order by marking your property values as important, as shown in
Listing 4-13.

Listing 4-13. Marking Style Properties as Important

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 color: black !important;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You mark individual values as important by appending !important to the declaration. The browser
gives preference to important styles, regardless of where they are defined. You can see the effect of
property importance in Figure 4-9, where the embedded value for the color property overrides the inline
value. (This may be a little hard to see on the printed page.)

Figure 4-9. Important property values overriding inline property values

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

51

 Tip The only thing that will take precedence over an important value that you define is an important value
defined in the user stylesheet. For regular values, the author styles are used before the user styles, but this is
reversed when dealing with important values.

Tie-Breaking with Specificity and Order Assessments
You enter a tie-break situation if there are two styles that can applied to an element defined at the same
level and they both contain values for the CSS property the browser is looking for. To decide which value
to use, the browser assesses the specificity of each style and selects the one that is most specific. The
browser determines the specificity of a style by counting three different characteristics:

1. The number of id values in the style’s selector

2. The number of other attributes and pseudo-classes in the selector

3. The number of element names and pseudo-elements in the selector

I explain how to create selectors that contain all of these different characteristics in Chapters 17 and
18. The browser combines the values from each assessment and applies the property value from the
style that is most specific. You can see a very simple example of specificity in Listing 4-14.

Listing 4-14. Specificity in Styles

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 color: black;
 }
 a.myclass {
 color:white;
 background:grey;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

When assessing specificity, you create a number in the form a-b-c, where each letter is the total from
one of the three characteristics that are counted. This is not a three-digit number—a style is more
specific if its a value is the greatest. Only if the a values are equal does the browser compare b values—
the style with the greater b value is more specific in this case. Only if both the a and b values are the same

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

52

does the browser consider the c value. This means that a specificity score of 1-0-0 is more specific than
0-5-5.

In this case, the selector a.myclass includes a class attribute, which means that the specificity of the
style is 0-1-0 (0 id values + 1 other attributes + 0 element names). The other style has a specificity of 0-0-0
(that is, it contains no id values, other attributes or element names). The browser finds a value for the
color property when rendering an a element that has been assigned to the myclass class. For all other a
elements, the value from the other style will be used. You can see how the browser selects and applies
values for this example in Figure 4-10.

Figure 4-10. Applying values from styles based on specificity

When there are values defined in styles with the same specificity, the browser selects the value it
uses based on the order in which the values are defined—the one that is defined last is the one that will
be used. Listing 4-15 shows a document that contains two equally specific styles.

Listing 4-15. Styles That Are Equally Specific

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a.myclass1 {
 color: black;
 }
 a.myclass2 {
 color:white;
 background:grey;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

53

Both styles defined in the style element have the same specificity score. When the browser is
rendering the second a element in the page, it will select the white property for the color property
because that is the value defined in the latter style. You can see this in Figure 4-11.

Figure 4-11. Selecting property values based on the order in which styles are defined

You can reverse the order of the styles to prove that this is the way the browser has selected the
value for the color property, as shown in Listing 4-16.

Listing 4-16. Reversing the Order in Which Styles Are Defined

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a.myclass2 {
 color:white;
 background:grey;
 }
 a.myclass1 {
 color: black;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

As expected, the value the browser selects for the color property is now black, as shown in Figure
4-12.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

54

Figure 4-12. The effect of changing the order in which styles are defined

The notion of selecting a value is based on the specificity and order performed on a property-by-
property basis. In the examples in this section, I defined a value for the background property as well.
Because this value was not defined in both styles, there was no conflict and thus no need to look for
alternative values.

Understanding Inheritance
If the browser can’t find a value for a property in one of the available styles, it will use inheritance, which
means taking the value for the property defined by the parent element. Listing 4-17 provides a
demonstration.

Listing 4-17. CSS Property Inheritance

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 color:white;
 background:grey;
 border: medium solid black;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In this example, we are interested in the properties the browser applies to the span element, whose
parent is a p element. You can see how the browser renders this document in Figure 4-13.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

55

Figure 4-13. The application of inherited CSS property values

Nowhere in this document have I defined a value for the color property in a style that is applied to
the span element, yet the browser has used the value white to display the text content. This value has
been inherited from the parent p element.

Confusingly, not all CSS properties are inherited. As a rule of thumb, those that relate to the
appearance of an element are inherited (text color, font details, and so forth) and those that relate to the
layout of the element on the page are not inherited. You can force inheritance by using the special value
inherit in a style, which explicitly instructs the browser to use the parent element’s value for the
property. Listing 4-18 shows the inherit value being used.

Listing 4-18. Using the Special Inherit Value

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 color:white;
 background:grey;
 border: medium solid black;
 }
 span {
 border: inherit;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

56

In this example, I created a style that will be applied to span elements and inherit whatever the
parent’s value for the border property is. You can see the effect of this in Figure 4-14. There is now a
border around the span element and the containing p element.

Figure 4-14. Using the inherit property

Working with CSS Colors
Colors are very important in web pages, and when using CSS you can specify colors in a range of
different ways. The simplest ways are to use one of the predefined color names or to use a decimal or
hexadecimal value for each of the red, green, and blue components. Decimal values are separated by a
comma, and hex values are usually prefixed with #—such as #ffffff, which represents white. You can
see some of the predefined names for colors and their decimal and hex equivalents in Table 4-3.

Table 4-3. Selected CSS Colors

Color Name Hex Decimal Color Name Hex Decimal

black #000000 0,0,0 green #008000 0,128,0

silver #C0C0C0 192,192,192 lime #00FF00 0,255,0

gray #808080 128,128,128 olive #808000 128,128,0

white #FFFFFF 255,255,255 yellow #FFFF00 255,255,0

maroon #800000 128,0,0 navy #000080 0,0,128

red #FF0000 255,0,0 blue #0000FF 0,0,255

purple #800080 128,0,128 teal #008080 0,128,128

fushia #FF00FF 255,0,255 aqua #00FFFF 0,255,255

CHAPTER 4 GETTING STARTED WITH CSS

57

These are known as the basic color names—CSS defines the extended colors as well. There are too
many color names to list here, but a complete list can be found at www.w3.org/TR/css3-color. There are a
lot of new shades defined by the extended colors, including slight variations on the colors in the basic
list. As an example, Table 4-4 shows the extended set of gray shades that can be used.

Table 4-4. Selected CSS Colors

Color Name Hex Decimal

darkgray #a9a9a9 169,169,169

darkslategray #2f4f4f 47,79,79

dimgray #696969 105,105,105

gray #808080 128,128,128

lightgray #d3d3d3 211,211,211

lightslategray #778899 119,136,153

slategray #708090 112,128,144

Specifying More Complex Colors
Color names and simple hex values aren’t the only way you can specify colors. There are a number of
functions that allow you to select a color. Table 4-5 describes each of the functions available.

Table 4-5. CSS Color Functions

Function Description Example

rgb(r, g, b) Specifies a color using the RGB model. color: rgb(112, 128, 144)

rgba(r, g, b, a) Specifies a color using the RGB model,
with the addition of an alpha value to
specify opacity. A value of 0 is fully
transparent; a value of 1 is fully opaque.

color: rgba(112, 128, 144, 0.4)

hsl(h, s, l) Specifies a color using the hue,
saturation, and lightness (HSL) model.

color: hsl(120, 100%, 22%)

hsla(h, s, l, a) The same as for HSL, but with the
addition of an alpha value to specify
opacity.

color: hsla(120, 100%, 22%, 0.4)

http://www.w3.org/TR/css3-color

CHAPTER 4 GETTING STARTED WITH CSS

58

Understanding CSS Lengths
Many CSS properties require you to specify a length. A couple of examples are the width property, which
is used to specify the width of an element, and the font-size property, which is used to specify the size
of font used to render an element’s content. Listing 4-19 shows a style that uses both of these properties.

Listing 4-19. Specifying Units of Measurement in Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: grey;
 color:white;
 width: 5cm;
 font-size: 20pt;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

When you specify a length, you concatenate the number of units and the unit identifier together,
without any spaces or other characters between them. In the listing, I specified the value of the width
property as 5cm, which means 5 of the units represented by the cm identifier (centimeters). Equally, I
specified the value of the font-size property as 20pt, which means 20 of the units represented by the pt
identifier (points, which are explained in the following sections). CSS defines two kinds of length unit—
those that are absolute, and those that are relative to another property. I’ll explain both in the sections
that follow.

Working with Absolute Lengths
In the preceding listing, I used the cm and pt units, both of which are examples of absolute units. These
units are real-world measurements. CSS supports five types of absolute units, which are described in
Table 4-6.

Table 4-6. CSS absolute units of measurement

Unit Identifier Description

in Inches

cm Centimeters

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

59

mm Millimeters

pt Points (1 point is 1/72 of an inch)

pc Picas (1 pica is 12 points)

You can mix and match units in a style and also mix absolute and relative units. Absolute units can

be useful if you have some prior knowledge of how the content will be rendered, such as when designing
for print. I don’t use the absolute units that much in my CSS styles. I find the relative units more flexible
and easier to maintain, and I rarely create content that has to correspond to real-world measurements.

 Tip You might be wondering where pixels are in the table of absolute units. In fact, CSS tries to make pixels a
relative unit of measurement—although, as I explain later in this chapter, this hasn’t been how things worked out.
You can learn more in the “Working with Pixels” section.

Working with Relative Lengths
Relative lengths are more complex to specify and implement than absolute units, and they require tight
and concise language to define their meaning unambiguously. A relative unit is measured in terms of
some other unit. Unfortunately, the language in the CSS specifications isn’t precise enough (a problem
that has plagued CSS for years). This means that CSS defines a wide range of interesting and useful
relative measurements, but you can’t use some of them because they don’t have widespread or
consistent browser support. Table 4-7 shows the relative units that CSS defines and that can be relied on
in mainstream browsers.

Table 4-7. CSS relative units of measurement

Unit Identifier Description

em Relative to the font size of the element

ex Relative to “x-height” of the element’s font

rem Relative to the font size of the root element

px A number of CSS pixels (assumed to be on a 96dpi display)

% A percentage of the value of another property

In the following sections, I show you how to use these units to express lengths.

CHAPTER 4 GETTING STARTED WITH CSS

60

Working Relative to Font Size
When you use a relative unit, you are effectively specifying a multiple of another measurement. The first
units we will look at are relative to font size. Listing 4-20 gives an example.

Listing 4-20. Using a Relative Unit

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: grey;
 color:white;
 font-size: 15pt;
 height: 2em;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 <p style="font-size:12pt">I also like mangos and cherries.</p>
 Visit the W3C website
 </body>
</html>

In this example, I specified the value of the height property to be 2em, which means that p elements
should be rendered so that the height of the element on the screen is twice the font size. This multiple is
calculated for each element as it is displayed. I defined a default font-size of 15pt in the style element
and specified an inline value of 12pt on the second p element in the document. You can see how the
browser displays these elements in Figure 4-15.

Figure 4-15. The effect of using relative measurements

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

61

You can use relative units to express a multiple of another relative measure. Listing 4-21 gives an
example where the height property is expressed in em units. The em units are derived from the value of
the font-size property, which I have expressed using rem units.

Listing 4-21. Using Units That Are Derived from Other Relative Values

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 html {
 font-size: 0.2in;
 }
 p {
 background: grey;
 color:white;
 font-size: 2rem;
 height: 2em;
 }
 </style>
 </head>
 <body style="font-size: 14pt">
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The rem unit is relative to the font size of the html element—also known as the root element. In this
example, I assigned an absolute font size of 0.2 inches using a style (although I also could have created
an inline style by defining the style attribute on the html element directly). The font-size value in the
other style is expressed as 2rem, which means that the font size in every element that this value is applied
to will be twice the size of the root element font—0.4 inches. The height property in the same style is
specified as 2em, which is twice as much again. This means the browser will display p elements using a
font that is 0.4 inches high and the overall element will be 0.8 inches high. You can see how the browser
handles these styles in Figure 4-16.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

62

Figure 4-16. Defining relative units in terms of other relative units

The third font-related relative unit is ex, which is the current font’s x-height. This is the distance
from the typeface baseline and the midline, but it is generally about the height of the letter x (hence the
name). As a rule of thumb, 1ex is approximately 0.5em.

Working with Pixels
Pixels in CSS are not what you might expect. The usual meaning of the term pixel refers to the smallest
addressable unit on a display—one picture element. CSS tries to do something different and defines a
pixel as follows:

The reference pixel is the visual angle of one pixel on a device with a pixel density of 96dpi and a
distance from the reader of an arm’s length.

This is the kind of vague definition that plagues CSS. I don’t want to rant, but specifications that are
dependent on the length of a user’s arm are problematic. Fortunately, the mainstream browsers ignore
the difference between pixels as defined by CSS and pixels in the display, and they treat 1 pixel to be
1/96th of an inch. (This is the standard Windows pixel density. Browsers on platforms with displays that
have a different pixel density usually implement a translation so that 1 pixel is still roughly 1/96th of an
inch).

 Tip Although it isn’t much use, you can read the full definition of a CSS pixel at
www.w3.org/TR/CSS21/syndata.html#length-units.

The net effect of this is that although CSS pixels are intended to be a relative unit of measure, they
are treated as an absolute unit by browsers. Listing 4-22 demonstrates specifying pixels in a CSS style.

4

http://www.w3.org/TR/CSS21/syndata.html#length-units
http://www.w3.org/TR/CSS21/syndata.html#length-units

CHAPTER 4 GETTING STARTED WITH CSS

63

Listing 4-22. Using Pixel Units in a Style

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: grey;
 color:white;
 font-size: 20px;
 width: 200px;

 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In this example, I expressed both the font-size and the width properties in pixels. You can see how
the browser applies this style in Figure 4-17.

Figure 4-17. Specifying units in pixels

 Tip Although I often use pixels as units in CSS, it tends to be a matter of habit. I find em units more flexible. This
is because I only have to alter the size of the font when I need to make a change and the rest of the style works
seamlessly. Remember that although CSS pixels were intended to be relative units, they are absolute units in
practice and can become a little inflexible as a consequence.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

64

Working with Percentages
You can express a unit of measurement as a percentage of another property value. You do this using the
% (percent) unit, as demonstrated in Listing 4-23.

Listing 4-23. Expressing Units as a Percentage of Another Property Value

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: grey;
 color:white;
 font-size: 200%;
 width: 50%;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

There are two complications in using percentages as units. The first complication is that not all
properties can be expressed in this way. The second is that each property that can be expressed as a
percentage individually defines which other property the percentage refers to. For example, the font-
size property uses the inherited font-size value and the width property uses the width of the containing
block.

This isn’t as confusing as it might seem. I’ll explain what containing block means in Chapter 16. (It is
an important and recurring concept.) I’ll also tell you which CSS properties support percentage units
and what the percentage is calculated from as I describe each CSS property starting in Chapter 19.

CSS Units Without Wide Support
In addition to the relative units I listed, CSS defines some units that have yet to get wide support. Table
4-8 lists these new units. These will be useful when they are implemented widely and consistently, but
they should be avoided until this happens.

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

65

Table 4-8. CSS relative units of measurement without browser support

Unit Identifier Description

gd Relative to a grid—not widely supported because it depends on some
properties that are not well defined in the CSS specifications.

vw Relative to the viewport width—each vw is 1/100th of the width display
area for the document (typically the browser window).

vh Relative to the viewport height—each vh is 1/100th of the height of the
display area.

vm Each wm unit is 1/100th of the shortest viewport axis (either the height or
the width, whichever is the smallest).

ch Relative to the average width of a character displayed using the current
typeface. This is poorly defined in the CSS specifications and is not
consistently implemented.

The vw, vh, and wm units have the potential to be useful in a wide range of situations, but at present

they are implemented only in Internet Explorer. Even then, my brief testing suggested that the
implementation doesn’t quite match the CSS specification.

CSS Unit Calculations
CSS3 defines an interesting feature that lets you calculate units. This is a flexible approach that gives you
both control and precision when you create styles. Listing 4-24 provides an example.

Listing 4-24. Calculating Units

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: grey;
 color:white;
 font-size: 20pt;
 width: calc(80% - 20px);
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website

http://apress.com
http://w3c.org

CHAPTER 4 GETTING STARTED WITH CSS

66

 </body>
</html>

You use the calc keyword and parentheses to encompass a calculation. You can mix other units and
perform basic arithmetic. Before you get too excited, I should point out that, as I write this, only Internet
Explorer implements support for the calc() feature. I generally avoid describing features in this book
that are not widely supported, but I am hopeful this particular feature will get traction and I believe it is
worth tracking its adoption.

Other CSS Units
Lengths aren’t the only CSS units. In fact, there are lots of different units, but only a small number of
them are used widely. In the following sections, I describe the units we’ll use in this book.

Using CSS Angles
You will need to use angles when you come to transforms in Chapter 23. You express angles as a number
followed by a unit—for example, 360deg. Table 4-9 shows the set of supported angle units.

Table 4-9. CSS angle units

Unit Identifier Description

deg Specifies the angle in degrees (values are from 0deg to 360deg)

grad Specifies the angle in gradians (values are from 0grad to 400grad)

rad Specifies the angle in radians (values are from 0rad to 6.28rad)

turn Specifies the angle in complete turns (1turn is equal to 360deg)

Using CSS Times
You can measure intervals using the CSS time used. You express times as a number of units followed by
a time unit—for example, 100ms. Table 4-10 shows the supported time units.

Table 4-10. CSS time units

Unit Identifier Description

s Specifies time in seconds

ms Specifies time in milliseconds (1s is equal to 1000ms)

CHAPTER 4 GETTING STARTED WITH CSS

67

Testing for CSS Feature Support
The fragmented nature of the CSS specification and its patchy implementation in browsers means you
might find it hard to figure out which CSS features are available. I find a couple of tools are useful in
determining support.

The first is the web site http://caniuse.com, which provides a comprehensive analysis of which
versions of which browsers support HTML5 and CSS3 features. Detailed information is available on a
wide range of desktop and mobile browsers on a range of operating systems. Also, there are some simple
decision-support tools that are tied to browser popularity and market penetration. I find this web site
very useful when starting a new project to get a feel for which features I can reasonably rely on. It makes
tracking the fragmented standard process and browser implementation reasonably simple.

The second tool is Modernizr (www.modernizr.com), which tests for individual features dynamically. It
takes the form of a small JavaScript library that tests for the presence of key HTML5 and CSS features,
allowing you to adapt to the features that the user’s browser supports. It also has some other nice
features, such as enabling the styling of the new HTML5 semantic elements (described in Chapter 10) in
older versions of Internet Explorer.

Useful CSS Tools
There are some tools I don’t discuss in this book but that you might find useful when working with CSS.
Each of the following sections describes one of these tools. All of these tools are freely available or
included in mainstream browsers.

Browser Style Reporting
All mainstream browsers include style inspection as part of their developer tools. The implementations
differ slightly, but the basic premise is that you can select an element from the rendered document or
the document markup and see the styles the browser has applied.

These style inspectors show the order in which styles have been cascaded and the computed style
(which is the overall style applied to the element by processing all of the cascaded and inherited styles).
They even let you edit and create new styles to see their effect. You can see the Google Chrome style
inspector in Figure 4-18.

http://caniuse.com
http://www.modernizr.com

CHAPTER 4 GETTING STARTED WITH CSS

68

Figure 4-18. Inspecting CSS styles with Google Chrome

Creating Selectors with SelectorGadget
In Chapters 17 and 18, I explain all of the different selectors that CSS supports. There are a lot of them,
and they can be combined to create powerful and flexible effects. Mastering CSS selectors takes time,
and one of the most helpful tools I have found to help in this area is SelectorGadget, which is a
JavaScript bookmarklet available at www.selectorgadget.com.

This tool hasn’t been updated for a while, but it still works on modern browsers. Follow the
installation instructions. When you load the script, you are able to click on elements in the browser to
create CSS selectors. Figure 4-19 shows SelectorGadget at work.

Figure 4-19. Using SelectorGadget to create CSS selectors

http://www.selectorgadget.com

CHAPTER 4 GETTING STARTED WITH CSS

69

Enhancing CSS with LESS
When you start working with CSS, you will quickly realize that it is a verbose and repetitive way of
expressing styles. There is a lot of duplication, which can make long-term maintenance of your styles
time consuming and error prone.

You can extend CSS using LESS, which uses JavaScript to enhance CSS. It supports some nice
features, such as variables, inheritance from one style to another, and functions. I have been using LESS
a lot lately, and I have been pleased with the results. You can get details and download the JavaScript
library at http://lesscss.org.

Using a CSS Framework
A number of high-quality CSS frameworks are available that you can use as the foundation for web sites
and web applications. These frameworks contain sets of styles, which mean you don’t have to reinvent
the wheel. The better frameworks also smooth out the differences in implementation between browsers.

The CSS framework that I recommend is Blueprint, which is available for download at
www.blueprintcss.org. It is simple to use and very flexible, and it has an excellent system for creating
grid layouts.

Summary
In this chapter, I described how you create and apply styles, how these styles cascade, and how CSS
handles units of measurements. I also mentioned some useful tools for determining and detecting
support for particular CSS features in browsers and some additional resources that can be useful when
working with CSS.

http://lesscss.org
http://www.blueprintcss.org

C H A P T E R 5

71

Getting Started with JavaScript

JavaScript has had a hard life—a difficult birth, followed by a painful adolescence—and it is only in the
last few years that JavaScript has earned a reputation for being a useful and flexible programming
language. You can do a lot with JavaScript, and although it is far from perfect, it deserves to be taken
seriously. In this chapter, I am going to top up your knowledge of JavaScript and, in doing so, describe
the functions and features you will need later in this book.

 Tip To get the best from this book, you will need some programming experience and an understanding of
concepts such as variables, functions, and objects. If you are new to programming, a good starting point is a
series of articles posted on the popular website lifehacker.com, where no programming knowledge is assumed
and all of the examples are conveniently in JavaScript. The guide is available here:
http://lifehacker.com/5744113/learn-to-code-the-full-beginners-guide.

My focus in this chapter is on the core JavaScript features you need for web programming. If you
want to go further with JavaScript, there are a couple of books I recommend. For general language
information, I like JavaScript: The Definitive Guide by David Flanagan, published by O’Reilly. For more
advanced concepts and features, I recommend Pro JavaScript Design Patterns by Ross Harmes and
Dustin Diaz, published by Apress. Table 5-1 provides the summary for this chapter.

Table 5-1. Chapter Summary

Problem Solution Listing

Define an inline script in a document. Use the script element. 1

Execute a statement immediately. Define a statement directly in the
script element.

2

Define a JavaScript function. Use the function keyword. 3-5

Define a primitive variable. Use the var keyword, and express the
value literally.

6-9

http://lifehacker.com/5744113/learn-to-code-the-full-beginners-guide

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

72

Create an object. Use new Object() or the object literal
syntax.

10-11

Add methods to an object. Create a new property, and assign a
function to it.

12

Get or set a property from an object. Use dot or array-index style notation. 13

Enumerate the properties in an object. Use the for...in statement. 14

Add a property or method to an object. Assign a value to the property name
that you require.

15, 16

Delete a property from an object. Use the delete keyword. 17

Determine if an object defines a property. Use the in expression. 18

Determine if two variables have the same
value, regardless of type.

Use the equality operator (==). 19, 21

Determine if two variables have the same
value and type.

Use the identity operator (===). 20, 22

Explicitly convert from one type to another. Use the Number or String functions. 23-25

Create an array. Use new Array() or the array literal
syntax.

26, 27

Read or modify the contents of an array. Use index notation to retrieve or assign
a new value to a position in the array.

28, 29

Enumerate the contents of an array. Use a for loop. 30

Handle errors. Use a try...catch statement. 31, 32

Compare null and undefined values. Coerce a value to the boolean type, or
use the equality operator (==) to treat
null and undefined as being the same
and the identity operator (===) to treat
them as different values.

33-36

Getting Ready to Use JavaScript
There are a couple of ways you can define scripts in an HTML document. You can define an inline script,
where the content of the script is part of the HTML document. You can also define an external script,
where the JavaScript is contained in a separate file and referenced via a URL. Both of these approaches

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

73

rely on the script element, which I describe fully in Chapter 7. In this chapter, I use inline scripts for
simplicity. You can see an example of this style of script in Listing 5-1.

Listing 5-1. A Simple Inline Script

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 document.writeln("Hello");
 </script>
 </body>
</html>

This is a trivially simple script that appends the word Hello to the document. The script element
appears after the other content in the document so that the browser has parsed the other elements
before the script is executed. I explain why this is important (and how to exert some control over script
execution) in Chapter 7.

 Tip As I introduce JavaScript, many of the examples I show will use the document.writeln method as a
simple way of showing a result from a script. This method simply appends a line of text to the HTML document.
You can learn more about the document object and its writeln method in Chapter 26.

You can see how the browser renders the content and the effect of the script in Figure 5-1.

Figure 5-1. Using JavaScript to append content to an HTML document

In this chapter, I won’t show screenshots, just the result from some of the examples. So, for
example, for Listing 5-1, the output is as follows:

Hello

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

74

I formatted some of the results to make them easier to read. In the sections that follow, I’ll show you
the core features of the JavaScript language. If you have had any experience programming in any other
modern language, you will find the JavaScript syntax and style familiar.

Using Statements
The basic JavaScript building block is the statement. Each statement represents a single command, and
statements are usually terminated by a semicolon (;). In fact, semicolons are optional, but using them
makes your code easier to read and allows for multiple statements on a single line. Listing 5-2 shows a
couple of statements in a script.

Listing 5-2. Using JavaScript Statements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 document.writeln("This is a statement");
 document.writeln("This is also a statement");
 </script>
 </body>
</html>

The browser executed each statement in turn. In this example, I just write out a pair of simple
messages. The results are as follows (you may see the result on a single line):

This is a statement

This is also a statement

Defining and Using Functions
If you define statements directly in the script element, as I did in Listing 5-2 earlier, the browser will
execute those statements as soon as it reaches them. As an alternative, you can package up multiple
statements into a function, which won’t be executed until the browser encounters a statement that
invokes the function, as shown in Listing 5-3.

Listing 5-3. Defining a JavaScript Function

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

75

 function myFunc() {
 document.writeln("This is a statement");
 };

 myFunc();
 </script>
 </body>
</html>

The statements contained by a function are encompassed by braces ({ and }) and are referred to as
the code block. This listing defines a function called myFunc, which contains a single statement in the
code block. JavaScript is a case-sensitive language, which means that the keyword function must be
lowercase. The statement in the function won’t be executed until the browser reaches another statement
that calls the myFunc function, like this:

myFunc();

This example isn’t especially useful because the function is invoked immediately after it has been
defined. You can see some examples where functions are much more useful when you look at events
later in the chapter.

Defining Functions with Parameters
In common with most programming languages, JavaScript allows you to define parameters for
functions, as shown in Listing 5-4.

Listing 5-4. Defining Functions with Parameters

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 function myFunc(name, weather) {
 document.writeln("Hello " + name + ".");
 document.writeln("It is " + weather + " today");
 };

 myFunc("Adam", "sunny");
 </script>
 </body>
</html>

In this listing, I added two parameters to the myFunc function: name and weather. JavaScript is a
loosely typed language, which means you don’t have to declare the data type of the parameters when
you define the function. I’ll come back to loose-typing later in the chapter when you look at JavaScript
variables. To invoke a function with parameters, you provide values as arguments when you invoke the
function, like this:

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

76

myFunc("Adam", "sunny");

The results from this listing are as follows:

Hello Adam. It is sunny today

The number of arguments used when you invoke a function doesn’t need to match the number of
parameters in the function. If you call the function with fewer arguments than it has parameters, the
value of any parameters you have not supplied values for is undefined. If you call the function with more
arguments than there are parameters, the additional arguments are simply ignored. The consequence of
this is that you can’t create two functions with the same name and different parameters and expect
JavaScript to differentiate between them based on the arguments you provide when invoking the
function. If you define two functions with the same name, the second definition replaces the first.

Defining Functions That Return Results
You can return results from functions using the return keyword. Listing 5-5 shows a function that
returns a result.

Listing 5-5. Returning a Result from a Function

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 function myFunc(name) {
 return ("Hello " + name + ".");
 };

 document.writeln(myFunc("Adam"));
 </script>
 </body>
</html>

This function defines one parameter and uses it to generate a simple result. I invoke the function
and pass the result as the argument to the document.writeln function, like this:

 document.writeln(myFunc("Adam"));

Notice that you don’t have to declare that the function will return a result or denote the data type of
the result. The result from this listing is as follows:

Hello Adam.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

77

Using Variables and Types
You define variables using the var keyword, and you can optionally assign a value to the variable as you
assign it in a single statement. Variables that are defined in a function are local variables and are
available for use only within that function. Variables that are defined directly in the script element are
global variables and can be accessed anywhere, including in other scripts. Listing 5-6 demonstrates the
use of local and global variables.

Listing 5-6. Using Local and Global Variables

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myGlobalVar = "apples";

 function myFunc(name) {
 var myLocalVar = "sunny";
 return ("Hello " + name + ". Today is " + myLocalVar + ".");
 };
 document.writeln(myFunc("Adam"));
 </script>
 <script type="text/javascript">
 document.writeln("I like " + myGlobalVar);
 </script>
 </body>
</html>

JavaScript is a loosely typed language. This doesn’t mean JavaScript doesn’t have types—it just
means that you don’t have to explicitly declare the type of a variable and that you can assign different
types to the same variable without any difficulty. JavaScript determines the type based on the value you
assign to a variable and freely converts between types based on the context in which they are used. The
result from Listing 5-6 is as follows:

Hello Adam. Today is sunny. I like apples

Using the Primitive Types
JavaScript defines a small set of primitive types. These are string, number, and boolean. This may seem
like a short list, but JavaScript manages to fit a lot of flexibility into these three types.

Working with Strings
You define string values using either the double quote or single quote characters, as shown in Listing 5-
7.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

78

Listing 5-7. Defining String Variables

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var firstString = "This is a string";
 var secondString = 'And so is this';
 </script>
 </body>
</html>

The quote characters you use must match. You can’t start a string with a single quote and finish with
a double quote, for example.

Working with Booleans
The boolean type has two values: true and false. Listing 5-8 shows both values being used, but this type
is most useful when used in conditional statements, which I describe later in this chapter.

Listing 5-8. Defining boolean Values

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var firstBool = true;
 var secondBool = false;
 </script>
 </body>
</html>

Working with Numbers
The number type is used to represent both integer and floating-point numbers (also known as real
numbers). Listing 5-9 provides a demonstration.

Listing 5-9. Defining Number Values

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

79

 </head>
 <body>
 <script type="text/javascript">
 var daysInWeek = 7;
 var pi = 3.14;
 var hexValue = 0xFFFF;
 </script>
 </body>
</html>

You don’t have to specify which kind of number you are using—you just express the value you
require, and JavaScript will act accordingly. In the listing, I defined an integer value and a floating-point
value, and I prefixed a value with 0x to denote a hexadecimal value.

Creating Objects
JavaScript supports the notion of objects, and there are different ways you can create them. Listing 5-10
gives a simple example.

Listing 5-10. Creating an Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = new Object();
 myData.name = "Adam";
 myData.weather = "sunny";

 document.writeln("Hello " + myData.name + ". ");
 document.writeln("Today is " + myData.weather + ".");
 </script>
 </body>
</html>

I create an object by calling new Object(), and I assign the result (the newly created object) to a
variable called myData. After the object is created, I can define properties on the object just by assigning
values, like this:

myData.name = "Adam";

Prior to this statement, my object doesn’t have a property called name. After the statement has
executed, the property does exist and it has been assigned the value Adam. You can read the value of a
property by combining the variable name and the property name with a period, like this:

document.writeln("Hello " + myData.name + ". ");

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

80

Using Object Literals
You can define an object and its properties in one step using the object literal format. Listing 5-11 shows
how this is done.

Listing 5-11. Using the Object Literal Format

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny"
 };

 document.writeln("Hello " + myData.name + ". ");
 document.writeln("Today is " + myData.weather + ".");
 </script>
 </body>
</html>

Each property you want to define is separated from its value using a colon (:), and properties are
separated using a comma (,).

Using Functions as Methods
Just as you can add properties to an object, you can add functions to an object too. A function that
belongs to an object is known as a method. This is one of the JavaScript features I like most. I don’t know
why, but I find this elegant and endlessly pleasing. Listing 5-12 shows how you can add methods in this
manner.

Listing 5-12. Adding Methods to an Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function() {
 document.writeln("Hello " + this.name + ". ");
 document.writeln("Today is " + this.weather + ".");
 }

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

81

 };

 myData.printMessages();

 </script>
 </body>
</html>

In this example, I used a function to create a method called printMessages. Notice that to refer to the
properties defined by the object, I have to use the this keyword. When a function is used as a method,
the function is implicitly passed the object on which the method has been called as an argument
through the special variable this. The output from the listing is as follows:

Hello Adam. Today is sunny.

 Tip JavaScript has a lot more to offer when it comes to creating and managing objects, but you don’t need
those features to work with HTML5. Take a look at the books I recommended at the start of the chapter if you want
to delve deeper into the language.

Working with Objects
After you have created objects, you can do a number of things with them. In the following sections, I’ll
describe the activities that will be useful later in this book.

Read and Modify the Property Values
The most obvious thing to do with an object is read or modify the values assigned to the properties that
the object defines. You can use two different syntax styles, both of which are shown in Listing 5-13.

Listing 5-13. Reading and Modifying Object Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.name = "Joe";

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

82

 myData["weather"] = "raining";

 document.writeln("Hello " + myData.name + ".");
 document.writeln("It is " + myData["weather"]);

 </script>
 </body>
</html>

The first style is the one most programmers will be familiar with, and it’s the one I used in earlier
examples. You concatenate the object name and the property name together with a period, like this:

myData.name = "Joe";

The second style is an array-style index, which looks like this:

myData["weather"] = "raining";

In this style, you specify the name of the property you want between square braces ([and]). This
can be a very convenient way to access a property because you can pass the property you are interested
in using a variable, like this:

var myData = {
 name: "Adam",
 weather: "sunny",
};

var propName = "weather";
myData[propName] = "raining";

This is the basis for how you enumerate the properties of an object, which I describe next.

Enumerating an Object’s Properties
You enumerate the properties an object has using the for...in statement. Listing 5-14 shows how you
can use this statement.

Listing 5-14. Enumerating an Object’s Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 printMessages: function() {
 document.writeln("Hello " + this.name + ". ");
 document.writeln("Today is " + this.weather + ".");
 }

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

83

 };

 for (var prop in myData) {
 document.writeln("Name: " + prop + " Value: " + myData[prop]);
 }

 </script>
 </body>
</html>

The for...in loop performs the statement in the code block for each property in the myData object.
In each iteration, the prop variable is assigned the name of the property being processed. I use an array-
style index (that is, using the [and] brackets) to retrieve the value of the property from the object. The
output from this listing is as follows (I formatted the results to make them easier to read):

Name: name Value: Adam

Name: weather Value: sunny

Name: printMessages Value: function () { document.writeln("Hello " + this.name + ". ");
document.writeln("Today is " + this.weather + "."); }

From the result, you can see that the function I defined as a method is also enumerated. This is as a
result of the flexible way JavaScript handles functions and because methods are themselves considered
to be properties of an object.

Adding and Deleting Properties and Methods
You are still able to define new properties for an object, even when you have used the object literal style.
Listing 5-15 gives a demonstration.

Listing 5-15. Adding a New Property to an Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.dayOfWeek = "Monday";
 </script>
 </body>
</html>

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

84

In this listing, I added a new property to the object called dayOfWeek. – I used the dot-notation
(concatenating the object and property names with a period), but I could as readily used the array-style
index notation.

As you might expect by now, you can also add new methods to an object by setting the value of a
property to be a function, as shown in Listing 5-16.

Listing 5-16. Adding a New Method to an Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.sayHello = function() {
 document.writeln("Hello");
 };

 </script>
 </body>
</html>

You can delete a property or method from an object using the delete keyword, as shown in Listing
5-17.

Listing 5-17. Deleting a Property from an Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 myData.sayHello = function() {
 document.writeln("Hello");
 };

 delete myData.name;
 delete myData["weather"];

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

85

 delete myData.sayHello;
 </script>
 </body>
</html>

Determine If an Object Has a Property
You can check to see if an object has a property using the in expression, as shown in Listing 5-18.

Listing 5-18. Checking Whether an Object Has a Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };

 var hasName = "name" in myData;
 var hasDate = "date" in myData;

 document.writeln("HasName: " + hasName);
 document.writeln("HasDate: " + hasDate);

 </script>
 </body>
</html>

In this example, I test for a property that exists and one that doesn’t. The value of the hasName
variable will be true, and the value of the hasDate property will be false.

Using JavaScript Operators
JavaScript defines a largely standard set of operators. I’ve summarized the most useful ones in Table 5-2.

Table 5-2. Useful JavaScript Operators

Operator Description

++, -- Pre- or post- increment and decrement

+, -, *, /, % Addition, subtraction, multiplication, division, remainder

<, <=, >, >= Less than, less than or equal to, more than, more than or equal to

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

86

==, != Equality and inequality tests

===, !== Identity and nonidentity tests

&&, || Logical AND and OR

= Assignment

+ String concatenation

?: Three operand conditional statement

Using the Equality and Identity Operators
The equality and identity operators are of particular note. The equality operators attempt to coerce
operands to the same type in order to assess equality. This is a handy feature as long as you are aware of
its actions. Listing 5-19 shows the equality operator in action.

Listing 5-19. Using the Equality Operator

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var firstVal = 5;
 var secondVal = "5";

 if (firstVal == secondVal) {
 document.writeln("They are the same");
 } else {
 document.writeln("They are NOT the same");
 }
 </script>
 </body>
</html>

The output from this script is as follows:

They are the same

JavaScript is converting the two operands into the same type and comparing them—in essence, the
equality operator tests that values are the same regardless of their type. If you want to test to ensure that

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

87

the values and the types are the same, you need to use the identity operator (===, which is three equals
signs rather than the two of the equality operator), as shown in Listing 5-20.

Listing 5-20. Using the Identity Operator

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var firstVal = 5;
 var secondVal = "5";

 if (firstVal === secondVal) {
 document.writeln("They are the same");
 } else {
 document.writeln("They are NOT the same");
 }
 </script>
 </body>
</html>

In this example, the identity operator considers the two variables to be different—this operator
doesn’t coerce types. The result from this script is as follows:

They are NOT the same

 Tip Notice that I have used the if conditional statement in Listings 5-19 and 5-20. This statement evaluates a
condition and, if the condition evaluates to true, executes the statements in the code block. The if statement can
be used with an optional else clause, which contains a code block whose statements will be executed if the
condition is false.

JavaScript primitives (the built-in types, such as strings and numbers) are compared by value, but
JavaScript objects are compared by reference. Listing 5-21 shows how JavaScript handles equality and
identity tests for objects.

Listing 5-21. Performing Equality and Identity Tests on Objects

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

88

 </head>
 <body>
 <script type="text/javascript">

 var myData1 = {
 name: "Adam",
 weather: "sunny",
 };

 var myData2 = {
 name: "Adam",
 weather: "sunny",
 };

 var myData3 = myData2;

 var test1 = myData1 == myData2;
 var test2 = myData2 == myData3;
 var test3 = myData1 === myData2;
 var test4 = myData2 === myData3;

 document.writeln("Test 1: " + test1 + " Test 2: " + test2);
 document.writeln("Test 3: " + test3 + " Test 4: " + test4);
 </script>
 </body>
</html>

The results from this script are as follows:

Test 1: false Test 2: true

Test 3: false Test 4: true

Listing 5-22 shows the same tests performed on primitives.

Listing 5-22. Performing Equality and Identity Tests on Primitives

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myData1 = 5;
 var myData2 = "5";
 var myData3 = myData2;

 var test1 = myData1 == myData2;

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

89

 var test2 = myData2 == myData3;
 var test3 = myData1 === myData2;
 var test4 = myData2 === myData3;

 document.writeln("Test 1: " + test1 + " Test 2: " + test2);
 document.writeln("Test 3: " + test3 + " Test 4: " + test4);
 </script>
 </body>
</html>

The results from this script are as follows:

Test 1: true Test 2: true

Test 3: false Test 4: true

Explicitly Converting Types
The string concatenation operator (+) has a higher precedence than the addition operator (also +). This
can cause confusion because JavaScript converts types freely to produce a result, and it isn’t always the
result that is expected. Listing 5-23 shows an example.

Listing 5-23. String Concatentation Operator Precedence

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myData1 = 5 + 5;
 var myData2 = 5 + "5";

 document.writeln("Result 1: " + myData1);
 document.writeln("Result 2: " + myData2);

 </script>
 </body>
</html>

The result from this script is as follows:

Result 1: 10

Result 2: 55

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

90

The second result is the kind that causes confusion. What might be intended to be an addition
operation is interpreted as string concatenation through a combination of operator precedence and
overeager type conversion. To avoid this, you can explicitly convert the types of values to ensure you
perform the right kind of operation. Table 5-3 describes the most useful conversion methods.

Converting Numbers to Strings
If you are working with multiple number variables and you want to concatenate them as strings, you can
convert the numbers to strings with the toString method, as shown in Listing 5-24.

Listing 5-24. Using the Number.toString Method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData1 = (5).toString() + String(5);
 document.writeln("Result: " + myData1);
 </script>
 </body>
</html>

Notice that I placed the numeric value in parentheses and then called the toString method. This is
because you have to allow JavaScript to convert the literal value into a number before you can call the
methods that the number type defines. I also showed an alternative approach to achieve the same effect
as calling toString, which is to call the String function and pass in the numeric value as an argument.
Both of these techniques have the same effect, which is to convert a number to a string, meaning that the
+ operator is used for string concatenation and not addition. The output from this script is as follows:

Result: 55

There are some other methods that allow us to exert more control over how a number is represented
as a string. I briefly describe these in Table 5-3. All of the methods shown in the table are defined by the
number type.

Table 5-3. Useful Number-to-String Methods

Method Description Returns

toString() Represents a number in base 10 string

toString(2)
toString(8)
toString(16)

Represents a number in binary, octal, or hexadecimal
notation

string

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

91

toFixed(n) Represents a real number with n digits after the decimal point string

toExponential(n) Represents a number using exponential notation with one
digit before the decimal point and n digits after

string

toPrecision(n) Represents a number with n significant digits, using
exponential notation if required

string

Converting Strings to Numbers
The opposite problem is to convert strings to numbers so that you can perform addition rather than
concatenation. You can do this with the Number function, as shown in Listing 5-25.

Listing 5-25. Converting Strings to Numbers

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var firstVal = "5";
 var secondVal = "5";

 var result = Number(firstVal) + Number(secondVal);

 document.writeln("Result: " + result);
 </script>
 </body>
</html>

The output from this script is as follows:

Result: 10

The Number function is quite strict in the way that it parses string values, but you can use two other
functions that are more flexible and will ignore trailing non-number characters: parseInt and
parseFloat. I described all three functions in Table 5-4.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

92

Table 5-4. Useful String-to-Number Functions

Method Description

Number(<str>) Parses the specified string to create an integer or real value

parseInt(<str>) Parses the specified string to create an integer value

parseFloat(<str>) Parses the specified string to create an integer or real value

Working with Arrays
JavaScript arrays work pretty much like arrays in most other programming languages. Listing 5-26 shows
how you can create and populate an array.

Listing 5-26. Creating and Populating an Array

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myArray = new Array();
 myArray[0] = 100;
 myArray[1] = "Adam";
 myArray[2] = true;

 </script>
 </body>
</html>

I created a new array by calling new Array(). This creates an empty array, which I assign to the
variable myArray. In the subsequent statements, I assign values to various index positions in the array.

There are a couple of things to note in this example. First, I didn’t need to declare the number of
items in the array when I created it. JavaScript arrays resize themselves to hold any number of items. The
second point to note is that I didn’t have to declare the data types that the array will hold. Any JavaScript
array can hold any mix of data types. In the example, I assigned three items to the array: a number, a
string, and a boolean.

Using an Array Literal
The array literal style lets you create and populate an array in a single statement, as shown in Listing 5-
27.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

93

Listing 5-27. Using the Array Literal Style

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myArray = [100, "Adam", true];

 </script>
 </body>
</html>

In this example, I specified that the myArray variable should be assigned a new array by specifying
the items I wanted in the array between square brackets ([and]).

Reading and Modifying the Contents of an Array
You read the value at a given index using square braces ([and]), placing the index you require between
the braces, as shown in Listing 5-28. JavaScript uses zero-based array indexes.

Listing 5-28. Reading Data from an Array Index

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 document.writeln("Index 0: " + myArray[0]);
 </script>
 </body>
</html>

You can modify the data held in any position in a JavaScript array simply by assigning a new value to
the index. Just as with regular variables, you can switch the data type at an index without any problems.
Listing 5-29 demonstrates modifying the contents of an array.

Listing 5-29. Modifying the Contents of an Array

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

94

 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 myArray[0] = "Tuesday";
 document.writeln("Index 0: " + myArray[0]);
 </script>
 </body>
</html>

In this example, I assigned a string to position 0 in the array—a position that was previously held by
a number.

Enumerating the Contents of an Array
You enumerate the content of an array using a for loop. Listing 5-30 shows how to apply the loop to
display the contents of a simple array.

Listing 5-30. Enumerating the Contents of an Array

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myArray = [100, "Adam", true];
 for (var i = 0; i < myArray.length; i++) {
 document.writeln("Index " + i + ": " + myArray[i]);
 }
 </script>
 </body>
</html>

The JavaScript loop works just the same way as loops in many other languages. You determine how
many elements are in the array by using the length property. The output from the listing is as follows:

Index 0: 100 Index 1: Adam Index 2: true

Using the Built-in Array Methods
The JavaScript Array object defines a number of methods you can use to work with arrays. Table 5-5
describes the most useful of these methods.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

95

Table 5-5. Useful Array Methods

Method Description Returns

concat(<otherArray>) Concatenates the contents of the array with the array
specified by the argument. Multiple arrays can be
specified.

Array

join(<separator>) Joins all of the elements in the array to form a string. The
argument specifies the character used to delimit the
items.

string

pop() Treats an array like a stack, and removes and returns the
last item in the array.

object

push(<item>) Treats an array like a stack, and appends the specified
item to the array.

void

reverse() Reverses the order of the items in the array in place. Array

shift() Like pop, but operates on the first element in the array. object

slice(<start>,<end>) Returns a sub-array. Array

sort() Sorts the items in the array in place. Array

unshift(<item>) Like push, but inserts the new element at the start of the
array.

void

Handling Errors
JavaScript uses the try...catch statement to deal with errors. For the most part, you won’t be worrying
about errors in this book because my focus is on explaining the features of HTML5 and not core
programming skills. Listing 5-31 shows how to use this kind of statement.

Listing 5-31. Handling an Exception

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 try {
 var myArray;
 for (var i = 0; i < myArray.length; i++) {

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

96

 document.writeln("Index " + i + ": " + myArray[i]);
 }
 } catch (e) {
 document.writeln("Error: " + e);
 }
 </script>
 </body>
</html>

The problem in this script is a common one—I am trying to use a variable that has not been
initialized properly. I wrapped the code that I suspect will cause an error in the try clause of the
statement. If no problems arise, the statements execute normally and the catch clause is ignored.

However, if there is an error, execution of the statements in the try clause stops immediately and
control passes to the catch clause. The error you encountered is described by an Error object, which is
passed to the catch clause. Table 5-6 shows the properties defined by the Error object.

Table 5-6. The Error Object

Property Description Returns

message A description of the error condition. string

name The name of the error. This is Error, by default. string

number The error number, if any, for this kind of error. number

The catch clause is your opportunity to recover from the error or clean up after it. If there are

statements that need to be executed whether or not there has been an error, you can place them in the
optional finally clause, as shown in Listing 5-32.

Listing 5-32. Using a finally Clause

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 try {
 var myArray;
 for (var i = 0; i < myArray.length; i++) {
 document.writeln("Index " + i + ": " + myArray[i]);
 }
 } catch (e) {
 document.writeln("Error: " + e);
 } finally {
 document.writeln("Statements here are always executed");
 }
 </script>
 </body>

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

97

</html>

Comparing the undefined and null Values
There are a couple of special values JavaScript defines that you need to be careful with when you
compare them: undefined and null. The undefined value is returned when you read a variable that hasn’t
had a value assigned to it or try to read an object property that doesn’t exist. Listing 5-33 shows how
undefined is used in JavaScript.

Listing 5-33. The Undefined Special Value

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">
 var myData = {
 name: "Adam",
 weather: "sunny",
 };
 document.writeln("Prop: " + myData.doesntexist);
 </script>
 </body>
</html>

The output from this listing is as follows:

Prop: undefined

JavaScript is odd in that it also defines null—another special value. The null value is slightly
different from undefined. The undefined value is returned when no value is defined, and null is used
when you want to indicate you have assigned a value but that value is not a valid object, string, number,
or boolean (that is, you have defined a value of no value). To help clarify this, Listing 5-34 shows the
transition from undefined to null.

Listing 5-34. Using undefined and null

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myData = {
 name: "Adam",

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

98

 };

 document.writeln("Var: " + myData.weather);
 document.writeln("Prop: " + ("weather" in myData));

 myData.weather = "sunny";
 document.writeln("Var: " + myData.weather);
 document.writeln("Prop: " + ("weather" in myData));

 myData.weather = null;
 document.writeln("Var: " + myData.weather);
 document.writeln("Prop: " + ("weather" in myData));

 </script>
 </body>
</html>

I create an object and then try to read the value of the weather property, which is not defined in the
early part of the code fragment:

document.writeln("Var: " + myData.weather);
document.writeln("Prop: " + ("weather" in myData));

There is no weather property yet, so the value returned by calling myData.weather is undefined and
using the in keyword to determine if the object contains the property returns false. The output from
these two statements is as follows:

Var: undefined

Prop: false

I then assign a value to the weather property, which has the effect of adding the property to the
object:

myData.weather = "sunny";
document.writeln("Var: " + myData.weather);
document.writeln("Prop: " + ("weather" in myData));

I read the value of the property and check to see if the property exists in the object again. As you
might expect, you learn that the object does define the property and that its value is sunny:

Var: sunny

Prop: true

Now I set the value of the property to null, like this:

myData.weather = null;

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

99

This has a very specific effect—the property is still defined by the object, but I indicated it doesn’t
contain a value. When I perform my checks again, I get the following results:

Var: null

Prop: true

Checking Whether a Variable or Property Is null or undefined
If you want to check whether a property is null or undefined (and you don’t care which), you can simply
use an if statement and the negation operator (!), as shown in Listing 5-35.

Listing 5-35. Checking Whether a Property Is null or undefined

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var myData = {
 name: "Adam",
 city: null
 };

 if (!myData.name) {
 document.writeln("name IS null or undefined");
 } else {
 document.writeln("name is NOT null or undefined");
 }

 if (!myData.city) {
 document.writeln("city IS null or undefined");
 } else {
 document.writeln("city is NOT null or undefined");
 }

 </script>
 </body>
</html>

This technique relies on the type coercion that JavaScript performs such that the values you are
checking are treated as boolean values. If a variable or property is null or undefined, the coerced boolean
value is false.

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

100

Differentiating Between null and undefined
If you want to compare two values, you have a choice. If you want to treat an undefined value as being
the same as a null value, you can use the equality operator (==) and rely on JavaScript converting the
types—an undefined variable will be regarded as being equal to a null variable, for example. If you want
to differentiate between null and undefined, you need to use the identity operator (===). Both
comparisons are shown in Listing 5-36.

Listing 5-36. Equality and Identity Comparisons for null and undefined Values

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <script type="text/javascript">

 var firstVal = null;
 var secondVal;

 var equality = firstVal == secondVal;
 var identity = firstVal === secondVal;

 document.writeln("Equality: " + equality);
 document.writeln("Identity: " + identity);

 </script>
 </body>
</html>

The output from this script is as follows:

Equality: true

Identity: false

Useful JavaScript Tools
There are a lot of tools available to help make working with JavaScript simpler. There are two that I think
are particularly worthy of note.

Using a JavaScript Debugger
The current generation of browsers includes sophisticated JavaScript debuggers (or supports them
through plug-ins like Firebug for Mozilla Firefox). These can be used to set breakpoints, detect errors,
and step through a script as it is executing. When you get into difficulty with a script, the debugger is the
first place to turn to. My preferred browser is Google Chrome, and I get on well with the built-in

CHAPTER 5 GETTING STARTED WITH JAVASCRIPT

101

debugger. However, when I have a particularly intractable problem, I find myself using Firebug on
Firefox. The Firebug debugger seems more robust when dealing with complex issues.

Using a JavaScript Library
One of the easiest ways of using JavaScript is through a JavaScript toolkit or library. There is no shortage
of such toolkits, but there are two that I recommend in particular. The first one, and the one I have the
most experience with, is jQuery. jQuery and its companion jQuery UI are immensely popular, actively
developed, and packed with useful features. jQuery makes working with JavaScript simpler and more
pleasurable than it would otherwise be.

The other toolkit—and the main competitor to jQuery—is Dojo. Dojo has very similar functionality
to jQuery and is equally well supported and widely used. I have had less experience with Dojo than
jQuery, but my time spent with Dojo has been positive. You can download jQuery at jquery.com and
Dojo is available at http://dojotoolkit.org. At the risk of being seen as shilling for my own books, if you
want more detail about jQuery, consider reading Pro jQuery, which is also published by Apress.

Summary
In this chapter, I showed you the core JavaScript features you will use throughout this book. JavaScript is
an integral part of HTML5, and a basic understanding of the language and its use is essential.

http://dojotoolkit.org

P A R T II

103

The HTML Elements

Now that you are set up and your knowledge of the basics is refreshed, you can begin to look at HTML5.
In this part of the book, I’ll introduce you to the HTML elements, including those that are new or
changed in HTML5.

C H A P T E R 6

105

HTML Elements in Context

In the chapters that follow, I describe the elements defined by HTML5. Many of these are elements that
also existed in HTML4, but in many cases the meaning of the element has changed or the way in which
the element can be used is different. Before we look at the elements, I want to put them in context and
set the foundation for what follows. Knowing how to use the elements is as important as understanding
their significance.

Understanding the Sematic/Presentation Divide
One of the major changes in HTML5 is a philosophical one—the separation between the sematic
significance of an element and the effect an element has on the presentation of content. In principle,
this is a sensible idea—you use HTML elements to give structure and meaning to your content and then
control the presentation of that content by applying CSS styles to the elements. Not every consumer of
HTML documents needs to display them, and by keeping presentation as a separate endeavor you make
HTML easier to process and draw meaning from automatically.

Most of the new elements that have been added to HTML5 add a specific meaning to your content.
You can use the article element (described in Chapter 10) to denote a self-contained piece of content
suitable for syndication or the figure element to denote, well, a figure.

A large number of elements that existed in HTML4 originated when there was no notion of
separating presentation from meaning—and that puts us in an odd situation. A great example is the b
element. Until HTML5, the b element instructed the browser to show the content contained by the start
and end tags as bold text. In HTML5, you don’t want elements to be just presentational, so you have a
new definition. Here it is:

The b element represents a span of text offset from its surrounding content without
conveying any extra emphasis or importance, and for which the conventional
typographic presentation is bold text; for example, keywords in a document abstract,
or product names in a review.

 – HTML: The Markup Language, w3c.org

This is a long-winded way of telling us that the b element tells the browser to make text bold. There
is no semantic significance to the b element; it is all about presentation. And this weasel-worded
definition tells us something important about HTML5: we are in a period of transition. We need to
preserve the old elements because they are so widely used, and dumping the HTML4 elements in
HTML5 is unthinkable because it would certainly slow adoption. So we have a two-speed standard.
Some of the elements, especially the new ones, have only sematic significance. Other elements, largely

CHAPTER 6 HTML ELEMENTS IN CONTEXT

106

those with one letter tags, are so well established that we are willing to bend the presentation/semantic
divide, even if we are not willing to admit this as openly as we might.

As you read through the descriptions of elements, starting in the next chapter, you will find it helpful
to keep this tension between the new way of thinking and the old way in mind. It will certainly help
explain some of the minor oddities you will encounter.

My advice is to err on the side of semantics and, where sensible, try to avoid elements that are
largely (or solely) presentational. It is a simple matter to define a custom class and apply the required
style. As long as you use the style based on the type of content (and not just the way you want the
content to appear), you will preserve at least the semantic spirit.

Understanding How to Select Elements
Even if you leave the presentation issues aside, the HTML5 specification has some ambiguities. Some of
the elements are very generic, and you might find this off-putting at first.

The elements are generic, but that’s because HTML elements are used to mark up so many different
kinds of content. Most of my writing is for books like this, so when I hear terms like section, article,
heading, and figure, I think of the structure and styles that Apress requires from authors. The same terms
have different meanings when applied to other kinds of content. A specification, legal contract, and blog
post might all have sections, for example, but the meaning of that term for each is radically different.
Rather than having a definition for a book section, a specification section, a contract section, and a blog
section, we just have the general term and some degree of interpretation is required. There are some
basic rules that I recommend you follow when selecting elements to apply to your content. They are
described in the following sections.

Less Can Be More
It is very easy to get carried away and end up with a lot of markup in a document. You just need to add
the markup to give the semantic significance your content demands. If you don’t need to define complex
titles, you don’t need the hgroup element (described in Chapter 10), and detailed citations with the cite
element (Chapter 8) are required only in documents where citations are important (such as journal
articles).

Judging how much markup to apply is a matter of experience, but here is a rule of thumb: ask
yourself how the semantics of an element are going to be used. I don’t apply the element if I don’t have
an immediate answer.

Don’t Abuse Elements
Each element denotes a particular kind of content, even those tricky presentation-only elements like b.
When marking up content, use the elements only for their defined purpose and avoid creating private
semantics. If you can’t find an element that has the significance you require, consider using one of the
generic elements (such as span or div) and using the class global attribute to denote the meaning in
your document. Classes don’t have to be used just for CSS styles.

Be Specific and Consistent
You need to pick the most specific element to represent your content. This means resisting the
temptation to construct your page using generic elements when there are elements that denote the
appropriate type of content. There has been a tendency in HTML4 to rely on div elements (described in
Chapter 9) to build structure in a page, but the problem is that the semantics are not immediately

CHAPTER 6 HTML ELEMENTS IN CONTEXT

107

apparent to anyone trying to process your content. You might decide to create a class called article and
apply your styles using that class, but this doesn’t impart the same meaning to others as using the
article element.

Equally, when you use an element, make sure you apply it consistently throughout your page, site,
or web application. This will make it easier for you to maintain your HTML markups and for others to
process your HTML.

Don’t Make Assumptions About the Audience
It is easy to assume that the consumers of your HTML care only about how the page is rendered in the
browser and, as a consequence, you don’t have to worry about the semantic accuracy of your markup.
The whole point of the semantic/presentation divide is to make HTML easier to process
programmatically and, as a consequence, you can expect this style of HTML consumption to gradually
increase as HTML5 is more widely adopted and implemented. By assuming you don’t have to worry
about the accuracy or consistency of your markups, you make it harder to process your HTML, which
will limit the range of purposes the user can find for your content.

Understanding Element Descriptions
As I describe each element, I provide a summary table with the key facts you need to know and which
you can refer back to as you apply markup to content. Table 6-1 is an example of such a summary—it
describes the ol element, which is used to denote an ordered list. (You can see full details of HTML lists
in Chapter 9.)

Table 6-1. The ol Element

Element: ol

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements

Local Attributes: start, reversed, type

Contents: Zero or more li elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The reversed attribute has been added in HTML5.
The start and type attributes, which were deprecated in HTML4,
have been restored in HTML5, but with sematic (rather than
presentational) significance.
The compact attribute is now obsolete.

CHAPTER 6 HTML ELEMENTS IN CONTEXT

108

Style Convention ol { display: block; list-style-type: decimal;
 margin-before: 1em; margin-after: 1em;
 margin-start: 0; margin-end: 0;
 padding-start: 40px; }

The tables in this chapter tell you which parents are suitable for the element, the kind of content an

element can contain, the style of tag that is required, the default presentation style, and whether the
element is new or changed in HTML5. The information about suitable parents and content is based on
the element categories I described in Chapter 3—principally flow and phrasing elements.

Element Quick Reference
The following tables are a quick reference for all of the HTML5 elements that I describe in the following
chapters.

The Document and Metadata Elements
Table 6-2 summarizes the document and metadata elements, which are described in detail in Chapter 7.
These elements are used to create the superstructure of an HTML document, to provide information to
the browser about the document, and to define scripts and CSS styles and content that will be displayed
if scripts are disabled in the browser.

Table 6-2. The Document/Metadata Elements

Element Description Type New/Changed

base Sets the base for relative URLs Metadata Unchanged

body Denotes content in an HTML document N/A Changed

DOCTYPE Denotes the start of an HTML document N/A Changed

head Contains document metadata N/A None

html Indicates the start of HTML in a document N/A Changed

link Defines a relationship with an external resource,
usually a stylesheet or a favicon

Metadata Changed

meta Provides information about the document Metadata Changed

noscript Contains content that will be displayed when
scripting is disabled or unavailable in the browser

Metadata/Phrasing Unchanged

script Defines a script block, either inline or in an
external file

Metadata/Phrasing Changed

CHAPTER 6 HTML ELEMENTS IN CONTEXT

109

style Defines a CSS style Metadata Changed

title Sets the title for the document Metadata No

The Text Elements
The text elements are applied to content to give basic structure and meaning. Table 6-3 summarizes
these elements, which are described fully in Chapter 8.

Table 6-3. The Text Elements

Element Description Type New/Changed

a Creates a hyperlink Phrasing/Flow Changed

abbr Denotes an abbreviation Phrasing Unchanged

b Offsets a span of text without additional emphasis
or importance

Phrasing Changed

br Denotes a line break Phrasing Unchanged

cite Denotes the title of another work Phrasing Changed

code Denotes a fragment of computer code Phrasing Unchanged

del Denote text that has been removed from the
document

Phrasing/Flow New

dfn Denotes the definition of a term Phrasing Unchanged

em Denotes a span of text with emphatic stress Phrasing Unchanged

i Denotes a span of text that is of a different nature
than the surrounding content, such as a word
from another language

Phrasing Changed

ins Denotes text that has been added to the
document

Phrasing/Flow New

kbd Denotes user input Phrasing Unchanged

mark Denotes content that is highlighted because of its
relevance in another context

Phrasing New

q Denotes content quoted from another source Phrasing Unchanged

CHAPTER 6 HTML ELEMENTS IN CONTEXT

110

rp Denotes parameters for use with the ruby element Phrasing New

rt Denotes a notation for use with the ruby element Phrasing New

ruby Denotes a notation to be placed above or to the
right of characters in a logographic language

Phrasing New

s Denotes text that is no longer accurate Phrasing Changed

samp Denotes output from a computer program Phrasing Unchanged

small Denotes fine print Phrasing Changed

span A generic element that does not have semantic
meaning of its own. Use this element to apply
global attributes without imparting additional
semantic significance.

Phrasing Unchanged

strong Denotes text that is important Phrasing Unchanged

sub Denotes subscript text Phrasing Unchanged

sup Denotes superscript text Phrasing Unchanged

time Denotes a time or date Phrasing New

u Offsets a span of text without additional emphasis
or importance

Phrasing Changed

var Denotes a variable from a program or computer
system

Phrasing Unchanged

wbr Denotes a place where a line break can be safely
placed

Phrasing New

Grouping Content
The elements in Table 6-4 are used to associate related content in groups. The full details of these
elements can be found in Chapter 9.

Table 6-4. The Grouping Elements

Element Description Type New/Changed

blockquote Denotes a block of content quoted from another
source

Flow Unchanged

CHAPTER 6 HTML ELEMENTS IN CONTEXT

111

dd Denotes a definition within a dl element N/A Unchanged

div A generic element that doesn’t have any pre-
defined semantic significance. This is the flow
equivalent of the span element.

Flow Unchanged

dl Denotes a description list that contains a series
of terms and definitions

Flow Unchanged

dt Denotes a term within a dl element N/A Unchanged

figcaption Denotes a caption for a figure element N/A New

figure Denotes a figure Flow New

hr Denotes a paragraph-level thematic break Flow Changed

li Denotes an item in a ul, ol, or menu element N/A Changed

ol Denotes an ordered list of items Flow Changed

p Denotes a paragraph Flow Changed

pre Denotes content whose formatting should be
preserved

Flow Unchanged

ul Denotes an unordered list of items Flow Changed

Sectioning Content
The elements in Table 6-5 are used to break down the content so that each concept, idea, or topic is
isolated. Many of these elements are new, and they provide a lot of the foundation for separating the
meaning of elements from their appearance. You can learn more about these elements in Chapter 10.

Table 6-5. The Section Elements

Element Description Type New/Changed

address Denotes contact information for a document or
article

Flow New

article Denotes an independent block of content Flow New

aside Denotes content that is tangentially related to
the surrounding content

Flow New

CHAPTER 6 HTML ELEMENTS IN CONTEXT

112

details Creates a section the user can expand to get
additional details

Flow New

footer Denotes a footer region Flow New

h1-h6 Denotes a heading Flow Unchanged

header Denotes a heading region Flow New

hgroup Hides all but the first of a set of headings from
the document outline

Flow New

nav Denotes a significant concentration of
navigation elements

Flow New

section Denotes a significant concept or topics Flow New

summary Denotes a title or description for the content in
an enclosing details element

N/A New

Creating Tables
The elements in Table 6-6 are used to create tables to show data in a grid. The main change in HTML5 is
that you can no longer use tables to manage the layout of pages. Instead, you must use the CSS table
features, which I described in Chapter 21.

Table 6-6. The Table Elements

Element Description Type New/Changed

caption Adds a caption to a table N/A Changed

col Denotes a single column N/A Changed

colgroup Denotes a group of columns N/A Changed

table Denotes a table Flow Changed

tbody Denotes the body of a table N/A Changed

td Denotes an individual table cell N/A Changed

tfoot Denotes a footer for a table N/A Changed

th Denotes an individual header cell N/A Changed

CHAPTER 6 HTML ELEMENTS IN CONTEXT

113

thead Denotes a header for a table N/A Changed

tr Denotes a row of table cells N/A Changed

Creating Forms
The elements in Table 6-7 are used to create HTML forms you can use to solicit input from the user. This
area of HTML has received a lot of attention in HTML5, and it has many new elements and features,
including the ability to validate input on the client before the user is able to submit the form. I describe
the HTML form elements in Chapters 12, 13, and 14. Of particular interest are the new types of input
element, which I introduce in Chapter 12 and cover in depth in Chapter 13.

Table 6-7. The Form Elements

Element Description Type New/Changed

button Denotes a button that will submit or reset the form
(or that can be used as a generic button)

Phrasing Changed

datalist Defines a set of suggested values for the user Flow Changed

fieldset Denotes a group of form elements Flow Changed

form Denotes an HTML form Flow Changed

input Denotes a control to gather data from the user Phrasing Changed

keygen Generates a public/private key pair Phrasing New

label Denotes a label for a form element Phrasing Changed

legend Denotes a descriptive label for a fieldset element N/A Unchanged

optgroup Denotes a group of related option elements N/A Unchanged

option Denotes an option to be presented to the user N/A Unchanged

output Denotes the result of a calculation Phrasing New

select Presents the user with a fixed set of options Phrasing Changed

textarea Allows the user to enter multiple lines of text Phrasing Changed

CHAPTER 6 HTML ELEMENTS IN CONTEXT

114

Embedding Content
The elements in Table 6-8 are used to embed content into an HTML document. Some of these elements
are described in Chapter 15, and others are covered in later parts of this book.

Table 6-8. The Embedding Elements

Element Description Type New/Changed

area Denotes an area for a client-side image map Phrasing Changed

audio Denotes an audio resource N/A New

canvas Provides a dynamic graphics canvas Phrasing/Flow New

embed Embeds content in an HTML document using a
plugin

Phrasing New

iframe Embeds one document in another by creating a
browsing context

Phrasing Changed

img Embeds an image Phrasing Changed

map Denotes the definition of a client-side image map Phrasing/Flow Changed

meter Embeds a representation of a numeric value
displayed within the range of possible values

Phrasing New

object Embeds content in an HTML document, and can
also be used to create browsing contexts and to
create client-side image maps

Phrasing/Flow Changed

param Denotes a parameter that will be passed to a plugin
through the object element

N/A Unchanged

progress Embeds a representation of progress toward a goal
or completion of a task

Phrasing New

source Denotes a media resource N/A New

svg Denotes structured vector content N/A New

track Denotes a supplementary media track, such as a
subtitle

N/A New

video Denotes a video resource N/A New

CHAPTER 6 HTML ELEMENTS IN CONTEXT

115

Unimplemented Elements
There are two elements that no browser currently implements and that are only vaguely described in the
HTML5 specifications. These elements are command and menu. At a high level, they are intended to make
working with menus and user-interface elements simpler, but I am unable to present any detailed
information in this book. I hope that subsequent versions of browsers will start to form a de facto
consensus as to the meaning of these elements.

Summary
In this chapter, I provided some context for the detailed descriptions of the HTML5 elements that
appear in the chapters that follow. I also provided a quick reference so that you can find the description
of an element when you need to refresh your memory in the future. As you start to learn about the
elements and attributes in HTML, you should remember the core advice I offered at the start of the
chapter: use the most specific element possible, don’t misuse elements, and use elements consistently
within your documents and across your web site or web application.

C H A P T E R 7

117

Creating HTML Documents

In this chapter, you are going to look at the most fundamental elements defined by HTML5: the
document and metadata elements. These are the elements that you use to create an HTML document
and to describe its contents.

These are the least interesting elements that HTML defines, and yet they are critically important. By
all means, feel free to skip over this chapter and come back later—but please do come back. Every HTML
document uses at least some of these elements (and often all of them) and knowing how to use them
properly is essential to creating standards-compliant HTML5 documents. Table 7-1 provides the
summary for this chapter.

Table 7-1. Chapter Summary

Problem Solution Listing

Denote that a document contains HTML5. Use the doctype element. 7-1

Denote the start of the HTML markup in a
document.

Use the html element. 7-2

Denote the start of the metadata section of
an HTML document.

Use the head element. 7-3

Denote the start of the content section of an
HTML document.

Use the body element. 7-4

Specify the title of an HTML document. Use the title element. 7-5

Define the URL against which relative URLs
contained in the HTML document will be
resolved.

Use the base element. 7-6

Add descriptions of the data contained in
an HTML document.

Use the meta element. 7-7

Specify the character encoding of an HTML
document.

Use the meta element with the charset
attribute.

7-8

CHAPTER 7 CREATING HTML DOCUMENTS

118

Specify a default stylesheet for an HTML
document or refresh the content of a page
periodically.

Use the meta element with the http-
equiv attribute.

7-9

Define inline styles. Use the style element. 7-10 through 7-
12

Load an external resource, including a
stylesheet or a favicon.

Use the link element. 7-13 through 7-
15

Preemptively load a resource that is
expected to be needed soon.

Use the link element with the rel
attribute value prefetch.

7-16

Define a script inline. Use the script element. 7-17

Load an external script file. Use the script element with the src
attribute.

7-18 and 7-19

Control when and how a script is executed. Use the script element with the async
or defer attributes.

7-20 through 7-
24

Display content when JavaScript isn’t
supported or is disabled.

Use the noscript element. 7-25 and 7-26

Setting Up the Basic Document Structure
Let’s begin with the document elements. These are the building blocks that define the shape of your
HTML document and set the initial context for the browser. There are only four document elements, but
they are always required in any HTML document.

The doctype Element
The doctype element is unique and in a category of its own. You are required to begin every HTML
document that you create with a doctype element; this is the element that tells the browser that it will be
dealing with HTML. Most browsers will still display your content correctly if you omit the doctype
element, but it is bad practice to rely on browsers to behave in this way. Table 7-2 summarizes the
doctype element.

Table 7-2. The doctype Element

Element doctype

Element Type N/A

Permitted Parents None

CHAPTER 7 CREATING HTML DOCUMENTS

119

Local Attributes None

Contents None

Tag Style Single open tag

New in HTML5 No

Changes in HTML5 The DTD that was required in HTML4 is obsolete in
HTML5

Style Convention None

There is only one way to use the doctype element in HTML5, and that is shown in Listing 7-1. As you

work through this chapter, you’ll apply each element to create a simple, but complete, HTML5
document. Listing 7-1 shows the first line.

Listing 7-1. Using the doctype Element

<!DOCTYPE HTML>

This element tells the browser two things: it is dealing with HTML, and which version of the HTML
specification the content has been annotated with. You don’t have to supply a version number. The
browser will automatically detect that you are using HTML5 (this is because this element has a slightly
different form in HTML5 than in earlier HTML versions). There is no end tag for this element. You simply
put a single tag at the start of the document.

The html Element
The html element, which is more properly called the root element, indicates the start of the HTML inside
of your document. Table 7-3 summarizes the html element.

Table 7-3. The html Element

Element html

Element Type N/A

Permitted Parents None

Local Attributes manifest—see Chapter 40 for details

Contents One head and one body element

Tag Style Start and end tag enclosing other elements

New in HTML5 No

CHAPTER 7 CREATING HTML DOCUMENTS

120

Changes in HTML5 The manifest attribute has been added in HTML5;
the HTML4 version attribute is now obsolete

Style Convention html { display: block; }

html:focus { outline: none;}

The html element indicates the start of the HTML markup in the document. Listing 7-2 shows the

html element in use.

Listing 7-2. Using the html Element

<!DOCTYPE HTML>
<html>
 ...content and elements omitted...
</html>

The head Element
The head element contains the metadata for the document. In HTML, metadata provides the browser
with information about the content and markup in the document, but can also include scripts and
references to external resources (such as CSS stylesheets). You will see the metadata elements later in
this chapter. Table 7-4 summarizes the head element.

Table 7-4. The head Element

Element head

Element Type N/A

Permitted Parents html

Local Attributes None

Contents One title element is required; other metadata elements
are optional

Tag Style Start and end tag enclosing other elements

New in HTML5 No

Changes in HTML5 None

Style Convention None

CHAPTER 7 CREATING HTML DOCUMENTS

121

Listing 7-3 shows the head element in use. Every HTML document should contain a head element
and it, in turn, must contain a title element, as shown in the listing. The full details of the title
element are shown later in this chapter.

Listing 7-3. Using the head Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Hello</title>
 </head>
</html>

The body Element
The body element encapsulates the content of an HTML document, as opposed to the head element,
which encapsulates metadata and document information. The body element always follows the head
element so that it is the second child of the html element. Table 7-5 describes the body element.

Table 7-5. The body Element

Element body

Element Type N/A

Permitted Parents html

Local Attributes None

Contents All phrasing and flow elements

Tag Style Start and end tag required

New in HTML5 No

Changes in HTML5 The alink, background, bgcolor, link, margintop,
marginbottom, marginleft, marginrightm, marginwidth,
text, and vlink attributes are obsolete; the effect that
these attributes had can be achieved with CSS

Style Convention body { display: block; margin: 8px; }

body:focus { outline: none; }

Listing 7-4 shows the body element in use.

Listing 7-4. Using the body Element

<!DOCTYPE HTML>

CHAPTER 7 CREATING HTML DOCUMENTS

122

<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 </body>
</html>

I have added some simple content to the body element. The individual elements that I used (p, code,
and a) are described in Chapters 8 and 9. You have reached the point where you have a simple, but
complete, HTML document. You can see how the browser displays this document in Figure 7-1.

Figure 7-1. Displaying a simple HTML document in the browser

Describing Documents with the Metadata Elements
The metadata elements let you provide information about the HTML document. They are not content
themselves, but they provide information about the content that follows. Metadata elements are added
to the head element.

Setting the Document Title
The title element sets the document’s title or name. Browsers usually display the contents of this
element at the top of the browser window or tab. Table 7-6 describes the title element.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

123

Table 7-6. The title Element

Element title

Element Type Metadata

Permitted Parents head

Local Attributes None

Contents The title of the document or a meaningful description of
its contents

Tag Style Start and end tag enclosing text

New in HTML5 No

Changes in HTML5 None

Style Convention title { display: none; }

Every HTML document should have exactly one title element, and the text enclosed by the start

and end tags should be meaningful to the user. At the very least, it should allow the user to differentiate
between browser tabs or windows and recognize which of them belong to your web application. Listing
7-5 shows the head element in use.

Listing 7-5. Using the head Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 </body>
</html>

You can see the way that a browser handles the head element in Figure 7-2. The figure shows Google
Chrome, but other browsers do something broadly similar.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

124

Figure 7-2. The effect of using the title element

Setting the Base for Relative URLs
The base element sets a base URL against which relative links, contained in the HTML document, will be
resolved. A relative link is one that omits the protocol, host, and port parts of the URL and is evaluated
against some other URL—either one specified by the base element or the URL used to load the current
document. The base element also specifies how links are opened when a user clicks them, and how the
browser acts after a form has been submitted (I explain HTML5 forms in Chapter 12). Table 7-7
summarizes the base element.

Table 7-7. The base Element

Element base

Element Type Metadata

Permitted Parents head

Local Attributes href, target

Contents None

Tag Style Void

New in HTML5 No

Changes in HTML5 None

Style Convention None

An HTML document should contain, at most, one base element. It is typically one of the first

elements you place inside of the head element. This ensures that the base URL is applied to the relative
URLs used in subsequent metadata elements.

Using the href Attribute
The href attribute specifies the base URL against which relative URLs in the rest of the document will be
resolved. Listing 7-6 shows the base element in use.

CHAPTER 7 CREATING HTML DOCUMENTS

125

Listing 7-6. Using the href Attribute in the base Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

In this example, I have set the base URL to http://titan/listings/. Titan is the name of my
development server, and listings is the directory on the server that contains the examples for this book.

Later in the document, I have added an a element to create a hyperlink using the relative URL
page2.html (I explain how to use the a element in Chapter 8). When the user clicks the hyperlink, the
browser combines the base URL and the relative URL to create the combined URL
http://titan/listings/page2.html.

 Tip If you do not use the base element, or specify a base URL using the href attribute, then the browser will
assume that it should resolve any relative links against the URL of the current document. So, for example, if you
load a document from the URL http://myserver.com/app/mypage.html and it contains a hyperlink with a
relative URL of myotherpage.html, then the browser will attempt to load the second page from the fully qualified
URL http://myserver.com/app/myotherpage.html.

Using the target Attribute
The target attribute tells the browser how to open URLs. The values you specify for this attribute
represent a browsing context. You’ll see some examples of these contexts and how to use them in
Chapters 8 and 15, when you look at the a and iframe elements.

Using Metadata to Describe the Document
The meta element allows you to define different kinds of metadata in your document. You can use this
element in a number of different ways, and an HTML document can contain multiple meta elements.
Table 7-8 provides the summary for the meta element.

http://apress.com
http://myserver.com/app/mypage.html
http://myserver.com/app/myotherpage.html

CHAPTER 7 CREATING HTML DOCUMENTS

126

Table 7-8. The meta Element

Element meta

Element Type Metadata

Permitted Parents head

Local Attributes name, content, charset, http-equiv

Contents None

Tag Style Void

New in HTML5 No

Changes in HTML5 The charset attribute is new in HTML5.
In HTML4, the http-equiv attribute could have any
number of different values. In HTML5, this has been
changed so that only the values I describe in this table are
permitted.
The HTML4 scheme attribute is now obsolete.
You no longer specify the language for the page using a
meta element (I’ll show you how to do this in HTML5 later
in this chapter).

Style Convention None

In the sections that follow, I’ll show you the different ways that you can use the meta element. Note

that each instance of the meta element can be used for only one of these purposes. If you want to take
advantage of more than one of these features, you must add multiple meta elements to the head element.

Specifying Name/Value Metadata Pairs
The first use for the meta element is to define metadata in name/value pairs, for which you use the name
and content attributes. Listing 7-7 provides a demonstration.

Listing 7-7. Using the meta Element to Define Metadata in Name/Value Pairs

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>

CHAPTER 7 CREATING HTML DOCUMENTS

127

 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

You use the name attribute to specify which type of metadata the element refers to, and the content
attribute to provide a value. Table 7-9 lists the predefined metadata types that you can use with the meta
element.

Table 7-9. The Predefined Metadata Types for Use with the meta Element

Metadata Name Description

application name The name of the web application that the current page is part of

author The name of the author of the current page

description A description of the current page

generator The name of the software that generated the HTML (this is usually used when
using some kind of server framework to generate HTML pages, such as Ruby
on Rails, ASP.NET, etc.)

keywords A set of comma-separated strings that describe the content of the page

In addition to the five predefined metadata names, you can also use metadata extensions. Go to

http://wiki.whatwg.org/wiki/MetaExtensions to see a list of these extensions, which change over time.
Some of the extensions are widely used, while others are fairly specialized and hardly used at all. The
robots metadata type is an example of an extension that is very widely used. It allows the author of an
HTML document to specify how the document should be treated by search engines. For example:

<meta name="robots" content="noindex">

The three values that most search engines will recognize are noindex (don’t index this page),
noarchive (don’t create archives or cached versions of this page), and nofollow (don’t follow links from
this page). There are many more metadata extensions available, and I recommend you read through the
online list to see what is suitable for your project.

 Tip In the past, the keywords metadata was the main way to tell a search engine how it should categorize and
rank your content. These days, search engines pay far less attention to the keywords metadata because it can be
abused to give a false impression of the relevance and contents of a page. The best way to improve the way that
search engines consider your content is to take the advice of the search engines themselves—most of them

http://apress.com
http://wiki.whatwg.org/wiki/MetaExtensions

CHAPTER 7 CREATING HTML DOCUMENTS

128

provide guidance for optimizing your pages or entire site. You can find Google’s guide at
http://google.com/support/webmasters/bin/topic.py?topic=15260.

Declaring a Character Encoding
Another use for the meta element is to declare the character encoding that the HTML document content
uses. An example of this is shown in Listing 7-8.

Listing 7-8. Using the meta Element to Declare a Character Encoding

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

In this case, I have specified that my page uses the UTF-8 encoding. UTF-8 is a common character
encoding because it can represent all of the Unicode characters in the smallest number of bytes. (As I
write this, around 50 percent of all web pages use UTF-8 encoding.)

Simulate an HTTP Header
The final use for the meta element is to override the value of one of the HTTP (Hypertext Transfer
Protocol) headers. HTTP is what you usually use to transport HTML data between the server and the
browser. I am not going to describe HTTP any further, other than to say that each response from the
server contains a series of headers that describe the content to the browser, and that you can use the
meta element to simulate or replace three of those headers. Listing 7-9 shows the general form of this use
of the meta element.

Listing 7-9. Using the meta Element to Simulate an HTTP Header

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>

http://google.com/support/webmasters/bin/topic.py?topic=15260
http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

129

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 <meta http-equiv="refresh" content="5"/>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

You use the http-equiv attribute to specify which header you want to simulate, and the content
attribute to provide the value you want to use. In this case, I have specified the refresh header and a
value of 5, which has the effect of asking the browser to reload the page every five seconds.

 Tip If you follow the refresh interval with a semicolon and a URL, the browser will load the specified URL after
the interval has passed. See the section “The noscript Element” for an example.

There are three permitted values for the http-equiv attribute, which I describe in Table 7-10.

Table 7-10. Permitted Values for the http-equiv Attribute in the meta Element

Attribute Value Description

refresh This specifies a period, in seconds, after which the current page should reload
from the server. You can also specify a different URL to be loaded. For
example:

<meta http-equiv="refresh" content="5; http://www.apress.com"/>

default-style This specifies the preferred stylesheet that should be used with this page. The
value of the content attribute must match the title attribute on a script or
link element in the same document.

content-type This is an alternative way of specifying the character encoding of the HTML
page. For example:

<meta http-equiv="content-type" content="text/html charset=UTF-8"/>

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

130

Defining CSS Styles
The style element lets you define CSS styles inline in your HTML document (as opposed to the link
element, which lets you import styles from an external stylesheet). Table 7-11 summarizes the style
element.

Table 7-11. The style Element

Element style

Element Type N/A

Permitted Parents Any element that can contain metadata plus, head, div,
noscript, section, article, aside

Local Attributes type, media, scoped

Contents CSS styles

Tag Style Start and end tag enclosing text

New in HTML5 No

Changes in HTML5 The scoped attribute has been added in HTML5

Style Convention None

Listing 7-10 gives an example of the style element in use.

Listing 7-10. Using the style Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 <style type="text/css">
 a {
 background-color: grey;
 color: white;
 padding: 0.5em;
 }
 </style>
 </head>
 <body>

CHAPTER 7 CREATING HTML DOCUMENTS

131

 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

In this example, I have created a new style for the a element. It displays the link with a grey
background, white text, and some padding. (If you are new to CSS, you can get a quick primer in Chapter
4, and full coverage begins in Chapter 16.) You can see the effect of this style in Figure 7-3.

Figure 7-3. Using the style element to create an inline style

You can use the style element throughout an HTML document, and a single document can contain
multiple style elements. This means that you don’t have to define all of your styles in the head section.
This can be useful if you are generating your pages through a template engine because it means you can
supplement the styles defined by the template with styles that are specific to a particular page.

Specifying the Style Type
The type attribute lets you tell the browser what kind of style you are going to define; however, the only
style mechanism that browsers support is CSS, so the value of this attribute will always be text/css.

Specifying the Scope of the Style
If the scoped attribute is present in a style element, then the styles are applied to only the element’s
parent and the parent’s child elements. Without the scoped attribute, a style defined anywhere in an
HTML document is applied to all elements in the document.

 Caution As I write this, none of the major browsers support the scoped attributes for styles.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

132

Specifying the Media for a Style
The media attributes lets you specify when a style should be applied to the document. Listing 7-11 gives
an example of how you can use this attribute.

Listing 7-11. Using the media Attribute of the style Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 <style media="screen" type="text/css">
 a {
 background-color: grey;
 color: white;
 padding: 0.5em;
 }
 </style>
 <style media="print">
 a{
 color:Red;
 font-weight:bold;
 font-style:italic
 }
 </style>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

In the listing, I have defined two style elements that have different values for the media attribute.
The browser will apply the first style when the HTML is displayed onscreen, and the second style when
the page is printed.

You can create very specific conditions in which to use a style. First, you can specify the device that
you are interested in. I have summarized the supported values in Table 7-12.

Table 7-12. The Defined Device Values for the media Attribute of the style Element

Device Description

all Apply this style to any device (this is the default).

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

133

aural Apply this style to speech synthesizers.

braille Apply this style to Braille devices.

handheld Apply this style to handheld devices.

projection Apply this style to projectors.

print Apply this style in print preview and when the page is printed.

screen Apply this style when the content is shown on a computer screen.

tty Apply this style to fixed-width devices, such as teletypes.

tv Apply this style to televisions.

The browser interprets which category a device falls into. Browsers handle some device types (such

as screen and print) consistently, but other devices (such as the handheld device type) may get a more
liberal interpretation. It is worth checking that your target browsers have the same interpretation of
specific devices that you do. Using the media features allows you to be even more specific. Listing 7-12
provides an example.

Listing 7-12. Adding Specificity to a style Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 <style media="screen AND (max-width:500px)" type="text/css">
 a {
 background-color: grey;
 color: white;
 padding: 0.5em;
 }
 </style>
 <style media="screen AND (min-width:500px)" type="text/css">
 a {color:Red; font-style:italic}
 </style>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

134

 </body>
</html>

In this listing, I have used the width feature to differentiate between two styles. The first will be used
when the browser window is narrower than 500 pixels, and the second when the window is wider than
500 pixels. If you display the HTML from Listing 7-12 in a browser, and then drag the window to change
its size, you can see the effect of this feature, as shown in Figure 7-4.

Figure 7-4. Different styles applied, based on browser window width

Notice how I have used AND to combine a device with a feature. In addition to AND, you can also use
NOT, or a comma (,) to represent OR. This allows you to create complex and quite specific conditions in
which to apply a style.

You usually use features such as width with the min and max modifiers to make them more flexible;
although you can apply styles based on very specific window conditions by omitting them. I have listed
and described the available features, along with their modifiers, in Table 7-13. Unless otherwise noted,
you can modify these features with min- or max- to create thresholds rather than specific values.

Table 7-13. Features for the media Attribute of the style Element

Feature Description Example

width
height

Specifies the width or height of the
browser window. Units are expressed as px
for pixels.

width:200px

device-width
device-height

Specifies the width or height of the entire
device (and not just the browser window).
Units are expressed as px for pixels.

min-device-height:200px

CHAPTER 7 CREATING HTML DOCUMENTS

135

resolution Specifies the pixel density of the device.
Units are dpi (dots per inch) or dpcm (dots
per centimeter).

max-resolution:600dpi

orientation Specifies the orientation of the device. The
supported values are portrait and
landscape. There are no modifiers for this
feature.

orientation:portrait

aspect-ratio
device-aspect-
ratio

Specifies the pixel ratio of the browser
window or the entire device. Values are
expressed as the number of width pixels
over the number of height pixels.

min-aspect-ratio:16/9

color
monochrome

Specifies the number of bits per pixel of
color or monochrome devices.

min-monochrome:2

color-index Specifies the number of colors that the
display can show.

max-color-index:256

scan Specifies the scanning mode of a TV. The
supported values are progressive and
interlace. There are no modifiers for this
feature.

scan:interlace

grid Specifies the type of device. Grid devices
use fixed grids to display content; for
example, character-based terminals and
one-line pager displays. The supported
values are 0 and 1, where 1 is a grid device.
There are no modifiers for this feature.

grid:0

As with the devices, the interpretation of each of the features is left to the browser, and there can be
variations in which features are recognized and when they are considered to be present and available. If
you rely on the features to apply styles, you should test thoroughly and define a fall-back style that will
be applied if your expected features are not available.

Denoting External Resources
The link element creates a relationship between an HTML document and an external resource, most
typically a CSS stylesheet. Table 7-14 summarizes the link element.

Table 7-14. The link Element

Element link

Element Type Metadata

CHAPTER 7 CREATING HTML DOCUMENTS

136

Permitted Parents head, noscript

Local Attributes href, rel, hreflang, media, type, sizes

Contents None

Tag Style Void element

New in HTML5 No

Changes in HTML5 The sizes attribute has been added; the attributes
charset, rev and target are obsolete in HTML5

Style Convention None

The link element defines six local attributes, which I summarize in Table 7-15. The most important

of these attributes is rel, which defines the nature of the relationship between the HTML page and the
resource that the link items relates to. I’ll show you some of the most common types of relationships
shortly.

Table 7-15. Local Attributes of the link Element

Attribute Description

href Specifies the URL of the resource that the link element refers to.

hreflang Specifies the language of the linked resource.

media Specifies the device that the linked content is intended for. This attribute uses the
same device and feature values that I described in Tables 7-10 and 7-11.

rel Specifies the kind of relationship between the document and the linked resource.

sizes Specifies the size of icons. I show you an example of using the link element to load a
favicon later in the chapter.

type Specifies the MIME type of the linked resource, such as text/css or image/x-icon.

The value assigned to the rel attribute determines how the browser deals with the link element.

Table 7-16 shows some of the more common values for the rel attribute and describes each of them.
There are additional rel values defined, but this is still a volatile area of HTML5. You can find the most
complete definition of rel values at http://iana.org/assignments/link-relations/link-relations.xml.

http://iana.org/assignments/link-relations/link-relations.xml

CHAPTER 7 CREATING HTML DOCUMENTS

137

Table 7-16. Selected Values for the rel Attribute of the link Element

Value Description

alternate Links to an alternative version of the document, such as a translation to another
language.

author Links to the author of the document.

help Links to help related to the current document.

icon Specifies an icon resource. See Listing 7-14 for an example.

license Links to a license associated with the current document.

pingback Specifies a pingback server, which allows a blog to be notified automatically when
other web sites link to it.

prefetch Preemptively fetches a resource. See Listing 7-15 for an example.

sylesheet Loads an external CSS stylesheet. See Listing 7-13 for an example.

Loading a Stylesheet
To demonstrate the link element in this way, I have created a stylesheet called styles.css, the contents
of which are shown in Listing 7-13.

Listing 7-13. The styles.css File

a {
 background-color: grey;
 color: white;
 padding: 0.5em;
}

This is the CSS style previously applied using a style element, but placed into an external stylesheet.
To take advantage of this stylesheet, use the link element, as shown in Listing 7-14.

Listing 7-14. Using the link Element for an External Stylesheet

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>

CHAPTER 7 CREATING HTML DOCUMENTS

138

 <link rel="stylesheet" type="text/css" href="styles.css"/>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

You can use multiple link elements to load multiple external resources. The advantage of using an
external stylesheet is that you can use one set of styles in multiple documents without having to
duplicate the styles. The browser loads and applies the styles just as if you had set the CSS properties in a
style element, as shown in Figure 7-5.

Figure 7-5. Applying styles obtained through an external stylesheet

Defining a Favicon for Your Page
After CSS stylesheets, the most common use for the link element is to define an icon that will be
associated with your page. Different browsers handle the icon in different ways, but typically the icon
appears on a page tab, and when the user adds your page to the favorites list. To demonstrate this, I have
taken the favicon that Apress uses at www.apress.com. This is a 32-pixel by 32-pixel image file in the .ico
format. Browsers universally support this format. You can see how the image appears in Figure 7-6. The
image file is favicon.ico.

Figure 7-6. The Apress favicon

You can then use this favicon by adding a link element to your page, as shown in Listing 7-15.

http://apress.com
http://www.apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

139

Listing 7-15. Adding a Favicon Using a link Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

When the HTML page is loaded, the browser will load and display the favicon, as shown in Figure 7-
7. The figure shows Google Chrome, which displays the favicon at the top of the page tab.

Figure 7-7. The favicon displayed at the top of the browser tab

 Tip You don’t have to use the link element if the favicon is located at /favicon.ico (i.e., in the root directory of
the web server). Most browsers will automatically request this file when a page is loaded, even without the link
element being present.

Preemptively Fetching a Resource
You can ask the browser to preemptively fetch a resource that you expect to be needed soon. Listing 7-16
shows the use of the link element to specify prefetching.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

140

Listing 7-16. Prefetching a Linked Resource

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <link rel="prefetch" href="/page2.html"/>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

I have set the rel attribute to prefetch and specified that an HTML page, page2.html, be loaded in
the expectation that the user will click a link to perform some other action that requires this page.

 Note At the time of writing, only Firefox supports link prefetching.

Using the Scripting Elements
There are two scripting elements. The first, script, allows you to define scripts and control their
execution. The second, noscript, allows you to define what happens when a browser doesn’t support
scripting or has it disabled.

 Tip You usually use the script element inside the head element, but you may use it anywhere in an HTML
document. I recommend putting all of your script elements together in the head section of a document because it
makes them easier to track and because that’s where most people expect to find script definitions.

The script Element
The script element lets you include scripting in your pages, either defined inline in the document or
referenced to an external file. The most commonly used type of script is JavaScript—and that’s the type

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

141

I’ll be focusing on—but browsers do support other scripting languages, including some remnants from
the browser wars that I described in Chapter 1 Table 7-17 describes the script element. You use one
script element for each script that you need to define or import.

Table 7-17. The script Element

Element script

Element Type Metadata/phrasing

Permitted Parents Any element that can contain metadata or phrasing
elements

Local Attributes type, src, defer, async, charset

Contents Script language statements or empty if an external
JavaScript library is specified

Tag Style A start and end tag are required; self-closing tags are not
permitted, even when referencing an external JavaScript
library

New in HTML5 No

Changes in HTML5 The type attribute is optional in HTML5; the async and
defer attributes have been added; the HTML4 language
attribute is obsolete in HTML5

Style Convention None

The type of this element varies based on where it is used. script elements defined within the head

element are metadata, but script elements defined in other elements (such as body or section) are
phrasing elements.

In the following sections, I’ll show you how to use the script element to achieve different effects.
Table 7-18 describes the attributes that the script element defines.

Table 7-18. Local Attributes of the script Element

Attribute Description

type Specifies the type of the script that is references or defined. This attribute can be
omitted for JavaScript scripts.

src Specifies the URL for an external script file. See the following demonstration.

defer
async

Specifies how the script will be executed. See the following demonstration. These
attributes can only be used in conjunction with the src attribute.

CHAPTER 7 CREATING HTML DOCUMENTS

142

charset Specifies the character encoding of an external script file. This attribute can only be
used in conjunction with the src attribute.

Defining an Inline Script
The simplest way to define a script is to do so inline. This means that you include the JavaScript
statements in the HTML page. Listing 7-17 provides a demonstration.

Listing 7-17. Defining a Script Inline

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script>
 document.write("This is from the script");
 </script>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

If you don’t use the type attribute, the browser will assume that you are using JavaScript. This
simple script adds some text to the HTML document. By default, scripts are executed as soon as they are
encountered in the page. You can see the effect of this in Figure 7-8 where the text from the script
appears in the browser window before the p element contained in the body.

Figure 7-8. The effect of a simple script

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

143

Loading an External Scripting Library
You can separate scripts into separate files and load them using the script element. These files can be as
simple (such as the demonstration that follows) or as complex (such as sophisticated libraries such as
jQuery) as you like. To demonstrate an external script, I have created a file called simple.js, the contents
of which are shown in Listing 7-18.

Listing 7-18. Contents of the simple.js Script File

document.write("This is from the external script");

The file contains a single statement, similar to the one that I used in the inline script. Listing 7-19
shows how you can use the src attribute in the script element to reference this file.

 Tip A script element must be empty if it uses the src attribute. You can’t use the same script element to define
an inline script and an external script.

Listing 7-19. Loading an External Script Using the src Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script src="simple.js"></script>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

The value for the src attribute is the URL of the script file that you want to load. I created the
simple.js file in the same directory as the HTML file, so I am able to use a relative URL in this example.
You can see the effect of the script in Figure 7-9.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

144

Figure 7-9. The effect of an external script

 Tip Notice that I have included an end tag for the script element, even though the element has no content. If
you use a self-closing tag when referencing an external script, the browsers will ignore the element and not load
the file.

Deferring Execution of a Script
You can exert some control over the execution of a script by using the async and defer attributes. The
defer attribute tells the browser not to execute the script until the page has been loaded and parsed. To
understand the benefit that the defer attribute can offer, you need to look at the problem that it solves.
Listing 7-20 shows the contents of the simple2.js script file, which contains a single statement.

Listing 7-20. The Statement Contained in the simple2.js Script File

document.getElementById("applecode").innerText = "cherries";

I’ll break down the various parts of this statement in Part IV of this book , but for now it is enough to
know that when this script runs, it will find an element with an id attribute value of applecode and
change the inner text of that element to cherries. Listing 7-21 shows an HTML document that
references the script file using a script element.

Listing 7-21. Referencing a Script File

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script src="simple2.js"></script>
 </head>

CHAPTER 7 CREATING HTML DOCUMENTS

145

 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

When you load the preceding HTML page, you don’t get the desired result, as shown in Figure 7-10.

Figure 7-10. A script timing issue

The default behavior for a browser when it encounters a script element is to stop processing the
HTML document, load the script file, and execute its contents. It is only after the script execution
completes that the browser resumes parsing the HTML. This means that the browser loads and executes
the statement in simple2.js before it has parsed the rest of the HTML, and discovered the code element.
The script doesn’t find the element it is looking for, and so no changes are applied. After the script
completes, the browser continues parsing the HTML, and finds the code element. However, by then it is
too late for the script, which isn’t executed again. One obvious way of solving this problem is to put the
script element at the end of the document, as shown in Listing 7-22.

Listing 7-22. Solving the Script Timing Issue by Moving the script Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 <script src="simple2.js"></script>

http://apress.com
http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

146

 </body>
</html>

This approach takes the way in which the browser responds to script elements into account,
ensuring that the script isn’t loaded and executed until the elements that the script is interested in have
been parsed. As you can see in Figure 7-11, you get the result that you want from the script.

Figure 7-11. The effect of the script, applied to an a element

This approach is perfectly valid, but in HTML5 you can achieve the same effect by using the defer
attribute. When a browser encounters a script element in which the defer attribute is present, it holds
off loading and executing the script until all of the elements in the HTML document have been parsed.
Listing 7-23 shows a script element that uses the defer element.

Listing 7-23. Using a script Element with the defer Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script defer src="simple2.js"></script>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

Loading this page into the browser gives the same effect as moving the script element to the end of
the page. The script is able to locate the code element and change the text contents, producing the same
effect as you saw in Figure 7-11.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

147

 Tip You can use the defer attribute on external script files only. It doesn’t work for inline scripts.

Executing a Script Asynchronously
You can solve a different problem using the async attribute. As I mentioned earlier, the default browser
behavior when it encounters a script element is to stop processing the page while it loads and executes
the script. Each script element is executed synchronously (i.e., nothing else happens when the script is
loading and running) and in turn (i.e., in the order in which they are defined).

Synchronous and sequential execution makes sense as a default way of handling scripts, but there
are some scripts for which this isn’t required and you can improve performance by using the async
attribute. A good example is a tracking script. This type of script could, for example, report which sites
you visit so that advertisers could profile and target you based on your browsing habits, or it could
gather visitor statistics for site analytics. Such scripts are self-contained and tend not to interact with the
elements in the HTML document. Delaying the rendering of the page while you wait for this kind of
script to load and then report back to its server doesn’t make any sense at all.

When you use the async attribute, the browser loads and executes the script asynchronously while it
continues to parse the other elements in the HTML, including other script elements. For the right kind
of script, this can improve overall load performance significantly. Listing 7-24 shows the async attribute
applied to a script element.

Listing 7-24. Using the async Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script async src="simple2.js"></script>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

One important effect of using the async attribute is that the scripts in a page might not be executed
in the order in which they are defined. This makes the async feature unsuitable for scripts that depend
on functions or values defined by other scripts.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

148

The noscript Element
The noscript element allows you to display content to users who have disabled JavaScript or who are
using a browser that doesn’t support it. Table 7-19 summarizes the noscript element.

Table 7-19. The noscript Element

Element noscript

Element Type Metadata/phrasing/flow

Permitted Parents Any element that can contain metadata, phrasing, or flow
elements

Local Attributes None

Contents Phrasing and flow elements

Tag Style A start and end tag are both required

New in HTML5 No

Changes in HTML5 None

Style Convention None

As with the script element, the type of the noscript element depends on where it is placed in the

document.
Although JavaScript support is widespread these days, there are still some specialized browsers that

don’t support it. Even when the browser does implement JavaScript, the user could have disabled it—
many large corporations enforce a no-JavaScript rule on their computer users. The noscript element lets
you deal with these users by displaying content that doesn’t require JavaScript to operate or, at the very
least, explains that they can’t use your site or page unless they enable JavaScript. Listing 7-25 shows the
noscript element set up to display a simple message.

Listing 7-25. Using the noscript Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script defer src="simple2.js"></script>
 <noscript>

CHAPTER 7 CREATING HTML DOCUMENTS

149

 <h1>Javascript is required!</h1>
 <p>You cannot use this page without Javascript</p>
 </noscript>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

You can see the effect of the noscript element in Figure 7-12. To achieve this effect, I disabled
JavaScript support in Google Chrome and loaded the HTML in the listing.

Figure 7-12. The effect of the noscript element

Notice that the remainder of the page is processed as normal, and the content elements are still
displayed.

 Tip You can add multiple noscript elements to a page so that they correspond to individual areas of
functionality that require scripting. This approach is most useful for providing fallback markup that doesn’t rely on
JavaScript.

An alternative approach is to redirect the user’s browser to a different URL if it doesn’t support
JavaScript. You do this by placing a meta element inside the noscript element, as shown in Listing 7-26.

http://apress.com

CHAPTER 7 CREATING HTML DOCUMENTS

150

Listing 7-26. Using the noscript Element to Redirect the User’s Browser

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <script defer src="simple2.js"></script>
 <noscript>
 <meta http-equiv="refresh" content="0; http://www.apress.com"/>
 </noscript>
 </head>
 <body>
 <p>
 I like <code id="applecode">apples</code> and oranges.
 </p>
 Visit Apress.com
 Page 2
 </body>
</html>

This will redirect the user to the www.apress.com site when a browser that doesn’t support JavaScript,
or that has JavaScript disabled, tries to load this page.

Summary
In this chapter, I have introduced you to the document and metadata elements. These are not the most
dynamic and exciting of elements defined by HTML5, but they are incredibly important. Understanding
how to define the core building blocks of an HTML document is essential to getting the best result—
especially when it comes to aspects such as controlling script execution with the script element and
managing styles with the style and link elements.

http://apress.com
http://www.apress.com

C H A P T E R 8

151

Marking Up Text

We are going to switch track from the big structural document elements to something much finer
grained: the text-level elements (text elements, for brevity). When you add these elements to your text,
you add structure and meaning. This will become evident as you work through the examples in this
chapter.

The HTML5 specification makes it clear that you should only use elements for their semantic value.
However, to make life easier, the specification also makes it clear that the traditional styling associated
with these elements is part of the semantic meaning for some elements. This is a bit of a fudge, but a
helpful one that maintains compatibility with older HTML versions.

Some of these elements have very specific meanings. For example, the cite element is used only to
cite the title of another work, such as a book or film. However, many other elements are more
ambiguous and, despite the intention of the HTML5 standard, essentially related to presentation.

My advice is to take a pragmatic approach. First, use a task-specific element if there is one available.
Second, consider avoiding those elements that were formerly presentational only and that have had
semantic meaning applied in retrospect—such as the b element—and manage presentation using CSS.
Finally, irrespective of which elements you choose to use, use them consistently throughout your HTML.
Table 8-1 provides the summary for this chapter.

Table 8-1. Chapter Summary

Problem Solution Listing

Create a hyperlink to another document. Use the a element, with either an
absolute or relative URL as the href
attribute value.

8-1, 8-2

Create a hyperlink to an element in the
same document.

Use the a element, with a CSS-style ID
selector for the target element.

8-3

Denote text without imparting any
additional importance or significance.

Use the b or u elements. 8-4, 8-9

Denote emphatic stress. Use the em element. 8-5

Denote scientific or foreign-language
terms.

Use the i element. 8-6

CHAPTER 8 MARKING UP TEXT

152

Denote inaccurate or incorrect content. Use the s element. 8-7

Denote importance. Use the strong element. 8-8

Denote fine print. Use the small element. 8-10

Denote superscript or subscript. Use the sup or sub elements. 8-11

Denote a line break or an opportunity for a
line break.

Use the br or wbr elements. 8-12, 8-13

Represent computer code, the output from
a program, or a variable or input from a
user.

Use the code, var, samp, or kbd
elements.

8-14

Denote an abbreviation. Use the abbr element. 8-15

Denote a definition of a term. Use the dfn element. 8-16

Denote quoted content. Use the q element. 8-17

Cite the title of another work. Use the cite element. 8-18

Denote ruby annotations for East-Asian
languages.

Use the ruby, rt, and rp elements. 8-19

Specify the directionality for a span of
content.

Use the bdo element. 8-20

Isolate a span of text for the purposes of
directionality.

Use the bdi element. 8-21, 8-22

Apply a global attribute to content. Use the span element. 8-23

Denote content that has relevance in
another context.

Use the mark element. 8-24

Denote text that has been added or
removed from the document.

Use the ins and del elements. 8-25

Denote a time or date. Use the time element. 8-26

CHAPTER 8 MARKING UP TEXT

153

Creating Hyperlinks
Hyperlinks are a critical feature in HTML, and provide the basis by which users can navigate through
content, both within the same document and across pages. You create hyperlinks using the a element,
which is summarized in Table 8-2.

Table 8-2. The a Element

Element a

Element Type The a element is considered as a phrasing element when it
contains phrasing content, and as a flow element when it
contains flow content

Permitted
Parents

Any element that can contain phrasing content

Local Attributes href, hreflang, media, rel, target, type

Contents Phrasing content and flow elements

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

This element can now contain flow as well as phrasing content.
The media attribute has been added. The target attribute, which
was deprecated in HTML4, has now been reinstated.
In HTML5, an a element without an href value is a placeholder
for a hyperlink.
The id, coords, shape, urn, charset, methods, and rev attributes
are obsolete.

Style Convention a:link, a:visited {
 color: blue;
 text-decoration: underline; cursor: auto;
}

a:link:active, a:visited:active {
 color: blue;
}

The a element defines six local attributes, described in Table 8-3. The most important of these

attributes is href, as you’ll see later in this section.

CHAPTER 8 MARKING UP TEXT

154

Table 8-3. Local Attributes of the a Element

Attribute Description

href Specifies the URL of the resource that the a element refers to.

hreflang Specifies the language of the linked resource.

media Specifies the device that the linked content is intended for. This attribute uses the same
device and feature values that I described in Chapter 7.

rel Specifies the kind of relationship between the document and the linked resource. This
attribute uses the same values as the rel attribute of the link element, as described in
Chapter 7.

target Specifies the browsing context in which the linked resource should be opened.

type Specifies the MIME type of the linked resource, such as text/html.

Creating External Hyperlinks
You can create hyperlinks to other HTML documents by setting the href attribute to a URL that starts
with http://. When the user clicks the hyperlink, the browser will load the specified page. Listing 8-1
shows the a element being used to link to external content.

Listing 8-1. Using the a Element to Link to an External Resource

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and
 oranges.
 </body>
</html>

In this example, I have created two a elements that link to Wikipedia articles. Clicking either link will
cause the appropriate article to be loaded and displayed to the user. You can see the default style
convention for hyperlinks in Figure 8-1.

http://en.wikipedia.org/wiki/Apples
http://en.wikipedia.org/wiki/Orange_

CHAPTER 8 MARKING UP TEXT

155

Figure 8-1. The default appearance of hyperlinks

Not all URLs have to refer to other web pages. Although the http protocol is the most widely used
form of URL, browsers also support other protocols such as https and ftp. If you want to reference an e-
mail address, you can use the mailto protocol; for example, mailto:adam@mydomain.com.

 Tip You can use the a element to create image-based hyperlinks (where the user clicks an image, rather than
text, to follow a hyperlink). This requires the use of the img element. You can find the details of the img element
and a demonstration of an image-based hyperlink in Chapter 15.

Creating Relative URLs
If the value of the href attribute doesn’t start with a recognized protocol, such as http://, then the
browser treats the hyperlink as a relative reference. By default, this means that the browser assumes that
a target resource is available in the same location as the current document. Listing 8-2 gives an example
of a relative URL.

Listing 8-2. Using a Relative URL in a Hyperlink

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and
 oranges.
 You can see other fruits I like here.
 </body>
</html>

In this example, I have set the value of the href attribute to fruitlist.html. When the user clicks the
link, the browser uses the URL of the current document to determine how to load the linked page. As an

mailto:adam@mydomain.com
http://en.wikipedia.org/wiki/Apples
http://en.wikipedia.org/wiki/Orange_

CHAPTER 8 MARKING UP TEXT

156

example, if the current document had been loaded from http://www.mydomain.com/docs/example.html,
then the browser would load the target page from http://www.mydomain.com/doc.fruitlist.html.

 Tip You can override this default behavior and provide an alternative base URL through the base element,
which I described in Chapter 7.

Creating Internal Hyperlinks
You can create hyperlinks that bring another element into view in the browser window. You do this
using the CSS-style ID selector, #<id>, as shown in Listing 8-3.

Listing 8-3. Creating an Internal Hyperlink

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and
 oranges.
 You can see other fruits I like here.

 <p id="fruits">
 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 </p>
 </body>
</html>

I have created a hyperlink with the href value of #fruits. When the user clicks the link, the browser
will look for an element in the document whose id attribute has a value of fruits. If the element isn’t
already visible on the screen, the browser will scroll the document so that it is.

 Tip If the browser can’t find an element with the desired id attribute value, it will search again, looking for a
name attribute that matches the target.

http://www.mydomain.com/docs/example.html
http://www.mydomain.com/doc.fruitlist.html
http://en.wikipedia.org/wiki/Apples
http://en.wikipedia.org/wiki/Orange_

CHAPTER 8 MARKING UP TEXT

157

Targeting a Browsing Context
The target attribute lets you tell the browser where you want the linked resource to be displayed. By
default, the browser uses the window, tab, or frame in which the current document is displayed,
meaning that the new document replaces the existing one. However, you do have other choices. Table 8-
4 describes the supported values for the target attribute.

Table 8-4. Values for the target Attribute of the a Element

Attribute Description

_blank Open the document in a new window (or tab).

_parent Open the document in the parent frameset.

_self Open the document in the current window (this is the default behavior).

_top Open the document in the full body of the window.

<frame> Open the document in the specified frame.

Each of these values represents a browsing context. The _blank and _self values are self-evident; the

others relate to the use of frames, which I explain in Chapter 15.

Annotating Content with the Basic Text Elements
The first set of text elements that you will look at have been around in HTML for a while. Some of these
elements represented text formatting in the past, but as HTML has evolved, the separation of
presentation from broader semantics has meant that they now have more generalized significance.

Denoting Keywords and Product Names
The b element is used to offset a span of text without indicating any extra emphasis or importance. The
examples given in the HTML5 specification are keywords in a document abstract and product names in
a review. Table 8-5 describes the b element.

Table 8-5. The b Element

Element b

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

CHAPTER 8 MARKING UP TEXT

158

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

The b element had only presentational meaning in HTML4; in
HTML5, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

Style Convention b { font-weight: bolder; }

The b element is very simple: content contained between the start and end tags is offset from the

surrounding content. You would usually do this by showing the content in bold, but you can use CSS to
change the style applied to b elements. Listing 8-4 shows the b element in use.

Listing 8-4. Using the b Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 </body>
</html>

You can see the default style convention for the b element in Figure 8-2.

Figure 8-2. Using the b element

CHAPTER 8 MARKING UP TEXT

159

Adding Emphasis
The em element represents a span of text with emphatic stress. You use this to give a kind of context to
the reader about the meaning of a sentence or paragraph. I’ll show you what this means following Table
8-6, which describes the em element.

Table 8-6. The em Element

Element em

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

None

Style Convention em { font-style: italic; }

Listing 8-5 shows the em element in use.

Listing 8-5. Using the em Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 </body>
</html>

The styling convention for this element is to use italics, as shown in Figure 8-3.

CHAPTER 8 MARKING UP TEXT

160

Figure 8-3. Using the em element

In this example, I have placed the emphasis on I, at the start of the sentence. When thinking about
the em element, it helps to read the sentence aloud and consider a question that the sentence might be
an answer to. For example, imagine that I asked, “Who likes apples and oranges?” Your answer would be,
“I like apples and oranges.” (When you read this aloud and put emphasis on I, you are making it clear
that you are the person who likes these fruits.)

But if I asked, “You like apples and what else?” you might answer, “I like apples and oranges.” In this
case, the weight of your emphasis would be on the last word, emphasizing that oranges are the other
fruit you like. You would represent this variation as follows in HTML:

I like apples and oranges.

Denoting Foreign or Technical Terms
The i element denotes a span of text that has a different nature from the surrounding content. This is a
fairly loose definition, but common examples include words from other languages, a technical or
scientific term, and even a person’s thoughts (as opposed to speech). Table 8-7 describes the i element.

Table 8-7. The i Element

Element i

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

The i element had only presentational meaning in HTML4; in
HTML5, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

CHAPTER 8 MARKING UP TEXT

161

Style Convention i { font-style: italic; }

Listing 8-6 shows the i element in use.

Listing 8-6. Using the i Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 </body>
</html>

You can see the effect of the i element in Figure 8-4. Notice that the style convention for the i
element is the same as for the em element. This is a great example of how the meaning of an element
differs from its appearance.

Figure 8-4. Using the i element

Showing Inaccuracies or Corrections
You use the s element to denote a span of text that is no longer correct or accurate. The style convention
is to display the text with a line drawn through it. Table 8-8 describes the s element.

CHAPTER 8 MARKING UP TEXT

162

Table 8-8. The s Element

Element s

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

The s element had only presentational meaning in HTML4; in
HTML5, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

Style Convention s { text-decoration: line-through; }

Listing 8-7 shows the s element in use.

Listing 8-7. Using the s Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.
 </body>
</html>

You can see the default style convention of the s element in Figure 8-5.

CHAPTER 8 MARKING UP TEXT

163

Figure 8-5. Using the s element

Denoting Important Text
The strong element denotes a span of text that is important. Table 8-9 describes this element.

Table 8-9. The strong Element

Element strong

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

None

Style Convention strong { font-weight: bolder; }

Listing 8-8 shows the strong element in use.

Listing 8-8. Using the strong Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>

CHAPTER 8 MARKING UP TEXT

164

 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 Warning: Eating too many oranges can give you heart burn.
 </body>
</html>

I have removed some of the text from the earlier examples to make the listing easier to read. You can
see the default style convention of the strong element in Figure 8-6. The strong element has the same
style convention as the b element. However, it is important to pick the right element when marking up
your content; notice that the b element doesn’t assign any importance to the text it encompasses.

Figure 8-6. Using the strong element

Underlining Text
The u element offsets a span of text from the surrounding content without implying any increased
importance or emphasis. This is a vague description because the u element previously had a
presentational impact only (to underline text) and no real semantic significance. In effect, this is still a
presentational element and the effect it has is to underline text (although you could potentially change
this behavior using CSS, I don’t recommend repurposing elements in this way; look at using the span
element instead). Table 8-10 summarizes the u element.

Table 8-10. The u Element

Element u

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

CHAPTER 8 MARKING UP TEXT

165

New in HTML5 No

Changes in
HTML5

The u element had only presentational meaning in HTML4; in
HTML5, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention

Style Convention u { text-decoration:underline; }

The style convention for the u element is similar to that for the a element, which means that users
will often mistake underlined text as being a hyperlink. To prevent this confusion, avoid the u element
when possible. Listing 8-9 shows the u element in use.

Listing 8-9. Using the u Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <base href="http://titan/listings/"/>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 Warning: Eating <u>too many</u> oranges can give you heart burn.
 </body>
</html>

You can see how the browser displays this element using the default style convention in Figure 8-7.

Figure 8-7. Using the u element

Adding Fine Print
The small element denotes fine print and is often used for disclaimers and clarifications. Table 8-11
summarizes the small element.

CHAPTER 8 MARKING UP TEXT

166

Table 8-11. The small Element

Element small

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

The small element had only presentational meaning in HTML4;
in HTML5, it has the semantic meaning described previously,
and the presentation aspect has been downgraded to being the
style convention

Style Convention small { font-size: smaller; }

Listing 8-10 shows the small element in use.

Listing 8-10. Using the small Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 Oranges at my local store are $1 each <small>(plus tax)</small>
 </body>
</html>

You can see how the browser applies the default style convention in Figure 8-8.

CHAPTER 8 MARKING UP TEXT

167

Figure 8-8. Using the small element

Adding Superscript and Subscript
You use the sub and sup elements to denote subscripts and superscripts, respectively. Superscripts are
required in some languages and both superscripts and subscripts are used in simple mathematical
expressions. Table 8-12 summarizes these elements.

Table 8-12. The sub and sup Elements

Element sub and sup

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

None

Style Convention sub { vertical-align: sub;font-size: smaller; }
sup { vertical-align: super;font-size: smaller;}

Listing 8-11 shows the sub and sup elements in use.

Listing 8-11. Using the sub and sup Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>

CHAPTER 8 MARKING UP TEXT

168

 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 The point x₁₀ is the 10th point.
 </body>
</html>

You can see how the browser applies the default style convention in Figure 8-9.

Figure 8-9. Using the sub and sup elements

Creating Breaks
There are two elements that you can use to deal with line breaks in content: the br and wbr elements.

Forcing a Line Break
The br element introduces a line break. The style convention is to move subsequent content onto a new
line. Table 8-13 summarizes the br element.

Table 8-13. The br Element

Element br

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents N/A

Tag Style Void

New in HTML5 No

Changes in
HTML5

No

CHAPTER 8 MARKING UP TEXT

169

Style Convention Display subsequent content on a new line (not possible through
CSS)

Listing 8-12 shows the br element in use.

 Note The br element may be used only when line breaks are part of the content, as in Listing 8-12. You must
not use the br element to create paragraphs or other groupings of content; there are other elements for that task,
which I describe in Chapters 9 and 10.

Listing 8-12. Using the br Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I WANDERED lonely as a cloud

 That floats on high o'er vales and hills,

 When all at once I saw a crowd,

 A host, of golden daffodils;
 </body>
</html>

You can see how the use of the br element causes the browser to display the content in Figure 8-10.

Figure 8-10. Using the br element

CHAPTER 8 MARKING UP TEXT

170

Indicating an Opportunity for a Safe Line Break
The wbr element is new to HTML5 and indicates where the browser could reasonably insert a line break
to wrap content that is larger than the current browser window. It is the browser that makes the decision
as to whether or not a line break is actually used. The wbr element is simply a guide to suitable places to
break content. Table 8-14 summarizes the wbr element.

Table 8-14. The wbr Element

Element wbr

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents N/A

Tag Style Void

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention Display subsequent content on a new line when wrapping
content is required

Listing 8-13 shows the use of the wbr element to help the browser display a long word.

Listing 8-13. Using the wbr Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 This is a very long word: Super<wbr>califragilistic<wbr>expialidocious.
 We can help the browser display long words with the <code>wbr</code> element.
 </body>
</html>

CHAPTER 8 MARKING UP TEXT

171

To understand the value of the wbr element, you have to see how the browser operates with and
without the use of the element. Figure 8-11 shows how the browser deals with content when the wbr
element isn’t present.

Figure 8-11. Wrapping content without the wbr element

Without the wbr element, the browser encounters the long word and treats it as a single unit. This
means that you end up with a large amount of wasted space at the end of the first line of text. If you add
the wbr element, as in Listing 8-13, then you give the browser more options, as Figure 8-12 shows.

Figure 8-12. Wrapping content with the wbr element

With the wbr element, the browser is able to treat the very long word as a series of smaller segments,
and can wrap the content more elegantly. When you use the wbr element, you are telling the browser
where breaking a word would be most appropriate.

Representing Inputs and Outputs
There are four elements that betray the geeky origins of HTML. You use these elements to represent
inputs and outputs of a computer. Table 8-15 summarizes these elements. None of these elements
define local attributes and none of them are new or changed in HTML5.

CHAPTER 8 MARKING UP TEXT

172

Table 8-15. The Input and Output Text Elements

Element Description Style Convention

code Denotes a fragment of computer code. code { font-family: monospace; }

var Denotes a variable in a programming context or a
placeholder for the reader to mentally insert a
specific value.

var { font-style: italic; }

samp Denotes output from a program or computer
system.

samp { font-family: monospace; }

kbd Denotes user input. kbd { font-family: monospace; }

Listing 8-14 shows these four elements used in a document.

Listing 8-14. Using the code, var, samp, and kbd Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p>
 <code>var fruits = ["apples", "oranges", "mangoes", "cherries"];

 document.writeln("I like " + fruits.length + " fruits");</code>
 </p>
 <p>The variable in this example is <var>fruits</var></p>
 <p>The output from the code is: <samp>I like 4 fruits</samp></p>
 <p>When prompted for my favorite fruit, I typed: <kbd>cherries</kbd>
 </body>
</html>

You can see the default style conventions for these elements in Figure 8-13. Notice that three of
these elements have the same style convention. I have used the p element to add some structure to the
content (I describe the p element in Chapter 9).

CHAPTER 8 MARKING UP TEXT

173

Figure 8-13. Using the code, var, samp, and kbd elements

Creating Citations, Quotations, Definitions, and Abbreviations
The next four elements that you will look at allow you to denote citations, quotations, definitions, and
abbreviations. These are widely used in scientific and academic documents.

Denoting Abbreviations
The abbr element allows you to denote an abbreviation. When using this element, you use the title
attribute to provide the expanded text that the abbreviation represents. Table 8-16 summarizes this
element.

Table 8-16. The abbr Element

Element abbr

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None, but the global title attribute has special meaning

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

None

CHAPTER 8 MARKING UP TEXT

174

Style Convention None

Listing 8-15 shows the abbr element in use.

Listing 8-15. Using the abbr Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.
 </body>
</html>

There is no style convention for the abbr element, so content contained in this element is not offset
in any way.

Defining Terms
The dfn element denotes the defining instance of a term. This is the instance that explains the meaning
or significance of a word or phrase. Table 8-17 summarizes this element.

Table 8-17. The dfn Element

Element dfn

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None, but the global title attribute has special meaning

Contents Text or one abbr element

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

None

CHAPTER 8 MARKING UP TEXT

175

Style Convention None

There are some rules about how to use the dfn element. If the dfn element has a title attribute, then
the value of the title attribute must be the term that is being defined. You can see an example of a dfn
element being used this way in Listing 8-16.

Listing 8-16. Using the dfn Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.

 <p>
 The <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,
 species Malus domestica in the rose family.
 </p>
 </body>
</html>

If the dfn element contains an abbr element, then the abbreviation is the term that is being defined.
If there is no title attribute and the contents of the element are text, then the text represents the term
being defined. There is no style convention associated with this element, so the content of this element
is not offset in any way.

Quoting Content from Another Source
The q element denotes content quoted from another source. Table 8-18 summarizes the q element.

Table 8-18. The q Element

Element q

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes cite

CHAPTER 8 MARKING UP TEXT

176

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

None

Style Convention q { display: inline; }

q:before { content: open-quote; }

q:after { content: close-quote; }

The definition of the term apple in the previous section comes from Wikipedia, and should be

properly attributed. The cite attribute is used to specify the URL of the source document, as shown in
Listing 8-17.

Listing 8-17. Using the q Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.
 <p>
 <q cite="http://en.wikipedia.org/wiki/Apple">The
 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,
 species Malus domestica in the rose family.</q>
 </p>
 </body>
</html>

Here, the style convention for the q element uses the CSS :before and :after pseudo-element
selectors to surround the quoted text with quotation marks, as shown in Figure 8-14. You can learn
about pseudo-element selectors in Chapters 17 and 18.

http://en.wikipedia.org/wiki/Apple

CHAPTER 8 MARKING UP TEXT

177

Figure 8-14. Using the q element

Citing the Title of Another Work
The cite element denotes the title of a cited work, such a book, article, film, or poem. Table 8-19
summarizes the cite element.

Table 8-19. The cite Element

Element cite

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

The cite element may no longer be used to cite the name of a
person, but rather the title of a cited work only

Style Convention cite { font-style: italic; }

Listing 8-18 shows the use of the cite element.

Listing 8-18. Using the cite Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 8 MARKING UP TEXT

178

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.
 <p>
 <q cite="http://en.wikipedia.org/wiki/Apple">The
 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,
 species Malus domestica in the rose family.</q>
 </p>
 My favorite book on fruit is <cite>Fruit: Edible, Inedible, Incredible</cite>
 by Stuppy & Kesseler
 </body>
</html>

You can see the application of the default style convention in Figure 8-15.

Figure 8-15. Using the cite element

Working with the Language Elements
There are five HTML elements, four of which are new in HTML5, that provide support for working with
non-Western languages. The following sections describe these elements.

The ruby, rt, and rp Elements
Ruby characters are notations placed above or to the right of characters in logographic languages (such
as Chinese or Japanese), and that aid the reader in correctly pronouncing characters. The ruby element
denotes a span of text that contains a ruby. Table 8-20 summarizes this element.

http://en.wikipedia.org/wiki/Apple

CHAPTER 8 MARKING UP TEXT

179

Table 8-20. The ruby Element

Element ruby

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content and rt and rp elements

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention ruby { text-indent: 0; }

You use the ruby element in conjunction with the rt and rp elements, which are also new in HTML5.

The rt element marks the ruby notation, and the rp element denotes parentheses around an annotation
that can be displayed by browsers that don’t support ruby annotations.

I don’t speak any logographic languages, which means that I don’t have a basis on which to create
an example using logograms. The best that I can do in this section is to use English text to demonstrate
how ruby annotations are displayed by the browser. Listing 8-19 contains such an annotation.

Listing 8-19. Using the ruby, rt, and rp Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.
 <p>
 <q cite="http://en.wikipedia.org/wiki/Apple">The
 <dfn title="apple">apple</dfn> is the pomaceous fruit of the apple tree,
 species Malus domestica in the rose family.</q>
 </p>

http://en.wikipedia.org/wiki/Apple

CHAPTER 8 MARKING UP TEXT

180

 <p>
 Oranges are often made
 into<ruby> OJ <rp>(</rp><rt>Orange Juice</rt><rp>)</rp></ruby>
 </p>
 </body>
</html>

When the document is displayed in a browser that supports ruby annotations, the rp elements and
their contents are ignored, and the contents of the rt element is displayed as an annotation, as shown in
Figure 8-16.

Figure 8-16. Using the ruby, rt, and rp elements

If you display the document in a browser that doesn’t support ruby annotations, then the contents
of the rp and rt elements are displayed. As I write this chapter, Firefox doesn’t support ruby annotations;
you can see how it would display the content in Figure 8-17.

Figure 8-17. Rubies in a browser that doesn’t support annotations

The bdo Element
The bdo element specifies an explicit text direction for its content, overriding the automatic
directionality that would usually be applied. Table 8-21 summarizes the bdo element.

CHAPTER 8 MARKING UP TEXT

181

Table 8-21. The bdo Element

Element bdo

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None, but the dir global attribute is required

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

None

Style Convention None

You must use the bdo element with the dir attribute, which has the allowed values of rtl (for right-

to-left layout) and ltr (for left-to-right layout). Listing 8-20 shows the bdo element in use.

Listing 8-20. Using the bdo Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.
 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.
 <p>
 This is left-to-right: <bdo dir="ltr">I like oranges</bdo>
 </p>
 <p>
 This is right-to-left: <bdo dir="rtl">I like oranges</bdo>
 </p>
 </body>
</html>

CHAPTER 8 MARKING UP TEXT

182

You can see how the browser displays the content of this element in Figure 8-18.

Figure 8-18. Using the bdo element

The bdi Element
The bdi element denotes a span of text that is isolated from other content for the purposes of text
directionality. Table 8-22 summarizes this element.

Table 8-22. The bdi Element

Element bdi

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention None

You use this element when displaying content for which there is no directionality information

available. When this happens, the browser determines the directionality automatically, and that can
upset the formatting of the page. Listing 8-21 gives a simple example of the problem.

CHAPTER 8 MARKING UP TEXT

183

Listing 8-21. Dealing with Text Without the bdi Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.

 Here are some users and the fruit they purchased this week:

 <p>Adam: 3 applies and 2 oranges</p>
 <p>2 :ميرك وبأ apples</p>
 <p>Joe: 6 apples</p>
 </body>
</html>

When you display this document, the Arabic name causes the text directionality algorithm in the
browser to display the number 2 before the name, and not after it, as shown in Figure 8-19.

Figure 8-19.The effect of the bidirectional text algorithm when mixing formats

You can address this problem using the bdi element, as shown in Listing 8-22.

Listing 8-22. Using the bdi Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <meta charset="utf-8"/>

CHAPTER 8 MARKING UP TEXT

184

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I like apples and oranges.

 Here are some users and the fruit they purchased this week:

 <p><bdi>Adam</bdi>: 3 applies and 2 oranges</p>
 <p><bdi>ميرك وبأ </bdi> : 2 apples</p>
 <p><bdi>Joe</bdi>: 6 apples</p>
 </body>
</html>

You can see the corrective effect of this element in Figure 8-20.

Figure 8-20. Using the bdi element

Wrapping Up: The Other Text Elements
There are four other elements that don’t fit neatly into one of the other groups. I describe them in the
following sections.

Denoting a Generic Span of Content
The span element has no meaning in its own right. You would use it to apply one of the global attributes
to a region of content. Table 8-23 summarizes the span element.

Table 8-23. The span Element

Element span

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

CHAPTER 8 MARKING UP TEXT

185

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

None

Style Convention None

Listing 8-23 shows the span element used with the class attribute, so that I can target content with a
CSS style.

Listing 8-23. Using the span Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 .fruit {
 border: thin solid black;
 padding: 1px;
 }
 </style>
 </head>
 <body>
 I like apples and oranges.
 </body>
</html>

You can see the application of the style in Figure 8-21.

Figure 8-21. Using the span element to target styles

CHAPTER 8 MARKING UP TEXT

186

Highlighting Text
The mark element is new to HTML5 and represents a span of text that is highlighted due to its relevance
in another context. Table 8-24 summarizes the mark element.

Table 8-24. The mark Element

Element mark

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention mark { background-color: yellow; color: black; }

Listing 8-24 demonstrates the mark element.

Listing 8-24. Using the mark Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 Homophones are words which are pronounced the same, but have different spellings
 and meanings. For example:
 <p>
 I would like a <mark>pair</mark> of <mark>pears</mark>
 </p>
 </body>
</html>

CHAPTER 8 MARKING UP TEXT

187

You can see the style convention in Figure 8-22.

Figure 8-22. Using the mark element

Denoting Added or Removed Content
You can denote text that has been added or removed from the document using the ins and del elements.
The ins element denotes inserted content and is summarized in Table 8-25.

Table 8-25. The ins Element

Element ins

Element Type This element is considered as a phrasing element when it is a
child of a phrasing element, and as a flow element when it is the
child of a flow element

Permitted
Parents

Any element that can contain phrasing or flow content

Local Attributes cite, datetime

Contents Phrasing or flow content, depending on the type of the parent
element

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention ins { text-decoration: underline; }

You denote text that has been removed from the document using the del element, which is

summarized in Table 8-26.

CHAPTER 8 MARKING UP TEXT

188

Table 8-26. The del Element

Element del

Element Type This element is considered as a phrasing element when it is a
child of a phrasing element, and as a flow element when it is the
child of a flow element

Permitted
Parents

Any element that can contain phrasing or flow content

Local Attributes cite, datetime

Contents Phrasing or flow content, depending on the type of the parent
element

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention del { text-decoration: line-through; }

The ins and del elements defined the same local attributes. The cite attribute specifies a URL to a

document that explains why the text was added or removed, and the datetime attribute specifies when
the modification was made. You can see the ins and del elements in use in Listing 8-25.

Listing 8-25. Using the del and ins Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 Homophones are words which are pronounced the same, but have different spellings
 and meanings. For example:
 <p>
 I would like a <mark>pair</mark> of <mark>pears</mark>
 </p>
 <p>
 I can <mark>sea</mark> the <mark>see</mark>

CHAPTER 8 MARKING UP TEXT

189

 <ins>I can <mark>see</mark> the <mark>sea</mark></ins>
 </p>
 </body>
</html>

The default style convention is shown in Figure 8-23.

Figure 8-23. Using the ins and del elements

Denoting Times and Dates
You use the time element to represent a time of day or a date. Table 8-27 summarizes the time element.

Table 8-27. The time Element

Element time

Element Type Phrasing

Permitted
Parents

Any element that can contain phrasing content

Local Attributes datetime, pubdate

Contents Phrasing content

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

CHAPTER 8 MARKING UP TEXT

190

Style Convention None

If the Boolean pubdate attribute is present, then the time element is assumed to be the publication

date of the entire HTML document or the nearest article element (I describe the article element in
Chapter 10). The datetime attribute specifies the date or time in a format specified by RFC3339, which
you can find at http://tools.ietf.org/html/rfc3339. Using the datetime attribute means you can
specify a date in a human-readable form within the element and still ensure that a computer can
unambiguously parse the date or time. Listing 8-26 shows the time element in use.

Listing 8-26. Using the time Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>.
 </body>
</html>

Summary
In this chapter, I have taken you on a tour of the text elements—those elements that you use to give
structure and meaning to your content. These elements range from the basic to the complex, and you
can see the tension between the desire to divorce meaning from presentation in HTML5 and the desire
to preserve compatibility with HTML4.
Make sure you select text elements based on their meaning, and not the default style convention with
which they are associated. You can apply the CSS style to your content in ways that you did not expect,
and users will get odd results if you don’t mark up your content correctly and consistently.

http://tools.ietf.org/html/rfc3339

C H A P T E R 9

191

Grouping Content

In this chapter, I describe the HTML elements that you can use to group related content together, which
will add further structure and meaning to the content in your document. The elements in this chapter
are largely flow elements. There is one exception: the a element, which has the distinction of its element
category being determined by the content it contains. Table 9-1 provides the summary for this chapter.

Table 9-1. Chapter Summary

Problem Solution Listing

Denote a paragraph. Use the p element. 9-2

Apply global attributes to a region of
content without denoting any other content
grouping.

Use the div element. 9-3

Preserve layout in the HTML source
document.

Use the pre element. 9-4

Denote content quoted from another
source.

Use the blockquote element. 9-5

Denote a paragraph-level thematic break. Use the hr element. 9-6

Create a list in which the order of items is
significant.

Use the ol and li elements. 9-7

Create a list in which the order of items is
not significant.

Use the ul and li elements. 9-8

Create an ordered list in which the
numbering of items is nonsequential.

Use the value attribute of the li
element contained within an ol
element.

9-9

Create a list of terms and their definitions. Use the dl, dt, and dd elements. 9-10

Create a list that has custom item Use the ul element in conjunction 9-11

CHAPTER 9 GROUPING CONTENT

192

numbering. with the CSS :before selector and
counter feature.

Denote a figure (and optionally, a caption). Use the figure and figcaption
elements.

9-12

Understanding the Need to Group Content
HTML requires browsers to collapse multiple whitespace characters into a single space. This is generally
a useful feature, because it separates the layout of your HTML document from the layout of the content
in the browser window. Listing 9-1 shows a longer block of content than I have used in examples so far.

Listing 9-1. A Longer Content Section in an HTML Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.

 Warning: Eating too many oranges can give you heart burn.

 My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.

 The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the Florida
 citrus industry.

 I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>.
 </body>
</html>

The text in the body element spreads over multiple lines. Some of those lines are indented, and there
are line breaks between groups of lines. The browser will ignore all of this structure and display all of the
content as a single line, as shown in Figure 9-1.

CHAPTER 9 GROUPING CONTENT

193

Figure 9-1. The browser collapses whitespace in an HTML document

The elements in the sections that follow will help you add structure to a document by grouping
together related regions of content. There are many different approaches to grouping content, from a
simple paragraph to sophisticated lists.

Creating Paragraphs
The p element represents a paragraph. Paragraphs are blocks of text containing one or more related
sentences that address a single point or idea. Paragraphs can also be comprised of sentences that
address different points, but share some common theme. Table 9-2 summarizes the p element.

Table 9-2. The p Element

Element p

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

The align attribute is obsolete in HTML5 (it was deprecated in
HTML4)

Style Convention p { display: block; margin-before: 1em;
 margin-after: 1em; margin-start: 0;
 margin-end: 0; }

CHAPTER 9 GROUPING CONTENT

194

Listing 9-2 shows the application of the p element to the example content.

Listing 9-2. Using the p Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.</p>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the
 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>. </p>
 </body>
</html>

I’ve added a number of p elements to the body element to group related sentences together and give
the content some structure. Multiple whitespace within a p element is still collapsed to a single
character, as you can see in Figure 9-2.

CHAPTER 9 GROUPING CONTENT

195

Figure 9-2. The effect of the p element

Using the div Element
The div element doesn’t have a specific meaning. You use it to create structure and give meaning to
content when the other HTML elements are insufficient. You add this meaning by applying the global
attributes (described in Chapter 3), typically the class or id attributes. Table 9-3 summarizes the div
element.

 Caution You should use the div element only as a last resort, when those elements that do have semantic
significance are not appropriate. Before using the div element, consider using the new HTML5 elements, such as
article and section (described in Chapter 10). There is nothing intrinsically wrong with div, but you should
strive to include semantic information wherever possible in your HTML5 documents.

Table 9-3. The div Element

Item Description

Element div

Element Type Flow

Permitted Any element that can contain flow elements

CHAPTER 9 GROUPING CONTENT

196

Parents

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

None, although elements added in HTML5, such as article and
section, should be used in preference to this element

Style Convention div { display: block; }

The div element is the flow equivalent of the span element. It is an element that has no specific

meaning, and can, therefore, be used to add customized structure to a document. The problem with
creating custom structure is that the significance is specific to your web page or web application, and the
meaning is not evident to others. This can be problematic when your HTML is being processed or styled
by third parties. Listing 9-3 shows the div element in use.

Listing 9-3. Using the div Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 .favorites {
 background:grey;
 color:white;
 border: thin solid black;
 padding: 0.2em;
 }
 </style>
 </head>
 <body>

 <div class="favorites">

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known

CHAPTER 9 GROUPING CONTENT

197

 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 </div>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the
 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>. </p>
 </body>
</html>

In this example, I have shown a slightly different use for the div element, which is to group multiple
elements of a different type together so that they can be styled consistently. I could have added a class
attribute to both of the p elements contained within the div, but this approach can be simpler and relies
on the way that styles are inherited (as described in Chapter 4).

Working with Preformatted Content
The pre element lets you change the way that the browser deals with content, so that whitespace is not
collapsed and formatting is preserved. This can be useful when the original formatting of a section of
content is significant. However, you should not use this element otherwise, since it undermines the
flexibility that comes with using elements and styles to control presentation. Table 9-4 summarizes the
pre element.

Table 9-4. The pre Element

Element pre

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes None

Contents Phrasing content

Tag Style Start and end tag required

New in HTML5 No

Changes in
HTML5

None

CHAPTER 9 GROUPING CONTENT

198

Style Convention pre { display: block; font-family: monospace;
 white-space: pre; margin: 1em 0; }

The pre element can be particularly useful when you use it with the code element. The formatting in

programming languages, for example, is usually significant and you would not want to have to recreate
that formatting using elements. Listing 9-4 shows the pre element in use.

Listing 9-4. Using the pre Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 .favorites {
 background:grey;
 color:white;
 border: thin solid black;
 padding: 0.2em;
 }
 </style>
 </head>
 <body>

 <pre><code>
 var fruits = ["apples", "oranges", "mangoes", "cherries"];
 for (var i = 0; i < fruits.length; i++) {
 document.writeln("I like " + fruits[i]);
 }
 </code></pre>

 <div class="favorites">

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 </div>
 </body>
</html>

In Listing 9-4, I have used the pre element with some JavaScript code. This code won’t be executed
because it is not in a script element, but the formatting of the code will be preserved. The browser won’t

CHAPTER 9 GROUPING CONTENT

199

do anything to reformat the content within the pre element, which means that the leading spaces or tabs
for each line will be displayed in the browser window. This is why the individual statements in the pre
element are not indented to match the structure of the HTML document. You can see how the browser
displays the formatted content in Figure 9-3.

Figure 9-3. Displaying preformatted content with the pre element

Quoting from Other Sources
The blockquote element denotes a block of content that is quoted from another source. This element is
similar in purpose to the q element described in Chapter 8, but is generally applied to larger amounts of
quoted content. Table 9-5 summarizes the blockquote element.

Table 9-5. The blockquote Element

Element blockquote

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes cite

Contents Flow content

Tag Style Start and end tag required

New in HTML5 No

CHAPTER 9 GROUPING CONTENT

200

Changes in
HTML5

None

Style Convention blockquote { display: block; margin-before: 1em;
 margin-after: 1em; margin-start: 40px;
 margin-end: 40px; }

The cite attribute can be used to supply a URL for the original source of the content, as shown in

Listing 9-5.

Listing 9-5. Using the blockquote Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <blockquote cite="http://en.wikipedia.org/wiki/Apple">
 The apple forms a tree that is small and deciduous, reaching 3 to 12 metres
 (9.8 to 39 ft) tall, with a broad, often densely twiggy crown.
 The leaves are alternately arranged simple ovals 5 to 12 cm long and 3–6
 centimetres (1.2–2.4 in) broad on a 2 to 5 centimetres (0.79 to 2.0 in) petiole
 with anacute tip, serrated margin and a slightly downy underside. Blossoms are
 produced in spring simultaneously with the budding of the leaves.
 The flowers are white with a pink tinge that gradually fades, five petaled,
 and 2.5 to 3.5 centimetres (0.98 to 1.4 in) in diameter.
 The fruit matures in autumn, and is typically 5 to 9 centimetres (
 2.0 to 3.5 in) in diameter.
 The center of the fruit contains five carpels arranged in a five-point star,
 each carpel containing one to three seeds, called pips.</blockquote>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the
 Florida citrus industry.</p>

http://en.wikipedia.org/wiki/Apple

CHAPTER 9 GROUPING CONTENT

201

 <p>I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>. </p>
 </body>
</html>

You can see how the browser applies the style convention in Figure 9-4.

Figure 9-4. Using the blockquote element

 Tip You can see in Figure 9-4 that the browser ignores any formatting inside of the blockquote element. You
can add structure to quoted content by adding other grouping elements, such as p or hr (as shown in the following
example).

CHAPTER 9 GROUPING CONTENT

202

Adding Thematic Breaks
The hr element represents a paragraph-level thematic break. This is another oddly specified term that
arises from the need to separate semantics from presentation. In HTML4, the hr element represented a
horizontal rule (literally a line across the page). In HTML5, the hr element represents a transition to a
separate, but related, topic. The style convention in HTML5 is a line across the page. Table 9-6
summarizes the hr element.

Table 9-6. The hr Element

Element hr

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes None

Contents None

Tag Style Void element

New in HTML5 No

Changes in
HTML5

The hr element had only presentational meaning in HTML4. In
HTML5, it has the semantic meaning described previously, and
the presentation aspect has been downgraded to being the style
convention. In addition, the following local attributes are
obsolete in HTML5: align, width, noshade, size, color.

Style Convention hr { display: block; margin-before: 0.5em;
 margin-after: 0.5em; margin-start: auto;
 margin-end: auto; border-style: inset;
 border-width: 1px; }

The HTML5 specification is somewhat vague about what constitutes a valid use for the hr element,

but two examples are given: a scene change in a story, or a transition to another topic within a section in
a reference book. Listing 9-6 shows the hr element applied to content.

Listing 9-6. Using the hr Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>

CHAPTER 9 GROUPING CONTENT

203

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 <p>I like apples and oranges.

 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 You can see other fruits I like here.</p>

 <p>My favorite kind of orange is the mandarin, properly known
 as <i>citrus reticulata</i>.
 Oranges at my local store cost <s>$1 each</s> $2 for 3.</p>

 <blockquote cite="http://en.wikipedia.org/wiki/Apple">
 The apple forms a tree that is small and deciduous, reaching 3 to 12 metres
 (9.8 to 39 ft) tall, with a broad, often densely twiggy crown.
 <hr>
 The leaves are alternately arranged simple ovals 5 to 12 cm long and 3–6
 centimetres (1.2–2.4 in) broad on a 2 to 5 centimetres (0.79 to 2.0 in) petiole
 with anacute tip, serrated margin and a slightly downy underside. Blossoms are
 produced in spring simultaneously with the budding of the leaves.
 <hr>
 The flowers are white with a pink tinge that gradually fades, five petaled,
 and 2.5 to 3.5 centimetres (0.98 to 1.4 in) in diameter.
 The fruit matures in autumn, and is typically 5 to 9 centimetres (
 2.0 to 3.5 in) in diameter.
 <hr>
 The center of the fruit contains five carpels arranged in a five-point star,
 each carpel containing one to three seeds, called pips.</blockquote>

 <p>Warning: Eating too many oranges can give you heart burn.</p>

 <p>The <abbr title="Florida Department of Citrus">FDOC</abbr> regulates the
 Florida citrus industry.</p>

 <p>I still remember the best apple I ever tasted.
 I bought it at <time datetime="15:00">3 o'clock</time>
 on <time datetime="1984-12-7">December 7th</time>. </p>
 </body>
</html>

In this example, I have added some hr elements to a blockquote to add some structure. You can see
how this affects the default appearance of the HTML in Figure 9-5.

http://en.wikipedia.org/wiki/Apple

CHAPTER 9 GROUPING CONTENT

204

Figure 9-5. Adding hr elements to a blockquote element

Grouping Content into Lists
HTML defines a number of elements that you can use to create lists of content items. As I describe in the
following sections, you can create ordered, unordered, and descriptive lists.

The ol Element
The ol element denotes an ordered list. The items in the list are denoted using the li element, which is
described in the following section. Table 9-7 summarizes the ol element.

Table 9-7. The ol Element

Element ol

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

CHAPTER 9 GROUPING CONTENT

205

Local Attributes start, reversed, type

Contents Zero or more li elements

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

The reversed attribute has been added in HTML5.
The start and type attributes, which were deprecated in HTML4,
have been restored in HTML5, but with semantic (rather than
presentational) significance.
The compact attribute is now obsolete.

Style Convention ol { display: block; list-style-type: decimal;
 margin-before: 1em; margin-after: 1em;
 margin-start: 0; margin-end: 0;
 padding-start: 40px; }

Listing 9-7 shows the ol element being used to create a simple ordered list.

Listing 9-7. Creating a Simple List with the ol Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 I also like:

 bananas
 mangoes
 cherries
 plums
 peaches
 grapes

 You can see other fruits I like here.

 </body>
</html>

CHAPTER 9 GROUPING CONTENT

206

You can see how the browser displays this list in Figure 9-6.

Figure 9-6. A simple ordered list

You can control the way that the items in the list are managed using the attributes defined by the ol
element. You use the start attribute to define the ordinal value of the first item in the list. If this attribute
is not defined, the first item is assigned the ordinal value of 1. You use the type attribute to indicate
which marker should be displayed next to each item. Table 9-8 shows the supported values for this
attribute.

Table 9-8. The Supprted Values for the type Attribute of the ol Element

Value Description Example

1 Decimal numbers (default) 1., 2., 3., 4.

a Lowercase Latin characters a., b., c., d.

A Uppercase Latin characters A., B., C., D.

i Lowercase Roman characters i., ii., iii., iv.

I Uppercase Roman characters I., II., III., IV.

If the reversed attribute is defined, then the list is numbered in descending order. However, as I

write this, none of the mainstream browsers implement the reversed attribute.

CHAPTER 9 GROUPING CONTENT

207

The ul Element
You use the ul element to denote unordered lists. As with the ol element, items in the ul element are
denoted using the li element, which is described next. Table 9-9 summarizes the ul element.

Table 9-9. The ul Element

Element ul

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes None

Contents Zero or more li elements

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

The type and compact attributes are obsolete

Style Convention ul { display: block; list-style-type: disc;
 margin-before: 1em; margin-after: 1em;
 margin-start: 0; margin-end: 0;
 padding-start: 40px; }

The ul element contains a number of li items. The element doesn’t define any attributes and you

control the presentation of the list using CSS. You can see the ul element in use in Listing 9-8.

Listing 9-8. Using the ul Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 I also like:

CHAPTER 9 GROUPING CONTENT

208

 bananas
 mangoes
 cherries
 plums
 peaches
 grapes

 You can see other fruits I like here.

 </body>
</html>

Each list item is displayed with a bullet. You can control which style bullet is used through the list-
style-type CSS property, which is described in Chapter 24. You can see the default style convention
(which uses the disc bullet style) in Figure 9-7.

Figure 9-7. The style convention applied to the ul element

The li Element
The li element denotes an item in a list. You can use it with the ul, ol, and menu elements (the menu
element is not yet supported in the main stream browsers). Table 9-10 summarizes the li item.

Table 9-10. The li Element

Element li

Element Type N/A

Permitted
Parents

ul, ol, menu

CHAPTER 9 GROUPING CONTENT

209

Local Attributes value (only permitted when child of ol element)

Contents Flow content

Tag Style Start and end tag

New in HTML5 No

Changes in
HTML5

The value attribute was deprecated in HTML4, but has been
restored in HTML5

Style Convention li { display: list-item; }

The li item is very simple. It denotes a list item within its parent element. You can, however, use the

value attribute to create nonconsecutive ordered lists, as shown in Listing 9-9.

Listing 9-9. Creating Nonconsecutive Ordered Lists

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 I also like:

 bananas
 <li value="4">mangoes
 cherries
 <li value="7">plums
 peaches
 grapes

 You can see other fruits I like here.

 </body>
</html>

When the browser encounters a li element with a value attribute, the counter for the list items is
advanced to the attribute value. You can see this effect in Figure 9-8.

CHAPTER 9 GROUPING CONTENT

210

Figure 9-8. Creating nonconsecutive ordered lists

Creating Description Lists
A description list consists of a set of term/description groupings (i.e., a number of terms, each of which
is accompanied by a definition of that term). You use three elements to define description lists: the dl,
dt, and dd elements. These elements do not define attributes and have not changed in HTML5. Table 9-
11 summarizes these elements.

Table 9-11. The Description List Elements

Element Description Style Convention

dl Denotes a description list. dl { display: block;
 margin-before: 1em;
 margin-after: 1em;
 margin-start: 0;
 margin-end: 0; }

dt Denotes a term within a description list. dt { display: block; }

dd Denotes a definition within a description list. dd { display: block;
 margin-start: 40px; }

You can see these elements used in Listing 9-10. Notice that multiple dd elements can be used for a

single dt element, which allows you to provide multiple definitions for a single term.

Listing 9-10. Creating Description Lists

<!DOCTYPE HTML>
<html>

CHAPTER 9 GROUPING CONTENT

211

 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 I also like:

 <dl>
 <dt>Apple</dt>
 <dd>The apple is the pomaceous fruit of the apple tree</dd>
 <dd><i>Malus domestica</i></dd>
 <dt>Banana</dt>
 <dd>The banana is the parthenocarpic fruit of the banana tree</dd>
 <dd><i>Musa acuminata</i></dd>
 <dt>Cherry</dt>
 <dd>The cherry is the stone fruit of the genus <i>Prunus</i></dd>
 </dl>

 You can see other fruits I like here.
 </body>
</html>

Creating Custom Lists
The HTML support for lists is more flexible than it might appear. You can create complex arrangements
of lists using the ul element, combined with two features of CSS: the counter feature and the :before
selector. I describe the counter feature and the :before selector (and its companion, :after) in Chapter
17. I don’t want to get too far into CSS in this chapter, so I present this example as a self-contained
demonstration for you to come back to when you have read the CSS chapters later in this book, or when
you have a pressing need for some advanced lists. Listing 9-11 shows a list that contains two nested lists.
All three lists are numbered using custom values.

Listing 9-11. Nesting Lists with Custom Counters

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 body {
 counter-reset: OuterItemCount 5 InnerItemCount;
 }

CHAPTER 9 GROUPING CONTENT

212

 #outerlist > li:before {
 content: counter(OuterItemCount) ". ";
 counter-increment: OuterItemCount 2;
 }

 ul.innerlist > li:before {
 content: counter(InnerItemCount, lower-alpha) ". ";
 counter-increment: InnerItemCount;
 }
 </style>
 </head>
 <body>

 I like apples and oranges.

 I also like:

 <ul id="outerlist" style="list-style-type: none">
 bananas
 mangoes, including:
 <ul class="innerlist">
 Haden mangoes
 Keitt mangoes
 Kent mangoes

 cherries
 plums, including:
 <ul class="innerlist">
 Elephant Heart plums
 Stanley plums
 Seneca plums

 peaches
 grapes

 You can see other fruits I like here.
 </body>
</html>

You can see how the browser displays the lists in Figure 9-9.

CHAPTER 9 GROUPING CONTENT

213

Figure 9-9. Custom lists using CSS features

There are a few things to note in the preceding example. All of the lists in this HTML document are
unordered, and created using the ul element. This is so I can disable the standard bullet (using the list-
style-type property) and rely on the content generated by the :before selector.

Notice also that the numbering of the outer list (the list of fruits) starts at 7 and goes up in steps of 2.
This is something that you can’t arrange using the standard ol element. The CSS counter feature is a
little awkward to use, but is very flexible.

The final point to note is that the numbering of the inner lists (the varieties of mangoes and plums)
is continuous. You could achieve a similar effect by using either the value attribute of the li element, or
the start attribute of the ol element. However, both of those approaches require you to know how many
list items you are working with in advance, which isn’t always possible when working with web
applications.

Dealing with Figures
The last of the grouping elements relates to figures. HTML5 defines figures as “a unit of content,
optionally with a caption, that is self-contained, that is typically referenced as a single unit from the
main flow of the document, and that can be moved away from the main flow of the document without
affecting the document’s meaning.” This is a fairly general definition and can be applied more widely
than the traditional idea of a figure, which is some form of illustration or diagram. You define figures
using the figure element, which is summarized in Table 9-12.

CHAPTER 9 GROUPING CONTENT

214

Table 9-12. The figure Element

Element figure

Element Type Flow

Permitted
Parents

Any element that can contain flow elements

Local Attributes None

Contents Flow content and, optionally, one figcaption element

Tag Style Start and end tag

New in HTML5 Yes

Changes in
HTML5

N/A

Style Convention figure { display: block; margin-before: 1em;
 margin-after: 1em; margin-start: 40px;
 margin-end: 40px; }

The figure element can optionally contain a figcaption element, which denotes a caption for the

figure. Table 9-13 summarizes the figcaption element.

Table 9-13. The figcaption Element

Element figcaption

Element Type N/A

Permitted
Parents

figure

Local Attributes None

Contents Flow content

Tag Style Start and end tag

New in HTML5 Yes

Changes in N/A

CHAPTER 9 GROUPING CONTENT

215

HTML5

Style Convention figcaption { display: block; }

You can see the figure and figcaption elements used together in Listing 9-12.

Listing 9-12. Using the figure and figcaption Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 I like apples and oranges.

 <figure>
 <figcaption>Listing 23. Using the code element</figcaption>
 <code>var fruits = ["apples", "oranges", "mangoes", "cherries"];

 document.writeln("I like " + fruits.length + " fruits");
 </code>
 </figure>

 You can see other fruits I like here.
 </body>
</html>

In this example, I have used the figure element to create a figure around a code element. I have used
the figcaption element to add a caption. Note that the figcaption element must be the first or last child
of the figure element. You can see how the browser applies the style conventions for these elements in
Figure 9-10.

Figure 9-10. Using the figure and figcaption elements

CHAPTER 9 GROUPING CONTENT

216

Summary
In this chapter, I have shown you the HTML elements that let you group related content together—be it
in a paragraph, a lengthy quotation from another source, or a list of related items. The elements
described in this chapter are endlessly useful and simple to use, although some of the more
sophisticated list options can require some practice to perfect.

C H A P T E R 10

217

Creating Sections

In this chapter, I show you the elements you use to denote sections in your content—in effect, how to
separate your content so that each topic or concept is isolated from the others. Many of the elements in
this chapter are new, and they form a significant foundation in the effort to separate the meaning of
elements from their presentation. Unfortunately, this means these elements are hard to demonstrate,
because they have little or no visual impact on the content. To this end, I added some CSS styles to many
of the examples in this chapter to emphasize the structure and changes these elements bring.

I don’t explain the meaning of the CSS styles in this chapter. Chapter 4 contains a reminder of the
key features of CSS, and the individual CSS properties are described from Chapter 16 onwards. Table 10-
1 provides the summary for this chapter.

Table 10-1. Chapter Summary

Problem Solution Listing

Denote a heading. Use the h1–h3 elements. 1

Denote a group of headings, only the first of which
should be reflected in the document outline.

Use the hgroup element. 2, 3

Denote a significant topic or concept. Use the section element. 4

Denote headers and footers. Use the header and footer elements. 5

Denote a concentration of navigation elements. Use the nav element. 6

Denote a major topic or concept that could be
distributed independently.

Use the article element. 7

Denote content that is tangentially related to the
surrounding content.

Use the aside element. 8

Denote contact information for a document or
article.

Use the address element. 9

Create a section the user can expand to get
additional details.

Use the details and summary
elements.

10

CHAPTER 10 CREATING SECTIONS

218

Adding Basic Headings
The h1 element represents a heading. HTML defines a hierarchy of heading elements, with h1 being the
highest ranked. The other heading elements are h2, h3, through to h6. Table 10-2 summarizes the h1–h6
elements.

Table 10-2. The h1–h6 Elements

Element: h1–h6

Element Type: Flow

Permitted
Parents:

The hgroup element or any element that can contain flow
elements. These elements cannot be descendants of the address
element.

Local Attributes: None

Contents: Phrasing content

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

None

Style Convention See Table 10-3.

Headings of the same rank are typically used to break up content so that each topic is in its own

section. Headings of descending rank are typically used to represent different aspects of the same topic.
An additional benefit of these elements is that they create a document outline, where the user can get a
sense of the overall nature and structure of the document simply by looking at the headings and more
rapidly navigate to an area of interest by following the heading hierarchy. Listing 10-1 shows the h1–h3
elements in use.

Listing 10-1. Using the h1–h3 Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <h1>Fruits I like</h1>

CHAPTER 10 CREATING SECTIONS

219

 I like apples and oranges.
 <h2>Additional fruits</h2>
 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 <h3>More information</h3>
 You can see other fruits I like here.

 <h1>Activities I like</h1>
 <p>I like to swim, cycle and run. I am in training for my first triathlon,
 but it is hard work.</p>
 <h2>Kinds of Triathlon</h2>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <h3>The kind of triathlon I am aiming for</h3>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </body>
</html>

I showed only the h1, h2, and h3 headings in the listing because it is rare to have content that
warrants any additional depth. The exceptions tend to be very technical and precise content, such as
contracts and specifications. Most content requires two or three levels of heading at most. As an
example, I use three levels of heading in my Apress books. Although the Apress template defines five
levels of heading, the copy editors become uncomfortable if I use the fourth and fifth levels.

You can see how the browser displays the h1, h2, and h3 elements in the listing in Figure 10-1.

CHAPTER 10 CREATING SECTIONS

220

Figure 10-1. Displaying the h1, h2, and h3 elements using the default style conventions

As you can see in the figure, each level of header has a different style convention. Table 10-3 shows
the style convention for each header element.

Table 10-3. The Style Conventions for the h1–h6 Elements

Element Style Convention

h1 h1 { display: block; font-size: 2em; margin-before: 0.67em; margin-after: 0.67em;
 margin-start: 0; margin-end: 0; font-weight: bold; }

h2 h2 { display: block; font-size: 1.5em; margin-before: 0.83em; margin-after: 0.83em;
 margin-start: 0; margin-end: 0; font-weight: bold; }

h3 h3 { display: block; font-size: 1.17em; margin-before: 1em; margin-after: 1em;
 margin-start: 0; margin-end: 0; font-weight: bold; }

h4 h4 { display: block; margin-before: 1.33em; margin-after: 1.33em; margin-start: 0;
 margin-end: 0; font-weight: bold; }

3

CHAPTER 10 CREATING SECTIONS

221

h5 h5 { display: block; font-size: .83em; margin-before: 1.67em; margin-after: 1.67em;
 margin-start: 0; margin-end: 0; font-weight: bold; }

h6 h6 { display: block; font-size: .67em; margin-before: 2.33em; margin-after: 2.33em;
 margin-start: 0; margin-end: 0; font-weight: bold; }

You don’t have to respect the h1–h6 element hierarchy, but you run the risk of confusing the user if

you deviate from it. Hierarchical headings are so prevalent that users have a fixed expectation of how
they work.

Hiding Subheadings
The hgroup element allows you to treat multiple header elements as a single item without affecting the
outline of your HTML document. Table 10-4 summarizes the hgroup element.

Table 10-4. The hgroup Element

Element: hgroup

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements

Local Attributes: None

Contents: One or more header elements (h1–h6)

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention hgroup { display: block; }

The most common problem that the hgroup solves is subtitles. Imagine that I want to create a

section in my document with the title “Fruits I Like” with the subtitle “How I Learned to Love Citrus”. I
could use the h1 and h2 elements, as shown in Listing 10-2.

CHAPTER 10 CREATING SECTIONS

222

Listing 10-2. Using the h1 and h2 Elements to Create a Title with a Subtitle

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <h1>Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 I like apples and oranges.
 <h2>Additional fruits</h2>
 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 <h3>More information</h3>
 You can see other fruits I like here.

 <h1>Activities I Like</h1>
 <p>I like to swim, cycle and run. I am in training for my first triathlon,
 but it is hard work.</p>
 <h2>Kinds of Triathlon</h2>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <h3>The kind of triathlon I am aiming for</h3>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </body>
</html>

The problem here is that you haven’t been able to differentiate between the h2 element that is the
subtitle and the h2 element that is a lower-level heading. If you wrote a script that went through your
document to build an outline based on the h1–h6 elements, you would get a distorted result, like this:

Fruits I Like
 How I Learned to Love Citrus
 Additional fruits
 More information
Activities I Like
 Kinds of Triathlon
 The kind of triathlon I am aiming for

This gives the appearance that How I Learned to Love Citrus is a section header, not a subtitle. You
can address this problem using the hgroup element, as shown in Listing 10-3.

CHAPTER 10 CREATING SECTIONS

223

Listing 10-3. Using the hgroup Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3 { background: grey; color: white; }

 hgroup > h1 { margin-bottom: 0px;}

 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; }
 </style>
 </head>
 <body>
 <hgroup>
 <h1>Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>
 I like apples and oranges.
 <h2>Additional fruits</h2>
 I also like bananas, mangoes, cherries, apricots, plums, peaches and grapes.
 <h3>More information</h3>
 You can see other fruits I like here.

 <h1>Activities I like</h1>
 <p>I like to swim, cycle and run. I am in training for my first triathlon,
 but it is hard work.</p>
 <h2>Kinds of Triathlon</h2>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <h3>The kind of triathlon I am aiming for</h3>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </body>
</html>

The position in the h1–h6 hierarchy of an hgroup element is determined by the first heading element
child within the hgroup. For example, the hgroup in the listing is equivalent to an h1 element because that
is the first child. Only the first h1–h6 element is included in the outline of a document, which gives you an
outline like this:

Fruits I Like
 Additional fruits

CHAPTER 10 CREATING SECTIONS

224

 More information
Activities I Like
 Kinds of Triathlon
 The kind of triathlon I am aiming for

There is no longer confusion about the subtitle h2 element—the hgroup element tells you to ignore
it. The second issue you have to deal with is making the subtitle visually distinctive from regular h2
elements. You can see that I applied some simple styles in the listing, the effect of which can be seen in
Figure 10-2. You can learn how the CSS selectors in the listing work in Chapter 17.

Figure 10-2. Making the relationship between elements in an hgroup visually explicit

I don’t suggest that you adopt such a stark style, but you can see that you can make the relationship
between elements in an hgroup element visually explicit by applying styles that eliminate some of the
margins of the heading elements and bringing the elements together with a common background color.

Creating Sections
The section element is new to HTML5 and, as its name suggests, denotes a section of a document. When
you use heading elements, you create implied sections, but this element lets you make them explicit and
also allows you to divorce the sections of your document from the h1–h6 elements. There are no hard-
and-fast rules about when to use the section element, but as a rule of thumb, the section element
should be used to contain content that would be listed in a document’s outline or table of contents.

CHAPTER 10 CREATING SECTIONS

225

Section elements usually contain of one or more paragraphs of content and a heading, although the
heading is optional. Table 10-5 summarizes the section element.

Table 10-5. The section Element

Element: section

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements. The section
element cannot be a child of the address element.

Local Attributes: None

Contents: style elements and flow content.

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention section { display: block; }

Listing 10-4 shows the section element in use.

Listing 10-4. Using the section Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3 { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0px; }
 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px;}
 </style>
 </head>
 <body>
 <section>
 <hgroup>
 <h1>Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>

CHAPTER 10 CREATING SECTIONS

226

 I like apples and oranges.
 <section>
 <h1>Additional fruits</h1>
 I also like bananas, mangoes, cherries, apricots, plums,
 peaches and grapes.
 <section>
 <h1>More information</h1>
 You can see other fruits I like here.
 </section>
 </section>
 </section>

 <h1>Activities I like</h1>
 <p>I like to swim, cycle and run. I am in training for my first triathlon,
 but it is hard work.</p>
 <h2>Kinds of Triathlon</h2>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <h3>The kind of triathlon I am aiming for</h3>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </body>
</html>

I have defined three section elements in this listing, one of which is nested within the other. Notice
that the heading element in each is an h1. When using the section element, the browser is responsible
for figuring out the hierarchy of heading elements, freeing you from having to determine and maintain
the appropriate sequence of h1–h6 elements—at least in principle. The actual browser implementations
differ slightly. Google Chrome, Internet Explorer 9 (IE9), and Firefox are able to derive the implied
hierarchy and work out the relative rankings for each h1 element, as shown in Figure 10-3.

CHAPTER 10 CREATING SECTIONS

227

Figure 10-3. Using the section element with nested h1 elements in Chrome

This is good, but if you are observant, you noticed that the font used to display the h1 element whose
content is Fruits I Like is smaller than the font used for the other h1 element at the same level—the
Activities I like element. This is because some browsers (including Chrome and Firefox) apply a
different style to h1 (and h2–h6) elements when they appear within section, article, aside, and nav
elements. (The last three are described later in this chapter.) This new style is the same as the style
convention for the h2 element. IE9 doesn’t apply a special style, as shown in Figure 10-4. This is the
correct behavior.

CHAPTER 10 CREATING SECTIONS

228

Figure 10-4. Using the section element with h1 elements in Internet Explorer

Further, not all browsers properly support creating an implied hierarchy of nested heading elements
of the same type. You can see how Opera deals with these elements in Figure 10-5. Safari deals these
elements in the same way—by ignoring the hierarchy implementations created by the section elements.

CHAPTER 10 CREATING SECTIONS

229

Figure 10-5. Using the section element with h1 elements in Opera

You can overcome the special style that Chrome and Firefox apply by creating your own styles,
which take precedence over the styles defined by the browser (as I explained in Chapter 4). Internet
Explorer does what you would expect. But you can’t do much about Opera and Safari—and until the
browser implementations become more consistent, this handy feature should be used with caution.

Adding Headers and Footers
The header element denotes the header of a section. It can contain any content that you wish to denote
as being the header, including a masthead or logo. In terms of other elements, a header element typically
contains one h1–h6 element or an hgroup element, and it can also contain navigation elements for the
section. See the nav element (discussed in the upcoming “Adding Navigation Blocks” section) for details
of navigation. Table 10-6 summarizes the header element.

CHAPTER 10 CREATING SECTIONS

230

Table 10-6. The header Element

Element: header

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements.
The header element cannot be a descendent of the address or
footer element and cannot be a descendant of another header
element.

Local Attributes: None

Contents: Flow content.

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention header { display: block; }

The footer element is the complement to header and represents the footer for a section. A footer

usually contains summary information about a section and can include details of the author, rights
information, links to associated content, and logos and disclaimers. Table 10-7 summarizes the footer
element.

Table 10-7. The footer Element

Element: footer

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements.
The footer element cannot be a descendent of the address or
header element and cannot be a descendant of another footer
element.

Local Attributes: None

Contents: Flow content.

Tag Style: Start and end tags

CHAPTER 10 CREATING SECTIONS

231

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention footer { display: block; }

You can see the header and footer elements in Listing 10-5.

Listing 10-5. Using the header and footer Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3 { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0; margin-top: 0}
 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; margin-bottom: 2px}

 body > header *, footer > * { background:transparent; color:black;}
 body > section, body > section > section,
 body > section > section > section {margin-left: 10px;}

 body > header, body > footer {
 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;
 }
 </style>
 </head>
 <body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 </header>
 <section>
 <header>
 <hgroup>
 <h1>Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>
 </header>
 I like apples and oranges.
 <section>
 <h1>Additional fruits</h1>

CHAPTER 10 CREATING SECTIONS

232

 I also like bananas, mangoes, cherries, apricots, plums,
 peaches and grapes.
 <section>
 <h1>More information</h1>
 You can see other fruits I like here.
 </section>
 </section>
 </section>

 <section>
 <header>
 <h1>Activities I like</h1>
 </header>
 <section>
 <p>I like to swim, cycle and run. I am in training for my first
 triathlon, but it is hard work.</p>
 <h1>Kinds of Triathlon</h1>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <section>
 <h1>The kind of triathlon I am aiming for</h1>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </section>
 </section>
 </section>
 <footer id="mainFooter">
 ©2011, Adam Freeman. Visit Apress
 </footer>
 </body>
</html>

I defined three header elements in this example. When a header is a child of the body element, it is
assumed to be the header for the entire document (but be careful—this is not the same as the head
element, which I described in Chapter 7). When the header element is part of a section (either implied or
explicitly defined using the section element), it is the header for that section. I added some styles to the
document to make it easier to see the hierarchical relationship between the various sections and
headings. You can see this in Figure 10-6.

Notice the relative sizes of the fonts. This is presumably why Google Chrome and Firefox redefine
the h1–h6 elements when they are in a section element. It is to differentiate between the top-level h1
header and those that are nested in sections. This doesn’t excuse the gratuitous redefinition of styles, but
it does put it in context.

http://apress.com

CHAPTER 10 CREATING SECTIONS

233

Figure 10-6. Using the header element

You can see the effect of the footer in Figure 10-7.

Figure 10-7. Adding a footer element

Adding Navigation Blocks
The nav element denotes a section of the document that contains links to other pages or to other parts of
the same page. Obviously, not all hyperlinks have to be in a nav element. The purpose of this element is
to identify the major navigation sections of a document. Table 10-8 describes the nav element.

Table 10-8. The nav Element

Element: nav

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements, but this element
cannot be a descendant of the address element.

Local Attributes: None

Contents: Flow content.

Tag Style: Start and end tags

New in HTML5? Yes

CHAPTER 10 CREATING SECTIONS

234

Changes in
HTML5

N/A

Style Convention nav { display: block; }

Listing 10-6 shows the use of the nav element.

Listing 10-6. Using the nav Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3 { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0; margin-top: 0}
 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}
 body > section, body > section > section,
 body > section > section > section {margin-left: 10px;}

 body > header, body > footer {
 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;
 }

 body > nav { text-align: center; padding: 2px; border : dashed thin black;}
 body > nav > a {padding: 2px; color: black}
 </style>
 </head>
 <body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 <nav>
 <h1>Contents</h1>

 Fruits I Like

 Additional Fruits

 Activities I Like

 Kinds of Triathlon

CHAPTER 10 CREATING SECTIONS

235

 The kind of triathlon I am
 aiming for

 </nav>
 </header>
 <section>
 <header>
 <hgroup>
 <h1 id="fruitsilike">Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>
 </header>
 I like apples and oranges.
 <section>
 <h1 id="morefruit">Additional fruits</h1>
 I also like bananas, mangoes, cherries, apricots, plums,
 peaches and grapes.
 <section>
 <h1>More information</h1>
 You can see other fruits I like here.
 </section>
 </section>
 </section>

 <section>
 <header>
 <h1 id="activitiesilike">Activities I like</h1>
 </header>
 <section>
 <p>I like to swim, cycle and run. I am in training for my first
 triathlon, but it is hard work.</p>
 <h1 id="tritypes">Kinds of Triathlon</h1>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <section>
 <h1 id="mytri">The kind of triathlon I am aiming for</h1>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </section>
 </section>
 </section>
 <nav>
 More Information:
 Learn More About Fruit
 Learn More About Triathlons
 </nav>
 <footer id="mainFooter">
 ©2011, Adam Freeman. Visit Apress

http://fruit.org
http://triathlon.org
http://apress.com

CHAPTER 10 CREATING SECTIONS

236

 </footer>
 </body>
</html>

I added a couple of nav elements to the document to give a sense of the flexibility of this element.
The first nav element provides the user with navigation within the document. I used ul, li, and a
elements to create a hierarchical set of relative hyperlinks. You can see how this is displayed by the
browser in Figure 10-8.

Figure 10-8. Using a nav element to create a content navigation section

I placed this nav element inside the main header element for the document. This is not compulsory,
but I like to do this to indicate that this is the main nav element. Notice that I mixed the h1 element in
with the other content. The nav element can contain any flow content, not just hyperlinks. I added the
second nav element to the end of the document, providing the user with some links to get more
information. You can see how the browser renders this in Figure 10-9.

Figure 10-9. Using a nav element to provide external navigation

CHAPTER 10 CREATING SECTIONS

237

In both instances of the nav element, I added styles to the style element in the document to make
the additions visually distinctive. The style conventions for the nav element don’t explicitly denote the
nav element’s content.

Working with Articles
The article element represents a self-contained piece of content in an HTML document that could, in
principle, be distributed or used independently from the rest of the page (such as through an RSS feed).
That’s not to say you have to distribute it independently, just that independence is the guidance for
when to use this element. Good examples include a new article and a blog entry. Table 10-9 summarizes
the article element.

Table 10-9. The article Element

Element: article

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements, but this element
cannot be a descendant of the address element.

Local Attributes: None

Contents: style elements and flow content.

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention article { display: block; }

Listing 10-7 shows the article element in use.

Listing 10-7. Using the article Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3, article > footer { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0; margin-top: 0}

CHAPTER 10 CREATING SECTIONS

238

 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 article {border: thin black solid; padding: 10px; margin-bottom: 5px}
 article > footer {padding:5px; margin: 5px; text-align: center}
 article > footer > nav > a {color: white}

 body > article > section,
 body > article > section > section {margin-left: 10px;}

 body > header, body > footer {
 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;
 }
 body > nav { text-align: center; padding: 2px; border : dashed thin black;}
 body > nav > a {padding: 2px; color: black}
 </style>
 </head>
 <body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 <nav>
 <h1>Contents</h1>

 Fruits I Like
 Activities I Like

 </nav>
 </header>

 <article>
 <header>
 <hgroup>
 <h1 id="fruitsilike">Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>
 </header>
 I like apples and oranges.
 <section>
 <h1 id="morefruit">Additional fruits</h1>
 I also like bananas, mangoes, cherries, apricots, plums,
 peaches and grapes.
 <section>
 <h1>More information</h1>
 You can see other fruits I like here
 </section>
 </section>
 <footer>

CHAPTER 10 CREATING SECTIONS

239

 <nav>
 More Information:
 Learn More About Fruit
 </nav>
 </footer>
 </article>

 <article>
 <header>
 <hgroup>
 <h1 id="activitiesilike">Activities I like</h1>
 <h2>It hurts, but I keep doing it</h2>
 </hgroup>
 </header>
 <section>
 <p>I like to swim, cycle and run. I am in training for my first
 triathlon, but it is hard work.</p>
 <h1 id="tritypes">Kinds of Triathlon</h1>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <section>
 <h1 id="mytri">The kind of triathlon I am aiming for</h1>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </section>
 </section>
 <footer>
 <nav>
 More Information:
 Learn More About Triathlons
 </nav>
 </footer>
 </article>

 <footer id="mainFooter">
 ©2011, Adam Freeman. Visit Apress
 </footer>
 </body>
</html>

In this example, I restructured my document to be more consistent with the general style of a blog,
although perhaps it’s not the most interesting blog available. The main part of the document is broken
down into three parts. The first is the header, which transcends individual entries and provides an
anchor point for the rest of document. The second part is the footer, which balances the header and
provides the user with some basic information that applies to the rest of the content. The new addition is
the third part: the article elements. In this example, each article describes a kind of thing I like. This
meets the independence test because each description of a thing I like is self-contained and can be
distributed on its own while still making some kind of sense. Once again, I added some styles to
highlight the section effect of the element, which you can see in Figure 10-10.

http://fruit.org
http://triathlon.org
http://apress.com

CHAPTER 10 CREATING SECTIONS

240

Figure 10-10. Applying the article element

The article element can be applied as flexibly as the other new semantic elements. For example,
you could nest article elements to indicate the original article and then each update or comment that
you received. As with some of the other elements, the value of article is contextual—that which adds
meaningful structure in one kind of content may not add value in another. Judgment (and consistency)
is required.

Creating Sidebars
The aside element denotes content that is only tangentially related to the surrounding element. This is
similar to a sidebar in a book or magazine. The content has something to do with the rest of the page,
article, or section, but it isn’t part of the main flow. It could be some additional background, a set of
links to related articles, and so on. Table 10-10 summarizes the aside element.

CHAPTER 10 CREATING SECTIONS

241

Table 10-10. The aside Element

Element: aside

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements, but this element
cannot be a descendant of the address element.

Local Attributes: None

Contents: style elements and flow content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention aside { display: block; }

Listing 10-8 shows the aside element in use. I added an aside to one of the articles and added styles

to give it the appearance of a simple magazine-style sidebar.

Listing 10-8. Adding and Styling the asideEeement

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3, article > footer { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0; margin-top: 0}
 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; margin-bottom: 2px}

 body > header *, body > footer * { background:transparent; color:black;}

 article {border: thin black solid; padding: 10px; margin-bottom: 5px}
 article > footer {padding:5px; margin: 5px; text-align: center}
 article > footer > nav > a {color: white}

 body > article > section,
 body > article > section > section {margin-left: 10px;}

CHAPTER 10 CREATING SECTIONS

242

 body > header, body > footer {
 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;
 }
 body > nav { text-align: center; padding: 2px; border : dashed thin black;}
 body > nav > a {padding: 2px; color: black}

 aside { width:40%; background:white; float:right; border: thick solid black;
 margin-left: 5px;}
 aside > section { padding: 5px;}
 aside > h1 {background: white; color: black; text-align:center}
 </style>
 </head>
 <body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 <nav>
 <h1>Contents</h1>

 Fruits I Like
 Activities I Like

 </nav>
 </header>

 <article>
 <header>
 <hgroup>
 <h1 id="fruitsilike">Fruits I Like</h1>
 <h2>How I Learned to Love Citrus</h2>
 </hgroup>
 </header>
 <aside>
 <h1>Why Fruit is Healthy</h1>
 <section>
 Here are three reasons why everyone should eat more fruit:

 Fruit contains lots of vitamins
 Fruit is a source of fibre
 Fruit contains few calories

 </section>
 </aside>
 I like apples and oranges.
 <section>
 <h1 id="morefruit">Additional fruits</h1>
 I also like bananas, mangoes, cherries, apricots, plums,
 peaches and grapes.
 <section>

CHAPTER 10 CREATING SECTIONS

243

 <h1>More information</h1>
 You can see other fruits I like here
 </section>
 </section>
 <footer>
 <nav>
 More Information:
 Learn More About Fruit
 </nav>
 </footer>
 </article>
 <article>
 <header>
 <hgroup>
 <h1 id="activitiesilike">Activities I like</h1>
 <h2>It hurts, but I keep doing it</h2>
 </hgroup>
 </header>
 <section>
 <p>I like to swim, cycle and run. I am in training for my first
 triathlon, but it is hard work.</p>
 <h1 id="tritypes">Kinds of Triathlon</h1>
 There are different kinds of triathlon - sprint, Olympic and so on.
 <section>
 <h1 id="mytri">The kind of triathlon I am aiming for</h1>
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </section>
 </section>
 <footer>
 <nav>
 More Information:
 Learn More About Triathlons
 </nav>
 </footer>
 </article>
 <footer id="mainFooter">
 ©2011, Adam Freeman. Visit Apress
 </footer>
 </body>
</html>

You can see the effect of the aside element and the additional styles in Figure 10-11. I added some
filler text to the document shown in the figure to make the flow of content more apparent.

http://fruit.org
http://triathlon.org
http://apress.com

CHAPTER 10 CREATING SECTIONS

244

Figure 10-11. Applying and styling the aside element

Providing Contact Information
The address element is used to denote contact information for a document or article element. Table
10-11 summarizes the address element.

Table 10-11. The address Element

Element: address

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements

Local Attributes: None

Contents: Flow content, but the h1–h6, section, header, footer, nav,
article, and aside elements may not be used as descendants of

CHAPTER 10 CREATING SECTIONS

245

this element.

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention address { display: block; font-style: italic; }

When the address element is a descendant of an article element, it is assumed to provide contact
information for that article. Otherwise, when an address element is a child of a body element (and there
is no article element between the body and address elements), the address is assumed to provide
contact information for the entire document.

The address element must not be used to denote addresses that are not contact information for a
document or article. For example, you can’t use this element to denote addresses of customers or users
in the content of a document. Listing 10-9 shows the address element in use.

Listing 10-9. Using the address Element

...
<body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 <address>
 Questions and comments? Email me
 </address>
 <nav>
 <h1>Contents</h1>

 Fruits I Like
 Activities I Like

 </nav>
 </header>

 <article>
 <header>
 <hgroup>
...

I added the address element to the header for the document. In this case, I provided an email
address for users/readers to contact me. You can see the addition in Figure 10-12.

mailto:adam@myboringblog.com

CHAPTER 10 CREATING SECTIONS

246

Figure 10-12. Adding an address element

Creating a Details Section
The details element creates a section of the document that the user can expand to get further details
about a topic. Table 10-12 summarizes the details element.

Table 10-12. The details Element

Element: details

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements

Local Attributes: open

Contents: An (optional) summary element and flow content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention details { display: block; }

CHAPTER 10 CREATING SECTIONS

247

The details element usually contains a summary element, which creates a label or title for the details
section. Table 10-13 describes the summary element.

Table 10-13. The summary Element

Element: summary

Element Type: N/A

Permitted
Parents:

The details element

Local Attributes: None

Contents: Phrasing content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention summary { display: block; }

You can see both the details and summary elements used in Listing 10-10.

Listing 10-10. Using the summary and details Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1, h2, h3, article > footer { background: grey; color: white; }
 hgroup > h1 { margin-bottom: 0; margin-top: 0}
 hgroup > h2 { background: grey; color: white; font-size: 1em;
 margin-top: 0px; margin-bottom: 2px}
 body > header *, body > footer * { background:transparent; color:black;}
 body > article > section,
 body > article > section > section {margin-left: 10px;}
 body > header {
 border: medium solid black; padding-left: 5px; margin: 10px 0 10px 0;
 }
 article {border: thin black solid; padding: 10px; margin-bottom: 5px}
 details {border: solid thin black; padding: 5px}

CHAPTER 10 CREATING SECTIONS

248

 details > summary { font-weight: bold}
 </style>
 </head>
 <body>
 <header>
 <hgroup>
 <h1>Things I like</h1>
 <h2>by Adam Freeman</h2>
 </hgroup>
 </header>
 <article>
 <header>
 <hgroup>
 <h1 id="activitiesilike">Activities I like</h1>
 <h2>It hurts, but I keep doing it</h2>
 </hgroup>
 </header>
 <section>
 <p>I like to swim, cycle and run. I am in training for my first
 triathlon, but it is hard work.</p>
 <details>
 <summary>Kinds of Triathlon</summary>
 There are different kinds of triathlon - sprint, Olympic and so on.
 I am aiming for Olympic, which consists of the following:

 1.5km swim
 40km cycle
 10km run

 </details>
 </section>
 </article>
 </body>
</html>

You can see how the browser displays these elements in Figure 10-13. Not all browsers support the
details element properly. IE9 has difficulties, for example.

CHAPTER 10 CREATING SECTIONS

249

Figure 10-13. Using the details and summary attributes

As you can see from the figure, the browser provides an interface control which, when activated,
opens and displays the contents of the details element. When the details element is closed, only the
contents of the summary element are visible. To have the details element open when the page is first
displayed, apply the open attribute.

Summary
In this chapter, I introduced you to the elements that you use to create sections in your documents and
to isolate unrelated content. Most of these elements are new to HTML5. Although you are not compelled
to use them to create compliant HTML5 documents, these new elements are one of the major
enhancements in the effort to bring semantics to HTML.

C H A P T E R 11

251

Table Elements

In this chapter, I will show you the HTML elements you can use to create tables. The main use for tables
is to display two-dimensional data in a grid, but in earlier versions of HTML, it became common to use
tables to control the layout of content in the page. In HTML5, this is no longer permitted, and the new
CSS table feature (described in Chapter 21) must be used instead. Table 11-1 provides the summary for
this chapter.

Table 11-1. Chapter Summary

Problem Solution Listing

Create a basic table. Use the table, tr, and td elements. 1, 2

Add header cells to a table. Use the th element. 3

Differentiate between column and row
headers.

Use the thead and tbody elements. 4, 5

Add a footer to a table. Use the tfoot element. 6

Create irregular table grids. Use the span attribute defined by the
th and td elements.

7-9

Associate cells with headers for assistive
technology.

Use the headers attribute defined by
the td and th element.

10

Add a caption to a table. Use the caption element. 11

Work with columns instead of rows in a
table.

Use the colgroup and col elements. 12, 13

Denote that a table is not being used to lay
out a page.

Use the border attribute defined by the
table element.

14

CHAPTER 11 TABLE ELEMENTS

252

Creating a Basic Table
There are three elements that every table must contain: table, tr, and td. There are other elements—and
I’ll explain them later in this chapter—but these are the three you must start with. The first, table, is at
the heart of support for tabular content in HTML and denotes a table in an HTML document. Table 11-2
summarizes the table element.

Table 11-2. The table Element

Element: table

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements

Local Attributes: border

Contents: The caption, colgroup, thead, tbody, tfoot, tr, th, and td
elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The summary, align, width, bgcolor, cellpadding, cellspacing,
frame, and rules attributes are obsolete. You must use CSS
instead.

The value of the border attribute must be 1. The thickness of the
border must then be set using CSS.

Style Convention table { display: table; border-collapse: separate;
 border-spacing: 2px; border-color: gray; }

The next core table element is tr, which denotes a table row. HTML tables are row, rather than

column, oriented and you must denote each row separately. Table 11-3 summarizes the tr element.

Table 11-3. The tr Element

Element: tr

Element Type: N/A

Permitted
Parents:

The table, thead, tfoot, and tbody elements

CHAPTER 11 TABLE ELEMENTS

253

Local Attributes: None

Contents: One or more td or th elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The align, char, charoff, valign, and bgcolor attributes are
obsolete. You must use CSS instead.

Style Convention tr { display: table-row; vertical-align: inherit;
 border-color: inherit;}

The last of our three core elements is td, which denotes a table cell. Table 11-4 summarizes the td

element.

Table 11-4. The td Element

Element: td

Element Type: N/A

Permitted
Parents:

The tr element

Local Attributes: colspan, rowspan, headers

Contents: Flow content

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The scope attribute is obsolete. See the scope attribute on the th
element instead.

The abbr, axis, align, width, char, charoff, valign, bgcolor,
height, and nowrap attributes are obsolete, and you must use CSS
instead.

Style Convention td { display: table-cell; vertical-align: inherit; }

Having defined these three elements, you can combine them to create tables, as shown in Listing

11-1.

CHAPTER 11 TABLE ELEMENTS

254

Listing 11-1. Using the table, tr, and td Elements to Create a Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <table>
 <tr>
 <td>Apples</td>
 <td>Green</td>
 <td>Medium</td>
 </tr>
 <tr>
 <td>Oranges</td>
 <td>Orange</td>
 <td>Large</td>
 </tr>
 </table>
 </body>
</html>

In this example I defined a table element that has two rows (denoted by the two tr elements). Each
row has three columns, each of which is represented by a td element. The td element can contain any
flow content, but I stuck to simple text in this example. You can see how the default style conventions
are applied to display the table in Figure 11-1.

Figure 11-1. Displaying a simple table

This is a very simple table, but you can see the basic structure. The browser is responsible for sizing
the rows and columns to maintain the table. As an example, see what happens when I add some longer
content, as in Listing 11-2.

CHAPTER 11 TABLE ELEMENTS

255

Listing 11-2. Adding Some Longer Cell Content

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <table>
 <tr>
 <td>Apples</td>
 <td>Green</td>
 <td>Medium</td>
 </tr>
 <tr>
 <td>Oranges</td>
 <td>Orange</td>
 <td>Large</td>
 </tr>
 <tr>
 <td>Pomegranate</td>
 <td>A kind of greeny-red</td>
 <td>Varies from medium to large</td>
 </tr>
 </table>
 </body>
</html>

The content of each of the newly added td elements is longer than in the previous two rows. You can
see how the browser resizes the other cells to make them the same size in Figure 11-2.

Figure 11-2. Cells resized to accommodate longer content

CHAPTER 11 TABLE ELEMENTS

256

One of the nicest features of the table element is that you don’t have to worry about the sizing
issues. The browser makes sure that the columns are wide enough for the longest content and that the
rows are tall enough for the tallest cell.

Adding Headers Cells
The th element denotes a header cell, allowing us to differentiate between data and the descriptions of
that data. Table 11-5 summarizes the th element.

Table 11-5. The th Element

Element: th

Element Type: N/A

Permitted
Parents:

The tr element

Local Attributes: colspan, rowspan, scope, headers

Contents: Phrasing content

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The scope attribute is obsolete. See the scope attribute on the th
element instead.

The abbr, axis, align, width, char, charoff, valign, bgcolor,
height, and nowrap attributes are obsolete, and you must use CSS
instead.

Style Convention th { display: table-cell; vertical-align: inherit;
 font-weight: bold; text-align: center; }

You can see how I added th elements to the table in Listing 11-3 to provide some context for the
data values contained in the td elements.

Listing 11-3. Adding Header Cells to a Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

CHAPTER 11 TABLE ELEMENTS

257

 </head>
 <body>
 <table>
 <tr>
 <th>Rank</th><th>Name</th>
 <th>Color</th><th>Size</th>
 </tr>
 <tr>
 <th>Favorite:</th>
 <td>Apples</td><td>Green</td><td>Medium</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th>
 <td>Oranges</td><td>Orange</td><td>Large</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th>
 <td>Pomegranate</td><td>A kind of greeny-red</td>
 <td>Varies from medium to large</td>
 </tr>
 </table>
 </body>
</html>

You can see that I am able to mix the th and td elements together in a row and also create a row that
just contains th elements. You can see how the browser renders these in Figure 11-3.

Figure 11-3. Adding header cells to a table

Adding Structure to a Table
You have a basic table, but you have managed to create a problem for yourself. When you go to style the
table, you will find it hard to differentiate between the th elements that are on their own row and those
that are mixed in with the data. It is not impossible it just requires close attention.. Listing 11-4 shows
how you might do this.

CHAPTER 11 TABLE ELEMENTS

258

Listing 11-4. Differentiating Between th Elements in a Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 tr > th { text-align:left; background:grey; color:white}
 tr > th:only-of-type {text-align:right; background: lightgrey; color:grey}
 </style>
 </head>
 <body>
 <table>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>
 </tr>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td><td>A kind of greeny-red</td>
 <td>Varies from medium to large</td>
 </tr>
 </table>
 </body>
</html>

In this example, I created one selector that matches all of the th elements and a second style that
matches only those th elements that are the only children of that type in a tr element. You can see the
effect of the styles in Figure 11-4.

Figure 11-4. Adding styles that match the th rows in the table

CHAPTER 11 TABLE ELEMENTS

259

This is a perfectly workable approach, but it lacks flexibility. If I add additional th elements to the
rows of the table, my second selector won’t work anymore. I don’t really want to have to tweak my
selectors every time I change the table.

To solve this problem in a flexible way, you can use the thead, tbody, and tfoot elements. These
elements allow you to add structure to a table, and the major benefit of this structure is that it makes
working with the different parts of the table simpler, especially when it comes to CSS selectors.

Denoting the Headings and the Table Body
The tbody element denotes the set of rows that comprise the body of our table—as opposed to the
header and footer rows, which you denote with the thead and tfoot elements and which we’ll get to
shortly. Table 11-6 summarizes the tbody element.

Table 11-6. The tbody Element

Element: tbody

Element Type: N/A

Permitted
Parents:

The table element

Local Attributes: None

Contents: Zero or more tr elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The align, char, charoff, and valign attributes are obsolete.

Style Convention thead { display: table-header-group;
 vertical-align: middle; border-color: inherit; }

As a related aside, most browsers automatically insert the tbody element when they process a table

element, even if it has not been specified in the document. This means that CSS selectors that assume
the table layout is as written can fail. For example, a selector such as table > tr won’t work, because the
browser has inserted a tbody element between the table and tr elements. To address this, you must use
a selector such as table > tbody > tr, table tr (no > character), or even just tbody > tr.

The thead element defines one or more rows that are the column labels for a table element. Table
11-7 summarizes the thead element.

CHAPTER 11 TABLE ELEMENTS

260

Table 11-7. The thead Element

Element: th

Element Type: N/A

Permitted
Parents:

The table element

Local Attributes: None

Contents: Zero or more tr elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The align, char, charoff, and valign attributes are obsolete.

Style Convention thead { display: table-header-group;
 vertical-align: middle; border-color: inherit; }

Without the thead element, all of your tr elements are assumed to belong to the body of the table.

Listing 11-5 shows the addition of the thead and tbody elements to the example table, and the more
flexible CSS selectors you can use as a consequence.

Listing 11-5. Adding thead and tbody Elements to a Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 </style>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>
 </tr>
 </thead>

CHAPTER 11 TABLE ELEMENTS

261

 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td>A kind of greeny-red</td><td>Varies from medium to large</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

This may not seem like a big deal, but the structure you added to the table makes dealing with the
different kinds of cells much easier and less likely to fail if you modify the design of the table.

Adding a Footer
The tfoot element denotes the block of rows that form the footer for the table. Table 11-8 summarizes
the tfoot element.

Table 11-8. The tfoot Element

Element: tfoot

Element Type: N/A

Permitted
Parents:

The table element

Local Attributes: None

Contents: Zero or more tr elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The tfoot element can now appear before or after the tbody or tr
elements. In HTML4, the tfoot element could appear only before
these elements.

The align, char, charoff, and valign attributes are obsolete.

Style Convention tfoot { display: table-footer-group;
 vertical-align: middle; border-color: inherit; }

CHAPTER 11 TABLE ELEMENTS

262

Listing 11-6 shows how the tfoot element can be used to create a footer for a table element. Prior to
HTML5, the tfoot element had to appear before the tbody element (or the first tr element if the tbody
had been omitted). In HTML5, you can instead put the tfooter element after the tbody or the last tr
element, which is more consistent with the way the table will be displayed by the browser. In Listing 11-
6, I show the tfoot element in the first position—either is acceptable. My feeling is that the above-the-
tbody approach is generally more helpful when generating HTML programmatically using templates and
the below-the-tbody approach feels more natural when writing HTML manually.

Listing 11-6. Using the tfoot Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 </style>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td>A kind of greeny-red</td><td>Varies from medium to large</td>
 </tr>
 </tbody>
 </table>
 </body>
</html>

I duplicated the set of rows in the header to be in the footer. We’ll come back and make the footer
more interesting later in the chapter. I also added a second selector to one of the styles so that the th

CHAPTER 11 TABLE ELEMENTS

263

elements in the thead and tfoot elements are styled in the same way. You can see the addition of the
footer shown in Figure 11-5.

Figure 11-5. Adding a footer to a table

Creating Irregular Tables
Most tables are straightforward grids, where each cell occupies one position in the grid. However, to
represent more complicated data, you sometimes need to create irregular tables, where cells are spread
across multiple rows and columns. You create such tables using the colspan and rowspan attributes of
the td and th elements. Listing 11-7 shows how to use these attributes to create an irregular table.

Listing 11-7. Creating an Irregular Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 [colspan], [rowspan] {font-weight:bold; border: medium solid black}
 thead [colspan], tfoot [colspan] {text-align:center; }
 </style>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>

CHAPTER 11 TABLE ELEMENTS

264

 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td colspan="2" rowspan="2">
 Pomegranates and cherries can both come in a range of colors
 and sizes.
 </td>
 <td>203</td>
 </tr>
 <tr>
 <th rowspan="2">Joint 4th:</th>
 <td>Cherries</td>
 <td rowspan="2">75</td>
 </tr>
 <tr>
 <td>Pineapple</td>
 <td>Brown</td>
 <td>Very Large</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

If you want a cell to span multiple rows, you can use the rowspan attribute. The value you assign to
this attribute is the number of rows to span. Similarly, if you want a cell to span multiple columns, you
use the colspan attribute.

 Tip The values assigned to the rowspan and colspan must be integers. Some browsers will understand the
value 100% to mean all of the rows or columns in a table, but this is not part of the HTML5 standard and is not
consistently implemented.

I added some additional styles to the example document to highlight the cells that span multiple
rows or columns, as shown in Figure 11-6. The affected cells are shown with a thick border.

CHAPTER 11 TABLE ELEMENTS

265

Figure 11-6. Spanning multiple rows and columns

You apply the colspan and rowspan attributes to the cell that is the uppermost and leftmost of the
part of the grid you want to cover. You omit the td or tr elements that you would have included
normally. As an example, consider the simple table shown in Listing 11-8.

Listing 11-8. A Simple Table

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 td {border: thin solid black; padding: 5px; font-size:x-large};
 </style>
 </head>
 <body>
 <table>
 <tr>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 </tr>
 <tr>
 <td>4</td>
 <td>5</td>
 <td>6</td>
 </tr>
 <tr>
 <td>7</td>
 <td>8</td>
 <td>9</td>

CHAPTER 11 TABLE ELEMENTS

266

 </tr>
 </table>
 </body>
</html>

The table in this example is a 3x3 regular grid, as shown in Figure 11-7.

Figure 11-7. A regular grid

If you want one cell in the middle column to span all three rows, you apply the rowspan attribute to
cell 2, which is the uppermost (and leftmost, but that doesn’t matter in this example) cell of the area of
the grid you want to cover. You also have to remove the cell elements that the expanded cell will cover—
cells 5 and 8, in this case. You can see the changes in Listing 11-9.

Listing 11-9. Expanding a Cell to Cover Multiple Rows

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 td {border: thin solid black; padding: 5px; font-size:x-large};
 </style>
 </head>
 <body>
 <table>
 <tr>
 <td>1</td>
 <td rowspan="3">2</td>
 <td>3</td>
 </tr>
 <tr>
 <td>4</td>
 <td>6</td>
 </tr>

CHAPTER 11 TABLE ELEMENTS

267

 <tr>
 <td>7</td>
 <td>9</td>
 </tr>
 </table>
 </body>
</html>

You can see the result of these changes in Figure 11-8.

Figure 11-8. Expanding a cell to cover three rows

The browser is responsible for working out how the other cells you define should be fitted around
the expanded cell.

 Caution Be careful not to create overlapping cells by having two cells expand into the same area. The purpose
of the table element is to represent tabular data. The only reason for using overlapping cells is to have the table
element lay out other elements, which is something that should be done using the CSS table feature (described in
Chapter 21).

Associating Headers with Cells
The td and th elements define the headers attribute, which can be used to make tables easier to process
with screen readers and other assistive technology. The value of the headers attribute is the ID attribute
value of one or more th cells. Listing 11-10 shows how you can use this attribute.

CHAPTER 11 TABLE ELEMENTS

268

Listing 11-10. Using the headers Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 thead [colspan], tfoot [colspan] {text-align:center; }
 </style>
 </head>
 <body>
 <table>
 <thead>
 <tr>
 <th id="rank">Rank</th>
 <th id="name">Name</th>
 <th id="color">Color</th>
 <th id="sizeAndVotes" colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th id="first" headers="rank">Favorite:</th>
 <td headers="name first">Apples</td>
 <td headers="color first">Green</td>
 <td headers="sizeAndVote first">Medium</td>
 <td headers="sizeAndVote first">500</td>
 </tr>
 <tr>
 <th id="second" headers="rank">2nd Favorite:</th>
 <td headers="name second">Oranges</td>
 <td headers="color second">Orange</td>
 <td headers="sizeAndVote second">Large</td>
 <td headers="sizeAndVote second">450</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

CHAPTER 11 TABLE ELEMENTS

269

I added the global id attribute to each of the th elements in the thead and the th elements that
appear in the tbody. For each td and th in the tbody, I used the headers attribute to associate the cell with
the column header. For the td elements, I also specified the row header (the header that appears in the
first column).

Adding a Caption to a Table
The caption element lets you define a caption and associate it with a table element. Table 11-9
summarizes the caption element.

Table 11-9. The caption Element

Element: caption

Element Type: N/A

Permitted
Parents:

The table element

Local Attributes: None

Contents: Flow content (but no table elements)

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The align attribute is obsolete.

Style Convention caption { display: table-caption; text-align: center; }

Listing 11-11 shows the caption element in use.

Listing 11-11. Using the caption Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 [colspan], [rowspan] {font-weight:bold; border: medium solid black}
 thead [colspan], tfoot [colspan] {text-align:center; }

CHAPTER 11 TABLE ELEMENTS

270

 caption {font-weight: bold; font-size: large; margin-bottom:5px}
 </style>
 </head>
 <body>
 <table>
 <caption>Results of the 2011 Fruit Survey</caption>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td colspan="2" rowspan="2">
 Pomegranates and cherries can both come in a range of colors
 and sizes.
 </td>
 <td>203</td>
 </tr>
 <tr>
 <th rowspan="2">Joint 4th:</th>
 <td>Cherries</td>
 <td rowspan="2">75</td>
 </tr>
 <tr>
 <td>Pineapple</td>
 <td>Brown</td>
 <td>Very Large</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

A table can contain only one caption element, but it doesn’t have to be the first element contained
in the table. However, it will always be displayed above the table, regardless of where the element is
defined. You can see the effect of the caption (and the style I applied to it) in Figure 11-9.

CHAPTER 11 TABLE ELEMENTS

271

Figure 11-9. Applying a caption to a table

Working with Columns
The HTML approach to tables is oriented around rows. You place the definitions of your cells inside of tr
elements and build up tables row by row. This can make it awkward to apply styles to columns,
especially when working with tables that contain irregular cells. The solution to this is to use the
colgroup and col elements.

The colgroup element represents a set of columns. Table 11-10 summarizes the colgroup element.

Table 11-10. The colgroup Element

Element: colgroup

Element Type: N/A

Permitted
Parents:

The table element

Local Attributes: span

Contents: Zero or more col elements (can be used only when the span
attribute is not applied)

Tag Style: Void if used with the span attribute; otherwise, start and end tags

New in HTML5? No

Changes in
HTML5

The width, char, charoff, and valign attributes are obsolete.

Style Convention colgroup { display: table-column-group; }

CHAPTER 11 TABLE ELEMENTS

272

Listing 11-12 shows the use of the colgroup element.

Listing 11-12. Using the colgroup Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 [colspan], [rowspan] {font-weight:bold; border: medium solid black}
 thead [colspan], tfoot [colspan] {text-align:center; }
 caption {font-weight: bold; font-size: large; margin-bottom:5px}
 #colgroup1 {background-color: red}
 #colgroup2 {background-color: green; font-size:small}
 </style>
 </head>
 <body>
 <table>
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1" span="3"/>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td colspan="2" rowspan="2">
 Pomegranates and cherries can both come in a range of colors
 and sizes.
 </td>
 <td>203</td>
 </tr>
 <tr>
 <th rowspan="2">Joint 4th:</th>
 <td>Cherries</td>

CHAPTER 11 TABLE ELEMENTS

273

 <td rowspan="2">75</td>
 </tr>
 <tr>
 <td>Pineapple</td>
 <td>Brown</td>
 <td>Very Large</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

In this example, I defined two colgroup elements. The span attribute specifies how many columns
the colgroup element applies to. The first colgroup in the listing applies to the first three columns in the
table, and the other element applies to the next two columns. I applied the global id attribute to each
colgroup element and defined CSS styles that use the id values as selectors. You can see the effect in
Figure 11-10.

Figure 11-10. Using the colgroup element

The figure demonstrates some of the important aspects of using the colgroup element. The first
thing to know is that CSS styles that are applied to colgroups have lower specificity than styles applied to
tr, td, and th elements directly. You can see this in the way that the styles applied to the thead, tfoot,
and first column of th elements are not affected by the styles that match the colgroups. If I remove all of
the styles except those that target the colgroup elements, all of the cells are modified, as shown in Figure
11-11.

CHAPTER 11 TABLE ELEMENTS

274

Figure 11-11. Removing all of the styles except those that directly target the colspan elements

The second point to note is that irregular cells are counted as part of the column they start in. You
can see this in the third row, where a cell that is matched by the first style extends into the area covered
by the other colgroup element.

The final point to be aware of is that the colgroup element includes all of the cells in a column, even
those that are in thead and tfoot elements, and it matches both th and td elements. The colgroup
element is special because it relates to elements that are not contained within the element. This means
you can’t use the colgroup element as the basis for more focused selectors (for example, a selector such
as #colgroup1 > td doesn’t match any elements).

Calling Out Individual Columns
You can use the col element instead of the span attribute of the colgroup element. This allows you to
define a group and the distinct columns that exist within it. Table 11-11 summarizes the col element.

Table 11-11. The col Element

Element: col

Element Type: N/A

Permitted
Parents:

The colgroup element

Local Attributes: span

Contents: None

Tag Style: Void

CHAPTER 11 TABLE ELEMENTS

275

New in HTML5? No

Changes in
HTML5

The align, width, char, charoff, and valign attributes are
obsolete.

Style Convention col { display: table-column; }

The advantage of using the col element is greater control. You can apply styles to groups of columns

and the individual columns in that group. The col element is placed inside the colgroup element, as
shown in Listing 11-13, and each instance of col represents one column in the group.

Listing 11-13. Using the col Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 thead th, tfoot th { text-align:left; background:grey; color:white}
 tbody th { text-align:right; background: lightgrey; color:grey}
 [colspan], [rowspan] {font-weight:bold; border: medium solid black}
 thead [colspan], tfoot [colspan] {text-align:center; }
 caption {font-weight: bold; font-size: large; margin-bottom:5px}
 #colgroup1 {background-color: red}
 #col3 {background-color: green; font-size:small}
 </style>
 </head>
 <body>
 <table>
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">
 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>

CHAPTER 11 TABLE ELEMENTS

276

 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td colspan="2" rowspan="2">
 Pomegranates and cherries can both come in a range of colors
 and sizes.
 </td>
 <td>203</td>
 </tr>
 <tr>
 <th rowspan="2">Joint 4th:</th>
 <td>Cherries</td>
 <td rowspan="2">75</td>
 </tr>
 <tr>
 <td>Pineapple</td>
 <td>Brown</td>
 <td>Very Large</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

You can use the span attribute to create a col element that represents two columns in the colgroup.
The col element represents a single column if you don’t use the span attribute. In this example, I applied
a style to the colgroup and to one of the col elements it contains. You can see the effect in Figure 11-12.

CHAPTER 11 TABLE ELEMENTS

277

Figure 11-12. Using the colgroup and col elements to apply styling to a table

Applying Borders to the table Element
The table element defines the border attribute. When you apply this attribute, it tells the browser you
are using the table to represent tabular data, rather than to lay out other elements. Most browsers
respond to the border attribute by drawing borders around the table and each individual cell. Listing 11-
14 shows the application of the border element.

Listing 11-14. Using the border Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <table border="1">
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">
 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>

CHAPTER 11 TABLE ELEMENTS

278

 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 <tr>
 <th>3rd Favorite:</th><td>Pomegranate</td>
 <td colspan="2" rowspan="2">
 Pomegranates and cherries can both come in a range of colors
 and sizes.
 </td>
 <td>203</td>
 </tr>
 <tr>
 <th rowspan="2">Joint 4th:</th>
 <td>Cherries</td>
 <td rowspan="2">75</td>
 </tr>
 <tr>
 <td>Pineapple</td>
 <td>Brown</td>
 <td>Very Large</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

The value assigned to the border attribute must be 1 or the empty string (""). This attribute doesn’t
control the style of the border. You do that via CSS. You can see how Google Chrome responds to the
presence of the border attribute in Figure 11-13. (Notice that I removed the style element from this
example to emphasize the effect of the border attribute.)

CHAPTER 11 TABLE ELEMENTS

279

Figure 11-13. The effect of applying the border attribute to a table element

The default border that browsers apply isn’t especially appealing, so you typically have to use CSS in
addition to the border attribute.

 Tip You don’t have to apply the border attribute to a table to be able to define borders using CSS. However, if
you don’t apply the border attribute, the browser is free to assume you are using the table for layout purposes,
and it may display the table in an unexpected way. As I write this, mainstream browsers don’t pay much attention
to the border attribute (aside from applying the default border), but that may change in the future.

Even though the border attribute causes the browser to apply a border to the table and each cell,
you still have to target each kind of element individually in your CSS selectors to replace. You are not
short of choices when it comes to creating CSS selectors: you can target the outer border of the table
through the table element; the header, body, and footer with the thead, tbody, and tfoot elements;
columns through the colspan and col elements; and individual cells using the th and td elements. And, if
all else fails, you can still explicitly create targets using the id and class global attributes.

Summary
In this chapter, I took you on a tour of the HTML5 support for tables. The most important change in
HTML5 is that you can no longer use tables to handle page layouts—for that you must rely on the CSS
table support, which I describe in Chapter 21. This limitation aside, tables are endlessly flexible, are easy
to style, and can be a pleasure to work with.

C H A P T E R 12

281

Working with Forms

Forms are the HTML mechanism for gathering input from the user. Forms are incredibly important to
web applications, but for many years the functionality defined in HTML has lagged behind the way
forms are used. In HTML5, the entire form system has been overhauled and spruced up, aligning the
standard with the way forms have evolved in use.

In this chapter, I describe the basics of HTML forms. I start by defining a very simple form and build
on it to demonstrate how you configure and control the way the form operates. I introduce a Node.js
script you can use to test your forms and see the data that is sent from the browser to the server.

In the chapter that follows, I cover the advanced form features, including the HTML5 changes that
have attracted the most attention—the new ways of gathering specific data types from the user, and the
ability to validate the data in the browser. These are important enhancements, but a lot of other changes
are worthy of note as well. This chapter and the next are worthy of close attention.

As I write this, the mainstream browser support for HTML5 forms is good, but not perfect, and it is
worth checking how widely implemented each feature is before adopting it. Table 12-1 provides the
summary for this chapter.

Table 12-1. Chapter Summary

Problem Solution Listing

Create a basic form. Use the form, input, and button elements. 1

Specify the URL that the form
data is sent to.

Use the action attribute on the form element (or the
formaction attribute on the button element).

3 (and 15)

Specify the way in which the
form data is encoded for
transmission to the server.

Use the enctype attribute on the form element (or the
formenctype attribute on the button element).

4 (and 15)

Control auto-completion. Use the autocomplete attribute on the form or input
element.

5, 6

Specify where the response
from the server should be
displayed.

Use the target attribute on the form element (or the
formtarget attribute on the button element).

7

Specify a name for the form Use the name attribute on the form element. 8

CHAPTER 12 WORKING WITH FORMS

282

Add a label for an input
element.

Use the label element. 9

Automatically focus on an
input element when the form
is loaded.

Use the autofocus attribute on the input element. 10

Disable an individual input
element.

Apply the disabled attribute to the input element. 11

Group input elements
together.

Use the fieldset element. 12

Add a descriptive label to a
fieldset element.

Use the legend element. 13

Disable a group of input
elements.

Apply the disabled attribute to the fieldset element. 14

Use the button element to
submit a form.

Set the value of the type attribute to submit. 15

Use the button element to
reset a form.

Set the value of the type attribute to reset. 16

Use the button element as a
generic button control.

Set the value of the type attribute to button. 17

Associate an element with a
form that is not an
antecedent.

Use the form attribute. 18

Creating a Basic Form
To create a basic form, you need three elements: the form, input, and button elements. Listing 12-1
shows an HTML document that contains a simple form.

Listing 12-1. A Simple HTML Form

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>

CHAPTER 12 WORKING WITH FORMS

283

 <body>
 <form method="post" action="http://titan:8080/form">
 <input name="fave"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

You can see how this appears in the browser in Figure 12-1.

Figure 12-1. Displaying a basic form in the browser

This form is so simple that it isn’t much use, but after you’ve looked at each of the three core
elements, you can start to add to the form and make it more meaningful and useful.

Defining the Form
The starting point is the form element, which denotes the presence of a form in an HTML page. Table 12-
2 summarizes the form element.

Table 12-2. The table Element

Element: form

Element Type: Flow

Permitted
Parents:

Any element that can contain flow elements, but the form
element cannot be a descendant of another form.

Local Attributes: action, method, enctype, name, accept-charset, novalidate,
target, autocomplete

Contents: Flow content (but particularly label and input elements)

Tag Style: Start and end tags

New in HTML5? No

CHAPTER 12 WORKING WITH FORMS

284

Changes in
HTML5

The novalidate and autocomplete attributes are new in HTML5.

Style Convention form { display: block; margin-top: 0em; }

I’ll come back and show you how to use the element attributes to configure the form element later in

this chapter. For the moment, it is enough to know that the form element tells the browser that it is
dealing with an HTML form.

The second critical element is input, which allows you to gather input from the user. You can see in
Figure 12-1 that the input element has been displayed by the browser as a simple text box, into which
the user can type. This is the most basic type of input element and, as you’ll see, there are lots of options
for how you gather input from the user (including some nice new additions in HTML5). I explain these in
Chapter 13. Table 12-3 summarizes the input element.

Table 12-3. The input Element

Element: input

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: name, disabled, form, type, plus other attributes based on the
value of the type attribute

Contents: None

Tag Style: Void

New in HTML5? No, but there are some new types of input, which are accessed
through the type attribute. (See Chapter 13 for details.)

Changes in
HTML5

There are new values for the type attribute in HTML5, and there
are several new attributes that are used with specific values for
the type attribute.

Style Convention None. The appearance of this element is determined by the type
attribute.

There are 29 attributes that can be applied to the input element, depending on the value of the type

attribute. I’ll show these attributes and explain their use when we look at the different ways you can
gather data from the user in Chapter 13.

CHAPTER 12 WORKING WITH FORMS

285

 Tip You can use elements other than input to collect data from the user. I explain and demonstrate these in
Chapter 14.

The final element in the example is button. You need some means for the user to indicate to the
browser that all of the data has been entered and that the browser should send the data to the server.
The button element is the most commonly used way of doing this (although, as you’ll see in Chapter 13,
there is another mechanism you can use). Table 12-4 summarizes the button element.

Table 12-4. The button Element

Element: button

Element Type: Phrasing

Permitted
Parents:

Any parent that can contain phrasing elements

Local Attributes: name, disabled, form, type, value, autofocus, plus other attributes
based on the value of the type attribute

Contents: Phrasing Content

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

There are new attributes, which are available depending on the
value of the type attribute. (See the “Using the button Element”
section for details.)

Style Convention None

The button element is a multipurpose element, and I’ll explain the uses it can be put to in the “Using

the button Element” section, later in this chapter. When used inside a form element and without any
attributes, the button element tells the browser to submit the data collected from the user to the server.

Seeing the Form Data
You need a server for the browser to send the data to. To this end, I wrote a simple Node.js script that
generates an HTML page containing the data that the form collects from the user. See Chapter 2 for
details of obtaining and setting up Node.js. Listing 12-2 shows the script we’ll be using. As I mentioned
in Chapter 2, I won’t be digging into the details of the server-side scripts, but because Node.js is
JavaScript-based, you can easily see what the script does by following the descriptions of the JavaScript
language features in Chapter 5 and reading some of the documentation available at http://nodejs.org.

http://nodejs.org

CHAPTER 12 WORKING WITH FORMS

286

Listing 12-2. The formecho.js Script

var http = require('http');
var querystring = require('querystring');

http.createServer(function (req, res) {
 switch(req.url) {
 case '/form':
 if (req.method == 'POST') {
 console.log("[200] " + req.method + " to " + req.url);
 var fullBody = '';
 req.on('data', function(chunk) {
 fullBody += chunk.toString();
 });
 req.on('end', function() {
 res.writeHead(200, "OK", {'Content-Type': 'text/html'});
 res.write('<html><head><title>Post data</title></head><body>');
 res.write('<style>th, td {text-align:left; padding:5px; color:black}\n');
 res.write('th {background-color:grey; color:white; min-width:10em}\n');
 res.write('td {background-color:lightgrey}\n');
 res.write('caption {font-weight:bold}</style>');
 res.write('<table border="1"><caption>Form Data</caption>');
 res.write('<tr><th>Name</th><th>Value</th>');
 var dBody = querystring.parse(fullBody);
 for (var prop in dBody) {
 res.write("<tr><td>" + prop + "</td><td>" + dBody[prop] + "</td></tr>");
 }
 res.write('</table></body></html>');
 res.end();
 });
 } else {
 console.log("[405] " + req.method + " to " + req.url);
 res.writeHead(405, "Method not supported", {'Content-Type': 'text/html'});
 res.end('<html><head><title>405 - Method not supported</title></head><body>' +
 '<h1>Method not supported.</h1></body></html>');
 }
 break;
 default:
 res.writeHead(404, "Not found", {'Content-Type': 'text/html'});
 res.end('<html><head><title>404 - Not found</title></head><body>' +
 '<h1>Not found.</h1></body></html>');
 console.log("[404] " + req.method + " to " + req.url);
 };
}).listen(8080);

This script collects together the data that the browser has submitted and returns a simple HTML
document that displays that data in an HTML table. (I described the table element in Chapter 11.) This
script listens for browser connections on port 8080 and deals only with forms that are sent from the
browser using the HTTP POST method and to the /form URL. You’ll see the significance of port 8080 and
the /form URL when you look at the attributes supported by the form element later in this chapter. I
saved this script to a file called formecho.js. To start the script, I opened a command prompt on titan
and typed the following:

CHAPTER 12 WORKING WITH FORMS

287

bin\node.exe formecho.js

Titan runs Windows Server 2008 R2, so the exact command to start Node.js will be different if you
are using another operating system. Figure 12-2 shows the browser displaying the output that is
produced by entering Apples into the text box in the example form and pressing the Submit Vote button.

Figure 12-2. Viewing the form data submitted by the browser using Node.js

There is only one item of data because there is only one input element in the example form. The
value in the Name column is fave because that is the value I assigned to the name attribute in the input
element. The value in the Value column is Apples because that is what I entered into the text box before
pressing the Submit Vote button. I’ll show the tabular output from the Node.js script as we create more
complex forms.

Configuring the Form
We’ve created an HTML document that contains a basic form, and we’ve used Node.js to display the
data that is sent to the server. Now it is time for me to show you the basic configuration options you can
apply to the form and its contents.

Configuring the Form action Attribute
The action attribute specifies where the browser should send the data collected from the user when the
form is submitted. I want the data to be submitted to my Node.js script, which means I want the form to
post to the /form URL on port 8080 of my development server, titan. You can see that I already express
this in the original form in Listing 12-1, like this:

...
<form method="post" action="http://titan:8080/form">
...

If you don’t apply the action attribute to the form element, the browser will send the form data to
the same URL that the HTML document was loaded from. This isn’t as useless as it might initially
appear, and several popular web application development frameworks depend on this feature.

CHAPTER 12 WORKING WITH FORMS

288

If you specify a relative URL, this value is appended to the URL of the current page or—if you used
the base element described in Chapter 7—to the value of the href attribute of that element. Listing 12-3
shows how you can use the base element to set the destination for the form data.

Listing 12-3. Using the base Element to Set a Destination for Form Data

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <base href="http://titan:8080"/>
 </head>
 <body>
 <form method="post" action="/form">
 <input name="fave"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

 Caution The base element affects all relative URLs in an HTML document, not just the form element.

Configuring the HTTP method Attribute
The method attribute specifies which HTTP method will be used to send the form data to the server. The
allowed values are get and post, which correspond to the HTTP GET and POST methods. The default used
when you don’t apply the method attribute is get, which is unfortunate because most forms require HTTP
POST. You can see that I specified the post value for the form in the example, as follows:

...
<form method="post" action="http://titan:8080/form">
...

GET requests are for safe interactions, which means you can make the same request as many times
as you want and there will be no side effects. POST requests are for unsafe interactions, where the act of
submitting the data changes some kind of state. This is most commonly the case when dealing with web
applications. These conventions are set by the World Wide Web Consortium (W3C), which you can read
about at www.w3.org/Provider/Style/URI.

The rule of thumb is that GET requests should be used for all read-only information retrieval, while
POST requests should be used for any operation that changes the application state. It is important to use
the right kind of requests. If you are unsure, err on the side of caution and use the POST method.

http://www.w3.org/Provider/Style/URI

CHAPTER 12 WORKING WITH FORMS

289

 Tip The Node.js script I use in this chapter will respond only to POST requests.

Configuring the Data Encoding
The enctype attribute specifies how the browser encodes and presents the data to the server. There are
three allowed values for this attribute, which are described in Table 12-5.

Table 12-5. The Allowed Values for the enctype Attribute

Value Description

application/x-www-form-urlencoded This is the default encoding that is used when you don’t apply
the enctype attribute. This encoding cannot be used to upload
files to the server.

multipart/form-data This encoding is used to upload files to the server.

text/plain This encoding varies between browsers. See the following text
for more details.

To understand how the different encodings work, you need to add a second input element to your

form, as shown in Listing 12-4.

Listing 12-4. Adding an input Element to the Form

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input name="fave"/>
 <input name="name"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

You need the second input element so that you can collect two items of data from the user. As you
may have guessed, you are building up a form that will allow users to vote for their favorite fruits. The
new input element will be used to gather their names. As you can see from this listing, I set the name
value of this element to be name. To demonstrate the effect of the different form encodings, I added the
enctype attribute to the form and set it to each of the supported encoding types. In each instance, I

CHAPTER 12 WORKING WITH FORMS

290

entered the same data into the text boxes. In the first text box I entered Apples, and in the second I
entered Adam Freeman (with the space between my first and second names).

The application/x-www-form-urlencoded Encoding
This is the default encoding, and it is suitable for every kind of form except those that upload files to the
server. The name and value of each data item is encoded using the same scheme that is used to encode
URLs (hence, the urlencoded part of the name). This is how the encoding is applied to the data in the
example form:

fave=Apples&name=Adam+Freeman

Special characters are replaced with their HTML entity counterpart. The name of the data item and
the value are separated by the equals sign (=) and data/value tuples are separated by the ampersand
character (&).

The multipart/form-data Encoding
The multipart/form-data encoding takes a different approach. It is more verbose and more complex to
process, which is why it tends to be used only for forms that need to upload files to the server—
something that can’t be done using the default encoding. Here is how the data from the example form is
encoded:

------WebKitFormBoundary2qgCsuH4ohZ5eObF

Content-Disposition: form-data; name="fave"

Apples

------WebKitFormBoundary2qgCsuH4ohZ5eObF

Content-Disposition: form-data; name="name"

Adam Freeman

------WebKitFormBoundary2qgCsuH4ohZ5eObF--

fave=Apple

name=Adam Freeman

CHAPTER 12 WORKING WITH FORMS

291

The text/plain Encoding
This encoding should be used with caution. There is no formal specification as to how data should be
encoded when using this scheme, and the mainstream browsers encode data in different ways. For
example, Google Chrome encodes data in the same way as for the application/x-www-form-urlencoded
scheme, whereas Firefox encodes the data as follows:

fave=Apple

name=Adam Freeman

Each data item is placed on a line, and special characters are not encoded. I recommend avoiding
this encoding. The variations between browsers make it unpredictable.

Controlling Form Completion
Browsers aid the user by remembering the data they have entered into forms and offering to reuse that
data automatically when a similar form is seen again. This technique reduces the need for the user to
enter the same data over and over again. A good example is the name and shipping details a user enters
when purchasing goods or services online. Every web site has its own shopping cart and registration
process, but my browser uses the data I have entered in other forms to speed up the checkout process.
Browsers use different techniques to figure out what data to reuse, but a common approach is to look for
the name attribute of input elements.

In general, completing forms automatically is beneficial to the user and makes little difference to the
web application. But there are times when you don’t want the browser to fill out the form. Listing 12-5
shows how you can do this, using the autocomplete attribute on the form element.

Listing 12-5. Disabling the form Element autocomplete Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form autocomplete="off" method="post" action="http://titan:8080/form">
 <input name="fave"/>
 <input name="name"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

There are two allowed values for the autocomplete attribute: on and off. The on value permits the
browser to fill out the form and is the default value that is assumed when you don’t apply the attribute.

CHAPTER 12 WORKING WITH FORMS

292

You can be more specific by applying the autocomplete attribute to individual input elements, as
shown in Listing 12-6.

Listing 12-6. Applying the autocomplete Attribute to input Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form autocomplete="off" method="post" action="http://titan:8080/form">
 <input autocomplete="on" name="fave"/>
 <input name="name"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

The autocomplete attribute on the form element sets the default policy for the input elements in the
form. However, as the listing shows, you can override that policy for individual elements. In this
example, the attribute on the form element disabled autocomplete, but the same attribute applied to the
first input element switches it back on—but just for that element. The second input element, to which
the autocomplete attribute has not been applied, is subject to the form-wide policy.

In general, you should leave autocomplete enabled—users are accustomed to populating forms
automatically and are typically faced with several forms during any kind of web transaction. For you to
take this feature away intrudes into the preferences and work habits of your users. I know from my own
experience that it is jarring when I try to buy items from sites that disable autocompletion, especially
when the form I am trying to fill in wants very basic information such as my name and address. Some
sites disable autocomplete for credit card data, which makes more sense—but even then, this approach
should be used with caution and the reasons for using this feature should be fully thought through.

Specifying a Target for the Form Response
The default behavior of a browser is to replace the page that contains the form with the response that the
server returns after the form has been submitted. You can change this behavior by using the target
attribute on the form element. This attribute works in the same way as the target attribute on the a
element, and you can select from the range of targets shown in Table 12-6.

Table 12-6. Values for the target Attribute of the form Element

Attribute Description

_blank Opens the server response in a new window (or tab)

_parent Opens the server response in the parent frameset

CHAPTER 12 WORKING WITH FORMS

293

_self Opens the server response in the current window (which is the default behavior)

_top Opens the server response in the full body of the window.

<frame> Opens the server response in the specified frame

Each of these values represents a browsing context. The _blank and _self values are self-evident.

The others relate to the use of frames, which I explain in Chapter 15. Listing 12-7 shows the target
attribute applied to a form element.

Listing 12-7. Using the target Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form target="_blank" method="post" action="http://titan:8080/form">
 <input autocomplete="on" name="fave"/>
 <input name="name"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

In this example, I specified the _blank target, which tells the browser to display the response from
the server in a new window or tab. You can see the effect of this change in Figure 12-3.

CHAPTER 12 WORKING WITH FORMS

294

Figure 12-3. Displaying the response from the server in a new tab

Setting the Name of the Form
The name attribute lets you set a unique identifier for a form so that you can distinguish between forms
when working with the Document Object Model (DOM). I introduce the DOM in Chapter 25. The name
attribute is distinct from the id global attribute, and in most cases, HTML documents use the id
attribute for CSS selectors. Listing 12-8 shows a form element to which the name and id attributes have
been applied. I used the same value for both attributes for the sake of simplicity.

Listing 12-8. Using the name and id Attributes on a form Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form name="fruitvote" id="fruitvote"
 method="post" action="http://titan:8080/form">
 <input name="fave"/>
 <input name="name"/>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

CHAPTER 12 WORKING WITH FORMS

295

The value of the name attribute is not sent to the server when the form is posted, which is why this
attribute has value only in the DOM and is not as important as the name attribute on the input element. If
an input element doesn’t have a name attribute, the data that the user has entered will not be sent to the
server when the form is submitted.

Adding Labels to a Form
You have a form that collects data from the user, but it isn’t very easy to use. You can see how the input
element added in the previous section is displayed by the browser in Figure 12-4.

Figure 12-4. The example form

The obvious problem is a complete lack of guidance for the user, who would have to read the source
HTML to figure out what each of the text boxes is for. You can address this problem by using the label
element, which lets you provide some context for each element in a form. Table 12-7 summarizes the
label element.

Table 12-7. The label Element

Element: label

Element Type: Phrasing

Permitted
Parents:

Any parent that can contain phrasing elements

Local Attributes: for, form

Contents: Phrasing Content

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The form attribute has been added in HTML5. See the “Working
with Elements Outside the Form” section of this chapter for
details of this attribute.

CHAPTER 12 WORKING WITH FORMS

296

Style Convention label { cursor: default; }

Listing 12-9 shows how you can give the user some context.

Listing 12-9. Using the label Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p><label for="fave">Fruit: <input id="fave" name="fave"/></label></p>
 <p><label for="name">Name: <input id="name" name="name"/></label></p>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

I added a label for each of the input elements. Notice that I added an id attribute to the input
elements and used these ids as the value for the for attributes on the label elements. This is how you
associate labels with inputs, which makes processing forms simpler for screen readers and other
assistive technologies. You can see how the labels appear in Figure 12-5.

Figure 12-5. Adding labels to a form

In the listing, I placed the input elements as contents of the label elements. This isn’t a
requirement, and the two elements can be defined independently of one another. It is common to define
the labels independently of the inputs when laying out complex forms.

CHAPTER 12 WORKING WITH FORMS

297

 Note I added some p elements to the form to provide a very basic layout. This is something I’ll do for most of
the examples in this chapter because it will make it easier to see the presentation impact of additions to the HTML
document. To create prettier layouts for form elements, you can use the CSS table feature, which I describe in
Chapter 21. The p element is described in Chapter 9.

Automatically Focusing on an input Element
You can select which input element the browser focuses on when the form is displayed. This means the
user can start typing directly into the selected field without having to explicitly select it first. You specify
which input element the focus should be applied to with the autofocus attribute, as shown in Listing 12-
10.

Listing 12-10. Using the autofocus Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p><label for="name">Name: <input id="name" name="name"/></label></p>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

As soon as the browser displays the page, it will focus on the first input element. You can see the
visual cue Google Chrome gives to the user to indicate a focused element in Figure 12-6.

CHAPTER 12 WORKING WITH FORMS

298

Figure 12-6. Autofocusing on an input element

You can apply the autofocus attribute only to one input element. If you try to apply the element
more than once, the browser will focus on the last element in the document that has the element.

Disabling Individual input Elements
You can disable input elements so that the user cannot enter data into them. This isn’t as odd as it might
sound. You might want to present a consistent interface that is used for several related tasks, but for
which not all of the input elements are germane. You can also use JavaScript to enable the elements
based on a user’s actions. A common example is enabling a set of input elements to capture an address
when the user selects an option to ship to an address that is not the user’s billing address. (You would
enable the elements through the DOM, which is described in Chapters 25-31. Presenting users with
check boxes is described in Chapter 13.)

You disable input elements by applying the disabled attribute, as shown in Listing 12-11.

Listing 12-11. Using the disabled Attribute on input Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input disabled id="name" name="name"/></label>
 </p>
 <button>Submit Vote</button>

CHAPTER 12 WORKING WITH FORMS

299

 </form>
 </body>
</html>

In this example, I applied the disabled attribute to the input element that gathers the user’s name.
You can see how Google Chrome displays a disabled input element in Figure 12-7. The other browsers
use a similar style.

Figure 12-7. Disabling an input element

Grouping Form Elements Together
As you build more complex forms, it can be convenient to group some of the elements together, which
you can do using the fieldset element. Table 12-8 summarizes this element.

Table 12-8. The fieldset Element

Element: fieldset

Element Type: Flow

Permitted
Parents:

Any parent that can contain flow elements, usually as a
descendent of a form element

Local Attributes: name, form, disabled

Contents: An optional legend element, followed by flow content

Tag Style: Start and end tags

New in HTML5? No

Changes in The form attribute has been added in HTML5. See the “Working

CHAPTER 12 WORKING WITH FORMS

300

HTML5 with Elements Outside the Form” section of this chapter for
details of this attribute.

Style Convention fieldset { display: block; margin-start: 2px;
 margin-end: 2px; padding-before: 0.35em;
 padding-start: 0.75em; padding-end: 0.75em;
 padding-after: 0.625em; border: 2px groove; }

You can see how the fieldset element is applied in Listing 12-12. I added additional input elements

to this example to demonstrate that a fieldset can be applied to a subset of the elements in a form.

Listing 12-12. Using the fieldset Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <fieldset>
 <p><label for="name">Name: <input id="name" name="name"/></label></p>
 <p><label for="name">City: <input id="city" name="city"/></label></p>
 </fieldset>
 <fieldset>
 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>
 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>
 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>
 </fieldset>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

I used a fieldset element to group together two input elements that gather details about the user,
and another fieldset to group three input elements that allow the user to vote for her three favorite
fruits. You can see how the browser shows the default style convention for the fieldset element in
Figure 12-8.

CHAPTER 12 WORKING WITH FORMS

301

Figure 12-8. Using the fieldset element to group input elements together

Adding a Descriptive Label to a fieldset Element
You grouped your input elements together, but you still lack context for the user. You can remedy this by
adding a legend element to each of your fieldset elements. Table 12-9 summarizes this element.

Table 12-9. The legend Element

Element: legend

Element Type: N/A

Permitted
Parents:

The fieldset element

Local Attributes: None

Contents: Phrasing Content

Tag Style: Start and end tags

New in HTML5? No

CHAPTER 12 WORKING WITH FORMS

302

Changes in
HTML5

None

Style Convention legend { display: block; padding-start: 2px;
 padding-end: 2px; border: none; }

The legend element must be the first child of a fieldset element, as shown in Listing 12-13.

Listing 12-13. Using the legend Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <fieldset>
 <legend>Enter Your Details</legend>
 <p><label for="name">Name: <input id="name" name="name"/></label></p>
 <p><label for="name">City: <input id="city" name="city"/></label></p>
 </fieldset>
 <fieldset>
 <legend>Vote For Your Three Favorite Fruits</legend>
 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>
 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>
 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>
 </fieldset>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

You can see how the browser displays the legend elements in Figure 12-9.

CHAPTER 12 WORKING WITH FORMS

303

Figure 12-9. Using the legend element

Disabling Groups of Inputs Using the fieldset Element
I showed you how to disable individual input elements earlier in the chapter. You can also disable
multiple input elements in a single step by applying the disabled attribute to the fieldset element.
When you do this, all of the input elements contained by fieldset will be disabled, as shown in Listing
12-14.

Listing 12-14. Disabling the input Elements Using the fieldset Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">

CHAPTER 12 WORKING WITH FORMS

304

 <fieldset>
 <legend>Enter Your Details</legend>
 <p><label for="name">Name: <input id="name" name="name"/></label></p>
 <p><label for="name">City: <input id="city" name="city"/></label></p>
 </fieldset>
 <fieldset disabled>
 <legend>Vote For Your Three Favorite Fruits</legend>
 <p><label for="fave1">#1: <input id="fave1" name="fave1"/></label></p>
 <p><label for="fave2">#2: <input id="fave2" name="fave2"/></label></p>
 <p><label for="fave3">#3: <input id="fave3" name="fave3"/></label></p>
 </fieldset>
 <button>Submit Vote</button>
 </form>
 </body>
</html>

You can see the effect of disabling the input elements in Figure 12-10.

Figure 12-10. Disabling input elements through the fieldset element

Using the button Element
The button element is more flexible than it might first appear. There are three ways you can use button.
The key to these different modes of operation is the type attribute, which has three values. These are
described in Table 12-10.

CHAPTER 12 WORKING WITH FORMS

305

Table 12-10. Values for the type Attribute of the button Element

Value Description

submit Specifies that the button will be used to submit a form

reset Specifies that the button will be used to reset a form

button Specifies that the button has no specific semantic significance

I describe each of these values and the functionality they offer in the following sections.

Using the button Element to Submit Forms
When you set the type attribute to submit, pressing the button will submit the form that contains the
button. This is the default behavior when you have not applied the type attribute. When you use the
button in this way, you have access to some additional attributes, which are described in Table 12-11.

Table 12-11. Additional Attributes when the type Attribute of a Button Is Set to submit

Attribute Description

form Specifies the form (or forms) with which the button is associated. See the “Working
with Elements Outside the Form” section for details.

formaction Overrides the action attribute on the form element, and specifies a new URL to
which the form will be submitted. See the “Configuring the Form Action” section
earlier in this chapter for details of the action attribute.

formenctype Overrides the enctype attribute on the form element, and specifies the encoding
scheme for the form data. See the “Configuring the Data Encoding” section earlier
in this chapter for details of the enctype attribute.

formmethod Overrides the method attribute on the form element. See the “Configuring the HTTP
Method” section earlier in this chapter for details of the method attribute.

formtarget Overrides the target attribute on the form element. See the “Specifying a Target for
the Form Response” section earlier in this chapter for details of the target attribute.

formnovalidate Overrides the novalidate attribute on the form element to specify whether client-
side validation should be performed. See Chapter 14 for details of input validation.

For the most part, these attributes allow you to override or supplement the configuration of the form

element and specify the action, method, encoding scheme, and target and to control client-side
validation. These elements are new in HTML5. Listing 12-15 shows how you can apply these attributes to
the button element.

CHAPTER 12 WORKING WITH FORMS

306

Listing 12-15. Using the button Element Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form>
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>
 </p>
 <button type="submit" formaction="http://titan:8080/form"
 formmethod="post">Submit Vote</button>
 </form>
 </body>
</html>

In this example, I omitted the action and method attributes from the form element and provided the
configuration through the formaction and formmethod attributes on the button element.

Using the button Element to Reset Forms
If you set the type attribute to reset, pressing the button causes all of the input elements in the form to
be reset to their initial state. There are no additional attributes available when you use the button
element in this way. Listing 12-16 shows the addition of a reset button to the HTML document.

Listing 12-16. Using the button Element to Reset a Form

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>
 </p>

CHAPTER 12 WORKING WITH FORMS

307

 <button type="submit">Submit Vote</button>
 <button type="reset">Reset</button>
 </form>
 </body>
</html>

You can see the effect of resetting a form in Figure 12-11.

Figure 12-11. Resetting a form

Using button as a Generic Element
If you set the type attribute to button, you create a button element that is, well...just a button. It has no
special meaning and won’t do anything when you press it. Listing 12-17 shows the addition of such a
button to the example HTML document.

Listing 12-17. Using a Generic Button

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>

CHAPTER 12 WORKING WITH FORMS

308

 </p>
 <button type="submit">Submit Vote</button>
 <button type="reset">Reset</button>
 <button type="button">Do NOT press this button</button>
 </form>
 </body>
</html>

This may not seem like a useful way to use the element, but as I explain in Chapter 30, you can use
JavaScript to perform actions when a button is pressed. This allows you to create customized behaviors
in your web pages.

Notice that I styled the text contained in the button element. You can use any phrasing elements to
mark up the text. You can see the effect of this markup in Figure 12-12.

Figure 12-12. Adding a generic button element

Working with Elements Outside the Form
In HTML4, the input, button, and other form-related elements had to be contained within the form
element, just as I demonstrated in all of the examples so far in this chapter. In HTML5, that restriction
has been removed, and you can associate elements with forms anywhere in the document. You do this
using the form attribute, which is defined by input, button, and the other form-related elements I
describe in Chapter 14. To associate an element with a form that is not an antecedent, you simply set the
form attribute to the id value of the form. Listing 12-18 gives an example.

Listing 12-18. Using the form Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>

CHAPTER 12 WORKING WITH FORMS

309

 <body>
 <form id="voteform" method="post" action="http://titan:8080/form">
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 </form>
 <p>
 <label for="name">Name: <input form="voteform" id="name" name="name"/>
 </label>
 </p>

 <button form="voteform" type="submit">Submit Vote</button>
 <button form="voteform" type="reset">Reset</button>
 </body>
</html>

In this example, only one of the input elements is a descendent of the form element. The other input
element and both of the button elements are outside of the form element, but they use the form attribute
to associate themselves with the form.

Summary
In this chapter, I showed you the basics of the HTML5 support for forms. You saw how to use the form
element to denote a form and configure the way that the form functions. I showed you the basic input
element, which lets you gather simple text data from the user, and the button element, which lets the
user submit or reset a form (and which you can use as a generic button).

There are some useful new form features in HTML5. The headline items are covered in the next
chapter, but even the basic form operations have been improved. The ability to associate an element
with a form that is not an antecedent, the support for automatically focusing on an element, and the
enhancements to the button element are all welcome additions.

C H A P T E R 13

311

Customizing the Input Element

In the previous chapter, I showed you the basic use of the input element, which produced a simple text
box in which the user can enter data. The problem with this approach is that the user can enter any data.
This can be fine in some situations, but in other cases you might want a specific kind of data value from
the user. In such cases, you can configure the input element to collect data from users in different ways.
You configure the input element through the type attribute, for which there are 23 different values in
HTML5. After you have selected the type value you want, you have access to additional attributes. There
are 30 attributes available for the input element in total, and many of these can be used with only certain
type values. I’ll explain all of the different types and the associated attributes in this chapter. Table 13-1
provides the summary for this chapter.

Table 13-1. Chapter Summary

Problem Solution Listing

Set the size and capacity of an input
element.

Use the size and maxlength attributes. 13-1

Set an initial value for an input element or a
hint as to the kind of data required.

Use the value and placeholder
attributes.

13-2

Provide suggested values to the user. Use the datalist element and the list
attribute on the input element.

13-3

Create read-only or disabled input
elements.

Use the disabled and readonly
attributes.

13-4

Hide the characters that a user enters from
view.

Use the password type of input
element.

13-5

Create buttons using an input element. Use the submit, reset, or button types
of input element.

13-6

Restrict the user to a numeric value. Use the number type of input element. 13-7

Restrict the user to a range of numeric
values.

Use the range type of input element. 13-8

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

312

Restrict the user to a true/false response. Use the checkbox type of input
element.

13-9

Restrict the user to a limited number of
choices.

Use the radio type of input element. 13-10

Restrict the user to a specific format of
string.

Use the email, tel, or url types of
input element.

13-11

Restrict the user to a time or date. Use the datetime, datetime-local,
date, month, time, or week types of input
element.

13-12

Restrict the user to selecting a color. Use the color type of input element. 13-13

Restrict the user to entering terms for a
search.

Use the search type of input element. 13-14

Create an input element that is not
displayed to the user.

Use the hidden type of input element. 13-15

Create image buttons that submit the form. Use the image type of input element. 13-16

Upload a file to the server. Use the file type of input element and
set the encoding for the form to
multipart/form-data.

13-17

Using the input Element for Text Input
If you set the type attribute to text, the browser will display a single-line text box. This is the same style
for the input element that you saw in the last chapter, and the style that is used when you omit the type
attribute entirely. Table 13-2 summarizes the attributes that are available for this input element type
(these attributes are in addition to those described in the previous chapter).

Table 13-2. Additional Attributes Available for the text Type

Attribute Description New in HTML5

dirname Specifies a value for the name of the directionality of the text. See the
section “Specifying Text Directionality” for details.

No

list Specifies the id of a datalist element that provides values for this
element. See the section “Using a Data List” for details.

Yes

maxlength Specifies the maximum number of characters that the user can enter
into the text box. See the section “Specifying the Element Size” for

No

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

313

details.

pattern Specifies a regular expression pattern for the purposes of input
validation. See Chapter 14 for details.

Yes

placeholder Specifies a hint to the user as to the kind of input that you expect. See
the section “Setting Values and Using Placeholders” for details.

Yes

readonly If present, this attribute makes the text box read-only, and the user
cannot edit the content. See the section “Creating Read-Only and
Disabled Text Boxes” for details.

No

required Specifies that the user must enter a value for the purposes of input
validation. See Chapter 14 for details.

Yes

size Specifies the width of the element, expressed as the number of
characters that are visible in the text box. See the section “Specifying
the Element Size” for details.

No

value Specifies the initial value for the text box. See the section “Settings
Values and Using Placeholders” for details.

No

In the following sections, I describe the attributes that are available for this text type of input.

 Tip For multiline text boxes, use the textarea element, which I describe in Chapter 14.

Specifying the Element Size
There are two attributes that have an effect on the size of the text box. The maxlength attribute specifies
an upper limit for the number of characters that the user can enter, and the size attribute specifies how
many characters the text box can display. For both attributes, the number of characters is expressed as a
positive integer value. Listing 13-1 shows both of these attributes in use.

Listing 13-1. Using the maxlength and size Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

314

 <p>
 <label for="name">
 Name: <input maxlength="10" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="city">
 City: <input size="10" id="city" name="city"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input size="10" maxlength="10" id="fave" name="fave"/>
 </label>
 </p>
 <button type="submit">Submit Vote</button>
 </form>
 </body>
</html>

For the first input element, I have applied the maxlength attribute with a value of 10. This means that
the browser is free to determine the amount of space that the text box occupies on the screen, but the
user can only enter up to ten characters. If the user tries to enter more than ten characters, the browser
will discard the input.

For the second input element, I have applied the size attribute, also with a value of 10. This means
that the browser must ensure that it sizes the text box so that it can display ten characters. The size
attribute doesn’t apply any restriction on the number of characters that the user can enter.

I have applied both attributes to the third input element. This has the effect of fixing the size
onscreen and limiting the number of characters that the user can enter. You can see how these attributes
affect the display and data entry in Figure 13-1.

Figure 13-1. Using the maxlength and size attributes

In Figure 13-1, you can see the layout in the browser and the data that is passed to the server when
the form is submitted. I have used Firefox for this example because my preferred browser, Chrome,

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

315

doesn’t properly implement the size attribute. When looking at the data that has been submitted to the
server, notice that the city data item contains more characters than are displayed on the screen. As I
mentioned, this is because the size attribute doesn’t limit the number of characters that the user can
enter, just the number that the browser can display.

Setting Values and Using Placeholders
The text box has been empty in all of the form examples so far, but this need not be the case. You can use
the value attribute to specify a default value and the placeholder attribute to give the user a helpful hint
about the kind of data that they should enter. Listing 13-2 shows these attributes in use.

Listing 13-2. Using the value and placeholder Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input placeholder="Your name" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="city">
 City: <input placeholder="Where you live" id="city" name="city"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apple" id="fave" name="fave"/>
 </label>
 </p>
 <button type="submit">Submit Vote</button>
 </form>
 </body>
</html>

Use the placeholder attribute when you need the user to enter data, and you want to provide some
context to help the user decide what data to provide. Use the value attribute to provide a default value,
either because the user has previously provided this information, or because it is a common choice that
is likely to be correct. You can see how the browser represents the values specified by these attributes in
Figure 13-2.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

316

Figure 13-2. Providing placeholders and default values

 Tip When you use the button element to reset the form (as described in Chapter 12), the browser restores the
placeholders and the default values.

Using a Data List
The list attribute allows you to specify the id value of a datalist element, which will be used to suggest
options to the user when they enter data into the text box. Table 13-3 describes the datalist element.

Table 13-3. The datalist Element

Element: datalist

Element Type: Phrasing

Permitted
Parents:

Any parent that can contain phrasing elements

Local Attributes: None

Contents: option elements and phrasing content

Tag Style: Start and end

New in HTML5? Yes

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

317

Changes in
HTML5:

N/A

Style Convention: None

The datalist element is new in HTML5 and allows you to define a set of values that assist the user in

providing the data you require. Different types of input elements use the datalist element in slightly
different ways. For the text type, the values are presented as autocomplete suggestions. You specify the
values you want to give to the user through the option element, which is described in Table 13-4.

Table 13-4. The option Element

Element: option

Element Type: N/A

Permitted
Parents:

datalist, select, optgroup

Local Attributes: disabled, selected, label, value

Contents: Character data

Tag Style: Void or start and end

New in HTML5? No

Changes in
HTML5:

None

Style Convention: None

Listing 13-3 shows the datalist and option elements used to create a set of values for a text box.

 Tip You’ll see the option element again when you look at the select and optgroup elements in Chapter 14.

Listing 13-3. Using the datalist Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

318

 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input placeholder="Your name" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="city">
 City: <input placeholder="Where you live" id="city" name="city"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input list="fruitlist" id="fave" name="fave"/>
 </label>
 </p>
 <button type="submit">Submit Vote</button>
 </form>

 <datalist id="fruitlist">
 <option value="Apples" label="Lovely Apples"/>
 <option value="Oranges">Refreshing Oranges</option>
 <option value="Cherries"/>
 </datalist>

 </body>
</html>

Each option element contained inside of the datalist represents a value that you want to propose
to the user. The value attribute specifies the data value that will be used in the input element if that
option is selected. You can use a different label to describe the option by using the label attribute or by
defining content within the option element. You can see that I have done this for the Apples and Oranges
option elements in Listing 13-3. Figure 13-3 shows how the browser uses the option elements defined in
the datalist.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

319

Figure 13-3. Using a datalist with a text input element

Take care when using a different label when working with the text input type; the user might not
understand why clicking an item called Lovely Apples leads to just Apples being entered in the text box.
Some browsers, such as Opera, take a slightly different approach when the label and value are different,
as shown in Figure 13-4.

Figure 13-4. Opera displaying different value and labels

This is an improvement (although notice that the label attribute is detected, but the content of the
option element is ignored), but can still be confusing.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

320

Creating Read-Only and Disabled Text Boxes
The readonly and disabled attributes allow you to create text boxes that the user cannot edit. Each
creates a different visual effect. Listing 13-4 shows both attributes.

Listing 13-4. Using the readonly and disabled Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" disabled id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="city">
 City: <input value="Boston" readonly id="city" name="city"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input id="fave" name="fave"/>
 </label>
 </p>
 <button type="submit">Submit Vote</button>
 </form>
 </body>
</html>

You can see how the browser deals with these attributes in Figure 13-5.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

321

Figure 13-5. Using the disabled and readonly attributes

The first input element in Listing 13-4 has the disabled attribute, which has the effect of graying out
the text box and preventing the user from editing the text. The second input element has the readonly
attribute, which prevents the user from editing the text, but doesn’t affect the appearance of the text box.
When you submit the forms, the values that were defined with the value attribute are submitted to the
server, as shown in Figure 13-6.

Figure 13-6. Form data from input elements with the disabled and readonly attributes

Notice that the data from the input element, with the disabled attribute, is not submitted to the
server. If you want to use this attribute and you need to ensure that the server receives a value for the
input element, then consider adding a hidden type input element (see the section “Using the input
Element to Create Hidden Data Items,” later in this chapter).

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

322

My advice is to use the readonly attribute with caution. Although the data is submitted to the user,
there is no visual cue to the user that the field isn’t editable; the browser simply ignores the keystrokes,
which can cause confusion.

Specifying Text Directionality
The dirname attribute allows you to specify the name of the data value submitted to the server, and
contains the text direction for the data that the user has entered. At the time of writing, none of the
mainstream browsers support this attribute.

Using the input Element for Password Input
The password value for the type attribute creates an input element for entering a password. The
characters that the user types are represented by a masking character, such as an asterisk (*). Table 13-5
lists the additional attributes that are available when the type attribute is set to password. Many of these
are shared with the text type and work in the same way.

Table 13-5. Additional Attributes Available for the password Type

Attribute Description New in HTML5

maxlength Specifies the maximum number of characters that the user can enter
into the password box. See the section “Specifying the Element Size,”
earlier in this chapter, for details.

No

pattern Specifies a regular expression pattern for the purposes of input
validation. See Chapter 14 for details.

Yes

placeholder Specifies a hint to the user as to the kind of input that you expect. See
the section “Setting Values and Using Placeholders,” earlier in this
chapter, for details.

Yes

readonly If present, this attribute makes the password box read-only, and the
user cannot edit the content. See the section “Creating Read-Only and
Disabled Text Boxes,” earlier in this chapter, for details.

No

required Specifies that the user must enter a value for the purposes of input
validation. See Chapter 14 for details.

Yes

size Specifies the width of the element, expressed as the number of
characters that are visible in the password box. See the section
“Specifying the Element Size,” earlier in this chapter, for details.

No

value Specifies the initial value for the password. No

Listing 13-5 shows the password type in use.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

323

Listing 13-5. Using the password Type

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>
 </p>
 <button type="submit">Submit Vote</button>
 </form>
 </body>
</html>

In Listing 13-5, I have used the placeholder attribute to give the user some guidance about the kind
of password that I am expecting. When the user starts to type, the browser removes the placeholder and
replaces each typed character with a circular bullet (different browsers use different masking
characters). You can see this effect in Figure 13-7.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

324

Figure 13-7. Using the password type of the input element

At the risk of stating the obvious, the masking applies only to the display of the text that the user
enters. When you submit the form, the server receives the password in clear text, as you can see in Figure
13-8, which shows the response from the Node.js script.

Figure 13-8. Submitting a form that contains a password field

 Caution The password type of the input element doesn’t protect the password when it is submitted to the
server. The value that the user entered is transmitted as clear text. If security is important to your site and
application (and it should be), you should consider using SSL/HTTPS to encrypt communications between the
browser and your server.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

325

Using the input Element to Create Buttons
The submit, reset, and button types of input element create buttons that are very similar to those
created when using the button element, described in Chapter 12. Table 13-6 summarizes these input
types.

Table 13-6. The input Element Types That Create Buttons

Type Description Additional Attributes

submit Creates a button that submits the form. formaction, formenctype, formmethod,
formtarget, formnovalidate

reset Creates a button that resets the form. None

button Creates a button that performs no action. None

The additional attributes that are available when you use the submit type are the same as when you

use the button element. You can find descriptions and demonstrations of these attributes in Chapter 12.
The reset and button types don’t define any additional attributes.

For all three of these input types, the label that is displayed on the button is taken from the value
attribute, as shown in Listing 13-6.

Listing 13-6. Using the input Element to Create Buttons

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

326

 </p>
 <input type="submit" value="Submit Vote"/>
 <input type="reset" value="Reset Form"/>
 <input type="button" value="My Button"/>
 </form>
 </body>
</html>

You can see how the browser displays these buttons in Figure 13-9. As you can see, they have the
same appearance as when you use the button element.

Figure 13-9. Using input elements to create buttons

The difference between using the input element to create buttons and using the button element is
that you can use the button element to display marked up text (you can see an example of this in Chapter
12). Some older browsers, notably IE6, do odd things to button elements, which is why most web sites
tend toward using input elements—they have traditionally been handled more consistently.

Using the input Element to Restrict Data Entry
HTML5 introduces some new values for the input element’s type attribute that let you be more specific
about the kind of data that you want from the user. In the following sections, I’ll introduce each new
type value and demonstrate its use. Table 13-7 summarizes these new type values.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

327

Table 13-7. Restricted Data type Values

Type Description New in HTML5

checkbox Restricts the input to a true/false check box. No

color Restricts the input to a color. Yes

date Restricts the input to a date. Yes

datetime Restricts the input to a global date and time with time zone. Yes

datetime-local Restricts the input to a global date and time without time zone. Yes

email Restricts the input to a properly formatted e-mail address. Yes

month Restricts the input to a year and month. Yes

number Restricts the input to an integer or floating-point number. Yes

radiobutton Restricts the input to a fixed set of choices. No

range Restricts the input to a specified range. Yes

tel Restricts the input to a properly formatted telephone number. Yes

time Restricts the input to a time of day. Yes

week Restricts the input to a year and week. Yes

url Restricts the input to a fully qualified URL. Yes

Some of these input types present users with strong visual cues as to the kind of restrictions on the

data that they may enter or choose (e.g., the checkbox and radiobutton types). Others, such as the email
and url types, rely on input validation, which I describe in Chapter 14.

Using the input Element to Obtain a Number
The number value for the type attribute creates an input box that will only accept numeric values. Some
browsers, notably Chrome, will also display selector arrows that will increment and decrement the
numeric value. Table 13-8 describes the additional attributes that are available when using this input
type.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

328

Table 13-8. Additional Attributes Available for the number Type

Attribute Description New in HTML5

list Specifies the id of a datalist element that provides values for this
element. See the section “Using a Data List,” earlier in this chapter, for
details of the datalist element.

Yes

min Specifies the minimum acceptable value for the purposes of input
validation (and sets the limits for the decrement button, if displayed).
See Chapter 14 for details of input validation.

Yes

max Specifies the maximum acceptable value for the purposes of input
validation (and sets the limits for the increment button, if displayed).
See Chapter 14 for details of input validation.

Yes

readonly If present, this attribute makes the input box read-only, and the user
cannot edit the content. See the section “Creating Read-Only and
Disabled Text Boxes,” earlier in this chapter, for details.

No

required Specifies that the user must provide a value for the purposes of input
validation. See Chapter 14 for details.

Yes

step Specifies the granularity of increments and decrements to the value. Yes

value Specifies the initial value for the element. No

The values for the min, max, step, and value attributes can be expressed as integer or decimal
numbers; for example, 3 and 3.14 are both valid. Listing 13-7 shows the number type of input in use.

Listing 13-7. Using the number Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

329

 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>
 </p>

 <p>
 <label for="price">
 $ per unit in your area:
 <input type="number" step="1" min="0" max="100"
 value="1" id="price" name="price"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

In Listing 13-7, I solicit the price that the user pays for their favorite fruit in their area. I have
specified a minimum value of 1, a maximum value of 100, a step of 1, and a starting value of 1. You can
see how the browser displays this type of input element in Figure 13-10. I have shown both Firefox and
Chrome in this figure; notice that Chrome displays the small arrow buttons that can be used to
increment the numeric value, but Firefox does not.

Figure 13-10. Chrome and Firefox displaying the number type of the input element

Using the input Element to Obtain a Number in a Given Range
An alternative approach to obtaining a numeric value is to use the range type of input element, which
restricts the user to selecting a value from a predetermined range. The range type supports the same set
of attributes as the number type (shown in Table 13-8), but the way that the browser displays the element
is different. Listing 13-8 shows the range type in use.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

330

Listing 13-8. Using the range Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>
 </p>

 <p>
 <label for="price">
 $ per unit in your area: 1
 <input type="range" step="1" min="0" max="100"
 value="1" id="price" name="price"/>100
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

You can see how the browser displays the range type in Figure 13-11.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

331

Figure 13-11. Using the range type of input element

Using the input Element to Obtain a Boolean Response
The checkbox type of the input element creates a check box that allows the user to make a true/false
choice. This value for the type attribute supports the additional attributes shown in Table 13-9.

Table 13-9. Additional Attributes Available for the checkbox Type

Attribute Description New in HTML5

checked If applied, this attribute ensures that the check box is checked when
initially displayed to the user or when the form is reset.

No

required Specifies that the user must check the check box for the purposes of
input validation. See Chapter 14 for details.

Yes

value Specifies the data value that is submitted to the server when the check
box is checked; defaults to on.

No

Listing 13-9 shows the checkbox type of input element in use.

Listing 13-9. Using an input Element to Create a Check Box

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

332

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>
 </p>
 <p>
 <label for="veggie">
 Are you vegetarian: <input type="checkbox" id="veggie" name="veggie"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

You can see how the browser displays this kind of input element in Figure 13-12.

Figure 13-12. Creating a check box with an input element

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

333

The wrinkle that arises with the checkbox type is that when the form is submitted, a data value is
sent to the server only if the user has checked the check box. So, if I submit the form as it is shown in
Figure 13-12, I get the response from the Node.js script shown in Figure 13-13.

Figure 13-13. The data items submitted by the form shown in the previous figure

Notice that there is a value for the password element, but not for the checkbox. The absence of a data
item for a checkbox type input element indicates that the user has not checked the box; the presence of a
data value indicates the user has checked the box, as shown in Figure 13-14.

Figure 13-14. Submitting a form where a check box is checked

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

334

Using the input Element to Create Fixed Choices
The radio type of the input element allows you to create a group of radio buttons that let the user pick
from a fixed set of options. This is useful when there are a small number of valid data values that you can
work with. Table 13-10 describes the additional attributes that are support by this type of input element.

Table 13-10. Additional Attributes Available for the radio Type

Attribute Description New in HTML5

checked If applied, this attribute ensures that the radio button is selected when
initially displayed to the user or when the form is reset.

No

required Specifies that the user must select one of the radio buttons for the
purposes of input validation. See Chapter 14 for details.

Yes

value Specifies the data value that is submitted to the server when the check
box is checked.

No

Each input element with the type radio represents a single option to the user. You create a set of

exclusive options by ensuring that the input elements all have the same value for the name attribute. You
can see how this works in Listing 13-10.

Listing 13-10. Using the radio Type to Create Fixed Choices

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <fieldset>
 <legend>Vote for your favorite fruit</legend>
 <label for="apples">

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

335

 <input type="radio" checked value="Apples" id="apples"
 name="fave"/>
 Apples
 </label>
 <label for="oranges">
 <input type="radio" value="Oranges" id="oranges" name="fave"/>
 Oranges
 </label>
 <label for="cherries">
 <input type="radio" value="Cherries" id="cherries" name="fave"/>
 Cherries
 </label>
 </fieldset>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

In this example, I have created three input elements that are of the radio type. The value of the name
attribute for all three is fave, which means that the browser will treat them as related to one another.
This means that selecting one of the buttons will cause the other two to be unselected. I use the value
attribute to specify the data value to send to the server when the form is submitted, and I have used
fieldset and legend attributes to give the user a visual cue that the three buttons are related (this is
optional; both the fieldset and legend elements are described in Chapter 12). I have applied the checked
attribute on the first of the radio elements so that there is always a value selected. You can see how the
browser displays these input elements in Figure 13-15.

Figure 13-15. Using the input element to create a set of radio buttons

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

336

At most, one of the radio buttons will be checked. There can be no checked buttons if the checked
attribute is not applied and the user doesn’t make a selection. Like the checkbox type of input element,
no value will be submitted to the server if the element isn’t checked, which means that no data item will
be present if the user doesn’t make a selection.

Using the input Element to Obtain Formatted Strings
The email, tel, and url type values configure the input element to accept only input that is a valid e-mail
address, telephone number, or URL, respectively. All three of these types support the additional
attributes shown in Table 13-11.

Table 13-11. Additional Attributes Available for the email, tel, and url Types

Attribute Description New in HTML5

list Specifies the id of a datalist element that provides values for the
element. See the section “Using a Data List,” earlier in this chapter, for
details

Yes

maxlength Specifies the maximum number of characters that the user can enter
into the text box. See the section “Specifying the Element Size,” earlier
in this chapter, for details.

No

pattern Specifies a regular expression pattern for the purposes of input
validation. See Chapter 14 for details.

Yes

placeholder Specifies a hint to the user as to the kind of input that you expect. See
the section “Setting Values and Using Placeholders,” earlier in this
chapter, for details.

Yes

readonly If present, this attribute makes the text box read-only, and the user
cannot edit the content.

No

required Specifies that the user must provide a value for the purposes of input
validation. See Chapter 14 for details.

Yes

size Specifies the width of the element, expressed as the number of
characters that are visible in the text box. See the section “Specifying
the Element Size,” earlier in this chapter, for details.

No

value Specifies the initial value for the element. See the section “Setting
Values and Using Placeholders,” earlier in this chapter, for details. For
the email type, this can be a single address, or multiple addresses
separated by commas.

No

The email type also supports the multiple attribute which, when applied, allows the input element

to accept multiple e-mail addresses. You can see all three types of input elements used in Listing 13-11.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

337

Listing 13-11. Using the email, tel, and url input Types

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="email">
 Email: <input type="email" placeholder="user@domain.com"
 id="email" name="email"/>
 </label>
 </p>
 <p>
 <label for="tel">
 Tel: <input type="tel" placeholder="(XXX)-XXX-XXXX"
 id="tel" name="tel"/>
 </label>
 </p>
 <p>
 <label for="url">
 Your homepage: <input type="url" id="url" name="url"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

These input types appear as regular text boxes to the user, and only validate the data that the user
has entered when the form is submitted. This is part of the new HTML5 support for input validation,
which I describe in Chapter 14. The quality of the validation is variable. All of the mainstream browsers
cope well with the email type and properly detect valid e-mail addresses. The url type is a bit hit and
miss. Some browsers simply prepend http:// to whatever the user enters, some require the user to enter
a value that begins with http:// but don’t validate the rest of the value, and some just let the user submit

mailto:user@domain.com

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

338

any value without validation. The tel input type is the least well supported. None of the mainstream
browsers apply any kind of useful validation, as I write this.

Using the input Element to Obtain Times and Dates
HTML5 has also introduced some input element types to gather dates and times from the user. Table 13-
12 describes these input types.

Table 13-12. The input Element Types for Obtaining Times and Dates

Type Description Example

datetime Obtains a global date and time, including time zone. 2011-07-19T16:49:39.491Z

datetime-local Obtains a local date and time, (with no time zone
information).

2011-07-19T16:49:39.491

date Obtains a local date (with no time or time zone). 2011-07-20

month Obtains a year and month (no day, time, or time
zone information).

2011-08

time Obtains a time. 17:49:44.746

week Obtains the current week. 2011-W30

Dates and times are notoriously difficult to deal with and, sadly, the specification of these new input
element type falls far short of the ideal. The date formats are taken from RFC 3339 (available at
http://tools.ietf.org/html/rfc3339), which describes timestamps that are rigidly described and
formatted. This is a very different expression of dates from the many regional variations that are actually
in use and which users will expect. As an example, few users will realize that the T in the datetime format
denotes the start of the time segment, and that the Z represents the invariant Zulu Time Zone. All of the
input element types described in Table 13-12 support the additional attributes described in Table 13-13.

Table 13-13. Additional Attributes Available for the Date and Time input Element Types

Attribute Description New in HTML5

list Specifies the id of a datalist element that provides values for the
element. See the section “Using a Data List,” earlier in this chapter, for
details.

Yes

min Specifies the minimum acceptable value for the purposes of input
validation (and sets the limits for the decrement button, if displayed).
See Chapter 14 for details of input validation.

Yes

max Specifies the maximum acceptable value for the purposes of input
validation (and sets the limits for the increment button, if displayed).

Yes

http://tools.ietf.org/html/rfc3339

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

339

See Chapter 14 for details of input validation.

readonly If present, this attribute makes the text box read-only, and the user
cannot edit the content.

No

required Specifies that the user must provide a value for the purposes of input
validation. See Chapter 14 for details.

Yes

step Specifies the granularity of increments and decrements to the value. Yes

value Specifies the initial value for the element. No

Listing 13-12 shows the date type in use.

Listing 13-12. Using the date Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Fruit: <input value="Apples" id="fave" name="fave"/>
 </label>
 </p>
 <p>
 <label for="lastbuy">
 When did you last buy: <input type="date"
 id="lastbuy" name="lastbuy"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

340

 </body>
</html>

The browser support for these new input types is still very limited. As I write this, Opera has the best
support and provides a date-picker widget, as shown in Figure 13-16.

Figure 13-16. Selecting a date with Opera

The next best implementation is in Chrome, which presents the same kind of text box as for the
number type of input element, with small up and down buttons to increment and decrement the time.
The other mainstream browsers simply preset a single-line text box and leave the user to figure
everything out. I am sure that this situation will improve, but until then I recommend looking at the
calendar pickers that are available with popular JavaScript libraries such as jQuery.

Using the input Element to Obtain a Color
The color type of input element restricts the user to selecting a color. This input type supports the
additional attribute list, which I describe in the section “Using a Data List,” earlier in this chapter.

Color values are expressed as exactly seven characters: a leading #, followed by three two-digit
hexadecimal values representing the red, green, and blue values (for example, #FF1234). CSS color
names, such as red or black, are not supported. You can see this type of input element in use in Listing
13-13.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

341

Listing 13-13. Using the color Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit: <input type="text" id="fave" name="fave"/>
 </label>
 </p>
 <p>
 <label for="color">
 Color: <input type="color" id="color" name="color"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

Most of the browsers don’t implement any special support for this type of the input element. Google
Chrome lets the user type in a value and reports formatting problems when performing input validation
(which I describe in Chapter 14). The best support is available in Opera, which displays a simple color
picker that can be expanded to a full-range color selector dialog, as shown in Figure 13-17.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

342

Figure 13-17. The color picker support in Opera

Using the input Element to Obtain Search Terms
The search type of input element presents the user with a single-line text box for entering search terms.
This is an unusual input type because it doesn’t really do anything. There are no built-in restrictions on
the data that the user can enter, and there are no special features, such as searching the local page or
using the user’s default search engine to perform a search. This type of input element supports the same
additional attributes as the text type, and you can see it in use in Listing 13-14.

Listing 13-14. Using the search Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

343

 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit: <input type="text" id="fave" name="fave"/>
 </label>
 </p>
 <p>
 <label for="search">
 Search: <input type="search" id="search" name="search"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

Browsers can choose to display the text box in a way that makes it obvious that you are gathering
search terms. Google Chrome presents a standard text box until the user starts typing, at which point a
cancel icon is displayed, as shown in Figure 13-18. At the time of writing, the other mainstream browsers
simply treat this type of input as though it were a regular text type.

Figure 13-18. The search type of input, as displayed by Google Chrome

Using the input Element to Create Hidden Data Items
There are occasions when you want to ensure that data items are sent to the server when the form is
submitted, without showing them to the user, or allowing them to be edited. A common example is
when a web application is displaying a database record to a user for editing. You often need to include
the primary key in the web page so you know which record the user is editing in a simple and easy
manner, but you don’t want to display that information to the user. You use the hidden type of input
element to achieve this effect. Listing 13-15 shows how you can use this type of input element.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

344

Listing 13-15. Creating a hidden Type input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit: <input type="text" id="fave" name="fave"/>
 </label>
 </p>
 <input type="submit" value="Submit Vote"/>
 </form>
 </body>
</html>

In this example, I have created a hidden input element whose name attribute has a value of recordID
and whose value attribute is 1234. When the page is displayed, the browser doesn’t provide any visual
representation of the input element, as you can see in Figure 13-19.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

345

Figure 13-19. A web page with a hidden input element

When the user submits the form, the browser includes a data item using the name and value we have
provided for the hidden input element. You can see this in Figure 13-20, which shows the response from
the Node.js script when the form shown in the previous figure is submitted.

Figure 13-20. The response from the server showing the hidden data value

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

346

 Caution This kind of input element is only suitable for data that is being hidden for convenience or usability,
and not because it is sensitive or has an impact on security. The user can see hidden input elements by looking at
the HTML for a page, and the data value is sent from the browser to the server as clear text. Most web application
frameworks have support for keeping sensitive data securely at the server and associating it with the requests
based on sessions identifiers, most typically expressed as cookies.

Using the input Element to Create Image Buttons and Maps
The image type of input element allows you to create buttons that display an image and submit the form
when clicked. This type of input element supports the additional attributes shown in Table 13-14.

Table 13-14. Additional Attributes Available for the image Type of the input Element

Attribute Description New in HTML5

alt Provides a text description of the element. This is useful for
users who require assistive technologies.

No

formaction As for the button element, described in Chapter 12. Yes

formenctype As for the button element, described in Chapter 12. Yes

formmethod As for the button element, described in Chapter 12. Yes

formtarget As for the button element, described in Chapter 12. Yes

formnovalidate As for the button element, described in Chapter 12. Yes

height Specifies the height of the image in pixels (the image will be
displayed at its natural height if this attribute is not applied).

No

src Specifies the URL for the image that should be displayed. No

width Specifies the width of the image in pixels (the image will be
displayed at its natural width if this attribute is not applied).

No

Listing 13-16 shows the image type of the input element in use.

Listing 13-16. Using the image Type of the input Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

347

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit: <input type="text" id="fave" name="fave"/>
 </label>
 </p>
 <input type="image" src="accept.png" name="submit"/>
 </form>
 </body>
</html>

You can see how the browser displays this type of input element in Figure 13-21.

Figure 13-21. Using the image type of input element

When the user clicks the image, the browser submits the form and includes two data items
representing the image input element. These represent the x and y coordinates where the user clicked,

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

348

relative to the top-left corner of the image. You can see how the data values are submitted in Figure 13-
22, which shows the response from the Node.js script when the form in the previous figure was
submitted.

Figure 13-22. The Node.js response to a form containing an image input element

The fact that the coordinates are provided means that you can use images that contain regions
representing different actions and responses to the user depending on where on the image they clicked.

Using the input Element to Upload Files
The final type of input element is file, which allows you to upload files to the server as part of the form
submission. This type of input supports the additional attributes shown in Table 13-15.

Table 13-15. Additional Attributes Available for the file Type of the input Element

Attribute Description New in HTML5

accept Specifies the set of mime-types that will be accepted. RFC2046
defines MIME types (http://tools.ietf.org/html/rfc2046).

No

multiple When applied, this attribute specifies that the input element
can upload multiple files. At the time of writing, none of the
mainstream browsers have implemented this attribute.

Yes

required Specifies that the user must provide a value for the purposes of
input validation. See Chapter 14 for details.

Yes

http://tools.ietf.org/html/rfc2046

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

349

Listing 13-17 shows the file type of input element in use.

Listing 13-17. Using the file Type of the input Element to Upload Files

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form"
 enctype="multipart/form-data">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit: <input type="text" id="fave" name="fave"/>
 </label>
 </p>
 <p>
 <input type="file" name="filedata"/>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

You can upload files only when the encoding type for the form is multipart/form-data. As you can
see, I have used the enctype attribute of the form element to set the encoding. You can see how the
browser displays the input element in Figure 13-23.

CHAPTER 13 CUSTOMIZING THE INPUT ELEMENT

350

Figure 13-23. The file type of the input element

When the user clicks the Choose File button, they are presented with a dialog that allows a file to be
selected. When the form is submitted, the contents of the file will be sent to the server.

Summary
In this chapter, I have shown you the many different types of input elements available. No other HTML
element has so many different functions, and any web page or web application that requires interaction
with the user will depend heavily on the input element.

In the next chapter, I’ll show you some other kinds of elements you can use in forms. I’ll also
demonstrate the new HTML5 input validation feature, which allows you to check that the user has
entered the kind of data you want to work with before the form is submitted.

C H A P T E R 14

351

Other Form Elements and Input
Validation

In this chapter, I complete the tour of the HTML form features. There are five further elements that you
can use in HTML forms, and I describe each of them in turn. I also explain the new input validation
features that have been introduced in HTML5. These new features allow you to apply constraints to the
data that a user enters, and prevent a form from being submitted until those constrains are satisfied.
Table 14-1 provides the summary for this chapter.

Table 14-1. Chapter Summary

Problem Solution Listing

Create a list of options to present to the
user.

Use the select element. 14-1, 14-2

Add structure to the list of options in a
select element.

Use the optgroup element. 14-3

Obtain multiple lines of text from the user. Use the textarea element. 14-4

Denote the result of a calculation. Use the output element. 14-5

Generate a public/private key pair. Use the keygen element. —

Ensure that the user provides a value for a
form element.

Use the required attribute. 14-6

Ensure that a value is within bounds. Use the min and max attributes. 14-7

Ensure that a value matches a regular
expression.

Use the pattern attribute. 14-8, 14-9

Disable input validation. Use the novalidate or formnovalidate
attributes.

14-10

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

352

Using the Other Form Elements
In the following sections, I describe the five other elements you can use in a form. These are select,
optgroup, textarea, output, and keygen.

Creating Lists of Options
The select element lets you create lists of options from which the user can make a selection. This is a
more compact alternative to the radiobutton type of the input element that you saw in Chapter 13, and
is ideally suited for larger sets of options. Table 14-2 summarizes the select element.

Table 14-2. The select Element

Element: select

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: name, disabled, form, size, multiple, autofocus, required

Contents: option and optgroup elements

Tag Style: Start and end tag

New in HTML5? No

Changes in
HTML5:

The form, autofocus and required attributes are new in HTML5

Style Convention: None, the appearance of this element is platform- and browser-
specific

The name, disabled, form, autofocus, and required attributes work in the same way as for the input

elements. The size attribute specifies how many choices you want to show to the user and when the
multiple attribute is applied, the user is able to select more than one value.

You use the option element to define the choices that you want to present to the user. This is the
same option element used with the datalist element in Chapter 12. Listing 14-1 shows how you use the
select and option elements.

Listing 14-1. Using the select and option Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

353

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave">
 Favorite Fruit:
 <select id="fave" name="fave">
 <option value="apples" selected label="Apples">Apples</option>
 <option value="oranges" label="Oranges">Oranges</option>
 <option value="cherries" label="Cherries">Cherries</option>
 <option value="pears" label="Pears">Pears</option>
 </select>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-1, I have used the select element and defined four option elements to represent the
choices that I want to offer to the user. I have applied the selected attribute to the first of the option
elements so that it is selected automatically when the page is displayed. You can see the initial
appearance of the select element and how the browser displays the option elements in Figure 14-1.

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

354

Figure 14-1. Using the select element to preset the user with a list of options

You can use the size attribute on the select element to show more than one option to the user, and
the multiple attribute to allow the user to select more than one option, as shown in Listing 14-2.

Listing 14-2. Using the size and multiple Attributes on the select Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave" style="vertical-align:top">
 Favorite Fruit:
 <select id="fave" name="fave" size="5" multiple>
 <option value="apples" selected label="Apples">Apples</option>
 <option value="oranges" label="Oranges">Oranges</option>

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

355

 <option value="cherries" label="Cherries">Cherries</option>
 <option value="pears" label="Pears">Pears</option>
 </select>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-2, I have applied the size and multiple attributes, which creates the effect you can see
in Figure 14-2. You can select multiple options by pressing the Ctrl button while clicking. I have also
applied an inline style (as described in Chapter 4) to change the vertical alignment so that the label is
aligned with the top of the select element (by default, it aligns to the bottom, which looks a little odd).

Figure 14-2. Using the select element to display and select multiple items

Adding Structure to a select Element
You can add some structure to a select element by using the optgroup element. Table 14-3 describes this
element.

Table 14-3. The optgroup Element

Element: optgroup

Element Type: N/A

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

356

Permitted
Parents:

The select element

Local Attributes: label, disabled

Contents: option elements

Tag Style: Start and end tag

New in HTML5? No

Changes in
HTML5:

None

Style Convention: None

You use the optgroup element to group option elements together. The label attribute lets you create

a title for the grouped options and the disabled attribute lets you prevent the user from selecting any of
the option elements that are contained in the optgroup. Listing 14-3 shows the optgroup element in use.

Listing 14-3. Using the optgroup Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave" style="vertical-align:top">
 Favorite Fruit:
 <select id="fave" name="fave">
 <optgroup label="Top Choices">

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

357

 <option value="apples" label="Apples">Apples</option>
 <option value="oranges" label="Oranges">Oranges</option>
 </optgroup>
 <optgroup label="Others">
 <option value="cherries" label="Cherries">Cherries</option>
 <option value="pears" label="Pears">Pears</option>
 </optgroup>
 </select>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

You can see how the optgroup element adds structure to a list of option elements in Figure 14-3. The
optgroup labels are purely for structure; the user cannot select these as values.

Figure 14-3. Using the optgroup element

Capturing Multiple Lines of Text
The textarea element creates a multiline text box into which the user can enter more than one line of
text. Table 14-4 summarizes the textarea element.

Table 14-4. The textarea Element

Element: textarea

Element Type: Phrasing

Permitted Any element that can contain phrasing elements, but most

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

358

Parents: typically a form

Local Attributes: name, disabled, form, readonly, maxlength, autofocus, required,
placeholder, dirname, rows, wrap, cols

Contents: Text, which represents the content for the element

Tag Style: Start and end tag

New in HTML5? No

Changes in
HTML5

The form, autofocus, required, placeholder, and wrap attributes
are new in HTML5

Style Convention None

The rows and cols attributes specify the dimensions of the textarea, and you can set the wrap
attribute to hard or soft to control how line breaks are added to the text entered by the user. The other
attributes work in the same way as the corresponding attributes on the input element, described in
Chapters 12 and 13. Listing 14-4 show the textarea element in use.

Listing 14-4. Using the textarea Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name: <input value="Adam" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" placeholder="Min 6 characters"
 id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="fave" style="vertical-align:top">
 Favorite Fruit:
 <select id="fave" name="fave">

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

359

 <optgroup label="Top Choices">
 <option value="apples" label="Apples">Apples</option>
 <option value="oranges" label="Oranges">Oranges</option>
 </optgroup>
 <optgroup label="Others">
 <option value="cherries" label="Cherries">Cherries</option>
 <option value="pears" label="Pears">Pears</option>
 </optgroup>
 </select>
 </label>
 </p>
 <p>
 <textarea cols="20" rows="5" wrap="hard" id="story"
 name="story">Tell us why this is your favorite fruit</textarea>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-4, I have added a textarea that is 20 columns wide and 5 rows high. You can see how
the browser displays this in Figure 14-4.

Figure 14-4. Using the textarea element

The wrap attribute controls how line breaks are inserted into the text when the form is submitted. If
you set the wrap attribute to hard, the content will have line breaks inserted so that no line in the
submitted text has more characters than the value of the cols attribute.

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

360

Denoting the Result of a Calculation
The output element represents the result of a calculation. Table 14-5 summarizes this element.

Table 14-5. The output Element

Element: output

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: name, form, for

Contents: Phrasing content

Tag Style: Start and end tag

New in HTML5? Yes

Changes in
HTML5:

N/A

Style Convention: output { display: inline; }

Listing 14-5 shows the output element in use.

Listing 14-5. Using the output Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form onsubmit="return false"
 oninput="res.value = quant.valueAsNumber * price.valueAsNumber">
 <fieldset>
 <legend>Price Calculator</legend>
 <input type="number" placeholder="Quantity" id="quant" name="quant"/> x
 <input type="number" placeholder="Price" id="price" name="price"/> =
 <output for="quant name" name="res"/>
 </fieldset>
 </form>
 </body>

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

361

</html>

In Listing 14-5, I have used the JavaScript event system to create a simple calculator (you can learn
more about events in Chapter 30. There are two number type input elements and as the user types, the
values of the input elements are multiplied and the result is displayed in the output element. You can see
how this appears in the browser in Figure 14-5.

Figure 14-5. Using the output element

Creating Public/Private Key Pairs
You use the keygen element to generate a public/private pair of keys. This is an important function of
public key cryptography, which underpins much of web security, including client certificates and SSL.
When the form is submitted, a new pair of keys is created. The public key is sent to the server, and the
private key is retained by the browser and added to the user’s key store. Table 14-6 summarizes the
keygen element.

Table 14-6. The keygen Element

Element: keygen

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: challenge, keytype, autofocus, name, disabled, form

Contents: None

Tag Style: Void

New in HTML5? Yes

Changes in
HTML5:

N/A

Style Convention: None

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

362

The name, disabled, form, and autofocus attributes work just as they do for the input element, as
described in Chapter 12. The keytype attribute specifies the algorithm that will be used to generate the
key pair, but the only supported value is RSA. The challenge attribute specifies a challenge phrase that is
sent to the server along with the public key.

The browser support for this element is patchy, and those browsers that do support the element
present it to the user in different ways. My recommendation is to avoid using this element until support
improves.

Using Input Validation
When you solicit input from users, you run the risk of receiving data that you can’t use. This can be
because the user has made a mistake, or you have failed to clearly communicate the kind of response
you were looking for.

HTML5 introduces support for input validation, which is where you provide the browser with some
basic information about the kind of data you require. The browser uses this information to check that
the user has entered usable data before the form is submitted. If the data is problematic, the user is
prompted to correct the problem and can’t submit the form until the issue is resolved.

Performing validation in the browser is not a new idea, but prior to HTML5 you had to use a
JavaScript library, such as the excellent jQuery validation plugin. Having built-in validation support with
HTML5 is certainly convenient but, as you shall see, the support is rudimentary and inconsistent across
browsers.

The benefit of input validation in the browser is that the user gets immediate feedback about
problems. Without this feature, the user has to submit the form, wait for the server to respond, and then
deal with any problems that are reported. On a low-performing network and an over-utilized server, this
can be a slow and frustrating process.

 Caution Input validation in the browser complements, rather than replaces, validation at the server. You cannot
rely on users to employ browsers that properly support input validation, and it is a small matter for a malicious
user to craft a script that will send input directly to your server without any form of validation at all.

You manage input validation through attributes. Table 14-7 shows which elements (and input
types) support the different validation attributes.

Table 14-7. Support for Input Validation

Validation Attribute Elements

required textarea, select, input (the text, password, checkbox, radio, file, datetime,
datetime-local, date, month, time, week, number, email, url, search, and tel types)

min, max input (the datetime, datetime-local, date, month, time, week, number, and range
types)

pattern input (the text, password, email, url, search, and tel types)

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

363

Ensuring the User Provides a Value
The simplest kind of input validation is to ensure that the user provides a value. You do this with the
required attribute. The user cannot submit the form until a value has been provided, although no limits
are placed on what the value can be. Listing 14-6 shows the required attribute in use.

Listing 14-6. Using the required Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name:
 <input type="text" required id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password" required
 placeholder="Min 6 characters" id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="accept">
 <input type="checkbox" required id="accept" name="accept"/>
 Accept Terms & Conditions
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-6, I have applied the required attribute to three types of input elements. The user will
not be able to submit the form until they have provided values for all three. For the text and password
types, this means that the user has to enter text into the text box, and the box has to be checked for the
checkbox type.

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

364

 Tip An initial value set with the value attribute will satisfy the required validation attribute. If you want to
force the user to enter a value, consider using the placeholder attribute instead. See Chapter 12 for details of
both the value and the placeholder attributes.

Each browser that supports input validation does so in a slightly different way, but the effect is
much the same: when the user clicks the button to submit the form, the first element that has the
required attribute and that does not have a value is flagged for the user’s attention. The user can then
correct the omission and submit the form again. If there are other omissions, then the next problem
element is flagged. The process continues until the user has provided a value for all of the elements with
the required attribute. You can see how Google Chrome attracts the user’s attention to a problem in
Figure 14-6.

Figure 14-6. Google Chrome attracting the user’s attention to a required field

The HTML5 input validation support is fairly basic, especially if you are used to the richer
functionality available through libraries such as jQuery. For example, each problem is highlighted to the
user in turn, meaning that if there are multiple problems in a form, the user is forced to undertake a
voyage of gradual discovery by repeatedly submitting the form and fixing one problem at a time. There is
no summary of all of the validation errors and you have no control over the appearance of the validation
error warning.

Ensuring a Value Is Within Bounds
You use the min and max attributes to ensure that numeric and date values are within a specific range.
Listing 14-7 shows these attributes applied to the number type of the input element.

Listing 14-7. Using the min and max Attributes

<!DOCTYPE HTML>
<html>

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

365

 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name:
 <input type="text" id="name" name="name"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password"
 placeholder="Min 6 characters" id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="price">
 $ per unit in your area:
 <input type="number" min="0" max="100"
 value="1" id="price" name="price"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

You need not apply both attributes. You create an upper limit for the value if you apply just the max
attribute, and a lower limit if you apply just the min attribute. When you apply both, you constrain the
upper and lower values to create a range. The min and max values are inclusive, meaning that if you
specify a max value of 100, then any value up to and including 100 is allowed.

You can see how the browser reports a range validation error in Figure 14-7.

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

366

Figure 14-7. A range validation error

 Tip The min and max attributes only result in validation when the user provides a value. The browser will allow
the user to submit the form if the text box is empty. For this reason, the mix and max attributes are often used in
conjunction with the required attribute, described in the previous section.

Ensuring a Value Matches a Pattern
The pattern attribute ensures that a value matches a regular expression. Listing 14-8 shows the pattern
attribute in use.

Listing 14-8. Using the pattern Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name:
 <input type="text" id="name" name="name" pattern="^.* .*$"/>
 </label>

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

367

 </p>
 <p>
 <label for="password">
 Password: <input type="password"
 placeholder="Min 6 characters" id="password" name="password"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-8, I have applied a simple pattern to ensure that the user enters two names, separated
by a space. This is not a sensible way of validating that a value is a name, because it ignores all of the
regional variations for names, but it does provide a suitable example of the validation support. You can
see how the browser displays a pattern validation error in Figure 14-8.

Figure 14-8. A pattern validation error

 Tip The pattern attribute only results in validation when the user provides a value. The browser will allow the
user to submit the form if the text box is empty. For this reason, this attribute is often used in conjunction with the
required attribute, described earlier in the chapter.

Ensuring a Value Is an E-mail Address or URL
The email and url types of the input element, which I described in Chapter 13, ensure that the user has
entered a valid e-mail address or fully qualified URL, respectively (well, almost—the browser support for
the email type is fairly decent, but the url type is somewhat sketchy).

We can combine the pattern attribute with these types of input elements to further restrict the
values that the user can enter; for example, limiting e-mail address to a particular domain. Listing 14-9
provides a demonstration.

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

368

Listing 14-9. Using the pattern Attribute with the email input Element Type

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name:
 <input type="text" id="name" name="name" pattern="^.* .*$"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password"
 placeholder="Min 6 characters" id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="email">
 Email: <input type="email" placeholder="user@mydomain.com" required
 pattern=".*@mydomain.com$" id="email" name="email"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 14-9, I have used three of the validation features. The email type of the input element
ensures that use enters a valid e-mail address. The required attribute ensures that the user provides a
value. The pattern attribute ensures that the user enters an e-mail address that belongs to a specific
domain (mydomain.com). The use of the email input type and the pattern attribute might seem
redundant, but the input element is still responsible for ensuring that everything before the @ character
is valid as an e-mail address.

Disabling Input Validation
There are times when you want to allow the user to submit the form without validating the contents. A
good example is when the user needs to save progress through an incomplete process. You want the user
to be able to save whatever they have entered so that they can resume the process later. This would be a
frustrating process if all errors had to be corrected before progress could be saved.

mailto:user@mydomain.com

CHAPTER 14 OTHER FORM ELEMENTS AND INPUT VALIDATION

369

You can submit the form without validation either by applying the novalidate attribute to the form
element, or the formnovalidate attribute to the types of the button and input elements that can submit
forms. Listing 14-10 shows how you can disable form validation.

Listing 14-10. Disabling Input Validation

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <input type="hidden" name="recordID" value="1234"/>
 <p>
 <label for="name">
 Name:
 <input type="text" id="name" name="name" pattern="^.* .*$"/>
 </label>
 </p>
 <p>
 <label for="password">
 Password: <input type="password"
 placeholder="Min 6 characters" id="password" name="password"/>
 </label>
 </p>
 <p>
 <label for="email">
 Email: <input type="email" placeholder="user@mydomain.com" required
 pattern=".*@mydomain.com$" id="email" name="email"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 <input type="submit" value="Save" formnovalidate/>
 </form>
 </body>
</html>

In this example, I have added an input element to the HTML document that will submit the form
without validation, allowing the user to save progress (assuming of course, that there is a corresponding
feature implemented at the server that will accept values from the browser without applying further
validation).

Summary
In this chapter, I have shown you the remaining elements that you can use in a form, and I
demonstrated the new input validation features that have been introduced in HTML5.

mailto:user@mydomain.com

C H A P T E R 15

371

Embedding Content

In this chapter, I introduce the elements you can use to embed content in your HTML document. Until
now, I have largely focused on using HTML elements to create structure and meaning in your
documents. The elements in this chapter allow you to enrich those documents.

 Note Some of the HTML5 elements for embedding content are covered elsewhere in this book. See the “Other
Embedding Elements” section at the end of this chapter for details.

Table 15-1 provides the summary for this chapter.

Table 15-1. Chapter Summary

Problem Solution Listing

Embed an image into an HTML document. Use the img or object element. 1, 9

Create an image-based hyperlink. Use an img element inside an a
element.

2

Create a client-side image map. Use the img or object element in
conjunction with the map and area
elements.

3, 4, 10

Embed another HTML document. Use the iframe element. 5

Embed content using a plugin. Use the embed or object element. 6-8

Create a browsing context. Use the object element with the name
attribute defining the name of the
browsing context.

11

CHAPTER 15 EMBEDDING CONTENT

372

Embed audio and video without needing to
use a plugin.

Use the audio, video, source, and track
elements. See Chapter 34.

-

Embed graphics into an HTML document. Use the canvas element. See Chapters
35 & 36.

-

Embedding an Image
The img element allows you to embed an image into an HTML document. Table 15-2 summarizes this
element, which is one of the most widely used in HTML.

Table 15-2. The img Element

Element: img

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing content

Local Attributes: src, alt, height, width, usemap, ismap

Contents: None

Tag Style: Void

New in HTML5? No

Changes in
HTML5

The border, longdesc, name, align, hspace, and vspace attributes
are obsolete in HTML5.

Style Convention None

To embed an image, you need to use the src and alt attributes, as shown in Listing 15-1.

Listing 15-1. Embedding an Image

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>

CHAPTER 15 EMBEDDING CONTENT

373

 <body>
 Here is a common form for representing the three activities in a triathlon.
 <p>

 </p>
 The first icon represents swimming, the second represents cycling and the third
 represents running.
 </body>
</html>

The src attribute specifies the URL for the image you want to embed. In this case, I specified a
relative URL for the image file triathlon.png. The alt attribute defines the fallback content for the img
element. This content will be shown if the image cannot be displayed (either because the image can’t be
located, because the image format is not supported by the browser, or because the browser or the device
the user is using cannot display images). You can see the image in Figure 15-1.

Figure 15-1. Embedding an image with the img element

You use the width and height attributes to specify the size (in pixels) of an image displayed by the
img element. Images are not loaded until after the HTML markup has been processed, which means that
if you omit the width and height attributes, the browser doesn’t know how much space on the screen to
allocate to the image. As a consequence, the browser has to determine the size from the image file itself
and then reposition content on the screen to accommodate it. This can be jarring to the user, who may
have already started to read the content contained directly in the HTML. Specifying the width and height
attributes gives the browser the opportunity to lay out the elements on the page correctly, even though
the image has yet to be loaded.

 Caution The width and height attributes tell the browser what the size of the image is, not what you would
like it to be. You should not use these attributes to dynamically resize images.

CHAPTER 15 EMBEDDING CONTENT

374

Embedding an Image in a Hyperlink
A common use of the img element is to create an image-based hyperlink in conjunction with the a
element (which I described in Chapter 8). This is the counterpart to the image-based submit button for
forms (described in Chapter 12). Listing 15-2 shows how you can use the img and a elements together.

Listing 15-2. Using the img and a Elements to Create a Server-Side Image Map

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 Here is a common form for representing the three activities in a triathlon.
 <p>

 <img src="triathlon.png" ismap alt="Triathlon Image"
 width="200" height="67"/>

 </p>
 The first icon represents swimming, the second represents cycling and the third
 represents running.
 </body>
</html>

The browser doesn’t display the image any differently, as you can see in Figure 15-2. It is important,
therefore, to give the user visual cues that particular images represent hyperlinks. This can be done with
CSS or, preferably, by the content of the images.

Figure 15-2. Embedding an image in a hyperlink

CHAPTER 15 EMBEDDING CONTENT

375

If you click on the image, the browser will navigate to the URL specified by the href attribute of the
parent a element. If you apply the ismap attribute to the img element, you create a server-side image map,
which means that the position you clicked on the image is appended to the URL. For example, if you
clicked 4 pixels from the top and 10 pixels from the left edges of the images, the browser will navigate to
the following:

http://titan/listings/otherpage.html?10,4

(Obviously, this URL is based on the fact that I loaded the original HTML document from my
development server, titan, and the href attribute on the a element is a relative URL.) Listing 15-3 show
the contents of otherpage.html, which contains a simple script that displays the coordinates of the click.

Listing 15-3. The Contents of otherpage.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>Other Page</title>
 </head>
 <body>
 <p>The X-coordinate is ??</p>
 <p>The Y-coordinate is ??</p>
 <script>
 var coords = window.location.href.split('?')[1].split(',');
 document.getElementById('xco').innerHTML = coords[0];
 document.getElementById('yco').innerHTML = coords[1];
 </script>
 </body>
</html>

You can see the effect of the mouse click in Figure 15-3.

Figure 15-3. Displaying the coordinates of a mouse click on an image embedded in a hyperlink

The presumption with a server-side image map is that the server will act differently when the user
clicks in different regions of the image, perhaps returning different responses. If you omit the ismap
attribute from the img element, the coordinates of the mouse click are not included in the requested
URL.

CHAPTER 15 EMBEDDING CONTENT

376

Creating a Client-Side Image Map
You can create a client-side image map, where clicking on regions in an image cause the browser to
navigate to different URLs. This is done without needing any direction from the server, meaning that you
need to define the regions for the image and the actions they lead to using elements. The key element for
a client-side image map is map, which is summarized in Table 15-3.

Table 15-3. The map Element

Element: map

Element Type: The map element is considered as a phrasing element when it
contains phrasing content and as a flow element when it
contains flow content.

Permitted
Parents:

Any element that can contain phrasing or flow content

Local Attributes: name

Contents: One or more area elements

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

If the id attribute is used, it must have the same value as the name
attribute.

Style Convention None

The map element contains one or more area elements, each of which denotes a region in the image

that can be clicked on. Table 15-4 summarizes the area element.

Table 15-4. The area Element

Element: area

Element Type: Phrasing

Permitted
Parents:

The map element

Local Attributes: alt, href, target, rel, media, hreflang, type, shape, coords

Contents: None

CHAPTER 15 EMBEDDING CONTENT

377

Tag Style: Void

New in HTML5? No

Changes in
HTML5

The rel, media, and hreflang attributes are new in HTML5.
The nohref attribute is now obsolete.

Style Convention area { display: none; }

The attributes for the area element can be broken into two categories, the first of which deals with

the URL that will be navigated to by the browser if the user clicks in the region of the image that area
represents. These are described in Table 15-5 and are similar to corresponding attributes you have seen
on other elements.

Table 15-5. Attributes of the area Element That Relate to the Target

Attribute Description

href The URL that the browser should load when the region is clicked on

alt The alternative content. See the corresponding attribute on the img element.

target The browsing content in which the URL should be displayed. See the corresponding
attribute on the base element in Chapter 7.

rel Describes the relationship between the current and target documents. See the
corresponding attribute on the link element in Chapter 7.

media The media for which the area is valid. See the corresponding attribute on the style
element in Chapter 7.

hreflang The language of the target document

type The MIME type of the target document

The more interesting attributes form the second category: the shape and coords attributes. You use

these to denote the regions of an image the user can click on. The shape and coords attributes work
together. The meaning of the coords attribute depends on the value of the shape attribute, as described
in Table 15-6.

Table 15-6. Values for the shape and coords Attributes

Shape Value Nature and Meaning of the coords Value

rect This value represents a rectangular area. The coords attribute must consist of four
comma-separated integers representing the distance from the following:

CHAPTER 15 EMBEDDING CONTENT

378

- The left edge of the image to the left side of the rectangle

- The top edge of the image to the top side of the rectangle

- The left edge of the image to the right side of the rectangle

- The top edge of the image to the bottom side of the rectangle

circle This value represents a circular area. The coords attribute must consist of three
comma-separated integers representing the following:

- The distance from the left edge of the image to the circle center

- The distance from the top edge of the image to the circle center

- The radius of the circle

poly This value represents a polygon. The coords attribute must be at least six comma-
separated integers, each pair of which represents a point on the polygon.

default This value is the default area, which covers the entire image. No coords value is
required when using this value for the shape attribute.

Now that I’ve described the elements, we can move on to an example. One of the difficulties in

demonstrating image maps is that area elements are invisible on the browser screen. To that end, Figure
15-4 illustrates two of the regions I intend to define in the example, using the triathlon.png image from
the previous section. For simplicity, I make both areas rectangular.

Figure 15-4. Planning the areas of an image map

From this diagram, you can create the map and area elements, as shown in Listing 15-4.

Listing 15-4. Creating an Image Map

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 15 EMBEDDING CONTENT

379

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 Here is a common form for representing the three activities in a triathlon.
 <p>

 </p>
 The first icon represents swimming, the second represents cycling and the third
 represents running.

 <map name="mymap">
 <area href="swimpage.html" shape="rect" coords="3,5,68,62" alt="Swimming"/>
 <area href="cyclepage.html" shape="rect" coords="70,5,130,62" alt="Running"/>
 <area href="otherpage.html" shape="default" alt="default"/>
 </map>
 </body>
</html>

Notice the addition of the usemap attribute on the img element. The value of this attribute must be a
hash-name reference, which means a string that starts with a # character, followed by the value of the
name attribute of the map you want to use—in this case, #mymap. This is how you associate the map
element with the image.

If the user clicks on the swimming part of the image, the browser navigates to swimpage.html. If the
user clicks on the cycling part of the image, they browser navigates to cyclepage.html. Clicking
anywhere else on the image causes the browser to navigate to otherpage.html.

 Tip Notice that you don’t need to use the a element to explicitly create a hyperlink when working with client-
side image maps.

Embedding Another HTML Document
The iframe element allows you to embed another HTML document within the existing one. Table 15-7
summarizes this element.

Table 15-7. The iframe Element

Element: iframe

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing content

CHAPTER 15 EMBEDDING CONTENT

380

Local Attributes: src, srcdoc, name, width, height, sandbox, seamless

Contents: Character data

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The sandbox and seamless attributes are new in HTML5.

The longdesc, align, allowtransparency, frameborder,
marginheight, marginwidth, and scrolling attributes are
obsolete.

Style Convention iframe { border: 2px inset; }

Listing 15-5 shows how the iframe element can be used.

Listing 15-5. Using the iframe Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <header>
 <h1>Things I like</h1>
 <nav>

 Fruits I Like

 Activities I Like

 </nav>
 </header>

 <iframe name="myframe" width="300" height="100">
 </iframe>
 </body>
</html>

In this example, I created an iframe with a name attribute value of frame. This creates a browsing
context called myframe. I can then use this browsing context with the target attribute of other elements—

CHAPTER 15 EMBEDDING CONTENT

381

specifically, a, form, button, input, and base. I use the a element to create a pair of hyperlinks which,
when followed, will load the URLs specified in their href attributes into the iframe. You can see how this
works in Figure 15-5.

Figure 15-5. Using an iframe to embed external HTML documents

The width and height attributes specify the size in pixels. The src attribute specifies a URL that
should be loaded and displayed in the iframe initially, and the srcdoc attribute allows you to define an
HTML document to display inline.

HTML5 introduces two new attributes for the iframe element. The first, seamless, instructs the
browser to display the iframe contents as though they were an integral part of the main HTML
document. You can see from the figure that a border is applied by default and that a scrollbar is present
if the content is larger than the size specified by the width and height attributes.

The second attribute, sandbox, applies restrictions to the HTML document. When the attribute is
applied with no value, like this:

...
<iframe sandbox name="myframe" width="300" height="100">
</iframe>
...

the following are disabled:

• scripts

• forms

• plugins

• links that target other browsing contexts

CHAPTER 15 EMBEDDING CONTENT

382

In addition, the content in the iframe is treated as though it originated from a different source than
the rest of the HTML document, which enforces additional security measures. You can enable individual
features by defining values for the sandbox attribute, like this:

...
<iframe sandbox="allow-forms" name="myframe" width="300" height="100">
</iframe>
...

The set of values that can be used is described in Table 15-8. Unfortunately, none of the mainstream
browsers support the sandbox and seamless attributes as I write this, so I am unable to demonstrate
either.

Table 15-8. The allow Values for the iframe sandbox Attribute

Value Description

allow-forms Enables forms

allow-scripts Enables scripts

allow-top-navigation Allows links that target the top-level browsing contexts, which allows the
entire document to be replaced with another, or for a new tab or window
to be created

allow-same-origin Allows content in the iframe to be treated as though it originated from
the same location as the rest of the document

Embedding Content Using Plugins
The object and embed elements both originated as a way to extend the capabilities of browsers by adding
support for plugins that could process content the browser didn’t support directly. These elements were
introduced during the browser wars I mentioned in Chapter 1, and each was conceived by a different
camp.

More recently, the object element has been part of the HTML4 specification, but the embed element
has not—even though the embed element has been widely used. To bring parity to these two elements,
HTML5 adds support for the embed element. This gives you two very similar elements for the sake of
compatibility.

Although the object and embed elements are generally used for plugins, they can also be used to
embed content that the browser can handle directly, such as images. I’ll give you a demonstration of
why this can be useful later in this section.

Using the embed Element
I will start with the embed element, which is summarized by Table 15-9.

CHAPTER 15 EMBEDDING CONTENT

383

Table 15-9. The embed Element

Element: embed

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing content

Local Attributes: src, type, height, width

Contents: None

Tag Style: Void

New in HTML5? Yes, although this has been a widely used unofficial element for
some years.

Changes in
HTML5

N/A

Style Convention None

Listing 15-6 shows the embed element in use. For this example, I embedded a video from

www.youtube.com, showing a talk from some Google engineers about HTML5.

Listing 15-6. Using the embed Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <embed src="http://www.youtube.com/v/qzA60hHca9s?version=3"
 type="application/x-shockwave-flash" width="560" height="349"
 allowfullscreen="true"/>
 </body>
</html>

The src attribute specifies the location of the content, and the type attribute specifies the MIME
type of the content so that the browser knows what to do with it. The width and height attributes
determine the size that the embedded content will occupy on screen. Any other attributes you apply are
considered parameters for the plugin or the content. In this case, I applied an attribute called

http://www.youtube.com
http://www.youtube.com/v/qzA60hHca9s?version=3

CHAPTER 15 EMBEDDING CONTENT

384

allowfullscreen, which the YouTube video player uses to enable full-screen viewing. You can see how
the browser renders this content in Figure 15-6.

Figure 15-6. Embedding a YouTube video

Using the object and param Elements
The object element achieves the same result as the embed element, but it works in a slightly different way
and has some additional features. Table 15-10 summarizes the object element.

Table 15-10. The object Element

Element: object

Element Type: This element is considered as a phrasing element when it
contains phrasing content and as a flow element when it
contains flow content.

Permitted
Parents:

Any element that can contain phrasing or flow content

Local Attributes: data, type, height, width, usemap, name, form

Contents: Zero or more param elements and, optionally, phrasing or flow
content to be used as a fallback. See later in this section for an

CHAPTER 15 EMBEDDING CONTENT

385

example.

Tag Style: Start and end tags

New in HTML5? No

Changes in
HTML5

The form attribute is new in HTML5.

The archive, classid, code, codebase, codetype, declare, standby,
align, hspace, vspace, and border attributes are obsolete.

Style Convention None

Listing 15-7 shows how you can use the object element to embed the same YouTube video as in the

previous example.

Listing 15-7. Using the object and param Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <object width="560" height="349"
 data="http://www.youtube.com/v/qzA60hHca9s?version=3"
 type="application/x-shockwave-flash">
 <param name="allowFullScreen" value="true"/>
 </object>
 </body>
</html>

The data attribute provides the location for the content, and the type, width, and height attributes
have the same meaning as for the embed element. You define the parameters that will be passed to the
plugin using the param element. You use one param element for each parameter you need to define. The
element is summarized in Table 15-11. As you might imagine, the name and value attributes define the
name and value of the parameter.

Table 15-11. The param Element

Element: param

Element Type: N/A

Permitted
Parents:

The object element

http://www.youtube.com/v/qzA60hHca9s?version=3

CHAPTER 15 EMBEDDING CONTENT

386

Local Attributes: name, value

Contents: None

Tag Style: Void

New in HTML5? No

Changes in
HTML5

None

Style Convention param { display: none; }

Specifying Fallback Content
One of the advantages of the object element is that you can include content that will be displayed if the
content you specify is not available. Listing 15-8 provides a simple demonstration.

Listing 15-8. Using the Fallback Content Feature of the object Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <object width="560" height="349" data="http://titan/myimaginaryfile">
 <param name="allowFullScreen" value="true"/>
 Sorry! We can't display this content
 </object>
 </body>
</html>

In this example, I used the data attribute to refer to a file that doesn’t exist. The browser will attempt
to load this nonexistent content and, when it fails to do so, display the content inside the object element
instead. The param elements are ignored, leaving just your phrasing and flow content to be displayed, as
shown in Figure 15-7.

CHAPTER 15 EMBEDDING CONTENT

387

Figure 15-7. Relying on fallback content in an object element

Notice that I removed the type attribute in the listing. When there is no type attribute present, the
browser tries to determine the type of content from the data itself. For some combinations of browsers
and plugins, the plugin will still be loaded even when the data isn’t available. This means that an empty
region is displayed on screen and the fallback content isn’t used.

Other Uses for the object Element
Although the object element is mostly used to embed content for plugins, it was originally intended as a
more generic alternative to several elements, including img. In the following sections, I describe some of
the other ways you can use the object element. Even though these features have been in the HTML
specification for some time, not all of the browsers support all of the features. I include these sections for
completeness, but I recommend that you stick to the more specific elements, such as s.

 Tip The form attribute allows the object element to be associated with HTML forms (which are the topic of
Chapter 12). This is a new addition in HTML5. Currently, none of the browsers support this attribute and the
HTML5 specification is vague as to how this feature will work.

Using the object Element to Embed Images
As I mentioned, one of the elements that object was intended to replace is img. As a consequence, you
can use the object element to embed images in your HTML documents. Listing 15-9 gives a
demonstration.

Listing 15-9. Embedding an Image with the object Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

CHAPTER 15 EMBEDDING CONTENT

388

 <object data="triathlon.png" type="image/png">
 </object>
 </body>
</html>

In this example, I used the data attribute to refer to the image I used earlier in the chapter. The
browser embeds and displays the image just as it does when you use the img element, as shown by
Figure 15-8.

Figure 15-8. Embedding an image with the object element

Using the object Element to Create Client-Side Image Maps
You can use the object element to create client-side image maps as well. The usemap attribute can be
used to associate a map element with an object element, as shown in Listing 15-10. I used the same map
and area elements as I did when performing the same task with the img element.

Listing 15-10. Creating a Client-Side Image Map with the object Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <map name="mymap">
 <area href="swimpage.html" shape="rect" coords="3,5,68,62" alt="Swimming"/>
 <area href="cyclepage.html" shape="rect" coords="70,5,130,62" alt="Running"/>
 <area href="otherpage.html" shape="default" alt="default"/>
 </map>

 <object data="triathlon.png" type="image/png" usemap="#mymap">
 </object>
 </body>
</html>

CHAPTER 15 EMBEDDING CONTENT

389

 Caution Not all browsers support image maps created with the object element. At the time of this writing,
Google Chrome and Apple Safari do not support this feature.

Using the object Element as a Browsing Context
You can use the object element to embed one HTML document inside of another, just as you did with
the iframe element. If you apply the name attribute, you create a browsing context you can use with the
target attribute of elements, such as a and form. Listing 15-11 shows how you can do this.

Listing 15-11. Creating a Browsing Context with the object Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <header>
 <h1>Things I like</h1>
 <nav>

 Fruits I Like

 Activities I Like

 </nav>
 </header>

 <object type="text/html" name="frame" width="300" height="100">
 </object>
 </body
</html>

This feature works only if you set the type attribute to text/html—even then, browser support is not
universal. At the time of this writing, Google Chrome and Apple Safari are the only mainstream browsers
that support this feature.

CHAPTER 15 EMBEDDING CONTENT

390

Embedding Numeric Representations
There are two elements that are new to HTML5 that allow you to embed representations of numeric
values in your documents.

Showing Progress
The progress element can be used to indicate the gradual completion of a task. Table 15-12 summarizes
the progress element.

Table 15-12. The progress Element

Element: progress

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: value, max, form

Contents: Phrasing content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

The value attribute defines the current progress, which is on a scale between zero and the value of

the max attribute. When the max attribute is omitted, the scale is between zero and 1. You express
progress using floating-point numbers, such as 0.3 for 30%.

Listing 15-12 shows the progress element and some buttons. Pressing a button updates the value
displayed by the progress element. I connected the buttons and the progress element together using
some simple JavaScript. I describe the techniques I use in Part IV of this book.

Listing 15-12. Using the progress Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>

CHAPTER 15 EMBEDDING CONTENT

391

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>

 <progress id="myprogress" value="10" max="100"></progress>
 <p>
 <button type="button" value="30">30%</button>
 <button type="button" value="60">60%</button>
 <button type="button" value="90">90%</button>
 </p>

 <script>
 var buttons = document.getElementsByTagName('BUTTON');
 var progress = document.getElementById('myprogress');
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 progress.value = e.target.value;
 };
 }
 </script>
 </body>
</html>

You can see how the progress element is used to display different values in Figure 15-9.

Figure 15-9. Using the progress element

Showing a Ranged Value
The meter element shows a value displayed in the context of the range of possible values. Table 15-13
summarizes this element.

Table 15-13. The meter Element

Element: meter

CHAPTER 15 EMBEDDING CONTENT

392

Element Type: Phrasing

Permitted
Parents:

Any element that can contain phrasing elements

Local Attributes: value, min, max, low, high, optimum, form

Contents: Phrasing content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

The min and max attributes set the bounds for the range of possible values. These can be expressed

using floating-point numbers. The display for the meter element can be broken into three segments: too
low, too high, and just right. The low attribute sets the value under which a value is considered to be too
low, and the high attribute sets the value over which a value is considered to be too high. The optimum
attribute specifies the “just right” value. You can see these attributes applied to the meter element in
Listing 15-13.

Listing 15-13. Using the meter Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <meter id="mymeter" value="90"
 min="10" max="100" low="40" high="80" optimum="60"></meter>

 <p>
 <button type="button" value="30">30</button>
 <button type="button" value="60">60</button>
 <button type="button" value="90">90</button>
 </p>

 <script>
 var buttons = document.getElementsByTagName('BUTTON');
 var meter = document.getElementById('mymeter');
 for (var i = 0; i < buttons.length; i++) {

CHAPTER 15 EMBEDDING CONTENT

393

 buttons[i].onclick = function(e) {
 meter.value = e.target.value;
 };
 }
 </script>
 </body>
</html>

In this example, the button elements set the value attribute of the meter element to values that are in
the too-low and too-high ranges and to the optimum value. You can see how this appears in the browser
in Figure 15-10.

Figure 15-10. Using the meter element

The optimum attribute doesn’t have any visual effect on the appearance of the meter element as it is
currently implemented. Browsers that support the meter element differentiate only values that are lower
than the low value and higher than the high value, as the figure shows.

Other Embedding Elements
There are further elements that can be used to embed content in an HTML document. These are covered
in depth in later chapters, but they are mentioned here for completeness.

Embedding Audio and Video
HTML5 defines several new attributes that support embedding audio and video into an HTML
document without the need for plugins. These elements (audio, video, source, and track) are covered in
depth in Chapter 34.

Embedding Graphics
The canvas element is another major area of functionality introduced in HTML5, allowing the addition of
dynamic graphics in an HTML document. The canvas element is covered in Chapters 35 & 36. .

CHAPTER 15 EMBEDDING CONTENT

394

Summary
In this chapter, I introduced the elements that allow you to enrich your HTML documents with
embedded content. These elements range from simple additions, such as images, to rich and extensible
technologies available through plugins.

P A R T III

395

Cascading Style Sheets

In this part of the book, I will show you how to use Cascading Style Sheets (CSS) to control the way that
content is presented to users in the browser. CSS can be surprisingly subtle and expressive, and allows
you to exert a very high degree of control over your content with very little effort.

C H A P T E R 16

397

CSS in Context

In the chapters that follow, I describe the properties defined by CSS, more properly known as Cascading
Style Sheets. Chapter 4 provided a quick refresher in the basics of CSS, and this chapter provides some
additional context before we start digging into the details.

Understanding CSS Standardization
CSS has had a difficult past. During the period when browsers were seen as tools to fragment the market,
browser-makers used CSS as a key tool to create features that were unique to their software. It was a
mess—properties with the same name were handled in different ways, and browser-specific properties
were used to access browser-specific functionality. The idea was to force web developers to make their
site or application work on just one browser.

The good news is that browsers mostly differentiate themselves on speed, ease-of-use and, to a
growing extent, compliance with standards such as CSS. The bad news is that the standardization
process for CSS isn’t ideal.

As you’ll see in the following chapters, there is a lot of functionality in CSS. Rather than try to create
a monolithic standard, the W3C (the standards body for CSS as well as for HTML) decided to break
CSS3S into modules and let each one follow its own timeline. This is a great idea—it certainly beats the
monolithic approach—but it means that there is no overall standard for CSS3 compliance. Instead, you
have to consider each module in turn and decide whether or not it has broad enough support to use.

A further complication is that very few of the CSS3 modules have reached the end of the
standardization process. Some modules, especially those that introduce new areas of functionality to
CSS, are still in an early stage of the process and are subject to change. Properties might be added,
changed, or removed; modules might be merged or killed off; and the relationship between modules
might change (because modules often depend on properties or units defined in other modules). This
means you might find that some of the newer properties have changed since I wrote this book.

In the chapters that follow, I included properties from modules that seem stable and are expected to
be implemented by the mainstream browsers reasonably quickly. For the most part, these features are
stable and can be relied on in recent browser releases. To help you decide if using a property is suitable
for your project, I included the CSS version to which each property was added in the “Properties Quick
Reference” section later in this chapter.

During the more volatile stages of a module’s definition, browsers will implement a feature using a
browser-specific prefix. This isn’t like the bad old days—these are trial implementations that allow early
adopters to test out a browser’s implementation of a particular set of properties. I generally avoid
properties that are available this way, but some CSS3 features are so important that I used the prefixes in
the example. In all cases, the browser-specific implementations are very close to the specification. Each
browser has a different prefix. You can see the prefixes for the most popular browsers in Table 16-1.

CHAPTER 16 CSS IN CONTEXT

398

Table 16-1. The Browser-Specific Prefixes

Browser Prefix

Chrome
Safari

-webkit-

Opera -o-

Firefox -moz-

Internet Explorer -ms-

Understanding the Box Model
One of the fundamental concepts in CSS is the box model. If an element is visible, it will occupy a
rectangular region of the page. This is known as the element’s box. There are four parts to this box, as
shown in Figure 16-1.

Figure 16-1. The CSS box model

Two of the parts can be visible: the contents and the border. Padding is the amount of space
between the content and the border, and the margin is the space between the border and the other
elements on the page. Understanding how these four parts relate to one another is essential to getting
the best out of CSS. In the following chapters, I’ll introduce you to the CSS properties that let you control
the margin, padding, and border and control the appearance of the content overall.

An element can contain other elements. In this case, the parent element’s context box is known as
the child element’s container block (or sometimes just container). This relationship is shown in Figure
16-2.

CHAPTER 16 CSS IN CONTEXT

399

Figure 16-2. The box model relationship between parent and child elements

You can use the characteristics of the containing block to determine the appearance of an element.
This is true not only for cascading and inherited properties, but also for explicitly defined properties, as
you’ll see in Chapter 21 when you look at layouts for elements.

Selectors Quick Reference
I describe the CSS selectors in depth in Chapters 17 and 18. For quick reference, Table 16-2 summarizes
the selectors and shows in which version of CSS they were added.

Table 16-2. The CSS Selectors

Selector Description CSS Level

* Selects all elements. 2

<type> Selects elements of the specified type. 1

.<class> Selects elements of the specified class. 1

#<id> Selects elements with the specified value for the id
attribute.

1

[attr] Selects elements that define the attribute attr, regardless of
the value assigned to the attribute.

2

[attr="val"] Selects elements that define attr and whose value for this
attribute is val.

2

[attr^="val"] Selects elements that define attr and whose value for this
attribute starts with the string val.

3

CHAPTER 16 CSS IN CONTEXT

400

[attr$="val"] Selects elements that define attr and whose value for this
attribute ends with the string val.

3

[attr*="val"] Selects elements that define attr and whose value for this
attribute contains the string val.

3

[attr~="val"] Selects elements that define attr and whose value for this
attribute contains multiple values, once of which is val.

2

[attr|="val"] Selects elements that define attr and whose value is a
hyphen-separated list of values, the first of which is val.

2

<selector>, <selector> Selects the union of the elements matched by each
individual selector.

1

<selector> <selector> Selects elements that match the second selector and that
are arbitrary descendants of the elements matched by the
first selector.

1

<selector> > <selector> Selects elements that match the second selector and that
are immediate descendants of the elements matched by the
first selector.

2

<selector> + <selector> Selects elements that match the second selector and that
immediately follow an element that matches the first
selector.

2

<selector> ~ <selector> Selects elements that match the second selector and that
follow an element that matches the first selector.

3

::first-line Selects the first line of a block of text. 1

::first-letter Selects the first letter of a block of text. 1

:before
:after

Inserts content before or after the selected element. 2

:root Selects the root element in the document. 3

:first-child Selects elements that are the first children of their
containing elements.

2

:last-child Selects elements that are the last children of their
containing elements.

3

:only-child Selects elements that are the sole element defined by their
containing element.

3

CHAPTER 16 CSS IN CONTEXT

401

:only-of-type Selects elements that are the sole element of their type
defined by their containing element.

3

:nth-child(n) Selects elements that are the nth child of their parent. 3

:nth-last-child(n) Selects elements that are the nth from last child of their
parent.

3

:nth-of-type(n) Selects elements that are the nth child of their type defined
by their parent.

3

:nth-last-of-type(n) Selects elements that are the nth from last child of their type
defined by their parent.

3

:enabled Selects elements that are in their enabled state. 3

:disabled Selects elements that are in their disabled state. 3

:checked Selects elements that are in a checked state. 3

:default Selects default elements. 3

:valid
:invalid

Selects input elements that are valid or invalid based on
input validation.

3

:in-range
:out-of-range

Selects constrained input elements that are within or
outside the specified range.

3

:required
:optional

Selects input elements based on the presence of the
required attribute.

3

:link Selects link elements. 1

:visited Selects link elements the user has visited. 1

:hover Selects elements that occupy the position on screen under
the mouse pointer.

2

:active Selects elements that are presently activated by the user.
This usually means elements that are under the pointer
when the mouse button is pressed.

2

:focus Selects the element that has the focus 2

:not(<selector>) Negates a selection (for example, selects all elements that
are not matches by <selector>).

3

CHAPTER 16 CSS IN CONTEXT

402

:empty Selects elements that contain no child elements. 3

:lang(<language>) Selects elements based on the value of the lang attribute. 2

:target Selects the element referred to by the URL fragment
identifier.

3

Properties Quick Reference
In Chapters 19–24, I describe the CSS properties. For quick reference, the following sections summarize
those properties and the version of CSS to which they were added.

Border and Background Properties
Table 16-3 summarizes the properties that can be used to apply borders and backgrounds to an element.
These properties are described in full in Chapter 19.

Table 16-3. The Border and Background Properties

Property Description CSS Level

background Shorthand property to set all background values. 1

background-attachment Sets the attachment of the background to the element. This is
useful when dealing with elements that have scrolling regions.

1

background-clip Sets the area in which the background color and image are
visible.

3

background-color Sets the background color. 1

background-image Sets the image for the background. 1

background-origin Sets the point at which the background image will be drawn. 3

background-position Positions the image in the element’s box. 1

background-repeat Specifies the repeat style for the background image. 1

background-size Specifies the size at which the background image will be drawn. 3

border Shorthand property to set all border values for all edges. 1

border-bottom Shorthand property to set all border values for the bottom 1

CHAPTER 16 CSS IN CONTEXT

403

edge.

border-bottom-color Sets the color for the bottom edge border. 1

border-bottom-left-
radius

Sets the radius for a corner. It’s used for curved borders. 3

border-bottom-right-
radius

Sets the radius for a corner. It’s used for curved borders. 3

border-bottom-style Sets the style for the bottom edge border. 1

border-bottom-width Sets the width for the bottom-edge border. 1

border-color Sets the color of the border for all edges. 1

border-image Shorthand for image-based borders. 3

border-image-outset Specifies the area outside the border box that will be used to
display the image.

3

border-image-repeat Specifies the repeat style for the border image. 3

border-image-slice Specifies the offsets for the image slices. 3

border-image-source Specifies the source for the border image. 3

border-image-width Sets the width of the image border. 3

border-left Shorthand to set the border for the left edge. 1

border-left-color Sets the color for the left-edge border. 1

border-left-style Sets the style for the left-edge border. 1

border-left-width Sets the width for the left-edge border. 1

border-radius Shorthand for specifying curved edges for a border. 3

border-right Shorthand to set the border for the right edge. 1

border-right-color Sets the color for the right-edge border. 1

border-right-style Sets the style for the right-edge border. 1

border-right-width Sets the width of the right-edge border. 1

CHAPTER 16 CSS IN CONTEXT

404

border-style Shorthand to set the style for all border edges. 1

border-top Shorthand to set the border for the top edge. 1

border-top-color Sets the color of the top-edge border. 1

border-top-left-radius Sets the radius for a corner. It’s used for curved borders. 3

border-top-right-
radius

Sets the radius for a corner. It’s used for curved borders. 3

border-top-style Sets the style for the top-edge border. 1

border-top-width Sets the width for the top-edge border. 1

border-width Sets the width for all borders. 1

box-shadow Applies one or more drop shadows. 3

outline-color Sets the color of the outline. 2

outline-offset Sets the offset of the outline. 2

outline-style Sets the style of the outline. 2

outline-width Sets the width of the outline. 2

outline Shorthand property to set the outline in a single declaration. 2

Box Model Properties
Table 16-4 summarizes the properties that can be used to configure an element’s box. These properties
are described in full in Chapter 20.

Table 16-4. The Basic Box Properties

Property Description CSS Level

box-sizing Sets the box to which the size-related properties apply to 3

clear Clears one or both edges of a floating element 1

display Sets the type of an element’s box 1

float Shifts an element to the left or right edge of its containing 1

CHAPTER 16 CSS IN CONTEXT

405

block, or to the edge of another floating element

height Sets the height of an element’s box 1

margin Shorthand property to set the margin for all four edges 1

margin-bottom Sets the margin for the bottom edge of the margin box 1

margin-left Sets the margin for the left edge of the margin box 1

margin-right Sets the margin for the right edge of the margin box 1

margin-top Sets the margin for the top edge of the margin box 1

max-height Sets the maximum height for the element 2

max-width Sets the maximum width for the element 2

min-height Sets the minimum height for the element 2

min-width Sets the minimum width for the element 2

overflow Shorthand property to set the overflow style for both axes 2

overflow-x Sets the style for handling overflowing content on the x-axis 3

overflow-y Sets the style for handling overflowing content on the y-axis 3

padding Shorthand property to set the padding for all four edges 1

padding-bottom Sets the padding for the bottom edge 1

padding-left Sets the padding for the left edge 1

padding-right Sets the padding for the right edge 1

padding-top Sets the padding for the top edge 1

visibility Sets the visibility for an element 2

width Sets the width of an element 1

CHAPTER 16 CSS IN CONTEXT

406

Layout Properties
Table 16-5 summarizes the properties that can be used to create layouts for elements. These properties
are described in full in Chapter 21.

Table 16-5. The Layout Properties

Property Description CSS Level

bottom Sets the bottom-edge offset for a positioned element. 2

column-count Specifies the number of columns in a multicolumn layout. 3

column-fill Specifies how content should be distributed between columns
in a multicolumn layout.

3

column-gap Specifies the distance between columns in a multicolumn
layout.

3

column-rule Shorthand to define the rule between columns in a
multicolumn layout.

3

column-rule-color Specifies the color of the rule in a multicolumn layout. 3

column-rule-style Specifies the style of the rule in a multicolumn layout. 3

column-rule-width Specifies the width of the rule in a multicolumn layout. 3

columns Shorthand for setting the column-span and column-width
properties in a multicolumn layout.

3

column-span Specifies how many columns an element should span in a
multicolumn layout.

3

column-width Specifies the width of columns in a multicolumn layout. 3

display Specifies the way in which the element is displayed on the
page.

1

flex-align
flex-direction
flex-order
flex-pack

These properties are defined by the flexible box layout, but they
are not yet implemented.

3

left Sets the left-edge offset for a positioned element. 2

CHAPTER 16 CSS IN CONTEXT

407

position Sets the positioning method for an element. 2

right Sets the right-edge offset for a positioned element. 2

top Sets the top-edge offset for a positioned element. 2

z-index Sets the front-to-back order for positioned elements. 2

Text Properties
Table 16-6 summarizes the properties that can be used to style text. These properties are described in
full in Chapter 22.

Table 16-6. The Text Properties

Property Description CSS Level

@font-face Specifies a web font for use 3

direction Specifies the directionality of text 2

font Shorthand property to set details of the font in a single
declaration

1

font-family Specifies the list of font families to be used, in order of
preference

1

font-size Specifies the size of the font 1

font-style Specifies whether a font will be normal, italic, or oblique 1

font-variant Specifies if the font should be displayed in small caps form 1

font-weight Specifies the weight (boldness) of the text 1

letter-spacing Specifies the space between letters 1

line-height Specifies the height of a line of text 1

text-align Specifies the alignment of text 1

text-decoration Specifies the decoration of text 1

text-indent Specifies the indentation of text 1

CHAPTER 16 CSS IN CONTEXT

408

text-justify Specifies the justification of text 3

text-shadow Specifies a drop shadow for a block of text 3

text-transform Applies a transformation to a block of text 1

word-spacing Specifies the spacing between words 1

Transition, Animation, and Transform Properties
Table 16-7 summarizes the properties that can be used to change the appearance of elements, often over
a period of time. These properties are described in full in Chapter 23.

Table 16-7. The Transition, Animation, and Transform Properties

Property Description CSS Level

@keyframes Specifies one or more key frames for an animation 3

animation Shorthand property for animations 3

animation-delay Specifies a delay before an animation starts 3

animation-direction Specifies how alternate repeats of an animation are performed 3

animation-duration Specifies the duration of an animation 3

animation-iteration-
count

Specifies the number of times an animation will be repeated 3

animation-name Specifies the name of the set of key frames that will be used for
an animation

3

animation-play-state Specifies whether the animation is playing or is paused 3

animation-timing-
function

Specifies the function used to calculate property values
between key frames in an animation

3

transform Specifies a transform to apply to an element 3

transform-origin Specifies an origin for which a transform will be applied 3

transition Shorthand property for transitions 3

transition-delay Specifies a delay before the transition starts 3

CHAPTER 16 CSS IN CONTEXT

409

transition-duration Specifies the duration of a transition 3

transition-property Specifies one or more properties that will be transitioned 3

transition-timing-
function

Specifies the function used to calculate intermediate property
values during the transition

3

Other Properties
Table 16-8 summarizes the properties that don’t fit neatly into the other chapters. These properties are
described in full in Chapter 24.

Table 16-8. Other Properties

Property Description CSS Level

border-collapse Specifies the display style for borders on adjacent table cells 2

border-spacing Specifies the spacing between table cell borders 2

caption-side Specifies the position of a table caption 2

color Sets the foreground color for an element 1

cursor
Sets the style of the cursor 2

empty-cells Specifies how borders are drawn on empty table cells 2

list-style Shorthand property to specify a list style 1

list-style-image Specifies an image to be used as a list marker 1

list-style-position Specifies the position of a list marker relative to a list item 1

list-style-type Specifies the type of marker used in a list 1

opacity Sets the transparency for an element 3

table-layout Specifies how the size of a table is determined 2

CHAPTER 16 CSS IN CONTEXT

410

Summary
In this chapter, I provided some context for the chapters that follow, in which I describe the CSS
properties. I also provided quick reference tables that will let you find the property you seek when you
use CSS in a real project. It is important that you take into account the CSS version in which a property
was defined when considering CSS features for use in your projects. As I explained at the start of the
chapter, some CSS3 modules are still unstable and others are not as widely implemented as we might
like.

C H A P T E R 17

411

Using the CSS Selectors—Part I

In Chapter 4, I explained that you use CSS selectors to identify which elements you want to apply a style
to when using the style element or an external stylesheet. In this chapter and the next, I describe and
demonstrate the core CSS3 selectors. You will see how easy it is to make selections and how you can
tailor those selections to meet broad or very specific conditions.

These selectors were introduced over time and in different versions of CSS. The mainstream
browsers have fairly good support for all of the selectors, but you might find that coverage in less popular
browsers is a little patchy. To help you work out what you can rely on, I have indicated in which version
of CSS each selector was introduced. Table 17-1 provides the summary for this chapter.

Table 17-1. Chapter Summary

Problem Solution Listing

Select all of the elements. Use the universal selector. 17-1

Select elements by type. Use the type selector. 17-2

Select elements by the value of the class
global attribute.

Use the class selector. 17-3, 17-4

Select elements by the value of the id global
attribute.

Use the id selector. 17-5

Select elements based on attributes. Use the attributes selectors. 17-6
through
17-8

Create a union of selectors. Separate the selectors with a comma. 17-9

Select descendants of an element. Separate the selectors with a space. 17-10, 17-
11

Select children of an element.

Use the > selector. 17-12

CHAPTER 17 USING THE CSS SELECTORS—PART 1

412

Select sibling elements. Use the + or ~ selectors. 17-13, 17-
14

Select the first line of a block of text. Use the ::first-line selector. 17-15

Select the first letter of a block of text. Use the ::first-letter selector. 17-16

Insert content into an element. Use the :before and :after selectors. 17-17

Insert numeric content into an element. Use the counter function. 17-18

Using the Basic CSS Selectors
There are a set of selectors that are very straightforward to use. Think of them as the basic selectors. You
can use these selectors for making wide selections in a document, or as the foundation for more narrow
matches when combined together (a technique I describe later in this chapter). In each of the following
sections, I show you how to use one of the basic selectors.

Selecting All Elements
The universal selector matches every element in the document. This is the most fundamental of the CSS
selectors, but is rarely used because it matches so widely. Table 17-2 summarizes the selector.

Table 17-2. The Universal Selector

Selector: *

Matches: All elements

Since CSS Version: 2

Listing 17-1 shows an example of a style that uses the universal selector.

Listing 17-1. Using the Universal Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 * {
 border: thin black solid;
 padding: 4px;
 }
 </style>

CHAPTER 17 USING THE CSS SELECTORS—PART 1

413

 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The style that I have defined in Listing 17-1 puts a thin black box around the selected elements. This
is one of the styles I’ll use to demonstrate the way that selectors match in this chapter. You can see the
effect of this selector in Figure 17-1.

Figure 17-1. Using the universal CSS selector

If the figure looks a little odd it is because the universal selector really does match every element in
the document, including the html and body elements. This selector is an effective, but somewhat brutal,
tool and you should use it with caution.

Selecting Elements by Type
You can select all of the instances of an element in a document by specifying the element type as the
selector (e.g., if you want to select all of the a elements then you use a as the selector). Table 17-3
provides a summary of the element type selector.

Table 17-3. The Element Type Selector

Selector: <element type>

Matches: All elements of the specified type

Since CSS Version: 1

Listing 17-2 provides an example.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

414

Listing 17-2. Using the Element Type Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see the effect of this selector in Figure 17-2.

Figure 17-2. Selecting elements by type

 Tip You can apply a style to multiple element types by separating the types with a comma. See the section
“Combining Selectors,” later in this chapter, for an example.

Selecting Elements by Class
The class selector allows us to select elements that have been assigned to a particular class using the
class global attribute. Table 17-4 describes this selector. I describe the class attribute in Chapter 3.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

415

Table 17-4. The Element Class Selector

Selector: .<classname> (or *.<classname>)
<element type>.<classname>

Matches: Elements that belong to the specified class.
When used with an element type, all elements of the
specified type that belong to the specified class are
selected.

Since CSS Version: 1

Listing 17-3 provides a demonstration of this selector.

Listing 17-3. Selecting Elements by Class

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 .class2 {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 17-3, I have used the selector .class2. This has the effect of selecting all elements of any
type that have been assigned to the class class2.

There are two ways of expressing this selector: with and without the universal selector. The selectors
*.class2 and .class are equivalent. The first form is more descriptive, but the second form is the one
that is most commonly used. This is a recurring pattern in CSS selectors. As you proceed through the
available selectors, you will see that each of them is effectively a filter that narrows the scope of the
selector so that it matches fewer elements. You can combine these selectors to create focused matches.
I’ll show you different techniques for combining selectors in the section “Combining Selectors,” later in
this chapter.

In Listing 17-3, there are two elements assigned to the target class: an a element and a span element.
You can see the effect of the style in Figure 17-3.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

416

Figure 17-3. Using the class selector

You can be more specific and limit the selection to a single type of element that has been assigned
to a class. You do this by replacing the universal selector with the element type, as shown in Listing 17-4.

Listing 17-4. Using the Class Selector for a Single Element Type

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 span.class2 {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In this case, I have narrowed the scope of the selector so that it will match only span elements that
have been assigned to class2. You can see the effect of this narrowed scope in Figure 17-4.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

417

Figure 17-4. Narrowing the scope of the class selector

 Tip If you want to select elements that have membership in multiple classes, you can specify the class names
separated with a period (e.g., span.class1.class2). This will select only elements that are assigned to both
class1 and class2.

Selecting Elements by ID
The ID selector lets you select elements by the value of the global id attribute, which I described in
Chapter 3. Table 17-5 summarizes this selector.

Table 17-5. The Element id Selector

Selector: #<idvalue>
<element type>.#<idvalue>

Matches: The element that has the specified value for the id global
attribute

Since CSS Version: 1

As I explained in Chapter 3, the value of an element’s id attribute must be unique within the HTML

document. This means that when you use the ID selector, you are looking for a single element. Listing
17-5 demonstrates the use of the id selector.

Listing17- 5. Using the id Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 17 USING THE CSS SELECTORS—PART 1

418

 <style type="text/css">
 #w3canchor {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In this example, I have selected the element with the id of w3canchor. You can see the effect of this in
Figure 17-5.

Figure 17-5. Selecting an element by ID

It might seem that if you are targeting an individual element for a style, you could achieve the same
effect by using the element’s style attribute. This is true, but the real value of this selector comes when
you combine it with other selectors, a technique I demonstrate later in this chapter.

Selecting Elements by Attribute
The attribute selector allows you to match attributes based on different aspects of attributes, as
described in Table 17-6.

Table 17-6. The Element Attribute Selector

Selector: [<condition>]
<element type>[<condition>]

Matches: Elements that have attributes that match the specified
condition (see Table 17-7 for the supported condition

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

419

types)

Since CSS Version: Various (see Table 17-7)

You can choose to match all of the elements (or all elements of a given type) whose attributes meet

the condition by using the universal selector (*) or, in the more common form, by omitting the universal
selector and putting the condition inside of the square braces (the [and] characters). Listing 17-6
demonstrates the attribute selector in use.

Listing 17-6. Using the Element Attribute Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 [href] {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 17-6, I have used the simplest form of the attribute selector, which matches any element
that has an href attribute, irrespective of the value assigned to the attribute. In the example HTML
document, this means that both the a elements will be selected, as shown in Figure 17-6.

Figure 17-6. Selecting elements based on the presence of an attribute

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

420

You can create more sophisticated conditions to match attributes, as shown in Table 17-7. These
conditions have been added to CSS in two waves, so I have indicated in which version of CSS each is
supported.

Table 17-7. Conditions for the Element Attribute Selector

Condition Description CSS Version

[attr] Selects elements that define the attribute attr, irrespective of the
value assigned to the attribute (this is the condition shown in Listing
17-6).

2

[attr="val"] Selects elements that define attr and whose value for this attribute
is val.

2

[attr^="val"] Selects elements that define attr and whose value for this attribute
starts with the string val.

3

[attr$="val"] Selects elements that define attr and whose value for this attribute
ends with the string val.

3

[attr*="val"] Selects elements that define attr and whose value for this attribute
contains the string val.

3

[attr~="val"] Selects elements that define attr and whose value for this attribute
contains multiple values, one of which is val. See Listing 17-7 for an
example of using this selector.

2

[attr|="val"] Selects elements that define attr and whose value is a hyphen-
separated list of values, the first of which is val. See Listing 17-8 for
an example of using this selector.

2

The last two conditions bear additional explanation. The ~= condition is useful for dealing with
attributes that support multiple values that are separated by a space character, such as the class global
attribute. Listing 17-7 gives a demonstration.

Listing 17-7. Selecting Based on One of Multiple Values

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 [class~="class2"] {
 border: thin black solid;
 padding: 4px;
 }
 </style>

CHAPTER 17 USING THE CSS SELECTORS—PART 1

421

 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 17-7, I’ve used the class global attribute because it is the only attribute I have introduced
so far that accepts multiple values. You don’t need to use the attribute selector to match class values;
the class selector handles multiple class memberships automatically.

The condition that I have used in the selector is to match elements who define the class attribute
and whose value for this attribute includes class2. I have highlighted the class attributes of the content
elements and you can see the effect of the selector in Figure 17-7.

Figure 17-7. Selecting based on a multivalue attribute

The |= condition is useful when several pieces of information are expressed in an attribute value
and separated by hyphens. A good example of this is the lang global attribute, which can be used with
language specifiers that contain regional subtags (for example, en-us is English as spoken in the United
States, and en-gb is English as spoken in the United Kingdom). Listing 17-8 shows how you can select all
of the English tags, without having to enumerate all of the regional variations (of which there are many).

Listing 17-8. Using the |= Attribute Condition

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 [lang|="en"] {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

422

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see the effect of this selector in Figure 17-8. Notice that the selector matches the second a
element, which has no regional subtag (i.e., the value of the lang element is en and not en-us or en-gb), as
well those that do have subtags.

Figure 17-8. Selecting elements based on lang attributes

Combining Selectors
You can be much more specific in the elements that you select by creating combinations of selectors.
These either broaden the range of elements that a style will be applied to or do the opposite: allow you to
be incredibly specific in what you select. In the following sections, I’ll show you the different ways you
can combine selectors.

Creating Selector Unions
Creating a list of comma-separated selectors means that the style is applied to the union of all of the
elements that each of the individual selectors matches. Table 17-8 summarizes unions of selectors.

Table 17-8. The Selector Union

Selector: <selector>, <selector>, <selector>

Matches: Selects the union of the elements matched by each
individual selector

Since CSS Version: 1

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

423

Listing 17-9 provides an example of creating a union of selectors.

Listing 17-9. Creating Selector Unions

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a, [lang|="en"] {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 17-9, I have specified a type selector (a) and an attribute selector ([lang|="en"]) separated
by a comma (a, [lang|="en"]). The browser will evaluate each selector in turn and apply the style to the
selected elements. You can mix and match different types of selectors freely and there doesn’t need to be
any commonality between the elements that are matched. You can see the effect of the selector from
Listing 17-9 in Figure 17-9.

Figure 17-9. Creating selector unions

You can combine as many selectors as you require, each separated from the last by a comma.

Selecting Descendant Elements
You can use the descendant selector to select elements that are contained within another element. Table
17-9 provides a summary.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

424

Table 17-9. The Descendant Selector

Selector: <first selector> <second selector>

Matches: Selects elements that match the second selector and are
descendants of the elements matched by the first selector

Since CSS Version: 1

The first selector is applied and then the descendants of the matched elements are evaluated against

the second selector. The descendant selector will match any element contained within the elements
matched by the first selector, not just the immediate children. Listing 17-10 provides a demonstration.

Listing 17-10. Selecting Descendants

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p span {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The selector in Listing 17-10 selects span elements that are descendants of p elements. Given the
HTML in the example, I could just have selected the span element directly to get the same result, but this
approach is more flexible, as the following example demonstrates.

Listing 17-11. A More Complex Descendant Selector Example

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 #mytable td {
 border: thin black solid;
 padding: 4px;
 }

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

425

 </style>
 </head>
 <body>
 <table id="mytable">
 <tr><th>Name</th><th>City</th></tr>
 <tr><td>Adam Freeman</td><td>London</td></tr>
 <tr><td>Joe Smith</td><td>New York</td></tr>
 <tr><td>Anne Jones</td><td>Paris</td></tr>
 </table>

 <p>I like apples and oranges.</p>

 <table id="othertable">
 <tr><th>Name</th><th>City</th></tr>
 <tr><td>Peter Pererson</td><td>Boston</td></tr>
 <tr><td>Chuck Fellows</td><td>Paris</td></tr>
 <tr><td>Jane Firth</td><td>Paris</td></tr>
 </table>
 </body>
</html>

In Listing 17-11, I have defined two simple tables, each of which defines the id attribute. Using the
ID selector, I select the table with the id value of mytable and then select the td elements that it contains.
You can see the effect in Figure 17-10.

Figure 17-10. Selecting descendant elements

CHAPTER 17 USING THE CSS SELECTORS—PART 1

426

Notice that I am not selecting direct descendants in this example. I am skipping over the tr
elements to select the td elements.

Selecting Child Elements
The counterpart to the descendant selector is the child selector, which will only match elements that are
directly contained in matched elements. Table 17-10 summarizes the child selector.

Table 17-10. The Child Selector

Selector: <first selector> > <second selector>

Matches: Selects elements that match the second selector and are
immediate descendants of the elements matched by the
first selector

Since CSS Version: 2

Listing 17-12 provides a demonstration of how you can select child elements.

Listing 17-12. Selecting Child Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 body > * > span, tr > th {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 <table id="mytable">
 <tr><th>Name</th><th>City</th></tr>
 <tr><td>Adam Freeman</td><td>London</td></tr>
 <tr><td>Joe Smith</td><td>New York</td></tr>
 <tr><td>Anne Jones</td><td>Paris</td></tr>
 </table>

 <p>I like apples and oranges.</p>

 <table id="othertable">
 <tr><th>Name</th><th>City</th></tr>
 <tr><td>Peter Pererson</td><td>Boston</td></tr>
 <tr><td>Chuck Fellows</td><td>Paris</td></tr>
 <tr><td>Jane Firth</td><td>Paris</td></tr>
 </table>

CHAPTER 17 USING THE CSS SELECTORS—PART 1

427

 </body>
</html>

In this selector, I have created a union of child selectors. In the first, I am looking for span elements
that are children of any element that is a child of the body element. In the second, I am looking for th
elements that are children of tr elements. You can see which elements are matched in Figure 17-11.

Figure 17-11. Selecting child elements

Selecting Sibling Elements
You can select elements that immediately follow other elements using the immediate sibling selector.
Table 17-11 summarizes this selector.

Table 17-11. The Immediate Sibling Selector

Selector: <first selector> + <second selector>

Matches: Selects elements that match the second selector and
immediately follow an element that matches the first
selector

Since CSS Version: 2

Listing 17-13 shows how you can select immediate sibling elements.

CHAPTER 17 USING THE CSS SELECTORS—PART 1

428

Listing 17-13. Using the Immediate Sibling Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p + a {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 Visit Google
 </body>
</html>

In Listing 17-13, the selector will match a elements that immediately follow a p element. As you can
see in Figure 17-12, there is only one such element in the listing and it is the a element, which creates a
hyperlink to the W3C website.

Figure 17-12. Selecting an immediate sibling

You can make the selection a little looser by using the general sibling selector, which selects
elements that follow another specified element, but not necessarily immediately. Table 17-12 describes
this element.

Table 17-12. The General Sibling Selector

Selector: <first selector> ~ <second selector>

Matches: Selects elements that match the second selector and

http://apress.com
http://w3c.org
http://google.com

CHAPTER 17 USING THE CSS SELECTORS—PART 1

429

follow an element that matches the first selector

Since CSS Version: 3

Listing 17-14 shows how you can use the general sibling selector.

Listing 17-14. Using the General Sibling Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p ~ a {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 Visit Google
 </body>
</html>

 We are not limited to elements that immediately follow an element matched by the first selector,
which means that the second selector will match against two a elements in this example. The excluded a
element (the one that links to http://apress.com) is not selected because it precedes the p element; we
can only select siblings that follow on). You can see the effect of this selector in Figure 17-13.

Figure 17-13. Using the general sibling selector

http://apress.com
http://w3c.org
http://google.com
http://apress.com

CHAPTER 17 USING THE CSS SELECTORS—PART 1

430

Using Pseudo-Element Selectors
So far, you have seen selections using the elements defined in the HTML document. CSS also includes
pseudo-selectors, which provide more complex functionality but don’t directly correspond to the
elements defined in the document. There are two kinds of pseudo-selectors: pseudo-elements and
pseudo-classes. In this section, I describe and demonstrate the pseudo-element selectors. As their name
suggests, pseudo-elements don’t really exist; they are a convenience provided by CSS to let you make
helpful selections.

Using the ::first-line Selector
The ::first-line selector matches the first line of a block of text. Table 17-13 summarizes the ::first-
line selector.

Table 17-13. The ::first-line Pseudo-Element Selector

Selector: ::first-line

Matches: The first line of text content

Since CSS Version: 1

Listing 17-15 shows an example of using the ::first-line selector.

Listing 17-15. Using the ::first-line Pseudo-Element Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 ::first-line {
 background-color:grey;
 color:white;
 }
 </style>
 </head>
 <body>
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty, and
 dedicated to the proposition that all men are created equal.</p>

 <p>I like apples and oranges.</p>

 Visit the W3C website
 </body>
</html>

http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

431

I have used the selector on its own in this example, but it can also be applied as a modifier to other
selectors. For example, if I wanted to select the first line of only p elements, I could specify p::first-line
as the selector.

 Tip The pseudo-element selector is prefixed with two colon characters (::), but browsers will recognize the
selector with just one colon (i.e., :first-line instead of ::first-line). This makes the format consistent with
the pseudo-class selectors I described earlier in this chapter for purposes of backward compatibility.

The browser will reassess what the first line is as the browser window is resized. This means that the
style is always correctly applied to the first line of the text, as shown in Figure 17-14.

Figure 17-14. The browser ensures that the style is applied to the first line, even when the window is resized

Using the ::first-letter Selector
The ::first-letter selector does just what its name suggests: it selects the first letter in a block of text.
Table 17-14 summarizes this pseudo-element selector.

Table 17-14. The ::first-letter Pseudo-Element Selector

Selector: ::first-letter

Matches: The first letter of text content

CHAPTER 17 USING THE CSS SELECTORS—PART 1

432

Since CSS Version: 1

Listing 17-16 shows the selector in use.

Listing 17-16. Using the ::first-letter Pseudo-Element Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 ::first-letter {
 background-color:grey;
 color:white;
 border: thin black solid;
 padding: 4px;

 }
 </style>
 </head>
 <body>
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty, and
 dedicated to the proposition that all men are created equal.</p>

 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see the effect of this selector in Figure 17-15.

Figure 17-15. Using the ::first-letter selector

http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

433

Using the :before and :after Selectors
The :before and :after selectors are unusual in that they generate content and add it to the document. I
introduced the :before selector in Chapter 9, and showed you how to use it to create custom lists. The
:after selector is the counterpart to :before and adds content following an element, as opposed to
before an element. Table 17-15 describes these selectors.

Table 17-15. The :before and :after Selectors

Selector Description CSS Version

:before Inserts content before the content of the selected elements. 2

:after Inserts content after the content of the selected elements. 2

Listing 17-17 demonstrates these attributes in use.

Listing 17-17. Using the :before and :after Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a:before {
 content: "Click here to "
 }
 a:after {
 content: "!"
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 17-17, I have selected the a elements and applied the :before and :after pseudo-
selectors. When using these selectors, you specify the content you want to insert by setting a value for
the content property. This is a special property that you may use only with these selectors. In this
example, the content Click here to will be inserted before the content of the a elements, and an
exclamation mark (!) will be inserted after the content. You can see the effect of these additions in Figure
17-16.

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

434

Figure 17-16. Using the :before and :after selectors

Using the CSS Counter Feature
The :before and :after selectors are often used with the CSS counter feature, which lets you generate
numeric content. I gave an example of using these counters to create custom lists in Chapter 9. Listing
17-18 gives a demonstration.

Listing 17-18. Using the CSS Counter Feature

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 body {
 counter-reset: paracount;
 }
 p:before {
 content: counter(paracount) ". ";
 counter-increment: paracount;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 <p>I also like mangos and cherries.</p>
 Visit the W3C website
 </body>
</html>

To create a counter, you use the special counter-reset property and set the value to be the name
you want to use for the counter, like this:

http://apress.com
http://w3c.org

CHAPTER 17 USING THE CSS SELECTORS—PART 1

435

counter-reset: paracount;

This has the effect of initializing a counter called paracount counter and setting the value to 1. You
can specify a different initial value by adding a number after the counter name, like this:

counter-reset: paracount 10;

If you want to define multiple counters, you simply add the names (and optional initial values) to
the same counter-reset declaration, like this:

counter-reset: paracount 10 othercounter;

This declaration creates a counter called paracount (with an initial value of 10) and a counter called
othercounter (with an initial value of 1). After you have initialized a counter, you can use it in the content
property of styles that use the :before and :after selectors, like this:

content: counter(paracount) ". ";

Because this declaration has been used in a selector that includes :after, this has the effect of
including the current value of the counter in the HTML before every element that the selector matches
and, in this case, appending a period and a space after each value. The value is expressed as a decimal
integer by default (1, 2, 3, etc.), but you can specify other numeric formats as well, like this:

content: counter(paracount, lower-alpha) ". ";

The additional argument to the counter function is the style of number you want. You may use any
of the supported values for the list-style-type property, which I describe in Chapter 24.

You increment the counter using the special counter-increment property. The value for this
property is the name of the counter you want to increment, like this:

counter-increment: paracount;

Counters are incremented by one by default, but you can specify a different increment by adding
the step size you want to the declaration, like this:

counter-increment: paracount 2;

You can see the effect of the counter from Listing 17-18 in Figure 17-17.

Figure 17-17. Using counters with generated content

CHAPTER 17 USING THE CSS SELECTORS—PART 1

436

Summary
In this chapter I have described the CSS selectors and pseudo-elements, which are the means by which
you identify the elements that you want to apply a style to. The selectors allow you to match elements in
broad sweeps or, by combining selectors, narrow your focus to elements in particular parts of your
HTML documents. The pseudo-elements are a convenience that let you select content that doesn’t really
exist in the document. You’ll see a similar principle in the next chapter when you examine pseudo-
classes.

Learning the selectors is the key to getting the most out of CSS. In the chapters that follow, you will
see lots of examples of selectors at work and I recommend that you take the time to experiment and
become familiar with them yourself.

C H A P T E R 18

437

Using the CSS Selectors—Part II

In this chapter, I continue your tour of the CSS selectors and show you the pseudo-classes. As with the
pseudo-elements, these are not classes that have been applied to your elements, but a convenience that
allows you to select elements based on some common characteristics. Table 18-1 provides the summary
for this chapter.

Table 18-1. Chapter Summary

Problem Solution Listing

Select the root element in the document. Use the :root selector. 18-1

Select a child element. Use the :first-child, :last:child, :only-
child, or :only-of-type selectors.

18-2
through
18-6

Select a child at a specific index. Use the :nth-child, :nth-last-child,
:nth-of-type, or :nth-last-of-type
selectors.

18-7

Select elements that are enabled or disabled. Use the :enabled or :disabled selectors. 18-8

Select radio button or check box elements
that are checked.

Use the :checked selector. 18-9

Select the default element. Use the :default selector. 18-10

Select elements based on input validation. Use the :valid or :invalid selectors. 18-11

Select range-constrained input elements. Use the :in-range and :out-of-range
selectors.

18-12

Select input elements based on the presence
of the required attribute.

Use the :required or :optional selectors. 18-13

CHAPTER 18 USING THE CSS SELECTORS—PART II

438

Select a hyperlink. Use the :link and :visited selectors. 18-14

Select the element that the mouse is currently
over.

Use the :hover selector. 18-15

Select the active element. Use the :active selector. 18-16

Select the focused element. Use the :focus selector. 18-17

Negate another selector. Use the negation selector. 18-18

Select elements that have no content. Use the :empty selector. —

Select elements based on language. Use the :lang selector. 18-19

Selects the element referred to in a URL
fragment.

Use the :target selector. 18-20

Using the Structural Pseudo-Class Selectors
The structural pseudo-class selectors allow you to select elements based on where they are in the
document. These selectors are prefixed with a colon character (:); for example, :empty. You may use
these selectors on their own or combined with another selector; for example, p:empty.

Using the :root Selector
The :root selector selects the root element in the document. This is perhaps the least useful of the
pseudo-class selectors, because it will always return the html element. Table 18-2 summarizes the :root
selector.

Table 18-2. The :root Selector

Selector: :root

Matches: Selects the root element in the document; this is the html
element

Since CSS Version: 3

Listing 18-1 shows the :root selector in use.

CHAPTER 18 USING THE CSS SELECTORS—PART II

439

Listing 18-1. Using the :root Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :root {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see the effect of this selector in Figure 18-1. It can be a little hard to make out, but there is a
border around the entire document.

Figure 18-1. Using the :root selector

Using the Child Selectors
The child selectors allow you to select single elements that are directly contained inside other elements.
Table 18-3 summarizes these selectors.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

440

Table 18-3. The Child Selectors

Selector Description CSS Version

:first-child Selects elements that are the first children of their containing
elements.

2

:last-child Selects elements that are the last children of their containing
elements.

3

:only-child Selects elements that are the sole element defined by their
containing element.

3

:only-of-type Selects elements that are the sole element of their type defined by
their containing element.

3

Using the :first-child Selector
The :first-child selector will match elements that are the first element defined by the element that
contains them (the parent element, as it is known). Listing 18-2 shows the :first-child selector in use.

Listing 18-2. Using the :first-child Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :first-child {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 18-2, I have used the :first-child selector on its own, meaning that it will match any
element that is the first child of its containing element. You can see which elements are selected in
Figure 18-2.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

441

Figure 18-2. Using the :first-child selector

You can be more specific by using the :first-child selector as a modifier and, optionally,
combining it with other selectors. Listing 18-3 shows how.

Listing 18-3. Combining the :first-child Selector with Other Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p > span:first-child {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

This selector will match any span element that is the first child of a p element. There is only one such
element in the HTML in this example, and you can see the match in Figure 18-3.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

442

Figure 18-3. Combining the :first-child selector with another selector

Using the :last-child Selector
The :last-child selector selects elements that are the last elements defined by their containing element.
Listing 18-4 shows the :last-child selector in use.

Listing 18-4. Using the :last-child Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :last-child {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see which elements this selector matches in Figure 18-4. Notice that there is a border
around the content area. This happens because the body element is the last child of the html element and
is, therefore, matched by the selector.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

443

Figure 18-4. Using the :last-child selector

Using the :only-child Selector
The :only-child selector matches elements that are the only elements contained by their parent. Listing
18-5 shows this selector in use.

Listing 18-5. Using the :only-child Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :only-child {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The only element that has a single child is the p element, which contains one span element. You can
see that this is only element the selector matches in Figure 18-5.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

444

Figure 18-5. Using the :only-child selector

Using the :only-of-type selector
The :only-of-type selector matches elements that are the only child of their type defined by their
parent. Listing 18-6 provides a demonstration.

Listing 18-6. Using the :only-of-type Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :only-of-type {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see the elements that this selector matches in Figure 18-6. You can see that this selector
matches quite widely when used on its own. In any document, there are usually a number of elements
that are the only ones of their type defined by their parent. Of course, you can narrow the match by
combining this selector with others.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

445

Figure 18-6. Using the :only-of-type selector

Using the nth-Child Selectors
The nth-child selectors are similar to the child selectors I described in the previous section, but they
allow you to specify an index to match elements in a particular position. Table 18-4 summarizes the nth-
child selectors.

Table 18-4. The nth-Child Selectors

Selector Description CSS Version

:nth-child(n) Selects elements that are the nth child of their parent. 3

:nth-last-child(n) Selects elements that are the nth from last child of their
parent.

3

:nth-of-type(n) Selects elements that are the nth child of their type defined by
their parent.

3

:nth-last-of-type(n) Selects elements that are the nth from last child of their type
defined by their parent.

3

Each of these selectors takes an argument, which is the index of the element you are interested in;

the indexes start at 1. Listing 18-7 shows the :nth-child selector in use.

Listing 18-7. Using the :nth-child Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 body > :nth-child(2) {

CHAPTER 18 USING THE CSS SELECTORS—PART II

446

 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

In Listing 18-7, I have selected all elements that are the second child of a body element. There is only
one such element, as shown in Figure 18-7.

Figure 18-7. Using the :nth-child element

I am not going to demonstrate the other nth-child selectors because they function in the same way
as the corresponding regular child selector, with the addition of an index value.

Using the UI Pseudo-Class Selectors
The UI pseudo-class selectors allow you to select elements based on their state. Table 18-5 describes the
UI selectors.

Table 18-5. The UI Selectors

Selector Description CSS Version

:enabled Selects elements that are in their enabled state. 3

:disabled Selects elements that are in their disabled state. 3

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

447

:checked Selects elements that are in a checked state. 3

:default Selects default elements. 3

:valid
:invalid

Selects input elements that are valid or invalid, based on input
validation.

3

:in-range
:out-of-range

Selects constrained input elements that are within or outside the
specified range.

3

:required
:optional

Selects input elements based on the presence of the required
attribute.

3

Selecting Enabled/Disabled Elements
Some elements have enabled and disabled states. Those that do are the ones that can be used to collect
input from the user. The :enabled and :disabled selectors will not match any element that cannot be
disabled. Listing 18-8 gives an example of using the :enabled selector.

Listing 18-8. Using the :enabled Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :enabled {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 <textarea> This is an enabled textarea</textarea>
 <textarea disabled> This is a disabled textarea</textarea>
 </body>
</html>

The HTML in Listing 18-8 contains two textarea elements, one of which defines the disabled
attribute. The :enabled selector will select the first textarea but not the second, as you can see in Figure
18-8.

CHAPTER 18 USING THE CSS SELECTORS—PART II

448

Figure 18-8. Using the :enabled selector

Selecting Checked Elements
Radio buttons and check boxes that are checked (either through the checked attribute or by the user) can
be selected through the :checked selector. The problem in demonstrating this selector is that there isn’t
much styling that you can apply to check boxes and radio buttons. Listing 18-9 shows the application of
the :checked selector.

Listing 18-9. Using the :checked Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 :checked + span {
 background-color: red;
 color: white;
 padding: 5px;
 border: medium solid black;
 }
 </style>
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="apples">Do you like apples:</label>
 <input type="checkbox" id="apples" name="apples"/>
 This will go red when checked
 </p>
 <input type="submit" value="Submit"/>
 </form>

CHAPTER 18 USING THE CSS SELECTORS—PART II

449

 </body>
</html>

To get around the styling limitations, I have used the sibling selector (described in Chapter 17) to
change the appearance of the span element, which adjacent to the check box. You can see the transition
from unchecked to checked in Figure 18-9.

Figure 18-9. Selecting checked elements

There is no specific selector for unchecked elements, but you can combine :checked with the
negation selector, which is described in the section “Using the Negation Selector,” later in this chapter.

Selecting Default Elements
The :default element selects the default element from among a group of similar elements. For example,
the submit button is always the default button in a form. You can see the :default selector used in
Listing 18-10.

Listing 18-10. Using the :default Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 :default {
 outline: medium solid red;
 }
 </style>
 </head>

CHAPTER 18 USING THE CSS SELECTORS—PART II

450

 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>
 </p>
 <button type="submit">Submit Vote</button>
 <button type="reset">Reset</button>
 </form>
 </body>
</html>

This selector is most often used with the outline property, which I describe in Chapter 19. You can
see the effect of this selector in Figure 18-10.

Figure 18-10. Using the :default selector

Selecting Valid and Invalid input Elements
The :valid and :invalid selectors match input elements that have met or failed their input validation
requirements, respectively. You can learn more about input validation in Chapter 14. Listing 18-11
shows these selectors in use.

Listing 18-11. Using the :valid and :invalid Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 :invalid {
 outline: medium solid red;
 }
 :valid {
 outline: medium solid green;

CHAPTER 18 USING THE CSS SELECTORS—PART II

451

 }
 </style>
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="name">Name: <input required id="name" name="name"/></label>
 </p>
 <p>
 <label for="name">City: <input required id="city" name="city"/></label>
 </p>
 <button type="submit">Submit</button>
 </form>
 </body>
</html>

In Listing 18-11, I have applied a red outline for invalid elements and a green outline for valid
elements. There are two input elements in the document, and both have the required attribute. This
means that they will be valid only if a value has been entered. You can see the effect of these selectors in
Figure 18-11.

Figure 18-11. Selecting valid and invalid input elements

 Tip Notice that the submit button has been affected as well, at least in Chrome. This occurs because the logic
behind the :valid selector is fairly simplistic and selects any input element that is not invalid. To filter out certain
input elements, you can use the attribute selectors described in Chapter 17, or a more specific selector, such as
those described next.

CHAPTER 18 USING THE CSS SELECTORS—PART II

452

Selecting input Elements with Range Limitations
A more specific variation on input validation is to select input elements that have a constraint on the
range of values that they can contain. The :in-range selector matches input elements that are in range
and the :out-of-range selector selects those that are not. Listing 18-12 shows these attributes in use.

Listing 18-12. Using the :in-range and :out-of-range Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 :in-range {
 outline: medium solid green;
 }
 :out-of-range: {
 outline: medium solid red;
 }
 </style>
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="price">
 $ per unit in your area:
 <input type="number" min="0" max="100"
 value="1" id="price" name="price"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

As I write this, none of the mainstream browsers implement the :out-of-range selector, and only
Chrome and Opera support the :in-range selector. I expect this to change quickly because this
functionality is tied to the new HTML5 support, which is likely to have very widespread adoption. You
can see the effect of the :in-range selector in Figure 18-12.

CHAPTER 18 USING THE CSS SELECTORS—PART II

453

Figure 18-12. The effect of the :in-range selector

Selecting Required and Optional input Elements
The :required selector matches input elements that have the required attribute. This ensures that the
user must enter a value before submitting the HTML form with which the input element is associated
(you can get more details about the required attribute in Chapter 14). The :optional selector selects
input elements that do not have the required attribute. Both attributes are shown in Listing 18-13.

Listing 18-13. Selecting Required and Optional input Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 :required {
 outline: medium solid green;
 }
 :optional {
 outline: medium solid red;
 }
 </style>
 </head>
 <body>
 <form method="post" action="http://titan:8080/form">
 <p>
 <label for="price1">
 $ per unit in your area:
 <input type="number" min="0" max="100" required
 value="1" id="price1" name="price1"/>
 </label>
 <label for="price2">
 $ per unit in your area:
 <input type="number" min="0" max="100"

CHAPTER 18 USING THE CSS SELECTORS—PART II

454

 value="1" id="price2" name="price2"/>
 </label>
 </p>
 <input type="submit" value="Submit"/>
 </form>
 </body>
</html>

In Listing 18-13, I have defined two number type input elements. One has the required attribute, but
otherwise the two are identical. You can see the effect of the selectors and the associated styles in Figure
18-13. Note that the submit type input has also been selected. The :optional selector doesn’t distinguish
between types of input elements.

Figure 18-13. Selecting required and optional input elements

Using the Dynamic Pseudo-Class Selectors
The dynamic pseudo-class selectors are so-called because they match elements based on conditions that
change, as opposed to the fixed state of the document. The division between static and dynamic
selectors has blurred with the wider use of JavaScript to modify the documents contents and the state of
elements, but these are still considered to be a separate category of selectors.

Using the :link and :visited Selectors
The :link selector matches hyperlinks and the :visited selector matches those hyperlinks that the user
has previously visited. Table 18-6 summarizes these selectors.

Table 18-6. The :link and :visited Selectors

Selector Description CSS Version

:link Selects link elements. 1

:visited Selects link elements that the user has visited. 1

CHAPTER 18 USING THE CSS SELECTORS—PART II

455

Browsers are free to decide how long a link remains visited after a user has clicked on it. When the user
clears the browser history, or when the history naturally times out, links will return to the unvisited state.
Listing 18-14 shows these selectors in use.

Listing 18-14. Using the :link and :visited Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :link {
 border: thin black solid;
 background-color: lightgrey;
 padding: 4px;
 color:red;
 }
 :visited {
 background-color: grey;
 color:white;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

The only point to note in this example is that only some properties can be applied to links using the
:visited selector. You can change the colors and the font, but that’s about it. You can see the change
when a link is visited in Figure 18-14. I start with a pair of links that have not been visited and click one of
them to go to the http://apress.com web site. When I return to the example HTML, the visited link is
styled differently.

Figure 18-14. Using the :link and :visited selectors

http://apress.com
http://w3c.org
http://apress.com

CHAPTER 18 USING THE CSS SELECTORS—PART II

456

 Tip The :visited selector will match any link for which the href property is a URL that the user has visited
from any page, not just your page. The most common use for the :visited selector is to apply a style so that
visited links are not differentiated from unvisited ones.

Using the :hover Selector
The :hover selector will match any element that the user’s mouse hovers over. The selected elements
change as the user moves their mouse around the document. Table 18-7 describes this selector.

Table 18-7. The :hover Selector

Selector: :hover

Matches: The elements that occupy the position onscreen under the
mouse pointer

Since CSS Version: 2

The browser is free to interpret the :hover selector in a way that makes sense for the display that is

being used, but most browsers associate the selector with the movement of the mouse over the window.
Listing 18-15 shows the selector being used.

Listing 18-15. Using the :hover Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :hover {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

This selector will match multiple nested elements, as you can see in Figure 18-15.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

457

Figure 18-15. Using the :hover selector

Using the :active Selector
The :active selector matches elements during the period when the user is activating them. Once again,
browsers have latitude about how they interpret this activation, but for most browsers it occurs when
the mouse is pressed (or in result to a finger press on a touch screen). Table 18-8 summarizes the
:active selector.

Table 18-8. The :active Selector

Selector: :active

Matches: The elements that are presently activated by the user; this
usually means those elements that are under the pointer
when the mouse button is pressed

Since CSS Version: 2

Listing 18-16 gives an example of using this selector.

Listing 18-16. Using the :active Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :active {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>

CHAPTER 18 USING THE CSS SELECTORS—PART II

458

 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 <button>Hello</button>
 </body>
</html>

I have added a button to the markup in the listing, but the :active selector isn’t limited to elements
with which the user can interact. Any element in which the mouse has been pressed will be selected, as
you can see in Figure 18-16.

Figure 18-16. Using the :active selector

Using the :focus Selector
The last of the dynamic pseudo-class selectors is :focus, which selects elements while they have the
focus. Table 18-9 summarizes this selector.

Table 18-9. The :focus Selector

Selector: :focus

Matches: Selects the element that has the focus

Since CSS Version: 2

Listing 18-17 demonstrates the use of this selector.

Listing 18-17. Using the :focus Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

http://apress.com

CHAPTER 18 USING THE CSS SELECTORS—PART II

459

 <style type="text/css">
 :focus{
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 <form>
 Name: <input type="text" name="name"/>
 <p/>
 City: <input type="text" name="city"/>
 <p/>
 <input type="submit"/>
 </form>
 </body>
</html>

The style is applied to each element, in turn, as I tab through the input elements in the markup. You
can see the effect shown in Figure 18-17.

Figure 18-17. The effect of the :focus selector

Other Pseudo-Selectors
There are a few selectors that don’t fit neatly into the categories I have used to group selectors in this
chapter. In the following sections, I’ll explain each of them in turn.

Using the Negation Selector
The negation selector lets you invert any selection. It is a surprisingly useful selector, and it is often
overlooked. Table 18-10 summarizes the negation selector.

CHAPTER 18 USING THE CSS SELECTORS—PART II

460

Table 18-10. The Negation Selector

Selector: :not(<selector>)

Matches: Inverts the selection selector

Since CSS Version: 3

Listing 18-18 shows the negation selector in use.

Listing 18-18. Using the Negation Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a:not([href*="apress"]) {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p>I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

This selector matches all a elements that don’t have an href element that contains the string apress.
You can see the effect of this selector in Figure 18-18.

Figure 18-18. Using the negation selector

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

461

Using the :empty Selector
The :empty selector matches elements that define no children. This selector is summarized in Table 18-
11. It is hard to illustrate this selector because its matches contain no content.

Table 18-11. The :empty Selector

Selector: :empty

Matches: Selects elements that contain no child elements

Since CSS Version: 3

Using the :lang Selector
The :lang selector matches elements based on the lang global attribute (described in Chapter 3). Table
18-12 summarizes this selector.

Table 18-12. The :lang Selector

Selector: :lang(<target language>)

Matches: Selects elements based on the value of the lang global
attribute

Since CSS Version: 2

Listing 18-19 shows the lang selector in use.

Listing 18-19. Using the lang Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :lang(en) {
 border: thin black solid;
 padding: 4px;
 }
 </style>
 </head>
 <body>

 Visit the Apress website

 <p>I like apples and oranges.</p>
 Visit the W3C website

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

462

 </body>
</html>

This selector matches elements that have a lang attribute that denotes they are written in English.
The effect of the :lang selector is the same as the |= attribute selector example in Listing 17-8 in Chapter
17.

Using the :target Selector
In Chapter 3, I mention that you could append a fragment identifier to a URL to navigate directly to an
element based on the value of the id global attribute. For example, if the HTML document example.html
has an element with an id value of myelement, then you can navigate directly to that element by
requesting example.html#myelement. The :target selector matches the element that the URL fragment
identifier refers to. Table 18-13 summarizes this selector.

Table 18-13. The :target Selector

Selector: :target

Matches: Selects the element referred to by the URL fragment
identifier

Since CSS Version: 3

Listing 18-20 shows the :target selector in action.

Listing 18-20. Using the :target Selector

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 :target {
 border: thin black solid;
 padding: 4px;
 color:red;
 }
 </style>
 </head>
 <body>
 Visit the Apress website
 <p id="mytarget">I like apples and oranges.</p>
 Visit the W3C website
 </body>
</html>

You can see how the requested URL changes the element matched by the :target selector in Figure
18-19.

http://apress.com
http://w3c.org

CHAPTER 18 USING THE CSS SELECTORS—PART II

463

Figure 18-19. Using the :target selector

Summary
In this chapter I have described the CSS selectors, which are the means by which you identify the
elements that you want to apply a style to. The selectors allow you to match elements in broad sweeps
or, by combining selectors, narrow your focus to elements in particular parts of your HTML documents.
Learning the selectors is the key to getting the most out of CSS.

C H A P T E R 19

465

Using Borders and Backgrounds

In this chapter, I introduce the properties that you can use to apply background and borders to an
element. These are very commonly used features that have been enhanced in CSS3. For example, you
can now create borders with curved edges, use images for borders, and create drop shadows for
elements. These might seem like simple things, but their omission from CSS has led to endless efforts to
provide these features in other ways, with mixed success. Table 19-1 provides the summary for this
chapter.

Table 19-1. Chapter Summary

Problem Solution Listing

Apply a border to an element. Use the border-width, border-style, and border-color
properties.

19-1

Apply a border to a single
edge of the element box.

Use the side-specific properties, such as border-top-
width, border-top-style, and border-top-color.

19-2

Specify the style, color, and
width of a border in a single
declaration.

Use the border property to set the border for all edges, or
the border-top, border-bottom, border-left, and border-
right properties to set the border for a single edge.

19-3

Create a border with rounded
corners.

Use the border-radius shorthand property or one of the
related edge-specific properties.

19-4, 19-5

Use an image to create a
border.

Use the border-image shorthand property or one of the
more specific related properties to set individual
characteristics.

19-6, 19-7

Define a background color or
image.

Use the background-color or background-image properties. 19-8

Specify the position of a
background image.

Use the background-position property. 19-9

CHAPTER 19 USING BORDERS AND BACKGROUNDS

466

Specify the relationship
between the background and
the scrolling region of an
element.

Use the background-attachment property. 19-10

Specify the region in which
the background is drawn and
the region in which it is
visible.

Use the background-origin and background-clip
properties.

19-11, 19-
12

Set all of the background-
related properties in a single
declaration.

Use the background shorthand property. 19-13

Add box shadows to an
element.

Use box-shadow property. 19-14, 19-
15

Applying a Border
Let’s start with the properties that control borders. These are very commonly applied and they will give
you something visible to work with when you consider the margin and padding properties in Chapter 20.
The three key properties for basic borders are border-width, border-style, and border-color. Table 19-2
describes all three properties.

Table 19-2. The Basic Border Properties

Property Description Values

border-width Sets the width of the border. See Table 19-
3.

border-style Sets the style used to draw the border. See Table 19-
4.

border-color Sets the color of the border. <color>

You can see these properties in use in Listing 19-1.

Listing 19-1. Defining a Basic Border

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>

CHAPTER 19 USING BORDERS AND BACKGROUNDS

467

 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border-width: 5px;
 border-style: solid;
 border-color: black;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 19-1, I have used a p element to denote a paragraph, and the style element to apply a
border using the border-width, border-style, and border-color properties.

Defining the Border Width
You may express the border-width property as a regular CSS length, as a percentage of the width of the
area that the border will be drawn around, or as one of three shortcut values. Table 19-3 describes these
options. The default border-width value is medium.

Table 19-3. Values for the border-width Property

Value Description

<length> Sets the border width to a length expressed in CSS measurement units such as
em, px, or cm.

<perc>% Sets the border width to a <perc> percent of the width of the area around which
the border will be drawn.

thin
medium
thick

Sets the border width to preset widths, the meanings of which are defined by
each browser, but each of which are progressively thicker.

Defining the Border Style
The border-style property can be one of the values shown in Table 19-4. The default value is none,
meaning that no border is drawn.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

468

Table 19-4. Values for the border-style Property

Value Description

none No border will be drawn.

dashed The border will be a series of rectangular dashes.

dotted The border will be a series of circular dots.

double The border will be two parallel lines with a gap between them.

groove The border will appear to have be sunken into the page.

inset The border will be such that the content looks sunken into the page.

outset The border will be such that the content looks raised from the page.

ridge The border will appear raised from the page.

solid The border will be a single, unbroken line.

You can see how each of these border types appear in Figure 19-1.

Figure 19-1. The different values for the border-style property

Some browsers have problems applying two-color border styles, such as inset and outset, when the
border-color property is black. These browsers, including Google Chrome, use black for both tones,
which creates an effect identical to the solid style. Smarter browsers know to use a shade of gray,

CHAPTER 19 USING BORDERS AND BACKGROUNDS

469

including Firefox. To create the figure (which shows Chrome), I set the border-color property to gray for
the groove, inset, outset, and ridge styles.

Applying a Border to a Single Side
You can apply different borders to each side of an element using properties that are more specific, as
described in Table 19-5.

Table 19-5. The Side-Specific Border Properties

Property Description Values

border-top-width
border-top-style
border-top-color

Defines the top border. Values are the same as for the
generic properties.

border-bottom-width
border-bottom-style
border-bottom-color

Defines the bottom border. Values are the same as for the
generic properties.

border-left-width
border-left-style
border-left-color

Defines the left border. Values are the same as for the
generic properties.

border-right-width
border-right-style
border-right-color

Defines the right border. Values are the same as for the
generic properties.

You can either build up the border using these properties, or use them in conjunction with their

more generic counterparts to override specific edges of a border. Listing 19-2 shows the latter approach.

Listing 19-2. Using the Side-Specific Border Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border-width: 5px;
 border-style: solid;
 border-color: black;
 border-left-width: 10px;
 border-left-style: dotted;
 border-top-width: 10px;
 border-top-style: dotted;
 }

CHAPTER 19 USING BORDERS AND BACKGROUNDS

470

 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

You can see the effect of these properties in Figure 19-2.

Figure 19-2. Applying borders to individual edges

Using the border Shorthand Properties
Rather than use individual properties for the style, width, and color, you can use shorthand properties
that set all three values in one step. Table 19-6 describes these properties.

Table 19-6. The Shorthand border Properties

Property Description Values

border Sets the border for all edges. <width> <style> <color>

border-top
border-bottom
border-left
border-right

Sets the border for a single edge. <width> <style> <color>

You set the values for these properties by specifying the width, style, and color values in a single line,

separated by spaces, as shown in Listing 19-3.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

471

Listing 19-3. Using the border Shorthand Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: medium solid black;
 border-top: solid 10px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

Notice that I have not specified a color for the border-top property. If you omit one or more of the
values, the browser will use whatever value has been previously defined; in this case, the color specified
by the border shorthand property. You can see the effect of these properties in Figure 19-3.

Figure 19-3. Using the border shorthand properties

Creating a Border with Rounded Corners
You can create a border with rounded corners using the border radius feature. There are five properties
associated with this capability. Table 19-7 summarizes each of these.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

472

Table 19-7. The Border radius Properties

Property Description Values

border-top-left-radius
border-top-right-radius
border-bottom-left-radius
border-bottom-right-
radius

Sets the radius for a single
corner.

A pair of length or percentage values. The
percentages relate to the width and height of
the border box.

border-radius This shorthand property
sets all corners at once.

One or four pairs of length or percentage
values, separated by a / character.

You define a curved corner by specifying two radii values, either as a length or as a percentage. The

first value specifies the horizontal radius, and the second specifies the vertical radius. Percentage values
are of the horizontal and vertical size of the element’s box. You can see how the radii values are used to
determine the curve of a border in Figure 19-4.

Figure 19-4. Using radii to specify the curve of a border

As you can see in the figure, the radii values are used to project an oval that intersects with the
element’s box, and shapes the corner of the border. Listing 19-4 shows these values expressed as part of
a style declaration.

Listing 19-4. Creating a Curved Border

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: medium solid black;
 border-top-left-radius: 20px 15px;
 }

CHAPTER 19 USING BORDERS AND BACKGROUNDS

473

 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

If you supply only one value, then both the horizontal and vertical radii will use this value. You can
see the effect, as shown by the browser, in Figure 19-5. I have magnified the curved border area to make
it clearer to see.

Figure 19-5. Creating a curved border

 Tip Notice that the border touches the text in the figure. To create space between an element’s content and its
border, you add padding, which is covered in Chapter 20.

The border-radius shorthand property lets you specify one value for all four corners, or four
individual values in a single value, as shown in Listing 19-5.

Listing 19-5. Using the border-radius Shorthand Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">

CHAPTER 19 USING BORDERS AND BACKGROUNDS

474

 p {
 border: medium solid black;
 }
 #first {
 border-radius: 20px / 15px;
 }
 #second {
 border-radius: 50% 20px 25% 5em / 25% 15px 40px 55%
 }

 </style>
 </head>
 <body>
 <p id="first">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p id="second">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 19-5, there are two paragraphs, each of which has its own border-radius declaration. The
first declaration specifies just two values, which are applied to all four corners of the border. Notice that
the horizontal values are separated from the vertical values by a / character. The second declaration
specifies eight values. The first four values are the horizontal radius values for each corner and the last
four are the horizontal counterparts. These sets of values are also separated by a / character.

You can see the effect of these declarations in Figure 19-6. The result is a little odd, but it
demonstrates how you can use a single declaration to define a different curve for each corner, and how
you can freely mix percentage and length values.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

475

Figure 19-6. Using the border-radius shorthand property

Using Images As Borders
You are not limited to borders defined by the border-style property. You may also use images to create
truly custom borders for your elements. There are five properties that configure individual aspects of an
image border, plus a shorthand property that you may use to configure everything in a single
declaration. Table 19-8 shows all six properties.

Table 19-8. The border-image Properties

Property Description Values

border-image-source Sets the source of the image. none or url(<image>)

border-image-slice Sets the offsets for slicing the
image.

1–4 <length> or <%> values, where the
values relate to the width and height
of the image

border-image-width Sets the width of the border. auto
1–4 <length> or <%> values

border-image-outset Sets the area outside of the
standard border that will be used to
display the image border.

1–4 <length> or <%> values

border-image-repeat The model by which the image is
used to fill the border areas.

1 or 2 values from stretch, repeat, or
round

CHAPTER 19 USING BORDERS AND BACKGROUNDS

476

border-image This shorthand property sets all
values in one declaration.

Same as for individual properties; see
the following

The problem is that, as I write this, the mainstream browsers do not support these properties. You

can use images as borders, but only through the shorthand property and only with the browser-specific
prefixes that I described in Chapter 16 (and IE doesn’t support this feature at all). This allows me to
demonstrate the basic feature, but not to show you the individual properties. The browser-specific
shorthand properties work in the same way as the border-image property, so you should have no
problems transferring the examples in this section to the standard properties when the browsers support
them.

Slicing an Image
The key to using an image as a border is slicing. You specify values that are offsets into the image, which
the browser uses to slice the image into nine parts. To demonstrate the effect of the slices, I have created
an image that will make it easy to see how the browser performs the slices, and uses each slice. You can
see this image in Figure 19-7.

Figure 19-7. An image designed to demonstrate the border feature

This image is 90 pixels by 90 pixels, and each of the individual tiles are 30 pixels by 30 pixels. The
middle tile is transparent. To slice the image, you provide insets from the top, right, bottom, and left
edges of the image, expressed as lengths or percentages of the image size. You can provide different
values for all four insets, or two values (which are used for the horizontal and vertical insets), or just a
single value, which is then used for all four insets. For this image, I used a single value of 30px, which
created the required slices, as shown in Figure 19-8.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

477

Figure19- 8. Slicing a border image

Slicing the image generates eight tiles. The tiles marked 1, 3, 6, and 8 are used to draw the corners of
the border, and the tiles marked 2, 4, 5, and 7 are used to draw the border edges. Listing 19-6 shows the
browser-specific properties used to slice an image and apply it as a border.

Listing 19-6. Slicing an Image and Using It As a Border

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 -webkit-border-image: url(bordergrid.png) 30 / 50px;
 -moz-border-image: url(bordergrid.png) 30 / 50px;
 -o-border-image: url(bordergrid.png) 30 / 50px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

Each property declaration has the same arguments. You have to use the url function to specify the
image (this is required because the CSS specification reserves the right to implement other means of
obtaining images). In each case, I have provided a single slice value of 30, matching the tile size of the
example image. Note than when specifying the slice, you don’t provide the units, as they are assumed to
be pixels.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

478

The / character is used to separate the slice values from the border width values. We can specify
different widths for each side of the element, but I have provided a single value that will be used for all
four; in this case, I have chosen a border width of 50px. Figure 19-9 shows how Chrome displays the
image. Firefox and Opera look exactly the same.

Figure 19-9. Using an image for a border

You can see how the browser has used each slice of the image. The slices marked 2 and 7 can be a
little hard to make out, but they have been used for the top and bottom edges, respectively.

Controlling the Slice Repeat Style
You can see in Figure 19-10 that the slices have been stretched to fill the space available in the border.
You can change the repeat style to get a different effect. This is the responsibility of the border-image-
repeat property, but you can also specify the repeat style using the shorthand properties. Table 19-9
describes the values that you can use to define the repeat style.

Table 19-9. The border-image-repeat Style Values

Value Description

stretch The slice is stretched to fill the space (this is the default).

repeat The slice is repeated to fill the space (this can lead to fragments of repeating).

round The slice is stretched and repeated to fill the space without creating fragments.

space The slice is repeated without creating fragments. Any remaining space is
distributed around the slice.

As I write this, support for the repeat style values is patchy. None of the browsers support the space

value, and Chrome doesn’t support the round value. Listing 19-7 shows how you can use the repeat and
round values with Firefox to change the border repeat style.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

479

Listing 19-7. Controlling the Slice repeat Style

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 -moz-border-image: url(bordergrid.png) 30 / 50px round repeat;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 19-7, the first value specifies the horizontal repeat style, and the second specifies the
vertical. If you provide just one value, it will be used for both the horizontal and vertical repeats. You can
see the difference between these values in Figure 19-10.

Figure 19-10. The round and repeat values for border slice repetition

Notice that the top and bottom edges don’t contain any partial slices. The 2 and 7 numerals have
been stretched slightly and then repeated, so that there are no broken bits. By contrast, the left and right
edges, which are set to use the repeat style, are fragmented to fill the space.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

480

Setting Element Backgrounds
The second visible area of the box model is the element’s contents. In this section, I’ll introduce the
properties that you can use to style the background of this area. (For details of how to style the content
itself, see Chapter 22.) The properties are described in Table 19-10.

Table 19-10. The background Properties

Property Description Values

background-color Sets the background color for an element. The color
is drawn behind any images.

<color>

background-image Sets the background images for an element. If more
than one image is specified, each subsequent image
is drawn behind those that precede it.

none or url(image)

background-repeat Sets the repeat style for images. See Table 19-11.

background-size Sets the size of a background image. See Table 19-12.

background-position Positions the background image. See Table 19-13.

background-attachment Sets the attachment style for images that are in an
element that has a viewport.

See Table 19-14.

background-clip Specifies the clipping style for images. See Table 19-15.

background-origin Positions the background image. See Table 19-15.

background Shorthand element. See the following.

Setting the Background Color and Image
The starting point for element backgrounds is to set a background color or an image—or both—using
background properties, as demonstrated in Listing 19-8.

Listing 19-8. Setting the Background Color and Image

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {

CHAPTER 19 USING BORDERS AND BACKGROUNDS

481

 border: medium solid black;
 background-color: lightgray;
 background-image: url(banana.png);
 background-size: 40px 40px;
 background-repeat: repeat-x;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, I have set the background-color to lightgray, and used the url function to load an
image called banana.png for the background-image property. You can see the effect of this image in Figure
19-11. The background image is always drawn over the background color.

Figure 19-11. Using a background color and image

This image overwhelms the element’s text somewhat, but then background images tend to do that
unless chosen very carefully. Notice that the image is repeated horizontally across the element in the
figure. This is achieved through the background-repeat property, the allowed values for which are
described in Table 19-11.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

482

Table 19-11. The background-repeat Values

Value Description

repeat-x Repeats the image horizontally; the image may be fragmented.

repeat-y Repeats the image vertically; the image may be fragmented.

repeat Repeats the image in both directions; the image may be fragmented.

space The image is repeated to fill the space without creating fragments, and the remaining
area is allocated evenly around the images.

round The image is scaled so that it can be repeated without creating fragments.

no-repeat The image is not repeated.

You can specify a value for both the horizontal and vertical repeats, but if you provide only one

value, the browser will use that style of repeat in both directions. The exceptions are repeat-x and
repeat-y, where the browser will use the no-repeat style for the second value.

Setting the Background Image Size
The image I have specified is too large for the element, so I have used the background-size property to
specify that the image should be resized to 40 pixels by 40 pixels. In addition to lengths, you can specify
percentages (which are derived from the width and height of the image), and some predefined values,
described in Table 19-12.

Table 19-12. The background-size Values

Value Description

contain Scales the image, preserving the aspect ratio, to the largest size that can fit inside the
display area.

cover Scales the image, preserving the aspect ratio, to the smallest size that can fit inside the
display area.

auto This is the default value. The image will be displayed at full size.

The contain value ensures that the image is scaled so that all of it can be seen inside of the element.

The browser determines if the image length or height is larger, and uses this as the axis for scaling. By
contract, for the cover value, the browser selects the smallest value, and scales the image along this axis.
This means that not all of the image will be displayed. You can see the two different size styles in Figure
19-12.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

483

Figure 19-12. The contain and cover size styles

The banana image is taller than it is wide. This means that when you use the cover value, the image
will be scaled so that the width is displayed fully, even if not all of the image height can be displayed. You
can see this effect in the uppermost element Figure 19-12. When using the contain value, the image is
scaled so that the largest axis is visible in its entirety, meaning that the entire image will be displayed,
even if it doesn’t cover the entire background area. You can see this effect in the lower element in Figure
19-12.

Setting the Background Image Position
The background-position property lets you instruct the browser as to where the background image
should be located. This is most useful when you are not repeating the image. You can see this property in
use in Listing 19-9.

Listing 19-9. Positioning the Background Image

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;
 background-color: lightgray;

CHAPTER 19 USING BORDERS AND BACKGROUNDS

484

 background-image: url(banana.png);
 background-size: 40px 40px;
 background-repeat: no-repeat;
 background-position: 30px 10px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

This declaration tells the browser to draw the background image 30 pixels from the left edge and 10
pixels from the top edge. I specified the position using lengths, but you can also use the predefined
values shown in Table 19-13.

Table 19-13. The background-position Values

Value Description

top Positions the image at the top edge.

left Positions the image at the left edge.

right Positions the image at the right edge.

bottom Positions the image at the bottom edge.

center Positions the image at the mid-point.

The first value controls the vertical position and can be top, bottom, or center. The second value

controls the horizontal position and can be left, right, or center. You can see the effect of positioning
the image in Figure 19-13.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

485

Figure 19-13. Positioning the background image

Setting the Attachment for the Background
When you apply a background to an element that has a viewport, you can specify how the background is
attached to the content. A good example of an element with a viewport is textarea (described in Chapter
14), which will automatically add scrollbars to display content. Another common example is the body
element, which can have scrollbars when the content is longer than the browser window (you can find
details of the body element in Chapter 7). You control the background attachment using the background-
attachment property. Table 19-14 describes the allowed values.

Table 19-14. The background-attachment Values

Value Description

fixed The background is fixed to the viewport, meaning that the background doesn’t move
when the content is scrolled.

local The background is attached to the content, meaning that the background moves with
the content when scrolled.

scroll The background is fixed to the element, and does not scroll with the content.

Listing 19-10 shows the textarea element used with the border-attachment property.

Listing 19-10. Using the border-attachment Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">

CHAPTER 19 USING BORDERS AND BACKGROUNDS

486

 textarea {
 border: medium solid black;
 background-color: lightgray;
 background-image: url(banana.png);
 background-size: 60px 60px;
 background-repeat: repeat;
 background-attachment: scroll;
 }
 </style>
 </head>
 <body>
 <p>
 <textarea rows="8" cols="30">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </textarea>
 </p>
 </body>
</html>

I can’t demonstrate the different attachment modes in figures. This is something that you have to
see in the browser yourself. To see the difference between the fixed and scroll modes, use the example
HTML document, resize the browser window so that the textarea isn’t fully shown, and then scroll using
the browser scrollbar (not the textarea one).

Setting the Background Image Origin and Clipping Style
The origin of the background specifies where the background color and image are applied. The clipping
style determines the region where the background color and image are drawn in the element’s box. The
background-origin and background-clip properties control these features, and each has the same three
allowed values, which are described in Table 19-15.

Table 19-15. The background-origin and background-clip Values

Value Description

border-box The background color and image are drawn within the border box.

padding-box The background color and image are drawn within the padding box.

content-box The background color and image are drawn within the content box.

Listing 19-11 shows the use of the background-origin property.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

487

Listing 19-11. Using the background-origin Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;
 background-color: lightgray;
 background-image: url(banana.png);
 background-size: 40px 40px;
 background-repeat: repeat;
 background-origin: border-box;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 19-11, I have selected the border-box value, which means that the browser will draw the
background color and image under the border. I say under, because the border is always drawn over the
background. You can see the effect in Figure 19-14.

Figure 19-14. Using the background-origin property

CHAPTER 19 USING BORDERS AND BACKGROUNDS

488

The background-clip property determines which portion of the background is visible by applying a
clipping box. Anything outside the box is discarded and not shown. You have the same three values
available as for the background-origin property, and you can see the effect of combining these
properties in Listing 19-12.

Listing 19-12. Using the background-clip Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;
 background-color: lightgray;
 background-image: url(banana.png);
 background-size: 40px 40px;
 background-repeat: repeat;
 background-origin: border-box;
 background-clip: content-box;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

This combination tells the browser to draw the background within the border box, but discard
anything outside of the content box. You can see the effect, which is quite subtle, in Figure 19-15.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

489

Figure 19-15. Using the border-origin and border-clip properties together

Using the background Shorthand Property
The background property allows you to set all of the different background values in a single declaration.
Here is the format for the value of this property, referencing the individual properties:

background: <background-color> <background-position> <background-size>
 <background-repeat> <background-origin> <background-clip> <background-attachment>
 <background-image>

This is quite a lengthy value declaration, but you may omit values. If you do, then the browser will
use the defaults. Listing 19-13 shows the border shorthand property in use.

Listing 19-13. Using the border Shorthand Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;
 background: lightgray top right no-repeat border-box content-box
 local url(banana.png);
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

490

 </p>
 </body>
</html>

This single property is equivalent to the following set of individual properties:

background-color: lightgray;
background-position: top right;
background-repeat: no-repeat;
background-origin: border-box;
background-position: content-box;
background-attachment: local;
background-image: url(banana.png);

 Tip Not all browsers support this property, at present.

Creating a Box Shadow
One of the most keenly awaited CSS3 features is the ability to add drop shadows to an element’s box.
You do this using the drop-shadow property, which is described in Table 19-16.

Table 19-16. The drop-shadow Property

Property Description Values

drop-shadow Specifies a shadow for an element. See Table 19-
17.

The value for the box-shadow element is made up as follows:

box-shadow: hoffset voffset blur spread color inset

These individual value elements are described in Table 19-17.

Table 19-17. The Values of the box-shadow Property

Value Description

hoffset The horizontal offset, which is a length value. A positive value offsets the shadow to the
right, and a negative value offsets the shadow to the left.

voffset The vertical offset, which is a length value. A positive value offsets the shadow below
the element’s box, and a negative value offsets the shadow above the element’s box.

blur (Optional) Specifies the blur radius, which is a length value. The larger the value, the
more blurred the edge of the box. For the default value, 0, the edge of the box is sharp.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

491

spread (Optional) Specifies the spread radius, which is a length value. Positive values make the
shadow expand in all directions, and negative values cause the shadow to contract
toward the box.

color (Optional) The color of the shadow. If omitted, the browser will select a color.

inset (Optional) Causes the shadow to be inset inside the box. See Listing 19-15 for an
example.

 Caution Take care when omitting the color value. This should be an optional value, allowing the browser to
apply a standard color, perhaps one that is appropriate for the user’s operating system or browser choice. But at
the time of writing, Webkit-based browsers won’t draw a border in a color is not specified. For this reason, it is
worth explicitly specifying a color in the box-shadow value.

You can see this property used in Listing 19-14.

Listing 19-14. Creating a Drop Shadow

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;

 box-shadow: 5px 4px 10px 2px gray;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

You can see the effect of this property in Figure 19-16.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

492

Figure 19-16. A box shadow applied to an element

You may define multiple shadows in a single box-shadow declaration. To do this, separate each
declaration with a comma, as shown in Listing 19-15.

Listing 19-15. Applying Multiple Shadows to an Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;

 box-shadow: 5px 4px 10px 2px gray, 4px 4px 6px gray inset;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 19-15, I have defined two shadows, one of which is inset. You can see the effect in Figure
19-17.

CHAPTER 19 USING BORDERS AND BACKGROUNDS

493

Figure 19-17. Defining multiple shadows for an element

Using Outlines
Outlines are an alternative to borders. They are most useful for temporarily drawing the attention of a
user to an element, such as a button that must be pressed or an error in data entry. You draw outlines
outside of the border box. The key difference between a border and an outline is that outlines are not
considered to be part of the page, and so do not cause the page layout to be adjusted when you apply
them. Table 19-18 describes the elements that relate to outlines.

Table 19-18. The outline Properties

Property Description Values

outline-color Sets the color out the outline. <color>

outline-offset Sets the offset of the outline. <length>

outline-style Sets the style of the outline. This value is the
same as for the
border-style
property. See
Table 19-4.

outline-width Sets the width of the outline. thin
medium
thick
<length>

outline This shorthand property sets the outline in a
single declaration.

<color> <style>
<width>

CHAPTER 19 USING BORDERS AND BACKGROUNDS

494

Listing 19-16 shows the application of an outline. I have included a simple script in this example so
that I can demonstrate the way in which outlines are drawn without causing the page to be laid out
again.

Listing 19-16. Using an Outline

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 width: 30%;
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 margin: 2px;
 float: left;
 }
 #fruittext {
 outline: thick solid red;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 <button>Outline Off</button>
 <button>Outline On</button>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {

CHAPTER 19 USING BORDERS AND BACKGROUNDS

495

 var elem = document.getElementById("fruittext");
 if (e.target.innerHTML == "Outline Off") {
 elem.style.outline = "none";
 } else {
 elem.style.outlineColor = "red";
 elem.style.outlineStyle = "solid";
 elem.style.outlineWidth = "thick";
 }
 };
 }
 </script>
 </body>
</html>

You can see the effect of applying an outline in Figure 19-18. Notice how the elements do not
change position. This is because outlines are not assigned their own space in the page layout.

Figure 19-18. Applying an outline to an element

Summary
In this chapter, I have shown you the properties that you can use to add borders, backgrounds, and
outlines to an element’s box.

You can select borders from a set of simple styles, or completely customize them using images. The
key technique for image borders is slicing, in which an image is divided up into sections, each of which is
then used to draw part of the border.

You can use backgrounds to complement borders. I showed you how to create color or image
backgrounds, and how you can configure them to relate to the rest of the element’s box.
I finished this chapter by demonstrating drop shadows, which, along with curved borders, are the main
new features that CSS3 adds to the area of borders and backgrounds.

C H A P T E R 20

497

Working with the Box Model

In this chapter, I cover the CSS properties you can use to configure an element’s box model. As I
explained in Chapter 16, the box model is one of the fundamental concepts in CSS, and you use it to
configure the appearance of elements and the overall layout of your documents. Table 20-1 provides the
summary for this chapter.

Table 20-1. Chapter Summary

Problem Solution Listing

Set the size of the box padding area. Use the padding shorthand element or the padding-
top, padding-bottom, padding-left, or padding-right
properties.

20-1, 20-
2

Set the size of the box margin area. Use the margin shorthand element or the margin-top,
margin-bottom, margin-left, or margin-right
properties.

20-3

Set the size of an element. Use the width and height properties. 20-4

Set which part of the box sizes apply
to.

Use the box-sizing property. 20-4

Setting bounds for an element’s size. Use the max-width, min-width, max-height, and min-
height properties.

20-5

Set the manner in which overflowing
content is handled.

Use the overflow, overflow-x, or overflow-y
properties.

20-6, 20-
7

Set the visibility of an element. Use the visibility property (also see the none value
for the display property).

20-8

Set the type of box for an element. Use the display property. —

Set the box type so an element is
displayed with vertical
distinctiveness.

Use the block value of the display property. 20-9

CHAPTER 20 WORKING WITH THE BOX MODEL

498

Set the box type so an element is
displayed as a word in a paragraph.

Use the inline value of the display property. 20-10

Set the box type so that an element is
treated like an inline element on the
outside, but a block element on the
inside.

Use the inline-block value of the display property. 20-11

Set the box type so that the way in
which an element is displayed
depends on the elements around it.

Use the run-in value of the display property. 20-12,
20-13

Hide an element and its contents. Use the none value of the display property. 20-14

Shift an element to the left or right so
that it is positioned against the edge
of the containing box or another
floating element.

Use the float property. 20-15

Prevent a floating element from
being placed against another
floating element.

Use the clear property. 20-16

Applying Padding to an Element
Padding adds space between an element’s contents and its border. You can set padding for individual
edges of the content box, or use a shorthand padding property to apply values in a single declaration. The
padding properties are listed in Table 20-2.

Table 20-2. The padding Properties

Property Description Values

padding-top Sets the padding for the top edge. <length> or <%>

padding-right Sets the padding for the right edge. <length> or <%>

padding-bottom Sets the padding for the bottom edge. <length> or <%>

padding-left Sets the padding for the left edge. <length> or <%>

padding This shorthand property sets the
padding for all edges in a single
declaration.

1–4 <length> or <%> values

CHAPTER 20 WORKING WITH THE BOX MODEL

499

When specifying padding using percentage values, the percentage is always derived from the width
of the containing block; the height isn’t taken into account. Listing 20-1 shows how you can apply
padding to an element.

Listing 20-1. Applying Padding to an Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px double black;
 background-color: lightgray;
 background-clip: content-box;
 padding-top: 0.5em;
 padding-bottom: 0.3em;
 padding-right: 0.8em;
 padding-left: 0.6em;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 20-1, I have applied a different amount of padding to each side of the box. You can see the
effect this has in Figure 20-1. I have set the background-clip property (described in Chapter 19) so that
the background color doesn’t cover the padding area, which will emphasize the effect of the padding.

CHAPTER 20 WORKING WITH THE BOX MODEL

500

Figure 20-1. Applying padding to an element

You can use the padding shorthand property to set the padding for all four edges in a single
declaration. You can specify one to four values for this property. When you supply four values, they are
used to set the padding for the top, right, bottom, and left edges, respectively. As you omit values, the
best-matching specified value is used: if you omit the left value, it is the same as the right; if you omit the
bottom value, it is the same as the top. If you omit all but one value, then all four edges take on that same
padding value.

Listing 20-2 shows how you use the padding shorthand property. I have added a curved border to
this example to show how you can use padding to ensure that the border doesn’t get drawn over the
element content.

Listing 20-2. Using the padding Shorthand Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 border: 10px solid black;
 background: lightgray;
 border-radius: 1em 4em 1em 4em;
 padding: 5px 25px 5px 40px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.

CHAPTER 20 WORKING WITH THE BOX MODEL

501

 </p>
 </body>
</html>

You can see how the browser displays the border and padding in Figure 20-2.

Figure 20-2. Using the shorthand padding property

Without the padding, the border would have been drawn over the text, as it was in Chapter 19. With
the padding, you can ensure that there is sufficient space between the content and the border to prevent
this from happening.

Appling Margin to an Element
Margin is space between the element border and whatever surrounds it on the page. This includes other
elements and the parent element. Table 20-3 summarizes the properties that control margin.

Table 20-3. The margin Properties

Property Description Values

margin-top Sets the margin for the top edge. auto
<length>
<%>

margin-right Sets the margin for the right edge. auto
<length>
<%>

margin-bottom Sets the margin for the bottom edge. auto
<length>
<%>

margin-left Sets the margin for the left edge. auto
<length>
<%>

CHAPTER 20 WORKING WITH THE BOX MODEL

502

margin This shorthand property sets the
margin for all edges in a single
declaration.

1–4 auto, <length>, or <%>

As with the padding properties, the percentage values are always derived from the width of the
containing block, even when used for padding the top and bottom edge. Listing 20-3 shows the effect of
adding margin.

Listing 20-3. Adding Margin to Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 img {
 border: 4px solid black;
 background: lightgray;
 padding: 4px;
 margin:4px 20px;
 }
 </style>
 </head>
 <body>

 </body>
</html>

In Listing 20-3, there are two img elements. I have specified 4 pixels of margin for the top and bottom
edges, and 20 pixels of margin for the left and right edges. You can see how the margin creates space
around the element in Figure 20-3, which shows the img elements with and without margin.

Figure 20-3. The effect of applying margin to elements

Margin isn’t always drawn, even when you apply it with one of the margin properties. For example,
if you apply margin to an element that has the display value inline, margin isn’t displayed at the top

CHAPTER 20 WORKING WITH THE BOX MODEL

503

and bottom edges. I explain the display property in the section “Setting an Element Box Type,” later in
this chapter.

Controlling the Size of an Element
Browsers will set the sizes of elements based on the flow of content on the page. There are some
horrifically detailed rules that browsers must follow about how to allocate size. You can override this
behavior by using the size-related properties, which are described in Table 20-4.

Table 20-4. The size Properties

Property Description Values

width
height

Set the width and height for the
element.

auto
<length>
<%>

min-width
min-height

Set the minimum acceptable width or
height for the element.

auto
<length>
<%>

max-width
max-height

Set the maximum acceptable width or
height for the element.

auto
<length>
<%>

box-sizing Sets which part of an element’s box is
used for sizing.

content-box
padding-box
border-box
margin-box

The default value for all these properties is auto, meaning that the browser will figure out the width

and height of the element. You can specify sizes explicitly using lengths or percentages. The percentage
values are calculated from the width of the containing block (even when dealing with height). Listing 20-
4 shows how you can set the size of an element.

Listing 20-4. Setting the Size of an Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 div {
 width: 75%;
 height: 100px;
 border: thin solid black;

CHAPTER 20 WORKING WITH THE BOX MODEL

504

 }
 img {
 background: lightgray;
 border: 4px solid black;
 margin: 2px;
 height: 50%;
 }
 #first {
 box-sizing: border-box;
 width: 50%;
 }
 #second {
 box-sizing: content-box;
 }
 </style>
 </head>
 <body>
 <div>

 </div>
 </body>
</html>

There are three key elements in this example. A div element contains two img elements. You can see
how the browser displays these elements in Figure 20-4.

Figure 20-4. Setting the size of element

The div element is a child of the body element. When I express the width of the div element as 75%, I
am telling the browser that I want the div element to be 75 percent of the width of the containing block
(the body content box in this case), whatever that might be. If the user resizes the browser window, the
body element will be resized and this will lead to my div element being resized to preserve the 75%
relationship. You can see the effect that resizing the browser window has in Figure 20-5. I added a border
to the div element to make it easy to see its size.

CHAPTER 20 WORKING WITH THE BOX MODEL

505

Figure 20-5. Resizing the browser window to demonstrate a relative size relationship

You can see that the div is always 75 percent of the width of the body element, which fills the
browser window. I specified the height of the div element to be 100px, which is an absolute value and
which won’t change as the containing block is resized. You can see how part of the div element is hidden
when I resized the browser window to be long and short.

I have done much the same thing with the img elements. One has a width value that is expressed as
50% of the containing block, meaning that the image is resized to maintain that relationship, even though
this means that the aspect ratio of the image is not preserved. I have not set a width value for the second
img element, which leaves the browser to figure it out. By default, the width will be derived from the
height, set so that the aspect ratio is maintained.

 Tip Notice how the images spill over the edge of the div elements Figure 20-5. This is known as overflow. I’ll
show you how to control overflow later in this chapter.

Setting the Sized Box
The two img elements in my example have the same height value (50%), but they look different on the
screen. This is because I have used the box-sizing property to change the part of the element’s box that
the size properties apply to for one of the elements.

By default, the height and width are calculated and applied for the element’s content box. This
means that if you set an element’s height property to 100px, for example, then the real height onscreen
will be 100 pixels, plus the top and bottom padding, border, and margin values. The box-sizing property
lets you specify which of the element’s box areas will be sized to apply styling, meaning that you don’t
have to account for the variation yourself. Table 20-4 shows the allowed values.

CHAPTER 20 WORKING WITH THE BOX MODEL

506

 Tip A common use for the size properties is to try and create a grid layout. It works, but a much better way is to
use the table layout feature instead. You can get details of how this works in Chapter 21.

Setting Minimum and Maximum Sizes
You can use the min- and max- properties to set limits in which the browser is free to size the element.
This allows the browser some latitude in how sizing is applied. Listing 20-5 gives a demonstration.

Listing 20-5. Setting min and max Ranges for Size

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 img {
 background: lightgray;
 border: 4px solid black;
 margin: 2px;
 box-sizing: border-box;
 min-width: 100px;
 width:50%;
 max-width: 200px;
 }
 </style>
 </head>
 <body>

 </body>
</html>

In Listing 20-5, I have applied the min-width and max-width properties to a single img element, and
set the initial width to be 50 percent of the containing block. This gives the browser some leeway to
resize the image to maintain the 50 percent relationship within the upper and lower bounds I have
defined. The browser will use this leeway to preserve the aspect ratio of the image, as shown in Figure
20-6.

s

CHAPTER 20 WORKING WITH THE BOX MODEL

507

Figure 20-6. Setting bounds for element size using the min-width property

Figure 20-6 shows what happens when I resize the browser window to make it smaller. As the
window gets smaller, the browser resizes the image to preserve the percentage relationship between the
img element and the body element. When the minimum width is reached, the browser can no longer
resize the image. You can see this in the last frame of the figure, where the image is clipped by the
bottom of the browser window.

 Note The browser support for the box-sizing property is variable.

Dealing with Overflowing Content
When you start to change the size of elements, you quickly arrive at a point where the content is too
large to be displayed within an element’s content box. The default behavior is for the content to spill out
and be drawn anyway. Listing 20-6 creates an element that has a fixed size that is too small to display its
content.

Listing 20-6. Creating an Element That Is Too Small to Fully Display Its Content

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 width: 200px;
 height: 100px;
 border: medium double black;

CHAPTER 20 WORKING WITH THE BOX MODEL

508

 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

I have specified absolute values for the width and height properties, which creates the effect you can
see in Figure 20-7.

Figure 20-7. The default appearance of an element whose content is too large to display

We can change this behavior by using the overflow properties, which are described in Table 20-5.

Table 20-5. The overflow Properties

Property Description Values

overflow-x
overflow-y

Set the horizontal or vertical overflow
style.

See Table 20-6.

overflow Shorthand property. overflow
overflow-x overflow-y

CHAPTER 20 WORKING WITH THE BOX MODEL

509

The overflow-x and overflow-y properties set the style for horizontal and vertical overflows, and the
overflow shorthand property lets you define the style for both directions in a single declaration. Table
20-6 shows the allowed values for these properties.

Table 20-6. The overflow Property Values

Value Description

auto

This value leaves the browser to work out what to do. Typically, this means that a
scrollbar is displayed when the content is clipped, but not otherwise (this is in
contrast to the scroll value, which displays a scrollbar whether or not it is
required).

hidden The content is clipped so that only the portion inside the content box is displayed.
No mechanism is provided for the user to see the clipped part of the content.

no-content The content is removed if it cannot be displayed completely. This value is not
supported by any of the mainstream browsers.

no-display The content is hidden if it cannot be displayed completely. This value is not
supported by any of the mainstream browsers.

scroll
The browser will add a scrolling mechanism so that the user can see the content.
This is typically a scrollbar, but this is dependent on the platform and browser.
The scrollbar will be visible even if the content doesn’t overflow.

visible This is the default value. The element’s content is displayed, even though it
overflows the content box.

Listing 20-7 shows the overflow properties in use.

Listing 20-7. Controlling Content Overflow

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 width: 200px;
 height: 100px;
 border: medium double black;
 }

 #first {overflow: hidden;}
 #second { overflow: scroll;}

CHAPTER 20 WORKING WITH THE BOX MODEL

510

 </style>
 </head>
 <body>
 <p id="first">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p id="second">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In Listing 20-7, the first paragraph has the hidden value for the overflow property, and the second
paragraph has the scroll value. You can see the effect of these values in Figure 20-8.

Figure 20-8. Using the hidden and scroll values for the overflow property

CHAPTER 20 WORKING WITH THE BOX MODEL

511

 Tip This is an area for which the CSS module has yet to settle down. There are proposals to extend the set of
overflow-related properties so that marquee behavior is supported (this is where the contents of the element span
across the display so that all of the content is visible over time). The following properties are defined by CSS3, but
have yet to be implemented by any of the mainstream browsers: overflow-style, marquee-direction,
marquee-loop, marquee-play-count, marquee-speed, and marquee-style.

Controlling Element Visibility
You can control the visibility of your elements using the visibility property, which is described in
Table 20-7. This might seem like an odd thing to do, but you can create some sophisticated effects by
using this property with JavaScript.

Table 20-7. The visibility Property

Property Description Values

visibility Sets the visibility of an element. collapse
hidden
visible

Table 20-8 describes the allowed values for the visibility property.

Table 20-8. The visibility Property Values

Value Description

collapse The element isn’t visible and doesn’t occupy space in the page layout.

hidden The element isn’t visible, but it still occupies space in the page layout.

visible This is the default value. The element is visible on the page.

Listing 20-8 demonstrates changing the visibility of an element using JavaScript and some button

elements (which are described in Chapter 12).

Listing 20-8. Using the visibility Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

CHAPTER 20 WORKING WITH THE BOX MODEL

512

 <style type="text/css">
 tr > th { text-align:left; background:gray; color:white}
 tr > th:only-of-type {text-align:right; background: lightgray; color:gray}
 </style>
 </head>
 <body>
 <table>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th><th>Size</th>
 </tr>
 <tr id="firstchoice">
 <th>Favorite:</th><td>Apples</td><td>Green</td><td>Medium</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td><td>Large</td>
 </tr>
 </table>
 <p>
 <button>Visible</button>
 <button>Collapse</button>
 <button>Hidden</button>
 </p>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("firstchoice").style.visibility =
 e.target.innerHTML;
 };
 }
 </script>
 </body>
</html>

The script in this example locates the element with the id value of firstchoice and sets the value of
the visibility property based on which of the button elements has been pressed. In this way, you can
toggle between the visible, hidden, and collapse values. You can see the effect of each value in Figure
20-9.

CHAPTER 20 WORKING WITH THE BOX MODEL

513

Figure 20-9. The effect of the values for the visibility property

The collapse value is only applicable to table-related elements, such as tr and td. You can learn
more about these elements in Chapter 11. Some browsers, such as Chrome, don’t implement the
collapse value at all (which is why I have used Firefox for Figure 20-9).

 Tip You can use the none value for the display property to get the same effect as the collapse value on
nontable elements or in browsers that don’t implement this feature. I cover the display property next.

Setting an Element Box Type
The display property provides a way for you to change the type of box for an element, which changes
the way that an element is laid out on the page. In Part II of this book, you will have noticed that some of
the elements have a style convention that includes a value for the display property. Many elements use
the default value, inline, but some specify other values. The set of allowed values for the display
property are described in Table 20-9.

Table 20-9. The display Property Values

Value Description

inline The box is displayed like a word in a line of text.

block The box is displayed like a paragraph.

inline-block The box is displayed like a line of text.

list-item The box is displayed as a list item, typically with a bullet or some other
kind of marker (such as an index number).

run-in The type of box is dependent on the surrounding elements. See Listings

CHAPTER 20 WORKING WITH THE BOX MODEL

514

20-12 and 20-13 for an example.

compact
The type of box is either a block or a marker box (similar to that produced
by the list-item type). At the time of this writing, mainstream browsers
do not support this value.

flexbox This value relates to the flexible box layout, described in Chapter 21.

table
inline-table
table-row-group
table-header-group
table-footer-group
table-row
table-column-group
table-column
table-cell
table-caption

These values relate to laying out elements in a table. See Chapter 21 for
details.

ruby
ruby-base
ruby-text
ruby-base-group
ruby-text-group

These values relate to laying out text with ruby annotations.

none The element isn’t visible and takes no space in the layout.

These values cause a lot of confusion, and they have a profound effect on the layout of your

documents. I explain each kind of box type in the sections that follow.

Understanding Block-Level Elements
When you use the block value, you create a block-level element. This is an element that is vertically
distinct from those that surround it. You would usually achieve this effect by placing a line break before
and after the element, creating a sense of separation between the element and its surroundings, much
like a paragraph appears in a book. The p element, which denotes a paragraph, includes the block value
for the display property in its default style convention, but you may apply this value to any element, as
shown in Listing 20-9.

Listing 20-9. Using the block Value of the display Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">

CHAPTER 20 WORKING WITH THE BOX MODEL

515

 p {border: medium solid black}
 span {
 display: block;
 border: medium double black;
 margin: 2px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples. When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 </body>
</html>

You can see the effect that block-level elements have on the layout through two different element
types. The first is the p element, which, as I mentioned, uses the block value for the display property in
its default style convention (you can learn more about the p element in Chapter 9). I also wanted to
demonstrate that you can apply this property value to any element, so I have included a span element
and explicitly set the display property for this element type in the style element. You can see the visual
effect of this box type in Figure 20-10.

Figure 20-10. Using the block value of the display property

CHAPTER 20 WORKING WITH THE BOX MODEL

516

You have seen how the p element is displayed before. I have added a border to the elements in this
example to make the vertical spacing more evident. Notice that the span element, to which I applied the
block value, is also visually distinct within the box of the containing p element.

Understanding Inline-Level Elements
When you use the inline value, you create inline-level elements, which are displayed without being
visually distinct from the surrounding content, such as a word in a line of text. Listing 20-10 shows how
you can apply this value, even to elements such as p, which are block-level elements by default.

Listing 20-10. Using the inline Value for the display Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 display: inline;
 }
 span {
 display: inline;
 border: medium double black;
 margin: 2em;
 width: 10em;
 height: 2em;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples. When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 </body>
</html>

I have applied the inline property to both the p and span elements, and you can see the effect in
Figure 20-11. You can see that there is no separation between the p elements and that the span element is
shown inline with the rest of the text.

CHAPTER 20 WORKING WITH THE BOX MODEL

517

Figure 20-11. Using the inline value of the display property

When using the inline value, the browser will ignore certain properties, such as width, height, and
margin. I have defined values for all three properties to the span element in the listing, but you can see
that they have not been applied in the layout.

Understanding Inline-Block Elements
The inline-block value creates an element whose box is a mix of block and inline characteristics. The
outside of the box is treated like an inline element. This means that there is no vertical distinctiveness
and the content appears alongside the surrounding content. However, the inside of the box is treated
like a block element, and properties such as width, height, and margin are applied. You can see the effect
of this in Listing 20-11.

Listing 20-11. Using the inline-block Value

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 display: inline;
 }
 span {
 display: inline-block;
 border: medium double black;
 margin: 2em;
 width: 10em;
 height: 2em;
 }

CHAPTER 20 WORKING WITH THE BOX MODEL

518

 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples. When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 </body>
</html>

The only change in this listing is the new display property value for the span element, but the visual
effect is significant because the properties that were ignored previously (when the display value was
inline) are now applied. You can see the effect in Figure 20-12.

Figure 20-12. Using the inline-block value for the display property

Understanding Run-In Elements
The run-in value creates a box whose type depends on the surrounding elements. There are three
situations that the browser must evaluate to determine the nature of a run-in box.

1. If a run-in element contains an element whose display value is block, then the
run-in element becomes a block-level element.

CHAPTER 20 WORKING WITH THE BOX MODEL

519

2. Otherwise, if the next sibling element to a run-in element is a block element,
then the run-in element becomes the first inline-level element in the sibling. I
demonstrate this condition in Listing 20-12.

3. Otherwise, the run-in element is treated as a block-level element.

Of these three conditions, the second one bears demonstration. Listing 20-12 shows a run-in
element whose sibling is a block-level element.

Listing 20-12. A run-in Element with a Block-Level Sibling

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 display: block;
 }
 span {
 display: run-in;
 border: medium double black;
 }
 </style>
 </head>
 <body>

 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone.

 <p>
 By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

You can see how the run-in element is treated as part of the block that follows in Figure 20-13
(although I should note that not all of the browsers correctly support this property).

CHAPTER 20 WORKING WITH THE BOX MODEL

520

Figure 20-13. A run-in element with a block-level sibling

If the sibling element isn’t a block-level element, then the run-in is treated as a block. An example of
this relationship is shown in Listing 20-13.

Listing 20-13. A run-in Element with an Inline Sibling

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style type="text/css">
 p {
 display: inline;
 }
 span {
 display: run-in;
 border: medium double black;
 }
 </style>
 </head>
 <body>

 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone.

 <p>
 By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, the run-in element is displayed as a block, as shown in Figure 20-14.

CHAPTER 20 WORKING WITH THE BOX MODEL

521

Figure 20-14. A run-in element displayed as a block-level element

Hiding Elements
The none value tells the browser not to create any kind of box for an element, or for any descendent
elements. When the display property is set to none, the element doesn’t occupy any space in the page
layout. Listing 20-14 shows an HTML document that has a simple script that toggles the display
property of a p element between block and none.

Listing 20-14. Using the none Value of the display Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p id="toggle">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples. When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 <p>
 <button>Block</button>
 <button>None</button>
 </p>

 <script>
 var buttons = document.getElementsByTagName("BUTTON");

CHAPTER 20 WORKING WITH THE BOX MODEL

522

 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("toggle").style.display=
 e.target.innerHTML;
 };
 }
 </script>
 </body>
</html>

You can see how the none value causes the element to be removed from the layout in Figure 20-15.

Figure 20-15. The effect of the none value for the display property

Creating Floating Boxes
You can use the float property to create floating boxes, which are shifted to one side until the left or
right edge touches the edge of the containing block or another floating box. Table 20-10 summarizes the
property.

Table 20-10. The float Property

Property Description Values

float Sets the floating style for an element. left
right
none

Table 20-11 describes the allowed values for the float property.

CHAPTER 20 WORKING WITH THE BOX MODEL

523

Table 20-11. The display Property Values

Value Description

left The element is shifted so that the left edge touches the left edge of the
containing block or the right edge of another floating block.

right The element is shifted so that the right edge touches the right edge of the
containing block or the left edge of another floating block.

none The element is not floated.

Listing 20-15 shows the float property in use.

Listing 20-15. Using the float Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p.toggle {
 float:left;
 border: medium double black;
 width: 40%;
 margin: 2px;
 padding: 2px;
 }
 </style>
 </head>
 <body>
 <p class="toggle">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p class="toggle">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <p>
 When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 <p>

CHAPTER 20 WORKING WITH THE BOX MODEL

524

 <button>Left</button>
 <button>Right</button>
 <button>None</button>
 </p>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 var elements = document.getElementsByClassName("toggle");
 for (var j = 0; j < elements.length; j++) {
 elements[j].style.cssFloat = e.target.innerHTML;
 }
 };
 }
 </script>
 </body>
</html>

In this example, there are a number of p elements, two of which have a float value of left. This
means that they will be shifted to the left until they hit the edge of the containing box or another floating
element. Because there are two elements that are shifted, the first will be moved to the containing block
edge and the second will abut the first. You can see this effect in Figure 20-16.

 Tip Notice that when I refer to the float property in JavaScript, I have to use cssFloat. You’ll get into styling
elements with JavaScript in Chapter 29

CHAPTER 20 WORKING WITH THE BOX MODEL

525

Figure 20-16. Using the left value of the float property

Notice how the rest of the content flows around the floating elements. In this example, I also added
some button elements and a simple script that changes the float value for the two p elements based on
which button is pressed. If you press the Right button, you can see how the elements are shifted to the
right, as shown in Figure 20-17. Notice the order in which the elements appear: the first element defined
in the document is furthest to the right.

CHAPTER 20 WORKING WITH THE BOX MODEL

526

Figure 20-17. Using the right value of the float property

The final button, None, disables the float effect by setting the float value to none. This restores the
default box behavior of the element. The p element is a block-level element by default, and you can see
the effect in Figure 20-18.

CHAPTER 20 WORKING WITH THE BOX MODEL

527

Figure 20-18. Using the none value of the float property

Preventing Floating Elements from Stacking Up
By default, floating elements will stack up next to one another. You can prevent this from happening by
using the clear property, which specifies that one or both edges of a floating element must not adjoin
the edge of another floating element. Table 20-12 summarizes the clear property.

Table 20-12. The clear Property

Property Description Values

clear Specifies whether the element can be floated next to
another floating element.

left
right
both
none

Table 20-13 describes the allowed values of the clear element.

CHAPTER 20 WORKING WITH THE BOX MODEL

528

Table 20-13. The clear Property Values

Value Description

left The left edge of the element may not adjoin another floating element.

right The right edge of the element may not adjoin another floating element.

both Neither edge may adjoin another floating element.

none The element is not cleared and either edge may adjoin another floating element.

Listing 20-16 shows the clear property in use.

Listing 20-16. Using the clear Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p.toggle {
 float:left;
 border: medium double black;
 width: 40%;
 margin: 2px;
 padding: 2px;
 }

 p.cleared {
 clear:left;
 }

 </style>
 </head>
 <body>
 <p class="toggle">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p class="toggle cleared">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>

CHAPTER 20 WORKING WITH THE BOX MODEL

529

 <p>
 When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>

 <p>
 <button>Left</button>
 <button>Right</button>
 <button>None</button>
 </p>

 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 var elements = document.getElementsByClassName("toggle");
 for (var j = 0; j < elements.length; j++) {
 elements[j].style.cssFloat = e.target.innerHTML;
 }
 };
 }
 </script>
 </body>
</html>

This is a simple extension of the previous example, with the addition of a new style that clears the
left edge of the second p element. You can see how this changes the page layout in Figure 20-19 (the
elements are floating left in this figure).

Figure 20-19. Clearing the left edge of a floating element

CHAPTER 20 WORKING WITH THE BOX MODEL

530

The left edge of the p element isn’t allowed to be next to another floating element, and so the
browser moves the element down the page. The right edge remains uncleared, which means that when
you float the elements to the right, they can touch one another, as shown in Figure 20-20.

Figure 20-20. The uncleared right edge of a right-floating element

Summary
In this chapter, I have shown how you can perform the basic configuration of an element’s box model,
changing the way that it appears in the page layout. You started with the basic properties, such as
padding and margin, and continued through into more complex concepts, such as ranges for widths and
heights and overflowing content.

The most important concept in this chapter is the effect of the different kinds of box that you can
create for an element. Understanding the relationship between block- and inline-level elements is
essential to mastering HTML5 layouts, and floating elements and clearing edges are very widely used
techniques to create flexibility in pages.
In the next chapter, I’ll show you some more complex models that CSS supports for creating element
layouts.

C H A P T E R 21

531

Creating Layouts

In this chapter, I will show you the different options available for controlling the layout of elements on
the page. With the increased emphasis separating the semantic significance of HTML elements from
their presentational impact, the role of CSS in laying out elements has become more important in
HTML5. There are some very useful layout features in CSS3 and, of course, you can use the existing
facility from earlier versions of CSS.

There are two proposed layout models for CSS3 that have yet to mature enough for me to cover in
this chapter. The first, template layouts, allows you to create flexible to contain elements. None of the
browsers implement this module, but you can experiment with the functionality through a jQuery
plugin available at http://a.deveria.com/?p=236. The other new module creates flexible grids for
layouts. Unfortunately, as I write this, the specification is not yet complete and there is no
implementation available.

The entire area of layouts in CSS3 remains volatile. One of the layout styles that I do cover in this
chapter—the flexible box model—offers excellent features, but the standard keeps changing and I have
had to demonstrate the approach to layouts using browser-specific properties that were implemented
against an early draft of the standard.

Given the early nature of these new features, I suggest considering using a CSS framework for
creating sophisticated page layouts. I recommend Blueprint, which you can download from
www.blueprintcss.org. A CSS framework may give you the functionality you require until the CSS3
layout features mature. Table 21-1 provides the summary for this chapter.

Table 21-1. Chapter Summary

Problem Solution Listing

Change the way that an element is
positioned inside its container block.

Use the position property. 21-1

Offset a positioned element from the edges
of its container block.

Use the top, bottom, left, or right
properties.

21-1

Set the front-to-back order for a positioned
element.

Use the z-index property. 21-2

Create a layout similar to a newspaper
page.

Use a multicolumn layout. 21-3, 21-4

Fluidly allocate space to elements within a Use the flexbox layout. 21-5 through

http://a.deveria.com/?p=236
http://www.blueprintcss.org

CHAPTER 21 CREATING LAYOUTS

532

container. 21-9

Create a table-style layout for elements. Use a CSS table layout. 21-10

Positioning Content
The simplest way of directing content is through positioning, which allows you to change the way that an
element is laid out by the browser. Table 21-2 describes the positioning properties.

Table 21-2. The Positioning Properties

Property Description Values

position Sets the positioning method. See Table 21-3.

left
right
top
bottom

Sets offset values for positioned elements. <length>
<%>
auto

z-index Sets the front-to-back ordering of elements. number

Setting the Position Type
The position property sets the method by which an element is positioned. The allowed values are
described in Table 21-3.

Table 21-3. The position Property Values

Value Description

static The element is laid out as normal (this is the default value).

relative The element is positioned relative to its normal position.

absolute The element is positioned relative to its first ancestor that has a position value
other than static.

fixed The element is positioned relative to the browser window.

The different values for the position property specify different elements against which the element
is positioned. You use the top, bottom, left, and right properties to offset the element from the element
specified by the position property. Listing 21-1 demonstrates the effect of the different values.

CHAPTER 21 CREATING LAYOUTS

533

Listing 21-1. Using the position Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 img {
 top: 5px;
 left:150px;
 border: medium double black;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <p>
 When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 <p>
 <button>Static</button>
 <button>Relative</button>
 <button>Absolute</button>
 <button>Fixed</button>
 </p>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("banana").style.position =
 e.target.innerHTML;
 };
 }
 </script>
 </body>

CHAPTER 21 CREATING LAYOUTS

534

</html>

In this example, I have added a small script to the page that changes the value of the position
property on an img element based on button presses. Notice that I have set the left property to 150px
and the top property to 5px. This means that the img element will be offset by 150 pixels along the
horizontal axis, and 5 pixels along the vertical axis when any position value other than static is applied.
Figure 21-1 shows the transition from static (the default value) to relative.

Figure 21-1. The static and relative values for the position property

The relative value applies the top, bottom, left, and right properties to position the element
relative to where it would be under the static value. As you can see in the figure, the left and top values
of 150px cause the img element to be moved down and to the right.

The absolute value causes the element to be positioned relative to the nearest ancestor that has a
position value other than static. There is no such element in this example, which means that the
element is positioned relative to the body element, as shown in Figure 21-2.

CHAPTER 21 CREATING LAYOUTS

535

Figure 21-2. The absolute value of the position property

Notice that when I scroll the browser page, the img element moves with the rest of the content. This
is in contrast to how the fixed value works, as shown in Figure 21-3.

Figure 21-3. The fixed value of the position property

When you use the fixed value, the element is placed relative to the browser window. This means
that the element occupies the same location, even when the rest of the content is scrolled up or down.

Setting the Z-Order
The z-index property lets you specify the front-to-back order in which elements are drawn. This
property is summarized in Table 21-4.

CHAPTER 21 CREATING LAYOUTS

536

Table 21-4. The float Property

Property Description Values

z-index Sets the relative front-to-back order of an element. <number>

The value for the z-index value is a number, and negative values are allowed. The smaller the value,

the further to the back the element will be drawn. This property has utility only when elements overlap,
as is the case in Listing 21-2.

Listing 21-2. Using the z-index Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 img {
 border: medium double black;;
 background-color: lightgreay;
 position: fixed;
 }

 #banana {
 z-index: 1;
 top: 15px;
 left:150px;
 }

 #apple {
 z-index: 2;
 top: 25px;
 left:120px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

CHAPTER 21 CREATING LAYOUTS

537

 </p>

 <p>
 When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.
 </p>
 </body>
</html>

In this example, I have created two fixed position img elements and set the top and left values so
that the elements overlap. The z-index value of the img element with the id value of apple is the larger of
the two values and, therefore, will be drawn over the banana image, as shown in Figure 21-4.

Figure 21-4. Using the z-index property

The default value for the z-index property is zero, which is why the browser has drawn the images
over the p elements.

Creating Multicolumn Layouts
The multicolumn feature allows you to lay out content in multiple vertical columns, much like you
would see in a newspaper. Table 21-5 describes the multicolumn properties.

Table 21-5. The Multicolumn Properties

Property Description Values

column-count Specifies the ideal number of columns. <number>

column-fill Specifies how the content should be
distributed between columns. The

balance
auto

CHAPTER 21 CREATING LAYOUTS

538

balance value means that the browser
should minimize variations in column
lengths, and the auto value means that
columns should be filled sequentially.

column-gap Specifies the distance between
columns.

<length>

column-rule Shorthand property for setting the
column-rule-* properties in a single
declaration.

<width> <style>
<color>

column-rule-color Specifies the color of the rule between
columns.

<color>

column-rule-style Specifies the style of the rule between
columns.

Same as for the border
–style property

column-rule-width Specifies the width of the rule between
columns.

<length>

columns Shorthand property for setting the
column-span and column-width
properties.

<length> <number>

column-span Specifies how many columns an
element should span.

none
all

column-width Specifies the width of the columns. <length>

Listing 21-3 shows the multicolumn layout applied to an HTML document.

Listing 21-3. Using the Multicolumn Layout

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 column-count: 3;
 column-fill: balance;
 column-rule: medium solid black;
 column-gap: 1.5em;
 }

CHAPTER 21 CREATING LAYOUTS

539

 img {
 float: left;
 border: medium double black;
 background-color: lightgray;
 padding: 2px;
 margin: 2px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.

 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 When travelling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavours and
 which were only avaiable within a small region.

 And, of course, there are fruits which are truely unique - I am put in mind
 of the durian, which is widely consumed in SE Asia and is known as the
 "king of fruits". The durian is largely unknown in Europe and the USA - if
 it is known at all, it is for the overwhelming smell, which is compared
 to a combination of almonds, rotten onions and gym socks.
 </p>
 </body>
</html>

In this example, I have applied some of the multicolumn properties to a p element. This element
contains a mix of text and img elements, and you can see the column effect in Figure 21-5.

CHAPTER 21 CREATING LAYOUTS

540

Figure 21-5. A multicolumn layout

 Note The figure shows Opera, which is the only browser that supports the multicolumn layout at the time of
writing. Not all of the properties are implemented, but the basic functionality is present.

As Figure 21-5 shows, the content of the p element flows from one column to the next, much as in
the style of a newspaper page. I applied the float property to the img elements in this example so that
the text content of the p element will flow nicely around the images. Details of the float property can be
found in Chapter 20.

I used the column-count property to specify three columns in this layout. The browser will adjust the
width of the columns as the window is resized to preserve the number of columns. An alternative is to
specify the desired width of the columns instead, as shown in Listing 21-4.

Listing 21-4. Setting the Width of the Columns

...
<style>
 p {
 column-width: 10em;
 column-fill: balance;
 column-rule: medium solid black;

CHAPTER 21 CREATING LAYOUTS

541

 column-gap: 1.5em;
 }

 img {
 float:left;
 border: medium double black;
 background-color: lightgray;
 padding: 2px;
 margin: 2px;
 }
</style>
...

When you apply this property, the browser preserves the specified column width by adding and
removing columns to the element, as shown in Figure 21-6.

Figure 21-6. Defining columns by width, rather than count

Creating Flexible Box Layouts
The flexible box layout (also known as flexbox) is a CSS3 enhancement that adds a new value for the
display property (flexbox), and defines some additional properties. The flexible layout lets you create
fluid interfaces that respond well when the browser window is resized. This is done by distributing
unused space in a container block among the contained elements. The specification for flexbox defines
the following new properties:

• flex-align

• flex-direction

CHAPTER 21 CREATING LAYOUTS

542

• flex-order

• flex-pack

As I write this, the standard for the flexible box layout remains volatile. The names of the properties
and their values have recently changed. The mainstream browsers have implemented the core
functionality of this feature using browser-specific properties and values, based on the previous
property names.

The flexbox is a useful and important addition to CSS, and so I am going to show you the
functionality based on the earlier draft of the standard and using the –webkit prefixed properties. This is
not ideal, but it will give you a sense of what the flexbox does and, hopefully, leave you in a position to
easily transition to the finished standard when it becomes available and widely implemented. Given the
difference between the specification and the implementation, let’s start with a definition of the problem
that the flexbox sets out to solve. Listing 21-5 shows a simple layout with a problem.

Listing 21-5. An HTML Document with a Layout Problem

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 float:left;
 width: 150px;
 border: medium double black;
 background-color: lightgray;
 }
 </style>
 </head>
 <body>
 <div id="container">
 <p id="first">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples,
 oranges, and other well-known fruit, we are faced with thousands
 of choices.
 </p>
 <p id="second">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <p id="third">
 When travelling in Asia, I was struck by how many different kinds of
 banana were available - many of which had unique flavours and which
 were only avaiable within a small region.
 </p>
 </div>

CHAPTER 21 CREATING LAYOUTS

543

 </body>
</html>

There are three p elements contained within a div. I want to display the p elements in a horizontal
row, which is easily done using the float property (described in Chapter 20). You can see how the
browser displays this HTML in Figure 21-7.

Figure 21-7. An element with undistributed empty space

The problem you can use the flexbox to solve is how you deal with the block of empty space that
appears to the right of the p elements. There are several ways that you can solve this problem. For
example, you could use percentage widths, but the flexbox gives you a much more fluid and elegant
alternative. Table 21-6 shows the three -webkit properties that implement the core of flexbox
functionality (I have omitted the –webkit prefix for brevity).

Table 21-6. The –webkit Flexbox Properties

Property Description Values

box-align Tells the browser how to deal with additional
space when the height of the content elements
is less than the height of the container.

start
end
center
baseline
stretch

box-flex Specifies the flexibility of an element; applied to
individual elements within the flexbox
container.

<number>

box-pack Tells the browser how to allocate space when start

CHAPTER 21 CREATING LAYOUTS

544

the flexible elements have reached their
maximum size.

end
center
justify

Creating a Simple Flexbox
You create a flexbox using the display property. The standard value will be flexbox, but you must use –
webkit-box until the standard is completed and implemented. You tell the browser how to allocate the
unused space between elements using the box-flex property. You can see the new display values and
the box-flex property in Listing 21-6.

Listing 21-6. Creating a Simple Flexbox

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 width: 150px;
 border: medium double black;
 background-color: lightgray;
 margin: 2px;
 }
 #container {
 display: -webkit-box;
 }
 #second {
 -webkit-box-flex: 1;
 }
 </style>
 </head>
 <body>
 <div id="container">
 <p id="first">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples,
 oranges, and other well-known fruit, we are faced with thousands
 of choices.
 </p>
 <p id="second">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <p id="third">
 When travelling in Asia, I was struck by how many different kinds of

CHAPTER 21 CREATING LAYOUTS

545

 banana were available - many of which had unique flavours and which
 were only avaiable within a small region.
 </p>
 </div>
 </body>
</html>

The display property is applied to the flexbox container. This is the element that will have the
additional space and whose contents you want to lay out flexibly. The box-flex property is applied to
elements inside the flexbox container and tells the browser which elements should be flexed in size as
the size of the container changes. In this case, I have selected the p element, which has an id value of
second.

 Tip Notice that I have removed the float property from the style declaration for the p elements. Flexbox
elements cannot contain floating elements.

You can see how the browser flexes the size of the selected element in Figure 21-8.

Figure 21-8. A flexing element

I have expanded the browser window in Figure 21-8, which has caused the div container to expand
and the second paragraph to flex to take up the additional space. Flexing isn’t just about additional
space; when I shrink the browser window, the flexing element is the one that is resized to accommodate
the space loss, as shown in Figure 21-9. Notice that the elements to which the box-flex property is
applied do not change in size.

CHAPTER 21 CREATING LAYOUTS

546

Figure 21-9. A flexing element resized to accommodate less space

Flexing Multiple Elements
You can tell the browser to flex the sizes of more than one element by applying the box-flex property.
The values that you set determine the ratio that the browser will use to allocate space. Listing 21-7 shows
changes to the style element of the previous example.

Listing 21-7. Creating Multiple Flex Elements

...
<style>
 p {
 width: 150px;
 border: medium double black;
 background-color: lightgray;
 margin: 2px;
 }
 #container {
 display: -webkit-box;
 }

 #first {
 -webkit-box-flex: 3;
 }

 #second {
 -webkit-box-flex: 1;
 }
</style>
...

CHAPTER 21 CREATING LAYOUTS

547

I have applied the box-flex property to the p element with the id of first. The value of this property
is 3, meaning that the browser will allocate three times of the additional space to the first element as it
will to the second element. When you create ratios like this, you are referring to only the flexibility of the
element. You use the ratio to allocate additional space or to reduce the size of the element, not to change
its preferred size. You can see how the ratio is applied in Figure 21-10.

Figure 21-10. Creating a flexibility ratio

Dealing with Vertical Space
The box-align property lets you tell the browser what to do with any additional vertical space. This
element is summarized in Table 21-7.

Table 21-7. The box-align Property

Property Description Values

box-align Specifies how the browser should handle excess
vertical space.

start
end
stretch
center

The default is to stretch the elements vertically so that they fill the space. You can see this in Figure

21-10, where the first two p elements have been sized so that there is empty space under their contents.
Table 21-8 shows the allowed values for the box-align property.

Table 21-8. The box-align Property Values

Value Description

start The elements are placed along the top edge of the container, and any empty space
will be shown beneath them.

CHAPTER 21 CREATING LAYOUTS

548

end The elements are placed along the bottom edge of the container, and any empty
space will be shown above them.

center Any additional space is divided equally and shown above and below the elements.

stretch Adjust the height of the elements to fill the available space.

Listing 21-8 shows the style element changes to apply the box-align property. Note that this

property is applied to the flex container and not the content elements.

Listing 21-8. Applying the box-align Property

...
<style>
 p {
 width: 150px;
 border: medium double black;
 background-color: lightgray;
 margin: 2px;
 }
 #container {
 display: -webkit-box;
 -webkit-box-direction: reverse;
 -webkit-box-align: end;
 }
 #first {
 -webkit-box-flex: 3;
 }
 #second {
 -webkit-box-flex: 1;
 }
</style>
...

In this example, I have selected the end value, which will mean that the content elements are placed
on the bottom edge of the container element, and any vertical space will be displayed above them. You
can see the effect of this value in Figure 21-11.

CHAPTER 21 CREATING LAYOUTS

549

Figure 21-11. Applying the box-align property

Dealing with Maximum Sizes
The flexbox model will respect maximum size values for content elements. The browser will flex the size
of elements to fill additional space until the maximum sizes are reached. The box-pack property tells the
browser what to do if all of the flexible elements have reached their maximum sizes before all of the
additional space has been allocated. This property is summarized in Table 21-9.

Table 21-9. The box-pack Property

Property Description Values

box-pack Specifies how to deal with additional space if it cannot
be allocated to flexible elements.

start
end
justify
center

Table 21-10 describes the allowed values for this property.

Table 21-10. The box-pack Property Values

Value Description

start The elements are laid out from the left edge and any unallocated space is displayed to
the right of the final element.

end The elements are laid out from the right edge and any unallocated space is displayed
to the left of the first element.

CHAPTER 21 CREATING LAYOUTS

550

center Any unallocated additional space is allocated evenly on the left side of the first
element and the right side of the final element.

justify Any unallocated space is spread evenly between the elements.

Listing 21-9 shows the box-pack property in use. Notice that I have defined max-width values for the

p elements (you can learn more about the max-width in Chapter 20).

Listing 21-9. Using the box-pack Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<style>
 p {
 width: 150px;
 max-width: 250px;
 border: medium double black;
 background-color: lightgray;
 margin: 2px;
 }
 #container {
 display: -webkit-box;
 -webkit-box-direction: reverse;
 -webkit-box-align: end;
 -webkit-box-pack: justify;
 }
 #first {
 -webkit-box-flex: 3;
 }
 #second {
 -webkit-box-flex: 1;
 }
</style>
 </head>
 <body>
 <div id="container">
 <p id="first">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples,
 oranges, and other well-known fruit, we are faced with thousands
 of choices.
 </p>
 <p id="second">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for

CHAPTER 21 CREATING LAYOUTS

551

 its apples.
 </p>
 <p id="third">
 When travelling in Asia, I was struck by how many different kinds of
 banana were available - many of which had unique flavours and which
 were only avaiable within a small region.
 </p>
 </div>
 </body>
</html>

You can see the effect of this property in Figure 21-12. After the flexible p elements have reached
their maximum widths, the browser starts allocating the additional space between the elements. Notice
that the space is only between the content elements; no space is placed before the first element or after
the last.

Figure 21-12. Using the box-pack property

Creating Table Layouts
For many years, the HTML table element has been widely used for laying out web pages, but the
increased emphasis on the semantic significance of HTML elements makes this undesirable, and in
HTML5 you must be careful only to use the table element to present tabular data (see Chapter 11 for
details).

Of course, the reason that using the table element has been so popular is because it solves a very
common layout problem: creating simple grids to hold content. Fortunately, you can use the CSS table
layout feature to lay out your pages much as you would using the table element, but without abusing its
semantic significance. You create CSS table layouts by using the display property. The values that relate
to this feature are described in Table 21-11. Each of the values shown in the table corresponds to an
HTML element.

CHAPTER 21 CREATING LAYOUTS

552

Table 21-11. The display Property Values That Relate to Table Layouts

Value Description

table Behaves like the table element.

inline-table Behaves like the table element, but creates an inline-level element (see
Chapter 20 for details of block- and inline-level elements).

table-caption Behaves like the caption element.

table-column Behaves like the col element.

table-column-group Behaves like the colgroup element.

table-header-group Behaves like the thead element.

table-row-group Behaves like the tbody element.

table-footer-group Behaves like the tfoot element.

table-row Behaves like the tr element.

table-cell Behaves like the td element.

The process of applying these values is demonstrated in Listing 21-10.

Listing 21-10. Creating a CSS Table Layout

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>

 #table {
 display: table;
 }
 div.row {
 display: table-row;
 background-color: lightgray;
 }

 p {
 display: table-cell;

w

CHAPTER 21 CREATING LAYOUTS

553

 border: thin solid black;
 padding: 15px;
 margin: 15px;
 }

 img {
 float:left;
 }

 </style>
 </head>
 <body>
 <div id="table">
 <div class="row">
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available
 in each country. I live near London, in an area which is known for
 its apples.
 </p>
 <p>
 When travelling in Asia, I was struck by how many different kinds of
 banana were available - many of which had unique flavours and which
 were only avaiable within a small region.
 </p>
 </div>
 <div class="row">
 <p>
 This is an apple.
 </p>
 <p>
 This is a banana.
 </p>
 <p>
 No picture here
 </p>
 </div>
 </div>
 </body>
</html>

You can see the effect of these values in Figure 21-13.

CHAPTER 21 CREATING LAYOUTS

554

Figure 21-13. A simple CSS table layout

The behavior that table layouts are prized for is the automatic sizing of cells so that the widest or
tallest content sets the size for the entire column or row. You can see this effect in Figure 21-13.

Summary
In this chapter, I have shown you the CSS features for creating layouts, ranging from the simple
positioning of elements to the fluidity of the flexible box layout. I also showed you how to create table
layouts without needing to abuse the table HTML element.

Layouts are an area that is receiving much attention in various CSS3 modules, but it is still early days
and not all the feature sets are properly defined or implemented by the browsers. There is plenty to work
within the interim (especially if you adopt a CSS layout framework), and I recommend you keep a close
eye as CSS new layout modules gain acceptance.

C H A P T E R 22

555

Styling Text

In this chapter, I show you the CSS properties you can use to style text. This is a volatile area for CSS3.
There are some very useful new features that have been widely adopted (and which I explain in the
sections that follow). There are also some very speculative proposals whose future is uncertain. These
tend to deal with very technical typographic details, and it is not certain that there is sufficient demand
to drive these proposals into standards. That said, the features that have been embraced by the
mainstream browsers make working with text a lot more flexible and pleasant. Table 22-1 provides the
summary for this chapter.

Table 22-1. Chapter Summary

Problem Solution Listing

Align a block of text. Use the text-align and text-justify properties. 1

Define how white space is
processed.

Use the whitespace property. 2, 3

Specify the direction that
text should be drawn in.

Use the direction property. 4

Specify the spacing
between words, letters,
and lines of text.

Use the letter-spacing, word-spacing, and line-height
properties.

5

Specify how overflowing
text should be broken.

Use the word-wrap property. 6

Specify the indentation of
text.

Use the text-indent property. 7

Decorate or transform
text.

Use the text-decoration or text-transform property. 8

Apply a drop shadow to a
block of text.

Use the text-shadow property. 9

CHAPTER 22 STYLING TEXT

556

Specify and configure a
font.

Use the font, font-family, font-size, font-style, font-
variant, and font-weight properties.

10-12

Use a custom font. Use @font-face. 13

 Tip The color property can be used to set the color of text. This property is described in Chapter 24.

Applying Basic Text Styles
In the following sections, I’ll show you how to use the properties that apply basic text styling.

Aligning and Justifying Text
There are properties available for managing the alignment and justification of textual content, as
described in Table 22-2.

Table 22-2. The Alignment and Justification Properties

Property Description Values

text-align Specifies the alignment for a block of text start
end
left
right
center
justify

text-justify Specifies the technique that will be used to justify the text when
the justify value for the text-align property is used

See Table 22-3.

The text-align property is simple enough, although it is important to note that you can align text to

an explicitly named edge (using the left and right values) or to the edges that are innate to the language
being used (with the start and end values). This is an important distinction when dealing with right-to-
left languages. Listing 22-1 shows the text-align property applied to blocks of text.

Listing 22-1. Aligning Text

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

CHAPTER 22 STYLING TEXT

557

 <style>
 #fruittext {
 width: 400px;
 margin: 5px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London, in an area which is
 known for its apples.
 </p>
 <p>
 <button>Start</button>
 <button>End</button>
 <button>Left</button>
 <button>Right</button>
 <button>Justify</button>
 <button>Center</button>
 </p>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("fruittext").style.textAlign =
 e.target.innerHTML;
 };
 }
 </script>
 </body>
</html>

In this example, I added a simple script that changes the value of the text-align property for a p
element based on button presses. Figure 22-1 shows the effect of some of the property values on the
alignment of the text.

CHAPTER 22 STYLING TEXT

558

Figure 22-1. The effect of the center and right values for the text-align property

When using the justify value, you can use the text-justify property to specify how spacing is
added to the text. The allowed values for this property are described in Table 22-3.

Table 22-3. The text-justify Property Values

Value Description

auto The browser will select the justification technique. This is the simplest approach,
but it can lead to slight presentation differences between browsers.

none Justification of the text is disabled.

inter-word Spacing is distributed between words. This is suited to languages that use word
separators, such as English.

inter-ideograph Spacing is distributed between words and at inter-graphemic boundaries. This is
suited to languages such as Japanese and Korean.

inter-cluster Spacing is distributed between words and at grapheme cluster boundaries. This is
suited to languages such as Thai.

distribute Spacing is distributed between words and at grapheme cluster boundaries in all
scripts except those that use connected or cursive styles.

kashida Justification is applied by elongating characters (applies only to cursive scripts).

Dealing with Whitespace
Whitespace is usually collapsed or ignored in HTML. This allows you to separate the layout of your
HTML documents from the appearance on the page. Listing 22-2 shows an HTML document with a text
block that contains white space.

CHAPTER 22 STYLING TEXT

559

Listing 22-2. An HTML Document with White Space

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 #fruittext {
 width: 400px;
 margin: 5px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties

 of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.

 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London,

 in an area which is
 known for its apples.

 </p>
 </body>
</html>

I introduced some spaces, tabs, and line breaks into the text. When the browser encounters multiple
white-space characters (such as multiple spaces), they are collapsed, meaning that they are replaced
with a single space character. Other types of white space, such as line breaks, are simply ignored and the
browser wraps the text so that individual lines fit within the boundaries of the element. You can see the
way that the browser displays the text in the example in Figure 22-2.

CHAPTER 22 STYLING TEXT

560

Figure 22-2. The default handling of white space in an HTML document

This isn’t always convenient—sometimes you want to preserve the formatting of the text as it is in
the source HTML document. You can control the handling of white space characters with the whitespace
property, which is summarized in Table 22-4.

Table 22-4. The whitespace Property

Property Description Values

whitespace Specifies how white-space characters will be
processed

See Table 22-5

The allowed values for the whitespace property are described in Table 22-5.

Table 22-5. The whitespace Property Values

Value Description

normal This is the default value. Whitespace is collapsed, and lines are wrapped.

nowrap Whitespace is collapsed, but lines are not wrapped.

pre Whitespace is preserved, and text will wrap only on line breaks. This is the same
effect that the pre element has (described in Chapter 8).

pre-line Whitespace is collapsed, and text will wrap to make lines fit or when a line break is
encountered.

pre-wrap Whitespace is preserved, and text will wrap to make lines fit or when a line break is
encountered.

Listing 22-3 demonstrates the application of the whitespace property.

CHAPTER 22 STYLING TEXT

561

Listing 22-3. Using the whitespace Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 #fruittext {
 width: 400px;
 margin: 5px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 white-space: pre-line;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties

 of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.

 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London,

 in an area which is
 known for its apples.

 </p>
 </body>
</html>

You can see the effect of the pre-line value in Figure 22-3. The text is wrapped so that the contents
fit into the element, but the line breaks are preserved.

CHAPTER 22 STYLING TEXT

562

Figure 22-3. Using the pre-line value for the whitespace property

 Tip The CSS3 module for text defines the whitespace property as shorthand for two other properties:
bikeshedding and text-wrap. Neither of these properties has been implemented yet, and the definition of the
bikeshedding property is incomplete. (One of the outstanding issues is to pick a more meaningful name.)

Specifying Text Direction
The direction property lets you tell the browser about the directionality of a block of text, as described
in Table 22-6.

Table 22-6. The direction Property

Property Description Values

direction Sets the direction for the text ltr
rtl

You can see a simple application of the direction property in Listing 22-4.

CHAPTER 22 STYLING TEXT

563

Listing 22-4. Using the direction Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 #first {
 direction: ltr;
 }

 #second {
 direction: rtl;
 }
 </style>
 </head>
 <body>
 <p id="first">
 This is left-to-right text
 </p>
 <p id="second">
 This is right-to-lefttext
 </p>
 </body>
</html>

You can see the effect of this property in Figure 22-4.

Figure 22-4. Using the direction property

 Caution The direction property has been removed from the latest draft of the relevant CSS module, although
no reason has been given and it may be restored before the module is finalized.

CHAPTER 22 STYLING TEXT

564

Specifying the Space Between Words, Letters, and Lines
You can tell the browser how much space to place between words, letters, and lines. The relevant
properties are described in Table 22-7.

Table 22-7. The spacing Properties

Property Description Values

letter-spacing Sets the space between letters normal
<length>

word-spacing Sets the space between words normal
<length>

line-height Sets the height of each line normal
<number>
<length>
<%>

Listing 22-5 shows all three properties applied to a block of text.

Listing 22-5. Using the letter-spacing and word-spacing Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 #fruittext {
 margin: 5px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 word-spacing: 10px;
 letter-spacing: 2px;
 line-height: 3em;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>

CHAPTER 22 STYLING TEXT

565

 </body>
</html>

You can see the effect of these properties in Figure 22-5.

Figure 22-5. Applying the word-spacing and letter-spacing properties

Controlling Word Breaks
The word-wrap property tells the browser what to do when a word is longer than its containing block is
wide. The allowed values for this property are described in Table 22-8.

Table 22-8. The word-wrap Property Values

Value Description

normal Words are not broken, even when they cannot be fitted into the containing element.

break-word Words are broken to make them fit.

Listing 22-6 shows the application of the word-wrap property.

Listing 22-6. Using the word-wrap Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

CHAPTER 22 STYLING TEXT

566

 <style>
 p {
 width:150px;
 margin: 15px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 float:left;
 }

 #first {
 word-wrap: break-word;
 }

 #second {
 word-wrap: normal;
 }
 </style>
 </head>
 <body>
 <p id="first">
 There are lots of different kinds of fruit - there are over 500
 varieties of madeupfruitwithaverylongname alone.
 </p>
 <p id="second">
 There are lots of different kinds of fruit - there are over 500
 varieties of madeupfruitwithaverylongname alone.
 </p>
 </body>
</html>

There are two p elements in this example, to which I have applied the values of the word-wrap
property. You can see the effect of the property in Figure 22-6.

Figure 22-6. Using the word-wrap property

CHAPTER 22 STYLING TEXT

567

The left-most p element in the figure uses the break-word value, so the very long word in the text is
broken and wrapped across two lines to make it fit. The other p element uses the default value, normal,
which means the browser won’t break the word, even though it flows over the edge of the p element.

 Tip You can use the overflow property (described in Chapter 20) to stop the browser from displaying the
overflowing text, although this will have the effect of simply not displaying the part of the word that doesn’t fit.

Indenting the First Line
The text-indent property allows you to specify an indentation for the first line of a block of text,
expressed either as a length or as a percentage of the width of the containing element. Table 22-9
summarizes this property.

Table 22-9. The text-indent Property

Property Description Values

text-indent Sets the indentation of the first line of text <length>
<%>

Listing 22-7 shows the use of this property.

Listing 22-7. Using the text-indent Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 margin: 15px;
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 float:left;
 text-indent: 15%;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of

CHAPTER 22 STYLING TEXT

568

 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London, in an area which is
 known for its apples.
 </p>
 </body>
</html>

You can see the effect that this property has in Figure 22-7.

Figure 22-7. Indenting the first line in a block of text

Decorating and Transforming Text
There are two properties, text-decoration and text-transform, that allow you to decorate and transform
text. These are described in Table 22-10.

Table 22-10. The Decoration and Tranformation Properties

Property Description Values

text-decoration Applies a décor to a block of text none
underline
overline
line-through
blink

text-transform Applies a transformation to a block of text none
capitalize
uppercase
lowercase

The text-decoration property applies an effect to a block of text, such as underlining it. The default

value is none (meaning no decoration is applied). The text-transform property changes the case of a

CHAPTER 22 STYLING TEXT

569

block of text and, once again, the default value is none. You can see both properties applied, along with a
script to switch between them, in Listing 22-8.

Listing 22-8. Using the text-decoration and text-transform Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 border: medium double black;
 background-color: lightgrey;
 text-decoration: line-through;
 text-transform: uppercase;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London, in an area which is
 known for its apples.
 </p>
 </body>
</html>

Figure 22-8 shows the effect of the uppercase value of the text-transform property and the line-
through value of the text-decoration property applied together.

CHAPTER 22 STYLING TEXT

570

Figure 22-8. Decorating and transforming text

 Tip The blick value for the text-decoration property should be used sparingly. It creates an effect that is
very annoying, especially if the user will be working with the page for a protracted period. I recommend finding a
less irritating way to draw a user’s attention.

Creating Text Shadows
In Chapter 19, I showed you how to create shadows for elements. You can do much the same thing for
text using the text-shadow property, which is summarized in Table 22-11.

Table 22-11. The text-shadow Property

Property Description Values

text-shadow Applies a shadow to a block of
text

<h-shadow> <v-shadow> <blur> <color>

The h-shadow and v-shadow values specify the offset for the shadow. Values are expressed as lengths

and negative values are allowed. The blur value is another length value and specifies the degree of blur
that will be applied to the shadow. This value is optional. The color value specifies the color of the
shadow. Listing 22-9 shows the text-shadow property in use.

Listing 22-9. Using the text-shadow Property

<!DOCTYPE HTML>
<html>
 <head>

CHAPTER 22 STYLING TEXT

571

 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 h1 {
 text-shadow: 0.1em .1em 1px lightgrey;
 }
 p {
 text-shadow: 5px 5px 20px black;
 }
 </style>
 </head>
 <body>
 <h1>Thoughts about Fruit</h1>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 </body>
</html>

I applied two different shadows to the text in this example. You can see the effect in Figure 22-9.
Notice that the shadow follows the shape of the text characters, rather than the containing element.

Figure 22-9. Applying shadows to text

Working with Fonts
One of the most fundamental changes you can make to text is to the font that is used to display the
characters. Table 22-12 describes the font-related properties. Balance in typography is very difficult to
achieve—on one hand, there are advanced users who want to control every aspect of their typography
(of which there are many). On the other hand, there are regular designers and programmers who want
ready access to key typographic features, but don’t want to get bogged down in the detail. Sadly, CSS

CHAPTER 22 STYLING TEXT

572

font support satisfies neither party. Very few of the deep technical aspects of typefaces are exposed, but
those that are exposed present little use to the mainstream designer or programmer. There some
proposed CSS3 modules that would enhance typeface support, but they are at an early stage and have
yet to attract any mainstream implementations.

Table 22-12. The Font Properties

Property Description Values

font-family Specifies the font family for a block of text See Table 22-13.

font-size Specifies the size of the font for a block of text See Table 22-14.

font-style Specifies the style for a font normal
italic
oblique

font-variant Specifies whether or not the text should be displayed in a
small-caps font

normal
smallcaps

font-weight Specifies the weight for a font (the thickness of the
characters)

normal
bold
bolder
lighter
<number 100-900>

font Shorthand property to set fonts in a single declaration See sections that
follow.

The format for the font property value is as follows:

font: <font-style> <font-variant> <font-weight> <font-size> <font-family>

Selecting a Font
The font-family property specifies the fonts that will be used, in order of preference. The browser
begins with the first font in the list and works its way down until it finds a font that can be used. This
approach is required because you can use the fonts installed on a user’s computer and, of course,
different users will have different fonts installed based on operating system and preference.

As a final backstop, CSS defines some generic fonts that are available everywhere. These are broad
categories of fonts, known as the generic font families, and there can be variations in the exact font that is
used by a browser to render them. A summary of the generic font families can be found in Table 22-13.

CHAPTER 22 STYLING TEXT

573

Table 22-13. The Generic Font Families

Generic Font Family Example Implementation Font

serif Times

sans-serif Helvetica

cursive Zapf-Chancery

fantasy Western

monospace Courier

Listing 22-10 shows the font-family property applied to a block of text.

Listing 22-10. Using the font-family Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 margin: 2px;
 float: left;
 font-family: "HelveticaNeue Condensed", monospace;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with
 thousands of choices.
 </p>
 </body>
</html>

In this example, I specified HelveticaNeue Condensed for the font-family property. This is a font that
is used by Apress and isn’t available on every system. I specified the generic monospace as the fallback to
be used if HelveticaNeue Condensed isn’t available. You can see the effect this has in Figure 22-10.

CHAPTER 22 STYLING TEXT

574

Figure 22-10. Using the font-family property

The browser on the right of the figure is running on the machine I use to write this book. It has the
Apress fonts installed, so the browser is able to find and use HelveticaNeue Condensed. The browser on
the left is from one of my test machines, which doesn’t have HelveticaNeue Condensed installed. You can
see that it has fallen back to using the generic monospace.

 Tip One problem that can occur when using a fallback font is that the fonts have different sizes on screen. You
can see this in the figure, where the fallback font is larger than the first-choice font. The font-size-adjust
property can be used to express a scaling ratio, but this is supported only by Firefox at present.

Setting the Font Size
The font-size property lets you specify the size of the font. The allowed values for this property are
described in Table 22-14.

Table 22-14. The font-size Property Values

Value Description

xx-small
x-small
small
medium
large
x-large
xx-large

Sets the font size. The browser is responsible for deciding the exact size that each
value represents, but the sizes are guaranteed to increase as you move down the
list of values.

smaller
larger

Sets the font size relative to the font size of the parent element.

CHAPTER 22 STYLING TEXT

575

<length> Sets the font size precisely using a CSS length value.

<%> Sets the font size as a percentage of the parent element’s font size.

Listing 22-11 shows the font-size property in use.

Listing 22-11. Using the font-size Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 margin: 2px;
 float: left;
 font-family: sans-serif;
 font-size: medium;
 }
 #first {
 font-size: xx-large;
 }
 #second {
 font-size: larger;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, I applied three font-size declarations. You can see the effect they have in Figure
22-11.

CHAPTER 22 STYLING TEXT

576

Figure 22-11. Using the font-size property

Setting the Font Style and Weight
You can set the weight of the font using the font-weight property—increasing the weight makes the text
bolder. The font-style property allows you to select between normal, italic, and oblique fonts. There is a
distinction between italic and oblique fonts, but it is tediously technical and for the most part makes
little or no difference to the appearance of text. Listing 22-12 demonstrates these properties.

Listing 22-12. Using the font-weight and font-style Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;
 margin: 2px;
 float: left;
 font-family: sans-serif;
 font-size: medium;
 }
 #first {
 font-weight: bold;
 }
 #second {
 font-style: italic;
 }
 </style>
 </head>
 <body>
 <p>

CHAPTER 22 STYLING TEXT

577

 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

You can see the effect of these properties in Figure 22-12.

Figure 22-12. Using the font-weight and font-style properties

Using Web Fonts
I already alluded to one of the biggest problems with CSS fonts. The fact that you can’t rely on the font
you want to be installed on the user’s machine. A solution to this problem is to use web fonts, where you
can download a font and use it on your page without requiring any action on the part of the user. You
specify web fonts using @font-face, as shown in Listing 22-13.

Listing 22-13. Using a Web Font

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 @font-face {
 font-family: 'MyFont';
 font-style: normal;
 font-weight: normal;
 src: url('http://titan/listings/MyFont.woff');
 }
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgrey;

CHAPTER 22 STYLING TEXT

578

 margin: 2px;
 float: left;
 font-size: medium;
 font-family: MyFont, cursive;
 }
 #first {
 font-weight: bold;
 }
 #second {
 font-style: italic;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

When you use @font-face, you use the standard font properties to describe the font you are using.
The font-family property defines the name by which you can refer to the downloaded font, and the
font-style and font-weight properties tell the browser what the style and weight settings are for the
font, which means that you can create italic and bold characters. The src property is used to specify the
location of the font file. Web fonts come in many different formats, but the WOFF format seems to be the
most widely supported and available.

 Tip Some web servers won’t send font files to the browser by default. You may have to add the file type or
MIME type to your server’s configuration.

You can see the effect of the web font in Figure 22-13.

CHAPTER 22 STYLING TEXT

579

Figure 22-13. Using a web font

There are a lot of web font resources available. My favorite is provided by Google. You can see the
fonts they have on offer and get instructions for how to include them in your HTML at
www.google.com/webfonts. (this was the source for the font I used in the example.)

Summary
In this chapter, you saw the CSS properties that allow you to style text. The effects you can apply range
from the simple (such as basic alignment) to the sophisticated (using custom fonts and creating text
shadows). This is another volatile area for CSS. There are some interesting proposals for properties that
would allow greater control over the appearance of text, but it is not yet clear if there is sufficient interest
to drive adoption and it is entirely possible that these proposals will not become standards.

http://www.google.com/webfonts

C H A P T E R 23

581

Transitions, Animations, and
Transforms

In this chapter, I introduce three different ways that you can apply simple special effects to HTML
elements: transitions, animations, and transforms. I’ll explain and demonstrate each of these terms later
in the chapter. All three features are new in CSS3 and, as I write this, are supported only through
browser-specific prefixes. This is something I expect to change reasonably quickly, because these
features are going to be extremely popular with web designers and developers.

Applying effects to HTML elements isn’t a new idea, and most of the good JavaScript libraries
available contain at least a few of the effects that are now rolled into CSS3. The advantage of using CSS3
over JavaScript is performance. Much of the new functionality is about changing the value of CSS
properties over time, and this is something that can be handled with less overhead directly in the
browser engine. Despite this, these effects (even the basic ones) can take a lot of processing power,
especially on complex web pages. For this reason, you should use the effects I describe in this chapter
sparingly. Causing the user’s computer to grind to a halt is always unwelcome, especially if you are just
showing off your animation skills.

Another reason to use these effects infrequently is that they can be hugely distracting and annoying.
Use these effects to enhance the task that the user is performing with your page—whatever that might
be—and don’t apply effects to elements that are not core to that task. Table 23-1 provides the summary
for this chapter.

Table 23-1. Chapter Summary

Problem Solution Listing

Create a basic transition. Use the transition-delay, transition-property, or
transition-duration properties, or the transition
shorthand property.

23-1, 23-2

Create an inverse transition. Define a counter-transition in the base style for an
element.

23-3

Specify how intermediate
property values are
calculated during a
transition.

Use the transition-timing-function property. 23-4

Create a basic animation. Use the animation-delay, animation-duration, 23-5

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

582

animation-iteration-count, and animation-name
properties. The animation-name value must correspond
to a set of key frames defined using @keyframes.

Set an initial state for an
animation.

Add a from clause to the @keyframes declaration. 23-6

Specify intermediate key
frames for an animation.

Add clauses to the @keyframes declaration, using the
name of the clause to specify the percentage point of
the animation to which the key frame pertains.

23-7

Specify the direction of
alternate repeats of the
animation.

Use the animation-direction property. 23-8

Preserve the final state of an
animation.

Animations revert to the initial state at completion;
consider using a transform instead.

23-9

Apply animations in the
initial page layout.

Include the animation properties in styles that apply
to elements in their base state.

23-10

Reuse key frames. Create multiple styles that contain the animation-name
property and whose values refer to the same
@keyframes declaration.

23-11

Apply multiple animations
to an element.

Specify multiple @keyframes declarations as the value
of the animation-name property.

23-12, 23-13

Pause and resume an
animation.

Use the animation-play-state property. 23-14

Apply a transform to an
element.

Use the transform property. 23-15

Specify an origin for a
transform.

Use the transform-origin property. 23-16

Animate or transition a
transform.

Include the transform property in the transitioned
style or in a @keyframes declaration.

23-17

Using Transitions
The browser normally applies changes in CSS properties to an element immediately. If you use the
:hover selector, for example, the browser applies the properties you associate with the selector as soon
as the user moves the mouse over the element. Listing 23-1 gives an example.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

583

Listing 23-1. Immediately Applying a New Property Value

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 }
 #banana:hover {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, there is a span element for which there are two specific styles. One style is applied
universally (with the selector #banana), and one is applied only when the user moves the mouse over the
element (with the selector #banana:hover).

 Tip I have used the color property in this example. You can learn more about this property in Chapter 24.

The browser responds when the user moves the mouse over the span element, and applies the new
property values immediately. You can see the change in Figure 23-1.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

584

Figure 23-1. The immediate application of change CSS property values

The CSS transition feature allows you to control the rate at which new property values are applied.
So, for example, you can choose to change the appearance of the span element in the example gradually,
to make the effect of moving the mouse over the word banana less jarring. Table 23-2 describes the
properties that let you do this.

Table 23-2. The Transition Properties

Property Description Values

transition-delay Specifies a delay after which the transition will start. <time>

transition-duration Specifies the time span over which the transition will
be performed.

<time>

transition-property Specifies the property that the transition applies to. <string>

transition-timing-function Specifies the way that intermediate values are
calculated during the transition.

See Listing
23-4.

transition Shorthand to specify all of the details of a transition
in one declaration.

See Listing
23-2.

The transition-delay and transition-duration properties are specified as CSS times, which are a

number followed by either ms (to denote milliseconds) or s (to denote seconds).
The format for the transition shorthand property is as follows:

transition: <transition-property> <transition-duration> <transition-timing-function>
 <transition-delay>

Listing 23-2 shows how you can apply a transition to the example HTML document. As I write this,
none of the mainstream browsers support the transition properties directly However, all but Internet
Explorer implement the properties with the browser-specific prefix. I have used the –webkit prefix in the
listing.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

585

 Note The animations feature is not yet implemented by any of the mainstream browsers using the standard
properties. Much like transitions, all of the browsers except Internet Explorer implement the functionality using the
browser-specific prefixes. In Listing 23-2, I used the –webkit prefix, meaning that this example will work with
Safari and Chrome. If you want to work with Firefox or Opera, simply substitute –webkit for –moz or –o. This is
another important area of enhancement in CCS3, and I expect that it will soon be implemented properly.

Listing 23-2. Using a Transition

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 }
 #banana:hover {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 -webkit-transition-delay: 100ms;
 -webkit-transition-property: background-color, color, padding,
 font-size, border;
 -webkit-transition-duration: 500ms;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

586

 </body>
</html>

In this example, I have added a transition to the style that is applied through the #banana:hover
selector. This transition will be started 100 milliseconds after the user moves the mouse over the span
element, have a duration of 500 milliseconds, and apply to the background-color, color, padding, font-
size, and border properties. Figure 23-2 shows the gradual progression of the transition.

Figure 23-2. The gradual application of a transition

Notice how I specified multiple properties in the example. Each of the transition properties will take
comma-separated values so that you can have concurrent transitions effects. You can specify multiple
values for the delay and duration as well, which means that different property transitions start at
different times and run for different durations.

Creating Inverse Transitions
Transitions take effect only when the style they are associated with is applied. My example style uses the
:hover selector, which means that the style is only applied when the user’s mouse is over the span
element. As soon as the user moves the mouse away from the span element, only the #banana style
applies and, by default, the appearance of the element instantly snaps back to its original state.

It is for this reason that most transitions come in pairs: the transition to the temporary state and the
inverse transition back in the other direction. Listing 23-3 shows how you can smooth the return to the
original style through the application of a second transition.

Listing 23-3. Creating a Second Transition

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

587

 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 -webkit-transition-delay: 10ms;
 -webkit-transition-duration: 250ms;
 }
 #banana:hover {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 -webkit-transition-delay: 100ms;
 -webkit-transition-property: background-color, color, padding,
 font-size, border;
 -webkit-transition-duration: 500ms;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

I have omitted the transition-property property in this example. This causes all of the property
changes to be applied gradually throughout the duration of the transition. I have also specified an initial
delay of 10 milliseconds and duration of 250 milliseconds. Adding a brief inverse transition makes the
return to the original state less jarring.

 Tip The browser doesn’t apply transitions when first laying out the page. This means that the properties in the
#banana style are applied immediately when the HTML document is first displayed, and then applied gradually
through a transition thereafter.

Selecting How Intermediate Values Are Calculated
When you use a transition, the browser has to work out intermediate values between the initial and final
values for each property. You use the transition-timing-function property to specify the way that

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

588

intermediate values are determined, expressed as a set of four points representing a cubic Bezier curve.
There are five preset curves to choose from, represented by the following values:

• ease (the default value)

• linear

• ease-in

• ease-out

• ease-in-out

You can see each curve in Figure 23-3. The line shows the rate at which the intermediate values
progress toward the final value over time.

Figure 23-3. The timing function curves

The easiest way to make sense of these values is to experiment in your own HTML document. There
is one additional value, cubic-bezier, that allows you to specify a custom curve. However, my
experience is that the transitions are not as smooth as they could be and that a lack of granularity
undermines most of these values and makes specifying a custom curve largely pointless. Hopefully the
implementations will improve as they converge on the final standard. Listing 23-4 shows the application
of the transition-timing-function property.

Listing 23-4. Using the transition-timing-function Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

589

 font-size: large;
 border: medium solid black;
 -webkit-transition-delay: 10ms;
 -webkit-transition-duration: 250ms;
 }
 #banana:hover {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 -webkit-transition-delay: 100ms;
 -webkit-transition-property: background-color, color, padding,
 font-size, border;
 -webkit-transition-duration: 500ms;
 -webkit-transition-timing-function: linear;
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

I have selected the linear value, which is the one that I find gives me the least stuttering transition.

Using Animations
CSS animations are essentially enhanced transitions. You have more options, more control, and more
flexibility in how you move from one CSS style to another. Table 23-3 describes the animation
properties.

Table 23-3. The Animation Properties

Property Description Values

animation-delay Sets a delay before the animation commences. <time>

animation-direction Specifies whether the animation should be played
backward on alternate cycles.

normal
alternate

animation-duration Specifies the span of time over which the animation
will be performed.

<time>

animation-iteration-count Specifies the number of times that the animation will infinite

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

590

be performed. <number>

animation-name Specifies the name of the animation. none
<string>

animation-play-state Allows the animation to be paused and resumed. running
paused

animation-timing-function Specifies how intermediate animation values are
calculated. See the section “Using Transitions,”
earlier in this chapter, for details of these values.

ease
linear
ease-in
ease-out
ease-in-out
cubic-bezier

animation Shorthand property. See the
following
explanation.

The format for the animation shorthand property is as follows:

animation: <animation-name> <animation-duration> <animation-timing-function>
 <animation-delay> <animation-iteration-count>

Notice that none of these properties allow you to specify the CSS properties that will be animated.
This is because animations are defined in two parts. The first part is contained within the style
declaration and uses the properties shown in Table 23-3. This defines the style of the animation, but not
what is to be animated. The second part is created with the @key-frames rule, and is used to define the
set of properties that the animation will apply to. You can see both parts of the animation in Listing 23-5.

Listing 23-5. Creating an Animation

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 }

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

591

 #banana:hover {
 -webkit-animation-delay: 100ms;
 -webkit-animation-duration: 500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 }

 @-webkit-keyframes GrowShrink {
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 }
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

To understand what is happening in this example, you have to look at both parts of the animation.
The first part is the use of the animation properties in the style with the #banana:hover selector. Let’s
start with the basic properties: the animation will start 100 milliseconds after the style has been applied,
will have a duration of 500 milliseconds, will repeat indefinitely, and intermediate values will be
calculated using the linear function. With the exception of repeating the animation, these properties
have direct counterparts in transitions.

These basic properties don’t describe the set of properties that will be animated. To do this, I need
to use the animation-name property. By setting the value of this property to GrowShrink, I have instructed
the browser to find a set of key frames called GrowShrink and use the values of the basic properties to
animate the properties specified by the key frames. Here is the key frame declaration from the listing (I
have removed the –webkit prefix):

@keyframes GrowShrink {
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 }
}

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

592

I start the declaration with @keyframes and then specify the name by which this set will be known. In
this case, the name is GrowShrink. Inside the declaration, I specify the set of properties that will be
animated. In this case, I have specified five properties and their values inside of a to declaration. This is
the simplest kind of key frame set. The to declaration defines both the set of properties to animate and
the final values for those properties at the end of the animation. (I’ll show you more complex key frames
shortly.) The initial values for the animation are taken from the property values of the animated element
prior to the style being applied.

The animation in the listing is similar to the example I used for transitions earlier in the chapter, and
the effect even looks the same when you view the HTML document in a browser and move the mouse
over the span element. At least it looks the same initially, and then the animation repeats itself, which is
the first of the differences. The span element grows in size, reaches its maximum, and then returns to its
original state, at which point the animation starts over. You can see the effect in Figure 23-4.

Figure 23-4. Repeating states in an animation

Working with Key Frames
The key frames aspect of CSS animations is extremely flexible and well worth exploring. In the sections
that follow, I’ll show some different ways to express key frames in order to create more complex effects.

Setting an Initial State
In the previous example, the initial values for the animated properties were taken from the element
itself. You can specify an alternate set of initial values using the from clause, as shown in Listing 23-6.

Listing 23-6. Specifying an Alternate Initial State

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

593

 }
 #banana {
 font-size: large;
 border: medium solid black;
 }

 #banana:hover {
 -webkit-animation-delay: 100ms;
 -webkit-animation-duration: 250ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 }

 @-webkit-keyframes GrowShrink {
 from {
 font-size: xx-small;
 background-color: red;
 }
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 }
 }
</style>
...

In this example, I have provided initial values for the font-size and background-color properties.
The initial values for the other properties specified in the to clause will be taken from the element when
the animation commences. You can see the effect of the new clause in Figure 23-5. The text size and
background color of the span element switch to the initial values specified in the from clause at the start
of the animation.

Figure 23-5. Setting an initial state with a from clause

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

594

Specifying Intermediate Key Frames
You can add additional key frames to define intermediate stages in the animation. You do this by adding
percentage clauses, as demonstrated in Listing 23-7.

Listing 23-7. Adding Intermediate Key Frames

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 }

 #banana:hover {
 -webkit-animation-delay: 100ms;
 -webkit-animation-duration: 2500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 }

 @-webkit-keyframes GrowShrink {
 from {
 font-size: xx-small;
 background-color: red;
 }

 50% {
 background-color: yellow;
 padding: 1px;
 }

 75% {
 color: white;
 padding: 2px;
 }

 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 padding: 4px;
 }
 }

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

595

</style>
...

For each percentage clause, you define the point in the animation where the properties and values
specified in the clause should be fully applied. In this example, I have defined a 50% and a 75% clause.

There are two uses for intermediate key frames. The first is to define a new rate of change for a
property. I have done this for the padding property. At the midway point (defined by the 50% clause), the
padding for the animated element will be 1px. At 75%, it will be 2px, and by the end of the animation it
will be set to 4px. The browser will calculate the progression of values required to move from one key
frame to another using the timing function specified by the animation-timing-function property, giving
a smooth progression from one key frame to the next.

 Tip If you prefer, you may use 0% and 100% instead of from and to when defining the first and last key frames.

The other use for intermediate key frames is to define values to create more complex animations. I
have done this with the background-color property. The initial value (red) is defined in the from clause.
At the 50 percent point, the value will be yellow, and at the end of the animation, it will be green. By
adding a nonsequential intermediate value, I have created two color transitions in a single animation:
red to yellow, and yellow to green Notice that I have not provided an intermediate value in the 75%
clause. This is because you don’t have to provide values for every key frame. You can see the effect of the
new key frames in Figure 23-6.

Figure 23-6. Adding intermediate key frames

Setting the Repeat Direction
When you set an animation to repeat, you have a choice about what happens when the browser reaches
the end of the animation. You specify your preference using the animation-direction property, using the
values that are described in Table 23-4.

Table 23-4. The animation-direction Property Values

Value Description

normal Every iteration of the animation is played forward. If there are multiple iterations,
the element snaps back to its initial state and the animation is repeated.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

596

alternate The animation is played forward and then in reverse. This is two iterations of the
animation for the purposes of the animation-iteration-count property..

You can see the animation-direction property in Listing 23-8.

Listing 23-8. Using the animation-direction Property

<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 }

 #banana:hover {
 -webkit-animation-delay: 100ms;
 -webkit-animation-duration: 250ms;
 -webkit-animation-iteration-count: 2;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 -webkit-animation-direction: alternate;
 }

 @-webkit-keyframes GrowShrink {
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 padding: 4px;
 }
 }
</style>

In this example, I have used the animation-iteration-count property to specify that the animation
should be performed only twice. At the end of the second iteration, the animated element will return to
its original state. I have used the alternate value for the animation-direction property so that the
animation is played forward and then backward. You can see the effect in Figure 23-7.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

597

Figure 23-7. Setting the direction of the animation to alternate

If I had used the infinite value for the animation-iteration-count property, the animation would
have been played forward and backward for as long as the mouse was hovering over the span element,
creating a simple pulsing effect.

The normal value causes the animation to jump back to the start and each iteration is played
forward. You can see the effect of this in Figure 23-8.

Figure 23-8. Setting the direction of the animation to normal

Understanding the End State
One of the limitations of CSS animations is that the values for the properties defined by the key frames in
an animation are only applied during the animation itself. At the end of the animation, the appearance
of the animated element will revert to its original state. Listing 23-9 gives an example.

Listing 23-9. Loss of Animation State at the End of the Animation

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

598

 #banana {
 font-size: large;
 border: medium solid black;
 }

 #banana:hover {
 -webkit-animation-delay: 100ms;
 -webkit-animation-duration: 250ms;
 -webkit-animation-iteration-count: 1;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 }

 @-webkit-keyframes GrowShrink {
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 padding: 4px;
 }
 }
</style>
...

You can see the effect this creates in Figure 23-8. Even though the mouse is still hovering over the
span element, the appearance of the element is reset once the animation is complete.

Figure 23-9. The reverted appearance of an element, after the animation is complete

The reason that this happens is because CSS animations animate the application of a new style, but
don’t make any persistent changes themselves. If you want to preserve the appearance of the element at
the end of the animation, you must use a transition as described earlier in this chapter.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

599

Applying Animations to the Initial Layout
One advantage that animations have over transitions is that you can apply them to the initial layout of
the page. Listing 23-10 gives an example.

Listing 23-10. Animating an Element at Initial Layout

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: large;
 border: medium solid black;
 -webkit-animation-duration: 2500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'ColorSwap';
 }

 @-webkit-keyframes ColorSwap {
 to {
 border: medium solid white;
 background-color: green;
 }
 }
</style>
...

In this example, I have defined the animation in the style with the #banana selector. This style is
applied automatically when the page is loaded, which means that the animation is applied as soon as the
browser displays the HTML.

 Tip You should use this approach with particular caution. Animating the page when you are not responding to a
user action should be used sparingly, and the animation effects should be subtle and not prevent the user from
reading or interacting with the wider page.

Reusing Key Frames
You can use the same set of key frames for multiple animations, each of which can be configured with
different values for the animation properties. Listing 23-11 gives a demonstration.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

600

Listing 23-11. Reusing Key Frames Across Multiple Animations

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }

 span {
 font-size: large;
 border: medium solid black;
 }

 #banana {
 -webkit-animation-duration: 2500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'ColorSwap';
 }

 #apple {
 -webkit-animation-duration: 500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: normal;
 -webkit-animation-timing-function: ease-in-out;
 -webkit-animation-name: 'ColorSwap';
 }

 @-webkit-keyframes ColorSwap {
 to {
 border: medium solid white;
 background-color: green;
 }
 }

</style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

601

 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

Listing 23-11 shows two styles, each of which uses the ColorSwap key frames. The animation
associated with the #apple selector will be performed over a short direction, using a different timing
function, and will also be played forward.

Applying Multiple Animations to Multiple Elements
A variation on the previous example is to target multiple elements with the same animation. You do this
by expanding the scope of the selector for the style that contains the animation details, as shown in
Listing 23-12.

Listing 23-12. Targeting Multiple Elements

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }

 span {
 font-size: large;
 border: medium solid black;
 }

 #banana, #apple {
 -webkit-animation-duration: 2500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'ColorSwap';
 }

 @-webkit-keyframes ColorSwap {
 to {
 border: medium solid white;
 background-color: green;
 }
 }
</style>
...

In this example, both span elements in the document are matched by the selector, so both will be
animated using the same key frames and the same configuration. You can see the effect in Figure 23-10.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

602

Figure 23-10. Animating multiple elements with the same animation

You can also apply multiple animations to an element by simply adding comma-separated values to
the animation properties. Listing 23-13 shows how you can apply multiple key frames to a single
element.

Listing 23-13. Applying Multiple Key Frames to a Single Element

...
<style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }

 span {
 font-size: large;
 border: medium solid black;
 }

 #banana, #apple {
 -webkit-animation-duration: 1500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'ColorSwap', 'GrowShrink';
 }

 @-webkit-keyframes ColorSwap {
 to {
 border: medium solid white;
 background-color: green;
 }
 }

 @-webkit-keyframes GrowShrink {
 to {
 font-size: x-large;

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

603

 padding: 4px;
 }
 }
</style>
...

In this example, I have applied the ColorSwap and GrowShrink key frames to the #banana and #apple
elements. The browser will apply both key frames simultaneously.

Stopping and Starting Animations
You can stop and resume an animation through the animation-play-state property. When this property
has a value of paused, the animation will be halted. The value playing will resume the animation. Listing
23-14 shows how you can use JavaScript to change the value of this property. I’ll explain more about how
you can use JavaScript in similar situations in Part IV of this book.

Listing 23-14. Stopping and Starting an Animation

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 #fruittext {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }

 #banana {
 -webkit-animation-duration: 2500ms;
 -webkit-animation-iteration-count: infinite;
 -webkit-animation-direction: alternate;
 -webkit-animation-timing-function: linear;
 -webkit-animation-name: 'GrowShrink';
 }

 @-webkit-keyframes GrowShrink {
 from {
 font-size: large;
 border: medium solid black;
 }
 to {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

604

 }
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 <p>
 <button>Running</button>
 <button>Paused</button>
 </p>
 <script>
 var buttons = document.getElementsByTagName("BUTTON");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("banana").style.webkitAnimationPlayState =
 e.target.innerHTML;
 };
 }
 </script>
 </body>
</html>

Using Transforms
CSS transforms allow you to apply linear transformations to elements, meaning that you can rotate,
scale, skew, and translate elements. Table 23-5 shows the properties that you use to apply transforms.

Table 23-5. The Transforms Properties

Property Description Values

transform Specifies the transform function to apply. See Table 23-
6.

transform-origin Specifies the origin of the transform. See Table 23-
7.

Applying a Transform
You apply a transform to an element through the transform property. The allowed values for this
property are a set of predefined functions, as described in Table 23-6.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

605

Table 23-6. The transform Property Values

Value Description

translate(<length or %>)
translateX(<length or %>)
translateY(<length or %>)

Translate an element in the X, Y, or both directions.

scale(<number>)
scaleX(<number>)
scaleY(<number>)

Scale an element along one or both axes.

rotate(<angle>) Rotate an element.

skew(<angle>)
skewX(<angle>)
skewY(<angle>)

Skew an element along one or both axes.

matrix(4-6 x <number>) Specify a custom transform. Most browsers don’t yet implement z-axis
scaling, so the last two numbers are ignored (and in some cases must be
omitted).

You can see an example of a transform in Listing 23-15. As with the other CSS features in this

chapter, the mainstream browsers don’t yet implement transforms directly. I have used the –moz prefix
in the listing because Firefox has the most complete implementation.

Listing 23-15. Applying a Transform to an Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 -moz-transform: rotate(-45deg) scaleX(1.2);

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

606

 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, I have added a transform property declaration to the #banana style, specifying two
transforms. The first is a rotation of -45deg (i.e., a counterclockwise 45-degree rotation), and the second
is a scaling with a factor of 1.2 along the x axis. You can see the effect of these transformations in Figure
23-11.

Figure 23-11. Rotating and scaling an element

As you can see, the element has been rotated and scaled as specified. Notice that the layout of the
page hasn’t changed to accommodate the transforms. The element overwrites some of the surrounding
content.

Specifying an Origin
The transform-origin property allows you to specify the origin around which the transform will be
applied. By default, the center of the element is used, but you can select a different origin using the
values described in Table 23-7.

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

607

Table 23-7. The transform-origin Property Values

Value Description

<%> Specifies the origin of the elements x or y axis.

<length> Specifies a distance.

left
center
right

Specifies a position on the x axis.

top
center
bottom

Specifies a position on the y axis.

To define a value, you provide a value for each of the x and y axes. If you supply only one value, the

second value is assumed to be center. Listing 23-16 shows the use of the transform-origin property.

Listing 23-16. Using the transform-origin Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {

 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 -moz-transform: rotate(-45deg) scaleX(1.2);
 -moz-transform-origin: right top;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

608

 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, I have moved the origin to the top-right corner of the element. You can see the
effect this has in Figure 23-12.

Figure 23-12. Specifying an origin for a transform

Animating and Transitioning a Transform
You can apply animations and transitions to a transform, just as you would any other CSS property.
Listing 23-17 contains a demonstration.

Listing 23-17. Applying a Transition to a Transform

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {

CHAPTER 23 TRANSITIONS, ANIMATIONS, AND TRANSFORMS

609

 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 padding: 4px;
 }

 #banana:hover {
 -moz-transition-duration: 1.5s;
 -moz-transform: rotate(360deg);
 }

 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other
 well-known fruit, we are faced with thousands of choices.
 </p>
 </body>
</html>

In this example, I have defined a transition that will apply a 360-degree rotation transform over a
period of 1.5 seconds. This transition will be applied when the user hovers over the span element. You
can see the effect in Figure 23-13.

Figure 23-13. Combining transitions with transforms

Summary
In this chapter, I have shown you three new features in CSS3 that give you enormous control over the
appearance of your elements. Transitions, transforms, and animation are simple to use, and deliver
reasonable performance and great flexibility. I recommend using these features sparingly, but careful
application can enhance the appearance and overall user experience of web pages and applications.
I have used the browser-specific prefixes throughout this chapter, but the implementations are very
close to the standard and I would expect the browsers to offer support for the real property names soon.

C H A P T E R 24

611

Other CSS Properties and Features

In this chapter, I finish up my coverage of CSS with the properties that didn’t fit into the other chapters.
These are important and useful properties, but I couldn’t find a way of incorporating them into the
themes that the other chapters followed. In this chapter, you’ll see how to set the foreground color and
opacity of elements, and how to apply special styles to HTML table and list elements. Table 24-1
provides the summary for this chapter.

Table 24-1. Chapter Summary

Problem Solution Listing

Set the foreground color of an element. Use the color property. 24-1

Set the transparency for an element. Use the opacity property. 24-2

Specify how borders of adjacent table
cells are drawn.

Use the border-collapse and border-spacing
properties.

24-3
through
24-5

Specify the position of a table caption. Use the caption-side property. 24-6

Specify how the size of a table is
determined.

Use the table-layout property. 24-7

Specify the type of marker used in a list. Use the list-style-type property. 24-8

Use an image as a list marker. Use the list-style-image property. 24-9

Specify the position of a list marker. Use the list-style-position property. 24-10

Specify the cursor. Use the cursor property. 24-11

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

612

Setting Element Color and Transparency
You have seen different uses for CSS colors throughout this part of the book, with the background-color
property, the border-color property, and so on. There are two additional properties that relate to colors.
Table 24-2 describes these properties.

Table 24-2. The Color-Related Properties

Property Description Values

color Sets the foreground color of an element. <color>

opacity Sets the transparency of an element. <number>

Setting the Foreground Color
The color property sets the foreground color for the element. In principle, elements can have a different
interpretation of what the color property means to them, but in practice, the color property sets the
color of text. Listing 24-1 shows the color property in use.

Listing 24-1. Using the color Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: rgba(255, 255, 255, 0.7);
 }
 a:hover {
 color: red;
 }

 </style>
 </head>

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

613

 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other well-known fruit, we are faced
 with thousands of choices.
 Learn more about Bananas
 </p>
 </body>
</html>

In this example, I have used the color property twice: once to set the foreground color and
transparency for the span element, and once to set the foreground color of a elements when the mouse
hovers over them. You can see the effect in Figure 24-1. The effect might be hard to make out on the
printed page. To understand the effect, you should display the example HTML document in a browser.

Figure 24-1. Using the color property to set the foreground

Setting Element Opacity
Notice that I used the rgba function to set the color of the span element in the previous example. I made
the text slightly transparent by providing an alpha value that is less than 1. It might be difficult to see
from the figure, but the effect is that the text is allowing some of the background color to show through.

You can use the opacity property to make entire elements and their text content transparent. The
allowed range for this property is from zero (meaning completely transparent) to 1 (meaning completely
opaque). Listing 24-2 shows the opacity property in use.

Listing 24-2. Using the opacity Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>

v

http://en.wikipedia.org/wiki/Banana

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

614

 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: white;
 opacity: 0.4;
 }
 a:hover {
 color: red;
 }
 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other well-known fruit, we are faced
 with thousands of choices.
 Learn more about Bananas
 </p>
 </body>
</html>

In this example, I set the opacity of the span element to 0.4. The effect is shown in Figure 24-2, but
might be hard to make out on the printed page.

Figure 24-2. Setting the opacity of an element

http://en.wikipedia.org/wiki/Banana

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

615

Styling Tables
There are a number of properties that let you style the unique characteristics of the table element,
which I introduced in Chapter 11. Table 24-3 summarizes these properties.

Table 24-3. The Table-Related Properties

Property Description Values

border-collapse Specifies how borders on adjacent cells are handled. collapse
separate

border-spacing Specifies the spacing between adjacent cell borders. 1 or 2 <length>

caption-side Specifies the location of the caption element. top
bottom

empty-cells Specifies how borders are drawn on empty cells. hide
show

table-layout Specifies the layout style for the table. auto
fixed

Collapsing Table Borders
The border-collapse property lets you control the way that the browser draws borders for the table
element. You can see the default approach in Figure 24-3.

Figure 24-3. The default appearance of a table with borders

The browser draws a border around the table plus a border around each cell, creating a double
border effect. You can address this by applying the border-collapse property, as shown in Listing 24-3.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

616

Listing 24-3. Using the border-collapse Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border-collapse: collapse;
 }
 th, td {
 padding: 2px;
 }
 </style>
 </head>
 <body>
 <table border="1">
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">
 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td>Large</td><td>450</td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

617

 </body>
</html>

The collapse value tells the browser that you don’t want borders drawn on every edge of adjacent
elements. You can see the effect this has in Figure 24-4.

Figure 24-4. Collapsing the border for a table

Configuring Separated Borders
If you do use the default separate value for the border-collapse property, you can use some additional
properties to refine the appearance. The border-spacing property defines the amount of space that will
be drawn between the borders of adjacent elements, as shown in Listing 24-4.

Listing 24-4. Using the border-spacing Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border-collapse: separate;
 border-spacing: 10px;
 }
 th, td {
 padding: 2px;
 }
 </style>
 </head>
 <body>
 <table border="1">

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

618

 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">
 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td></td><td></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

In this example, I have specified a 10-pixel gap between borders. You can see the effect in Figure 24-
5.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

619

Figure 24-5. Using the border-spacing property

Dealing with Empty Cells
You can also tell the browser how to handle empty cells. By default, the browser draws a separate border
when a cell is empty, as you can see in Figure 24-5. You can control this behavior using the empty-cells
property. The show value, which is the default, creates the effect in Figure 24-3, while the hide value tells
the browser not to draw the border. Listing 24-5 shows the addition of the empty-cells property to the
style element of the previous example.

Listing 24-5. Using the empty-cells Property

<style>
 table {
 border-collapse: separate;
 border-spacing: 10px;
 empty-cells: hide;
 }
 th, td {
 padding: 2px;
 }
</style>

You can see the effect of this change in Figure 24-6.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

620

Figure 24-6. Using the empty-cells property

Positioning the Caption
As I explained in Chapter 11, when you add a caption element to a table, it is displayed at the top of the
table, even when it is not the first child element. You can change this behavior using the caption-side
property. This property has two values: top (the default) and bottom. Listing 24-6 shows the application
of this property.

Listing 24-6. Using the caption-side Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border-collapse: collapse;
 caption-side: bottom;
 }
 th, td {
 padding: 5px;
 }
 </style>
 </head>
 <body>
 <table border="1">
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

621

 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th>Favorite:</th><td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td></td><td></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

You can see the effect of this property in Figure 24-7.

Figure 24-7. Using the caption-side property to move the caption

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

622

Specifying the Table Layout
By default, the browser sets the width of the table based on the widest cell in each column. This means
that you don’t have to worry about figuring out the sizes yourself, but it also means that the browser has
to receive all of the table content before it can determine the layout for the page.

The approach that the browser takes to displaying tables is controlled by the table-layout property,
and the default value, described above, is set by the value auto. You can disable the automatic layout by
using the other allowed value fixed. In fixed mode, the size of the table is set by the width values for the
table and for individual columns. If there is no column width information available, the browser will
allocate the space evenly across the columns.

As a consequence, the browser is able to determine the width of each column after receiving just
one row of the table data. The data for subsequent rows is wrapped to make it fit (which can cause rows
to be higher than they would be in the auto mode).

Listing 24-7 shows the table-layout property in use.

Listing 24-7. Using the table-layout Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border-collapse: collapse;
 caption-side: bottom;
 table-layout: fixed;
 width: 100%;
 }
 th, td {
 padding: 5px;
 }
 </style>
 </head>
 <body>
 <table border="1">
 <caption>Results of the 2011 Fruit Survey</caption>
 <colgroup id="colgroup1">
 <col id="col1And2" span="2"/>
 <col id="col3"/>
 </colgroup>
 <colgroup id="colgroup2" span="2"/>
 <thead>
 <tr>
 <th>Rank</th><th>Name</th><th>Color</th>
 <th colspan="2">Size & Votes</th>
 </tr>
 </thead>
 <tbody>

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

623

 <tr>
 <th>Really Really Really Long Title:</th>
 <td>Apples</td><td>Green</td>
 <td>Medium</td><td>500</td>
 </tr>
 <tr>
 <th>2nd Favorite:</th><td>Oranges</td><td>Orange</td>
 <td></td><td></td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <th colspan="5">© 2011 Adam Freeman Fruit Data Enterprises</th>
 </tr>
 </tfoot>
 </table>
 </body>
</html>

In this example, I have set the width of the table element to occupy 100 percent of the available
space, and set the layout style to fixed. I have also changed the contents of one of the cells in the second
row to demonstrate the effect on the layout, which is shown in Figure 24-8.

Figure 24-8. Using the table-layout property

Notice how the available space is allocated evenly across the five columns and how the long title in
the second row is wrapped to make it fit, causing that row to be much higher than the others.

Styling Lists
There are a number of properties that are specific to styling lists. Table 24-4 summarizes these
properties.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

624

Table 24-4. The List-Related Properties

Property Description Values

list-style-type Specifies the type of marker used in the list. See Table 24-5.

list-style-image Specifies an image for use as a marker. <image>

list-style-position Specifies the position of the marker in relation to the
list item box.

inside
outside

list-style Shorthand property to set all list characteristics. See the following
explanation.

The format for the list-style shorthand property is as follows:

list-style: <list-style-type> <list-style-position> <list-style-image>

Setting the List Marker Type
You use the list-style-type property to set the style of marker (also sometimes known as the bullet) for
a list. You can see the allowed values for this property in Table 24-5.

Table 24-5. The list-style-type Property Values

Value Description

none No marker will be shown.

box
check
circle
diamond
disc
dash
square

Use the specified shape as the marker. Note that not all browsers support all
shapes.

decimal Use decimal numbers for the markers.

binary Use binary numbers for the markers.

lower-alpha Use lowercase alpha characters for the markers.

upper-alpha Use uppercase alpha characters for the markers.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

625

Table 24-5 shows only some of the available styles. There are a great many more, representing
different alphabets, symbol styles, and numeric conventions. You can find a full list at
www.w3.org/TR/css3-lists. Listing 24-8 shows the list-style-type property in use.

Listing 24-8. Using the list-style-type Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 ol {
 list-style-type: lower-alpha;
 }
 </style>
 </head>
 <body>
 I like apples and oranges.

 I also like:

 bananas
 mangoes
 <li style="list-style-type: decimal">cherries
 plums
 peaches
 grapes

 </body>
</html>

You can apply this property to entire lists or individual list items. I have done both in this example
(although the result isn’t something that would make sense to a reader). You can see the effect in Figure
24-9.

http://www.w3.org/TR/css3-lists

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

626

Figure 24-9. Setting the list marker type

Using an Image As a List Marker
You can use an image as the marker through the list-style-image property. Listing 24-9 shows this
property in action.

Listing 24-9. Using an Image As a List Marker

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 ul {
 list-style-image: url('banana-vsmall.png');
 }
 </style>
 </head>
 <body>
 I like apples and oranges.

 I also like:

 bananas
 mangoes
 cherries
 plums
 peaches
 grapes

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

627

 </body>
</html>

You can see the effect of applying this property in Figure 24-10.

Figure 24-10. Using an image as a list marker

Positioning the Marker
You can specify the position of the marker in relation to the li element’s content box using the list-
style-position property. The allowed values are inside (meaning that the marker is inside the content
box) and outside (meaning that the marker is outside the content box). Listing 24-10 shows the list-
style-position property and its values in use.

Listing 24-10. Specifying the Position of the Marker

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 li.inside {
 list-style-position: inside;
 }
 li.outside {
 list-style-position: outside;
 }
 li {

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

628

 background-color: lightgray;
 }
 </style>
 </head>
 <body>
 I like apples and oranges.

 I also like:

 These are the inside items:
 <li class="inside">bananas
 <li class="inside">mangoes
 <li class="inside">cherries
 These are the outside items:
 <li class="outside">plums
 <li class="outside">peaches
 <li class="outside">grapes

 </body>
</html>

I have broken the li items into two classes and applied different values of the list-style-position
property. You can see the effect in Figure 24-11.

Figure 24-11. Positioning the marker

In this figure, I have set the background-color property for all of the li elements so that you can see
the effect of each position value.

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

629

Styling the Cursor
The cursor property lets you change the appearance of the cursor. Table 24-6 summarizes this element.

Table 24-6. The cursor Property

Property Description Values

cursor Sets the style for the cursor. auto, crosshair, default, help, move, pointer,
progress, text, wait, n-resize, s-resize, e-resize, w-
resize, ne-resize, nw-resize, se-resize, and sw-
resize

The different values for the cursor property cause the browser to display different styles of cursor

when the mouse passes over the styled element. You can see the property in use in Listing 24-11.

Listing 24-11. Using the cursor Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 padding: 5px;
 border: medium double black;
 background-color: lightgray;
 font-family: sans-serif;
 }
 #banana {
 font-size: x-large;
 border: medium solid white;
 background-color: green;
 color: rgba(255, 255, 255, 0.7);
 cursor: progress;
 }

 </style>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other well-known fruit, we are faced
 with thousands of choices.
 </p>
 </body>

CHAPTER 24 OTHER CSS PROPERTIES AND FEATURES

630

</html>

You can see the effect in Figure 24-12. I have magnified the cursor to show that it switches to the
Windows 7 wait cursor when I pass the mouse over the span element.

Figure 24-12. Setting the cursor style

Summary
In this chapter, I have described the CSS properties that don’t really fit anywhere else. That’s not to say
that these properties are not important, just that they didn’t fit into the theme of the earlier chapters.
The properties in this chapter allow you to set the color and opacity of all elements, and apply specific
styles to lists and tables, which are essential HTML features in their own right.

P A R T IV

631

Working with the DOM

The Domain Object Model (DOM) allows you to use JavaScript to explore and manipulate the contents of
an HTML document. It is an essential set of features for creating rich content. In the chapters that follow,
I’ll show you how to gain access to the DOM, how to find and change JavaScript objects that represent
elements in the document, and how to respond to user interactions using events.

C H A P T E R 25

633

The DOM in Context

In this part of the book, you will explore the Document Object Model (the DOM). You can achieve some
complex effects using the elements and CSS properties I have shown you so far, but if you want to get
total control of your HTML, you need to use JavaScript. The DOM is the connection between JavaScript
and the contents of your HTML document. Using the DOM, you can add, remove, and manipulate
elements. You can respond to user interaction using events and you can take complete control of CSS.

From this point on, you are at the programming end of HTML5. Until now, you’ve created content
using element and CSS declarations, but it is time to put on your programmer hat and start using
JavaScript. Chapter 5 gives a tour of the JavaScript basics, if you need a refresher.

Understanding the Document Object Model
The DOM is a collection of objects representing the elements in your HTML document. The name says it
all: the DOM is quite literally a model, which is comprised of objects that represent your document. The
DOM is a key tool in web development and provides the bridge between the structure and content of
your HTML documents and JavaScript. To give an example, Listing 25-1 shows a simple HTML
document.

Listing 25-1. A Simple HTML Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other well-known fruit, we are faced
 with thousands of choices.
 </p>
 <p id="apples">
 One of the most interesting aspects of fruit is the

CHAPTER 25 THE DOM IN CONTEXT

634

 variety available in each country. I live near London, in an area which is

 known for its apples.
 </p>
 </body>
</html>

You can see how the browser displays the sample HTML document in Figure 25-1.

Figure 25-1. Displaying the basic HTML document

As part of the process of displaying your HTML document, the browser parses the HTML and
creates a model. The model preserves the hierarchy of the HTML elements, as shown in Figure 25-2, and
each element is represented by a JavaScript object.

Figure 25-2. The hierarchy of elements in an HTML document

CHAPTER 25 THE DOM IN CONTEXT

635

As you’ll see in the chapters that follow, you can use the DOM to get information about the
document or to make changes to it. This is the foundation of modern web applications.

Each model object in the model has properties and methods. When you use these to change the
state of the object, the browser reflects the changes in the corresponding HTML element and updates
your document.

All of the DOM objects that represent elements support the same set of basic features. These are
HTMLElement objects and the core functionality defined by HTMLElement is always available to use,
irrespective of the kind of element that an object represents. In addition, some objects define extra
functionality that let you perform operations that reflect the unique characteristics of specific HTML
elements. I describe these extra features in Chapter 31. This is an important point to note: every object in
the document model that represents an element supports at least the HTMLElement features and, in some
cases, extra features.

Not all of the objects available to you represent HTML elements. As you’ll soon see, there are objects
that represent collections of elements, objects that represent information about the DOM itself and, of
course, the Document object, which is our gateway into the DOM and the subject of Chapter 26.

 Note I am skipping over some detail here. If you are familiar with the concepts of object-oriented programming,
then it may help you to know that HTMLElement is an interface that is implemented by the objects contained in the
DOM. The objects used to represent more specific elements are interfaces that are derived from HTMLElement,
meaning that you can treat an object either as an implementation or HTMLElement, or its more specific subtype.
Don’t worry if you are not familiar with object-oriented concepts. It isn’t important to understand them for
mainstream web programming. I won’t be referring to them again and I will be referring to everything as an object
for simplicity.

Understanding DOM Levels and Compliance
As you start to work with the DOM, you will encounter web articles and tutorials that mention DOM
levels (that a certain feature is defined by DOM Level 3, for example). The DOM levels are the version
numbers for the standardization process and, for the most part, you should ignore them.

The standardization process for the DOM has been a mixed success. There are standards and
documents that describe each DOM level, but they are not fully implemented and the browsers have
simply cherry-picked useful features and ignored others. Worse, there is a degree of inconsistency
between the features that are implemented.

Part of the problem has been that the DOM specification has been developed separately from the
HTML standard. HTML5 attempts to address this problem by including a core set of DOM features that
should be implemented. However, this has yet to take effect and fragmentation remains.

There are a number of ways that you can deal with variability in DOM features. The first is to use a
JavaScript library, such as jQuery, which irons out the differences between browser implementation. The
advantage of using a library is consistency, but the disadvantage is that you are limited to the features
that the library supports. If you want to go outside of the library features, you are back to using the DOM
directly and face the same issue anyway. (That’s not to say that jQuery and its alternatives don’t have
value; they can be very useful and are well worth a look.)

The second approach is conservatism: use only the features that you know are widely supported.
This is the most sensible approach for the most part, although it does require careful and thorough

CHAPTER 25 THE DOM IN CONTEXT

636

testing. Furthermore, you have to be careful about testing new releases of browsers to make sure that
support for features hasn’t changed or been removed.

Testing for DOM Features
A third approach is to test for the presence of the property or method on the DOM object that is
associated with a feature. Listing 25-2 contains a simple example.

 Tip Don’t worry about the detail in the script in Listing 25-2. I’ll explain all of the objects and features that it
uses in the chapters that follow.

Listing 25-2. Testing for a Feature

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="paratext">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.

 </p>
 <script>
 var images;
 if (document.querySelectorAll) {
 images = document.querySelectorAll("#paratext > img");
 } else {
 images = document.getElementById("paratext").getElementsByTagName("img");
 }

 for (var i = 0; i < images.length; i++) {
 images[i].style.border = "thick solid black";
 images[i].style.padding = "4px";
 }
 </script>
 </body>
</html>

In this example, the script uses an if clause to determine whether the document object defines a
method called querySelectorAll. If the clause evaluates to true, then the browser supports the feature,
and I can go on and use it. If the clause evaluates to false, then I can take an alternative approach to
achieve the same goal.

CHAPTER 25 THE DOM IN CONTEXT

637

This is advice that you will often see when it comes to the DOM, but it is usually given glibly and
without pointing out the drawbacks, which can be serious.

The first drawback is that there isn’t always an alternative approach to achieve the effect of a given
feature. My neat example in Listing 25-2 works because the feature I am testing for is a convenience
enhancement built on top of other functions, but this isn’t always the case.

The second drawback is that I am only testing for the presence of the feature, and not the quality and
consistency of its implementation. Many features, especially when they are new, take several browser
releases to stabilize and achieve consistency. This is less of a problem than it used to be, but you can
easily end up with unexpected results because of variations in the way that browsers implement a
feature you rely on.

The third drawback is that you have to test every feature that you rely on. This requires extreme
diligence and produces code that is littered with endless tests. That’s not to say that this can’t be a useful
technique, but it has flaws and should not be taken as a substitute for proper testing.

The DOM Quick Reference
The following sections provide a quick reference for the objects, methods, properties, and events that I
describe in the chapters that follow.

The Document Members
Chapter 26 describes the Document object, which represents the current document and is your gateway
into the DOM. Table 25-1 summarizes the members that this object defines.

Table 25-1. The Document Object

Name Description Returns

activeElement Returns an object representing the currently
focused element in the document.

HTMLElement

body Returns an object representing the body
element in the document.

HTMLElement

characterSet Returns the document character set
encoding. This is a read-only property.

string

charset Gets or sets the document character set
encoding.

string

childNodes Returns the set of child elements. HTMLElement[]

compatMode Gets compatibility mode for the document. string

cookie Gets or sets the cookies for the current
document.

string

defaultCharset Gets the default character encoding used by string

CHAPTER 25 THE DOM IN CONTEXT

638

the browser.

defaultView
Returns the Window object for the current
document. See Chapter 26 for details of this
object.

Window

dir Gets or sets the text direction for the
document.

string

domain Gets or sets the domain for the current
document.

string

embeds
plugins

Returns objects representing all the embed
elements in the document.

HTMLCollection

firstChild Returns the first child element of an element. HTMLElement

forms Returns objects representing all the form
elements in the document.

HTMLCollection

getElementById(<id>) Returns the element with the specified id
value.

HTMLElement

getElementsByClassName(<clas
s>)

Returns the elements with the specified class
value.

HTMLElement[]

getElementsByName(<name>) Returns the elements with the specified name
value.

HTMLElement[]

getElementsByTagName(<tag>) Returns the elements of the specified type. HTMLElement[]

hasChildNodes() Returns true if the current element has child
elements.

boolean

head Returns an object representing the head
element.

HTMLHeadElement

images Returns objects representing all the img
elements.

HTMLCollection

implementation Provides information about the DOM features
that are available.

DOMImplementation

lastChild Returns the last child element. HTMLElement

lastModified Returns the last modified time of the
document.

string

CHAPTER 25 THE DOM IN CONTEXT

639

links
Returns objects representing all the a and
area elements in the document that have href
attributes.

HTMLCollection

location Provides information about the URL of the
current document.

Location

nextSibling Returns the sibling element defined after the
current element.

HTMLElement

parentNode Returns the parent element. HTMLElement

previousSibling Returns the sibling element defined before
the current element.

HTMLElement

querySelector(<selector>) Returns the first element that matches the
specified CSS selector.

HTMLElement

querySelectorAll(<selector>) Returns all of the elements that match the
specified CSS selector.

HTMLElement[]

readyState Returns the state of the current document. string

referrer
Returns the URL of the document that linked
to the current document (this is the value of
the corresponding HTTP header).

string

scripts Returns objects representing all the script
elements.

HTMLCollection

title Gets or sets the title of the current document. string

Chapter 26 also describes the Location object, which is summarized in Table 25-2.

Table 25-2. The Location Object

Name Description Returns

assign(<URL>) Navigates to the specified URL. void

hash Gets or sets the hash component of the
document URL.

string

host Gets or sets the host component of the
document URL.

string

CHAPTER 25 THE DOM IN CONTEXT

640

hostname Gets or sets the host name component of the
document URL.

string

href Gets or sets the current document’s location. string

pathname Gets or sets the path component of the
document URL.

string

port Gets or sets the port component of the
document URL.

string

protocol Gets or sets the protocol component of the
document URL.

string

reload() Reloads the current document. void

replace(<URL>) Removes the current document and navigates
to the one specified by the URL.

void

resolveURL(<URL>) Resolves the specified relative URL to an
absolute one.

string

search Gets or sets the query component of the
document URL.

string

The Window Members
Chapter 27 describes the Window object, which defines a wide range of features. Table 25-3 summarizes
the members that this object defines.

Table 25-3. The Window Object

Name Description Returns

alert(<msg>) Displays a dialog window to the user and
waits for it to be dismissed.

void

blur() Unfocuses the window. void

clearInterval(<id>) Cancels an interval timer. void

clearTimeout(<id>) Cancels a timeout timer. void

close() Closes the window. void

CHAPTER 25 THE DOM IN CONTEXT

641

confirm(<msg>) Displays a dialog window with an OK/Cancel
prompt.

boolean

defaultView Returns the Window for the active document. Window

document Returns the Document object associated with
this window.

Document

focus() Focuses the window. void

frames
Returns an array of the Window objects for the
nested iframe elements in the document.

Window[]

history Provides access to the browser history. History

innerHeight Gets the height of the window content area. number

innerWidth Gets the width of the window content area. number

length Returns the number of nested iframe
elements in the document.

number

location Provides details of the current document’s
location.

Location

opener Returns the Window that opened the current
browsing context.

Window

outerHeight Gets the height of the window, including
borders, menu bars, etc.

number

outerWidth Gets the width of the window, including
borders, menu bars, etc.

number

pageXOffet
Gets the number of pixels that the window
has been scrolled horizontally from the top-
left corner.

number

pageYOffset
Gets the number of pixels that the window
has been scrolled vertically from the top-left
corner.

number

parent Returns the parent of the current Window. Window

postMessage(<msg>, <origin>) Sends the message to another document. void

CHAPTER 25 THE DOM IN CONTEXT

642

print() Prompts the user to print the page. void

prompt(<msg>, <val>) Displays a dialog prompting the user to enter
a value.

string

screen Returns a Screen object describing the screen. Screen

screenLeft
screenX

Gets the number of pixels from the left edge of
the window to the left edge of the screen.

number

screenTop
screenY

Gets the number of pixels from the top edge
of the window to the top edge of the screen.

number

scrollBy(<x>, <y>) Scrolls the document relative to its current
position.

void

scrollTo(<x>, <y>) Scrolls to the specified position. void

self Returns the Window for the current document.

setInterval(<function>,
<time>)

Creates a timer that will call the specified
function every time milliseconds.

int

setTimeout(<function>,
<time>)

Creates a timer that will call the specified
function once after time milliseconds.

int

showModalDialog(<url>) Displays a pop-up window showing the
specified URL.

void

stop() Stops the document loading. void

top Returns the top-most Window. Window

Chapter 27 also describes the History object, whose members are summarized in Table 25-4.

Table 25-4. The History Object

Name Description Returns

back() Goes one step back in the history. void

forward() Goes one step forward in the history. void

go(<index>) Goes to a position in the history relative to the
current document. Positive values are
forward, negative are backward.

void

CHAPTER 25 THE DOM IN CONTEXT

643

length Returns the number of items in the history. number

pushState(<state>, <title>,
 <url>)

Adds an entry to the browser history. void

replaceState(<state>,
<title>,
 <url>)

Replaces the current entry in the browser
history.

void

state Returns the state data associated with the
current document in the browser history.

object

Chapter 27 also describes the Screen object, whose members are summarized in Table 25-5.

Table 25-5. The Screen Object

Name Description Returns

availHeight
Returns the height of the portion of the screen
available for displaying windows (excludes
toolbars, etc.).

number

availWidth
Returns the width of the portion of the screen
available for displaying windows (excludes
toolbars, etc.)

number

colorDepth Returns the color depth of the screen. number

height Returns the height of the screen. number

width Returns the width of the screen. number

The HTMLElement Members
Chapter 28 describes the HTMLElement object, which represents the HTML elements in the document.
Table 25-6 summarizes the members that this object defines.

Table 25-6. The HTMLElement Object

Name Description Returns

checked Gets or sets the presence of the checked
attribute.

boolean

CHAPTER 25 THE DOM IN CONTEXT

644

classList Gets or sets the list of classes that the element
belongs to.

DOMTokenList

className Gets or sets the list of classes that the element
belongs to.

string

dir Gets or sets the value of the dir attribute. string

disabled Gets or sets the presence of the disabled
attribute.

boolean

hidden Gets or sets the presence of the hidden
attribute.

boolean

id Gets or sets the value of the id attribute. string

lang Gets or sets the value of the lang attribute. string

spellcheck Gets or sets the presence of the spellcheck
attribute.

boolean

tabIndex Gets or sets the value of the tabindex
attribute.

number

tagName Returns the tag name (indicating the element
type).

string

title Gets or sets the value of the title attribute. string

add(<class>) Adds the specified class to the element. void

contains(<class>) Returns true if the element belongs to the
specified class.

boolean

length Returns the number of classes to which the
element belongs.

number

remove(<class>) Removes the specified class from the element. boid

toggle(<class>) Adds the class if it is not present, and removes
it if it is present.

boolean

attributes Returns the attributes applied to the element. Attr[]

dataset Returns the data-* attributes. string[<name>]

CHAPTER 25 THE DOM IN CONTEXT

645

getAttribute(<name>) Returns the value of the specified attribute. string

hasAttribute(<name>) Returns true if the element has the specified
attribute.

boolean

removeAttribute(<name>) Removes the specified attribute from the
element.

void

setAttribute(<name>,
<value>)

Applies an attribute with the specified name
and value.

void

appendChild(HTMLElement) Appends the specified element as a child of
the current element.

HTMLElement

cloneNode(boolean) Copies an element. HTMLElement

compareDocumentPosition(HTML
Element)

Determines the relative position of an
element.

number

innerHTML Gets or sets the element’s content. string

insertAdjacentHTML(<pos>,
<text>) Inserts HTML relative to the element. void

insertBefore(<newelem>,
<childElem>)

Inserts the first element before the second
(child) element.

HTMLElement

isEqualNode(<HTMLElement>) Determines whether the specified element is
equal to the current element.

boolean

isSameNode(HTMLElement) Determines whether the specified element is
the same as the current element.

boolean

outerHTML Gets or sets an element’s HTML and contents. string

removeChild(HTMLElement) Removes the specified child of the current
element.

HTMLElement

replaceChild(HTMLElement,
HTMLElement) Replaces a child of the current element. HTMLElement

createElement(<tag>) Creates a new HTMLElement object with the
specified tag type.

HTMLElement

createTextNode(<text>) Creates a new Text object with the specified
content.

Text

CHAPTER 25 THE DOM IN CONTEXT

646

Chapter 28 also describes the Text object, which is used to represent text content in a document.
Table 25-7 describes the members of the Text object.

Table 25-7. The Text Object

Name Description Returns

appendData(<string>) Appends the specified string to the end of the
block of text.

void

data Gets or sets the text. string

deleteData(<offset>,
<count>)

Removes the text from the string. The first
number is the offset, and the second is the
number of characters to remove.

void

insertData(<offset>,
<string>)

Inserts the specified string at the specified
offset.

void

length Returns the number of characters. number

replaceData(<offset>,
<count>, <string>)

Replaces a region of text with the specified
string.

void

replaceWholeText(<string>) Replaces all of the text. Text

splitText(<number>) Splits the existing Text element into two at the
specified offset. See the section “Inserting an
Element into a Text Block,” later in this
chapter, for a demonstration of this method.

Text

substringData(<offset>,
<count>)

Returns a substring from the text. string

wholeText Gets the text. string

DOM CSS Properties
Chapter 29 describes how you can use the DOM to work with CSS styles in a document. The properties
of the CSSStyleDeclaration object and the styles they correspond to (and the chapters in which they are
described) are listed in Table 25-8.

CHAPTER 25 THE DOM IN CONTEXT

647

Table 25-8. The Members of the CSSStyleDeclaration Object

Member Corresponds To See Chapter

background background 19

backgroundAttachment background-attachment 19

backgroundColor background-color 19

backgroundImage background-image 19

backgroundPosition background-position 19

backgroundRepeat background-repeat 19

border border 19

borderBottom border-bottom 19

borderBottomColor border-bottom-color 19

borderBottomStyle border-bottom-style 19

borderBottomWidth border-bottom-width 19

borderCollapse border-collapse 24

borderColor border-color 19

borderLeft border-left 19

borderLeftColor border-left-color 19

borderLeftStyle border-left-style 19

borderLeftWidth border-left-width 19

borderRight border-right 19

borderRightColor border-right-color 19

borderRightStyle border-right-style 19

borderRightWidth border-right-width 19

CHAPTER 25 THE DOM IN CONTEXT

648

borderSpacing border-spacing 24

borderStyle border-style 19

borderTop border-top 19

borderTopColor border-top-color 19

borderTopStyle border-top-style 19

borderTopWidth border-top-width 19

borderWidth border-width 19

captionSide caption-side 24

clear clear 20

color color 24

cssFloat float 20

cursor cursor 24

direction direction 22

display display 20

emptyCells empty-cells 24

font font 22

fontFamily font-family 22

fontSize font-size 22

fontStyle font-style 22

fontVariant font-variant 22

fontWeight font-weight 22

height height 20

letterSpacing letter-spacing 22

CHAPTER 25 THE DOM IN CONTEXT

649

lineHeight line-height 22

listStyle list-style 24

listStyleImage list-style-image 24

listStylePosition list-style-position 24

listStyleType list-style-type 24

margin margin 20

marginBottom margin-bottom 20

marginLeft margin-left 20

marginRight margin-right 20

marginTop margin-top 20

maxHeight max-height 20

maxWIdth max-width 20

minHeight min-height 20

minWidth min-width 20

outline outline 19

outlineColor outline-color 19

outlineStyle outline-style 19

outlineWidth outline-width 19

overflow overflow 20

padding padding 20

paddingBottom padding-bottom 20

paddingLeft padding-left 20

paddingRight padding-right 20

CHAPTER 25 THE DOM IN CONTEXT

650

paddingTop padding-top 20

tableLayout table-layout 24

textAlign text-align 22

textDecoration text-decoration 22

textIndent text-indent 22

textShadow text-shadow 22

textTransform text-transform 22

visibility visibility 20

whiteSpace whitespace 22

width width 20

wordSpacing word-spacing 22

zIndex z-index 21

The DOM Events
Chapter 30 explains the DOM event system. There are a number of different events available, as
described in Table 25-9.

Table 25-9. The DOM Events

Name Description

blur Triggered when the element loses the focus.

click Triggered when the mouse button is pressed and released.

dblclick Triggered when the mouse button is pressed and released twice.

focus Triggered when the element gains the focus.

focusin Triggered when the element is just about to gain the focus.

CHAPTER 25 THE DOM IN CONTEXT

651

focusout Triggered when the element is just about to lose the focus.

keydown Triggered when the user presses a key.

keypress Triggered when a user presses and releases a key.

keyup Triggered when the use releases a key.

mousedown Triggered when the mouse button is pressed.

mouseenter Triggered when the pointer is moved to be within the screen region occupied by
the element or one of its descendants.

mouseleave Triggered when the pointer is moved to be outside the screen region occupied
by the element and all its descendants.

mousemove Triggered when the pointer is moved while over the element.

mouseout The same as for mouseleave, except that this event will trigger while the pointer is
still over a descendant element.

mouseover The same as for mouseenter, except that this event will trigger while the pointer is
still over a descendant element.

mouseup Triggered when the mouse button is released.

onabort Triggered when the loading of a document or resource is aborted.

onafterprint Triggered when the Window.print() method is called, before the user is
presented with the print options.

onbeforeprint Triggered after the user has printed the document.

onerror Triggered when there is an error loading a document or resource.

onhashchange Triggered when the has fragment changes.

onload Triggered when the loading of a document or resource is complete.

onpopstate Triggered to provide a state object associated with the browser history. See
Chapter 26 for a demonstration of this event.

onresize Triggered when the window is resized.

onunload Triggered when the document is unloaded from the window/browser.

CHAPTER 25 THE DOM IN CONTEXT

652

readystatechange Triggered when the value of the readyState property changes.

reset Triggered when a form is reset.

submit Triggered when a form is submitted.

Summary
In this chapter, I have provided some context for the DOM and the role it plays in HTML documents. I
have also explained how DOM specification levels bear little relationship to the features implemented by
the mainstream browsers, and the different approaches you can take to ensure that the DOM features
you rely on are available in the browsers you target. Although, it must be said, none of these approaches
replace diligent and thorough testing.

This chapter also included some quick reference tables for the objects, members, and events that I
describe in the chapters that follow.

C H A P T E R 26

653

Working with the Document Object

In this chapter, I introduce you to one of its key components of the DOM: the Document object. The
Document object is the gateway to the functionality of the DOM and provides you with information about
the current document and a set of features to explore, navigate, search, and otherwise manipulate the
structure and content. Table 26-1 provides the summary for this chapter.

Table 26-1. Chapter Summary

Problem Solution Listing

Perform basic DOM tasks. Use the basic DOM API features. 1

Getting information about the
document.

Use the document metadata properties. 2

Get information about the
document location.

Use the document.location property. 3

Navigate to a new document. Change a property value of the Location object. 4, 5

Read and write cookies. Use the document.cookie property. 6

Determine how the browser is
progressing in processing the
document.

Use the document.readystate property. 7

Get details of the DOM features
implemented by the browser.

Use the document.implementation property. 8

Obtain objects representing
specific element types.

Use the document properties, such as images, links,
and scripts.

9, 10

Search for elements in the
document.

Use the document.getElement* methods. 11

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

654

Search for elements in the
document using a CSS selector.

Use the document.querySelector or
document.querySelectorAll methods.

12

Chain searches for elements
together.

Call the search methods on the result of an earlier
search.

13

Navigate the DOM tree. Use the document/element methods and properties
such as hasChildNodes(), firstChild, and lastChild.

14

You access the Document object through the global document variable; this is one of the key objects

that the browser creates for us. The Document object provides you with information about the document
as a whole and gives you access to the individual objects in the model. The best way to get started with
the DOM is with an example. Listing 26-1 shows the example document from the previous chapter, with
the addition of a script that demonstrates some basic DOM features.

Listing 26-1. Using the Document Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <p id="fruittext">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the
 countless types of apples, oranges, and other well-known fruit, we are faced
 with thousands of choices.
 </p>
 <p id="apples">
 One of the most interesting aspects of fruit is the
 variety available in each country. I live near London, in an area which is
 known for its apples.
 </p>
 <script>
 document.writeln("<pre>URL: " + document.URL);
 var elems = document.getElementsByTagName("p");
 for (var i = 0; i < elems.length; i++) {
 document.writeln("Element ID: " + elems[i].id);
 elems[i].style.border = "medium double black";
 elems[i].style.padding = "4px";
 }
 document.write("</pre>");
 </script>
 </body>
</html>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

655

The script is short and simple, but it neatly captures many of the different uses of the DOM. I’ll
break down the script into pieces and explain what is going on. One of the most basic things we can do
with the Document object is get information about the HTML document that we are working with. The
first line in the script does just that:

document.writeln("<pre>URL: " + document.URL);

In this case, I have read the value of the document.URL property, which returns the URL of the current
document. This is the URL that the browser used to load the document in which the script is running. I’ll
show you the different pieces of information you can get from the Document object in the “Getting
Information from the Document” section, later in this chapter.

The statement also calls the writeln method:

document.writeln("<pre>URL: " + document.URL);

This method appends content to the end of the HTML document. In this case, I have written the
opening tag of a pre element and the value of the URL property. This is a very simple example of
modifying the DOM, meaning that I have changed the structure of the document. I describe
manipulating the DOM in more detail in Chapter 28.

Next, I select some elements from the document:

var elems = document.getElementsByTagName("p");

There is a range of methods for selecting elements, which I’ll explain in the “Obtaining HTML
Element Objects” section, later in this chapter. The getElementsByTagName selects all of the elements of a
given type, in this case, p elements. Any p elements that are contained in the document are returned
from the method and placed in the variable called elems. As I explained, all elements are represented by
the HTMLElement object, which provides the basic functionality to represent HTML elements. The result
from the getElementsByTagName method is a collection of HTMLElement objects.

Now that I have a collection of HTMLElement objects to work with, I use a for loop to enumerate the
contents of the collection and process each p element that the browser has found in the HTML
document:

for (var i = 0; i < elems.length; i++) {
 document.writeln("Element ID: " + elems[i].id);
 elems[i].style.border = "medium double black";
 elems[i].style.padding = "4px";
}

For each HTMLElement in the collection, I read the id property to get the value of the id attribute and
use the document.writeln method to append the result to the contents of the pre element that I started
earlier:

for (var i = 0; i < elems.length; i++) {
 document.writeln("Element ID: " + elems[i].id);
 elems[i].style.border = "medium double black";
 elems[i].style.padding = "4px";
}

The id property is one of a number of properties defined by HTMLElement. I’ll show you the other
properties in Chapter 28. You can use these properties to obtain information about an element or to
modify it (and, by doing so, the HTML element that it represents). In this case, I have used the style
property to change the value of the CSS border and padding properties:

for (var i = 0; i < elems.length; i++) {

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

656

 document.writeln("Element ID: " + elems[i].id);
 elems[i].style.border = "medium double black";
 elems[i].style.padding = "4px";
}

These changes create an inline style for each of the elements that you found using the
getElementsByTagName earlier (I described inline styles in Chapter 4). When you change an object, the
browser applies the change to the corresponding element immediately, in this case, by adding padding
and a border to the p elements.

The last line of the script writes the end tag for the pre element that I opened back at the start of the
script. I use the write method to do this, which is just like writeln but doesn’t append end-of-line
characters to the string that is added to the document. This doesn’t make much of difference unless you
are writing preformatted content or content for which you have specified nonstandard whitespace
handling (see Chapter 22 for details).

The use of the pre element means that the end-of-line characters added by the writeln method will
be used to structure the content. You can see the effect on the display of the document in Figure 26-1.

Figure 26-1. The effect of the script on the basic HTML document

Working with Document Metadata
As I explained in the previous section, one use for the Document object is to provide you with information
about the document. Table 26-2 describes the properties you can use to get document metadata.

Table 26-2. Document Metadata Properties

Property Description Returns

characterSet

Returns the document character set encoding. This is a
read-only property.

string

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

657

charset Gets or sets the document character set encoding. string

compatMode Gets the compatibility mode for the document. string

cookie Gets or sets the cookies for the current document. string

defaultCharset Gets the default character encoding used by the browser. string

defaultView Returns the Window object for the current document; see
Chapter 27 for details of this object.

Window

dir Gets or sets the text direction for the document. string

domain Gets or sets the domain for the current document. string

implementation Provides information about the DOM features that are
available.

DOMImplementation

lastModified Returns the last modified time of the document (or the
current time if no modification time is available).

string

location Provides information about the URL of the current
document.

Location

readyState Returns the state of the current document. This is a read-
only property.

string

referrer Returns the URL of the document that linked to the current
document (this is the value of the corresponding HTTP
header).

string

title Gets or sets the title of the current document (the contents
of the title element, described in Chapter 7).

string

Getting Information from the Document
You can get some useful information about the document using the metadata properties, as
demonstrated by Listing 26-2.

Listing 26-2. Using the Document Object to Obtain Metadata

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

658

 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <script>
 document.writeln("<pre>");

 document.writeln("characterSet: " + document.characterSet);
 document.writeln("charset: " + document.charset);
 document.writeln("compatMode: " + document.compatMode);
 document.writeln("defaultCharset: " + document.defaultCharset);
 document.writeln("dir: " + document.dir);
 document.writeln("domain: " + document.domain);
 document.writeln("lastModified: " + document.lastModified);
 document.writeln("referrer: " + document.referrer);
 document.writeln("title: " + document.title);

 document.write("</pre>");
 </script>
 </body>
</html>

These properties provide you with some useful insights into the document that you are working
with. You can see the values for these properties as displayed by the browser in Figure 26-2.

Figure 26-2. Basic information about the document

Understanding Quirks Mode
The compatMode property tells you how the browser has handled the content in the document. There is a
lot of nonstandard HTML in the world, and browsers try to display such pages even when they don’t
conform to the HTML specification. Some of this content relies on features that date back to the days
when browsers competed on their unique differences, rather than standards compliance. The
compatMode property will return one of two values, as described in Table 26-3.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

659

Table 26-3. The compatMode Property Values

Value Description

CSS1Compat The document conforms to a valid HTML specification (although this need not be
HTML5; valid HTML4 documents will return this value, too).

BackCompat The document contains nonstandard features and has triggered the quirks mode.

Using the Location Object
The document.location property returns a Location object that gives you fine-grained information about
the document’s address and allows you to navigate to other documents. Table 26-4 describes the
functions and properties of the Location object.

Table 26-4. Location Methods and Properties

Property Description Returns

protocol Gets or sets the protocol component of the document URL string

host Gets or sets the host component of the document URL string

href Gets or sets the current document’s location string

hostname Gets or sets the host name component of the document URL string

port Gets or sets the port component of the document URL string

pathname Gets or sets the path component of the document URL string

search Gets or sets the query component of the document URL string

hash Gets or sets the hash component of the document URL string

assign(<URL>) Navigates to the specified URL void

replace(<URL>) Removes the current document and navigates to the one
specified by the URL.

void

reload() Reloads the current document void

resolveURL(<URL>) Resolves the specified relative URL to an absolute one string

The simplest use for the document.location property is to get information about the location of the

current object, as shown in Listing 26-3.

Listing 26-3. Using the Location Object to Get Information About the Document

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

660

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <script>
 document.writeln("<pre>");

 document.writeln("protocol: " + document.location.protocol);
 document.writeln("host: " + document.location.host);
 document.writeln("hostname: " + document.location.hostname);
 document.writeln("port: " + document.location.port);
 document.writeln("pathname: " + document.location.pathname);
 document.writeln("search: " + document.location.search);
 document.writeln("hash: " + document.location.hash);

 document.write("</pre>");
 </script>
 </body>
</html>

The search property returns the query string portion of the URL, and the hash property returns the
URL fragment. Figure 26-3 shows the values returned by the Location properties for the URL
http://titan/listings/example.html?query=apples#apples.

Figure 26-3. Using the Location object to get information

 Tip Notice that the property doesn’t return a value when the port is 80, the default for HTTP.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

661

Using the Location Object to Navigate Elsewhere
You can also use the Location object available through the document.location property to navigate
elsewhere. There are a couple of different ways of doing this. First, you can assign a new value to one of
the properties that I used in the previous example, as shown in Listing 26-4.

Listing 26-4. Navigating to a Document by Assigning a New Value to a Location Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <button id="pressme">Press Me</button>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <script>
 document.getElementById("pressme").onclick = function() {
 document.location.hash = "banana";
 }
 </script>
 </body>
</html>

This example contains a button element that, when clicked, causes a new value to be assigned to the
document.location.hash property. The association between the button and the JavaScript function that
will be executed when it is clicked is made using an event. This is the purpose of the onclick property,
and you can learn more about events in Chapter 30.

This change causes the browser to navigate to the element whose id attribute value matches the
hash value, the img element in this case. You can see the effect of this navigation in Figure 26-4.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

662

Figure 26-4. Using the Location object to navigate

Although I navigated to a different location within the same document, you can use the properties
of the Location object to navigate to other documents as well. However, this is usually done through the
href property, since you can set the complete URL. You can also use the methods that the Location
object defines.

The difference between the assign and replace methods is that replace removes the current
document from the browser’s history, meaning that when the user clicks the back button, for example,
the browser will skip over the current document, as though it had never been visited. Listing 26-5 shows
the use of the assign method.

Listing 26-5. Navigating Using the assign Method of the Location Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <button id="pressme">Press Me</button>
 <script>
 document.getElementById("pressme").onclick = function() {
 document.location.assign("http://apress.com");
 }
 </script>
 </body>
</html>

When the user clicks the button element, the browser will navigate to the specified URL, which in
this case is http://apress.com.

http://apress.com
http://apress.com

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

663

Reading and Writing Cookies
The cookie property allows you to read, add to, and update the cookies associated with the document.
Listing 26-6 gives a demonstration.

Listing 26-6. Reading and Creating Cookies

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <p id="cookiedata">

 </p>
 <button id="write">Add Cookie</button>
 <button id="update">Update Cookie</button>
 <script>

 var cookieCount = 0;
 document.getElementById("update").onclick = updateCookie;
 document.getElementById("write").onclick = createCookie;
 readCookies();

 function readCookies() {
 document.getElementById("cookiedata").innerHTML = document.cookie;
 }

 function createCookie() {
 cookieCount++;
 document.cookie = "Cookie_" + cookieCount + "=Value_" + cookieCount;
 readCookies();
 }

 function updateCookie() {
 document.cookie = "Cookie_" + cookieCount + "=Updated_" + cookieCount;
 readCookies();
 }
 </script>
 </body>
</html>

The cookie property works in a slightly odd way. When you read the value of the property, you get
back all of the cookies that are associated with the document. Cookies are name/value pairs in the form
name=value. If multiple cookies are available, all are returned as the result of the cookie property,
separated by a semicolon, for example: name1=value1;name2=value2.

By contrast, when you want to create a new cookie, you assign a new name/value pair as the value of
the cookie property, and it is added to the set of cookies for the document. You can set only one cookie

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

664

at a time. If you set a value whose name portion corresponds to an existing cookie, then the value
portion is used to update the cookie.

To demonstrate this, the listing contains a script that reads, creates, and updates cookies. The
readCookies function reads the value of the document.cookie property and sets the result as the content
of a paragraph (p) element.

There are two button elements in the document. When the Add Cookie button is clicked, the
createCookie function assigns a new value to the cookie property, which will be added to the cookie
collection. The Update Cookie button causes the updateCookie function to be invoked. This function
provides a new value for an existing cookie. You can see the effect of this script in Figure 26-5, but to
truly get a feel for what’s happening, I recommend you load this document and play around.

Figure 26-5. Adding and updating cookies

In this case, I have added three cookies, one of which has been updated to have a new value.
Although the name=value form is the default for adding cookies, you can apply some additional data that
changes the way the cookie is handled. These additions are described in Table 26-5.

Table 26-5. The Additional Fields That Can Be Added to a Cookie

Addition Description

path=<path> Sets the path associated with the cookie; this default to the path of the
current document if not specified.

domain=<domain> Sets the domain associated with the cookie; this defaults to the domain of
the current document if not specified.

max-age=<seconds> Sets the life of the cookie in terms of the number of seconds from the
moment it was created.

expires=<date> Sets the life of the cookie using a GMT-format date.

secure The cookie will be sent only over a secure (HTTPS) connection.

Each of these additional items is prepended to the name/value pair and separated with a semicolon,

like this:

document.cookie = "MyCookie=MyValue;max-age=10";

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

665

Understanding the Ready State
The document.readyState property gives you information about the current stage in the process of
loading and parsing the HTML document. Remember that, by default, the browser executes your scripts
as soon as it encounters the script element in the document, but that script execution can be deferred
using the defer attribute (as described in Chapter 7). As you have already seen in some of the examples
and as I’ll explain in detail in Chapter 30, you can use the JavaScript event system to execute individual
functions in response to changes in the document or user actions.

In all of these situations, it can be useful to know what stage the browser has got to in loading and
processing the HTML. The readyState property returns three different values, which are described in
Table 26-6.

Table 26-6. The Values Returned by the readyState Property

Value Description

loading The browser is loading and processing the document.

interactive The document has been parsed, but the browser is still loading linked
resources (images, media files, and so on).

complete The document has been parsed and all of the resources have been loaded.

The value of the readyState property moves from loading to interactive to complete as the browser
loads and processes the document. This property is most useful in conjunction with the
readystatechange event, which is triggered each time the value of the readyState property changes. I’ll
explain events in Chapter 30, but Listing 26-7 shows how you can use the event and the property
together to achieve a common task.

Listing 26-7. Using the Document Ready State to Defer Script Execution

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <script>
 document.onreadystatechange = function() {
 if (document.readyState == "interactive") {
 document.getElementById("pressme").onclick = function() {
 document.getElementById("results").innerHTML = "Button Pressed";
 }
 }
 }
 </script>
 </head>
 <body>
 <button id="pressme">Press Me</button>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

666

 <pre id="results"></pre>
 </body>
</html>

This script uses the document ready state to defer execution of a function until the document
reaches the interactive stage. This script relies on being able to find elements in the document that
have not been loaded by the browser at the point where the script is being executed. By deferring
execution until the document has been completely loaded, I can be sure that the elements will be found.
This is an alternative to putting the script element at the end of the document. I explain how to find
elements in the “Obtaining HTML Element Objects” section, later in this chapter. I explain how to use
events in Chapter 30.

Getting DOM Implementation Details
The document.implementation property provides you with information about the browser
implementation of the DOM features. This property returns a DOMImplementation object, which has one
method that you are interested in: the hasFeature method. You can use this method to determine which
DOM features are implemented, as demonstrated in Listing 26-8.

Listing 26-8. Using the document.implementation.hasFeature Method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 </head>
 <body>
 <script>

 var features = ["Core", "HTML", "CSS", "Selectors-API"];
 var levels = ["1.0", "2.0", "3.0"];

 document.writeln("<pre>");
 for (var i = 0; i < features.length; i++) {
 document.writeln("Checking for feature: " + features[i]);
 for (var j = 0; j < levels.length; j++) {
 document.write(features[i] + " Level " + levels[j] + ": ");
 document.writeln(document.implementation.hasFeature(features[i],
 levels[j]));
 }
 }
 document.write("</pre>")
 </script>
 </body>
</html>

This script checks some of the different DOM features and the defined feature levels. This isn’t as
useful as it might appear. First, browsers don’t always report the features they implement correctly.
Some implement features but don’t report them through the hasFeature method, and others claim to
implement features but don’t. Second, a browser reporting that a feature doesn’t mean that it is

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

667

implemented in a useful way. This is less of a problem than it has been, but there are some differences
between DOM implementations.

If you are intending to write code that works on all mainstream browsers (and you should be), then
the hasFeature method is not much use. Instead, check your code thoroughly during the testing phase,
test for the support and fallback when you need to, and, optionally, consider using a JavaScript library
(such as jQuery), which can help smooth out differences in the DOM implementations.

Obtaining HTML Element Objects
One of the key functions of the Document object is to act as a gateway to the objects that represent the
elements in your document. You can perform this task in a few different ways. There are properties that
return objects that represent specific types of element in the document, there are some handy methods
that let you match for elements using search criteria, and you can treat the DOM as a tree and navigate
through its structure. In the sections that follow, I introduce these techniques.

 Tip Obviously, you want to obtain these objects in order to do interesting things with them. I’ll describe how to
use these objects in Chapter 38, in which I describe the features of the HTMLElement object.

Using Properties to Obtain Element Objects
The Document object provides you with a set of properties that return objects that represent specific
elements or types of elements in the document. These properties are summarized in Table 26-7.

Table 26-7. Element Properties of the Document Object

Property Description Returns

activeElement Returns an object representing the currently focused
element

HTMLElement

body Returns an object representing the body element HTMLElement

embeds
plugins

Returns objects representing all the embed elements HTMLCollection

forms Returns objects representing all the form elements HTMLCollection

head Returns an object representing the head element HTMLHeadElement

images Returns objects representing all the img elements HTMLCollection

links Returns objects representing all the a and area elements in HTMLCollection

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

668

the document that have href attributes

scripts Returns objects representing all the script elements HTMLCollection

Most of the properties described in Table 26-7 return an HTMLCollection object. This is the way that

the DOM represents a collection of objects that represent elements. Listing 26-9 demonstrates the two
ways in which you can access the objects contained in the collection.

Listing 26-9. Working with the HTMLCollection Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>

 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <script>
 var resultsElement = document.getElementById("results");

 var elems = document.images;

 for (var i = 0; i < elems.length; i++) {
 resultsElement.innerHTML += "Image Element: " + elems[i].id + "\n";
 }

 var srcValue = elems.namedItem("apple").src;
 resultsElement.innerHTML += "Src for apple element is: " + srcValue + "\n";
 </script>
 </body>
</html>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

669

The first way of working with an HTMLCollection is to treat it like an array. The length property
returns the number of items in the collection, and the standard JavaScript array indexer is supported
(the element[i] notation) to provide direct access to individual objects in the collection. This is the first
approach I use in the example, having used the document.images property to get an HTMLCollection
containing object representing all of the img elements in the document.

 Tip Notice that I used the innerHTML property to set the contents of the pre element. I’ll explain this property in
more detail in Chapter 38.

The second approach is to use the namedItem method, which returns the item in the collection that
has the specified id or name attribute value (if there is one). This is the second approach I use in the
example, where I use the namedItem method to retrieve the object representing the img element with the
id attribute value of apple.

 Tip Notice that I read the value of the src property on one of the objects. This is a property that is implemented
by HTMLImageElement objects, which are used to represent img elements. I explain more about this kind of object
in Chapter 31. The other property I use, id, is part of HTMLElement and so is available for all types of element.

Using Array Notation to Obtain a Named Element
You can also use array-style notation to obtain an object representing a named element. This is an
element that has an id or name attribute value. Listing 26-10 provides an example.

Listing 26-10. Obtaining Named Element Objects

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>

 <p>
 There are lots of different kinds of fruit - there are over 500 varieties

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

670

 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <script>
 var resultsElement = document.getElementById("results");
 var elems = document["apple"];

 if (elems.namedItem) {
 for (var i = 0; i < elems.length; i++) {
 resultsElement.innerHTML += "Image Element: " + elems[i].id + "\n";
 }
 } else {
 resultsElement.innerHTML += "Src for element is: " + elems.src + "\n";
 }
 </script>
 </body>
</html>

You can see how I have used the array-style indexer to obtain an object representing the element
with an id value of apple. An oddity of obtaining elements this way is that you can get different kinds of
results, depending on the contents of the document and the order of the elements.

The browser looks at all of the elements in the document in a depth-first order, trying to match
either the id or name attribute to the specified value. If the first match is an id attribute, then the browser
stops searching (because id values must be unique in documents) and returns an HTMLElement
representing the matched element.

If the first match is against a name attribute value, then you will receive either an HTMLElement (if
there is only one matching element) or an HTMLCollection (if there is more than one). The browser won’t
match id values once it has started to match name values.

You can see how I use the namedItem property as a test to see which kind of result I have received. In
the example I receive an HTMLElement because the value I specified matches an id value.

 Tip You can also refer to named elements as properties. So, for example, document[apple] and
document.apple have the same meaning. I tend to prefer the dot-notation format because it makes it clearer that
I am trying to obtain element objects, but it is a matter of personal preference.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

671

Searching for Elements
The Document object defines a number of methods that you can use to search for elements in the
document. These methods are described in Table 26-8.

Table 26-8. Document Methods to Find Elements

Property Description Returns

getElementById(<id>) Returns the element with the specified id
value

HTMLElement

getElementsByClassName(<class>) Returns the elements with the specified class
value

HTMLElement[]

getElementsByName(<name>) Returns the elements with the specified name
value

HTMLElement[]

getElementsByTagName(<tag>) Returns the elements of the specified type HTMLElement[]

querySelector(<selector>) Returns the first element that matches the
specified CSS selector

HTMLElement

querySelectorAll(<selector>) Returns all of the elements that match the
specified CSS selector

HTMLElement[]

As you might expect, some of these methods return multiple elements. I have shown these as

returning an array of HTMLElement objects in the table, but this isn’t strictly true. In fact, these methods
return a NodeList, which is part of the underlying DOM specification that deals with generic structured
document formats and not just HTML. However, for these purposes, you can treat them like arrays and
keep the focus on HTML5.

The search methods can be broken into two categories. Listing 26-11 shows demonstrates the first
of these categories—those methods whose name begins with getElement.

Listing 26-11. Using the document.getElement* Methods

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

672

 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <script>
 var resultsElement = document.getElementById("results");

 var pElems = document.getElementsByTagName("p");
 resultsElement.innerHTML += "There are " + pElems.length + " p elements\n";

 var fruitsElems = document.getElementsByClassName("fruits");
 resultsElement.innerHTML += "There are " + fruitsElems.length
 + " elements in the fruits class\n";

 var nameElems = document.getElementsByName("apple");
 resultsElement.innerHTML += "There are " + nameElems.length
 + " elements with the name 'apple'";
 </script>
 </body>
</html>

These methods work just as you might expect, and there is only one behavior to note. When using
the getElementById method, the browser will return null if no element can be found with the specified
id value. By contrast, the other methods will always return an array of HTMLElement objects, but the
length property will return 0 to indicate no matches.

Searching with CSS Selectors
A useful alternative is to search using CSS selectors. Selectors allow you to find a broader range of
elements in the document. I describe CSS selectors in Chapters 17 and 18. Listing 26-12 demonstrates
obtaining element objects in this way.

Listing 26-12. Obtaining Element Objects Using CSS Selectors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

673

 <style>
 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>

 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 </p>

 <script>
 var resultsElement = document.getElementById("results");

 var elems = document.querySelectorAll("p, img#apple")
 resultsElement.innerHTML += "The selector matched " + elems.length
 + " elements\n";
 </script>
 </body>
</html>

In this example, I have used a selector that will match all p elements and the img element that has an
id value of apple. It is hard to achieve the same effect using the other document methods, and I find that
I use the selectors more frequently than the getElement methods.

Chaining Searches Together
A nice DOM feature is that all but one of the search methods the Document object implements are also
implemented by HTMLElement objects, allowing you to chain searches together. The exception is the
getElementById method, which is available only through the Document object. Listing 26-13 provides a
demonstration of chaining searches.

Listing 26-13. Chaining Searches Together

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

674

 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>
 <p id="tblock">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless
 types of apples,
 <span="orange">oranges</span="orange">, and other well-known fruit, we are
 faced with thousands of choices.
 </p>
 <script>
 var resultsElement = document.getElementById("results");

 var elems = document.getElementById("tblock").getElementsByTagName("span");
 resultsElement.innerHTML += "There are " + elems.length + " span elements\n";

 var elems2 = document.getElementById("tblock").querySelectorAll("span");
 resultsElement.innerHTML += "There are " + elems2.length
 + " span elements (Mix)\n";

 var selElems = document.querySelectorAll("#tblock > span");
 resultsElement.innerHTML += "There are " + selElems.length
 + " span elements (CSS)\n";

 </script>
 </body>
</html>

There are two chained searches in this example, both of which I have started with the
getElementById method (which gives me a single object to work with). In the first example, I chain a
search using the getElementsByTagName method, and in the second I use a very simple CSS selector
through the querySelectorAll method. Each of these examples returns the collection of span elements
contained in the p element whose id is tblock.

Of course, you can achieve the same effect using the CSS selector methods applied solely to the
Document object (which I have shown as the third part of the example), but this feature can be convenient
when you are dealing with HTMLElement objects that have been produced by another function in your
script (or by a third-party script). You can see the results of the searches in Figure 26-6.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

675

Figure 26-6. Chaining searches together

Navigating the DOM Tree
An alternative approach to searching for elements is to treat the DOM like a tree and navigate its
hierarchical structure. There are a set of properties and methods that are supported by all DOM objects
that let us do just that; they are described in Table 26-9.

Table 26-9. Tree navigation Properties and Methods

Property Description Returns

childNodes Returns the set of child elements HTMLElement[]

firstChild Returns the first child element HTMLElement

hasChildNodes() Returns true if the current element has child elements boolean

lastChild Returns the last child element HTMLElement

nextSibling Returns the sibling element defined after the current
element

HTMLElement

parentNode Returns the parent element HTMLElement

previousSibling Returns the sibling element defined before the current
element

HTMLElement

Listing 26-14 shows a script that lets you navigate around the document, displaying information
about the currently selected element in a pre element.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

676

Listing 26-14. Navigating the DOM Tree

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 pre {border: medium double black;}
 </style>
 </head>
 <body>
 <pre id="results"></pre>
 <p id="tblock">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless
 types of apples,
 <span="orange">oranges</span="orange">, and other well-known fruit, we are
 faced with thousands of choices.
 </p>

 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <p>
 <button id="parent">Parent</button>
 <button id="child">First Child</button>
 <button id="prev">Prev Sibling</button>
 <button id="next">Next Sibling</button>
 </p>

 <script>
 var resultsElem = document.getElementById("results");
 var element = document.body;

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonClick;
 }

 processNewElement(element);

 function handleButtonClick(e) {
 if (element.style) {
 element.style.backgroundColor = "white";
 }

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

677

 if (e.target.id == "parent" && element != document.body) {
 element = element.parentNode;
 } else if (e.target.id == "child" && element.hasChildNodes()) {
 element = element.firstChild;
 } else if (e.target.id == "prev" && element.previousSibling) {
 element = element.previousSibling;
 } else if (e.target.id == "next" && element.nextSibling) {
 element = element.nextSibling;
 }
 processNewElement(element);
 if (element.style) {
 element.style.backgroundColor = "lightgrey";
 }
 }

 function processNewElement(elem) {
 resultsElem.innerHTML = "Element type: " + elem + "\n";
 resultsElem.innerHTML += "Element id: " + elem.id + "\n";
 resultsElem.innerHTML += "Has child nodes: "
 + elem.hasChildNodes() + "\n";
 if (elem.previousSibling) {
 resultsElem.innerHTML += ("Prev sibling is: "
 + elem.previousSibling + "\n");
 } else {
 resultsElem.innerHTML += "No prev sibling\n";
 }
 if (elem.nextSibling) {
 resultsElem.innerHTML += "Next sibling is: "
 + elem.nextSibling + "\n";
 } else {
 resultsElem.innerHTML += "No next sibling\n";
 }
 }
 </script>
 </body>
</html>

The important part of the script is shown in bold; this is the section that does the actual navigation.
The rest of the script deals with the setup, processing button clicks and display information about the
currently selected element. You can see the effect of the script in Figure 26-7.

CHAPTER 26 WORKING WITH THE DOCUMENT OBJECT

678

Figure 26-7. Navigating the DOM tree

Summary
In this chapter, I introduced you to the Document object, which the browser creates for you and which
acts as the gateway into the Document Object Model (DOM). I explained how you get information about
the document, how you find and obtain objects that represent elements in the document, and how you
can navigate the DOM as a tree structure.

C H A P T E R 27

679

Working with the Window Object

The Window object has been added to the HTML specification as part of HTML5. Prior to this, it has been
an unofficial standard; browsers have implemented roughly the same set of features in a broadly
consistent way. With HTML5, the Window object in the specification incorporates the de facto
functionality and a few enhancements. Implementation of this object is mixed; different browsers have
different levels of compliance. This chapter focuses on the features that have a reasonable level of
support.

 Note Some of the advanced features described in this chapter rely on DOM events, which are the topic of
Chapter 30. If you are unfamiliar with events, you may wish to read that chapter and then return to the examples
in this one.

The Window object has been a bit of a dumping ground for features that don’t have a natural home
elsewhere. You will see what I mean as we tour the features of this object. Table 27-1 provides the
summary for this chapter.

Table 27-1. Chapter Summary

Problem Solution Listing

Obtain a Window object Use document.defaultView or the
window global variable

1

Get information about a window Use the Window informational
properties

2

Interact with the window Use the methods defined by the Window
object

3

Prompt the user with a modal dialog
window

Use the alert, confirm, prompt, and
showModalDialog methods on a Window
object

4

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

680

Perform simple operations on the browser
history

Use the back, forward, and go methods
on the History object returned by the
Window.history property

5

Manipulate the browser history Use the pushState and replaceState
methods on the History object
returned by the Window.history
property

6–11

Send a message to a script running in a
different document

Use the cross-document messaging
feature

12–15

Set one-off or repeating timers Use the setInterval, setTimeout,
clearInterval, and clearTimeout
methods on the Window object

16

Obtaining a Window Object
You can get a Window object in two ways. The official HTML5 way is to use the defaultView property on
the Document object. Another approach is to use the window global variable, which all of the browsers
support. Listing 27-1 demonstrates both techniques.

Listing 27-1. Obtaining a Window Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body id="bod">
 <table>
 <tr><th>outerWidth:</th><td id="owidth"></td></tr>
 <tr><th>outerHeight:</th><td id="oheight"></td></tr>
 </table>

 <script type="text/javascript">
 document.getElementById("owidth").innerHTML = window.outerWidth;
 document.getElementById("oheight").innerHTML
 = document.defaultView.outerHeight;
 </script>
 </body>
</html>

In the script I use the Window object to read the value of a pair of properties, outerWidth and
outerHeight, which are explained in the following section.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

681

Getting Information about the Window
As its name suggests, the basic functionality of the Window object relates to the window in which the
document is currently displayed. Table 27-2 lists the properties and methods that handle this
functionality. For the purposes of HTML, tabs within a browser window are treated as windows in their
own right.

Table 27-2. Window-Related Members

Name Description Returns

innerHeight Gets the height of the window content area number

innerWidth Gets the width of the window content area number

outerHeight Gets the height of the window, including borders, menu bars, and
so on

number

outerWidth Gets the width of the window, including borders, menu bars, and
so on

number

pageXOffset Gets the number of pixels that the window has been scrolled
horizontally from the top-left corner

number

pageYOffset Gets the number of pixels that the window has been scrolled
vertically from the top-left corner

number

screen Returns a Screen object describing the screen Screen

screenLeft
screenX

Gets the number of pixels from the left edge of the window to the
left edge of the screen (not all browsers implement both properties
or calculate this value in the same way)

number

screenTop
screenY

Gets the number of pixels from the top edge of the window to the
top edge of the screen (not all browsers implement both properties
or calculate this value in the same way)

number

Listing 27-2 shows how to use these properties to get information about the window.

Listing 27-2. Getting Information About the Window

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table { border-collapse: collapse; border: thin solid black;}
 th, td { padding: 4px; }

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

682

 </style>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>outerWidth:</th><td id="ow"></td><th>outerHeight:</th><td id="oh">
 </tr>
 <tr>
 <th>innerWidth:</th><td id="iw"></td><th>innerHeight:</th><td id="ih">
 </tr>
 <tr>
 <th>screen.width:</th><td id="sw"></td>
 <th>screen.height:</th><td id="sh">
 </tr>
 </table>

 <script type="text/javascript">
 document.getElementById("ow").innerHTML = window.outerWidth;
 document.getElementById("oh").innerHTML = window.outerHeight;
 document.getElementById("iw").innerHTML = window.innerHeight;
 document.getElementById("ih").innerHTML = window.innerHeight;
 document.getElementById("sw").innerHTML = window.screen.width;
 document.getElementById("sh").innerHTML = window.screen.height;
 </script>
 </body>
</html>

The script in this example displays the value of various Window properties in a table. Notice that I
used the screen property to obtain a Screen object. This object provides information about the screen
that the window is displayed on and defines the properties shown in Table 27-3.

Table 27-3. The Screen Object Properties

Name Description Returns

availHeight The height of the portion of the screen available for displaying windows
(excludes toolbars, menu bars, and so on)

number

availWidth The width of the portion of the screen available for displaying windows
(excludes toolbars, menu bars, and so on)

number

colorDepth The color depth of the screen number

height The height of the screen number

width The width of the screen number

You can see the effect of the script in Figure 27-1.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

683

Figure 27-1. Displaying information about the window and screen

Interacting with the Window
The Window object provides a set of methods through which you can interact with the window that
contains your document. These methods are described in Table 27-4.

Table 27-4. The Window Interaction Features

Name Description Returns

blur() Unfocuses the window void

close() Closes the window (not all browsers allow a script to
close the window)

void

focus() Focuses the window void

print() Prompts the user to print the page void

scrollBy(<x>, <y>) Scrolls the document relative to its current position void

scrollTo(<x>, <y>) Scrolls to the specified position void

stop() Stops the document from loading void

All of these methods should be used with caution because they take the control of the browser

window away from the user. Users have very fixed expectations of how applications should behave, and
windows that scroll, print, and close themselves are largely unwelcome. If you must use these methods,
put control in the hands of the user, and provide clear visual cues about what is going to happen.

Listing 27-3 shows some of the window interaction methods in use.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

684

Listing 27-3. Interacting with the Window

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p>
 <button id="scroll">Scroll</button>
 <button id="print">Print</button>
 <button id="close">Close</button>
 </p>
 <p>
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.

 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.

 When traveling in Asia, I was struck by how many different
 kinds of banana were available - many of which had unique flavors and
 which were only available within a small region.

 And, of course, there are fruits which are truly unique - I am put in mind
 of the durian, which is widely consumed in SE Asia and is known as the
 "king of fruits." The durian is largely unknown in Europe and the USA - if
 it is known at all, it is for the overwhelming smell, which is compared
 to a combination of almonds, rotten onions and gym socks.
 </p>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 if (e.target.id == "print") {
 window.print();
 } else if (e.target.id == "close") {
 window.close();
 } else {
 window.scrollTo(0, 400);
 }
 }
 </script>
 </body>
</html>

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

685

The script in this example prints, closes, and scrolls the window in response to button presses.

Prompting the User
The Window object contains a set of methods for prompting the user in different ways, as described in
Table 27-5.

Table 27-5. The Prompting Features

Name Description Returns

alert(<msg>) Displays a dialog window to the user and waits for it to
be dismissed

void

confirm(<msg>) Displays a dialog window with an OK/Cancel prompt boolean

prompt(<msg>, <val>) Displays a dialog prompting the user to enter a value string

showModalDialog(<url>) Displays a popup window showing the specified URL void

Each of these methods presents a different kind of prompt. Listing 27-4 demonstrates how they can
be used.

Listing 27-4. Prompting the User

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table { border-collapse: collapse; border: thin solid black;}
 th, td { padding: 4px; }
 </style>
 </head>
 <body>

 <button id="alert">Alert</button>
 <button id="confirm">Confirm</button>
 <button id="prompt">Prompt</button>
 <button id="modal">Modal Dialog</button>

 <script type="text/javascript">

 var buttons = document.getElementsByTagName("button");
 for (var i = 0 ; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

686

 if (e.target.id == "alert") {
 window.alert("This is an alert");
 } else if (e.target.id == "confirm") {
 var confirmed
 = window.confirm("This is a confirm - do you want to proceed?");
 alert("Confirmed? " + confirmed);
 } else if (e.target.id == "prompt") {
 var response = window.prompt("Enter a word", "hello");
 alert("The word was " + response);
 } else if (e.target.id == "modal") {
 window.showModalDialog("http://apress.com");
 }
 }
 </script>
 </body>
</html>

These features should be used with caution. Each browser handles the prompts differently and
creates a different experience for the user.

As an example, consider Figure 27-2, which shows the different approaches taken by Chrome and
Firefox for the alert prompt. The prompts may look similar, but the effect is quite different. Chrome
takes the specification literally and creates a modal dialog. This means that the browser won’t do
anything else until the user has clicked the OK button and dismissed the prompt. The user can’t switch
tabs, close the current tab, or do anything else with the browser. Firefox takes a more liberal view and
limits the effect of the prompt to the current tab. This is a more sensible approach, but it is a different
approach, and inconsistency is something to consider carefully when selecting features to use in a web
application.

Figure 27-2. Chrome and Firefox showing an alert prompt

The showModalDialog method creates a popup window—a feature that has been much abused by
advertisers. In fact, it’s has been so abused that all of the browsers make efforts to limit the use of this
feature to sites that the user has previously approved. If you are relying on a popup to present the user
with critical information, you run the risk that the message simply won’t be seen.

http://apress.com

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

687

 Tip If you want to attract the user’s attention, consider using inline dialog boxes provided by a JavaScript
library such as jQuery. They are simple to use, less intrusive, and behaviorally and visually consistent across
browsers. For more information about jQuery, see my book Pro jQuery, published by Apress.

Getting General Information
The Window object provides access to objects that return more general information, including details of
the current location (the URL from which the document was loaded) and the user’s browsing history.
These properties are described in Table 27-6.

Table 27-6. The Informational Object Properties

Name Description Returns

document Returns the Document object associated with this window Document

history Provides access to the browser history History

location Provides details of the current document’s location Location

The Document object is the subject of Chapter 26. The Location object that is returned by the

Window.location property is the same as for the Document.location property, which I also described in
Chapter 26. We’ll look at working with the browser history next.

Working with the Browser History
The Window.history property returns a History object, which you can use to perform basic operations on
the browser history. Table 27-7 describes the properties and methods that the History object defines.

Table 27-7. The History Object Properties and Methods

Name Description Returns

back() Goes one step back in the history void

forward() Goes one step forward in the history void

go(<index>) Goes to a position in the history relative to the
current document; positive values are forward,
and negative values are backward

void

length Returns the number of items in the history number

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

688

pushState(<state>, <title>,
 <url>)

Adds an entry to the browser history void

replaceState(<state>, <title>,
 <url>)

Replaces the current entry in the browser
history

void

state Returns the state data associated with the
current document in the browser history

object

Navigating Within the Browsing History
The back, forward, and go methods tell the browser to navigate to a URL in the history. The back and
forward methods have the same effect as the browser back and forward buttons. The go method
navigates to a place in the history relative to the current document. A positive value specifies the browser
should go forward in the history, and a negative value specifies to move backward. The magnitude of the
value specifies how many steps. For example, a value of -2 tells the browser to navigate to the document
before last in the history. Listing 27-5 demonstrates the use of these three methods.

Listing 27-5. Navigating Within the Browser History

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <button id="back">Back</button>
 <button id="forward">Forward</button>
 <button id="go">Go</button>

 <script type="text/javascript">

 var buttons = document.getElementsByTagName("button");
 for (var i = 0 ; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 if (e.target.id == "back") {
 window.history.back();
 } else if (e.target.id == "forward") {
 window.history.forward();
 } else if (e.target.id == "go") {
 window.history.go("http://www.apress.com");
 }
 }
 </script>
 </body>
</html>

http://www.apress.com

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

689

In addition to these basic functions, HTML5 provides support for changing the browser history,
within certain constraints. The best place to start is with an example of the kind of problem that
changing the history can help solve, as provided by Listing 27-6.

Listing 27-6. Dealing with the Browser History

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="msg"></p>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";
 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("msg").innerHTML = e.target.innerHTML;
 };
 }
 </script>
 </body>
</html>

This example contains a script that displays a message based on which button the user clicks. It’s all
very simple. The problem is that when the user navigates away from the example document, the
information about which button was clicked is lost. You can see this effect in Figure 27-3.

Figure 27-3. The regular history sequence

The sequence of events is as follows:

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

690

1. I navigate to the example document. The No selection made message is
displayed.

2. I click the Banana button. The Banana message is displayed.

3. I navigate to http://apress.com.

4. I click the back button to return to the example document.

At the end of this sequence, I am back at the example document, and no record of my previous
selection is available. This is the regular behavior of a browser—the browsing history is handled using
URLs. When I click the back button, the browser returns to the URL of my example, and I start all over
again. The history of my session looks like this:

• http://titan/listings/example.html

• http://apress.com

Inserting an Entry into the History
The History.pushState method lets you add a URL to the browser history, with some constraints. The
URL must be from the same server name and port as the current document. One approach to adding
URLs is to use just the query string or hash fragment appended to the current document, as shown in
Listing 27-7.

Listing 27-7. Adding an Entry to the Browser History

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="msg"></p>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";
 if (window.location.search == "?banana") {
 sel = "Selection: Banana";
 } else if (window.location.search == "?apple") {
 sel = "Selection: Apple";
 }
 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("msg").innerHTML = e.target.innerHTML;
 window.history.pushState("", "", "?" + e.target.id);
 };

http://apress.com
http://apress.com

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

691

 }
 </script>
 </body>
</html>

The script in this example uses the pushState method to add an item to the browser history. The
URL that it added is the URL of the current document plus a query string indicating which button the
user clicked. I also added some code that uses the Location object (described in Chapter 26) to read the
query string and the selected value. Two user-discernible changes arise from this script. The first occurs
when the user clicks one of the buttons, as shown in Figure 27-4.

Figure 27-4. The effect of pushing an item into the browser history

When the user clicks the Banana button, the browser navigation bar shows the URL I pushed into
the browsing history. The document isn’t reloaded; only the history and the displayed URL change. At
this point, the browser history looks like this:

• http://titan/listings/example.html

• http://titan/listings/example.html?banana

Each time a button is clicked, a new URL is added to the history, creating a record of the user’s path
through the navigation. The benefit of these additional entries comes when the user navigates elsewhere
and then returns to the document, as shown in Figure 27-5.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

692

Figure 27-5. Preserving application breadcrumbs through the browser history

This time, when the user clicks the back button, the URL that I inserted into the history is loaded,
and the script uses the query string to preserve some simple application state. This is a simple but useful
technique.

Adding an Entry for a Different Document
You don’t need to use the query string or the document fragment as the URL when you add an item to
the browser history. You can specify any URL that comes from the same source as the current document.
However, there is an oddity to note. Listing 27-8 provides a demonstration.

Listing 27-8. Using a Different URL in a History Entry

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="msg"></p>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";
 if (window.location.search == "?banana") {
 sel = "Selection: Banana";
 } else if (window.location.search == "?apple") {
 sel = "Selection: Apple";
 }
 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

693

 buttons[i].onclick = function(e) {
 document.getElementById("msg").innerHTML = e.target.innerHTML;
 window.history.pushState("", "", "otherpage.html?" + e.target.id);
 };
 }
 </script>
 </body>
</html>

This script has only one change: I set the URL argument to the pushState method to be
otherpage.html. Listing 27-9 shows the contents of otherpage.html.

Listing 27-9. The Contents of otherpage.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>Other Page</title>
 </head>
 <body>
 <h1>Other Page</h1>
 <p id="msg"></p>
 <script>
 var sel = "No selection made";
 if (window.location.search == "?banana") {
 sel = "Selection: Banana";
 } else if (window.location.search == "?apple") {
 sel = "Selection: Apple";
 }
 document.getElementById("msg").innerHTML = sel;
 </script>
 </body>
</html>

I still use the query string to maintain the user’s selection, but the document itself has changed. And
this is where the oddity comes in. Figure 27-6 shows what you can expect when you run this example.

Figure 27-6. Using a different URL in a history entry

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

694

As the figure shows, the other document’s URL is displayed in the navigation box, but the document
itself doesn’t change. And here’s the catch: if the user navigates away to another document and then
clicks the back button, the browser can choose either to display the original document (example.html in
this case) or the document specified (otherpage.html). You have no way of controlling which one will be
used. And what’s worse is that different browsers operate in different ways.

Storing Complex State in the History
Notice that when I used the pushState method in the last couple of examples, I used empty strings ("")
for the first two arguments. The middle argument is ignored by all of the mainstream browsers and is of
no interest here. But the first argument can be very useful, because it allows you to associate a complex
state object with a URL in the browser history.

In the previous examples, I used the query string to represent the user’s choice, which is fine for
such a simple piece of data, but not much help if you have more complex data to preserve. Listing 27-10
demonstrates how to use the first pushState argument to store something more complex.

Listing 27-10. Storing a State Object in the Browser History

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 * { margin: 2px; padding: 4px; border-collapse: collapse;}
 </style>
 </head>
 <body>
 <table border="1">
 <tr><th>Name:</th><td id="name"></td></tr>
 <tr><th>Color:</th><td id="color"></td></tr>
 <tr><th>Size:</th><td id="size"></td></tr>
 <tr><th>State:</th><td id="state"></td></tr>
 <tr><th>Event:</th><td id="event"></td></tr>
 </table>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>

 <script type="text/javascript">

 if (window.history.state) {
 displayState(window.history.state);
 document.getElementById("state").innerHTML = "Yes";
 } else {
 document.getElementById("name").innerHTML = "No Selection";
 }

 window.onpopstate = function(e) {
 displayState(e.state);
 document.getElementById("event").innerHTML = "Yes";
 }

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

695

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 var stateObj;
 if (e.target.id == "banana") {
 stateObj = {
 name: "banana",
 color: "yellow",
 size: "large"
 }
 } else {
 stateObj = {
 name: "apple",
 color: "red",
 size: "medium"
 }
 }
 window.history.pushState(stateObj, "");
 displayState(stateObj);
 };
 }

 function displayState(stateObj) {
 document.getElementById("name").innerHTML = stateObj.name;
 document.getElementById("color").innerHTML = stateObj.color;
 document.getElementById("size").innerHTML = stateObj.size;
 }
 </script>
 </body>
</html>

In this example, I represent the user’s selection using an object with three properties, containing the
name, color, and size of the fruit that the user has picked, like this:

stateObj = { name: "apple", color: "red", size: "medium"}

 When the user makes a selection, I use the History.pushState method to create a new history entry
and associate the state object with it, like this:

window.history.pushState(stateObj, "");

I haven’t specified a URL in this example, which means that the state object is associated with the
current document. (I did this to demonstrate the possibility; I could have specified a URL as in the
previous examples.)

You can use two ways to retrieve the state object when the user returns to your document. The first
is through the history.state property, like this:

...
if (window.history.state) {
 displayState(window.history.state);
...

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

696

The problem you face is that not all browsers make the state object available through this property
(Chrome doesn’t, for example). To deal with this, you must listen for the popstate event as well. I explain
events in Chapter 30, but this example is important for working with the history feature, so you may
want to return to this section after you have read that chapter. Here is the code that listens and responds
to the popstate event:

window.onpopstate = function(e) {
 displayState(e.state);
 document.getElementById("event").innerHTML = "Yes";
}

Notice that I display the state information in a table element, along with details of how the state
object was obtained: via the property or the event. You can see how this appears in Figure 27-7, but this
an example that really needs to be experimented with firsthand.

Figure 27-7. Using a state object in the browser history

 Caution You must be careful not to rely on the state information being available. The browser’s history can be
lost in a number of different situations, including the user explicitly deleting it.

Replacing an Item in the History
The previous examples have all focused on adding items to the history in addition to the current
document, but you can use the replaceState method to replace the entry for the current document.
Listing 27-11 provides a demonstration.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

697

Listing 27-11. Replacing the Current Entry in the Browser History

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="msg"></p>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>

 <script type="text/javascript">

 var sel = "No selection made";
 if (window.location.search == "?banana") {
 sel = "Selection: Banana";
 } else if (window.location.search == "?apple") {
 sel = "Selection: Apple";
 }
 document.getElementById("msg").innerHTML = sel;

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = function(e) {
 document.getElementById("msg").innerHTML = e.target.innerHTML;
 window.history.replaceState("", "", "otherpage?" + e.target.id);
 };
 }
 </script>
 </body>
</html>

Using Cross-Document Messaging
The Window object is a gateway to another new feature in HTML5 called cross-document messaging.
Under normal circumstances, scripts from different sources (known as origins) are not allowed to
communicate, although communication between scripts is such a sought-after feature that there have
been endless hacks and workarounds to bypass the browser security measures.

 Note This is an advanced topic that uses events, which are described in Chapter 30. You may wish to read that
chapter before reading this section.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

698

UNDERSTANDING SCRIPT ORIGINS

Browsers use components of a URL to determine the origin of a resource such as a script. Limitations are
placed on interaction and communication between scripts from different origins. If the protocol, hostname,
and port are the same, then two scripts are considered to be from the same origin, even if other parts of
the URL are different. The following table gives some examples, each of which is compared to the URL
http://titan.mydomain.com/example.html.

URL Result

http://titan.mydomain.com/apps/other.html Same origin

https://titan.mydomain.com/apps/other.html Different origin; protocol differs

http://titan:81.mydomain.com/apps/example.html Different origin; port differs

http://myserver.mydomain.com/doc.html Different origin; host differs

Scripts can use the document.domain property to change their origin, although only to widen the focus of
the current URL. For example, scripts that originate from http://server1.domain.com and
http://server2.domain.com can both set the domain property to domain.com in order to have the same
origin.

HTML5 provides a specification for this kind of communication through the Window method

described in Table 27-8.

Table 27-8. The Cross-Document Messaging Method

Name Description Returns

postMessage(<msg>, <origin>) Sends the specified message to another document void

To set the scene for this feature, Listing 27-12 shows the problem I’m trying to solve.

Listing 27-12. The Cross-Document Problem

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="status">Ready</p>
 <button id="send">Send Message</button>
 <p>

http://titan.mydomain.com/example.html
http://titan.mydomain.com/apps/other.html
https://titan.mydomain.com/apps/other.html
http://myserver.mydomain.com/doc.html
http://server1.domain.com
http://server2.domain.com

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

699

 <iframe name="nested" src="http://titan:81/otherdomain.html" width="90%"
 height="75px"></iframe>
 </p>
 <script>
 document.getElementById("send").onclick = function() {

 document.getElementById("status").innerHTML = "Message Sent";
 }
 </script>
 </body>
</html>

This document contains an iframe element that loads a document from a different source. Scripts
are from the same source only if they come from the same host and port. I will be loading this document
from port 80 on the server called titan, so a second server on port 81 is considered a different source.
Listing 27-13 shows the content of the otherdomain.html document, which will be loaded by the iframe.

Listing 27-13. The otherdomain.html Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Other Page</title>
 </head>
 <body>
 <h1 id="banner">This is the nested document</h1>
 <script>
 function displayMessage(msg) {
 document.getElementById("banner").innerHTML = msg;
 }
 </script>
 </body>
</html>

The goal is for the main document, example.html, to be able to call the displayMessage function
defined in the script element of the embedded document, otherdomain.html.

I use the postMessage method, but I need to call that method on the Window that contains the
document I want to target. Fortunately, the Window object provides the support needed to find
embedded documents, as described in Table 27-9.

Table 27-9. Finding Embedded Windows

Name Description Returns

defaultView Returns the Window for the active document Window

frames Returns an array of the Window objects for the nested iframe elements
in the document

Window[]

opener Returns the Window that opened the current browsing context Window

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

700

parent Returns the parent of the current Window Window

self Returns the Window for the current document Window

top Returns the topmost Window Window

length Returns the number of nested iframe elements in the document number

[<index>] Returns the Window for the nested document at the specified index Window

[<name>] Returns the Window for the nested document with the specified name Window

For this example, I am going to use the array-style notation to locate the Window object I want, so that

I can call the postMessage method. Listing 27-14 shows the required additions to the example.html
document.

Listing 27-14. Locating a Window Object and Invoking the postMessage Method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <p id="status">Ready</p>
 <button id="send">Send Message</button>
 <p>
 <iframe name="nested" src="http://titan:81/otherdomain.html" width="90%"
 height="75px"></iframe>
 </p>
 <script>
 document.getElementById("send").onclick = function() {
 window["nested"].postMessage("I like apples", "http://titan:81");
 document.getElementById("status").innerHTML = "Message Sent";
 }
 </script>
 </body>
</html>

I find the Window object that contains the script that I want to send the message to
(window["nested"]), and then call the postMessage method. The two arguments are the message that I
want to send and the origin of the target script, which in this case is http://titan:81, but will differ for
your environment if you are following this example.

 Caution As a security measure, the browser will discard the message if the postMessage method is called with
the wrong target origin.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

701

To receive the message, I need to listen for the message event in the other script. (As noted earlier, I
explain events in Chapter 30, and you may wish to read that chapter now if you are unfamiliar with
events and their operation.) The browser passes a MessageEvent object, which defines the properties
shown in Table 27-10.

Table 27-10. MessageEvent Properties

Name Description Returns

data Returns the message sent by the other script object

origin Returns the origin of the sending script string

source Returns the window associated with the sending script Window

Listing 27-15 shows how to use the message event to receive a cross-document message.

Listing 27-15. Listening for the Message Event

<!DOCTYPE HTML>
<html>
 <head>
 <title>Other Page</title>
 </head>
 <body>
 <h1 id="banner">This is the nested document</h1>
 <script>
 window.addEventListener("message", receiveMessage, false);

 function receiveMessage(e) {
 if (e.origin == "http://titan") {
 displayMessage(e.data);
 } else {
 displayMessage("Message Discarded");
 }
 }

 function displayMessage(msg) {
 document.getElementById("banner").innerHTML = msg;
 }
 </script>
 </body>
</html>

You can learn about the addEventListener method in Chapter 30. Note that when a message event is
received, I check the origin property of the MessageEvent object to make sure I recognize and trust the
other script. This is an important precaution that prevents messages from unknown and untrusted
scripts being acted on. I now have a simple mechanism for sending a message from one script to
another, even though they have different origins. You can see the effect in Figure 27-8.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

702

Figure 27-8. Using the cross-document messaging feature

Using Timers
A useful feature provided by the Window object is the ability to set one-off and recurring timers. These
timers are used to execute a function after a preset period. Table 27-11 summarizes the methods that
support this feature.

Table 27-11. Timing Methods

Name Description Returns

clearInterval(<id>) Cancels an interval timer void

clearTimeout(<id>) Cancels a timeout timer void

setInterval(<function>, <time>) Creates a timer that will call the specified
function every time milliseconds

int

setTimeout(<function>, <time>) Creates a timer that will call the specified
function once after time milliseconds

int

The setTimeout method creates a timer that executes the specified function just once, whereas the

setInterval method creates a timer that executes a function repeatedly. These methods return a unique
identifier that can later be used as an argument to the clearTimeout and clearInterval methods to
cancel the timer. Listing 27-16 shows the use of the timer methods.

Listing 27-16. Using the Timing Methods

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

703

 <body>
 <p id="msg"></p>
 <p>
 <button id="settime">Set Time</button>
 <button id="cleartime">Clear Time</button>
 <button id="setinterval">Set Interval</button>
 <button id="clearinterval">Clear Interval</button>
 </p>

 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var timeID;
 var intervalID;
 var count = 0;

 function handleButtonPress(e) {
 if (e.target.id == "settime") {
 timeID = window.setTimeout(function() {
 displayMsg("Timeout Expired");
 }, 5000);
 displayMsg("Timeout Set");
 } else if (e.target.id == "cleartime") {
 window.clearTimeout(timeID);
 displayMsg("Timeout Cleared");
 } else if (e.target.id == "setinterval") {
 intervalID = window.setInterval(function() {
 displayMsg("Interval expired. Counter: " + count++);
 }, 2000);
 displayMsg("Interval Set");
 } else if (e.target.id == "clearinterval") {
 window.clearInterval(intervalID);
 displayMsg("Interval Cleared");
 }
 }

 function displayMsg(msg) {
 document.getElementById("msg").innerHTML = msg;
 }

 </script>
 </body>
</html>

The script in this example sets and cancels timers and intervals that call the displayMsg function to
set the content of a p element. You can see the effect in Figure 27-9.

CHAPTER 27 WORKING WITH THE WINDOW OBJECT

704

Figure 27-9. Using timers and intervals

Timers and intervals can be useful, but you should consider their use carefully. Users expect an
application’s state to remain consistent except when they are directly interacting with it. If you find
yourself using timers to change the application state automatically, then you may wish to consider if the
result is helpful to the user or just plain annoying.

Summary
In this chapter, I have shown you the odd collection of functionality that is grouped together through the
Window object. Some of the features are directly related to windows, such as the ability to get the inner
and outer size of the browser window and the screen on which it is displayed. Other functions are less
directly related. These include the history and cross-document messaging features, which are important
HTML5 features.

C H A P T E R 28

705

Working with DOM Elements

In the previous chapter, some of the features of the HTMLElement object leaked through into the
discussion of the document-level features. We can now turn our focus toward the element object itself
and give it the attention it deserves. In this chapter, I’ll show you the different HTMLElement properties
and methods, and demonstrate how to use them. Table 28-1 provides the summary for this chapter.
Please note that not all of the examples work in all of the mainstream browsers.

Table 28-1. Chapter Summary

Problem Solution Listing

Get information about an element Use the HTMLElement metadata properties 1

Get or set a single string containing all
of the classes to which an element
belongs

Use the className property 2

Inspect or modify individual element
classes

Use the classList property 3

Get or set an element’s attributes Use the attribute, getAttribute, setAttribute,
removeAttribute, and hasAttribute methods

4, 6

Get or set an element’s custom
attributes

Use the dataset property 5

Work with an element’s text content Use Text objects 7–9

Create or delete elements Use the document.create* methods and the
HTMLElement methods for managing child
elements

10

Duplicate an element Use the cloneNode method 11

CHAPTER 28 WORKING WITH DOM ELEMENTS

706

Move an element Use the appendChild method 12

Compare two objects for equality Use the isSameNode method 13

Compare two elements for equality Use the isEqualNode method 14

Work directly with HTML fragments Use the innerHTML and outerHTML properties
and the insertAdjacentHTML method

15–17

Insert an element into a text block Use the splitText and appendChild methods 18

Working with Element Objects
HTMLElement objects provide a set of properties that you can use to read and modify data about the
element that is being represented. Table 28-2 describes these properties.

Table 28-2. Element Data Properties

Property Description Returns

checked Gets or sets the presence of the checked attribute boolean

classList Gets or sets the list of classes to which the element belongs DOMTokenList

className Gets or sets the list of classes to which the element belongs string

dir Gets or sets the value of the dir attribute string

disabled Gets or sets the presence of the disabled attribute boolean

hidden Gets or sets the presence of the hidden attribute boolean

id Gets or sets the value of the id attribute string

lang Gets or sets the value of the lang attribute string

spellcheck Gets or sets the presence of the spellcheck attribute boolean

tabIndex Gets or sets the value of the tabindex attribute number

tagName Returns the tag name (indicating the element type) string

title Gets or sets the value of the title attribute string

Listing 28-1 shows the use of some of the basic properties listed in the table.

CHAPTER 28 WORKING WITH DOM ELEMENTS

707

Listing 28-1. Using the Basic Element Data Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {border: medium double black;}
 </style>
 </head>
 <body>

 <p id="textblock" dir="ltr" lang="en-US">
 There are lots of differentß kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless
 types of apples,
 <span="orange">oranges, and other well-known fruit, we are
 faced with thousands of choices.
 </p>
 <pre id="results"></pre>
 <script>
 var results = document.getElementById("results");
 var elem = document.getElementById("textblock");

 results.innerHTML += "tag: " + elem.tagName + "\n";
 results.innerHTML += "id: " + elem.id + "\n";
 results.innerHTML += "dir: " + elem.dir + "\n";
 results.innerHTML += "lang: " + elem.lang + "\n";
 results.innerHTML += "hidden: " + elem.hidden + "\n";
 results.innerHTML += "disabled: " + elem.disabled + "\n";
 </script>
 </body>
</html>

You can see the results that the browser provides for these properties in Figure 28-1.

CHAPTER 28 WORKING WITH DOM ELEMENTS

708

Figure 28-1. Getting information about an element

Working with Classes
You can deal with the classes that an element belongs to in two ways. The first is to use the className
property, which returns a list of the classes. You add or remove classes by changing the value of the
string. You can see both reading and modifying the classes in this way in Listing 28-2.

 Tip A common use for classes is to target elements with styles. You’ll learn how to work with styles in the DOM
in Chapter 29.

Listing 28-2. Using the className Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 border: medium double black;
 }
 p.newclass {
 background-color: grey;
 color: white;

CHAPTER 28 WORKING WITH DOM ELEMENTS

709

 }
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <button id="pressme">Press Me</button>
 <script>
 document.getElementById("pressme").onclick = function(e) {
 document.getElementById("textblock").className += " newclass";
 };
 </script>
 </body>
</html>

In this example, clicking the button triggers the script, which appends a new class to the list for the
element. Notice that I need to add a leading space to the value I appended to the className property
value. This is because the browser expects a list of classes, each separated by a space. The browser will
apply styles whose selectors are class-based when I make a change like this, meaning that there is a clear
visual change in this example, as shown in Figure 28-2.

Figure 28-2. Using the className property

The className property is easy to use when you want to quickly add classes to an element, but it
becomes hard work if you want to do anything else, such as removing a class. Fortunately, you can use
the classList property, which returns a DOMTokenList object. This object defines some useful methods
and properties that allow you to manage the class list, as described in Table 28-3.

CHAPTER 28 WORKING WITH DOM ELEMENTS

710

Table 28-3. DOMTokenList Members

Member Description Returns

add(<class>) Adds the specified class to the element void

contains(<class>) Returns true if the element belongs to the specified class boolean

length Returns the number of classes to which the element belongs number

remove(<class>) Removes the specified class from the element boid

toggle(<class>) Adds the class if it is not present and removes it if it is present boolean

In addition to these properties and methods, you can also retrieve classes by index, using array-style

notation. The use of the DOMTokenList object is shown in Listing 28-3.

Listing 28-3. Using the classList Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {
 border: medium double black;
 }
 p.newclass {
 background-color: grey;
 color: white;
 }
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <pre id="results"></pre>
 <button id="toggle">Toggle Class</button>
 <script>
 var results = document.getElementById("results");
 document.getElementById("toggle").onclick = toggleClass;

 listClasses();

CHAPTER 28 WORKING WITH DOM ELEMENTS

711

 function listClasses() {
 var classlist = document.getElementById("textblock").classList;
 results.innerHTML = "Current classes: "
 for (var i = 0; i < classlist.length; i++) {
 results.innerHTML += classlist[i] + " ";
 }
 }

 function toggleClass() {
 document.getElementById("textblock").classList.toggle("newclass");
 listClasses();
 }
 </script>
 </body>
</html>

In this example, the listClasses function uses the classList property to obtain and enumerate the
classes that the p element belongs to, using the array-style indexer to retrieve class names.

The toggleClass function, which is invoked when the button is clicked, uses the toggle method to
add and remove a class called newclass. A style is associated with this class, and you can see the visual
effect of the class change in Figure 28-3.

Figure 28-3. Enumerating and toggling a class

Working with Element Attributes
There are properties for some of the most important global attributes, but there is also support for
reading and setting any attribute on an element. Table 28-4 describes the available methods and
properties defined by the HTMLElement object for this purpose.

Table 28-4. Attribute-Related Properties and Methods

Member Description Returns

attributes Returns the attributes applied to the element Attr[]

CHAPTER 28 WORKING WITH DOM ELEMENTS

712

dataset Returns the data-* attributes string[<name>]

getAttribute(<name>) Returns the value of the specified attribute string

hasAttribute(<name>) Returns true if the element has the specified
attribute

boolean

removeAttribute(<name>) Removes the specified attribute from the
element

void

setAttribute(<name>, <value>) Applies an attribute with the specified name
and value

void

The four methods for working with attributes are easy to use and behave just as you might expect.

Listing 28-4 demonstrates the use of these methods.

Listing 28-4. Using the Attribute Methods

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {border: medium double black;}
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <pre id="results"></pre>
 <script>
 var results = document.getElementById("results");
 var elem = document.getElementById("textblock");

 results.innerHTML = "Element has lang attribute: "
 + elem.hasAttribute("lang") + "\n";
 results.innerHTML += "Adding lang attribute\n";
 elem.setAttribute("lang", "en-US");
 results.innerHTML += "Attr value is : " + elem.getAttribute("lang") + "\n";
 results.innerHTML += "Set new value for lang attribute\n";
 elem.setAttribute("lang", "en-UK");
 results.innerHTML += "Value is now: " + elem.getAttribute("lang") + "\n";
 </script>

CHAPTER 28 WORKING WITH DOM ELEMENTS

713

 </body>
</html>

In this example, I check for, add, and change the value of the lang attribute. You can see the results
produced by this script in Figure 28-4.

Figure 28-4. Using the attribute methods

Working with the data-* Attributes
In Chapter 3, I described how HTML5 supports custom attributes that are prefixed with data-, such as
data-mycustomattribute. You can work with these custom attributes in the DOM via the dataset
property, which returns an array of values, indexed by the custom part of the name. Listing 28-5 contains
an example.

Listing 28-5. Using the dataset Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {border: medium double black;}
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>

CHAPTER 28 WORKING WITH DOM ELEMENTS

714

 <pre id="results"></pre>
 <script>
 var results = document.getElementById("results");
 var elem = document.getElementById("textblock");

 for (var attr in elem.dataset) {
 results.innerHTML += attr + "\n";
 }

 results.innerHTML += "Value of data-fruit attr: " + elem.dataset["fruit"];
 </script>
 </body>
</html>

The array of values that the dataset property returns isn’t indexed by position as in regular arrays. If
you want to enumerate the data-* attributes, you can do so using a for...in statement, as shown in the
listing. Alternatively, you can request a value by name. Note that you need to provide only the custom
part of the attribute name. For example, if you want the value of the data-fruit attribute, you request
the value dataset["fruit"]. You can see the effect of this script in Figure 28-5.

Figure 28-5. Using the dataset property

Working with All Attributes
You can obtain a collection containing all of the attributes for an element through the attributes
property, which returns an array of Attr objects. The properties of the Attr object are described in Table
28-5.

Table 28-5. Properties of the Attr Object

Properties Description Returns

name Returns the name of the attribute string

value Gets or sets the value of the attribute string

CHAPTER 28 WORKING WITH DOM ELEMENTS

715

Listing 28-6 shows how to use the attributes property and the Attr object to read and modify an
element’s attributes.

Listing 28-6. Working with the attributes Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {border: medium double black;}
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
 </p>
 <pre id="results"></pre>
 <script>
 var results = document.getElementById("results");
 var elem = document.getElementById("textblock");

 var attrs = elem.attributes;

 for (var i = 0; i < attrs.length; i++) {
 results.innerHTML += "Name: " + attrs[i].name + " Value: "
 + attrs[i].value + "\n";
 }

 attrs["data-fruit"].value = "banana";

 results.innerHTML += "Value of data-fruit attr: "
 + attrs["data-fruit"].value;
 </script>
 </body>
</html>

As you can see from the listing, the attributes in the array of Attr objects are indexed by position and
name. In this example, I enumerate the names and values of the attributes applied to an element, and
then modify the value of one of them. You can see the effect of this script in Figure 28-6.

CHAPTER 28 WORKING WITH DOM ELEMENTS

716

Figure 28-6. Using the attributes property

Working with Text
The text content of an element is represented by a Text object, which is presented as a child of the
element in the document model. Listing 28-7 shows an element with some text content.

Listing 28-7. An Element with Text Content

...
<p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
</p>
...

When the browser represents the p element in the document model, there will be an HTMLElement
object for the element itself and a Text object for the content, as shown in Figure 28-7.

Figure 28-7. The relationship between the objects representing an element and its content

If an element has children and they contain text, each will be handled in the same way. Listing 28-8
adds an element to the paragraph.

CHAPTER 28 WORKING WITH DOM ELEMENTS

717

Listing 28-8. Adding an Element to the Paragraph

...
<p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">
 There are lots of different kinds of fruit - there are over 500 varieties
 of banana alone. By the time we add the countless types of apples, oranges,
 and other well-known fruit, we are faced with thousands of choices.
</p>
...

The addition of the b element changes the hierarchy of nodes used to represent the p element and
its contents, as illustrated by Figure 28-8.

Figure 28-8. The effect of adding an element to the paragraph

The first child of the p element is a Text object that represents the text from the start of the block to
the b element. Then there is the b element, which has its own child Text object representing the text
contained between the start and end tags. Finally, the last child of the p element is a Text object
representing the text that follows the b element through to the end of the block. Table 28-6 describes the
members supported by the Text object.

Table 28-6. Members of the Text Object

Member Description Returns

appendData(<string>) Appends the specified string to the end of the
block of text

void

data Gets or sets the text string

deleteData(<offset>, <count>) Removes the text from the string; the first
number is the offset, and the second is the
number of characters to remove

void

insertData(<offset>, <string>) Inserts the specified string at the specified
offset

void

CHAPTER 28 WORKING WITH DOM ELEMENTS

718

length Returns the number of characters number

replaceData(<offset>, <count>,
<string>)

Replaces a region of text with the specified
string

void

replaceWholeText(<string>) Replaces all of the text Text

splitText(<number>) Splits the existing Text element into two at
the specified offset (see the “Inserting an
Element into a Text Block” section later in
this chapter for a demonstration of this
method)

Text

substringData(<offset>, <count>) Returns a substring from the text string

wholeText Gets the text string

Unfortunately, there are no convenient ways to locate Text elements, other than by finding their

parent element object and navigating through their children. This makes working with the Text elements
harder than it should be. Listing 28-9 shows some of the Text element methods and properties in use.

Listing 28-9. Dealing with Text

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 p {border: medium double black;}
 </style>
 </head>
 <body>
 <p id="textblock" class="fruit numbers" data-fruit="apple" data-sentiment="like">
 There are lots of different kinds of fruit - there are over 500
 varieties of banana alone. By the time we add the countless types of apples,
 oranges, and other well-known fruit, we are faced with thousands of choices.
 </p>
 <button id="pressme">Press Me</button>
 <pre id="results"></pre>
 <script>
 var results = document.getElementById("results");
 var elem = document.getElementById("textblock");

 document.getElementById("pressme").onclick = function() {
 var textElem = elem.firstChild;
 results.innerHTML = "The element has " + textElem.length + " chars\n";

CHAPTER 28 WORKING WITH DOM ELEMENTS

719

 textElem.replaceWholeText("This is a new string ");
 };
 </script>
 </body>
</html>

When the button element is pressed, I display the number of characters in the first Text child of the
p element and change its content using the replaceWholeText method.

 Caution An important point to note when working with text is that whitespace is not collapsed. This means that
any spaces or other whitespace characters that have been used to add structure to the HTML are counted as part
of the text.

Modifying the Model
In the previous sections, I have shown you how to use the DOM to modify individual elements. You can
change the attributes and the text content, for example. You can do this because there is a live link
between the DOM and the document itself. As soon as you make a change to the DOM, the browser
makes a corresponding change in the document. You can use this link to go further and change the
structure of the document itself. You can add, remove, duplicate, and copy elements in any way you
please. You do this by altering the DOM hierarchy, and since the link is live, the changes you make to the
hierarchy are immediately reflected in the browser. Table 28-7 describes the properties and methods
that are available for altering the DOM hierarchy.

Table 28-7. DOM Manipulation Members

Member Description Returns

appendChild(HTMLElement) Appends the specified element as a
child of the current element

HTMLElement

cloneNode(boolean) Copies an element HTMLElement

compareDocumentPosition(HTMLElement) Determines the relative position of an
element

number

innerHTML Gets or sets the element’s contents string

insertAdjacentHTML(<pos>, <text>) Inserts HTML relative to the element void

insertBefore(<newElem>, <childElem>) Inserts the first element before the
second (child) element

HTMLElement

isEqualNode(<HTMLElement>) Determines if the specified element is boolean

CHAPTER 28 WORKING WITH DOM ELEMENTS

720

equal to the current element

isSameNode(HTMLElement) Determines if the specified element is
the same as the current element

boolean

outerHTML Gets or sets an element’s HTML and
contents

string

removeChild(HTMLElement) Removes the specified child of the
current element

HTMLElement

replaceChild(HTMLElement, HTMLElement) Replaces a child of the current
element

HTMLElement

These properties and methods are available on all element objects. In addition, the document object

defines two methods that allow you to create new elements. This is essential when you want to add
content to your document. These creation methods are described in Table 28-8.

Table 28-8. DOM Manipulation Members

Member Description Returns

createElement(<tag>) Creates a new HTMLElement object with the specific tag
type

HTMLElement

createTextNode(<text>) Creates a new Text object with the specified content Text

Creating and Deleting Elements
You create new elements through the document object, and then insert them by finding an existing
HTMLElement and using one of the methods described previously. Listing 28-10 provides a demonstration.

Listing 28-10. Creating and Deleting Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 10px;
 }
 td { padding: 4px 5px; }

CHAPTER 28 WORKING WITH DOM ELEMENTS

721

 </style>
 </head>
 <body>
 <table border="1">
 <thead><th>Name</th><th>Color</th></thead>
 <tbody id="fruitsBody">
 <tr><td>Banana</td><td>Yellow</td></tr>
 <tr><td>Apple</td><td>Red/Green</td></tr>
 </tbody>
 </table>

 <button id="add">Add Element</button>
 <button id="remove">Remove Element</button>

 <script>
 var tableBody = document.getElementById("fruitsBody");

 document.getElementById("add").onclick = function() {
 var row = tableBody.appendChild(document.createElement("tr"));
 row.setAttribute("id", "newrow");
 row.appendChild(document.createElement("td"))
 .appendChild(document.createTextNode("Plum"));
 row.appendChild(document.createElement("td"))
 .appendChild(document.createTextNode("Purple"));
 };

 document.getElementById("remove").onclick = function() {
 var row = document.getElementById("newrow");
 row.parentNode.removeChild(row);
 }
 </script>
 </body>
</html>

The script in this example uses the DOM to add and remove rows from an HTML table (which is
described in Chapter 11). When adding the row, I start by creating a tr element, and then use it as the
parent for the td and Text objects. Notice how I use the method results to chain the calls together and
(slightly) simplify the code.

As you can see, the process of creating elements is laborious. You need to create the element,
associate it with its parent, and repeat the process for any child elements or text content. The process
for removing elements is also awkward. You must find the element, navigate to the parent element, and
then use the removeChild method. You can see the effect of this script in Figure 28-9.

CHAPTER 28 WORKING WITH DOM ELEMENTS

722

Figure 28-9. Using the DOM to create and remove elements

Duplicating Elements
You can use the cloneNode method to duplicate existing elements. This can be a convenient way to avoid
the process of creating the elements you want from scratch. Listing 28-11 demonstrates this technique.

Listing 28-11. Duplicating Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 10px;
 }
 td { padding: 4px 5px; }
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Multiply</th><th>Result</th></tr></thead>
 <tbody id="fruitsBody">
 <tr><td class="sum">1 x 1</td><td class="result">1</td></tr>
 </tbody>
 </table>

 <button id="add">Add Row</button>

CHAPTER 28 WORKING WITH DOM ELEMENTS

723

 <script>
 var tableBody = document.getElementById("fruitsBody");

 document.getElementById("add").onclick = function() {
 var count = tableBody.getElementsByTagName("tr").length + 1;

 var newElem = tableBody.getElementsByTagName("tr")[0].cloneNode(true);
 newElem.getElementsByClassName("sum")[0].firstChild.data = count
 + " + " + count;
 newElem.getElementsByClassName("result")[0].firstChild.data =
 count * count;

 tableBody.appendChild(newElem);
 };
 </script>
 </body>
</html>

In this example, I duplicate an existing row in a table to create more rows. The Boolean argument to
the cloneNode method specifies whether the child elements of the element should be duplicated as well.
In this case, I have specified true, because I want the td elements that are contained in the tr element to
form the structure of my new row.

 Tip Note the awkward way that I need to set the text for the table cells in this example. Dealing with Text
objects really is a pain. For a simpler approach, see the “Working with HTML Fragments” section later in this
chapter.

Moving Elements
When moving elements from one part of the document to another, you simply need to associate the
element you want to move with its new parent. You don’t need to dislocate the element from its starting
position. Listing 28-12 provides a demonstration by moving a row from one table to another.

Listing 28-12. Moving Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 10px;

CHAPTER 28 WORKING WITH DOM ELEMENTS

724

 float: left;
 }
 td { padding: 4px 5px; }
 p { clear:left; }
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody>
 <tr><td>Banana</td><td>Yellow</td></tr>
 <tr id="apple"><td>Apple</td><td>Red/Green</td></tr>
 </tbody>
 </table>

 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody id="fruitsBody">
 <tr><td>Plum</td><td>Purple</td></tr>
 </tbody>
 </table>

 <p>
 <button id="move">Move Row</button>
 </p>
 <script>
 document.getElementById("move").onclick = function() {
 var elem = document.getElementById("apple");
 document.getElementById("fruitsBody").appendChild(elem);
 };
 </script>
 </body>
</html>

When the button element is pressed, the script moves the tr element with the id of apple and calls
the appendChild element on the tbody element with the id of fruitsBody. This has the effect of moving
the row from one table to another, as shown in Figure 28-10.

CHAPTER 28 WORKING WITH DOM ELEMENTS

725

Figure 28-10. Moving an element from one part of a document to another

Comparing Element Objects
You can compare element objects in two ways. The first is simply to see if they represent the same
element, which you can do using the isSameNode method. This allows you to compare objects that you
have obtained from different queries, as shown in Listing 28-13.

Listing 28-13. Comparing Element Objects

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 }
 td { padding: 4px 5px; }
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody id="fruitsBody">
 <tr id="plumrow"><td>Plum</td><td>Purple</td></tr>
 </tbody>
 </table>
 <pre id="results"></pre>

CHAPTER 28 WORKING WITH DOM ELEMENTS

726

 <script>

 var elemByID = document.getElementById("plumrow");
 var elemByPos
 = document.getElementById("fruitsBody").getElementsByTagName("tr")[0];

 if (elemByID.isSameNode(elemByPos)) {
 document.getElementById("results").innerHTML = "Objects are the same";
 }

 </script>
 </body>
</html>

The script in this example locates element objects using two different techniques: by searching for a
specific id and by searching by tag type from the parent element. The isSameNode method returns true
when these objects are compared because they represent the same element.

The alternative is to test to see if element objects are equal , which you can do by using the
isEqualNode method. Elements are equal if they are of the same type, have the same attribute values, and
each of their children is also equal and in the same order. Listing 28-14 demonstrates a pair of equal
elements.

Listing 28-14. Working with Equal Elements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 2px 0px;
 }
 td { padding: 4px 5px; }
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody>
 <tr class="plumrow"><td>Plum</td><td>Purple</td></tr>
 </tbody>
 </table>

 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody>
 <tr class="plumrow"><td>Plum</td><td>Purple</td></tr>

CHAPTER 28 WORKING WITH DOM ELEMENTS

727

 </tbody>
 </table>

 <pre id="results"></pre>
 <script>
 var elems = document.getElementsByClassName("plumrow");

 if (elems[0].isEqualNode(elems[1])) {
 document.getElementById("results").innerHTML = "Elements are equal";
 } else {
 document.getElementById("results").innerHTML = "Elements are NOT equal";
 }
 </script>
 </body>
</html>

In this example, the two tr elements are equal, even though they are distinct elements in different
parts of the document. If I changed any of the attributes or the content of the child td element, then the
elements would no longer be equal.

Working with HTML Fragments
The innerHTML and outerHTML properties and the insertAdjacentHTML method are convenient syntax
shortcuts that allow you to work with fragments of HTML, thus avoiding the need to create elaborate
hierarchies of element and text objects. Listing 28-15 demonstrates using the innerHTML and outerHTML
properties to get the HTML from elements.

Listing 28-15. Using the innerHTML and outerHTML Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 5px 2px;
 float: left;
 }
 td { padding: 4px 5px; }
 p {clear: left};
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody>

CHAPTER 28 WORKING WITH DOM ELEMENTS

728

 <tr id="applerow"><td>Plum</td><td>Purple</td></tr>
 </tbody>
 </table>
 <textarea rows="3" id="results"></textarea>
 <p>
 <button id="inner">Inner HTML</button>
 <button id="outer">Outer HTML</button>
 </p>
 <script>
 var results = document.getElementById("results");
 var row = document.getElementById("applerow");

 document.getElementById("inner").onclick = function() {
 results.innerHTML = row.innerHTML;
 };

 document.getElementById("outer").onclick = function() {
 results.innerHTML = row.outerHTML;
 }
 </script>
 </body>
</html>

The outerHTML property returns a string containing the HTML defining the element and the HTML
of all of its children. The innerHTML property returns just the HTML of the children. In this example, I
defined a pair of buttons that display the inner and outer HTML for a table row. I displayed the content
in a textarea element, so that the browser treats the strings returned by these properties as text and not
HTML. You can see the effect of the script in Figure 28-11.

Figure 28-11. Displaying the outerHTML property for a table row

Changing the Document Structure
You can use the outerHTML and innerHTML properties to change the structure of the document as well. I
have been using the innerHTML property in many of the examples in this part of the book as a convenient
way of setting the content of elements, because I can use the property to set text content without
needing to create Text elements. Listing 28-16 shows how to use these properties to modify the
document model.

CHAPTER 28 WORKING WITH DOM ELEMENTS

729

Listing 28-16. Modifying the Document Model

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style>
 table {
 border: solid thin black;
 border-collapse: collapse;
 margin: 10px;
 float: left;
 }
 td { padding: 4px 5px; }
 p { clear:left; }
 </style>
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody>
 <tr><td>Banana</td><td>Yellow</td></tr>
 <tr id="apple"><td>Apple</td><td>Red/Green</td></tr>
 </tbody>
 </table>

 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody id="fruitsBody">
 <tr><td>Plum</td><td>Purple</td></tr>
 <tr id="targetrow"><td colspan="2">This is the placeholder</td></tr>
 </tbody>
 </table>

 <p>
 <button id="move">Move Row</button>
 </p>
 <script>
 document.getElementById("move").onclick = function() {
 var source = document.getElementById("apple");
 var target = document.getElementById("targetrow");
 target.innerHTML = source.innerHTML;
 source.outerHTML = '<tr id="targetrow"><td colspan="2">' +
 'This is the placeholder</td>';
 };
 </script>
 </body>
</html>

CHAPTER 28 WORKING WITH DOM ELEMENTS

730

In this example, I used the innerHTML property to set the child elements of a table row and the
outerHTML to replace an element inline. These properties work on strings, meaning that you can obtain
HTML fragments by reading the property values or by creating strings from scratch, as shown in the
listing. You can see the effect in Figure 28-12.

Figure 28-12. Using the innerHTML and outerHTML properties

Inserting HTML Fragments
The innerHTML and outerHTML properties are useful for replacing existing elements, but if you want to use
an HTML fragment to insert new elements, you must use the insertAdjacentHTML method. This method
takes two arguments. The first is a value from Table 28-9 indicating where the fragment should be
inserted relative to the current element, and the second is the fragment to insert.

Table 28-9. Position Parameter Values for the insertAdjacentHTML Method

Value Description

afterbegin Inserts the fragment as the first child of the current element

afterend Inserts the fragment immediately before the current element

beforebegin Inserts the fragment immediately before the current element

beforeend Inserts the fragment as the last child of the current element

Listing 28-17 shows the use of the insertAdjacentHTML method to insert fragments of HTML in and

around a table row element.

CHAPTER 28 WORKING WITH DOM ELEMENTS

731

Listing 28-17. Using the insertAdjacentHTML Method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <table border="1">
 <thead><tr><th>Fruit</th><th>Color</th></tr></thead>
 <tbody id="fruitsBody">
 <tr id="targetrow"><td>Placeholder</td></tr>
 </tbody>
 </table>

 <p>
 <button id="ab">After Begin</button>
 <button id="ae">After End</button>
 <button id="bb">Before Begin</button>
 <button id="be">Before End</button>
 </p>
 <script>
 var target = document.getElementById("targetrow");
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 if (e.target.id == "ab") {
 target.insertAdjacentHTML("afterbegin", "<td>After Begin</td>");
 } else if (e.target.id == "be") {
 target.insertAdjacentHTML("beforeend", "<td>Before End</td>");
 } else if (e.target.id == "bb") {
 target.insertAdjacentHTML("beforebegin",
 "<tr><td colspan='2'>Before Begin</td></tr>");
 } else {
 target.insertAdjacentHTML("afterend",
 "<tr><td colspan='2'>After End</td></tr>");
 }
 }

 </script>
 </body>
</html>

CHAPTER 28 WORKING WITH DOM ELEMENTS

732

In this example, I use the different position values to demonstrate how to insert HTML fragments in
different locations. This example is best to experiment with in a browser, but you can see the basic effect
in Figure 28-13.

Figure 28-13. Inserting HTML fragments into a document

Inserting an Element into a Text Block
An important variation on modifying the model is to add an element to a text block, represented by a
Text object. Listing 28-18 shows how this is done.

Listing 28-18. Inserting an Element into a Text Block

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p id="textblock">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p>
 <button id="insert">Insert Element</button>
 </p>
 <script>
 document.getElementById("insert").onclick = function() {

CHAPTER 28 WORKING WITH DOM ELEMENTS

733

 var textBlock = document.getElementById("textblock");
 textBlock.firstChild.splitText(10);
 var newText = textBlock.childNodes[1].splitText(4).previousSibling;
 textBlock.insertBefore(document.createElement("b"),
 newText).appendChild(newText);
 }
 </script>
 </body>
</html>

In this example, I have done the slightly difficult task of taking a word from the existing text and
making it a child of a new b element. As with the previous examples, dealing with the model means some
verbose code. Figure 28-14 shows the result.

Figure 28-14. Inserting an element into a block of text

Summary
This chapter introduced the functionality of the HTMLElement and Text objects, which represent elements
and content, respectively, in HTML documents. You saw how to get information about elements from
objects; how to work with text content; and how to use the capabilities of the DOM to add, modify,
duplicate, move, and delete elements. Working with the DOM can require verbose scripts, but the live
link between the object model and the way that the document is displayed to the user makes the effort
worthwhile.

C H A P T E R 29

735

Styling DOM Elements

As you will recall from Chapter 4, you can apply styles to an element indirectly (through a stylesheet or
the style element) or directly (through the style attribute). In this chapter, I show how you can use the
DOM to work with the CSS styles in your document—both the ones you have explicitly defined, as well
as the computed style that the browser uses to actually display elements. The specification for working
with CSS in the DOM contains some deep hierarchies of object types, many of which are not
implemented by the browsers. I have simplified the objects in this chapter to focus on those that the
browsers use. Table 29-1 provides the summary for this chapter. Please note that not all of the examples
work in all of the mainstream browsers.

Table 29-1. Chapter Summary

Problem Solution Listing

Get basic information about a
stylesheet.

Use the CSSStyleSheet properties. 29-1

Get details of the media constraints
applied to a stylesheet.

Use the MediaList object. 29-2

Enable or disable a stylesheet. Use the disabled property of the CSSStyleSheet
object.

29-3

Get details of individual styles
defined within a stylesheet.

Use the CSSRuleList and CSSStyleRule objects. 29-4

Obtain the style from an elements
style attribute.

Use the HTML.style property. 29-5

Get or set values for core CSS
properties.

Use the convenience properties of the
CSSStyleDeclaration object.

29-6

Get or set properties for all CSS
properties.

Use the setProperty and getPropertyValue
methods.

29-7

CHAPTER 29 STYLING DOM ELEMENTS

736

Explore the properties in a style. Enumerate the styles using the length property and
getPropertyValue method.

29-8

Get or set property priority. Use the getPropertyPriority and setProperty
methods.

29-9

Work with the fine-grained CSS
DOM objects.

Use the getPropertyCSSValue method. 29-10

Obtain the computed style for an
element.

Use the document.defaultView.getComputedStyle
method.

29-11

Working with Stylesheets
You access the CSS stylesheets available in your document using the document.styleSheets property,
which returns a collection of objects representing the stylesheets associated with the document. Table
29-2 summarizes the document.styleSheets property.

Table 29-2. Accessing Stylesheets

Property Description Returns

document.stylesheets Returns the collection of stylesheets. CSSStyleSheet[]

Each stylesheet is represented by a CSSStyleSheet object, which provides the set of properties and
methods for manipulating the styles in the document. Table 29-3 summarizes the CSSStyleSheet
members.

Table 29-3. The Members of the CSSStyleSheet Object

Member Description Returns

cssRules Returns the set of rules in the stylesheet. CSSRuleList

deleteRule(<pos>) Removes a rule from the stylesheet. void

disabled Gets or sets the disabled state of the stylesheet. boolean

href Returns the href for linked stylesheets. string

insertRule(<rule>, <pos>) Inserts a new rule into the stylesheet. number

media Returns the set of media constraints applied to the
stylesheet.

MediaList

CHAPTER 29 STYLING DOM ELEMENTS

737

ownerNode Returns the element in which the style is defined. HTMLElement

title Returns the value of the title attribute. string

type Returns the value of the type attribute. string

Getting Basic Information About Stylesheets
The place to start is to get some basic information about the stylesheets defined in the document. Listing
29-1 gives a demonstration.

Listing 29-1. Getting Basic Information About the Stylesheets in a Document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 border: medium double black;
 background-color: lightgray;
 }
 #block1 { color: white;}
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style media="screen AND (min-width:500px)" type="text/css">
 #block2 {color:yellow; font-style:italic}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <div id="placeholder"/>
 <script>

CHAPTER 29 STYLING DOM ELEMENTS

738

 var placeholder = document.getElementById("placeholder");
 var sheets = document.styleSheets;

 for (var i = 0; i < sheets.length; i++) {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");
 addRow(newElem, "Index", i);
 addRow(newElem, "href", sheets[i].href);
 addRow(newElem, "title", sheets[i].title);
 addRow(newElem, "type", sheets[i].type);
 addRow(newElem, "ownerNode", sheets[i].ownerNode.tagName);
 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

The script in this example enumerates the stylesheets defined in the document and creates a table
element containing the basic information available for each. In this document, there are three
stylesheets. Two are defined using script elements and the other is contained in an external file called
styles.css and is imported into the document using the link element. You can see the output from the
script in Figure 29-1.

Figure 29-1. Getting information about the stylesheets in the document

CHAPTER 29 STYLING DOM ELEMENTS

739

Note that not all properties have values. As an example, the href property will only return a value if
the stylesheet has been loaded as an external file.

Working with Media Constraints
As I demonstrated in Chapter 7, you can use the media attribute when defining stylesheets to restrict the
circumstances under which the styles will be applied. You can access those constraints through the
CSSStyleSheet.media property, which returns a MediaList object. The methods and properties of the
MediaList object are described in Table 29-4.

Table 29-4. The Members of the MediaList Object

Member Description Returns

appendMedium(<medium>) Adds a new medium to the list. void

deleteMedium(<medium>) Removes a medium from the list. void

item(<pos>) Returns the media at the specified index. string

length Returns the number of media. number

mediaText Returns the text value of the media attribute. string

Listing 29-2 demonstrates the use of the MediaList object.

Listing 29-2. Using the MediaList Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 border: medium double black;
 background-color: lightgray;
 }
 #block1 { color: white;}
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 <link rel="stylesheet" type="text/css" href="styles.css"/>
 <style media="screen AND (min-width:500px), PRINT" type="text/css">
 #block2 {color:yellow; font-style:italic}

CHAPTER 29 STYLING DOM ELEMENTS

740

 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <div id="placeholder"/>
 <script>
 var placeholder = document.getElementById("placeholder");
 var sheets = document.styleSheets;

 for (var i = 0; i < sheets.length; i++) {
 if (sheets[i].media.length > 0) {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");
 addRow(newElem, "Media Count", sheets[i].media.length);
 addRow(newElem, "Media Text", sheets[i].media.mediaText);
 for (var j =0; j < sheets[i].media.length; j++) {
 addRow(newElem, "Media " + j, sheets[i].media.item(j));
 }
 placeholder.appendChild(newElem);
 }
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

In this example, I create a table for any stylesheet that has a media attribute, enumerating the
individual media, the total number of media in the attribute value, and the overall media string. You can
see the effect of the script in Figure 29-2.

CHAPTER 29 STYLING DOM ELEMENTS

741

Figure 29-2. Working with the MediaList object

Disabling Stylesheets
The CSSStyleSheet.disabled property lets you enable and disable all of the styles in a stylesheet in a
single step. Listing 29-3 gives a demonstration of using this property to toggle a stylesheet on and off.

Listing 29-3. Enabling and Disabling a Stylesheet

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 border: medium double black;
 background-color: lightgray;
 }
 #block1 { color: white; border: thick solid black; background-color: gray;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of

CHAPTER 29 STYLING DOM ELEMENTS

742

 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div><button id="pressme">Press Me </button></div>
 <script>
 document.getElementById("pressme").onclick = function() {
 document.styleSheets[0].disabled = !document.styleSheets[0].disabled;
 }
 </script>
 </body>
</html>

In this example, clicking the button toggles the value of the disabled property on the (sole)
stylesheet. When a stylesheet is disabled, none of the styles within the stylesheet are applied to elements,
as you can see in Figure 29-3.

Figure 29-3. Disabling and enabling a stylesheet

Working with Individual Styles
The CSSStyleSheet.cssRules property returns a CSSRuleList object that provides access to the individual
styles in the stylesheet. The members of this object are described in Table 29-5.

Table 29-5. The Members of the CSSRuleList Object

Member Description Returns

item(<pos>) Returns the CSS style at the specified index. CSSStyleRule

length Returns the number of styles in the stylesheet. number

Each CSS style in the stylesheet is represented by a CSSStyleRule object (ignore, if you will, the

inconsistency in terminology). The members of the CSSStyleRule are shown in Table 29-6.

CHAPTER 29 STYLING DOM ELEMENTS

743

Table 29-6. The Members of the CSSStyleRule Object

Member Description Returns

cssText Gets or sets the text (including the selector) for the style. string

parentStyleSheet Gets the stylesheet to which this style belongs. CSSStyleSheet

selectorText Gets or sets the selector text for the style. string

style Gets an object representing the styles. CSSStyleDeclaration

Listing 29-4 shows the use of the CSSRuleList object and the basic properties of the CSSStyleRule

object. I say basic, because the style property returns a CSSStyleDeclaration property, which lets you
dig deeply into a style and which is the same object you use when applying styles to an individual
element. You can learn more about the CSSStyleDeclaration object in the section “Working with
CSSStyleDeclaration Objects,” later in this chapter.

Listing 29-4. Working with the CSSRuleList and CSSStyleRule Objects

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 border: medium double black;
 background-color: lightgray;
 }
 #block1 { color: white; border: thick solid black; background-color: gray;}
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <div><button id="pressme">Press Me </button></div>

CHAPTER 29 STYLING DOM ELEMENTS

744

 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 processStyleSheet();

 document.getElementById("pressme").onclick = function() {

 document.styleSheets[0].cssRules.item(1).selectorText = "#block2";

 if (placeholder.hasChildNodes()) {
 var childCount = placeholder.childNodes.length;
 for (var i = 0; i < childCount; i++) {
 placeholder.removeChild(placeholder.firstChild);
 }
 }
 processStyleSheet();
 }

 function processStyleSheet() {
 var rulesList = document.styleSheets[0].cssRules;

 for (var i = 0; i < rulesList.length; i++) {
 var rule = rulesList.item(i);

 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 addRow(newElem, "parentStyleSheet", rule.parentStyleSheet.title);
 addRow(newElem, "selectorText", rule.selectorText);
 addRow(newElem, "cssText", rule.cssText);
 placeholder.appendChild(newElem);
 }
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

This example does two things with these objects. The first is simply to get information about the
defined styles, reporting on the parent stylesheet, the selector, and the individual declarations contained
in the style. You can see this in Figure 29-4.

CHAPTER 29 STYLING DOM ELEMENTS

745

Figure 29-4. Getting information about a style

 Tip Notice how the shorthand properties I used in the style declarations have been expanded by the browser to
their constituent properties. Not all browsers do this. Some will display the shorthand properties if they have been
used (Firefox, for example, displays the shorthand properties; Chrome, as you can see in the figure, does not). If
you are trying to parse the CSS as a string, then you need to take this into account. Although, in general, working
directly with CSS values like this is a bad idea. See the section on the CSSStyleDeclaration object (“Working
with CSSStyleDeclaration Objects”), later in this chapter, for a better approach.

The script also demonstrates how easily you can change a style. When the button is clicked, the
selector for one of the styles is changed from #block1 to #block2, which has the effect of changing which
of the p elements the style applies to. As with other changes to the DOM, the browser reflects the new
selector immediately and updates the way that styles are applied, as shown in Figure 29-5.

CHAPTER 29 STYLING DOM ELEMENTS

746

Figure 29-5. Changing the selector for a style

Working with Element Styles
To obtain the properties defined in an element’s style attribute, you read the value of the style property
defined by HTMLElement objects (you can learn more about the HTMLElement objects in Chapter 28). The
style property returns a CSSStyleDeclaration object, which is the same kind of object that you can obtain
through stylesheets. I describe this object in detail in the next section. To demonstrate the
HTMLElement.style property, I have used the CSSStyleDeclaration.cssText property in Listing 29-5 to
display and modify the style properties that are applied to an element.

Listing 29-5. Obtaining a CSSStyleDeclaration Object from an HTMLElement

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 </head>
 <body>
 <p id="block1"
 style="color:white; border: thick solid black; background-color: gray">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div><button id="pressme">Press Me </button></div>

CHAPTER 29 STYLING DOM ELEMENTS

747

 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 var targetElem = document.getElementById("block1");
 displayStyle();

 document.getElementById("pressme").onclick = function() {
 targetElem.style.cssText = "color:black";
 displayStyle();
 }

 function displayStyle() {
 if (placeholder.hasChildNodes()) {
 placeholder.removeChild(placeholder.firstChild);
 }
 var newElem = document.createElement("table");
 addRow(newElem, "Element CSS", targetElem.style.cssText);
 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

This script displays the value of the style attribute for an element and, when the button is clicked,
changes that value to apply a different style. You can see the effect in Figure 29-6.

CHAPTER 29 STYLING DOM ELEMENTS

748

Figure 29-6. Reading and changing the style applied to an element

I have used Firefox in this figure because it displays the shorthand property names in the cssText
value.

 Tip In the section on stylesheets, I explained that it isn’t a good idea to try and parse the value of the cssText
property. The same applies when working with individual elements. See the section on the CSSStyleDeclaration
object that follows for a more robust approach to digging into the detail of CSS property values.

Working with CSSStyleDeclaration Objects
It doesn’t matter if you are dealing with stylesheets or an element’s style attribute. To get complete
control of CSS via the DOM, you have to use the CSSStyleDeclaration object. Table 29-7 describes the
members of this important object.

CHAPTER 29 STYLING DOM ELEMENTS

749

Table 29-7. The Members of the CSSStyleDeclaration Object

Member Description Returns

cssText Gets or sets the text of the style. string

getPropertyCSSValue(<name>) Gets the specified property. CSSPrimitiveValue

getPropertyPriority(<name>) Gets the priority of the specified property. string

getPropertyValue(<name>) Gets the specified value as a string. string

item(<pos>) Gets the item at the specified position. string

length Gets the number of items. number

parentRule Gets the style rule if there is one. CSSStyleRule

removeProperty(<name>) Removes the specified property. string

setProperty(<name>, <value>,
<priority>)

Sets the value and priority for the specified
property.

void

<style> Convenience property to get or set the
specified CSS property.

string

In addition to the item method, most browsers support array-style notation, so that item(4) and

item[4] are equivalent.

Working with the Convenience Properties
The easiest way to work with a CSSStyleDeclaration object is through the convenience properties, which
correspond to individual CSS properties. You can determine the current value for a CSS property by
reading the corresponding object property, and change the CSS value by assigning a new value to the
object property.

 Tip The values that I read and modify in this section are the configured values. You are effectively reading and
modifying the values defined in the HTML document, either in a stylesheet or applied directly to an element. When
the browser comes to display an element, it will generated a set of computed values, where the browser styles,
the stylesheets, and style attributes are allowed to cascade and inherit using the model I described in Chapter 4.

CHAPTER 29 STYLING DOM ELEMENTS

750

See the section “Working with Computed Styles” for details of how to obtain the computed CSS values for an
element.

Listing 29-6 provides a demonstration.

Listing 29-6. Working with CSSStyleDeclaration Object Convenience Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 #block1 { color: white; border: thick solid black; background-color: gray;}
 p {
 border: medium double black;
 background-color: lightgray;
 }
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2" style="border: medium dashed blue; color: red; padding: 2px">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <div><button id="pressme">Press Me </button></div>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 document.getElementById("pressme").onclick = function() {
 document.styleSheets[0].cssRules.item(1).style.paddingTop = "10px";
 document.styleSheets[0].cssRules.item(1).style.paddingRight = "12px";
 document.styleSheets[0].cssRules.item(1).style.paddingLeft = "5px";
 document.styleSheets[0].cssRules.item(1).style.paddingBottom = "5px";
 displayStyles();
 }

CHAPTER 29 STYLING DOM ELEMENTS

751

 function displayStyles() {
 if (placeholder.hasChildNodes()) {
 var childCount = placeholder.childNodes.length;
 for (var i = 0; i < childCount; i++) {
 placeholder.removeChild(placeholder.firstChild);
 }
 }
 displayStyleProperties(document.styleSheets[0].cssRules.item(1).style);
 displayStyleProperties(document.getElementById("block2").style);
 }

 function displayStyleProperties(style) {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 addRow(newElem, "border", style.border);
 addRow(newElem, "color", style.color);
 addRow(newElem, "padding", style.padding);
 addRow(newElem, "paddingTop", style.paddingTop);

 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

The script in Listing 29-6 displays the values of four CSSStyleDeclaration convenience properties.
These are read from objects obtained from a stylesheet and from an element’s style attribute to
demonstrate the two different ways you can get these objects. You can see how the values are displayed
in Figure 29-7.

CHAPTER 29 STYLING DOM ELEMENTS

752

Figure 29-7. Reading values from style convenience properties

The border, color, and padding convenience properties correspond to the CSS properties with the
same name. The paddingTop convenience property corresponds to the padding-top CSS property. This is
the general naming pattern for multiword CSS properties: remove the hyphens and capitalize the first
letter of the second and subsequent words. As you can see, there are convenience properties for both
shorthand and individual CSS properties (padding and paddingTop, for example). The convenience
properties return an empty string ("") when there is no value set for the corresponding CSS property.

When the button is clicked, the script modifies the value of the individual padding properties using
the paddingTop, paddingBottom, paddingLeft, and paddingRight convenience properties on the
CSSStyleDeclaration object obtained from the first stylesheet in the document. You can see the effect in
Figure 29-8. Not only do the changed values have an immediate effect on the appearance of the
document, but the shorthand and individual convenience properties are synchronized to reflect the new
values.

CHAPTER 29 STYLING DOM ELEMENTS

753

Figure 29-8. Changing CSS properties via a CSSStyleDeclaration object

Working with the Regular Properties
The convenience properties are simple to use if you already know the name of the CSS properties you
need to work with, and there is a convenience property available for it. If you need to explore the CSS
properties programmatically, or get/set a CSS property for which there is no corresponding convenience
property, then the other members of the CSSStyleDeclaration object can be very useful. Listing 29-7
shows some of these properties in use.

Listing 29-7. Using the Regular Properties of the CSSStyleDeclaration Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 color: white;
 border: medium double black;
 background-color: gray;
 padding-top: 5px;
 }

CHAPTER 29 STYLING DOM ELEMENTS

754

 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div><button id="pressme">Press Me </button></div>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 document.getElementById("pressme").onclick = function() {
 var styleDeclr = document.styleSheets[0].cssRules[0].style;
 styleDeclr.setProperty("background-color", "lightgray");
 styleDeclr.setProperty("padding-top", "20px");
 styleDeclr.setProperty("color", "black");
 displayStyles();
 }

 function displayStyles() {
 if (placeholder.hasChildNodes()) {
 var childCount = placeholder.childNodes.length;
 for (var i = 0; i < childCount; i++) {
 placeholder.removeChild(placeholder.firstChild);
 }
 }

 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 addRow(newElem, "border", style.getPropertyValue("border"));
 addRow(newElem, "color", style.getPropertyValue("color"));
 addRow(newElem, "padding-top", style.getPropertyValue("padding-top"));
 addRow(newElem, "background-color",
 style.getPropertyValue("background-color"));

 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>

CHAPTER 29 STYLING DOM ELEMENTS

755

 </body>
</html>

In this example, I read the style properties from only one source: the stylesheet. I use the
getPropertyValue method to retrieve a value for a CSS property, and the setProperty method to define
new values. Notice that you use the real CSS property names with these methods, and not the names of
the convenience properties.

Exploring Properties Programmatically
In the examples so far, I have explicitly named the CSS properties I wanted to work with. If I want to
obtain information about which properties have been applied without prior knowledge, I must explore
via the CSSStyleDeclaration members, as shown in Listing 29-8.

Listing 29-8. Programmatically Exploring CSS Properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 color: white;
 background-color: gray;
 padding: 5px;
 }
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 function displayStyles() {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;
 for (var i = 0; i < style.length; i++) {

CHAPTER 29 STYLING DOM ELEMENTS

756

 addRow(newElem, style[i], style.getPropertyValue(style[i]));
 }

 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

The script in this example enumerates the properties in the first style in the stylesheet. You can see
the results in Figure 29-9.

Figure 29-9. Enumerating the properties in a style

Getting Style Property Importance
As I explained in Chapter 4, you can apply !important to a property declaration to give priority to the
value when the browser assesses which values are used to display an element. When working with the
CSSStyleDeclaration object, you can use the getPropertyPriority method to see if !important has been
applied to a property, as demonstrated in Listing 29-9.

CHAPTER 29 STYLING DOM ELEMENTS

757

Listing 29-9. Getting the Importance of a Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 color: white;
 background-color: gray !important;
 padding: 5px !important;
 }
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 function displayStyles() {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 for (var i = 0; i < style.length; i++) {
 addRow(newElem, style[i], style.getPropertyPriority(style[i]));
 }
 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

CHAPTER 29 STYLING DOM ELEMENTS

758

The getPropertyPriority method returns important for high priority values, and the empty string
("") if no importance has been specified.

 Tip You can use the setProperty method to specify whether a value is important. I omitted the importance
argument when I demonstrated the setProperty method earlier in the chapter, but if you want !important
applied to a value, then specify important as the third argument to the setProperty method.

Using the Fine-Grained CSS DOM Objects
By enumerating the properties in a style and using the getPropertyValue method, you can discover
which properties have been used. However, you still need to know something about each property to
make use of it. For example, you have to know that values for the width property are expressed as
lengths, and the values for the animation-delay property are expressed as time spans.

In some situations, you don’t want to have this knowledge in advance, and so you can use the
CSSStyleDeclaration.getPropertyCSSValue method to obtain CSSPrimitiveValue objects that represent
the values defined for each property in the style. Table 29-8 describes the members of the
CSSPrimitiveValue object.

Table 29-8. The Members of the CSSPrimitiveValue Object

Member Description Returns

cssText Gets a text representation of the value. string

getFloatValue(<type>) Gets a number value. number

getRGBColorValue() Gets a color value. RGBColor

getStringValue() Gets a string value. string

primitiveType Gets the unit type for the value. number

setFloatValue(<type>, <value>) Sets a numeric value. void

setStringValue(<type>, <value>) Sets a value for a string-based value. void

The key to the CSSPrimitiveValue object is the primitiveType property, which tells you the units that

the value of the property has been expressed in. The set of defined unit types is shown in Table 29-9.
These correspond to the CSS units I described in Chapter 4.

CHAPTER 29 STYLING DOM ELEMENTS

759

Table 29-9. The Members of the CSSPrimitiveValue Object

Primitive Unit Type Description

CSS_NUMBER The unit is expressed as a number.

CSS_PERCENTAGE The unit is expressed as a percentage.

CSS_EMS The unit is expressed in ems.

CSS_PX The unit is expressed in CSS pixels.

CSS_CM The unit is expressed in centimeters.

CSS_IN The unit is expressed in inches.

CSS_PT The unit is expressed points.

CSS_PC The unit is expressed in picas.

CSS_DEG The unit is expressed in degrees.

CSS_RAD The unit is expressed in radians.

CSS_GRAD The unit is expressed in gradians.

CSS_MS The unit is expressed in milliseconds.

CSS_S The unit is expressed in seconds.

CSS_STRING The unit is expressed as string

CSS_RGBCOLOR The unit is expressed as a color

Listing 29-10 shows how you can use this object to determine the number of units and the unit type

of a CSS property value.

Listing 29-10. Using the CSSPrimitiveValue Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">

CHAPTER 29 STYLING DOM ELEMENTS

760

 p {
 color: white;
 background-color: gray !important;
 padding: 7px !important;
 }
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 function displayStyles() {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 var style = document.styleSheets[0].cssRules[0].style;

 for (var i = 0; i < style.length; i++) {
 var val = style.getPropertyCSSValue(style[i]);

 if (val.primitiveType == CSSPrimitiveValue.CSS_PX) {
 addRow(newElem, style[i],
 val.getFloatValue(CSSPrimitiveValue.CSS_PX), "pixels");
 addRow(newElem, style[i],
 val.getFloatValue(CSSPrimitiveValue.CSS_PT), "points");
 addRow(newElem, style[i],
 val.getFloatValue(CSSPrimitiveValue.CSS_IN), "inches");
 } else if (val.primitiveType == CSSPrimitiveValue.CSS_RGBCOLOR) {
 var color = val.getRGBColorValue();
 addRow(newElem, style[i], color.red.cssText + " "
 + color.green.cssText + " "
 + color.blue.cssText, "(color)");
 } else {
 addRow(newElem, style[i], val.cssText, "(other)");
 }
 }
 placeholder.appendChild(newElem);
 }

 function addRow(elem, header, value, units) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"

CHAPTER 29 STYLING DOM ELEMENTS

761

 + value + "</td><td>" + units + "</td></tr>";
 }
 </script>
 </body>
</html>

One of the most useful features of the CSSPrimtiveValue object is that it will convert between one
unit and another. In Listing 29-10, the script identifies values that are expressed as pixels and requests
the same values as points and inches. This means that you can work with values in the units that suit
you, rather than the units as they were originally expressed.

Note that color values are obtained through the GetRGBColorValue method, which returns a RGBColor
object. This object has three properties (red, green, and blue), each of which returns its own
CSSPrimitiveValue object. You can see how the browser deals with the unit types in Figure 29-10.

Figure 29-10. Working with the CSSPrimtiveValue object

Working with Computed Styles
All of the examples in this chapter so far have focused on the values specified for CSS properties in
stylesheets or in style attributes. This is useful for determining what is directly contained within the
document, but as I explained in Chapter 4, the browser brings together styles from a number of sources
in order to work out which values it should use to display an element. These include properties for which
you have not explicitly specified values, either because the values are inherited or because of a browser
style convention.

The set of CSS property values that the browser uses to display an element is called the computed
style. You can obtain a CSSStyleDeclaration object containing the computed style for an element using
the document.defaultView.getComputedStyle method. The object that you get back from this method
contains details of all of the properties that the browser uses to display the element, and the value for
each of them.

CHAPTER 29 STYLING DOM ELEMENTS

762

 Tip You cannot modify the computed style through the CSSStyleDeclaration object that you get from the
getComputedStyle method. Instead, you must modify a stylesheet or apply a property directly through the style
attribute of an element, as shown earlier in this chapter.

Listing 29-11 demonstrates working with some computed style values.

Listing 29-11. Working with the Computed Style for an Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <meta name="author" content="Adam Freeman"/>
 <meta name="description" content="A simple example"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 <style title="core styles">
 p {
 padding: 7px !important;
 }
 table {border: thin solid black; border-collapse: collapse;
 margin: 5px; float: left;}
 td {padding: 2px;}
 </style>
 </head>
 <body>
 <p id="block1">There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <div id="placeholder"></div>
 <script>
 var placeholder = document.getElementById("placeholder");
 displayStyles();

 function displayStyles() {
 var newElem = document.createElement("table");
 newElem.setAttribute("border", "1");

 var targetElem = document.getElementById("block1");
 var style = document.defaultView.getComputedStyle(targetElem);
 addRow(newElem, "Property Count", style.length);
 addRow(newElem, "margin-top", style.getPropertyValue("margin-top"));
 addRow(newElem, "font-size", style.getPropertyValue("font-size"));
 addRow(newElem, "font-family", style.getPropertyValue("font-family"));

 placeholder.appendChild(newElem);
 }

CHAPTER 29 STYLING DOM ELEMENTS

763

 function addRow(elem, header, value) {
 elem.innerHTML += "<tr><td>" + header + ":</td><td>"
 + value + "</td></tr>";
 }
 </script>
 </body>
</html>

In this example, I have displayed the value of some properties that I have not explicitly defined
values for. You can see the effect in Figure 29-11. You can also see why I have only displayed a few
properties. The first row in the table reports how many properties there are in the computed style. The
numbers vary between browsers, but the 223 that Chrome reports is typical.

Figure 29-11. Working with the computed style

Summary
In this chapter, I have shown you the different ways that you can use the DOM to operate on the CSS
properties and values in your HTML document. You can work through stylesheets or through the style
attribute on individual elements, and you can use an extensive collection of objects to dig deep into the
detail of styles. Not only can you work with the properties and values that you have explicitly defined,
but you can also work with the computed style, which the browser uses to display elements. This allows
you to compare what you defined with what is actually used.

C H A P T E R 30

765

Working with Events

I have been using events in the examples for this part of the book to respond to button clicks. In this
chapter, it is time to dig into the details, explain what events really are, show you how they work, and
how they fit within the rest of the DOM. In short, events allow you to define JavaScript functions that are
invoked in response to a change in the state of an element, such as when the element gains and loses the
focus, or when the user clicks the mouse button over the element.

In this chapter, I focus on introducing the event mechanism and the events defined by the document
and HTMLElement objects. These are the events that are used most often and apply to all documents and
elements. Table 30-1 provides the summary for this chapter.

Table 30-1. Chapter Summary

Problem Solution Listing

Handle an event inline. Use one of the on* attributes on an element. 30-1,
30-2

Handle an event in a function. Define the function and use its name as the value for the
on* attribute.

30-3

Use the DOM to handle events. Use the standard DOM search techniques and assign a
function using the on* properties or the
addEventListener method of the HTMLElement object that
represents the element.

30-4,
30-5

Distinguish between event types. Use the Event.type property. 30-6

Process an event before it reaches
a descendant element.

Use event capture. 30-7

Stop an event from being
propagated.

Use the stopPropagation or stopImmediatePropagation
methods on the Event object.

30-8

Process an event after it has
reached a descendant element.

Use event bubbling. 30-9

CHAPTER 30 WORKING WITH EVENTS

766

Cancel the default action
associated with an event.

Use the preventDefault method on the Event object. 30-10

Respond to mouse actions. Handle the mouse events. 30-11

Respond to elements gaining and
losing the focus.

Use the focus events. 30-12

Response to key presses. Use the keyboard events. 30-13

Using Simple Event Handlers
There are a few different ways that you can handle events. The most direct way is to create a simple event
handler using an event attribute. Elements define an event attribute for each of the event that they
support. For example, the onmouseover event attribute is the event attribute for the global mouseover
event, which is triggered when the user moves the pointer over the area of the browser screen that is
occupied by the element. (This is a general pattern; for most events, there will be a corresponding event
attribute defined as on<eventname>).

Implementing a Simple Inline Event Handler
The most direct way of using an event attribute is to assign the attribute a set of JavaScript statements.
When the event is triggered, the browser will execute the statements you have provided. Listing 30-1
gives a simple example.

Listing 30-1. Handling an Event with Inline JavaScript

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p onmouseover="this.style.background='white'; this.style.color='black'">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.

CHAPTER 30 WORKING WITH EVENTS

767

 </p>
 </body>
</html>

In this example, I have specified that two JavaScript statements should be executed in response to
the mouseover event by setting them at the value for the onmouseover event attribute for the p element in
the document. Here are the statements:

this.style.background='white';
this.style.color='black'

These are CSS properties that are applied directly to the element’s style attribute, as explained in
Chapter 4. The browser sets the value of the special variable this to be the HTMLElement object
representing the element that triggered the event, and the style property returns the
CSSStyleDeclaration object for the element.

 Tip Notice that I use double quotes to delimit the overall attribute value, and single quotes to specify the colors
I want as JavaScript string literals. You can use them in the other order if you prefer, but this is the technique for
embedding quoted values in an attribute.

If you load the document into a browser, the initial style defined in the style element is applied to
the p element. When you move the mouse over the element, the JavaScript statements will be executed
and change the values assigned to the background and color CSS properties, using the techniques I
described in Chapter 4. You can see the transition in Figure 30-1.

Figure 30-1. Handling the MouseOver event

This is a one-way transition; the style doesn’t reset when the mouse leaves the element’s screen
area. Many events come in pairs. The event that is the counterpart to mouseover is called mouseout, and
you handle this event through the onmouseout event attribute, as shown in Listing 30-2.

CHAPTER 30 WORKING WITH EVENTS

768

Listing 30-2. Handling the MouseOut Event

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p onmouseover="this.style.background='white'; this.style.color='black'"
 onmouseout="this.style.removeProperty('color');
 this.style.removeProperty('background')">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 </body>
</html>

With this addition, you have an element that responds to the mouse entering and exiting the screen
space it occupies. You can see the new transition in Figure 30-2.

Figure 30-2. The transition effect of combining counterpart events

Listing 30-2 shows the first of two problems with inline event handlers: they are verbose and make
the HTML very hard to read. The second problem is that the JavaScript statements apply to only one
element. I have to duplicate those statements on every other p element that I want to behave in this way.

CHAPTER 30 WORKING WITH EVENTS

769

Implementing a Simple Event-Handling Function
We can address some of the verbosity and duplication by defining a function and specifying the function
name as the value for the event attributes in the element. Listing 30-3 shows how you achieve this.

Listing 30-3. Using a Function to Handle an Event

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 <script type="text/javascript">
 function handleMouseOver(elem) {
 elem.style.background='white';
 elem.style.color='black';
 }

 function handleMouseOut(elem) {
 elem.style.removeProperty('color');
 elem.style.removeProperty('background');
 }
 </script>
 </head>
 <body>
 <p onmouseover="handleMouseOver(this)" onmouseout="handleMouseOut(this)">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p onmouseover="handleMouseOver(this)" onmouseout="handleMouseOut(this)">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 </body>
</html>

In this example, I define JavaScript functions that contain the statements I want performed in
response to the mouse events and specify those functions in the onmouseover and onmouseout attributes.
The special value this refers to the element that has triggered the event.

CHAPTER 30 WORKING WITH EVENTS

770

This approach is an improvement over the previous technique. There is less duplication and the
code is somewhat easier to read. But I like to separate out my events from the HTML elements, and to do
this I need to revisit our old friend, the DOM.

Using the DOM and the Event Object
The simple handlers I demonstrated in the earlier sections are fine for basic tasks, but if you want to
perform more sophisticated handling (and more elegant definition of event handlers), switch to working
with the DOM and the JavaScript Event object. Listing 30-4 shows how you can use the Event object and
how you can use the DOM to associate a function with an event.

Listing 30-4. Using the DOM to Set Up Event Handling

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p>
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");
 for (var i = 0; i < pElems.length; i++) {
 pElems[i].onmouseover = handleMouseOver;
 pElems[i].onmouseout = handleMouseOut;
 }

 function handleMouseOver(e) {
 e.target.style.background='white';
 e.target.style.color='black';

CHAPTER 30 WORKING WITH EVENTS

771

 }

 function handleMouseOut(e) {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 </script>
 </body>
</html>

This is the approach that you have seen in the examples in previous chapters. The script (which I
have had to move to the bottom of the page, because I am working with the DOM), finds all of the
elements that I want to handle events for, and sets a function name for the event handler property.
There are properties like this for all the events. They are all named in the same way: on, followed by the
name of the event. You can learn more about the available events in the Working with the HTML Events
section later in this chapter.

 Tip Notice that I use the name of the function to register it as an event listener. A common mistake is to put
parentheses after the function name, so handleMouseOver() is used instead of handleMouse. This has the effect
of calling your function when the script is executed and not when the event is triggered.

The functions that handle events in the listing define a parameter called e. This will be set to an
Event object created by the browser and that represents the event when it is triggered. The Event objects
provide you with information about what’s happened and let you respond to user interactions with
more flexibility than including code in element attributes. In this example, I have used the target
property to obtain the HTMLElement that triggered the event so I can use the style property and change its
appearance.

Before I show you the event object, I want to demonstrate an alternative approach to specifying
which functions are used to process events. The event properties (the ones that are named on*) are
generally the easiest approach, but you can also use the addEventListener method, which is
implemented by the HTMLElement object. You can also use the removeEventListener method to
disassociate a function and an event. Both methods let you express the event type and the functions that
handle them as arguments, as shown in Listing 30-5.

Listing 30-5. Using the addEventListener and removeEventListener Methods

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;

CHAPTER 30 WORKING WITH EVENTS

772

 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <button id="pressme">Press Me</button>
 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");
 for (var i = 0; i < pElems.length; i++) {
 pElems[i].addEventListener("mouseover", handleMouseOver);
 pElems[i].addEventListener("mouseout", handleMouseOut);
 }

 document.getElementById("pressme").onclick = function() {
 document.getElementById("block2").removeEventListener("mouseout",
 handleMouseOut);
 }

 function handleMouseOver(e) {
 e.target.style.background='white';
 e.target.style.color='black';
 }

 function handleMouseOut(e) {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 </script>
 </body>
</html>

The script in this example uses the addEventListener method to register the handleMouseOver and
handleMouseOut functions as event handlers for the p elements. When the button is clicked, the
removeEventListener method is used to disassociate the handleMouseOut function for the p element with
the id value of block2. Notice that I have used the onclick property to set up the handler for the click
event on the button element to demonstrate that you can freely mix and match techniques in the same
script.

The advantage of the addEventListener method is that it allows you access to some of the advanced
event features, as I describe shortly. The members of the Event object are described in Table 30-2.

CHAPTER 30 WORKING WITH EVENTS

773

Table 30-2. Functions and Properties of the Event Object

Name Description Returns

type The name of the event (e.g., mouseover). string

target The element at which the event is targeted. HTMLElement

currentTarget The element whose event listeners are currently
being invoked.

HTMLElement

eventPhase The phase in the event life cycle. number

bubbles Returns true if the event will bubble through the
document, false otherwise.

boolean

cancelable Returns true if the event has a default action that can
be cancelled, false otherwise.

boolean

timeStamp The time at which the event was created, or 0 if the
time isn’t available.

string

stopPropagation() Halts the flow of the event through the element tree
after the event listeners for the current element have
been triggered.

void

stopImmediatePropagation() Immediately halts the flow of the event through the
element tree; untriggered event listeners for the
current element will be ignored.

void

preventDefault() Prevents the browser from performing the default
action associated with the event.

void

defaultPrevented Returns true if preventDefault() has been called. boolean

 Tip The Event object defines the functionality that is common to all events. However, as you’ll see when I show
you the basic events later in this chapter, there are other event-related objects that define extra functionality that
is specified to a particular kind of event.

CHAPTER 30 WORKING WITH EVENTS

774

Distinguishing Events by Type
The type property tells you which kind of event you are dealing with. This value is provided as a string,
such as mouseover. Being able to detect the type of event allows you to use one function to deal with
multiple types, as shown in Listing 30-6.

Listing 30-6. Using the type Property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p>
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands of
 choices.
 </p>
 <p id="block2">
 One of the most interesting aspects of fruit is the variety available in
 each country. I live near London, in an area which is known for
 its apples.
 </p>
 <script type="text/javascript">

 var pElems = document.getElementsByTagName("p");
 for (var i = 0; i < pElems.length; i++) {
 pElems[i].onmouseover = handleMouseEvent;
 pElems[i].onmouseout = handleMouseEvent;
 }

 function handleMouseEvent(e) {
 if (e.type == "mouseover") {
 e.target.style.background='white';
 e.target.style.color='black';
 } else {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 }

CHAPTER 30 WORKING WITH EVENTS

775

 </script>
 </body>
</html>

In the script for this example, I use the type property to work out what kind of event I am dealing
with inside of a single event-handling function, handleMouseEvent.

Understanding Event Flow
An event has three phases to its life cycle: capture, target, and bubbling. In this section, I’ll explain each
of these phases and show you how they work and how you can use event listener functions to get control
of them.

Understanding the Capture Phase
When an event is triggered, the browser identifies the element that the event relates to, which is referred
to as the target for the event. The browser identifies all of the elements between the body element and the
target and checks each of them to see if they have any event handlers that have asked to be notified of
events of their descendants. The browser triggers any such handler before triggering the handlers on the
target itself. Listing 30-7 provides a demonstration.

Listing 30-7. Capturing Events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 span {
 background: white;
 color: black;
 padding: 2px;
 cursor: default;
 }
 </style>
 </head>
 <body>
 <p id="block1">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add
 the countless types of apples, oranges, and other well-known fruit, we are
 faced with thousands of choices.
 </p>

CHAPTER 30 WORKING WITH EVENTS

776

 <script type="text/javascript">

 var banana = document.getElementById("banana");
 var textblock = document.getElementById("block1");

 banana.addEventListener("mouseover", handleMouseEvent);
 banana.addEventListener("mouseout", handleMouseEvent);
 textblock.addEventListener("mouseover", handleDescendantEvent, true);
 textblock.addEventListener("mouseout", handleDescendantEvent, true);

 function handleDescendantEvent(e) {
 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.border = "thick solid red";
 e.currentTarget.style.border = "thick double black";
 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.removeProperty("border");
 e.currentTarget.style.removeProperty("border");
 }
 }

 function handleMouseEvent(e) {
 if (e.type == "mouseover") {
 e.target.style.background='white';
 e.target.style.color='black';
 } else {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 }
 </script>
 </body>
</html>

In this example, I have defined a span element as a child of the p element and registered handlers for
the mouseover and mouseout events. Notice that when I registered with the parent (the p element), I
added a third argument to the addEventListener method, like this:

textblock.addEventListener("mouseover", handleDescendantEvent, true);

This additional argument tells the browser that I want the p element to receive events for its
descendant elements during the capture phase. When the mouseover event is triggered, the browser
starts at the root of the HTML document and starts working its way down the DOM toward the target
(the element that triggered the event). For each element in the hierarchy, the browser checks to see if it
has registered an interest in captured events. You can see the sequence for the example document in
Figure 30-3.

CHAPTER 30 WORKING WITH EVENTS

777

Figure 30-3. The capture event flow

At each element, the browser invokes any capture-enabled listeners. In this case, the browser will
find and invoke the handleDescendantEvent function that I registered with the p element. When the
handleDescendantEvent function is called, the Event object contains information about the target
element (via the target property), and the element that has led the function to be invoked, via the
currentTarget property. I use both of these properties so that I can change the style of the p element and
the span child. You can see the effect in Figure 30-4.

Figure 30-4. Dealing with event capture

Event capture gives each of an element’s ancestors a chance to react to an event before it is passed
to the element itself. A parent element event handler can stop flow of the event down toward the target
by calling the stopPropagation or stopImmediatePropagation functions on the Event object. The
difference between these functions is that stopPropagation will ensure that all of the event listeners
registered for the current element will be invoked, whereas stopImmediatePropagation ignores any

CHAPTER 30 WORKING WITH EVENTS

778

untriggered listeners. Listing 30-8 shows the addition of the stopPropagation function to the
handleDescendantEvent event handler.

Listing 30-8. Preventing Further Event Flow

...
function handleDescendantEvent(e) {
 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.border = "thick solid red";
 e.currentTarget.style.border = "thick double black";
 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.removeProperty("border");
 e.currentTarget.style.removeProperty("border");
 }
 e.stopPropagation();
}
...

With this change, the browser capture phase ends when the handler on the p element is invoked. No
other elements will be inspected, and the target and bubble phases (described shortly) will be skipped.
In terms of the example, this means that the style changes in the handleMouseEvent function will not be
applied in response to the mouseover event, as you can see in Figure 30-5.

Figure 30-5. Stopping event propagation

Notice that in the handler, I check the event type and establish which phase the event is in by using
the eventPhase property, like this:

...
if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {
...

CHAPTER 30 WORKING WITH EVENTS

779

Enabling capture events when registering an event listener doesn’t stop events that are targeted at
the element itself. In this case, the p element occupies space on the browser screen and will respond to
mouseover events as well. To avoid this, I check to make sure that I only apply style changes when dealing
with events that are in the capture phase (i.e., events that are targeted at a descendant element and that I
am only processing because I have registered a capture-enabled listener). The eventPhase property will
return one of the three values shown in Table 30-3, representing the three phases in the event life cycle. I
explain the other two phases in the following sections.

Table 30-3. Values for the Event.eventPhase Property

Name Description

CAPTURING_PHASE The event is in the capture phase.

AT_TARGET The event is in the target phase.

BUBBLING_PHASE The event is in the bubble phase.

Understanding the Target Phase
The target phase is the simplest of the three. When the capture phase has finished, the browser triggers
any listeners for the event type that have been added to the target element, as shown in Figure 30-6.

Figure 30-6. The target phase

You’ve already seen this phase in previous examples. The only point to note here is that you can
make multiple calls to the addEventListener function, and so there can be more than one listener for a
given event type.

CHAPTER 30 WORKING WITH EVENTS

780

 Tip If you call the stopPropagation or stopImmediatePropagation functions during the target phase, you
stop the flow of the event, and the bubble phase won’t be performed.

Understanding the Bubble Phase
After the target phase has been completed, the browser starts working its way up the chain of ancestor
elements back toward the body element. At each element, the browser checks to see if there are listeners
for the event type that are not capture-enabled (i.e., the third argument to the addEventListener
function is false). This is known as event bubbling. Listing 30-9 gives an example.

Listing 30-9. Event Bubbling

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 span {
 background: white;
 color: black;
 padding: 2px;
 cursor: default;
 }
 </style>
 </head>
 <body>
 <p id="block1">
 There are lots of different kinds of fruit - there are over
 500 varieties of banana alone. By the time we add
 the countless types of apples, oranges, and other well-known fruit, we are
 faced with thousands of choices.
 </p>
 <script type="text/javascript">

 var banana = document.getElementById("banana");
 var textblock = document.getElementById("block1");

 banana.addEventListener("mouseover", handleMouseEvent);
 banana.addEventListener("mouseout", handleMouseEvent);
 textblock.addEventListener("mouseover", handleDescendantEvent, true);

CHAPTER 30 WORKING WITH EVENTS

781

 textblock.addEventListener("mouseout", handleDescendantEvent, true);
 textblock.addEventListener("mouseover", handleBubbleMouseEvent, false);
 textblock.addEventListener("mouseout", handleBubbleMouseEvent, false);

 function handleBubbleMouseEvent(e) {
 if (e.type == "mouseover" && e.eventPhase == Event.BUBBLING_PHASE) {
 e.target.style.textTransform = "uppercase";
 } else if (e.type == "mouseout" && e.eventPhase == Event.BUBBLING_PHASE) {
 e.target.style.textTransform = "none";
 }
 }

 function handleDescendantEvent(e) {
 if (e.type == "mouseover" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.border = "thick solid red";
 e.currentTarget.style.border = "thick double black";
 } else if (e.type == "mouseout" && e.eventPhase == Event.CAPTURING_PHASE) {
 e.target.style.removeProperty("border");
 e.currentTarget.style.removeProperty("border");
 }
 }

 function handleMouseEvent(e) {
 if (e.type == "mouseover") {
 e.target.style.background='black';
 e.target.style.color='white';
 } else {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 }
 </script>
 </body>
</html>

I have added a new function called handleBubbleMouseEvent and added it to the p element in the
document. The p element has two event listeners now, one that is capture-enabled and one that is
bubble-enabled. When you use the addEventListener method, you are always in one of these states,
meaning that an element’s listeners will always be notified about decedent element events in addition to
its own events. The choice is whether the listener is invoked before or after the target phase for events
from descendants.

The result of this new addition is that you have three listener functions that will be triggered for the
mouseover event on the span element in the document. The handleDescendantEvent function will be
triggered during the capture phase, the handleMouseEvent function will be invoked during the target
phase, and handleBubbleMouseEvent during the bubble phase. You can see the effect of this in Figure 30-
7.

CHAPTER 30 WORKING WITH EVENTS

782

Figure 30-7. The bubble phase

The appearance of the element is now affected by the style changes in all of the listener functions, as
shown in Figure 30-8.

Figure 30-8. The effect of adding a handler for the bubble phase

 Tip Not all events support bubbling. You can check to see whether an event will bubble using the bubbles
property. A value of true indicates that the event will bubble, and false means that it won’t.

CHAPTER 30 WORKING WITH EVENTS

783

Working with Cancellable Events
Some events define a default action that will be performed when an event is triggered. As an example,
the default action for the click event on the a element is that the browser will load the content at the
URL specified in the href attribute. When an event has a default action, the value of its cancelable
property will be true. You can stop the default action from being performed by calling the
preventDefault function. Listing 30-10 gives an example of working with a cancellable event in an event-
handler function.

Listing 30-10. Cancelling a Default Action

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 a {
 background: gray;
 color:white;
 padding: 10px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <p>
 Visit Apress
 Visit W3C
 </p>

 <script type="text/javascript">

 function handleClick(e) {
 if (!confirm("Do you want to navigate to " + e.target.href + " ?")) {
 e.preventDefault();
 }
 }

 var elems = document.querySelectorAll("a");
 for (var i = 0; i < elems.length; i++) {
 elems[i].addEventListener("click", handleClick, false);
 }

 </script>
 </body>
</html>

In this example, I use the confirm function to prompt the user to see whether they really want to
navigate to the URL that the a element leads to. If the user clicks the Cancel button, then I call the
preventDefault function. This means that the browser will no longer navigate to the URL.

http://apress.com
http://w3c.org

CHAPTER 30 WORKING WITH EVENTS

784

Note that calling the preventDefault function doesn’t stop the event from flowing through the
capture, target, and bubble phases. These phases will still be performed, but the browser won’t perform
the default action at the end of the bubble phase. You can test to see whether the preventDefault
function has been called on an event by an earlier event handler by reading the defaultPrevented
property; if it returns true, then the preventDefault function has been called.

Working with the HTML Events
HTML defines a set of events, which I describe in the section that follow, grouped by type. The first
section, the document and window events, are applied to the Document and Window objects, which I
discussed in Chapters 25 and 26.

The other events are defined by all HTMLElement objects and are effectively generic. To support the
unique characteristic of each type of event, the browser dispatches objects that have additional
properties beyond those of the core Event object. This will make sense as you go through the examples.

The Document and Window Events
In addition to the features that you have seen in earlier chapters, the Document object defines the event
described in Table 30-4. You can see an example of this event being used in Chapter 25.

Table 30-4. The Document Object Events

Name Description

readystatechange Triggered when the value of the readyState property changes.

The window object defines a wide range of events, which are described in Table 30-5. You can handle

some of these events through the body element, but support for this approach is a little patchy, and using
window tends to be more reliable.

Table 30-5. The Window Object Events

Name Description

onabort Triggered when the loading of a document or resource is aborted.

onafterprint Triggered when the Window.print() method is called, before the user is presented
with the print options.

onbeforeprint Triggered after the user has printed the document.

onerror Triggered when there is an error loading a document or resource.

onhashchange Triggered when the hash fragment changes.

onload Triggered when the loading of a document or resource is complete.

CHAPTER 30 WORKING WITH EVENTS

785

onpopstate Triggered to provide a state object associated with the browser history. See
Chapter 27 for a demonstration.

onresize Triggered when the window is resized.

onunload Triggered when the document is unloaded from the window/browser.

Working with Mouse Events
You already saw the mouseover and mouseout events earlier in this chapter, but the complete set of
mouse-related events is shown in Table 30-6.

Table 30-6. The Mouse-Related Events

Name Description

click Triggered when the mouse button is clicked and released.

dblclick Triggered when the mouse button is clicked and released twice.

mousedown Triggered when the mouse button is clicked.

mouseenter Triggered when the pointer is moved to be within the screen region occupied by the
element or one of its descendants.

mouseleave Triggered when the pointer is moved to be outside the screen region occupied by the
element and all its descendants.

mousemove Triggered when the pointer is moved while over the element.

mouseout This is the same as for mouseleave, except that this event will trigger while the pointer is
still over a descendant element.

mouseover This is the same as for mouseenter, except that this event will trigger while the pointer is
still over a descendant element.

mouseup Triggered when the mouse button is released.

When a mouse event is triggered, the browser dispatches a MouseEvent object. This is an Event object

with the additional properties and methods shown in Table 30-7.

CHAPTER 30 WORKING WITH EVENTS

786

Table 30-7. The MouseEvent Object

Name Description Returns

button
Indicates which button has been clicked; 0 is the main mouse button, 1 is the
middle button, and 2 is the secondary/right button.

number

altKey Returns true if the alt/option key was clicked when the event was triggered. boolean

clientX Returns the X position of the mouse when the event was triggered, relative to
the element’s viewport.

number

clientY Returns the Y position of the mouse when the event was triggered, relative to
the element’s viewport.

number

screenX Returns the X position of the mouse when the event was triggered, relative to
the screen coordinate system.

number

screenY Returns the Y position of the mouse when the event was triggered, relative to
the screen coordinate system.

number

shiftKey Returns true if the Shift key was pressed when the event was triggered. boolean

ctrlKey Returns true if the Ctrl key was pressed when the event was triggered. boolean

Listing 30-11 shows how you can use the additional functionality provided by the MouseEvent object.

Listing 30-11. Using the MouseEvent Object to Respond to Mouse Events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 table { margin: 5px; border-collapse: collapse; }
 th, td {padding: 4px;}
 </style>
 </head>
 <body>
 <p id="block1">
 There are lots of different kinds of fruit - there are over

CHAPTER 30 WORKING WITH EVENTS

787

 500 varieties of banana alone. By the time we add the countless types of
 apples, oranges, and other well-known fruit, we are faced with thousands
 of choices.
 </p>
 <table border="1">
 <tr><th>Type:</th><td id="eType"></td></tr>
 <tr><th>X:</th><td id="eX"></td></tr>
 <tr><th>Y:</th><td id="eY"></td></tr>
 </table>

 <script type="text/javascript">
 var textblock = document.getElementById("block1");
 var typeCell = document.getElementById("eType");
 var xCell = document.getElementById("eX");
 var yCell = document.getElementById("eY");

 textblock.addEventListener("mouseover", handleMouseEvent, false);
 textblock.addEventListener("mouseout", handleMouseEvent, false);
 textblock.addEventListener("mousemove", handleMouseEvent, false);

 function handleMouseEvent(e) {
 if (e.eventPhase == Event.AT_TARGET) {
 typeCell.innerHTML = e.type;
 xCell.innerHTML = e.clientX;
 yCell.innerHTML = e.clientY;

 if (e.type == "mouseover") {
 e.target.style.background='black';
 e.target.style.color='white';
 } else {
 e.target.style.removeProperty('color');
 e.target.style.removeProperty('background');
 }
 }
 }
 </script>
 </body>
</html>

The script in this example updates cells in a table in response to two kinds of mouse events. You can
see the effect in Figure 30-9.

CHAPTER 30 WORKING WITH EVENTS

788

Figure 30-9. Dealing with mouse events

Working with Focus Events
The focus-related events are triggered into response to elements gaining and losing the focus. Table 30-8
summarizes these events.

Table 30-8. The Focus-Related Events

Name Description

blur Triggered when the element loses the focus.

focus Triggered when the element gains the focus.

focusin Triggered when the element is just about to gain the focus.

focusout Triggered when the element is just about to lose the focus.

These events are represented by a FocusEvent object, which adds the property shown in Table 30-9

to the core Event object functionality.

Table 30-9. The FocusEvent Object

Name Description Returns

relatedTarget The element that is about to gain or lose the focus; this
property is used only by the focusin and focusout events.

HTMLElement

Listing 30-12 demonstrates the use of the focus events.

CHAPTER 30 WORKING WITH EVENTS

789

Listing 30-12. Using the Focus Events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <form>
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>
 </p>
 <button type="submit">Submit Vote</button>
 <button type="reset">Reset</button>
 </form>

 <script type="text/javascript">

 var inputElems = document.getElementsByTagName("input");
 for (var i = 0; i < inputElems.length; i++) {
 inputElems[i].onfocus = handleFocusEvent;
 inputElems[i].onblur = handleFocusEvent;
 }

 function handleFocusEvent(e) {
 if (e.type == "focus") {
 e.target.style.backgroundColor = "lightgray";
 e.target.style.border = "thick double red";
 } else {
 e.target.style.removeProperty("background-color");
 e.target.style.removeProperty("border");
 }
 }
 </script>
 </body>
</html>

The script in this example uses the focus and blur events to change the style of a pair of input
elements. You can see the effect in Figure 30-10.

CHAPTER 30 WORKING WITH EVENTS

790

Figure 30-10. Using the focus and blur events

Working with Keyboard Events
The keyboard events are triggered in response to key presses. The set of events in this category is shown
in Table 30-10.

Table 30-10. The Keyboard-Related Events

Name Description

keydown Triggered when the user presses a key.

keypress Triggered when a user presses and releases a key.

keyup Triggered when the user releases a key.

These events are represented by a FocusEvent object, which adds the property shown in Table 30-11

to the core Event object functionality.

Table 30-11. The KeyboardEvent Object

Name Description Returns

char Returns the character represented by the key press. string

key Returns the key that was pressed. string

ctrlKey Returns true if the Ctrl key was down when the key was
pressed.

boolean

shiftKey Returns true if the Shift key was down when the key was
pressed.

boolean

CHAPTER 30 WORKING WITH EVENTS

791

altKey Returns true if the Alt key was down when the key was
pressed.

boolean

repeat Returns true if the key is being held down. boolean

Listing 30-13 shows some of the keyboard events in use.

Listing 30-13. Using the Keyboard Events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style type="text/css">
 p {
 background: gray;
 color:white;
 padding: 10px;
 margin: 5px;
 border: thin solid black
 }
 </style>
 </head>
 <body>
 <form>
 <p>
 <label for="fave">Fruit: <input autofocus id="fave" name="fave"/></label>
 </p>
 <p>
 <label for="name">Name: <input id="name" name="name"/></label>
 </p>
 <button type="submit">Submit Vote</button>
 <button type="reset">Reset</button>
 </form>

 <script type="text/javascript">

 var inputElems = document.getElementsByTagName("input");
 for (var i = 0; i < inputElems.length; i++) {
 inputElems[i].onkeyup = handleKeyboardEvent;
 }

 function handleKeyboardEvent(e) {
 document.getElementById("message").innerHTML = "Key pressed: " +
 e.keyCode + " Char: " + String.fromCharCode(e.keyCode);
 }
 </script>
 </body>
</html>

CHAPTER 30 WORKING WITH EVENTS

792

The script in this example changes the content of a span element to display key strokes sent to a pair
of input elements. Notice how I use the String.fromCharCode function to convert the value of the
keyCode property into a more useful value. You can see the effect of this script in Figure 30-11.

Figure 30-11. Using the key events

Working with Form Events
The form element defines two special events that are particular to that element. These are described in
Table 30-12.

Table 30-12. The form Events

Name Description

submit Triggered when the form is submitted.

reset Triggered when the form is reset.

You can see how the form events are used in Chapters 33 and 34, when I show you Ajax.

Summary
In this chapter, I have explained how the event system allows you to react to changes in the state of your
document elements. I showed you the different ways of handling events, from the simple on* properties,
using handler functions, and the addEventListener method, each of which has its own merits. I also
explained the three phases of an event’s life cycle—capture, at target, and bubbling—and how you can
use these phases to intercept events as they are propagated. I finished this chapter with a description of
the events that are available for most HTML elements.

C H A P T E R 31

793

Using the Element-Specific Objects

The Document Object Model (DOM) defines a set of objects that represent the different types of HTML
elements in a document. These objects can be treated as HTMLElement objects and, for the most part,
that’s what you typically do in your scripts. But if you want to access some attribute or feature that is
unique to an element, you can usually do so using one of these objects.

These objects are not much use. They generally define properties that correspond to attributes
supported by an element, the value of which you can access through the features of the HTMLElement.
There are a couple of exceptions—the form elements have some helpful methods for use with input
validation, and the table elements have some methods that can be used to build up the content of tables.

The Document and Metadata Objects
This section describes the objects that represent the data and metadata elements. You can learn more
about these elements in Chapter 7.

The base Element
The base element is represented by the HTMLBaseElement object. This object doesn’t define any additional
events, but there are two properties, which are shown in Table 31-1.

Table 31-1. The HTMLBaseElement Object

Name Description Returns

href Corresponds to the href attribute string

target Corresponds to the target attribute string

The body Element
The body element is represented by the HTMLBodyElement object. This object doesn’t define any additional
properties, but the set of events is shown in Table 31-2.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

794

Table 31-2. The HTMLBodyElement Events

Event Description

error Triggered when there is an error loading a resource, such as a script or image

load Triggered when the document and its resources have been loaded

unload Triggered when the browser unloads the document (typically, because the user has
navigated elsewhere)

 Tip Some browsers support these events through the window object, which I describe in Chapter 27.

The link Element
The link element is represented by the HTMLLinkElement object, which defines the properties shown in
Table 31-3.

Table 31-3. The HTMLLinkElement Object

Name Description Returns

disabled Corresponds to the disabled attribute boolean

href Corresponds to the href attribute string

rel Corresponds to the rel attribute string

media Corresponds to the media attribute string

hreflang Corresponds to the hreflang attribute string

type Corresponds to the type attribute string

The meta Element
The meta element is represented by the HTMLMetaElement object, which defines the properties shown in
Table 31-4.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

795

Table 31-4. The HTMLMetaElement Object

Name Description Returns

name Corresponds to the name attribute string

httpEquiv Corresponds to the http-equiv attribute string

content Corresponds to the content attribute string

The script Element
The script element is represented in the DOM by the HTMLScriptElement object, which defines the
additional properties described in Table 31-5.

Table 31-5. The HTMLScriptElement Object

Name Description Returns

src Corresponds to the src attribute string

async Corresponds to the async attribute boolean

defer Corresponds to the defer attribute boolean

type Corresponds to the type attribute string

charset Corresponds to the charset attribute string

text Corresponds to the text attribute string

The style Element
The style element is represented in the DOM by the HTMLStyleElement object, which defines the
additional properties shown in Table 31-6.

Table 31-6. The HTMLStyleElement Object

Name Description Returns

disabled Corresponds to the disabled attribute boolean

media Corresponds to the media attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

796

typed Corresponds to the typed attribute string

scoped Corresponds to the scoped attribute boolean

The title Element
The title element is represented by the HTMLTitleElement object in the DOM. This object defines the
property shown in Table 31-7.

Table 31-7. The HTMLTitleElement Object

Name Description Returns

text Gets or sets the content of the title element string

Other Document and Metadata Elements
The head and html elements are represented by the HTMLHeadElement and HTMLHtmlElement objects,
respectively. These objects do not define any additional methods, properties, or events beyond those of
HTMLElement. The noscript element doesn’t have a special DOM object and is represented solely by
HTMLElement.

The Text Elements
This section describes the objects that represent the text elements. You can learn more about these
elements in Chapter 8.

The a Element
The a element is represented by the HTMLAnchorElement object, which defines the properties shown in
Table 31-8. In addition to defining properties that correspond to the element attributes, this object
defines a set of convenience properties that allows you to easily get or set components of the URL
specified by the href attribute.

Table 31-8. The HTMLAnchorElement Object

Name Description Returns

href Corresponds to the href attribute string

target Corresponds to the target attribute string

rel Corresponds to the rel attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

797

media Corresponds to the media attribute string

hreflang Corresponds to the hreflang attribute string

type Corresponds to the type attribute string

text Gets or sets the text contained by the element string

protocol Convenience property to get or set the protocol component
of the href attribute value

string

host Convenience property to get or set the host component of
the href attribute value

string

hostname Convenience property to get or set the host name from the
href attribute value

string

port Convenience property to get or set the port component of
the href attribute value

string

pathname Convenience property to get or set the path of the href
attribute value

string

search Convenience property to get or set the query string of the
href attribute value

string

hash Convenience property to get or set the document fragment
component of the href attribute value

string

The del and ins Elements
The del and ins elements are both represented by the HTMLModElement. You can tell them apart using the
tagName property defined by HTMLElement. See Chapter 26 for details. The additional properties defined
by HTMLModElement are described in Table 31-9.

Table 31-9. The HTMLModElement Object

Name Description Returns

cite Corresponds to the cite attribute string

dateTime Corresponds to the datetime attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

798

The q Element
The q element is represented by the HTMLQuoteElement object. The property that this object defines is
described in Table 31-10.

Table 31-10. The HTMLQuoteElement Object

Name Description Returns

cite Corresponds to the cite attribute string

The time Element
The time element is represented by the HTMLTimeElement object. The additional properties defined by this
object are shown in Table 31-11.

Table 31-11. The HTMLTimeElement Object

Name Description Returns

dateTime Corresponds to the datetime attribute string

pubDate Corresponds to the pubdate attribute string

valueAsDate Parses the time and date, and returns a Date object Date

Other Text Elements
The br and span elements are represented by the HTMLBRElement and HTMLSpanElementobjects,
respectively. These objects do not define any additional methods, properties, or events beyond those of
HTMLElement. The following elements are represented solely by HTMLElement: abbr, b, cite, code, dfn, em, i,
u, kbd, mark, rt, rp, ruby, s, samp, small, strong, sub, sup, var, and wbr.

The Grouping Elements
This section describes the objects that represent the grouping elements. You can learn more about these
elements in Chapter 9.

The blockquote Element
The blockquote element is represented by the HTMLQuoteElement object. This is the same object that the q
element uses, which I described in Table 31-10.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

799

The li Element
The li element is represented by the HTMLLIElement object, which defines the property shown in Table
31-12.

Table 31-12. The HTMLLIElement Object

Name Description Returns

value Corresponds to the value attribute number

The ol Element
The ol element is represented by the HTMLOListElement object, which defines the properties shown in
Table 31-13.

Table 31-13. The HTMLOListElement Object

Name Description Returns

reversed Corresponds to the reversed attribute boolean

start Corresponds to the start attribute number

type Corresponds to the type attribute string

Other Grouping Elements
Table 31-14 shows the set of grouping elements that are represented by element-specific objects that do
not define any additional functionality beyond that of HTMLElement.

Table 31-14. Grouping element objects with no additional properties

Name DOM Object

div HTMLDivElement

dl HTMLDListElement

hr HTMLHRElement

p HTMLParagraphElement

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

800

pre HTMLPreElement

ul HTMLUListElement

The following elements do not have corresponding elements in the DOM and are represented by

HTMLElement: dd, dt, figcaption, and figure.

The Section Elements
This section describes the objects that represent the section elements. You can learn more about these
elements in Chapter 10.

The details Element
The details element is represented by the HTMLDetailsElement object. The property that this object
defines is described in Table 31-15.

Table 31-15. The HTMLDetailsElement Object

Name Description Returns

open Corresponds to the open attribute boolean

Other Section Elements
The h1-h6 elements are represented by the HTMLHeadingElement object, but this object doesn’t define any
additional properties. The following section elements are not represented by specific objects: address,
article, aside, footer, header, hgroup, nav, section, and summary.

The Table Elements
This section describes the objects that represent the table elements. You can learn more about these
elements in Chapter 11.

The col and colgroup Elements
The col and colgroup elements are both represented by the HTMLTableColElement object, which defines
the property shown in Table 31-16.

Table 31-16. The HTMLTableColElement Object

Name Description Returns

span Corresponds to the span attribute number

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

801

The table Element
The table element is represented by the HTMLTableElement object. This is one of the most useful of the
element-specific objects. The properties and methods defined by this object are described in Table 31-
17.

Table 31-17. The HTMLTableElement Object

Name Description Returns

border Corresponds to the border attribute string

caption Returns the table’s caption element HTMLElement

createCaption() Returns the table’s caption element, creating it
if required

HTMLElement

deleteCaption() Removes the table’s caption element void

tHead Returns the table’s thead element HTMLTableSectionElement

createTHead() Returns the thead element, creating one if
required

HTMLTableSectionElement

deleteTHead() Removes the table’s thead element void

tFoot Returns the table’s tfoot element HTMLTableSectionElement

createTFoot() Returns the tfoot element, creating one if
required

HTMLTableSectionElement

deleteTFoot() Removes the table’s tfoot element void

tBodies Returns the tbody elements HTMLTableSectionElement[]

createTBody() Returns the tbody element, creating one if
required

HTMLTableSectionElement

rows Returns the rows in the table HTMLTableRowElement[]

insertRow(<index>) Creates a new row in the table at the specified
position

HTMLTableRowElement

deleteRow(<index>) Deletes the table row at the specified index void

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

802

The thead, tbody, and tfoot Elements
The thead, tbody, and tfoot elements are all represented by the HTMLTableSectionElement object. The
property and methods defined by this object are shown in Table 31-18.

Table 31-18. The HTMLTableSectionElement Object

Name Description Returns

rows Returns the set of rows for this section of the
table

HTMLTableRowElement[]

insertRow(<index>) Inserts a new row at the specified index HTMLTableRowElement

deleteRow(<index>) Removes the row at the specified index void

The th Element
The th element is represented by the HTMLTableHeaderCellElement object. The property defined by this
object is described in Table 31-19.

Table 31-19. The HTMLTableHeaderCellElement Object

Name Description Returns

rows Returns the set of rows for this section of the
table

HTMLTableRowElement[]

insertRow(<index>) Inserts a new row at the specified index HTMLTableRowElement

deleteRow(<index>) Removes the row at the specified index void

The tr Element
The tr element is represented by the HTMLTableRowElement object, which defines the properties and
methods shown in Table 31-20.

Table 31-20. The HTMLTableRowElement Object

Name Description Returns

rowIndex Returns the position of the row in the table number

sectionRowIndex Returns the position of the row in the table
section

number

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

803

cells Returns the collection of cell elements HTMLElement[]

insertCell(<index>) Inserts a new cell at the specified index HTMLElement

deleteCell(<index>) Deletes the cell at the specified index void

Other Table Elements
Table 31-21 shows the set of table elements that are represented by element-specific objects that do not
define any additional functionality beyond that of HTMLElement.

Table 31-21. Table Element Objects with No Additional Properties

Name DOM Object

caption HTMLTableCaptionElement

td HTMLTableDataCellElement

The Form Elements
This section describes the objects that represent the form elements. You can learn more about these
elements in Chapters 12–14.

The button Element
The button element is represented by the HTMLButtonElement object, which defines the properties and
methods shown in Table 31-22.

Table 31-22. The HTMLButtonElement Object

Name Description Returns

autofocus Corresponds to the autofocus attribute boolean

disabled Corresponds to the disabled attribute disabled

form Returns the form element with which the element is
associated; corresponds to the form attribute

HTMLFormElement

formAction Corresponds to the formaction attribute string

formEncType Corresponds to the formenctype attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

804

formMethod Corresponds to the formmethod attribute string

formNoValidate Corresponds to the formnovalidate attribute string

formTarget Corresponds to the formtarget attribute string

name Corresponds to the name attribute string

type Corresponds to the type attribute string

value Corresponds to the value attribute string

labels Returns the label elements whose attribute refers to this
button element

HTMLLabelElement[]

The datalist Element
The datalist element is represented by the HTMLDataListElement object, which defines the property
shown in Table 31-23.

Table 31-23. The HTMLDataListElement Object

Name Description Returns

options Returns the collection of option elements contained
within the datalist element

HTMLOptionElement[]

The fieldset Element
The fieldset element is represented by the HTMLFieldSetElement object, which defines the properties
shown in Table 31-24.

Table 31-24. The HTMLFieldSetElement Object

Name Description Returns

disabled Corresponds to the disabled attribute boolean

form Corresponds to the form attribute HTMLFormElement

name Corresponds to the name attribute string

elements Returns a collection containing the form controls within
the fieldset

HTMLElement[]

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

805

The form Element
The form element is represented by the HTMLFormElement object, which defines the properties and
methods shown in Table 31-25.

Table 31-25. The HTMLFormElement Object

Name Description Returns

acceptCharset Corresponds to the accept-charset attribute string

action Corresponds to the action attribute string

autocomplete Corresponds to the autocomplete attribute string

enctype Corresponds to the enctype attribute string

encoding Corresponds to the enctype attribute string

method Corresponds to the method attribute string

name Corresponds to the name attribute string

noValidate Corresponds to the novalidate attribute boolean

target Corresponds to the target attribute string

elements Returns the elements in the form HTMLElement[]

length Returns the number of elements in the form number

[<name>] Returns the form element with the specified name HTMLElement

[<index>] Returns the form element at the specified index HTMLElement

submit() Submits the form void

reset() Resets the form void

checkValidity() Returns true if all of the form elements pass input
validation; returns false otherwise

boolean

The input Element
The input element is represented by the HTMLInputElement object, which supports the properties and
methods shown in Table 31-26.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

806

Table 31-26. The HTMLInputElement Object

Name Description Returns

accept Corresponds to the accept attribute string

alt Corresponds to the alt attribute string

autocomplete Corresponds to the autocomplete attribute string

autofocus Corresponds to the autofocus attribute boolean

checked Returns true if the element is checked boolean

dirName Corresponds to the dirname attribute string

disabled Corresponds to the disabled attribute boolean

form Corresponds to the form attribute string

formAction Corresponds to the formaction attribute string

formEnctype Corresponds to the formenctype attribute string

formMethod Corresponds to the formmethod attribute string

formNoValidate Corresponds to the formnovalidate attribute string

formTarget Corresponds to the formtarget attribute string

list Corresponds to the list attribute HTMLElement

max Corresponds to the max attribute string

maxLength Corresponds to the maxlength attribute number

min Corresponds to the min attribute string

multiple Corresponds to the multiple attribute boolean

name Corresponds to the name attribute string

pattern Corresponds to the pattern attribute string

placeholder Corresponds to the placeholder attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

807

readOnly Corresponds to the readonly attribute boolean

required Corresponds to the required attribute boolean

size Corresponds to the size attribute number

src Corresponds to the src attribute string

step Corresponds to the step attribute string

type Corresponds to the type attribute string

value Corresponds to the value attribute string

valueAsDate Gets or sets the value attribute as a date object Date

valueAsNumber Gets or sets the value attribute as a number number

selectedOption Gets the option element from the datalist
specified by the list attribute that matches the
input element’s value

HTMLOptionElement

stepUp(<step>) Increases the value by the specified amount void

stepDown(<step>) Decreases the value by the specified amount void

willValidate Returns true if the element will be subject to
input validation when the form is submitted;
returns false otherwise

boolean

validity Returns an assessment of the validity of the input ValidityState

validationMessage Returns the error message that would be shown
to the user if input validation was applied

string

checkValidity() Performs input validation on the element boolean

setCustomValidity(<msg>) Sets a custom validation message void

labels Returns the label elements associated with this
element

HTMLLabelElement[]

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

808

The label Element
The label element is represented by the HTMLLabelElement object, which defines the properties shown in
Table 31-27.

Table 31-27. The HTMLLabelElement Object

Name Description Returns

form Returns the form associated with this element HTMLFormElement

htmlFor Corresponds to the for attribute string

control Returns the element specified by the for attribute HTMLElement

The legend Element
The legend element is represented by the HTMLLegendElement object, which defines the property shown
in Table 31-28.

Table 31-28. The HTMLLegendElement Object

Name Description Returns

form Returns the form associated with this element HTMLFormElement

The optgroup Element
The optgroup element is represented by the HTMLOptGroupElement object, which defines the properties
shown in Table 31-29.

Table 31-29. The HTMLOptGroupElement Object

Name Description Returns

disabled Corresponds to the disabled attribute boolean

label Corresponds to the label attribute string

The option Element
The option element is represented by the HTMLOptionElement object, which defines the properties shown
in Table 31-30.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

809

Table 31-30. The HTMLOptionElement Object

Name Description Returns

disabled Corresponds to the disabled attribute boolean

form Returns the form this element is associated with HTMLFormElement

label Corresponds to the label attribute string

selected Corresponds to the selected attribute boolean

value Corresponds to the value attribute string

text Corresponds to the text attribute string

index Returns the index of this element in the parent select element number

The output Element
The output element is represented by the HTMLOutputElement object, which defines the properties shown
in Table 31-31.

Table 31-31. The HTMLOutputElement Object

Name Description Returns

htmlFor Corresponds to the for attribute string

form Returns the form this element is associated with HTMLFormElement

name Corresponds to the name attribute string

type Corresponds to the type attribute string

value Corresponds to the value attribute string

willValidate Returns true if the element will be subject to
input validation when the form is submitted;
returns false otherwise

boolean

validationMessage Returns the error message that would be shown
to the user if input validation was applied

string

checkValidity() Performs input validation on the element boolean

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

810

setCustomValidity(<msg>) Sets a custom validation message void

labels Returns the label elements associated with this
element

HTMLLabelElement[]

The select Element
The select element is represented by the HTMLSelectElement object, which implements the properties
and methods shown in Table 31-32.

Table 31-32. The HTMLSelectElement Object

Name Description Returns

autofocus Corresponds to the autofocus attribute boolean

disabled Corresponds to the disabled attribute boolean

form Returns the form that this element is associated
with

HTMLFormElement

multiple Corresponds to the multiple attribute boolean

name Corresponds to the name attribute string

required Corresponds to the required attribute boolean

size Corresponds to the size attribute number

type Returns select-multiple if the element has the
multiple attribute, and select-one otherwise

string

options Returns the collection of option elements HTMLOptionElement[]

length Gets or sets the number of option elements number

[<index>] Gets the element at the specified index HTMLElement

selectedOptions Returns the selected option elements HTMLOptionElement[]

selectedIndex Returns the index of the first selected option
element

number

value Gets or sets the selected value string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

811

willValidate Returns true if the element will be subject to
input validation when the form is submitted;
returns false otherwise

boolean

validationMessage Returns the error message that would be shown
to the user if input validation was applied

string

checkValidity() Performs input validation on the element boolean

setCustomValidity(<msg>) Sets a custom validation message void

labels Returns the label elements associated with this
element

HTMLLabelElement[]

The textarea Element
The textarea element is represented by the HTMLTextAreaElement object, which defines the methods and
properties described in Table 31-33.

Table 31-33. The HTMLTextAreaElement Object

Name Description Returns

autofocus Corresponds to the autofocus attribute boolean

cols Corresponds to the cols attribute number

dirName Corresponds to the dirName attribute string

disabled Corresponds to the disabled attribute boolean

form Returns the form that this element is associated
with

HTMLFormElement

maxLength Corresponds to the maxlength attribute number

name Corresponds to the name attribute string

placeholder Corresponds to the placeholder attribute string

readOnly Corresponds to the readonly attribute boolean

required Corresponds to the required attribute boolean

rows Corresponds to the rows attribute number

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

812

wrap Corresponds to the wrap attribute string

type Returns textarea string

value Returns the content of the element string

textLength Returns the length of the value attribute number

willValidate Returns true if the element will be subject to
input validation when the form is submitted;
returns false otherwise

boolean

validationMessage Returns the error message that would be shown
to the user if input validation was applied

string

checkValidity() Performs input validation on the element boolean

setCustomValidity(<msg>) Sets a custom validation message void

labels Returns the label elements associated with this
element

HTMLLabelElement[]

The Content Elements
This section describes the objects that represent the elements used to embed content in a document.
You can learn more about these elements in Chapter 15.

 Note The other content elements, such as canvas and video, are described later in Chapter 34.

The area Element
The area element is represented by the HTMLAreaElement, which implements the properties shown in
Table 31-34.

Table 31-34. The HTMLAreaElement Object

Name Description Returns

alt Corresponds to the alt attribute string

coords Corresponds to the coords attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

813

shape Corresponds to the shape attribute string

href Corresponds to the href attribute string

target Corresponds to the target attribute string

rel Corresponds to the rel attribute string

media Corresponds to the media attribute string

hrefLang Corresponds to the hreflang attribute string

type Corresponds to the type attribute string

protocol Convenience property to get or set the protocol
component of the href attribute value

string

host Convenience property to get or set the host
component of the href attribute value

string

hostname Convenience property to get or set the host name
from the href attribute value

string

port Convenience property to get or set the port
component of the href attribute value

string

pathname Convenience property to get or set the path of the
href attribute value

string

search Convenience property to get or set the query
string of the href attribute value

string

hash Convenience property to get or set the document
fragment component of the href attribute value

string

The embed Element
The embed element is represented by the HTMLEmbedElement object, which implements the properties
shown in Table 31-35.

Table 31-35. The HTMLEmbedElement Object

Name Description Returns

src Corresponds to the src attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

814

type Corresponds to the type attribute string

width Corresponds to the width attribute string

height Corresponds to the height attribute string

The iframe Element
The iframe element is represented by the HTMLIFrameElement object, which implements the properties
described in Table 31-36.

Table 31-36. The HTMLIFrameElement Object

Name Description Returns

src Corresponds to the src attribute string

srcdoc Corresponds to the srcdoc attribute string

name Corresponds to the name attribute string

sandbox Corresponds to the sandox attribute string

seamless Corresponds to the seamless attribute string

width Corresponds to the width attribute string

height Corresponds to the height attribute string

contentDocument Returns the document object Document

contentWindow Returns the window object Window

The img Elements
The img element is represented by the HTMLImageElement object, which implements the properties
described in Table 31-37.

Table 31-37. The HTMLImageElement Object

Name Description Returns

alt Corresponds to the alt attribute string

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

815

src Corresponds to the src attribute string

useMap Corresponds to the usemap attribute string

isMap Corresponds to the ismap attribute boolean

width Corresponds to the width attribute number

height Corresponds to the height attribute number

complete Returns true if the image has been downloaded boolean

The map Element
The map element is represented by the HTMLMapElement object, which implements the properties shown in
Table 31-38.

Table 31-38. The HTMLMapElement Object

Name Description Returns

name Corresponds to the name attribute string

areas Returns the area elements in the map HTMLAreaElement[]

images Returns the img and object elements in the map HTMLElement[]

The meter Element
The meter element is represented by the HTMLMeterElement object, which implements the properties
shown in Table 31-39.

Table 31-39. The HTMLMeterElement Object

Name Description Returns

value Corresponds to the value attribute number

max Corresponds to the max attribute number

form Returns the form that this element is associated with HTMLFormElement

labels Returns the label elements associated with this element HTMLLabelElement[]

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

816

The object Element
The object element is represented by the HTMLObjectElement object, which implements the properties
shown in Table 31-40.

Table 31-40. The HTMLObjectElement Object

Name Description Returns

data Corresponds to the data attribute string

type Corresponds to the type attribute string

form Returns the form that this element is associated
with

HTMLFormElement

name Corresponds to the name attribute string

useMap Corresponds to the usemap attribute string

width Corresponds to the width attribute string

height Corresponds to the height attribute string

contentDocument Returns the document object Document

contentWindow Returns the window object Window

willValidate Returns true if the element will be subject to
input validation when the form is submitted;
returns false otherwise

boolean

validationMessage Returns the error message that would be shown
to the user if input validation was applied

string

checkValidity() Performs input validation on the element boolean

setCustomValidity(<msg>) Sets a custom validation message void

labels Returns the label elements associated with this
element

HTMLLabelElement[]

The param Element
The param element is represented by the HTMLParamElement object, which implements the properties
shown in Table 31-41.

CHAPTER 31 USING THE ELEMENT SPECIFIC OBJECTS

817

Table 31-41. The HTMLParamElement Object

Name Description Returns

name Corresponds to the name attribute string

value Corresponds to the value attribute string

The progress Element
The progress element is represented by the HTMLProgressElement object, which implements the
properties shown in Table 31-42.

Table 31-42. The HTMLProgressElement Object

Name Description Returns

value Corresponds to the value attribute number

max Corresponds to the max attribute number

position Corresponds to the position attribute number

form Returns the form that this element is associated with HTMLFormElement

labels Returns the label elements associated with this element HTMLLabelElement[]

Summary
In this chapter, I listed the set of objects that are used to represent different types of elements in the
DOM. For the most part, these are not especially useful—with two exceptions. The first exception is the
form elements, which provide some useful control over validation and form submission. The second
exception is the table elements, which provide methods for managing the content of tables. These
exceptions aside, the objects described in this chapter are largely a collection of properties that
represent specific attributes—the values of which can be accessed through the ubiquitous HTMLElement
object.

P A R T V

819

Advanced Features

In this final part of the book, I’ll show you some of the advanced features available in HTML5. These
include Ajax (for making requests to the web server in the background) and the canvas element (which
allows us to use JavaScript to perform drawing operations).

C H A P T E R 32

821

Using Ajax – Part I

Ajax is a key tool in modern web application development. It allows you to send and retrieve data from a
server asynchronously and process the data using JavaScript. Ajax is an acronym for Asynchronous
JavaScript and XML. The name arose when XML was the data transfer format of choice although, as I’ll
explain later, this is no longer the case.

Ajax is another one of those contentious technologies. It is so useful in creating rich web
applications that designers and developers have created a lore around its use and regularly engage in
vicious sniping contests about the right way to do Ajax. This is largely rubbish and not needed. Ajax is
surprisingly simple when you get down to the details, and you’ll be making requests like a master in no
time at all. My standard advice for dealing with zealots applies when dealing with Ajax zealots: nod
politely, back away, and do the right thing for your project.

 Tip You will see Ajax capitalized in a number of different ways. “Ajax” seems to be the most widely used at the
moment, but AJAX is pretty common, and some people even use AJaX (picky people who believe that you never
capitalize “and”). They all refer to the same technologies and techniques. I have tried to consistently use Ajax in
this book.

The key specification for Ajax is named after the JavaScript object you use to set up and make
requests: XMLHttpRequest. There are two levels of this specification. All of the mainstream browsers
implement Level 1, which is the base level of functionality. Level 2 extends the original specification to
include additional events, some features that make it easier to work with form elements, and support for
some related specifications, such as CORS (which I’ll explain later in this chapter).

In this chapter, I explain the Ajax basics, showing you how to create, configure, and execute simple
requests. I’ll show you how the progress of a request is signaled through events, how to deal with request
and application errors, and how to make requests across origins.

All of the examples in this chapter are about getting data from the server. The next chapter is all
about sending data—particularly, form data, which is one of the most common uses for Ajax. Table 32-1
provides the summary for this chapter.

CHAPTER 32 USING AJAX – PART I

822

Table 32-1. Chapter Summary

Problem Solution Listing

Make an Ajax request. Create an XMLHttpRequest object, and call the open and send
methods.

1-3

Use the one-off events to
track request progress.

Use the Level 2 events, such as onload, onloadstart, and
onloadend.

4

Detect and deal with errors. Respond to error events, or use try...catch statements. 5

Set headers for an Ajax
request.

Use the setRequestHeader method. 6-7

Read the headers from the
server response.

Use the getResponseHeader and getAllResponseHeaders
methods.

8

Make a cross-origin Ajax
request.

Set the Access-Control-Allow-Origin header in the server
response.

9-12

Abort a request. Use the abort method. 13, 14

Getting Started with Ajax
The key to Ajax is the XMLHttpRequest object, and the best way to understand this object is through an
example. Listing 32-1 shows the basic use of the XMLHttpRequest object.

Listing 32-1. Using the XMLHttpRequest Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <div id="target">
 Press a button
 </div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;

CHAPTER 32 USING AJAX – PART I

823

 }

 function handleButtonPress(e) {
 var httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.send();
 }

 function handleResponse(e) {
 if (e.target.readyState == XMLHttpRequest.DONE &&
 e.target.status == 200) {
 document.getElementById("target").innerHTML
 = e.target.responseText;
 }
 }
 </script>
 </body>
</html>

In this example, there are three button elements, each of which is labeled for a different fruit: Apples,
Cherries, and Bananas. There is also a div element which, as you begin, displays a simple message telling
the user to press one of the buttons. You can see the appearance of this document in Figure 32-1.

Figure 32-1. The starting state of a simple Ajax example

When one of the buttons is pressed, the script in the example loads another HTML document and
sets it as the content inside of the div element. There are three other documents, and they correspond to
the labels on the button elements: apples.html, cherries.html, and bananas.html. Figure 32-2 shows one
of these documents being displayed in response to a button press.

CHAPTER 32 USING AJAX – PART I

824

Figure 32-2. Displaying an asynchronously loaded document

The three additional documents are pretty simple—there is an image and a paragraph of text taken
from the Wikipedia page for the relevant fruit. For reference, Listing 32-2 shows the contents of
cherries.html, but all three documents follow the same structure (and are included in the source code
download for this book, freely available at apress.com).

Listing 32-2. The Contents of cherries.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>Cherries</title>
 <style>
 img {
 float: left; padding: 2px; margin: 5px;
 border: medium double black; background-color: lightgrey;
 }
 </style>
 </head>
 <body>
 <p>

 True cherry fruits are borne by members of the subgenus Cerasus, which is
 distinguished by having the flowers in small corymbs of several together
 (not singly, nor in racemes), and by having a smooth fruit with only a weak
 groove or none along one side. The subgenus is native to the temperate
 regions of the Northern Hemisphere, with two species in America,
 three in Europe, and the remainder in Asia. The majority of eating cherries
 are derived from either Prunus avium, the wild cherry (sometimes called the
 sweet cherry), or from Prunus cerasus, the sour cherry.
 </p>

CHAPTER 32 USING AJAX – PART I

825

 </body>
</html>

As the user presses each fruit button, the browser goes off and retrieves the requested documents
asynchronously, without reloading the main document. This is archetypal Ajax behavior.

If you turn your attention to the script, you can see how this is achieved. You start with the
handleButtonPress function, which is called in response to the click event from the button controls:

function handleButtonPress(e) {
 var httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.send();
}

The first step is to create a new XMLHttpRequest object. Unlike most of the objects you saw in the
DOM, you don’t access this kind of object through a global variable defined by the browser. Instead, you
use the new keyword, like this:

var httpRequest = new XMLHttpRequest();

The next step is to set an event handler for the readystatechange event. This event is triggered
several times through the request process, giving you updates about how things are going. I’ll come back
to this event (and the others that are defined by the XMLHttpRequest object) later in this chapter. I set the
value of the onreadystatechange property to handleResponse, a function that we’ll come to shortly:

httpRequest.onreadystatechange = handleResponse;

Now you can tell the XMLHttpRequest object what you want it to do. You use the open method,
specifying the HTTP method (GET in this case) and the URL that should be requested:

httpRequest.open("GET", e.target.innerHTML + ".html");

 Tip I showed the simplest form of the open method here. You can also provide the browser with credentials to
use when making the request to the server, like this: httpRequest.open("GET", e.target.innerHTML +
".html", true, "adam", "secret"). The last two arguments are the username and password that should be
sent to the server. The other argument specifies whether the request should be performed asynchronously. This
should always be set to true.

I am composing the request URL based on which button the user pressed. If the Apples button is
pressed, I request the URL Apples.html. The browser is smart enough to deal with relative URLs, and it
uses the location of the current document as needed. In this case, my main document is loaded from the
URL http://titan/listings/example.html, so Apples.html is assumed to refer to
http://titan/listings/Apples.html. The URLs for your environment will be different, but the effect is
the same.

CHAPTER 32 USING AJAX – PART I

826

 Tip It is important to select the right HTTP method for your request. As I explained in Chapter 12, GET requests
are for safe interactions, such that you can make the same request over and over without causing any side effects.
POST requests are for unsafe interactions, where each request leads to some kind of change at the server and
repeated requests are likely to be problematic. There are other HTTP methods, but GET and POST are the most
widely used—so much so that if you want to use a different method, you must use the convention described in the
“Overriding the Request HTTP Method” section of this chapter to ensure that your request passes through
firewalls.

The final step in this function is to call the send method, like this:

httpRequest.send();

I am not sending any data to the server in this example, so there is no argument for the send
method. I’ll show you how to send data later in this chapter, but in this simple example, you are only
requesting HTML documents from the server.

Dealing with the Response
As soon as the script calls the send method, the browser makes the background request to the server.
Because the request is handled in the background, Ajax relies on events to notify you about how the
request progresses. In this example, I handle these events with the handleResponse function:

function handleResponse(e) {
 if (e.target.readyState == XMLHttpRequest.DONE && e.target.status == 200) {
 document.getElementById("target").innerHTML = e.target.responseText;
 }
}

When the readystatechange event is triggered, the browser passes an Event object to the specified
handler function. This is the same Event object that I described in Chapter 30, and the target property is
set to the XMLHttpRequest that the event relates to.

A number of different stages are signaled through the readystatechange event, and you can
determine which one you are dealing with by reading the value of the XMLHttpRequest.readyState
property. The set of values for this property are shown in Table 32-2.

Table 32-2. Values for the XMLHttpRequest readyState Property

Value Numeric Value Description

UNSENT 0 The XMLHttpRequest object has been created.

OPENED 1 The open method has been called.

HEADERS_RECEIVED 2 The headers of the server response have been received.

CHAPTER 32 USING AJAX – PART I

827

LOADING 3 The response from the server is being received.

DONE 4 The response is complete or has failed.

The DONE status doesn’t indicate that the request was successful—only that it has been completed.

You get the HTTP status code through the status property, which returns a numerical value—for
example, a value of 200 indicates success. Only by combining the readyState and status property values
can you determine the outcome of a request.

You can see how I check for both properties in the handleResponse function. I set the content of the
div element only if the readyState value is DONE and the status value is 200. I get the data that the server
sent using the XMLHttpRequest.responseText property, like this:

document.getElementById("target").innerHTML = e.target.responseText;

The responseText property returns a string representing the data retrieved from the server. I use this
property to set the value of the innerHTML property of the div element, so as to display the requested
document’s content. And with that, you have a simple Ajax example—the user clicks on a button, the
browser requests a document from the server in the background and, when it arrives, you handle an
event and display the requested document’s content. Figure 32-3 shows the effect of this script and the
different documents it displays.

Figure 32-3. The effect of the script in the basic Ajax example

The Lowest Common Dominator: Dealing with Opera
Before we move on, we must spend a moment dealing with Opera’s implementation of the
XMLHttpRequest standard, which is...well, not as good or complete as the other browsers. The example
shown at the start of this chapter will work perfectly well for the other mainstream browsers, but you
need to make some changes to deal with a couple of problems in Opera. Listing 32-3 shows the example,
which has the required changes.

CHAPTER 32 USING AJAX – PART I

828

Listing 32-3. Modifying the Example to Support Opera

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <div id="target">
 Press a button
 </div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.send();
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>
</html>

The first problem is that Opera doesn’t dispatch an Event object when it triggers the
readystatechange event. This means that you must assign the XMLHttpRequest object to a global variable
in order to refer to it later. I defined a var called httpRequest, which I refer to when I create the object in
the handleButtonPress function and again when I process the finished request in the handleResponse
function.

This may not seem like a big deal, but if the user presses a button when a request is being processed,
a new XMLHttpRequest object will be assigned to the global variable and you will lose the ability to
interact with the original request.

CHAPTER 32 USING AJAX – PART I

829

The second problem is that Opera doesn’t define the ready state constants on the XMLHttpRequest
object. This means that you have to check the value of the readyState property using the numeric values
I showed in Table 32-2. Instead of XMLHttpRequest.DONE, you have to check for the value 4.

I hope Opera will have upgraded and improved its XMLHttpRequest implementation by the time you
read this book, but if not, you need to write your scripts to accommodate this bad behavior.

Using the Ajax Events
Now that you have built and explored a simple example, you can start to dig into the features that the
XMLHttpRequest object supports and how you can use them in your requests. The place to start is with
the additional events that are defined in the Level 2 specification. You saw one of these already—
readystatechange, which was carried over from Level 1—but there are others as well, as described in
Table 32-3.

Table 32-3. Events Defined by the XMLHttpRequest Object

Name Description Event Type

abort Triggered when the requested is aborted ProgressEvent

error Triggered when the request fails ProgressEvent

load Triggered when the request completes successfully ProgressEvent

loadend Triggered when the request completes, either successfully or
with an error

ProgressEvent

loadstart Triggered when the request starts ProgressEvent

progress Triggered to indicate progress during the request ProgressEvent

readystatechange Triggered at different stages in the request life cycle Event

timeout Triggered if the request times out ProgressEvent

Most of these events are triggered at a particular point in the request. The exceptions are
readystatechange (which I described previously) and progress, which can be triggered several times to
give progress updates.

Aside from readystatechange, the events shown in the table are defined in Level 2 of the
XMLHttpRequest specification. As I write this, support for these events varies. Firefox has the most
complete support, for example. Opera doesn’t support them at all, and Chrome supports some of them,
but not in a way that matches the specification.

CHAPTER 32 USING AJAX – PART I

830

 Caution The readystatechange event is the only reliable way to track request progress at this time, given the
patchy implementation of the Level 2 events

When dispatching the events, the browser uses the regular Event object (described in Chapter 30)
for the readystatechange event and the ProgressEvent object for the others. The ProgressEvent object
defines all of the members of the Event object, plus the additions described in Table 32-4.

Table 32-4. Additional Properties Defined by ProgressEvent

Name Description Event Type

lengthComputable Returns true if the total length of the data stream can be
calculated

boolean

loaded Returns the amount of data that has been loaded so far number

total Returns the total amount of data available number

Listing 32-4 shows how these events can be used. I have shown Firefox here, which has the most

complete and correct implementation.

Listing 32-4. Using the One-Off Events Defined by XMLHttpRequest

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table { margin: 10px; border-collapse: collapse; float: left}
 div {margin: 10px;}
 td, th { padding: 4px; }
 </style>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <table id="events" border="1">

 </table>
 <div id="target">
 Press a button
 </div>
 <script>
 var buttons = document.getElementsByTagName("button");

CHAPTER 32 USING AJAX – PART I

831

 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 clearEventDetails();
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.onerror = handleError;
 httpRequest.onload = handleLoad;
 httpRequest.onloadend = handleLoadEnd;
 httpRequest.onloadstart = handleLoadStart;
 httpRequest.onprogress = handleProgress;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.send();
 }

 function handleResponse(e) {
 displayEventDetails("readystate(" + httpRequest.readyState + ")");
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }

 function handleError(e) { displayEventDetails("error", e);}
 function handleLoad(e) { displayEventDetails("load", e);}
 function handleLoadEnd(e) { displayEventDetails("loadend", e);}
 function handleLoadStart(e) { displayEventDetails("loadstart", e);}
 function handleProgress(e) { displayEventDetails("progress", e);}

 function clearEventDetails() {
 document.getElementById("events").innerHTML
 = "<tr><th>Event</th><th>lengthComputable</th>"
 + "<th>loaded</th><th>total</th></tr>"
 }

 function displayEventDetails(eventName, e) {
 if (e) {
 document.getElementById("events").innerHTML +=
 "<tr><td>" + eventName + "</td><td>" + e.lengthComputable
 + "</td><td>" + e.loaded + "</td><td>" + e.total
 + "</td></tr>";
 } else {
 document.getElementById("events").innerHTML +=
 "<tr><td>" + eventName
 + "</td><td>NA</td><td>NA</td><td>NA</td></tr>";
 }
 }
 </script>

CHAPTER 32 USING AJAX – PART I

832

 </body>
</html>

This is a variation of the previous example. I registered handler functions for some of events, and I
created a record of each event that I process in a table element. You can see how Firefox triggers the
events in Figure 32-4.

Figure 32-4. Level 2 events as triggered by Firefox

Dealing with Errors
When working with Ajax, you have to be aware of two kinds of errors. The difference between them is
driven by different perspectives.

The first kind of error is a problem from the point of view of the XMLHttpRequest object—some issue
that prevents a request being made to a server, such as the hostname not resolving in the DNS, the
connection request being refused, or a URL being invalid.

The second kind of error is a problem from the point of view of our application, but not the
XMLHttpRequest object. This occurs when a request was successfully made to the server and the server
accepted the request, processed it, and generated a response, but that response didn’t lead to the
content you were hoping for. This can arise if the URL you requested doesn’t exist, for example.

There are three ways you can deal with these errors, as demonstrated by Listing 32-5.

Listing 32-5. Dealing with Ajax Errors

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 32 USING AJAX – PART I

833

 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 <button>Cucumber</button>
 <button id="badhost">Bad Host</button>
 <button id="badurl">Bad URL</button>
 </div>
 <div id="target">Press a button</div>
 <div id="errormsg"></div>
 <div id="statusmsg"></div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 clearMessages();
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.onerror = handleError;
 try {
 switch (e.target.id) {
 case "badhost":
 httpRequest.open("GET", "http://a.nodomain/doc.html");
 break;
 case "badurl":
 httpRequest.open("GET", "http://");
 break;
 default:
 httpRequest.open("GET", e.target.innerHTML + ".html");
 break;
 }
 httpRequest.send();
 } catch (error) {
 displayErrorMsg("try/catch", error.message);
 }
 }

 function handleError(e) {
 displayErrorMsg("Error event", httpRequest.status
 + httpRequest.statusText);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4) {
 var target = document.getElementById("target");

http://a.nodomain/doc.html

CHAPTER 32 USING AJAX – PART I

834

 if (httpRequest.status == 200) {
 target.innerHTML = httpRequest.responseText;
 } else {
 document.getElementById("statusmsg").innerHTML =
 "Status: " + httpRequest.status + " "
 + httpRequest.statusText;
 }
 }
 }

 function displayErrorMsg(src, msg) {
 document.getElementById("errormsg").innerHTML = src + ": " + msg;
 }

 function clearMessages() {
 document.getElementById("errormsg").innerHTML = "";
 document.getElementById("statusmsg").innerHTML = "";
 }

 </script>
 </body>
</html>

Dealing with Setup Errors
The first kind of error you need to deal with occurs when you pass bad data to the XMLHttpRequest object,
such as a malformed URL. This is surprisingly easy to do when generating the URL based on user input.
To simulate this kind of problem, I added a button labeled Bad URL to the example document. Pressing
this button leads to the following call to the open method:

httpRequest.open("GET", "http://");

I have lost count of the number of times that I have seen this problem (and, sadly, the number of
times I have caused it). Typically, the user is prompted to enter a value into an input element, the
contents of which are used to generate a URL for an Ajax request. When the user triggers the request
without entering a value, the open method is passed a partial URL or, as in this case, just the protocol
part.

This is an error that prevents the request from being performed, and the XMLHttpRequest object will
throw an error when this sort of thing happens. This means you need to use a try...catch statement
around the code that sets up the request, like this:

try {
 ...
 httpRequest.open("GET", "http://");
 ...
 httpRequest.send();
} catch (error) {
 displayErrorMsg("try/catch", error.message);
}

The catch clause is your opportunity to recover from the error. You might choose to prompt the user
to enter a value, fall back to a default URL, or simply abandon the request. For this example, I simply

CHAPTER 32 USING AJAX – PART I

835

display the error message by calling the displayErrorMsg function. This function is defined in the
example script and displays the Error.message property in the div element with the ID of errormsg.

Dealing with Request Errors
The second kind of error arises when the request is made but something goes wrong with it. To simulate
this kind of problem, I added a button labeled Bad Host to the example. When this button is pressed, the
open method is called with a URL that cannot be used:

httpRequest.open("GET", "http://a.nodomain/doc.html");

There are two problems with this URL. The first is that the hostname won’t resolve in the DNS, so
the browser won’t be able to make the connection to a server. This problem won’t be apparent to the
XMLHttpRequest object until after it starts to make the request, so it signals the problem in two ways. If
you have registered a listener for the error event, the browser will dispatch an Event object to your
listener function. Here is my function from the example:

function handleError(e) {
 displayErrorMsg("Error event", httpRequest.status + httpRequest.statusText);
}

The degree of information you get from the XMLHttpRequest object when this kind of error occurs
can vary between browsers and, sadly, you most often get a status of 0 and an empty statusText value.

The second problem is that the URL has a different origin from the script that is making the
request—and this isn’t allowed by default. Usually, you are allowed to make Ajax requests only to the
URLs with the same origin that the script was loaded from. The browser can report this problem by
throwing an Error or by triggering an error event—it differs between browsers. Different browsers check
the origin at different times, which means that you don’t always see the same problem highlighted by
the browser. (You can use the Cross Site Resource Specification, or CORS, to overcome the same-origin
limitation. See the “Making Cross-Origin Ajax Requests” section later in this chapter).

Dealing with Application Errors
The final kind of error arises when the request succeeds from the point of view of the XMLHttpRequest
object, but it doesn’t give you the data you were hoping for. To create this kind of problem, I added a
button labeled Cucumber to the example document. Pressing this button causes the requested URL to be
generated as for the Apples, Cherries, and Bananas buttons, except that there is no cucumber.html
document on the server.

When this happens there is no error as such (because the request itself succeeds), and you
determine what happened from the status property. When you request a document that doesn’t exist,
you get a status code of 404, meaning that the server cannot find the requested document. You can see
how I handle any code that is not 200 (meaning OK):

if (httpRequest.status == 200) {
 target.innerHTML = httpRequest.responseText;
} else {
 document.getElementById("statusmsg").innerHTML =
 "Status: " + httpRequest.status + " " + httpRequest.statusText;
}

http://a.nodomain/doc.html

CHAPTER 32 USING AJAX – PART I

836

For this example, I simply display the status and statusText values. In a real application, you would
need to recover in a useful and meaningful way—perhaps by displaying some fallback content or
alerting the user to the problem, depending on what makes sense for the application.

Getting and Setting Headers
The XMLHttpRequest object lets you set headers for the request to the server and read the headers from
the server’s response. Table 32-5 describes the header-related methods.

Table 32-5. Header-Related Methods of the XMLHttpRequest Object

Method Description Returns

setRequestHeader(<header>, <value>) Sets the header to the specified value void

getResponseHeader(<header>) Gets the value of the specified header string

getAllResponseHeaders() Gets all of the headers in a single string string

Overriding the Request HTTP Method
You don’t often need to add to or change the headers in Ajax requests. The browser knows what it needs
to send, and the server knows how to respond. But there are a couple of exceptions. The first is the X-
HTTP-Method-Override header.

The HTTP standard, which is typically used to request and transport HTML documents over the
Internet, defines a number of methods. Most people know about GET and POST because they are by far the
most widely used. But there are others, including PUT and DELETE, and there is a growing trend to use
these HTTP methods to give meaning to the URLs that are requested from a server. So, as a simple
example, if you wanted to view, say, a user record, you would make a request like this:

httpRequest.open("GET", "http://myserver/records/freeman/adam");

I am just showing the HTTP method and the request URL here. For this request to work, there would
have to be a server-side application that knows how to understand this request and turn it into a suitable
piece of data to send back to the server. If you wanted to delete the data, you might do the following:

httpRequest.open("DELETE", "http://myserver/records/freeman/adam");

The key here is to express what you want the server to do through the HTTP method, rather than by
encoding it in the URL in some way. This is part of a trend called RESTful APIs. The rest of what makes
up a RESTful API is a topic of frequent and vociferous debate, which I am not going to get into here.

The problem with using the HTTP method in this way is that a lot of mainstream web technologies
support only GET and POST and many firewalls allow only GET and POST requests to pass through. There is
a convention to avoid this restriction, which is to use the X-HTTP-Method-Override header to specify the
HTTP method you want to use, while actually sending a POST request. Listing 32-6 gives a demonstration.

CHAPTER 32 USING AJAX – PART I

837

Listing 32-6. Setting a Request Header

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <div id="target">Press a button</div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.setRequestHeader("X-HTTP-Method-Override", "DELETE");
 httpRequest.send();
 }

 function handleError(e) {
 displayErrorMsg("Error event", httpRequest.status
 + httpRequest.statusText);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }

 </script>
 </body>
</html>

In this example, I used the setRequestHeader method on the XMLHttpRequest object to indicate that I
want this request to be processed as though I had used the HTTP DELETE method. Notice that I set the
header after calling the open method. The XMLHttpRequest object will throw an error if you try to use the
setRequestHeader method before the open method.

CHAPTER 32 USING AJAX – PART I

838

 Tip Overriding the HTTP method works only if the server-side web application framework understands the X-
HTTP-Method-Override convention and your server-side application is set up to look for and understand the less-
used HTTP methods.

Disabling Content Caching
The second header that can be useful to add to an Ajax request is Cache-Control, especially when writing
and debugging scripts. Some browsers will cache the content that is obtained via an Ajax request and not
request it again during the browsing session. In the context of the example I have been using in this
chapter, this means that any changes to apples.html, cherries.html, and bananas.html would not
immediately be reflected in the browser. Listing 32-7 shows how you can set the header to avoid this.

Listing 32-7. Disabling Content Caching

...
function handleButtonPress(e) {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.setRequestHeader("Cache-Control", "no-cache");
 httpRequest.send();
}
...

You set the header value in the same way as for the previous example, but the header you are
interested in is Cache-Control and the value you want is no-cache. With this statement in place, changes
to the content you request through Ajax are shown when the documents are next requested.

Reading Response Headers
You can read the HTTP headers that the server sends in the response to an Ajax request through the
getResponseHeader and getAllResponseHeaders methods. For the most part, you don’t care what the
headers say because they are part of the transaction between the browser and server. Listing 32-8 shows
how you can use these properties.

Listing 32-8. Reading Response Headers

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #allheaders, #ctheader {
 border: medium solid black;
 padding: 2px; margin: 2px;

 }

CHAPTER 32 USING AJAX – PART I

839

 </style>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <div id="ctheader"></div>
 <div id="allheaders"></div>
 <div id="target">Press a button</div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", e.target.innerHTML + ".html");
 httpRequest.send();
 }

 function handleResponse() {
 if (httpRequest.readyState == 2) {
 document.getElementById("allheaders").innerHTML =
 httpRequest.getAllResponseHeaders();
 document.getElementById("ctheader").innerHTML =
 httpRequest.getResponseHeader("Content-Type");

 } else if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }

 </script>
 </body>
</html>

The response headers are available when the readyState changes to HEADERS_RECEIVED (which has
the numerical value of 2). The headers are the first thing that the server sends back in a response, which
is why you can read them before the content itself is available. In this example, I set the contents of two
div elements to the value of one header (Content-Type) and all of the headers, obtained with the
getResponseHeader and getAllResponseHeader methods. You can see the result in Figure 32-5.

CHAPTER 32 USING AJAX – PART I

840

Figure 32-5. Reading the response headers

From this, you can tell that titan, my development server, is running version 7.5 of the IIS web server
(which is what you would expect from a Windows Server 2008 R2 server owned by someone who does a
lot of .NET development) and that I last modified the apples.html document on August 29 (but took the
screenshot on September 1).

Making Cross-Origin Ajax Requests
By default, browsers limit scripts to making Ajax requests within the origin of the document that
contains them. As you will recall, an origin is the combination of the protocol, hostname, and port of a
URL. This means that when I load a document from http://titan, a script contained within the
document cannot usually make a request to http://titan:8080 because the port in the second URL is
different and, therefore, outside of the document origin. An Ajax request from one origin to another is
called a cross-origin request.

 Tip This policy is intended to reduce the risks of a cross-site scripting (CSS) attack, where the browser (or user)
is tricked into executing a malicious script. CSS attacks are outside the scope of this book, but there is a nice
Wikipedia article at http://en.wikipedia.org/wiki/Cross-site_scripting that provides a good introduction
to the topic.

The problem with this policy is that it is a blanket ban—no cross-origin requests. This has led to the
use of some very ugly tricks to trick the browser into making requests that contravene the policy.

http://en.wikipedia.org/wiki/Cross-site_scripting

CHAPTER 32 USING AJAX – PART I

841

Fortunately, there is now a legitimate means of making cross-origin requests, defined in the Cross-Origin
Resource Sharing (CORS) specification.

 Note This is an advanced topic that requires some basic knowledge about HTTP headers. Since this is a book
about HTML5, I am not going to go into any real detail about HTTP. My suggestion is that if you are unfamiliar with
HTTP, you should skip over this section.

To set the scene, let us look at the problem we are trying to fix. Listing 32-9 shows an HTML
document that contains a script that wants to make a cross-origin request.

Listing 32-9. A Script That Wants to Make a Cross-Origin Request

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>
 <div id="target">Press a button</div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 var httpRequest;

 function handleButtonPress(e) {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("GET", "http://titan:8080/" + e.target.innerHTML);
 httpRequest.send();
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>

CHAPTER 32 USING AJAX – PART I

842

</html>

The script in this example appends the contents of the button that the user has pressed, appends it
to http://titan:8080, and tries to make an Ajax request (for example, http://titan:8080/Apples). I will
be loading this document from http://titan/listings/example.html, which means that the script is
trying to make a cross-origin request.

The server that the script is trying to reach is running under Node.js. Listing 32-10 shows the code,
which I saved in a file called fruitselector.js. (See Chapter 2 for details of obtaining Node.js.)

Listing 32-10. The fruitselector.js Node.js Script

var http = require('http');

http.createServer(function (req, res) {
 console.log("[200] " + req.method + " to " + req.url);

 res.writeHead(200, "OK", {"Content-Type": "text/html"});
 res.write('<html><head><title>Fruit Total</title></head><body>');
 res.write('<p>');
 res.write('You selected ' + req.url.substring(1));
 res.write('</p></body></html>');
 res.end();

}).listen(8080);

This is a very simple server—it generates a short HTML document based on the URL that the client
has requested. If the client requests http://titan:8080/Apples, for example, the following HTML
document will be generated and returned by the server:

<html>
 <head>
 <title>Fruit Total</title>
 </head>
 <body>
 <p>You selected Apples</p>
 </body>
</html>

As it stands, the script in example.html won’t be able to get the data it wants from the server. The
way you fix this is to add a header to the response that the server sends back to the browser, as shown in
Listing 32-11.

Listing 32-11. Adding the Cross-Origin Header

var http = require('http');

http.createServer(function (req, res) {
 console.log("[200] " + req.method + " to " + req.url);

 res.writeHead(200, "OK", {
 "Content-Type": "text/html",
 "Access-Control-Allow-Origin": "http://titan"
 });

CHAPTER 32 USING AJAX – PART I

843

 res.write('<html><head><title>Fruit Total</title></head><body>');
 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));
 res.write('</p></body></html>');
 res.end();

}).listen(8080);

The Access-Control-Allow-Origin header specifies an origin that should be allowed to make cross-
origin requests to this document. If the origin specified by the header matches the origin of the current
document, the browser will load and process the data contained in the response.

 Tip Supporting CORS means that the browser has to apply the cross-origin security policy after it has contacted
the server and has obtained the response header, meaning that the request is made even if the response is
discarded because the required header is missing or specified a different domain. This is a very different approach
from browsers that don’t implement CORS and that simply block the request, never contacting the server.

With the addition of this header to the response from the server, the script in the example.html
document is able to request and receive the data from the server, as demonstrated by Figure 32-6.

Figure 32-6. Enabling cross-origin Ajax requests

Using the Origin Request Header
As part of CORS, the browser will add an Origin header to the request that specifies the origin of the
current document. You can use this to be more flexible about how you set the value of the Access-
Control-Allow-Origin header, as shown in Listing 32-12.

CHAPTER 32 USING AJAX – PART I

844

Listing 32-12. Using the Origin Request Header

var http = require('http');

http.createServer(function (req, res) {
 console.log("[200] " + req.method + " to " + req.url);

 res.statusCode = 200;
 res.setHeader("Content-Type", "text/html");

 var origin = req.headers["origin"];
 if (origin.indexOf("titan") > -1) {
 res.setHeader("Access-Control-Allow-Origin", origin);
 }

 res.write('<html><head><title>Fruit Total</title></head><body>');
 res.write('<p>');

 res.write('You selected ' + req.url.substring(1));
 res.write('</p></body></html>');
 res.end();

}).listen(8080);

I modified the server script to set the Access-Control-Allow-Origin response header only when the
request includes an Origin header whose value contains titan. This is a very slack way of checking the
source of the request, but you can tailor this approach to be more rigorous within the context of your
own projects.

 Tip You can also set the Access-Control-Allow-Origin header to an asterisk (*), which means that cross-
origin requests from any origin will be permitted. You should think carefully about the security implications before
using this setting.

Advanced CORS Features
The CORS specification defines a number of additional headers that can be used to enforce fine-grained
control over cross-origin requests, including limiting requests to specific HTTP methods. These
advanced features require a preflight request, where the browser makes a request to the server to
determine what the constraints are and then a second request to obtain the data itself. As I write this,
these advanced features are not reliably implemented.

Aborting Requests
The XMLHttpRequest object defines a method that allows you to abort a request, as described in Table 32-
6.

CHAPTER 32 USING AJAX – PART I

845

Table 32-6. XMLHttpRequest abort Method

Member Description Returns

abort() Terminates the current request void

To demonstrate this feature, I modified the fruitselector.js Node.js script to introduce a 10-

second delay, as shown in Listing 32-13.

Listing 32-13. Introducing a Delay at the Server

var http = require('http');

http.createServer(function (req, res) {
 console.log("[200] " + req.method + " to " + req.url);

 res.statusCode = 200;
 res.setHeader("Content-Type", "text/html");

 setTimeout(function() {
 var origin = req.headers["origin"];
 if (origin.indexOf("titan") > -1) {
 res.setHeader("Access-Control-Allow-Origin", origin);
 }

 res.write('<html><head><title>Fruit Total</title></head><body>');
 res.write('<p>');
 res.write('You selected ' + req.url.substring(1));
 res.write('</p></body></html>');
 res.end();
 }, 10000);

}).listen(8080);

When the server receives a request, it writes the initial response headers, pauses for 10 seconds, and
then completes the response. Listing 32-14 shows how you can use the aborting features of the
XMLHttpRequest at the browser.

Listing 32-14. Aborting Requests

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <div>
 <button>Apples</button>
 <button>Cherries</button>
 <button>Bananas</button>
 </div>

CHAPTER 32 USING AJAX – PART I

846

 <div>
 <button id="abortbutton">Abort</button>
 </div>
 <div id="target">Press a button</div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }
 var httpRequest;

 function handleButtonPress(e) {
 if (e.target.id == "abortbutton") {
 httpRequest.abort();
 } else {
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.onabort = handleAbort;
 httpRequest.open("GET", "http://titan:8080/" + e.target.innerHTML);
 httpRequest.send();
 document.getElementById("target").innerHTML = "Request Started";
 }
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("target").innerHTML
 = httpRequest.responseText;
 }
 }

 function handleAbort() {
 document.getElementById("target").innerHTML = "Request Aborted";
 }
 </script>
 </body>
</html>

I added an Abort button to the document, which calls the abort method on the XMLHttpRequest
object to abort an inflight request. We have plenty of time to do this now that I have introduced a delay
at the server.

The XMLHttpRequest signals an abort through the abort event and the readystatechange event. In
this example, I respond to the abort event and update the contents of the div element with an id of
target to indicate that the request has been aborted. You can see the effect in Figure 32-7.

CHAPTER 32 USING AJAX – PART I

847

Figure 32-7. Aborting a request

Summary
In this chapter, I introduced you to Ajax through the XMLHttpRequest object. Ajax allows you to make
background requests and create a smoother experience for users. I explained how the XMLHttpRequest
object signals progress of a request through a series of events, how you can detect and deal with different
kinds of errors, and how you can set request headers to give direction to either the browser or the server
as to the kind of operation you require. As a more advanced topic, I introduced the Cross Origin Request
Specification (CORS) – a set of response headers which allows a script to make an Ajax request to
another origin. This is a useful technique – as long as you have the ability to add headers to the response
from the server.

All of the examples in this chapter have been about retrieving data from the server. In the next
chapter, I’ll show you how to send data as well.

C H A P T E R 33

849

Using Ajax—Part II

In this chapter, I will continue describing how Ajax works, showing you how to send data to the client.
Sending forms and files are two common uses for Ajax, which allow web applications to create a richer
experience for the user. I’ll also show you how to monitor progress as you send data to the server and
how to deal with different response formats sent back by the server in response to an Ajax request. Table
33-1 provides the summary for this chapter. The first three listings set up the server and HTML
document used in the other examples.

Table 33-1. Chapter Summary

Problem Solution Listing

Send form data to the server Use the DOM to get individual values
and concatenate them in the URL-
encoded format

4

Encode and send form data without using
the DOM

Use a FormData object 5

Send additional form values or send form
data selectively

Use the append method on the
FormData object

6

Send JSON data Use the JSON.stringify method and
set the content type for the request to
application/json

7

Send a file to the server Add an input element to a form whose
type is file and use a FormData object

8

Track progress as data is uploaded to the
server

Use the XMLHttpRequestUpload object 9

Receive HTML fragments from the server Read the responseText property 10, 11

Override the MIME type sent by the server Use the overrideMimeType method 12

CHAPTER 33 USING AJAX – PART II

850

Receive XML from the server Use the responseXML property 13, 14

Receive JSON data from the server Use the JSON.parse method 15, 16

Getting Ready to Send Data to the Server
One of the most common uses of Ajax is to send data to the server. Most typically, clients send form
data—the values entered into input elements contained by a form element. Listing 33-1 shows a simple
form, which will be the basis for this part of the chapter. I saved this HTML into a file named
example.html.

Listing 33-1. A Basic Form

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">
 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>
 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>
 </div>
 <button id="submit" type="submit">Submit Form</button>
 </form>
 </body>
</html>

CHAPTER 33 USING AJAX – PART II

851

The form in this example contains three input elements and a submit button. The input elements
allow the user to specify how many of three different kinds of fruit to order, and the button submits the
form to the server. For more information about these elements, see Chapters 12, 13, and 14.

Defining the Server
For the examples, you need to create the server that will process requests. Once again, I used Node.js,
largely because it is simple and it uses JavaScript. See Chapter 2 for details on obtaining Node.js. I won’t
go into how this script works, but since it is written in JavaScript, you should be able to get a fair idea of
what’s going on. That said, understanding the server script isn’t essential to understanding Ajax, and you
can readily treat the server as a black box if you like. Listing 33-2 shows the fruitcalc.js script.

Listing 33-2. The fruitcalc.js Script for Node.js

var http = require('http');
var querystring = require('querystring');
var multipart = require('multipart');

function writeResponse(res, data) {
 var total = 0;
 for (fruit in data) {
 total += Number(data[fruit]);
 }
 res.writeHead(200, "OK", {
 "Content-Type": "text/html",
 "Access-Control-Allow-Origin": "http://titan"});
 res.write('<html><head><title>Fruit Total</title></head><body>');
 res.write('<p>' + total + ' items ordered</p></body></html>');
 res.end();
}

http.createServer(function (req, res) {
 console.log("[200] " + req.method + " to " + req.url);
 if (req.method == 'OPTIONS') {
 res.writeHead(200, "OK", {
 "Access-Control-Allow-Headers": "Content-Type",
 "Access-Control-Allow-Methods": "*",
 "Access-Control-Allow-Origin": "*"
 });
 res.end();
 } else if (req.url == '/form' && req.method == 'POST') {
 var dataObj = new Object();
 var contentType = req.headers["content-type"];
 var fullBody = '';

 if (contentType) {
 if (contentType.indexOf("application/x-www-form-urlencoded") > -1) {

 req.on('data', function(chunk) { fullBody += chunk.toString();});
 req.on('end', function() {

CHAPTER 33 USING AJAX – PART II

852

 var dBody = querystring.parse(fullBody);
 dataObj.bananas = dBody["bananas"];
 dataObj.apples = dBody["apples"];
 dataObj.cherries= dBody["cherries"];
 writeResponse(res, dataObj);
 });

 } else if (contentType.indexOf("application/json") > -1) {
 req.on('data', function(chunk) { fullBody += chunk.toString();});
 req.on('end', function() {
 dataObj = JSON.parse(fullBody);
 writeResponse(res, dataObj);
 });

 } else if (contentType.indexOf("multipart/form-data") > -1) {
 var partName;
 var partType;
 var parser = new multipart.parser();
 parser.boundary = "--" + req.headers["content-type"].substring(30);

 parser.onpartbegin = function(part) {
 partName = part.name; partType = part.contentType};
 parser.ondata = function(data) {
 if (partName != "file") {
 dataObj[partName] = data;
 }
 };
 req.on('data', function(chunk) { parser.write(chunk);});
 req.on('end', function() { writeResponse(res, dataObj);});
 }
 }
 }
}).listen(8080);

I have highlighted the section of the script that requires attention: the writeResponse function. This
function is called after the form values have been extracted from the request, and it is responsible for
generating the response to the browser. At the moment, this function produces a simple HTML
document such as the one shown in Listing 33-3, but we will change and enhance this function as we
deal with different formats later in the chapter.

Listing 33-3. The Simple HTML Document Generated by the writeResponse Function

<html>
 <head>
 <title>Fruit Total</title>
 </head>
 <body>
 <p>27 items ordered</p>
 </body>
</html>

CHAPTER 33 USING AJAX – PART II

853

This is a simple response, but it’s a good place to start. The effect is that the server totals the number
of fruit that the user has ordered through the input elements in the form. The rest of the server-side
script is responsible for decoding the various data formats that the client may be sending using Ajax. You
can start the server like this:

bin\node.exe fruitcalc.js

This script is intended for use only in this chapter. It isn’t a general-purpose server, and I don’t
recommend you use any part of it for a production service. Many assumptions and shortcuts are tied to
the examples that follow in this chapter, and the script is not suitable for any kind of serious use.

Understanding the Problem
The problem I want to use Ajax to solve is illustrated neatly in Figure 33-1.

Figure 33-1. Submitting a simple form

When you submit a form, the browser displays the result as a new page. This has two implications:

• The user must wait for the server to process the data and generate the response.

• Any document context is lost, as the results are displayed as a new document.

This is an ideal situation in which to apply Ajax. You can make the request asynchronously, so the
user can continue to interact with the document while the form is processed.

Sending Form Data
The most basic way to send data to a server is to collect and format it yourself. Listing 33-4 shows the
addition of a script to the example.html document that uses this approach.

CHAPTER 33 USING AJAX – PART II

854

Listing 33-4. Manually Collecting and Sending Data

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">
 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>
 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>
 </div>
 <button id="submit" type="submit">Submit Form</button>
 </form>
 <script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = "";
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData += inputElements[i].name + "="
 + inputElements[i].value + "&";

CHAPTER 33 USING AJAX – PART II

855

 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');
 httpRequest.send(formData);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>
</html>

This script looks more complicated than it is. To explain, I’ll break down the individual steps. All of
the action happens in the handleButtonPress function, which is called in response to the click event of
the button element.

The first thing I do is call the preventDefault method on the Event object that the browser has
dispatched to the function. I described this method in Chapter 30, when I explained that some events
have default actions associated with them. For a button element in a form, the default action is to post
the form using the regular, non-Ajax approach. I don’t want this to happen—hence the call to the
preventDefault method.

 Tip I like to place the call to the preventDefault method at the start of my event handler function because it
makes debugging easier. If I called this method at the end of the function, any uncaught error in the script would
cause execution to terminate and the default action to be performed. This happens so quickly that it can be
impossible to read the details of the error from the browser script console.

The next step is to gather and format the values of the input elements, like this:

var formData = "";
var inputElements = document.getElementsByTagName("input");
for (var i = 0; i < inputElements.length; i++) {
 formData += inputElements[i].name + "=" + inputElements[i].value + "&";
}

I use the DOM to obtain the set of input elements and create a string that contains the name and
value attributes of each. The name and value are separated by an equal sign (=), and information about
each input element is separated by an ampersand (&). The result looks like this:

bananas=2&apples=5&cherries=20&

CHAPTER 33 USING AJAX – PART II

856

If you look back to Chapter 12, you will see that this is the default way of encoding form data—the
application/x-www-form-urlencoded encoding. Even though this is default encoding used by the form
element, it isn’t the default encoding used by Ajax, so I need to add a header to tell the server which data
format to expect, like this:

httpRequest.setRequestHeader('Content-Type','application/x-www-form-urlencoded');

The rest of the script is a regular Ajax request, just like the ones in the previous chapter, with a
couple of exceptions.

First, I use the HTTP POST method when I call the open method on the XMLHttpRequest object. As a
rule, data is always sent to the server using the POST method rather than the GET method. For the URL to
make the request to, I read the action property of the HTMLFormElement:

httpRequest.open("POST", form.action);

The form action will cause a cross-origin request, which I deal with at the server using the CORS
technique described in the previous chapter.

The second point of note is that I pass the string I want to send to the server as an argument to the
send method, like this:

httpRequest.send(formData);

When I get the response back from the server, I use the DOM to set the contents of the div element
with the id of results. You can see the effect in Figure 33-2.

Figure 33-2. Using Ajax to post a form

The HTML document that the server returns in response to the form post is displayed on the same
page, and the request is performed asynchronously. This is a much nicer effect than we started with.

CHAPTER 33 USING AJAX – PART II

857

Sending Form Data Using a FormData Object
A neater way of gathering form data is to use a FormData object, which is defined as part of the
XMLHttpRequest Level 2 specification.

 Note As I write this, Chrome, Safari, and Firefox support the FormData object, but Opera and Internet Explorer
do not.

Creating a FormData Object
When you create a FormData object, you can pass an HTMLFormElement object (described in Chapter 31),
and the value of all of the elements in the form will be gathered up automatically. Listing 33-5 gives an
example. The listing shows only the script because the HTML remains the same.

Listing 33-5. Using a FormData Object

...
<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData(form);

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.send(formData);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
...

Of course, the key change is the use of the FormData object:

var formData = new FormData(form);

CHAPTER 33 USING AJAX – PART II

858

The other change to be aware of is that I no longer set the value of the Content-Type header. When
using the FormData object, the data is always encoded as multipart/form-data (as described in Chapter
12).

Modifying a FormData Object
The FormData object defines a method that lets you add name/value pairs to the data that will be sent to
the server. The method is described in Table 33-2.

Table 33-2. Header-Related Method of the XMLHttpRequest Object

Method Description Returns

append(<name>, <value>) Appends a name and value to the data set void

You can use the append method to supplement the data that is gathered from the form, but you can

also create FormData objects without using an HTMLFormElement. This means that you can use the append
method to be selective about which data values are sent to the client. Listing 33-6 provides a
demonstration. Once again, I show only the script element, since the other HTML elements are
unchanged.

Listing 33-6. Selectively Sending Data to the Server Using the FormData Object

...
<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 if (inputElements[i].name != "cherries") {
 formData.append(inputElements[i].name, inputElements[i].value);
 }
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.send(formData);
 }

 function handleResponse() {

CHAPTER 33 USING AJAX – PART II

859

 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
...

In this script, I create a FormData object without providing an HTMLFormElement object. I then use the
DOM to find all of the input elements in the document and add name/value pairs for all of those whose
name attribute doesn’t have a value of cherries. You can see the effect in Figure 33-3, where the total
value returned by the server excludes the value supplied by the user for cherries.

Figure 33-3. Selectively sending data using a FormData object

Sending JSON Data
You are not limited to sending just form data with Ajax. You can send pretty much anything, including
JavaScript Object Notation (JSON) data, which has emerged as a popular data format. The roots of Ajax
are in XML, but that is a verbose format. When you are running a web application that must transmit a
high number of XML documents, verbosity translates into real costs in terms of bandwidth and system
capacity.

JSON is often referred to as the fat-free alternative to XML. JSON is easy to read and write, is more
compact than XML, and has gained incredibly wide support. JSON has grown beyond its roots in
JavaScript, and a huge number of packages and systems understand and use the format.

Here is how a simple JavaScript object looks when represented using JSON:

{"bananas":"2","apples":"5","cherries":"20"}

This object has three properties: bananas, apples, and cherries. The values for these properties are
2, 5, and 20, respectively.

JSON doesn’t have all of the functional richness of XML, but for many applications, those features
aren’t used. JSON is simple, lightweight, and expressive. Listing 33-7 demonstrates how easily you can
send JSON data to the server.

CHAPTER 33 USING AJAX – PART II

860

Listing 33-7. Sending JSON Data to the Server

...
<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData[inputElements[i].name] = inputElements[i].value;
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader("Content-Type", "application/json");
 httpRequest.send(JSON.stringify(formData));
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
...

In this script, I create a new Object and define properties that correspond to the name attribute
values of the input elements in the form. I could use any data, but the input elements are convenient
and consistent with the earlier examples.

In order to tell the server that I am sending JSON data, I set the Content-Type header on the request
to application/json, like this:

httpRequest.setRequestHeader("Content-Type", "application/json");

I use the JSON object to convert to and from the JSON format. (Most browsers support this object
directly, but you can add the same functionality to older browsers with the script available at
https://github.com/douglascrockford/JSON-js/blob/master/json2.js.) The JSON object provides two
methods, as described in Table 33-3.

https://github.com/douglascrockford/JSON-js/blob/master/json2.js

CHAPTER 33 USING AJAX – PART II

861

Table 33-3. Methods Defined by the JSON Object

Method Description Returns

parse(<json>) Parses a JSON-encoded string and creates an object object

stringify(<object>) Creates a JSON-encoded representation of the specified
object

string

In Listing 33-7, I use the stringify method and pass the result to the send method of the

XMLHttpRequest object. Only the data encoding in this example has changed. The effect of submitting the
form in the document remains the same.

Sending Files
You can send a file to the server by using a FormData object and an input element whose type attribute is
file. When the form is submitted, the FormData object will automatically ensure that the contents of the
file that the user has selected are uploaded along with the rest of the form values. Listing 33-8 shows
how to use the FormData object in this way.

 Note Using Ajax to upload files is tricky for browsers that don’t yet support the FormData object. There are a lot
of hacks and workarounds—some using Flash and others involving complicated sequences of posting forms to
hidden iframe elements. They all have serious drawbacks and should be used with caution.

Listing 33-8. Sending a File to the Server Using the FormData Object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">
 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>

CHAPTER 33 USING AJAX – PART II

862

 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">File:</div>
 <div class="cell"><input type="file" name="file"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>

 </div>
 <button id="submit" type="submit">Submit Form</button>
 </form>
 <script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new FormData(form);
 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.send(formData);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>
</html>

In this example, the significant change occurs in the form element. The addition of the input
element leads to the FormData object uploading whatever file the user selects. You can see the effect of
the addition in Figure 33-4.

CHAPTER 33 USING AJAX – PART II

863

Figure 33-4. Adding an input element to upload files through the FormData object

 Tip In Chapter 37, I show you how to use the drag-and-drop API to allow users to drag files to be uploaded
from the operating system, rather than using a file chooser.

Tracking Upload Progress
You can track the progress of your data upload as it is sent to the server. You do this through the upload
property of the XMLHttpRequest object, which is described in Table 33-4.

Table 33-4. The upload Property

Name Description Returns

upload Returns an object that can be used to monitor progress XMLHttpRequestUpload

The XMLHttpRequestUpload object that the upload property returns defines only the attributes

required to register handlers for the events described in the previous chapter: onprogress, onload, and so
on. Listing 33-9 shows how to use these events to display upload progress to the user.

Listing 33-9. Monitoring and Displaying Upload Progress

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>

CHAPTER 33 USING AJAX – PART II

864

 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">
 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>
 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">File:</div>
 <div class="cell"><input type="file" name="file"/></div>
 </div>
 <div class="row">
 <div class="cell label">Progress:</div>
 <div class="cell"><progress id="prog" value="0"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>

 </div>

 <button id="submit" type="submit">Submit Form</button>
 </form>
 <script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");
 var progress = document.getElementById("prog");

 var formData = new FormData(form);

CHAPTER 33 USING AJAX – PART II

865

 httpRequest = new XMLHttpRequest();

 var upload = httpRequest.upload;
 upload.onprogress = function(e) {
 progress.max = e.total;
 progress.value = e.loaded;

 }
 upload.onload = function(e) {
 progress.value = 1;
 progress.max = 1;
 }

 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.send(formData);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>
</html>

In this example, I added a progress element (described in Chapter 15) and used it to provide data
upload progress information to the user. I obtain an XMLHttpRequestUpload object by reading the
XMLHttpRequest.upload property, and register functions to respond to the progress and load events.

The browser won’t give progress information for small data transfers, so the best way to test this
example is to select a large file. Figure 33-5 shows the progress of a movie file being sent to the server.

Figure 33-5. Displaying progress as data is uploaded to the server

CHAPTER 33 USING AJAX – PART II

866

Requesting and Processing Different Content Types
So far, all of the Ajax examples return a complete HTML document, including the head, title, and body
elements. These elements are overhead and, given how little data is actually being transmitted from the
server, the ratio of useful to useless information isn’t ideal.

Fortunately, you don’t need to return complete HTML documents. In fact, you don’t need to return
HTML at all. In the following sections, I’ll show you how to deal with different kinds of data and, in doing
so, reduce the amount of overhead that Ajax requests incur.

Receiving HTML Fragments
The simplest change to make is to have the server return an HTML fragment instead of the entire
document. To do this, I first need to make a change to the writeResponse of the Node.js server script, as
shown in Listing 33-10.

Listing 33-10. Modifying the Server to Send Back an HTML Fragment

...
function writeResponse(res, data) {
 var total = 0;
 for (fruit in data) {
 total += Number(data[fruit]);
 }
 res.writeHead(200, "OK", {
 "Content-Type": "text/html",
 "Access-Control-Allow-Origin": "http://titan"});
 res.write('You ordered ' + total + ' items');
 res.end();
}
...

Instead of a fully formed document, the server now sends just a fragment of HTML. Listing 33-11
shows the client HTML document.

Listing 33-11. Working with HTML Fragments

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">

CHAPTER 33 USING AJAX – PART II

867

 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>
 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>
 </div>
 <button id="submit" type="submit">Submit Form</button>
 </form>
 <script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData[inputElements[i].name] = inputElements[i].value;
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader("Content-Type", "application/json");
 httpRequest.send(JSON.stringify(formData));
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>
 </body>
</html>

CHAPTER 33 USING AJAX – PART II

868

I have removed some of the recent additions for uploading files and monitoring progress. I send the
data to the server as JSON and receive an HTML fragment in return (although there is no relationship
between the data format that I used to send data to the server and the data format that I get back from
the server).

Since I have control of the server, I made sure that the Content-Type header is set to text/html,
which tells the browser that it is dealing with HTML, even though the data it gets doesn’t start with a
DOCTYPE or an html element. You can use the overrideMimeType method if you want to override the
Content-Type header and specify the data type yourself, as shown in Listing 33-12.

Listing 33-12. Overriding the Data Type

<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData[inputElements[i].name] = inputElements[i].value;
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader("Content-Type", "application/json");
 httpRequest.send(JSON.stringify(formData));
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 httpRequest.overrideMimeType("text/html");
 document.getElementById("results").innerHTML
 = httpRequest.responseText;
 }
 }
 </script>

Specifying the data type can be useful if the server doesn’t classify the data the way you want it. This
most often happens when you are delivering fragments of content from files and the server has
preconfigured notions of how the Content-Type header should be set.

CHAPTER 33 USING AJAX – PART II

869

Receiving XML Data
XML is less popular in web applications than it used to be, having largely been replaced by JSON. That
said, it can still be useful to deal with XML data, especially when working with legacy data sources.
Listing 33-13 shows the changes to the server script required to send XML to the browser.

Listing 33-13. Sending XML Data from the Server

function writeResponse(res, data) {
 var total = 0;
 for (fruit in data) {
 total += Number(data[fruit]);
 }
 res.writeHead(200, "OK", {
 "Content-Type": "application/xml",
 "Access-Control-Allow-Origin": "http://titan"});

 res.write("<?xml version='1.0'?>");
 res.write("<fruitorder total='" + total + "'>");
 for (fruit in data) {
 res.write("<item name='" + fruit + "' quantity='" + data[fruit] + "'/>")
 total += Number(data[fruit]);
 }
 res.write("</fruitorder>");
 res.end();
}

This revised function generates a short XML document, like this one:

<?xml version='1.0'?>
<fruitorder total='27'>
 <item name='bananas' quantity='2'/>
 <item name='apples' quantity='5'/>
 <item name='cherries' quantity='20'/>
</fruitorder>

This is a superset of the information that I need to display in the client, but it is no longer in a format
that I can just display using the DOM innerHTML property. Fortunately, the XMLHttpRequest object makes
it easy to work with XML, which is not surprising since XML is the x in Ajax. Listing 33-14 shows how to
work with XML in the browser.

Listing 33-14. Working with an XML Ajax Response

<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

CHAPTER 33 USING AJAX – PART II

870

 var formData = new Object();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData[inputElements[i].name] = inputElements[i].value;
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader("Content-Type", "application/json");
 httpRequest.send(JSON.stringify(formData));
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 httpRequest.overrideMimeType("application/xml");
 var xmlDoc = httpRequest.responseXML;
 var val = xmlDoc.getElementsByTagName("fruitorder")[0].getAttribute("total");
 document.getElementById("results").innerHTML = "You ordered "
 + val + " items";
 }
 }
 </script>

All of the changes to the script to work with the XML data occur in the handleResponse function. The
first thing that I do when the request has completed successfully is override the MIME type of the
response:

httpRequest.overrideMimeType("application/xml");

This isn’t really needed in this example, because the server is sending a complete XML document.
But when dealing with XML fragments, it is important to explicitly tell the browser that you are working
with XML; otherwise, the XMLHttpRequest object won’t properly support the responseXML property, which
I use in the following statement:

var xmlDoc = httpRequest.responseXML;

The responseXML property is an alternative to responseText. It parses the XML that has been received
and returns it as a Document object. You can then employ this technique to navigate through the XML
using the DOM features for HTML (described in Chapter 26), like this:

var val = xmlDoc.getElementsByTagName("fruitorder")[0].getAttribute("total");

This statement obtains the value of the total attribute in the first fruitorder element, which I then
use with the innerHTML property to display a result to the user:

document.getElementById("results").innerHTML = "You ordered "+ val + " items";

CHAPTER 33 USING AJAX – PART II

871

HTML VS. XML IN THE DOM

It is time for an admission. In Part IV of this book, I deliberately smoothed over the relationship between
HTML, XML. and the DOM. All of the features that I described for navigating and dealing with elements in
an HTML document are equally available for dealing with XML.

In fact, the objects that represent HTML elements are derived from some core objects that arise from XML
support. For the most part, and for most readers of the book, the HTML support is what matters. If you are
working with XML, you may wish to spend some time reading up on the core XML support, which you can
find defined at www.w3.org/standards/techs/dom.

Having said that, if you are doing a lot of work with XML, you might want to consider an alternative
encoding strategy. XML is verbose and performing complex processing at the browser isn’t always ideal. A
more tailored and terse format, such as JSON, may serve you better.

Receiving JSON Data
JSON data is generally easier to work with than XML because you end up with a JavaScript object that
you can interrogate and manipulate using the core language features. Listing 33-15 shows the changes
required to the server script to generate a JSON response.

Listing 33-15. Generating a JSON Response at the Server

function writeResponse(res, data) {
 var total = 0;
 for (fruit in data) {
 total += Number(data[fruit]);
 }
 data.total = total;
 var jsonData = JSON.stringify(data);

 res.writeHead(200, "OK", {
 "Content-Type": "application/json",
 "Access-Control-Allow-Origin": "http://titan"});
 res.write(jsonData);
 res.end();
}

All I need to do to generate a JSON response is define the total property on the object that is passed
as the data parameter to the function and use JSON.stringify to represent the object as a string. The
server sends a response to the browser, like this:

{"bananas":"2","apples":"5","cherries":"20","total":27}

Listing 33-16 shows the script changes required at the browser to deal with this response.

http://www.w3.org/standards/techs/dom

CHAPTER 33 USING AJAX – PART II

872

Listing 33-16. Receiving a JSON Response from the Server

<script>
 document.getElementById("submit").onclick = handleButtonPress;

 var httpRequest;

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");

 var formData = new Object();
 var inputElements = document.getElementsByTagName("input");
 for (var i = 0; i < inputElements.length; i++) {
 formData[inputElements[i].name] = inputElements[i].value;
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.setRequestHeader("Content-Type", "application/json");
 httpRequest.send(JSON.stringify(formData));
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 var data = JSON.parse(httpRequest.responseText);
 document.getElementById("results").innerHTML = "You ordered "
 + data.total + " items";
 }
 }
 </script>

JSON is exceptionally easy to work with, as these two listings demonstrate. This ease of use, plus the
compactness of the representation, is why JSON has become so popular.

Summary
In this chapter, I finished explaining the intricacies of Ajax. I showed you how to send data to the server,
both manually and using the FormData object. You learned how to send a file and how to monitor
progress as the data is uploaded to the server. I also covered how to deal with different data formats sent
by the server: HTML, fragments of HTML, XML, and JSON.

C H A P T E R 34

873

Working with Multimedia

HTML5 includes support for playing back audio and video files in the browser without the use of plugins
such as Adobe Flash. Browser plugins are a major cause of browser crashes and Flash, in particular, is a
notorious cause of problems.

As a related aside, I have come to loathe Flash for media playback. I like to listen to podcasts when I
am writing, and Chrome uses Flash to play these by default. I like the ease of integration, but every now
and again something goes wrong and I have a locked-up machine. It drives me crazy and makes me
curse Adobe every time. The ubiquity of Flash is useful; the quality of the software leaves a lot to be
desired.

As you’ll see in this chapter, the HTML support for native audio and video has a lot of potential, but
there are still some wrinkles to be ironed out. These are largely related to the formats each browser
supports and the different interpretations browsers have about their ability to play file formats. Table 34-
1 provides the summary for this chapter.

 Tip If you want to re-create the examples in this chapter, you may need to add some MIME types to your web
server. You can see which ones are required in Listing 34-7.

Table 34-1. Chapter Summary

Problem Solution Listing

Include a video in an HTML document. Use the video element. 1

Specify if a video file should be loaded
before the user starts playback.

Use the preload attribute. 2

Specify an image that will be shown until
video playback starts.

Use the poster attribute. 3

Set the size of the video on screen. Use the width and height attributes. 4

Specify the video source. Use the src attribute. 5

CHAPTER 34 WORKING WITH MULTIMEDIA

874

Specify multiple formats of the same video
source.

Use the source element. 6, 7

Include audio in an HTML document. Use the audio element. 8, 9

Manipulate media elements through the
DOM.

Use the HTMLMediaElement,
HTMLVideoElement, or HTMLAudioElement
object.

10

Obtain an indication of whether a media
format is supported by the browser.

Use the canPlayType method. 11

Control media playback. Use the play and pause methods of the
HTMLMediaElement, and the properties
that provide playback details.

12, 13

Using the video Element
You use the video element to embed video content into a web page. Table 34-2 describes the video
element.

Table 34-2. The video Element

Element: video

Element Type: Flow/Phrasing

Permitted
Parents:

Any element that can contain flow or phrasing elements

Local Attributes: autoplay, preload, controls, loop, poster, height, width, muted,
src

Contents: source and track elements, plus phrasing and flow content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

Listing 34-1 shows the basic use of this element.

CHAPTER 34 WORKING WITH MULTIMEDIA

875

Listing 34-1. Using the video Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video width="360" height="240" src="timessquare.webm"
 autoplay controls preload="none" muted>
 Video cannot be displayed
 </video>
 </body>
</html>

If you have ever seen video in a web page before, the result of using the video element will be
familiar, as shown in Figure 34-1.

Figure 34-1. Using the video element

If the browser doesn’t support the video element or cannot play the video, the fallback content (the
content between the start and end tags) will be displayed instead. In this example, I provided a simple
text message, but a common technique is to offer video playback using a non-HTML5 technique (such as
Flash) to support older browsers.

There are a number of attributes for the video element, which I describe in Table 34-3.

CHAPTER 34 WORKING WITH MULTIMEDIA

876

Table 34-3. Attributes for the video Element

Attribute Description

autoplay If present, this attribute causes the browser to start playing the video as soon as it is able
to do so.

preload Tells the browser whether or not to load the video in advance. See the next section for
details.

controls The browser will not display controls unless this attribute is present.

loop If present, this attribute tells the browser to repeat the video.

poster Specifies an image to display when the video data is being loaded. See the “Displaying a
Placeholder Image” section for details.

height Specifies the height of the video. See the “Setting the Video Size” section for details.

width Specifies the width of the video. See the “Setting the Video Size” section for details.

muted If this attribute is present, the video will be muted initially.

src Specifies the video to display. See the “Setting the Video Source (and Format)” section for
details.

Preloading the Video
The preload attribute tells the browser whether it should optimistically download the video when the
page that contains the video element is first loaded. Preloading the video reduces the initial delay when
the user starts playback, but can be a waste of network bandwidth if the user doesn’t view the video. The
allowed values for this attribute are described in Table 34-4.

Table 34-4. The Allowed Values for the preload Attribute

Value Description

none The video will not be loaded until the user starts playback.

metadata Only the metadata for the video (width, height, first frame, duration, and other such
information) should be loaded before the user starts playback.

auto Requests that the browser download the video in its entirety as soon as possible.
The browser is free to ignore this request. This is the default behavior.

CHAPTER 34 WORKING WITH MULTIMEDIA

877

The decision about preemptively loading video should be driven by the likelihood that the user will
want to watch the video, balanced against the bandwidth required to automatically load the video
content. Automatically loading the video results in a smoother user experience, but it can drive up
capacity costs significantly, which are wasted when the user navigates away from the page without
viewing the video.

The metadata value for this attribute can be used to strike a modest balance between the none and
auto values. The problem with the none value is that the video content is shown as a blank region of the
screen. The metadata value causes the browser to get enough information to show the user the first
frame of the video, without having to download all of the content. Listing 34-2 shows the none and
metadata values in use in the same document.

Listing 34-2. Using the none and metadata Values for the preload Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video width="360" height="240" src="timessquare.webm"
 controls preload="none" muted>
 Video cannot be displayed
 </video>
 <video width="360" height="240" src="timessquare.webm"
 controls preload="metadata" muted>
 Video cannot be displayed
 </video>
 </body>
</html>

You can see how these values affect the display shown to the user in Figure 34-2.

Figure 34-2. Using the none and metadata values for the preload attribute

CHAPTER 34 WORKING WITH MULTIMEDIA

878

 Caution The metadata value gives a nice preview to the user, but some caution is required. In playing around
with this property and using a network analyzer, I found that browsers tended to preemptively download the entire
video, even though only the metadata was requested. In all fairness, the preload attribute expresses a preference
that the browser is free to ignore. However, if you need to constrain bandwidth consumption, the poster attribute
may provide a better alternative. See the next section for details.

Displaying a Placeholder Image
You can present the user with a placeholder image by using the poster attribute. This image will be
shown in place of the video until the user starts playback. Listing 34-3 shows the poster attribute in use.

Listing 34-3. Using the poster Attribute to Specify a Placeholder Image

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video width="360" height="240" src="timessquare.webm"
 controls preload="none" poster="poster.png">
 Video cannot be displayed
 </video>

 </body>
</html>

I took a screenshot of the first frame of the video file and superimposed the word Poster on top of it.
This picture includes the video controls to indicate to the user that the poster represents a video clip. I
also included an img element in this example to demonstrate that the poster image is shown by the video
element without modification. Figure 34-3 shows the poster in both forms.

CHAPTER 34 WORKING WITH MULTIMEDIA

879

Figure 34-3. Using a poster for a video clip

Setting the Video Size
If the width and height attributes are omitted, the browser displays a small placeholder element that is
resized to the intrinsic dimensions of the video when the metadata becomes available (that is, when the
user starts playback or if the preload attribute is set to metadata). This can create a jarring effect as the
page layout is adjusted to accommodate the video.

If you do specify the width and height attributes, the browser preserves the video’s aspect ratio—
you don’t have to worry about the video being stretched in either direction. Listing 34-4 shows the
application of the width and height attributes.

Listing 34-4. Applying the width and height Attributes

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 video {
 background-color: lightgrey;
 border: medium double black;
 }
 </style>
 </head>
 <body>
 <video src="timessquare.webm" controls preload="auto" width="600" height="240">
 Video cannot be displayed
 </video>
 </body>
</html>

CHAPTER 34 WORKING WITH MULTIMEDIA

880

In this example, I set the width attribute so that it is out of ratio with the height attribute. I also
applied a style to the video element to emphasize the way that the browser uses only some of the space
allocated to the element to preserve the aspect ratio of the video. Figure 34-4 shows the result.

Figure 34-4. The browser preserving the aspect ratio of a video

Specifying the Video Source (and Format)
The simplest way of specifying the video is to use the src attribute, giving the URL of the video file that is
required. This is the approach I took in the previous examples and which is shown again in Listing 34-5.

Listing 34-5. Specifying a Video Source Using the src Attribute

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video src="timessquare.webm" controls width="360" height="240">
 Video cannot be displayed
 </video>
 </body>
</html>

In this listing, I used the source element to specify the file timessquare.webm. This is a file encoded in
the WebM format. And with this, you enter the difficult world of video formats. Earlier in the book, I
mentioned the browser wars—an attempt by several companies to assert control over the browser
market through nonstandard additions to HTML and related technologies. Happily, those days have

CHAPTER 34 WORKING WITH MULTIMEDIA

881

passed and compliance with standards is seen as a selling point for browsers, along with speed, ease of
use, and a catchy logo.

Sadly, the same point has not been reached when it comes to video formats. There is the potential
for some parties to make a lot of money if they can establish their own formats as the dominant ones for
HTML5. License fees can be charged, royalties can be levied, and patent portfolios can grow in value. As
such, there is no universally supported video format, and if you want to use video to target a wide range
of HTML5 users, you can expect to encode your video in a number of formats. Table 34-5 shows the
formats that have strong support at the moment (although this will almost certainly change over time).

Table 34-5. Video Formats with Significant Browser Support

Format Description Support

WebM This is a format backed by Google with a goal of creating a patent-
free, royalty-free format. The people behind the MP4/H.264 format
have been openly seeking a patent pool to use to begin litigation
against WebM (or at least to worry people enough to prevent them
from using it).

Opera
Chrome
Firefox

Ogg/Theora Ogg Theora is an open, royalty-free, and patent-free format. Opera
Chrome
Firefox

MP4/H.264 This is a format that is presently free to use until 2015 because the
licensor has publically waived its usual distribution fee schedule.

Internet Explorer
Chrome
Safari

The sad fact is that there isn’t a single format that can be used to target all of the mainstream

browsers—until there is, encoding the same video in multiple formats is required.

 Note There is a whole level of detail in video encoding I am going to skip right over. It involves containers,
codecs, and other exciting concepts. The upshot is that there are options and choices within each format that
trade off quality or compactness for compatibility—given the shifting landscape of browser support for video, the
combinations change frequently. I recommend that you consult the release notes for the mainstream browsers to
determine support levels or, as I do, just encode in every possible permutation and see what gives the broadest
support.

You use the source element to specify multiple formats. This element is described in Table 34-6.

CHAPTER 34 WORKING WITH MULTIMEDIA

882

Table 34-6. The source Element

Element: source

Element Type: N/A

Permitted
Parents:

video, audio

Local Attributes: src, type, media

Contents: None

Tag Style: Void element

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

Listing 34-6 shows how you can use the source element to provide the browser with a choice of

video formats.

Listing 34-6. Using the source Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video controls width="360" height="240">
 <source src="timessquare.webm"/>
 <source src="timessquare.ogv"/>
 <source src="timessquare.mp4"/>
 Video cannot be displayed
 </video>
 </body>
</html>

The browser works its way down the list in sequence looking for a video file it can play. This may
mean multiple requests for the server to get additional information about each file. One of the ways the
browser works out whether it can play a video is through the MIME type returned by the server. You can
provide a hint to the user by applying the type attribute to the source element, specifying the MIME type
of the file, as shown in Listing 34-7.

CHAPTER 34 WORKING WITH MULTIMEDIA

883

Listing 34-7. Applying the type Attribute on the source Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video controls width="360" height="240">
 <source src="timessquare.webm" type="video/webm" />
 <source src="timessquare.ogv" type="video/ogg" />
 <source src="timessquare.mp4" type="video/mp4" />
 Video cannot be displayed
 </video>
 </body>
</html>

 Tip The media attribute provides the browser with guidance about the kind of device that the video is best
suited for. See Chapter 7 for details of how to define values for this attribute.

The track Element
The HTML5 specification includes the track element, which provides a mechanism for additional
content related to the video. This includes subtitles, captions, and the chapter title. Table 34-7 describes
this element, but none of the mainstream browsers currently implement this element.

CHAPTER 34 WORKING WITH MULTIMEDIA

884

Table 34-7. The track Element

Element: source

Element Type: N/A

Permitted
Parents:

video, audio

Local Attributes: kind, src, srclang, label, default

Contents: None

Tag Style: Void element

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

Using the audio Element
The audio element allows you to embed audio content into an HTML document. This element is
described in Table 34-8.

CHAPTER 34 WORKING WITH MULTIMEDIA

885

Table 34-8. The audio Element

Element: audio

Element Type: Flow/Phrasing

Permitted
Parents:

Any element that can contain flow or phrasing elements

Local Attributes: autoplay, preload, controls, loop, muted, src

Contents: source and track elements, plus phrasing and flow content

Tag Style: Start and end tags

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

You can see that the audio element has a lot in common with the video element. Listing 34-8 shows

the audio element in use.

Listing 34-8. Using the audio Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <audio controls src="mytrack.mp3" autoplay>
 Audio content cannot be played
 </audio>
 </body>
</html>

You specify the audio source using the src attribute. Even though the world of audio formats is less
contentious than video, there still isn’t a format that all of the browsers can play natively, although I am
more hopeful this will change for audio than video.

CHAPTER 34 WORKING WITH MULTIMEDIA

886

 Tip By applying the autoplay attribute and omitting the controls attributes, you can create a situation where
audio is played automatically and the user has no way to stop it. On behalf of all of your users, I beg you not to do
this—especially if you intend to play dreary, synthetic, anonymous, and essentially unidentifiable music. Inflicting
music like this on your users makes every transaction reminiscent of an interminable elevator ride, and this is
especially true if your audio tracks have no discernible instruments involved. Please don’t inflict bland, soulless,
and pointless music on your users, and certainly don’t make it start automatically and leave the user without the
means to disable it.

Listing 34-9 shows how you can use the source element to provide multiple formats.

Listing 34-9. Using the source Element to Provide Multiple Audio Formats

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <audio controls autoplay>
 <source src="mytrack.ogg" />
 <source src="mytrack.mp3" />
 <source src="mytrack.wav" />
 Audio content cannot be played
 </audio>
 </body>
</html>

In both of these examples, I used the controls attribute so that the browser will display the default
controls to the user. There are some variations between browsers, but Figure 34-5 gives you an idea of
what to expect.

Figure 34-5. The default controls for an audio element in Google Chrome

CHAPTER 34 WORKING WITH MULTIMEDIA

887

Working with Embedded Media via the DOM
The audio and video elements have enough in common that the HTMLMediaElement object defines the
core functionality for both of them in the DOM. The audio element is represented in the DOM by the
HTMLAudioElement object, but this defines no additional functionality beyond HTMLMediaElement. The
video element is represented by the HTMLVideoElement object. This does define some additional
properties, which I describe later in this chapter.

 Tip The audio and video elements have so much in common that the only difference is the amount of screen
space they occupy. The audio element isn’t laid out with a chunk of screen to display video images. You can
actually use the audio element to play video files (although you get only the soundtrack, obviously), and you can
use the video element to play audio files (although the video display remains blank). Strange but true.

Getting Information About the Media
The HTMLMediaElement object defines a number of members you can use to get and modify information
about the element and the media associated with it. These are described in Table 34-9.

Table 34-9. Basic Members of the HTMLMediaElement Object

Member Description Returns

autoplay Gets or sets the presence of the autoplay attribute boolean

canPlayType(<type>) Gets an indication of whether the browser can play a
particular MIME type

string

currentSrc Gets the current source string

controls Gets or sets the presence of the controls attribute boolean

defaultMuted Gets or sets the initial presence of the muted attribute boolean

loop Gets or sets the presence of the loop attribute boolean

muted Gets or sets the presence of the muted attribute boolean

preload Gets or sets the value of the preload attribute string

src Gets or sets the value of the src attribute string

volume Gets or sets the volume on a scale from 0.0 to 1.0 number

CHAPTER 34 WORKING WITH MULTIMEDIA

888

The HTMLVideoElement object defines the additional properties shown in Table 34-10.

Table 34-10. Properties Defined by the HTMLVideoElement Object

Member Description Returns

height Gets or sets the value of the height attribute number

poster Gets or sets the value of the poster attribute string

videoHeight Gets the intrinsic height of the video number

videoWidth Gets the intrinsic width of the video number

width Gets or sets the value of the width attribute number

Listing 34-10 shows some of the HTMLMediaElement properties being used to get basic information

about a media element.

Listing 34-10. Getting Basic Information About a Media Element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border: thin solid black; border-collapse: collapse;}
 th, td {padding: 3px 4px;}
 body > * {float: left; margin: 2px;}
 </style>
 </head>
 <body>
 <video id="media" controls width="360" height="240" preload="metadata">
 <source src="timessquare.webm"/>
 <source src="timessquare.ogv"/>
 <source src="timessquare.mp4"/>
 Video cannot be displayed
 </video>
 <table id="info" border="1">
 <tr><th>Property</th><th>Value</th></tr>
 </table>
 <script>
 var mediaElem = document.getElementById("media");
 var tableElem = document.getElementById("info");

 var propertyNames = ["autoplay", "currentSrc", "controls", "loop", "muted",
 "preload", "src", "volume"];

CHAPTER 34 WORKING WITH MULTIMEDIA

889

 for (var i = 0; i < propertyNames.length; i++) {
 tableElem.innerHTML +=
 "<tr><td>" + propertyNames[i] + "</td><td>" +
 mediaElem[propertyNames[i]] + "</td></tr>";
 }
 </script>
 </body>
</html>

The script in this example displays the value of a number of the properties in a table, alongside the
video element. You can see the results in Figure 34-6.

Figure 34-6. Displaying basic information about a video element

I showed Opera in the figure because it is the only browser that properly implements the currentSrc
property. This property displays the value of the src attribute, either from the media element itself or
from the source element in use when there is a choice of formats available.

Assessing Playback Capabilities
The canPlayType method can be used to get an idea of whether the browser can play a particular media
format. This method returns one of the values shown in Table 34-11.

CHAPTER 34 WORKING WITH MULTIMEDIA

890

Table 34-11. The Allowed Values for the canPlayType Attribute

Value Description

"" (empty string) The browser cannot play the media type.

maybe The browser might be able to play the media type.

probably The browser is reasonably confident that it can play the media type.

These values are obviously vague—and this goes back to the complexity around some media
formats and the encoding options that can be used when creating them. Listing 34-11 shows the
canPlayType method in use.

Listing 34-11. Using the canPlayType Method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border: thin solid black; border-collapse: collapse;}
 th, td {padding: 3px 4px;}
 body > * {float: left; margin: 2px;}
 </style>
 </head>
 <body>
 <video id="media" controls width="360" height="240" preload="metadata">
 Video cannot be displayed
 </video>
 <table id="info" border="1">
 <tr><th>Property</th><th>Value</th></tr>
 </table>
 <script>
 var mediaElem = document.getElementById("media");
 var tableElem = document.getElementById("info");

 var mediaFiles = ["timessquare.webm", "timessquare.ogv", "timessquare.mp4"];
 var mediaTypes = ["video/webm", "video/ogv", "video/mp4"];

 for (var i = 0; i < mediaTypes.length; i++) {
 var playable = mediaElem.canPlayType(mediaTypes[i]);
 if (!playable) {
 playable = "no";
 }

 tableElem.innerHTML +=
 "<tr><td>" + mediaTypes[i] + "</td><td>" + playable + "</td></tr>";

CHAPTER 34 WORKING WITH MULTIMEDIA

891

 if (playable == "probably") {
 mediaElem.src = mediaFiles[i];
 }
 }
 </script>
 </body>
</html>

In the script in this example, I use the canPlayType method to assess a set of media types. If I receive
a probably response, I set the src attribute value for the video element. Along the way, I record the
response for each media type in a table.

Some caution is required when trying to select media in this way, because the way that browsers
assess their ability to play a format differs. For example, Figure 34-7 shows the response from Firefox.

Figure 34-7. Assessing media format support in Firefox

Firefox is very bullish about WebM and certain that the Ogg and MP4 files can’t be played—yet, Firefox
seems to handle Ogg video files very well. Figure 34-8 shows the response from Chrome.

CHAPTER 34 WORKING WITH MULTIMEDIA

892

Figure 34-8. Assessing media format support in Chrome

Chrome takes a much more conservative view, yet it will happily play all three of my media files. In
fact, Chrome is so conservative that I don’t get a probably response from the canPlayType method and so
don’t make a media selection.

It is hard to criticize the browsers for the inconsistency of their responses. There are too many
variables to be able to give definitive answers, but the different ways in which support is assessed means
that the canPlayType method should be used very carefully.

Controlling Media Playback
The HTMLMediaElement object defines a number of members that allow you to control playback and get
information about playback. These properties and methods are described in Table 34-12.

Table 34-12. Playback Members of the HTMLMediaElement Object

Member Description Returns

currentTime Returns the current playback point in the media file number

duration Returns the total length of the media file number

ended Returns true if the media file has finished playing boolean

pause() Pauses playback of the media void

paused Returns true if playback is paused; returns false otherwise boolean

play() Starts playback of the media void

CHAPTER 34 WORKING WITH MULTIMEDIA

893

Listing 34-12 shows how you can use the properties in the table to get information about playback.

Listing 34-12. Using HTMLMediaElement Properties to Get Details of Media Playback

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border: thin solid black; border-collapse: collapse;}
 th, td {padding: 3px 4px;}
 body > * {float: left; margin: 2px;}
 div {clear: both;}
 </style>
 </head>
 <body>
 <video id="media" controls width="360" height="240" preload="metadata">
 <source src="timessquare.webm"/>
 <source src="timessquare.ogv"/>
 <source src="timessquare.mp4"/>
 Video cannot be displayed
 </video>
 <table id="info" border="1">
 <tr><th>Property</th><th>Value</th></tr>
 </table>
 <div>
 <button id="pressme">Press Me</button>
 </div>
 <script>
 var mediaElem = document.getElementById("media");
 var tableElem = document.getElementById("info");

 document.getElementById("pressme").onclick = displayValues;

 displayValues();

 function displayValues() {
 var propertyNames = ["currentTime", "duration", "paused", "ended"];
 tableElem.innerHTML = "";
 for (var i = 0; i < propertyNames.length; i++) {
 tableElem.innerHTML +=
 "<tr><td>" + propertyNames[i] + "</td><td>" +
 mediaElem[propertyNames[i]] + "</td></tr>";
 }
 }
 </script>
 </body>
</html>

This example includes a button element which, when pressed, causes the current values of the
currentTime, duration, paused, and ended properties to be displayed in a table. You can see the effect in
Figure 34-9.

CHAPTER 34 WORKING WITH MULTIMEDIA

894

Figure 34-9. Taking a snapshot of playback property values in response to a button press

You can use the playback methods to replace the default media controls. Listing 34-13 provides a
demonstration.

Listing 34-13. Replacing the Default Media Controls

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>
 <video id="media" width="360" height="240" preload="auto">
 <source src="timessquare.webm"/>
 <source src="timessquare.ogv"/>
 <source src="timessquare.mp4"/>
 Video cannot be displayed
 </video>
 <div>
 <button>Play</button>
 <button>Pause</button>
 </div>
 <script>
 var mediaElem = document.getElementById("media");

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {

CHAPTER 34 WORKING WITH MULTIMEDIA

895

 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 switch (e.target.innerHTML) {
 case 'Play':
 mediaElem.play();
 break;
 case 'Pause':
 mediaElem.pause();
 break;
 }
 }
 </script>
 </body>
</html>

In this example, I omitted the controls attribute from the video element and use the play and pause
methods, triggered by button presses, to start and stop the media playback. You can see the effect in
Figure 34-10.

Figure 34-10. Replacing the default media controls

CHAPTER 34 WORKING WITH MULTIMEDIA

896

 Tip The HTML specification defines a series of events related to loading and playing media, exposed through
the controller property of the HTMLMediaElement object. As I write this, none of the mainstream browsers
support this property or the MediaController object that it should return.

Summary
In this chapter, I showed you how HTML5 supports native media playback through the video and audio
elements and how you can control those elements using the DOM. Native media support has a lot of
potential, given the difficulties with plugins like Flash, but it is an approach that is still at an early stage
of adoption. You will be stuck with a mix-and-match approach until the format support issues are
resolved and there is a critical mass of browser support for this approach.

C H A P T E R 35

897

Using the Canvas Element – Part I

In the previous chapter I alluded to (and briefly ranted about) the love/hate relationship that most web
application developers and designers have with Adobe Flash. The hate comes from the lack of stability
and security because Adobe recently has been accused of poor software quality. The love for Flash
comes from its ubiquity of installation and the way that it can be used to produce rich content.

As a native alternative to Flash, HTML5 defines the canvas element. If you have read any description
of the new capabilities in HTML5, the canvas was likely to have been one of the first features mentioned
and it was probably described as a Flash-killer.

As is often the case, the hype and the reality don’t match up. The canvas element is a drawing
surface that we configure and drive using JavaScript. It is flexible, relatively easy to use and it provides
enough features that it can replace Flash for some kinds of rich content. But calling the canvas element a
Flash-killer (or even a Flash-replacement) is premature, as it will be a while before the canvas takes over.

This is the first of two chapters on the canvas element. In this chapter, I show you how to get set up
with the canvas element and introduce the objects that we use in JavaScript to interact with the canvas. I
also show you the support for basic shapes, how to use solid colors and gradients and how to draw
images on the canvas. The next chapter shows you how to draw more complex shapes and how to apply
effects and transformations. Table 35-1 provides the summary for this chapter.

Table 35-1. Chapter Summary

Problem Solution Listing

Prepare a canvas for drawing Find the canvas element in the DOM and call the
getContext method on the HTMLCanvasObject

1,2

Draw a rectangle Use the fillRect or strokeRect methods 3

Clear a rectangle Use the clearRect method 4

Set the style for a drawing
operation

Set the values for the drawing state properties (such
as lineWidth and lineJoin) prior to performing the
operation

5, 6

Use solid colors in drawing
operations

Set the fillStyle or strokeStyle properties to a
color value or name

7

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

898

Create a linear gradient Call the createLinearGradient method and add
colors to the gradient by calling the addColorStop
method

8-11

Create a radial gradient Call the createRadialGradient method and add
colors to the gradient by calling the addColorStop
method

12, 13

Create a pattern Call the createPattern method, specifying the source
of the pattern image and the repeat style

14, 15

Save and restore the drawing
state

Use the save and restore methods 16

Draw an image on the canvas Use the drawImage method, specifying an img, canvas
or video element as the source

17-20

Getting Started with the Canvas Element
The canvas element is pretty simple in that all of its functionality is exposed through a JavaScript object,
so the element itself only has two attributes, as shown in Table 35-2.

Table 35-2. The canvas element

Element: canvas

Element Type: Phrasing/Flow

Permitted
Parents:

Any element that can contain phrasing or flow elements

Local Attributes: height, width

Contents: Phrasing or flow content

Tag Style: Start and end tag.

New in HTML5? Yes

Changes in
HTML5

N/A

Style Convention None

The content of a canvas element is used as a fallback if the browser doesn’t support the element

itself. Listing 35-1 shows the canvas element and some simple fallback content.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

899

Listing 35-1. Using the canvas element with basic fallback content

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: medium double black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas width="500" height="200">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 </body>
</html>

As you might imagine, the width and height attributes specify the size of the element on screen. You
can see how the browser displays this example in Figure 35-1 (although, of course, there isn’t much to
see at this point).

 Tip I applied a style to the canvas element in this example to set a border. Otherwise there would be no way to
see the canvas in the browser window. I’ll show a border in all of the examples in this chapter, so it is always
clear how the operations I describe relate to the canvas coordinates.

Figure 35-1. Adding the canvas element to an HTML document

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

900

Getting a Canvas Context
In order to draw on a canvas element, we need to get a context object, which is an object that exposes
drawing functions for a particular style of graphics. In our case, we will be working with the 2d context,
which is used to perform two-dimensional operations. Some browsers provide support for an
experimental 3D context, but this is still at an early stage.

We get a context through the object that represents the canvas element in the DOM. This object,
HTMLCanvasElement, is described in Table 35-3.

Table 35-3. The HTMLCanvasElement object

Member Description Returns

height Corresponds to the height attribute number

width Corresponds to the width attribute number

getContext(<context>) Returns a drawing context for the canvas object

The key method is getContext – to get the two-dimensional context object, we request pass the 2d
argument to the method. Once we have the context, we can begin drawing. Listing 35-2 provides a
demonstration.

Listing 35-2. Obtaining a two-dimensional context object for a canvas

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: medium double black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="100">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 ctx.fillRect(10, 10, 50, 50);
 </script>
 </body>
</html>

I have emphasized the key statement in this listing. I use the document object to find the object
representing the canvas element in the DOM and call the getContext method, using the argument 2d.
You will see this statement, or a close variation, in all of the examples in this chapter.

Once I have the context object, I can begin to draw. In this example, I have called the fillRect
method, which draws a filled rectangle on the canvas. You can see the (simple) effect in Figure 35-2.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

901

Figure 35-2. Obtaining a context object and performing a simple drawing operations

Drawing Rectangles
Let us begin with the canvas support for rectangles. Table 35-4 describes the relevant methods, all of
which we apply to the context object (and not the canvas itself).

 Tip We can draw more complex shapes, but I don’t show you how to do that until Chapter 36. We can use
rectangles to explore some of the canvas features without getting bogged down in how the other shapes work.

Table 35-4. The simple shapes methods

Name Description Returns

clearRect(x, y, w, h) Clears the specified rectangle void

fillRect(x, y, w, h) Draws a filled rectangle void

strokeRect(x, y, w, h) Draws an unfilled rectangle void

All three of these methods take four arguments. The first two (x and y as shown in the table) are the

offset from the top-left corner of the canvas element. The w and h arguments specify the width and
height of the rectangle to draw. Listing 35-3 shows the use of the fillRect and strokeRect methods.

Listing 35-3. Using the fillRect and strokeRect methods

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

902

 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;
 var size = 50;
 var count = 5;

 for (var i = 0; i < count; i++) {
 ctx.fillRect(i * (offset + size) + offset, offset, size, size);
 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,
 size, size);
 }
 </script>
 </body>
</html>

The script in this example uses the fillRect and strokeRect methods to create a series of filled and
unfilled rectangles. You can see the result in Figure 35-3.

Figure 35-3. Drawing filled and unfilled rectangles

I wrote the script this way to emphasize the programmatic nature of the canvas element. I used a
JavaScript for loop to draw these rectangles. I could have used ten individual statements, all with
specific coordinate parameters, but one of the joys of the canvas is that we don’t need to do this. It can
be hard to get your head around this aspect of the canvas if you are not from a programming
background.

The clearRect method removes whatever has been drawn in the specified rectangle. Listing 35-4
provides a demonstration.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

903

Listing 35-4. Using the clearRect method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;
 var size = 50;
 var count = 5;

 for (var i = 0; i < count; i++) {
 ctx.fillRect(i * (offset + size) + offset, offset, size, size);
 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,
 size, size);
 ctx.clearRect(i * (offset + size) + offset, offset + 5, size, size -10);
 }
 </script>
 </body>
</html>

In this example, I use the clearRect method to clear an area of the canvas that has previously been
drawn on by the fillRect method. You can see the effect in Figure 35-4.

Figure 35-4. Using the clearRect method

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

904

Setting the Canvas Drawing State
Drawing operations are configured by the drawing state. This is a set of properties that specify
everything from line width to fill color. When we draw a shape, the current settings in the drawing state
are used. Listing 35-5 provides a demonstration, using the lineWIdth property, which is part of the
drawing state and sets the width of lines used for shapes such as those produced by the strokeRect
method.

Listing 35-5. Setting the drawing state before performing an operation

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="70">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.lineWidth = 2;
 ctx.strokeRect(10, 10, 50, 50);
 ctx.lineWidth = 4;
 ctx.strokeRect(70, 10, 50, 50);
 ctx.lineWidth = 6;
 ctx.strokeRect(130, 10, 50, 50);
 ctx.strokeRect(190, 10, 50, 50);
 </script>
 </body>
</html>

When I use the strokeRect method, the current value of the lineWidth property is used to draw the
rectangle. In the example, I set the property value to 2, 4, and finally 6 pixels, which has the effect of
making the lines of the rectangles thicker. Note that I have not changed the value between the last two
calls to strokeRect. I have done this to demonstrate that the value of the drawing state properties do not
change between drawing operations, as shown in Figure 35-5.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

905

Figure 35-5. Changing a drawing state value between drawing operations

Table 35-5 shows the basic drawing state properties. There are other properties, which we will
encounter as we look at more advanced features.

Table 35-5. The basic drawing state properties

Name Description Default

fillStyle Gets or sets the style used for filled shapes black

lineJoin Gets or sets the style used when lines meet in a shape miter

lineWidth Gets or sets the width of lines 1.0

strokeStyle Gets or sets the style used for lines black

Setting the Line Join Style
The lineJoin property determines how lines that join one another are drawn. There are three values:
round, bevel, and miter. The default value is miter. Listing 35-6 shows the three styles in use.

Listing 35-6. Setting the lineJoin property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

906

 ctx.lineWidth = 20;

 ctx.lineJoin = "round";
 ctx.strokeRect(20, 20, 100, 100);

 ctx.lineJoin = "bevel";
 ctx.strokeRect(160, 20, 100, 100);

 ctx.lineJoin = "miter";
 ctx.strokeRect(300, 20, 100, 100);
 </script>
 </body>
</html>

In this example, I have used the lineWidth property so that the strokeRect method will draw
rectangles with very thick lines and then used each of the lineJoin style values in turn. You can see the
result in Figure 35-6.

Figure 35-6. The lineJoin property

Setting the Fill & Stroke Styles
When we set a style using the fillStyle or strokeStyle properties, we can specify a color using the CSS
color values that I described in Chapter 35-4, using either a name or a color model. Listing 35-7 provides
an example.

Listing 35-7. Setting colors using the fillStyle and strokeStyle properties

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

907

 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var offset = 10;
 var size = 50;
 var count = 5;
 ctx.lineWidth = 3;
 var fillColors = ["black", "grey", "lightgrey", "red", "blue"];
 var strokeColors = ["rgb(0,0,0)", "rgb(100, 100, 100)",
 "rgb(200, 200, 200)", "rgb(255, 0, 0)",
 "rgb(0, 0, 255)"];

 for (var i = 0; i < count; i++) {
 ctx.fillStyle = fillColors[i];
 ctx.strokeStyle = strokeColors[i];

 ctx.fillRect(i * (offset + size) + offset, offset, size, size);
 ctx.strokeRect(i * (offset + size) + offset, (2 * offset) + size,
 size, size);
 }
 </script>
 </body>
</html>

In this example, I define two arrays of colors using the CSS color names and the rgb model. I then
assign these colors to the fillStyle and strokeStyle properties in the for loop which calls the fillRect
and strokeRect methods. You can see the effect in Figure 35-7.

Figure 35-7. Setting the fill and stroke style using CSS colors

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

908

 Note Of course, anything that involves colors loses something when reproduced in shades of grey on the
printed page, so you may wish to load the example in a browser to see the effect. If so, you can get all of the code
samples for this book free-of-charge from apress.com.

Using Gradients
We can also set the fill and stroke styles using gradients, rather than solid colors. A gradient is a gradual
progression between two or more colors. The canvas element supports two kinds of gradients: linear and
radial, using the methods described in Table 35-6.

Table 35-6. The gradient methods

Name Description Returns

createLinearGradient(x0, y0, x1, y1) Creates a linear gradient CanvasGradient

createRadialGradient(x0, y0, r0, x1, y1, r1) Creates a radial gradient CanvasGradient

Both of these methods return a CanvasGradient object, which defines the method shown in Table

35-7.The arguments describe the line or circle used by the gradient, which is explained in the following
examples.

Table 35-7. The CanvasGradient method

Name Description Returns

addColorStop(<position>, <color>) Adds a solid color to the gradient line void

Using a Linear Gradient
A linear gradient is one in which we specify the colors we want along a line. Listing 35-8 shows how we
can create a simple linear gradient.

Listing 35-8. Creating a linear gradient

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

909

 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(0, 0, 500, 140);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(0, 0, 500, 140);
 </script>
 </body>
</html>

When we use the createLinearGradient method, we supply four values that are used as the start and
end coordinates of a line on the canvas. In this example, I have used coordinates to describe a line that
starts at the point 0, 0 and ends at 500, 140. These points correspond to the top-left and bottom-right
corners of the canvas, as shown in Figure 35-8.

Figure 35-8. The line in a linear gradient

The line represents the gradient. We can now use the addColorStop method on the CanvasGradient
returned by the createLinearGradient method to add colors along the gradient line, like this:

grad.addColorStop(0, "red");
grad.addColorStop(0.5, "white");
grad.addColorStop(1, "black");

The first argument to the addColorStop method is the position on the line that we want to apply the
color, which we specify using the second argument. The start of the line (the coordinate 0, 0 in this
example) is represented by the value 0 and the end of the line by the value 1. In the example, I have told
the canvas that I want the color red at the start of the line, the color white half way along the line, and the
color black at the end of the line. The canvas will then work out how to gradually transition between
those colors at those points. We can specify as many color stops as we like (but if we get carried away, we
end up with something that looks like a rainbow).

Once we have defined the gradient and added the color stops, we can assign the CanvasGradient
object to set the fillStyle or strokeStyle properties, like this:

ctx.fillStyle = grad;

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

910

Finally, we can draw a shape. In this example, I drew a filled rectangle, like this:

ctx.fillRect(0, 0, 500, 140);

This rectangle fills the canvas, showing the entire gradient, as you can see in Figure 35-9.

Figure 35-9. Using a linear gradient in a filled rectangle

You can see that the colors change along the line of the gradient. There is solid red in the top-left
corner, solid white in the middle of the line, and solid black in the bottom-right corner, and the color
gradually shifts between these points.

Using a Linear Gradient with a Smaller Shape
When we define the gradient line, we do so relative to the canvas – not the shapes that we draw. This
tends to cause some confusion at first. Listing 35-9 contains a demonstration of what I mean.

Listing 35-9. Using a gradient with a shape that doesn’t fill the canvas

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(0, 0, 500, 140);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

911

 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(10, 10, 50, 50);
 </script>
 </body>
</html>

The change in this example is simply to make the rectangle smaller. You can see the result in Figure
35-10.

Figure 35-10. Missing the gradations in a gradient

This is what I mean about the gradient line relating to the canvas. I have drawn my rectangle in a
region that is solid red. (In fact, if we were able to zoom in close enough, we might be able to detect tiny
gradations toward white, but the general appearance is of a solid color.) The best way to think about this
is that when we draw a shape, we are allowing part of the underlying gradient show through, which
means we have to think about how the gradient line relates to the area we are going to expose. Listing
35-10 shows how we can target the gradient line for a shape.

Listing 35-10. Making the gradient line match a desired shape

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

912

 var grad = ctx.createLinearGradient(10, 10, 60, 60);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(0, 0, 500, 140);
 </script>
 </body>
</html>

In this example, I have set the gradient line so that it starts and stops within the area that I want to
reveal with my smaller rectangle. However, I have drawn the rectangle to reveal all of the gradient so you
can see the effect of the change, as shown in Figure 11.

Figure 35-11. The effect of moving and shortening the gradient line

You can see how the gradations have been shifted to the area I am going to expose with the smaller
rectangle. The last step is to match the rectangle to the gradient, as shown in Listing 35-11.

Listing 35-11. Matching the shape to the gradient

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

913

 var grad = ctx.createLinearGradient(10, 10, 60, 60);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(10, 10, 50, 50);
 </script>
 </body>
</html>

 Tip Notice that the numeric values I used as arguments in the createLinearGradient method are different
from the parameters I used in the fillRect method. The createLinearGradient values represent a pair of
coordinates in the canvas, whereas the fillRect values represent the width and height of a rectangle relative to a
single coordinate. If you find that the gradient and shape don’t line up, this is likely to be the cause of the problem.

Now the shape and the gradient are perfectly aligned, as shown in Figure 35-12. Of course, we don’t
always want them perfectly aligned. We might want to expose a specific region of a larger gradient in
order to get a different effect. Whatever the goal, it is important to understand the relationship between
the gradient and the shapes that we use it with.

Figure 35-12. Aligning shape and gradient

Using a Radial Gradient
We define radial gradients using two circles. The start of the gradient is defined by the first circle, the end
of the gradient by the second circle and we add color stops between them. Listing 35-12 provides an
example.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

914

Listing 35-12. Using a radial gradient

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createRadialGradient(250, 70, 20, 200, 60, 100);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(0, 0, 500, 140);
 </script>
 </body>
</html>

The six arguments to the createRadialGradient method represent:

• The coordinate for the center of the start circle (the first and second arguments)

• The radius of the start circle (the third argument)

• The coordinate for the center of the finish circle (the fourth and fifth arguments)

• The radius of the finish circle (the sixth argument)

The values in the example give the start and end circles as shown in Figure 35-13. Notice that we can
specify gradients that are outside of the canvas (this is true for linear gradients as well).

Figure 35-13. The start and end circles in a radial gradient

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

915

In this example, the start circle is the smaller one and is encompassed by the finish circle. When we
add color stops on this gradient, they are placed on a line between the edge of the start circle (a stop
value of 0.0) and the edge of the finish circle (a stop value of 1.0).

 Tip Be careful when specifying circles such that one does not contain the other. There are some
inconsistencies between browsers in how to derive the gradations and the results are messy.

Since we are able to specify the position of both circles, the distance between the circle edges can
vary and the rate of gradation between colors will also vary. You can see the effect in Figure 35-14.

Figure 35-14. Using a radial gradiation

The figure shows the whole gradient, but the same rules apply for how the gradient relates to
drawing shapes. Listing 35-13 creates a pair of smaller shapes that reveal subsections of the gradient.

Listing 35-13. Using smaller shapes with a radial gradient

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

916

 var grad = ctx.createRadialGradient(250, 70, 20, 200, 60, 100);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 ctx.fillStyle = grad;
 ctx.fillRect(150, 20, 75, 50);

 ctx.lineWidth = 8;
 ctx.strokeStyle = grad;
 ctx.strokeRect(250, 20, 75, 50);
 </script>
 </body>
</html>

Notice that I am able to use the gradient for both the fillStyle and strokeStyle properties,
enabling us to use gradients for lines as well as solid shapes, as shown by Figure 35-15.

Figure 35-15. Using a radial gradient for both fills and strokes

Using Patterns
In addition to solid colors and gradients, we can create patterns. We do this using the createPattern
method, which is defined by the canvas context object. The 2D drawing context defines support for three
types of pattern – image, video, and canvas – but only the image pattern is implemented (and only by
Firefox and Opera. As I write this, the other browsers ignore this pattern type.).

To use an image pattern, we pass an HTMLImageElement object as the first argument to the
createPattern method. The second argument is the repeat style, which must be one of the values shown
in Table 35-8.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

917

Table 35-8. The pattern repeat values

Value Description

repeat The image should be repeated vertically and horizontally

repeat-x The image should be repeated horizontally

repeat-y The image should be repeated vertically

no-repeat The image should not be repeated in the pattern

Listing 35-14 shows how we can create and use an image pattern.

Listing 35-14. Using an image pattern

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>

 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 var imageElem = document.getElementById("banana");

 var pattern = ctx.createPattern(imageElem, "repeat");

 ctx.fillStyle = pattern;
 ctx.fillRect(0, 0, 500, 140);
 </script>
 </body>
</html>

The document in this example contains an img element, which isn’t visible to the user because I
have applied the hidden attribute (described in Chapter 4). In the script, I use the DOM to locate the
HTMLImageElement object that represents the img element as the first argument to the createPattern
method. For the second argument, I use the repeat value, which causes the image to be repeated in both
directions. Finally, I set the pattern as the value for the fillStyle property and use the fillRect method
to draw a filled rectangle which is the same size as the canvas. You can see the result in Figure 35-16.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

918

Figure 35-16. Creating an image pattern

The pattern is copied from the current state of the img element, meaning the pattern won’t change if
we use JavaScript and the DOM to change the value of the src attribute value of the img element.

As with gradients, the pattern applies to the entire canvas and we decide which portions of the
pattern are shown by the shapes we draw. Listing 35-15 shows using the pattern for smaller fill and
stroke shapes.

Listing 35-15. Using smaller shapes with an image pattern

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>

 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 var imageElem = document.getElementById("banana");

 var pattern = ctx.createPattern(imageElem, "repeat");

 ctx.fillStyle = pattern;
 ctx.fillRect(150, 20, 75, 50);

 ctx.lineWidth = 8;
 ctx.strokeStyle = pattern;
 ctx.strokeRect(250, 20, 75, 50);
 </script>

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

919

 </body>
</html>

You can see the result in Figure 35-17.

Figure 35-17. Using smaller shapes with an image pattern

Saving and Restoring Drawing State
We can save the drawing state and return to it later using the methods described in Table 35-9.

Table 35-9. Saving and restoring state

Value Description

save() Saves the values for the drawing state properties and pushes them on the state stack

restore() Pops the first set of values from the state stack and uses them to set the drawing state

The saved drawing states are stored in a last-in, first-out (LIFO) stack, such that the last state we

saved using the save method is the first one restored by the restore method. Listing 35-16 shows these
methods in use.

Listing 35-16. Saving and restoring state

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

920

 <canvas id="canvas" width="500" height="140" preload="auto">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <div>
 <button>Save</button>
 <button>Restore</button>
 </div>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var grad = ctx.createLinearGradient(500, 0, 500, 140);
 grad.addColorStop(0, "red");
 grad.addColorStop(0.5, "white");
 grad.addColorStop(1, "black");

 var colors = ["black", grad, "red", "green", "yellow", "black", "grey"];

 var cIndex = 0;

 ctx.fillStyle = colors[cIndex];
 draw();

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 switch (e.target.innerHTML) {
 case 'Save':
 ctx.save();
 cIndex = (cIndex + 1) % colors.length;
 ctx.fillStyle = colors[cIndex];
 draw();
 break;
 case 'Restore':
 cIndex = Math.max(0, cIndex -1);
 ctx.restore();
 draw();
 break;
 }
 }
 function draw() {
 ctx.fillRect(0, 0, 500, 140);
 }
 </script>
 </body>
</html>

In this example, I have defined an array that contains CSS color names and a linear gradient. The
current drawing state is saved using the save method when the Save button is pressed. When the Restore
button is pressed, the previous drawing state is restored. After either button press, the draw function is

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

921

called, which uses the fillRect method to draw a filled rectangle. The fillStyle property is advanced
and retarded in the array and saved and restored when the buttons are pressed because this property is
part of the drawing state. You can see the effect in Figure 35-18.

Figure 35-18. Saving and restoring the drawing state

The contents of the canvas are not saved or restored; only the property values for the drawing state
are saved or restored. This includes properties we have seen in this chapter, such as lineWidth,
fillStyle, and strokeStyle, and some additional properties that I describe in Chapter 36.

Drawing Images
We can draw images on the canvas by using the drawImage method. This method takes three, five, or nine
arguments. The first argument is always the source of the image, which can be the DOM object that
represents an img, video, or another canvas element. Listing 35-17 gives an example, using an img
element as the source.

Listing 35-17. Using the drawImage method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140" preload="auto">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>

 <script>

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

922

 var ctx = document.getElementById("canvas").getContext("2d");
 var imageElement = document.getElementById("banana");

 ctx.drawImage(imageElement, 10, 10);
 ctx.drawImage(imageElement, 120, 10, 100, 120);
 ctx.drawImage(imageElement, 20, 20, 100, 50, 250, 10, 100, 120);
 </script>
 </body>
</html>

When using three arguments, the second and third arguments give the coordinate on the canvas at
which the image should be drawn. The image is drawn at its intrinsic width and height. When using five
arguments, the additional arguments specify the width and height at which the image should be drawn,
overriding the intrinsic size.

When using nine arguments:

• The second and third arguments are the offset into the source image.

• The fourth and fifth arguments are the width and height of the region of the
source image that will be used.

• The sixth and seventh arguments specify the canvas coordinate at which the top-
left corner of the selected region will be drawn.

• The eighth and ninth arguments specify the width and height to which the
selected region will be draw.

You can see the effect of these arguments in Figure 35-19.

Figure 35-19. Drawing an image

Using Video Images
We can use a video element as the source of the image for the drawImage method. When we do this, we
take a snapshot of the video. Listing 35-18 provides a demonstration.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

923

Listing 35-18. Using video as the source for the drawImage element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <video id="vid" src="timessquare.webm" controls preload="auto"
 width="360" height="240">
 Video cannot be displayed
 </video>
 <div>
 <button id="pressme">Snapshot</button>
 </div>
 <canvas id="canvas" width="360" height="240">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 var imageElement = document.getElementById("vid");

 document.getElementById("pressme").onclick = function(e) {
 ctx.drawImage(imageElement, 0, 0, 360, 240);
 }
 </script>
 </body>
</html>

In this example, I have a video element, a button, and a canvas element. When the button is
pressed, the current video frame is used to paint the canvas using the drawImage method. You can see the
result in Figure 35-20.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

924

Figure 35-20. Using a video as the source for the canvas drawImage method

If you find yourself looking at HTML5 demos, you will often see the canvas used to draw over a
video. This is done using the technique I just showed you, combined with a timer (such as that described
in Chapter 27). Listing 35-19 shows how to put this together. This is not a technique I am particularly
fond of. If you want to know why, just watch the CPU load on the machine displaying a document of this
type.

Listing 35-19. Using the canvas to display and draw on video

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <video id="vid" hidden src="timessquare.webm" preload="auto"
 width="360" height="240" autoplay></video>
 <canvas id="canvas" width="360" height="240">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 var imageElement = document.getElementById("vid");

 var width = 100;
 var height = 10;
 ctx.lineWidth = 5;
 ctx.strokeStyle = "red";

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

925

 setInterval(function() {
 ctx.drawImage(imageElement, 0, 0, 360, 240);
 ctx.strokeRect(180 - (width/2),120 - (height/2), width, height);
 }, 25);

 setInterval(function() {
 width = (width + 1) % 200;
 height = (height + 3) % 200;
 }, 100);

 </script>
 </body>
</html>

In this example, there is a video element to which I have applied the hidden attribute, so that it is not
visible to the user. I have used two timers – the first fires every 25 milliseconds and draws the current
video frame and then a stroked rectangle. The second timer fires every 100 milliseconds and changes the
values used for the rectangle. The effect is that the rectangle changes size and is superimposed over the
video image. You can get a sense of the effect in Figure 35-21, although to fully appreciate what is
happening, you should load the example document into a browser.

Figure 35-21. Using timers to recreate overlaid video on a canvas

We can’t use the built-in controls when using a video element like this. I have used the autoplay
attribute to keep the example simple, but a more useful solution is to implement custom controls as
shown in Chapter 34.

Using Canvas Images
We can use the contents of one canvas as the source for the drawImage method on another, as shown in
Listing 35-20.

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

926

Listing 35-20. Using a canvas as the source for the drawImage method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <video id="vid" hidden src="timessquare.webm" preload="auto"
 width="360" height="240" autoplay></video>
 <canvas id="canvas" width="360" height="240">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <div>
 <button id="pressme">Press Me</button>
 </div>
 <canvas id="canvas2" width="360" height="240">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var srcCanvasElement = document.getElementById("canvas");
 var ctx = srcCanvasElement.getContext("2d");
 var ctx2= document.getElementById("canvas2").getContext("2d");
 var imageElement = document.getElementById("vid");

 document.getElementById("pressme").onclick = takeSnapshot;

 var width = 100;
 var height = 10;
 ctx.lineWidth = 5;
 ctx.strokeStyle = "red";
 ctx2.lineWidth = 30;
 ctx2.strokeStyle = "black;"

 setInterval(function() {
 ctx.drawImage(imageElement, 0, 0, 360, 240);
 ctx.strokeRect(180 - (width/2),120 - (height/2), width, height);
 }, 25);

 setInterval(function() {
 width = (width + 1) % 200;
 height = (height + 3) % 200;
 }, 100);

 function takeSnapshot() {
 ctx2.drawImage(srcCanvasElement, 0, 0, 360, 240);

CHAPTER 35 USING THE CANVAS ELEMENT – PART I

927

 ctx2.strokeRect(0, 0, 360, 240);
 }
 </script>
 </body>
</html>

In this example, I have added a second canvas element and a button. When the button is pressed, I
use the HTMLCanvasElement object that represents the original canvas as the first argument in a call to the
drawImage method on the context object of the second canvas. In essence, pressing the button takes a
snapshot of the left-hand canvas and displays it on the right-hand canvas. We copy everything on the
canvas, including the red overlaid rectangle. We can perform further drawing operations, which is why I
have drawn a thick black border on the second canvas as part of the snapshot. You can see the effect in
Figure 22.

Figure 35-22. Using one canvas as the source for the drawImage method on another canvas

Summary
In this chapter, I have introduced the canvas element, showing how to draw basic shapes, how to
configure, save, and restore the drawing state, and how to use solid colors and gradients in drawing
operations. I also showed how we can draw images using the contents of img, video, or other canvas
elements as the image source. In Chapter 36, I’ll show how to draw more complex shapes and how to
apply effects and transformations.

C H A P T E R 36

929

Using the Canvas
Element – Part II

In this chapter, I continue describing the features of the canvas element, showing how we can draw more
complex shapes (including arcs and curves), how we can limit operations using a clipping region and
how we can draw text. I also describe the effects and transformations that we can apply to the canvas,
including shadows, transparency, rotations, and translations. Table 36-1 provides the summary for this
chapter.

Table 36-1. Chapter Summary

Problem Solution Listing

Draw a shape using lines Use the beginPath, moveTo, lineTo and,
optionally, the closePath methods

1

Set the style used to draw the end of lines Set the lineCap property 2

Draw rectangles as part of a path Use the rect method 3, 4

Draw an arc Use the arc or arcTo methods 5-7

Draw a cubic or quadratic Bezier curve Use the bezierCurveTo or
quadraticCurveTo methods

8-9

Limit the effect of drawing operations to a
particular region of the canvas

Use the clip method 10

Draw text on the canvas Use the fillText or strokeText
methods

11

Add shadows to text or shapes Use the shadow properties 12

Set a general transparency value Use the globalAlpha property 13

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

930

Set the composition style Use the globalCompositeOperation
property

14

Transform the canvas Use one of the transformation
methods, such as rotate or scale.

15

Drawing Using Paths
The examples in the Chapter 35 all relied on our ability to draw rectangles. Rectangles are a useful shape,
but they are not always what’s required. Fortunately, the canvas element and its context provide a set of
methods that allow us to draw shapes using paths. Paths are essentially a set of individual lines (known
as sub-paths) which cumulatively form a shape. We draw sub-paths much as we would use a pen to
draw on a piece of paper without lifting the nib from the page - each sub-path starts from the point on
the canvas where the last sub-path ended. Table 2 shows the methods that are available for drawing
basic paths.

Table 2. The basic path methods

Name Description Returns

beginPath() Begins a new path void

closePath() Attempts to close the existing path by drawing a line from the
end of the last line to the initial coordinates

void

fill() Fills the shape described by the sub-paths void

isPointInPath(x, y) Returns true if the specified point is contained by the shape
described by the current path

boolean

lineTo(x, y) Draws a sub-path to the specified coordinates void

moveTo(x, y) Moves to the specified coordinates without drawing a sub-path void

rect(x, y, w, h) Draws a rectangle whose top-left corners is at (x, y) with width w
and height h.

void

stroke() Draws the outline of the shape as described by the sub-paths void

The basic sequence for drawing a path is as follows:

• Call the beginPath method

• Move to the start position using the moveTo method

• Draw sub-paths with methods such as arc, lineTo, etc.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

931

• Optionally call the closePath method

• Call the fill or stoke methods

In the sections that follow, I’ll show you how to use this sequence with the different sub-path
methods.

Drawing Paths with Lines
The simplest paths are those made up of straight lines. Listing 36-1 provides a demonstration.

Listing 36-1. Creating a path from straight-lines

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 4;

 ctx.beginPath();
 ctx.moveTo(10, 10);
 ctx.lineTo(110, 10);
 ctx.lineTo(110, 120);
 ctx.closePath();
 ctx.fill();

 ctx.beginPath();
 ctx.moveTo(150, 10);
 ctx.lineTo(200, 10);
 ctx.lineTo(200, 120);
 ctx.lineTo(190, 120);

 ctx.fill();
 ctx.stroke();

 ctx.beginPath();
 ctx.moveTo(250, 10);

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

932

 ctx.lineTo(250, 120);
 ctx.stroke();
 </script>
 </body>
</html>

In this example, I have created three paths. You can see how they appear on the canvas in Figure
36-1.

Figure 36-1. Creating simple paths with the lineTo method

For the first path, I explicitly drew two lines and then used the closePath method. The canvas will
close the path. I then call the fill method to fill the shape with the style specified by the fillStyle
property (I have used a solid color in this example, but we can use any of the gradients and patterns
described in Chapter 35).

For the second shape, I specified three sub-paths, but didn’t close the shape. You can see that I
called both the fill and stroke methods to fill the shape with color and draw a line along the path.
Notice that the fill color is drawn as though the shape were closed. The canvas element assumes a sub-
path from the last point to the first and uses this to fill the shape. By contrast, the stroke method only
follows sub-paths that have been defined.

 Tip For the second shape, I called the fill method before the stroke method, which causes the canvas to fill
the shape with solid color and then draw a line that follows the path. We get a different visual effect if the
lineWidth property is greater than 1 and we call the stroke method first. Wider lines are drawn on both sides of
the path, so part of the line is covered by the fill method when it is called, effectively narrowing the line width.

For the third shape, I have simply drawn a line between two points because paths don’t have to have
multiple sub-paths. When we draw lines or leave shapes open, we can use the lineCap property to set the
style for how the line is terminated. The three allowed values for this property are: butt, round, and
square (butt is the default). Listing 36-2 shows this property and each of its values in use.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

933

Listing 36-2. Setting the lineCap property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="200" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.strokeStyle = "red";
 ctx.lineWidth = "2";
 ctx.beginPath();
 ctx.moveTo(0, 50);
 ctx.lineTo(200, 50);
 ctx.stroke();

 ctx.strokeStyle = "black";
 ctx.lineWidth = 40;

 var xpos = 50;
 var styles = ["butt", "round", "square"];
 for (var i = 0; i < styles.length; i++) {
 ctx.beginPath();
 ctx.lineCap = styles[i];
 ctx.moveTo(xpos, 50);
 ctx.lineTo(xpos, 150);
 ctx.stroke();
 xpos += 50;
 }
 </script>
 </body>
</html>

The script in this example draws a very thick line for each of the styles. I have also added a guide line
to demonstrate that the round and square styles are drawn beyond the end of the line, as shown in Figure
36-2.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

934

Figure 36-2. The three lineCap styles

Drawing Rectangles
The rect method adds a rectangular sub-path to the current path. If you need a stand-alone rectangle,
then the fillRect and strokeRect methods described in Chapter 35 are more suitable. The rect method
is useful when you need to add a rectangle to a more complex shape, as demonstrated by Listing 36-3.

Listing 36-3. Drawing a rectangle with the rect method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 4;

 ctx.beginPath();
 ctx.moveTo(110, 10);

 ctx.lineTo(110, 100);
 ctx.lineTo(10, 10);

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

935

 ctx.closePath();

 ctx.rect(110, 10, 100, 90);
 ctx.rect(110, 100, 130, 30);

 ctx.fill();
 ctx.stroke();
 </script>
 </body>
</html>

We don’t have to use the moveTo method when using the rect method because we specify the
coordinates of the rectangle as the first two method arguments. In the listing, I have drawn a pair of
lines, called closePath to create a triangle and then drawn two adjoining rectangles. You can see the
result in Figure 36-3.

Figure 36-3. Using the rect method to draw rectangles

Sub-paths don’t have to touch to form part of a path. We can have several disconnected sub-paths
and they are still treated as being part of the same shape. Listing 36-4 gives a demonstration.

Listing 36-4. Working with disconnected sub-paths

...
<script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "yellow";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 4;

 ctx.beginPath();
 ctx.moveTo(110, 10);

 ctx.lineTo(110, 100);
 ctx.lineTo(10, 10);
 ctx.closePath();

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

936

 ctx.rect(120, 10, 100, 90);
 ctx.rect(150, 110, 130, 20);

 ctx.fill();
 ctx.stroke();
</script>
...

In this example, the sub-paths are not connected, but the overall result is still a single path. When I
call the stroke or fill methods, the effects are applied to all of the sub-paths I created, as you can see in
Figure 36-4.

Figure 36-4. Using disconnected sub-paths

Drawing Arcs
We use the arc and arcTo methods to draw arcs on the canvas, although each method draws the arc in a
different way. Table 36-3 describes the arc-related methods in the canvas.

Table 36-3. The arc methods

Name Description Returns

arc(x, y, rad, startAngle,
 endAngle,direction)

Draws an arc to (x, y) with radius rad, start angle
startAngle, and finish angle endAngle. The optional
direction parameter specifies the direction of the arc

void

arcTo(x1, y1, x2, y2,rad) Draw an arc to (x2, y2) that passes (x1, y1) and has radius
rad

void

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

937

Using the arcTo Method
Listing 36-5 demonstrates using the arcTo method.

Listing 36-5. Using the arcTo method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 var point1 = [100, 10];
 var point2 = [200, 10];
 var point3 = [200, 110];

 ctx.fillStyle = "yellow";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 4;

 ctx.beginPath();
 ctx.moveTo(point1[0], point1[1]);
 ctx.arcTo(point2[0], point2[1], point3[0], point3[1], 100);
 ctx.stroke();

 drawPoint(point1[0], point1[1]);
 drawPoint(point2[0], point2[1]);
 drawPoint(point3[0], point3[1]);

 ctx.beginPath();
 ctx.moveTo(point1[0], point1[1]);
 ctx.lineTo(point2[0], point2[1]);
 ctx.lineTo(point3[0], point3[1]);
 ctx.stroke();

 function drawPoint(x, y) {
 ctx.lineWidth = 1;
 ctx.strokeStyle = "red";
 ctx.strokeRect(x -2, y-2, 4, 4);
 }
 </script>

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

938

 </body>
</html>

The arc drawn by the arcTo method depends on two lines. The first line is drawn from the end of the
last sub-path to the point described by the first two method arguments. The second line is drawn from
the point described by the first two arguments to the point described by the third and fourth arguments.
The arc is then drawn as the shortest line between the end of the last sub-path and the second point that
describes an arc of a circle with the radius specified by the last argument. To make this easier to
understand, I have added some additional paths to the canvas to provide some context, as shown in
Figure 36-5.

Figure 36-5. Using the arcTo method

You can see the two lines drawn in red. I have specified a radius and the length of both lines are all
the same, which means that we end up with a neat curve that just touches the last point of the previous
sub-path and the point described by the third and fourth method arguments. The radius and the line
lengths are not always so conveniently sized, so the canvas will adjust the arc it draws as required. As a
demonstration, Listing 36-6 uses the events described in Chapter 30 to monitor mouse movements and
draw arc lines for different points as the mouse is moved across the screen.

Listing 36-6. Drawing arcs in response to mouse movements

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

939

 <script>
 var canvasElem = document.getElementById("canvas");
 var ctx = canvasElem.getContext("2d");

 var point1 = [100, 10];
 var point2 = [200, 10];
 var point3 = [200, 110];

 draw();

 canvasElem.onmousemove = function (e) {
 if (e.ctrlKey) {
 point1 = [e.clientX, e.clientY];
 } else if(e.shiftKey) {
 point2 = [e.clientX, e.clientY];
 } else {
 point3 = [e.clientX, e.clientY];
 }
 ctx.clearRect(0, 0, 540, 140);
 draw();
 }

 function draw() {

 ctx.fillStyle = "yellow";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 4;

 ctx.beginPath();
 ctx.moveTo(point1[0], point1[1]);
 ctx.arcTo(point2[0], point2[1], point3[0], point3[1], 50);
 ctx.stroke();

 drawPoint(point1[0], point1[1]);
 drawPoint(point2[0], point2[1]);
 drawPoint(point3[0], point3[1]);

 ctx.beginPath();
 ctx.moveTo(point1[0], point1[1]);
 ctx.lineTo(point2[0], point2[1]);
 ctx.lineTo(point3[0], point3[1]);
 ctx.stroke();
 }

 function drawPoint(x, y) {
 ctx.lineWidth = 1;
 ctx.strokeStyle = "red";
 ctx.strokeRect(x -2, y-2, 4, 4);
 }
 </script>
 </body>
</html>

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

940

The script in this example moves different points based on which key is pressed as the mouse is
moved. If the control key is pressed, the first point is moved (the one that represents the end of the
previous sub-path). If the shift key is pressed, the second point is moved (the point represented by the
first two arguments to the arcTo method). If neither key is pressed, the third point is moved (the one
represented by the third and fourth method arguments). It is worth spending a moment playing with
this example to get a sense for how the arc relates to the position of the two lines. You can see a snapshot
of this in Figure 36-6.

Figure 36-6. The relationship between the lines and the arc

Using the arc Method
The arc method is a little simpler to work with. We specify a point on the canvas using the first two
method arguments. We specify the radius of the arc with the third argument and then we specify the
start and end angle for the arc. The final argument specifies whether the arc is drawn in the clockwise or
anticlockwise direction. Listing 36-7 gives some examples.

Listing 36-7. Using the arc method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");
 ctx.fillStyle = "yellow";
 ctx.lineWidth = "3";

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

941

 ctx.beginPath();
 ctx.arc(70, 70, 60, 0, Math.PI * 2, true);
 ctx.stroke();

 ctx.beginPath();
 ctx.arc(200, 70, 60, Math.PI/2, Math.PI, true);
 ctx.fill();
 ctx.stroke();

 ctx.beginPath();
 var val = 0;
 for (var i = 0; i < 4; i++) {
 ctx.arc(350, 70, 60, val, val + Math.PI/4, false);
 val+= Math.PI/2;
 }
 ctx.closePath();
 ctx.fill();
 ctx.stroke();
 </script>
 </body>
</html>

You can see the shapes that are described by these arcs in Figure 36-7.

Figure 36-7. Using the arc method

As the first and second arcs show, we can use the arc method to draw complete circles or regular
arcs, just as you would expect. However, as the third shape shows, we can use the arc method to create
more complex paths. If we use the arc method and we have already drawn a sub-path, then a line is
drawn directly from the end of the previous sub-path to the coordinates described by the first two
arguments to the arc method. This line is drawn in addition to the arc we described. I use this quirk in
conjunction with a for loop to connect together four small arcs drawn around the same point, leading to
the shape shown in the Figure 36-7.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

942

Drawing Bezier Curves
The canvas supports drawing two kinds of Bezier curves: cubic and quadratic. You have probably used
Bezier curves in a drawing package. We pick a start and end point and then add one or more control
points that shape the curve. The problem with Bezier curves on the canvas is that we don’t have any
visual feedback, which makes it harder to get the curves we want. In the examples that follow, I’ll add
some code to the script to provide some context, but in a real project you‘ll have to experiment to get the
curves you require. Table 36-4 shows the methods we can use to draw curves.

Table 36-4. The curve methods

Name Description Returns

bezierCurveTo(cx1, cy1, cx2, cy2,
x, y)

Draws a Bezier curve to the point (x, y) with the
control points (cx1, cy1) and (cx2, cy2).

void

quadraticCurveTo(cx, xy, x, y) Draws a quadratic Bezier curve to (x, y) with the
control point (cx, cy).

void

Drawing Cubic Bezier Curves
The bezierCurveTo method draws a curve from the end of the previous sub-path to the point specified by
the 5th and 6th method arguments. There are two controls points – these are specified by the first four
arguments. Listing 36-8 shows the use of this method (and with some additional paths to make it easier
to understand the relationship between the argument values and the curve that is produced).

Listing 36-8. Drawing cubic Bezier curves

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var canvasElem = document.getElementById("canvas");
 var ctx = canvasElem.getContext("2d");

 var startPoint = [50, 100];
 var endPoint = [400, 100];
 var cp1 = [250, 50];

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

943

 var cp2 = [350, 50];

 canvasElem.onmousemove = function(e) {
 if (e.shiftKey) {
 cp1 = [e.clientX, e.clientY];
 } else if (e.ctrlKey) {
 cp2 = [e.clientX, e.clientY];
 }
 ctx.clearRect(0, 0, 500, 140);
 draw();
 }

 draw();

 function draw() {
 ctx.lineWidth = 3;
 ctx.strokeStyle = "black";
 ctx.beginPath();
 ctx.moveTo(startPoint[0], startPoint[1]);
 ctx.bezierCurveTo(cp1[0], cp1[1], cp2[0], cp2[1],
 endPoint[0], endPoint[1]);
 ctx.stroke();

 ctx.lineWidth = 1;
 ctx.strokeStyle = "red";
 var points = [startPoint, endPoint, cp1, cp2];
 for (var i = 0; i < points.length; i++) {
 drawPoint(points[i]);
 }
 drawLine(startPoint, cp1);
 drawLine(endPoint, cp2);
 }

 function drawPoint(point) {
 ctx.beginPath();

 ctx.strokeRect(point[0] -2, point[1] -2, 4, 4);
 }

 function drawLine(from, to) {
 ctx.beginPath();
 ctx.moveTo(from[0], from[1]);
 ctx.lineTo(to[0], to[1]);
 ctx.stroke();
 }
 </script>
 </body>
</html>

To give you a sense of how the curves are drawn, the script in this example moves the control points
on a Bezier curve in response to mouse movement. If the shift key is pressed then the first control point

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

944

is moved. The second control point is moved if the control key is pressed. You can see the effect in Figure
36-8.

Figure 36-8. Drawing a cubic Bezier curve

Drawing Quadratic Bezier Curves
A quadratic Bezier curve has only one control point and so the quadraticCurveTo method has two fewer
arguments than the bezierCurveTo method. Listing 36-9 shows the previous example reworked to
display a quadratic curve, drawn with the quadraticCurveTo method.

Listing 36-9. Drawing a quadratic Bezier curve

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var canvasElem = document.getElementById("canvas");
 var ctx = canvasElem.getContext("2d");

 var startPoint = [50, 100];
 var endPoint = [400, 100];
 var cp1 = [250, 50];

 canvasElem.onmousemove = function(e) {
 if (e.shiftKey) {

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

945

 cp1 = [e.clientX, e.clientY];
 }
 ctx.clearRect(0, 0, 500, 140);
 draw();
 }

 draw();

 function draw() {
 ctx.lineWidth = 3;
 ctx.strokeStyle = "black";
 ctx.beginPath();
 ctx.moveTo(startPoint[0], startPoint[1]);
 ctx.quadraticCurveTo(cp1[0], cp1[1], endPoint[0], endPoint[1]);
 ctx.stroke();

 ctx.lineWidth = 1;
 ctx.strokeStyle = "red";
 var points = [startPoint, endPoint, cp1];
 for (var i = 0; i < points.length; i++) {
 drawPoint(points[i]);
 }
 drawLine(startPoint, cp1);
 drawLine(endPoint, cp1);
 }

 function drawPoint(point) {
 ctx.beginPath();

 ctx.strokeRect(point[0] -2, point[1] -2, 4, 4);
 }

 function drawLine(from, to) {
 ctx.beginPath();
 ctx.moveTo(from[0], from[1]);
 ctx.lineTo(to[0], to[1]);
 ctx.stroke();
 }
 </script>
 </body>
</html>

You can see an example curve in Figure 36-9.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

946

Figure 36-9. A quadratic Bezier curve

Creating a Clipping Region
As demonstrated earlier in this chapter, we can use the stroke and fill methods to draw or fill a path.
There is an alternative, which is to use the method described in Table 36-5.

Table 36-5. The clip method

Name Description Returns

clip() Creates a new clipping region void

Once we define a clipping region, only paths that occur inside of the region are shown on the

screen. Listing 36-10 gives a demonstration.

Listing 36-10. Using a clipping region

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

947

 ctx.fillStyle = "yellow";
 ctx.beginPath();
 ctx.rect(0, 0, 500, 140);
 ctx.fill();

 ctx.beginPath();
 ctx.rect(100, 20, 300, 100);
 ctx.clip();

 ctx.fillStyle = "red";
 ctx.beginPath();
 ctx.rect(0, 0, 500, 140);
 ctx.fill();

 </script>
 </body>
</html>

The script in this example draws a rectangle that fills the canvas, creates a smaller clipping region
and then draws another canvas-filling rectangle. As you can see in Figure 36-10, only the part of the
second rectangle which fits within the clipping region is drawn.

Figure 36-10. The effect of a clipping region

Drawing Text
We can draw text on the canvas, although the support for doing so is pretty basic. Table 36-6 shows the
methods available.

Table 36-6. The text methods

Name Description Returns

fillText(<text>, x, y, width) Draws and fills the specified text at the position (x, y).
The optional width argument sets an upper limit on
the width of the text

void

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

948

strokeText(<text>, x, y, width) Draws and strokes the specified text at the position
(x, y). The optional width argument sets an upper
limit on the width of the text

void

There are three drawing state properties that we can use to control the way that text is drawn, as

shown in Table 36-7.

Table 36-7. The text drawing state properties

Name Description Returns

font Sets the font used when text is drawn string

textAlign Sets the alignment of the text: start, end, left, right, center string

textBaseline Sets the text baseline: top, hanging, middle, alphabetic, ideographic, bottom string

Listing 36-11 shows how we can fill and stroke text. We specify the value for the font property using

the same format string as for the CSS font shorthand property, which I described in Chapter 22.

Listing 36-11. Drawing text on the canvas

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="350" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 3;

 ctx.font = "100px sans-serif";
 ctx.fillText("Hello", 50, 100);
 ctx.strokeText("Hello", 50, 100);
 </script>
 </body>
</html>

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

949

Text is drawn using the fillStyle and strokeStyle properties, meaning that we have the same set of
colors, gradients and patterns as for shapes. In this example, I have filled and stroked the text in two
solid colors. You can see the effect in Figure 36-11.

Figure 36-11. Filling and stroking text

Using Effects and Transformations
We can apply a number of effects and transformations to the canvas, as described in the following
sections.

Using Shadows
There are four drawing state properties that we can use to add shadows to the shapes and text we draw
on the canvas. These properties are described in Table 36-8.

Table 36-8. The shadow properties

Name Description Returns

shadowBlur Sets the degree of blur in the shadow number

shadowColor Sets the color of the shadow string

shadowOffsetX Sets the x-offset for the shadow number

shadowOffsetY Sets the y-offset for the shadow number

Listing 36-12 shows how we can apply shadows using these properties.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

950

Listing 36-12. Applying shadows to shapes and text

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="500" height="140">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 3;

 ctx.shadowOffsetX = 5;
 ctx.shadowOffsetY = 5;
 ctx.shadowBlur = 5;
 ctx.shadowColor = "grey";

 ctx.strokeRect(250, 20, 100, 100);

 ctx.beginPath();
 ctx.arc(420, 70, 50, 0, Math.PI, true);
 ctx.stroke();

 ctx.beginPath();
 ctx.arc(420, 80, 40, 0, Math.PI, false);
 ctx.fill();

 ctx.font = "100px sans-serif";
 ctx.fillText("Hello", 10, 100);
 ctx.strokeText("Hello", 10, 100);
 </script>
 </body>
</html>

This example applies shadows to text, a rectangle, a complete circle. and two arcs. As shown in
Figure 36-12, the shadows are applied to shapes irrespective of whether they are open, closed, filled, or
stroked.

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

951

Figure 36-12. Applying shadows to text and shapes

Using Transparency
We can set the transparency of the text and shapes we draw in two ways. The first is to specify a
fillStyle or strokeStyle value using the rgba function (instead of rgb), as described in Chapter 4. We
can also use the globalAlpha drawing state property, which is applied universally. Listing 36-13 shows
the use of the globalAlpha property.

Listing 36-13. Using the globalAlpha property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="300" height="120">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 3;

 ctx.font = "100px sans-serif";
 ctx.fillText("Hello", 10, 100);
 ctx.strokeText("Hello", 10, 100);

 ctx.fillStyle = "red";

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

952

 ctx.globalAlpha = 0.5;
 ctx.fillRect(100, 10, 150, 100);
 </script>
 </body>
</html>

The value for the globalAlpha values may range from 0 (completely transparent) to 1 (completely
opaque, which is the default value). In this example, I draw some text, set the globalAlpha property to 0.5
and then fill a rectangle partly over the text. You can see the result in Figure 36-13.

Figure 36-13. Using transparency through the globalAlpha property

Using Composition
We can use transparency in conjunction with the globalCompositeOperation property to control the way
that shapes and text are drawn onto the canvas. The allowed values for this property are described in
Table 36-9. For this property, the source consists of any operations performed once the property has
been set and the destination image is the state of the canvas at the time that the property was set

Table 36-9. The allowed globalCompositeOperation values

Value Description

copy Draw the source over the destination, ignoring any transparency

destination-atop Show the canvas where the

destination-in Same as source-in but using the destination image instead of the source image
and vice versa

destination-over Same as source-over but using the destination image instead of the source image
and vice versa

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

953

distination-out Same as source-out but using the destination image instead of the source image
and vice versa

lighter Display the sum of the source image and destination image, with color values
approaching 255 (100%) as a limit.

source-atop Display the source image wherever both images are opaque. Display the
destination image wherever the destination image is opaque but the source
image is transparent. Display transparency elsewhere

source-in Display the source image wherever both the source image and destination image
are opaque. Display transparency elsewhere.

source-out Display the source image wherever the source image is opaque and the
destination image is transparent. Display transparency elsewhere

source-over Display the source image wherever the source image is opaque. Display the
destination image elsewhere

xor Exclusive OR of the source image and destination image.

The values for the globalCompositeOperation property can create some striking effects. Listing 36-14

contains a select element that contains options for all of the composition values. It is worth spending a
moment playing with this example to see how each composition mode works.

Listing 36-14. Using the globalCompositeOperation property

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px;}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="300" height="120">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <label>Composition Value:</label><select id="list">
 <option>copy</option>
 <option>destination-atop</option><option>destination-in</option>
 <option>destination-over</option><option>distination-out</option>
 <option>lighter</option><option>source-atop</option>
 <option>source-in</option><option>source-out</option>
 <option>source-over</option><option>xor</option>
 </select>
 <script>

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

954

 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 3;

 var compVal = "copy";

 document.getElementById("list").onchange = function(e) {
 compVal = e.target.value;
 draw();
 }

 draw();

 function draw() {
 ctx.clearRect(0, 0, 300, 120);
 ctx.globalAlpha = 1.0;
 ctx.font = "100px sans-serif";
 ctx.fillText("Hello", 10, 100);
 ctx.strokeText("Hello", 10, 100);

 ctx.globalCompositeOperation = compVal;

 ctx.fillStyle = "red";
 ctx.globalAlpha = 0.5;
 ctx.fillRect(100, 10, 150, 100);
 }
 </script>
 </body>
</html>

You can see the source-out and destination-over values in Figure 36-14. Some browsers interpret
the styles in slightly different ways, so you may not see exactly what the figure shows.

Figure 36-14. Using the globalCompositeOperation property

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

955

Using a Transformation
We can apply a transformation to the canvas, which is then applied to any subsequent drawing
operations. Table 36-10 describes the transformation methods.

Table 36-10. The transformation methods

Name Description Returns

scale(<xScale>, <yScale>) Scales the canvas by xScale in the x-axis and yScale
in the y-axis

void

rotate(<angle>) Rotates the canvas clockwise around the point (0, 0)
by the specified number of radians.

void

translate(<x>, <y>) Translates the canvas by x along the x-axis and y
along the y-axis.

void

transform(a, b, c, d, e, f) Combines the existing transformation with the
matrix specified by the values a-f.

void

setTransform(a, b, c, d, e, f) Replaces the existing transformation with the matrix
specified by the values a-f.

void

The transformations created by these methods only apply to subsequent drawing operations – the

existing contents of the canvas remain unchanged. Listing 36-15 shows how we can use the scale, rotate,
and translate methods.

Listing 36-15. Using transformations

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 canvas {border: thin solid black; margin: 4px;}
 body > * {float:left;}
 </style>
 </head>
 <body>
 <canvas id="canvas" width="400" height="200">
 Your browser doesn't support the <code>canvas</code> element
 </canvas>
 <script>
 var ctx = document.getElementById("canvas").getContext("2d");

 ctx.fillStyle = "lightgrey";
 ctx.strokeStyle = "black";
 ctx.lineWidth = 3;

CHAPTER 36 USING THE CANVAS ELEMENT – PART II

956

 ctx.clearRect(0, 0, 300, 120);
 ctx.globalAlpha = 1.0;
 ctx.font = "100px sans-serif";
 ctx.fillText("Hello", 10, 100);
 ctx.strokeText("Hello", 10, 100);

 ctx.scale(1.3, 1.3);
 ctx.translate(100, -50);
 ctx.rotate(0.5);

 ctx.fillStyle = "red";
 ctx.globalAlpha = 0.5;
 ctx.fillRect(100, 10, 150, 100);

 ctx.strokeRect(0, 0, 300, 200);
 </script>
 </body>
</html>

In this example, I fill and stroke some text and then scale, translate, and rotate the canvas, which
affects the filled rectangle and the stroked rectangle that I draw subsequently. You can see the effect in
Figure 36-15.

Figure 36-15. Transforming the canvas

Summary
In this chapter, I have shown how to draw on the canvas using different kinds of paths, including lines,
rectangles, arc, and curves. I also demonstrated the canvas text facilities and how we can apply effects
such as shadows and transparency. I finished this chapter by demonstrating the different composition
modes and transformations that the canvas supports.

C H A P T E R 37

957

Using Drag & Drop

HTML5 adds support for drag and drop. This is something that we had to rely on JavaScript libraries
such as jQuery to handle previously. The advantage of having drag and drop built into the browser is that
it is properly integrated into the operating system and, as you will see, works between browsers.

It is still early days for this feature and there is a significant gap between the specification and the
implementations offered by the mainstream browsers. Not all parts of the specification are implemented
by all browsers and some features are implemented in substantially different ways. In this chapter, I
have showed you what currently works. This isn’t the complete set of features defined by the HTML5
standard, but it is enough to get up and running. Table 37-1 provides the summary for this chapter.

Table 37-1. Chapter Summary

Problem Solution Listing

Enable dragging for an HTML element Set the draggable attribute to true 1

Manage the dragging lifecycle Handle the dragstart, drag and
dragend events

2

Create a drop zone Handle the dragenter and dragover
events

3

Receive a dropped element in the drop
zone

Handle the drop event 4

Transfer data from the dropped element to
the drop zone

Use the DataTransfer object 5

Filter items based on the content they carry Use the getData method of the
DataTransfer object

6

Process files dragged from the operating
system and dropped in the drop zone

Use the files property of the
DataTransfer object

7

Upload files dragged from the operating
system and dropped in the drop zone as
part of an Ajax form submission

Use the append method of the
FormData object, passing the File
object as the second argument

8

CHAPTER 37 USING DRAG & DROP

958

Creating the Source Items
We tell the browser which elements in the document can be dragged through the draggable attribute.
There are three permitted values for this attribute, which are described in Table 37-2.

Table 37-2. Values for the draggable attribute

Value Description

true The element can be dragged

false The element cannot be dragged

auto The browser may decide if an element can be dragged

The default is the auto value, which leaves the decision up to the browser, which typically means

that all elements can be dragged by default and that we have to explicitly disable dragging by setting the
draggable attribute to false. When using the drag and drop feature, I tend to explicitly set the draggable
attribute to true, even though the mainstream browsers consider all elements to be draggable by
default. Listing 37-1 shows a simple HTML document that has some elements that can be dragged.

Listing 37-1. Defining the draggable items

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #src > * {float:left;}
 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}
 #target {height: 81px; width: 81px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 #target > img {margin: 1px;}

 </style>
 </head>
 <body>
 <div id="src">

 <div id="target">
 <p>Drop Here</p>
 </div>
 </div>

 <script>
 var src = document.getElementById("src");
 var target = document.getElementById("target");
 </script>

CHAPTER 37 USING DRAG & DROP

959

 </body>
</html>

In this example, there are three img elements, each of which has the draggable attribute set to true. I
have also created a div element with an id of target, which we will shortly set up to be the recipient of
our dragged img elements. You can see how this document appears in the browser in Figure 37-1.

Figure 37-1. Three draggable images and a target

We can drag the fruit images without doing any further work, but the browser will indicate that we
can’t drop them anywhere. This is usually done by showing a no-entry sign as the cursor, as shown in
Figure 37-2.

Figure 37-2. The browser showing that the dragged item cannot be dropped

Handling the Drag Events
We take advantage of the drag and drop feature through a series of events. These are events that are
targeted at the dragged element and events that are targeted at potential drop zones. Table 37-3
describes those events that are for the dragged element.

CHAPTER 37 USING DRAG & DROP

960

Table 37-3. The dragged element events

Name Description

dragstart Triggered when the element is first dragged

drag Triggered repeatedly as the element is being dragged

dragend Triggered when the drag operation is completed

We can use these events to emphasize the drag operation visually, as demonstrated in Listing 37-2.

Listing 37-2. Using the events targeted at the dragged element

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #src > * {float:left;}
 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}
 #target {height: 81px; width: 81px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 #target > img {margin: 1px;}
 img.dragged {background-color: lightgrey;}

 </style>
 </head>
 <body>
 <div id="src">

 <div id="target">
 <p id="msg">Drop Here</p>
 </div>
 </div>

 <script>
 var src = document.getElementById("src");
 var target = document.getElementById("target");
 var msg = document.getElementById("msg");

 src.ondragstart = function(e) {
 e.target.classList.add("dragged");
 }

 src.ondragend = function(e) {
 e.target.classList.remove("dragged");

CHAPTER 37 USING DRAG & DROP

961

 msg.innerHTML = "Drop Here";
 }

 src.ondrag = function(e) {
 msg.innerHTML = e.target.id;
 }
 </script>
 </body>
</html>

I have defined a new CSS style that is applied to elements in the dragged class. I add the element that
has been dragged to this class in response to the dragstart event and remove it from the class in
response to the dragend event. In response to the drag event, I set the text displayed in the drop zone to
be the id value of the dragged element. The drag event is called every few milliseconds during the drag
operation, so this is not the most efficient technique, but it does demonstrate the event. You can see the
effect in Figure 3. Note that we still don’t have a working drop zone, but we are getting closer.

Figure 37-3. Using the dragstart, dragend, and drag events

Creating the Drop Zone
To make an element a drop zone, we need to handle the dragenter and dragover events. These are two of
the events which are targeted at the drop zone. The complete set is described in Table 37-4.

Table 37-4. The dragged element events

Name Description

dragenter Triggered when a dragged element enters the screen space occupied by the drop zone

dragover Triggered when a dragged element moves within the drop zone

dragleave Triggered when a dragged element leaves the drop zone without being dropped

drop Triggered when a dragged element is dropped in the drop zone

CHAPTER 37 USING DRAG & DROP

962

The default action for the dragenter and dragover events is to refuse to accept any dragged items, so
the most important thing we must do is prevent the default action from being performed. Listing 37-3
contains an example.

 Note The specification for drag and drop tells us that we must also apply the dropzone attribute to the element
we want to make into a drop zone, and that the value of the attribute should contain details of the operations and
data types that we are willing to accept. This is not how the browsers actually implement the feature. For this
chapter, I have described the way things really work, rather than how they have been specified.

Listing 37-3. Creating a drop zone by handling the dragenter and dragover events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #src > * {float:left;}
 #target, #src > img {border: thin solid black; padding: 2px; margin:4px;}
 #target {height: 81px; width: 81px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 #target > img {margin: 1px;}
 img.dragged {background-color: lightgrey;}

 </style>
 </head>
 <body>
 <div id="src">

 <div id="target">
 <p id="msg">Drop Here</p>
 </div>
 </div>

 <script>
 var src = document.getElementById("src");
 var target = document.getElementById("target");
 var msg = document.getElementById("msg");

 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

 function handleDrag(e) {
 e.preventDefault();
 }

CHAPTER 37 USING DRAG & DROP

963

 src.ondragstart = function(e) {
 e.target.classList.add("dragged");
 }

 src.ondragend = function(e) {
 e.target.classList.remove("dragged");
 msg.innerHTML = "Drop Here";
 }

 src.ondrag = function(e) {
 msg.innerHTML = e.target.id;
 }
 </script>
 </body>
</html>

With these additions, we have an active drop zone. When we drag an item over the drop zone
element, the browser will indicate that it will be accepted if we drop it, as shown in Figure 37-4.

Figure 37-4. The browser indicating that an item can be dropped

Receiving the Drop
We receive the dropped element by handling the drop event, which is triggered when an item is dropped
on the drop zone element. Listing 37-4 shows how we can respond to the drop event using a global
variable as a conduit between the dragged element and the drop zone.

Listing 37-4. Handling the drop event

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #src > * {float:left;}
 #src > img {border: thin solid black; padding: 2px; margin:4px;}
 #target {border: thin solid black; margin:4px;}
 #target { height: 81px; width: 81px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}

CHAPTER 37 USING DRAG & DROP

964

 img.dragged {background-color: lightgrey;}
 </style>
 </head>
 <body>
 <div id="src">

 <div id="target">
 <p id="msg">Drop Here</p>
 </div>
 </div>

 <script>
 var src = document.getElementById("src");
 var target = document.getElementById("target");
 var msg = document.getElementById("msg");

 var draggedID;

 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

 function handleDrag(e) {
 e.preventDefault();
 }

 target.ondrop = function(e) {
 var newElem = document.getElementById(draggedID).cloneNode(false);
 target.innerHTML = "";
 target.appendChild(newElem);
 e.preventDefault();
 }

 src.ondragstart = function(e) {
 draggedID = e.target.id;
 e.target.classList.add("dragged");
 }

 src.ondragend = function(e) {
 var elems = document.querySelectorAll(".dragged");
 for (var i = 0; i < elems.length; i++) {
 elems[i].classList.remove("dragged");
 }
 }
 </script>
 </body>
</html>

I set the value of the draggedID variable when the dragstart event is triggered. This allows me to
keep a note of the id attribute value of the element that has been dragged. When the drop event is

CHAPTER 37 USING DRAG & DROP

965

triggered, I use this value to clone the img element that was dragged and add it as a child of the drop zone
element.

 Tip In the example, I prevented the default action for the drop event. Without this, the browser can do some
unexpected things. For example, in this scenario, Firefox navigates away from the page and displays the image
referenced by the src attribute of the dragged img element.

You can see the effect in Figure 37-5.

Figure 37-5. Responding to the drag event

Working with the DataTransfer Object
The object dispatched along with the events triggered for drag and drop is DragEvent, which is derived
from MouseEvent. The DragEvent object defines all of the functionality of the Event and MouseEvent
objects (which is described in Chapter 30), with the additional property shown in Table 37-5.

Table 37-5. The property defined by the DragEvent object

Name Description Returns

dataTransfer Returns the object used to transfer data to the drop zone DataTransfer

We use the DataTransfer object to transfer arbitrary data from the dragged element to the drop zone

element. The properties and methods that the DataTransfer object defines are described in Table 37-6.

CHAPTER 37 USING DRAG & DROP

966

Table 37-6. The properties defined by the DataTransfer object

Name Description Returns

types Returns the formats for the data string[]

getData(<format>) Returns the data for a specific format string

setData(<format>, <data>) Sets the data for a given format void

clearData(<format>) Removes the data for a given format void

files Returns a list of the files that have been dragged FileList

In the previous example, I cloned the element itself; however, the DataTransfer object allows us a

more sophisticated approach. The first thing we can do is to use the DataTransfer object to transfer data
from the dragged element to the drop zone, as demonstrated in Listing 37-5.

Listing 37-5. Using the DataTransfer object to transfer data

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 #src > * {float:left;}
 #src > img {border: thin solid black; padding: 2px; margin:4px;}
 #target {border: thin solid black; margin:4px;}
 #target { height: 81px; width: 81px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 img.dragged {background-color: lightgrey;}
 </style>
 </head>
 <body>
 <div id="src">

 <div id="target">
 <p id="msg">Drop Here</p>
 </div>
 </div>

 <script>
 var src = document.getElementById("src");
 var target = document.getElementById("target");

 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

CHAPTER 37 USING DRAG & DROP

967

 function handleDrag(e) {
 e.preventDefault();
 }

 target.ondrop = function(e) {
 var droppedID = e.dataTransfer.getData("Text");
 var newElem = document.getElementById(droppedID).cloneNode(false);
 target.innerHTML = "";
 target.appendChild(newElem);
 e.preventDefault();
 }

 src.ondragstart = function(e) {
 e.dataTransfer.setData("Text", e.target.id);
 e.target.classList.add("dragged");
 }

 src.ondragend = function(e) {
 var elems = document.querySelectorAll(".dragged");
 for (var i = 0; i < elems.length; i++) {
 elems[i].classList.remove("dragged");
 }
 }
 </script>
 </body>
</html>

I use the setData method when responding to the dragstart event to set the data that I want to
transfer. There are only two supported values for the first argument which specifies the type of data—
Text or Url (and only Text is reliably supported by the browsers). The second argument is the data we
want to transfer: in this case, the id attribute of the dragged element. To retrieve the value, I use the
getData method, using the data type as the argument.

You might be wondering why this is a better approach than using a global variable. The answer is
that it works across browsers, and by this, I don’t mean across windows or tabs in the same browsers,
but across different types of browser. This means that I can drag an element from a Chrome document
and drop it in a Firefox document because the drag and drop support is integrated with the same
feature in the operating system. If you open a text editor, type the word banana, select it and then drag it
to the drop zone in the browser, you will see the banana image being displayed, just as it was when we
dragged one of the img elements in the same document.

Filtering Dragged Items by Data
We can use the data stored in the DataTransfer object to be selective about the kinds of elements that we
are willing to accept in the drop zone. Listing 37-6 shows how.

Listing 37-6. Using the DataTransfer object to filter dragged elements

...
<script>
 var src = document.getElementById("src");

CHAPTER 37 USING DRAG & DROP

968

 var target = document.getElementById("target");

 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

 function handleDrag(e) {
 if (e.dataTransfer.getData("Text") == "banana") {
 e.preventDefault();
 }
 }

 target.ondrop = function(e) {
 var droppedID = e.dataTransfer.getData("Text");
 var newElem = document.getElementById(droppedID).cloneNode(false);
 target.innerHTML = "";
 target.appendChild(newElem);
 e.preventDefault();
 }

 src.ondragstart = function(e) {
 e.dataTransfer.setData("Text", e.target.id);
 e.target.classList.add("dragged");
 }

 src.ondragend = function(e) {
 var elems = document.querySelectorAll(".dragged");
 for (var i = 0; i < elems.length; i++) {
 elems[i].classList.remove("dragged");
 }
 }
</script>
...

In this example, I get the data value from the DataTransfer object and check to see what it is. I
indicate that I am willing to accept the dragged element only if the data value is banana. This has the
effect of filtering out the apple and cherry images. When the user drags these over the drop-zone, the
browser will indicate that they cannot be dropped.

 Tip This kind of filtering doesn’t work in Chrome, as the getData method doesn’t work when called in handlers
for the dragenter and dragover events.

Dragging and Dropping Files
Hidden deep in the browser is another new HTML5 feature, called the File API, which allows us to work
with files on the local machine, albeit in a tightly controlled manner. Part of the control is that we don’t
usually interact with the File API directly. Instead, it is exposed through other features, including drag

CHAPTER 37 USING DRAG & DROP

969

and drop. Listing 37-7 shows how we can use the File API to respond when the use drags files from the
operating system and drops them in our drop zone.

Listing 37-7. Dealing with files

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 body > * {float: left;}
 #target {border: medium double black; margin:4px; height: 75px;
 width: 200px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 table {margin: 4px; border-collapse: collapse;}
 th, td {padding: 4px};
 </style>
 </head>
 <body>
 <div id="target">
 <p id="msg">Drop Files Here</p>
 </div>
 <table id="data" border="1">
 </table>

 <script>
 var target = document.getElementById("target");

 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

 function handleDrag(e) {
 e.preventDefault();
 }

 target.ondrop = function(e) {
 var files = e.dataTransfer.files;
 var tableElem = document.getElementById("data");
 tableElem.innerHTML = "<tr><th>Name</th><th>Type</th><th>Size</th></tr>";
 for (var i = 0; i < files.length; i++) {
 var row = "<tr><td>" + files[i].name + "</td><td>" +
 files[i].type+ "</td><td>" +
 files[i].size + "</td></tr>";
 tableElem.innerHTML += row;
 }
 e.preventDefault();
 }
 </script>
 </body>
</html>

CHAPTER 37 USING DRAG & DROP

970

When the user drops files on our drop zone, the files property of the DataTransfer object returns a
FileList object. We can treat this as an array of File objects, each of which represents a file that the user
has dropped (the user can select multiple files and drop them in one go). Table 37-7 shows the
properties of the File object.

Table 37-7. The properties defined by the File object

Name Description Returns

name Gets the name of the file string

type Gets the type of file, expressed as a MIME type string

size Gets the size (in bytes) of the file number

In the example, the script enumerates the files that are dropped on the drop zone and displays the

values of the File properties in a table. You can see the effect in Figure 37-6, where I have dropped some
of example files on the drop zone.

Figure 37-6. Displaying data about files

Uploading Dropped Files in a Form
We can combine the drag and drop feature, the File API and uploading data using an Ajax request to
allow users to drag the files that want included in a form submission from the operating system. Listing
37-8 contains a demonstration.

CHAPTER 37 USING DRAG & DROP

971

Listing 37-8. Combining drag and drop, the File API and the FormData object

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 .table {display:table;}
 .row {display:table-row;}
 .cell {display: table-cell; padding: 5px;}
 .label {text-align: right;}
 #target {border: medium double black; margin:4px; height: 50px;
 width: 200px; text-align: center; display: table;}
 #target > p {display: table-cell; vertical-align: middle;}
 </style>
 </head>
 <body>
 <form id="fruitform" method="post" action="http://titan:8080/form">
 <div class="table">
 <div class="row">
 <div class="cell label">Bananas:</div>
 <div class="cell"><input name="bananas" value="2"/></div>
 </div>
 <div class="row">
 <div class="cell label">Apples:</div>
 <div class="cell"><input name="apples" value="5"/></div>
 </div>
 <div class="row">
 <div class="cell label">Cherries:</div>
 <div class="cell"><input name="cherries" value="20"/></div>
 </div>
 <div class="row">
 <div class="cell label">File:</div>
 <div class="cell"><input type="file" name="file"/></div>
 </div>
 <div class="row">
 <div class="cell label">Total:</div>
 <div id="results" class="cell">0 items</div>
 </div>
 </div>
 <div id="target">
 <p id="msg">Drop Files Here</p>
 </div>
 <button id="submit" type="submit">Submit Form</button>
 </form>
 <script>
 var target = document.getElementById("target");
 var httpRequest;
 var fileList;

CHAPTER 37 USING DRAG & DROP

972

 document.getElementById("submit").onclick = handleButtonPress;
 target.ondragenter = handleDrag;
 target.ondragover = handleDrag;

 function handleDrag(e) {
 e.preventDefault();
 }

 target.ondrop = function(e) {
 fileList = e.dataTransfer.files;
 e.preventDefault();
 }

 function handleButtonPress(e) {
 e.preventDefault();

 var form = document.getElementById("fruitform");
 var formData = new FormData(form);

 if (fileList || true) {
 for (var i = 0; i < fileList.length; i++) {
 formData.append("file" + i, fileList[i]);
 }
 }

 httpRequest = new XMLHttpRequest();
 httpRequest.onreadystatechange = handleResponse;
 httpRequest.open("POST", form.action);
 httpRequest.send(formData);
 }

 function handleResponse() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 var data = JSON.parse(httpRequest.responseText);
 document.getElementById("results").innerHTML = "You ordered "
 + data.total + " items";
 }
 }
 </script>
 </body>
</html>

In this example, I have added a drop zone to an example taken from Chapter 33, where I
demonstrated how to use the FormData object to upload form data to a server. We can include files
dropped in the drop zone by using the FormData.append method, passing in a File object as the second
argument to the method. When the form is submitted, the contents of the files will automatically be
uploaded to the server as part of the form request.

CHAPTER 37 USING DRAG & DROP

973

Summary
In this chapter, I showed you the support for dragging and dropping elements. The implementation of
this feature leaves a lot to be desired, but it holds promise and I expect that the mainstream browsers
will start to address the inconsistencies before long. If you can’t wait until then (or you don’t care about
dragging to and from other browsers and the operating system), then you should consider using a
JavaScript library such as jQuery and jQuery UI.

C H A P T E R 38

975

Using Geolocation

The Geolocation API allows us to obtain information about the current geographic position of the user
(or at least the position of the system on which the browser is running). This isn’t part of the HTML5
specification, but it is usually grouped up as part of the new features associated with HTML5. Table 38-1
provides the summary for this chapter.

Table 38-1. Chapter Summary

Problem Solution Listing

Get the current position Use the getCurrentPosition method, supplying a function that
will be invoked when the position data is available

1

Handle geolocation errors Pass a second argument to the getCurrentPosition method,
specifying a function that will be invoked if there is an error

2

Specify options for
geolocation requests

Pass a third argument to the getCurrentPosition method,
specifying the options required

3

Monitor the position Use the watchPosition and clearWatch methods 4

Using Geolocation
We access the geolocation feature through the global navigator.geolocation property, which returns a
Geolocation object – the methods of this object are described in Table 38-2.

Table 38-2. The Geolocation object

Name Description Returns

getCurrentPosition(callback,
 errorCallback, options)

Get the current position void

CHAPTER 38 USING GEOLOCATION

976

watchPosition(callback,
 error, options)

Start monitoring the current position number

clearWatch(id) Stop monitoring the current position void

Getting the Current Position
As its name suggests the getCurrentPosition method obtains the current position, although the position
information isn’t returned as the result of the method itself. Instead, we supply a success callback
function which is invoked when the position information is available – this allows for the fact that there
can be a delay between requesting the position and it becoming available. Listing 38-1 shows how we
can get the position information using this method.

Listing 38-1. Obtaining the current position

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border-collapse: collapse;}
 th, td {padding: 4px;}
 th {text-align: right;}
 </style>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Longitude:</th><td id="longitude">-</td>
 <th>Latitude:</th><td id="latitude">-</td>
 </tr>
 <tr>
 <th>Altitude:</th><td id="altitude">-</td>
 <th>Accuracy:</th><td id="accuracy">-</td>
 </tr>
 <tr>
 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>
 <th>Heading:</th><td id="heading">-</td>
 </tr>
 <tr>
 <th>Speed:</th><td id="speed">-</td>
 <th>Time Stamp:</th><td id="timestamp">-</td>
 </tr>
 </table>
 <script>
 navigator.geolocation.getCurrentPosition(displayPosition);

 function displayPosition(pos) {
 var properties = ["longitude", "latitude", "altitude", "accuracy",
 "altitudeAccuracy", "heading", "speed"];

CHAPTER 38 USING GEOLOCATION

977

 for (var i = 0; i < properties.length; i++) {
 var value = pos.coords[properties[i]];
 document.getElementById(properties[i]).innerHTML = value;
 }
 document.getElementById("timestamp").innerHTML = pos.timestamp;
 }
 </script>
 </body>
</html>

The script in this example calls the getCurrentPosition, passing the displayPosition function as the
method argument. When the position information is available, the nominated function is invoked and
the browser passes in a Position object which gives the details of the position – the details are displayed
in the cells of a table element. The Position object is pretty simple, as you can see in Table 38-3.

Table 38-3. The Position object

Name Description Returns

coords Returns the coordinates for the current position Coordinates

timestamp Returns the time that the coordinate information was obtained string

We are really interested in the Coordinates object, which is returned by the Position.coords

property. Table 38-4 describes the properties of the Coordinates object.

Table 38-4. The Coordinates object

Name Description Returns

latitude Returns the latitude in decimal degrees number

longitude Returns the longitude in decimal degrees number

altitude Returns the height in meters number

accuracy Returns the accuracy of the coordinates in meters number

altitudeAccuracy Returns the accuracy of the altitude in meters number

heading Returns the direction of travel in degrees number

speed Returns the speed of travel in meters/second number

Not all of the data values in the Coordinates object will be available all of the time. The mechanism

by which the browser obtains the location information is unspecified and there are a number of
techniques that are used. Mobile devices increasingly have GPS, accelerometer, and compass facilities,
which means that the most accurate and complete data will be available on those platforms.

CHAPTER 38 USING GEOLOCATION

978

We can still get location information for other devices – the browsers use a geolocation service that
tries to determine location based on network information. If your system has a Wi-Fi adaptor, then the
networks that are in range are compared with a catalogue of networks taken as part of the surveys done
for street-level views, such as Google Street View. If Wi-Fi isn’t available, then the IP address provided by
your ISP can be used to get a general idea of location.

The accuracy of locations inferred from network information varies, but it can be startlingly
accurate. When I started testing this feature, I was surprised by just how narrowly my location was
reported. In fact, it was so accurate, that I have substituted the location of the Empire State Building in
the screenshots – with the real location information (derived from my and nearby Wi-Fi networks) you
can easily find my house and see photos of my car on the driveway. Scary stuff – so much so that the first
thing that all of the browsers do when a document uses the geolocation feature is ask the user to grant
permission – you can see how Chrome does this in Figure 38-1.

Figure 38-1. Granting permission for the geolocation feature

If the user approves the request, then the location information is obtained and, when it is available,
the callback function is invoked. You can see the kind of data available from my desktop machine in
Figure 38-2.

Figure 38-2. Displaying location information provided by the geolocation service

CHAPTER 38 USING GEOLOCATION

979

The computer that I use to write books doesn’t have any kind of specialized location hardware
installed – no GPS, compass, altimeter, or accelerometer. For that reason, the only data that is available
is latitude and longitude and the accuracy of those values. For my location, Chrome estimates that I am
within 69 meters (which is about 75 yards) of the position that has been reported (which is an
underestimation in my case).

 Tip Chrome, Firefox, and Opera all use the Google geolocation service. Internet Explorer and Safari use their
own. I can only report on my location, but the Microsoft service reported accuracy to around 48,000 meters (about
30 miles). I found that the data was accurate to about 3 miles. The Apple service reported an accuracy of 500
meters, but provided the best data of all – it identified my location within a few feet. Wow!

Handling Geolocation Errors
We can provide a second argument to the getCurrentPosition method, which allows us to supply a
function that will be invoked if there is an error obtaining the location. The function is passed a
PositionError object, which defines the properties described in Table 38-5.

Table 38-5. The PositionError object

Name Description Returns

code Returns a code indicating the type of error number

message Returns a string that describes the error string

There are three possible values for the code property. These properties are described in Table 38-6.

Table 38-6. Values for the PositionError.code property

Value Description

1 The user did not grant permission to use the geolocation feature

2 The position could not be determined

3 The attempt to request the location timed out

Listing 38-2 shows how we can receive errors using the PositionError object.

Listing 38-2. Handling errors with the PositionError object

<!DOCTYPE HTML>

CHAPTER 38 USING GEOLOCATION

980

<html>
 <head>
 <title>Example</title>
 <style>
 table {border-collapse: collapse;}
 th, td {padding: 4px;}
 th {text-align: right;}
 </style>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Longitude:</th><td id="longitude">-</td>
 <th>Latitude:</th><td id="latitude">-</td>
 </tr>
 <tr>
 <th>Altitude:</th><td id="altitude">-</td>
 <th>Accuracy:</th><td id="accuracy">-</td>
 </tr>
 <tr>
 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>
 <th>Heading:</th><td id="heading">-</td>
 </tr>
 <tr>
 <th>Speed:</th><td id="speed">-</td>
 <th>Time Stamp:</th><td id="timestamp">-</td>
 </tr>
 <tr>
 <th>Error Code:</th><td id="errcode">-</td>
 <th>Error Message:</th><td id="errmessage">-</td>
 </tr>
 </table>

 <script>
 navigator.geolocation.getCurrentPosition(displayPosition, handleError);

 function displayPosition(pos) {
 var properties = ["longitude", "latitude", "altitude", "accuracy",
 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {
 var value = pos.coords[properties[i]];
 document.getElementById(properties[i]).innerHTML = value;
 }
 document.getElementById("timestamp").innerHTML = pos.timestamp;
 }

 function handleError(err) {
 document.getElementById("errcode").innerHTML = err.code;
 document.getElementById("errmessage").innerHTML = err.message;
 }

CHAPTER 38 USING GEOLOCATION

981

 </script>
 </body>
</html>

The simplest way to create an error is to refuse permission when prompted by the browser. The
script in this example displays the details of the error in the table element and you can see the effect in
Figure 38-3.

Figure 38-3. Displaying details of a geolocation error

Specifying Geolocation Options
The third argument we can provide to the getCurrentPosition method is a PositionOptions object. This
feature allows us to exert some control over the way that locations are obtained. Table 38-7 shows the
properties that this object defines.

Table 38-7. The PositionOptions object

Name Description Returns

enableHighAccuracy Tells the browser that we would like the best possible result boolean

timeout Sets a limit on how many milliseconds a position request
can take before a timeout error is reported

number

maximumAge Tells the browser that we are willing to accept a cached
location, as long as it is no older than the specified number
of milliseconds

number

Setting the highAccuracy property to true only asks the browser to give the best possible result –

there are no guarantees that it will lead to a more accurate location. For mobile devices, a more accurate
location may be available if a power-saving mode is disabled or, in some cases, the GPS feature is
switched on (low accuracy locations may be derived from Wi-Fi or cell tower data). For other devices,

CHAPTER 38 USING GEOLOCATION

982

there may not be higher-accuracy data available. Listing 38-3 shows how we can use the
PositionOptions object when requesting a location.

Listing 38-3. Specifying options when requesting location data

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border-collapse: collapse;}
 th, td {padding: 4px;}
 th {text-align: right;}
 </style>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Longitude:</th><td id="longitude">-</td>
 <th>Latitude:</th><td id="latitude">-</td>
 </tr>
 <tr>
 <th>Altitude:</th><td id="altitude">-</td>
 <th>Accuracy:</th><td id="accuracy">-</td>
 </tr>
 <tr>
 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>
 <th>Heading:</th><td id="heading">-</td>
 </tr>
 <tr>
 <th>Speed:</th><td id="speed">-</td>
 <th>Time Stamp:</th><td id="timestamp">-</td>
 </tr>
 <tr>
 <th>Error Code:</th><td id="errcode">-</td>
 <th>Error Message:</th><td id="errmessage">-</td>
 </tr>
 </table>
 <script>

 var options = {
 enableHighAccuracy: false,
 timeout: 2000,
 maximumAge: 30000
 };

 navigator.geolocation.getCurrentPosition(displayPosition,
 handleError, options);

 function displayPosition(pos) {
 var properties = ["longitude", "latitude", "altitude", "accuracy",

CHAPTER 38 USING GEOLOCATION

983

 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {
 var value = pos.coords[properties[i]];
 document.getElementById(properties[i]).innerHTML = value;
 }
 document.getElementById("timestamp").innerHTML = pos.timestamp;
 }

 function handleError(err) {
 document.getElementById("errcode").innerHTML = err.code;
 document.getElementById("errmessage").innerHTML = err.message;
 }

 </script>
 </body>
</html>

There is an oddity here in that we don’t create a new PositionOptions object. Instead, we create a
plain Object and define properties that match those in the table. In this example, I have indicated that I
don’t require the best level of resolution, that I am prepared to wait for 2 seconds before the request
should timeout and I am willing to accept data that has been cached for up to 30 seconds.

Monitoring the Position
We can receive ongoing updates about the position by using the watchPosition method. This method
takes the same arguments as the getCurrentPosition method and works in the same way – the
difference is that the callback functions will be repeatedly called as the position changes. Listing 38-4
shows how we can use the watchPosition method.

Listing 38-4. Using the watchPosition method

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 table {border-collapse: collapse;}
 th, td {padding: 4px;}
 th {text-align: right;}
 </style>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Longitude:</th><td id="longitude">-</td>
 <th>Latitude:</th><td id="latitude">-</td>
 </tr>
 <tr>
 <th>Altitude:</th><td id="altitude">-</td>

CHAPTER 38 USING GEOLOCATION

984

 <th>Accuracy:</th><td id="accuracy">-</td>
 </tr>
 <tr>
 <th>Altitude Accuracy:</th><td id="altitudeAccuracy">-</td>
 <th>Heading:</th><td id="heading">-</td>
 </tr>
 <tr>
 <th>Speed:</th><td id="speed">-</td>
 <th>Time Stamp:</th><td id="timestamp">-</td>
 </tr>
 <tr>
 <th>Error Code:</th><td id="errcode">-</td>
 <th>Error Message:</th><td id="errmessage">-</td>
 </tr>
 </table>
 <button id="pressme">Cancel Watch</button>
 <script>

 var options = {
 enableHighAccuracy: false,
 timeout: 2000,
 maximumAge: 30000
 };

 var watchID = navigator.geolocation.watchPosition(displayPosition,
 handleError,
 options);

 document.getElementById("pressme").onclick = function(e) {
 navigator.geolocation.clearWatch(watchID);
 };

 function displayPosition(pos) {
 var properties = ["longitude", "latitude", "altitude", "accuracy",
 "altitudeAccuracy", "heading", "speed"];

 for (var i = 0; i < properties.length; i++) {
 var value = pos.coords[properties[i]];
 document.getElementById(properties[i]).innerHTML = value;
 }
 document.getElementById("timestamp").innerHTML = pos.timestamp;
 }

 function handleError(err) {
 document.getElementById("errcode").innerHTML = err.code;
 document.getElementById("errmessage").innerHTML = err.message;
 }

 </script>
 </body>
</html>

CHAPTER 38 USING GEOLOCATION

985

In this example, the script uses the watchPosition method to monitor the location. This method
returns an ID value which we can pass to the clearWatch method when we want to stop monitoring. I do
this when the button element is pressed.

 Caution The current versions of the mainstream browsers don’t implement the watchPosition method very
well and updated locations are not always forthcoming. You may be better served using a timer (which I described
in Chapter 27) and periodically calling the getCurrentPosition method.

Summary
In this chapter, I have described the Geolocation API, which provides information about the current
location of the system that the browser is hosted by. I explained that the mechanism used by the browser
to obtain location data varies and that location data isn’t restricted only to those devices that have GPS
support.

C H A P T E R 39

987

Using Web Storage

Web storage allows us to store simple key/value data in the browser. Wen storage is similar to cookies,
but better implemented and we can store greater amounts of data. There are two kinds of web storage –
local storage and session storage. Both types share the same mechanism, but the visibility of the stored
data and its longevity differ. Table 39-1 provides the summary for this chapter.

 Tip There is another storage specification, the Indexed Database API, which allows richer data storage and
SQL-like queries. This specification is still volatile and the browser implementations are experimental and unstable
as I write this.

Table 39-1. Chapter Summary

Problem Solution Listing

Store persistent data in the browser Use the localStorage property to obtain a Storage
object

1

Monitor changes in storage caused
by other documents from the same
origin

Handle the storage event 2

Store short-lived data in the browser Use the sessionStorage property to obtain a Storage
object

3

Monitor changes in storage in the
top-level browsing context

Handle the storage event 4

CHAPTER 39 USING WEB STORAGE

988

Using Local Storage
We access the local storage feature through the localStorage global property – this property returns a
Storage object, which is described in Table 39-2. The Storage object is used to store pairs of strings,
organized in key/value form.

Table 39-2. The Storage object

Name Description Returns

clear() Removes the stored key/value pairs void

getItem(<key>) Retrieves the value associated with the specified key string

key(<index>) Retrieves the key at the specified index string

length Returns the number of stored key/value pairs number

removeItem(<key>) Removes the key/value pair with the specified key string

setItem(<key>, <value>) Adds a new key/value pair or updates the value if the key
has already been used

void

[<key>] Array-style access to retrieve the value associated with the
specified key

string

The Storage object allows us to store key/value pairs where both the key and the value are strings.

Keys must be unique, which means the value is updated if we call the setItem method using a key that
already exists in the Storage object. Listing 39-1 shows how we can add, modify, and clear the data in the
local storage.

Listing 39-1. Working with local storage

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 body > * {float: left;}
 table {border-collapse: collapse; margin-left: 50px}
 th, td {padding: 4px;}
 th {text-align: right;}
 input {border: thin solid black; padding: 2px;}
 label {min-width: 50px; display: inline-block; text-align: right;}
 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}
 </style>
 </head>
 <body>

CHAPTER 39 USING WEB STORAGE

989

 <div>
 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>
 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>
 <div id="buttons">
 <button id="add">Add</button>
 <button id="clear">Clear</button>
 </div>
 <p id="countmsg">There are items</p>
 </div>

 <table id="data" border="1">
 <tr><th>Item Count:</th><td id="count">-</td></tr>
 </table>

 <script>
 displayData();

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 switch (e.target.id) {
 case 'add':
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;
 localStorage.setItem(key, value);
 break;
 case 'clear':
 localStorage.clear();
 break;
 }
 displayData();
 }

 function displayData() {
 var tableElem = document.getElementById("data");
 tableElem.innerHTML = "";
 var itemCount = localStorage.length;
 document.getElementById("count").innerHTML = itemCount;
 for (var i = 0; i < itemCount; i++) {
 var key = localStorage.key(i);
 var val = localStorage[key];
 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"
 + val + "</td></tr>";
 }
 }
 </script>
 </body>
</html>

CHAPTER 39 USING WEB STORAGE

990

In this example, I report on the number of items in the local storage and enumerate the set of stored
name/value pairs to populate a table element. I have added two input elements, and I use their contents
to store items when the Add button is pressed. In response to the Clear button, I clear the contents of the
local storage. You can see the effect in Figure 39-1.

Figure 39-1. Working with local storage

The browser won’t delete the data we add using the localStorage object unless the user clears the
browsing data. (The specification also allows the data to be removed for security reasons, but the kind of
security problems that require local data to be deleted are not articulated.)

Listening for Storage Events
The data stored via the local storage feature is available to any document that has the same origin. The
storage event is triggered when one document makes a change to the local storage and we can listen to
this event in other documents from the same origin to make sure that we stay abreast of changes.

The object dispatched with the storage event is a StorageEvent object, whose members are
described in Table 39-3.

Table 39-3. The StorageEvent object

Name Description Returns

key Returns the key that has been changed string

oldValue Returns the old value associated with the key string

newValue Returns the new value associated with the key string

url Returns the URL of the document that made the change string

storageArea Returns the Storage object which has changed Storage

CHAPTER 39 USING WEB STORAGE

991

Listing 39-2 shows a document, which I have saved as storage.html, that listens and catalogues the
events issued by the local storage object.

Listing 39-2. Cataloguing local storage events

<!DOCTYPE HTML>
<html>
 <head>
 <title>Storage</title>
 <style>
 table {border-collapse: collapse;}
 th, td {padding: 4px;}
 </style>
 </head>
 <body>
 <table id="data" border="1">
 <tr>
 <th>key</th>
 <th>oldValue</th>
 <th>newValue</th>
 <th>url</th>
 <th>storageArea</th>
 </tr>
 </table>
 <script>
 var tableElem = document.getElementById("data");

 window.onstorage = handleStorage;

 function handleStorage(e) {
 var row = "<tr>";
 row += "<td>" + e.key + "</td>";
 row += "<td>" + e.oldValue + "</td>";
 row += "<td>" + e.newValue + "</td>";
 row += "<td>" + e.url + "</td>";
 row += "<td>" + (e.storageArea == localStorage) + "</td></tr>";
 tableElem.innerHTML += row;
 };
 </script>
 </body>
</html>

The storage event is triggered through the Window object of any document that shares the changed
storage. In this example, I add a new row to a table element each time an event is received – you can see
the effect in Figure 39-2.

CHAPTER 39 USING WEB STORAGE

992

Figure 39-2. Displaying the details of storage events

The events in the figure show me adding new items to local storage. The sequence was:

• Add a new pair: Banana/Yellow

• Add a new pair: Apple/Red

• Update the value associated with Apple to Green

• Add a new pair: Cherry/Red

• Press the Clear button (which calls the clear method)

You can see that null is used when there is no value to report in the event. For example, when I add
a new item to storage, the oldValue property returns null. The last event in the table has the key,
oldValue, and newValue properties as null. This is the event that was triggered in response to the clear
method being called, which removes all of the items from storage.

The url property helpfully tells us which document has triggered the change. The storageArea
property returns the Storage object that has changed, which can be the local or session storage objects
(I’ll explain session storage shortly). For this example, we only receive events from the local storage
object.

 Note Events are not dispatched within the document that made the change. I guess it is assumed that we
already know what happened. The events are only available in other documents from the same origin.

Using Session Storage
Session storage works just like local storage, except that the data is private to each browsing context and
is removed when the document is closed. We access session storage through the sessionStorage global

CHAPTER 39 USING WEB STORAGE

993

variable, which returns a Storage object (previously described in Table 39-2). You can see session storage
in use in Listing 39-3.

Listing 39-3. Using session storage

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 body > * {float: left;}
 table {border-collapse: collapse; margin-left: 50px}
 th, td {padding: 4px;}
 th {text-align: right;}
 input {border: thin solid black; padding: 2px;}
 label {min-width: 50px; display: inline-block; text-align: right;}
 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}
 </style>
 </head>
 <body>
 <div>
 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>
 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>
 <div id="buttons">
 <button id="add">Add</button>
 <button id="clear">Clear</button>
 </div>
 <p id="countmsg">There are items</p>
 </div>

 <table id="data" border="1">
 <tr><th>Item Count:</th><td id="count">-</td></tr>
 </table>

 <script>
 displayData();

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 switch (e.target.id) {
 case 'add':
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;
 sessionStorage.setItem(key, value);
 break;
 case 'clear':
 sessionStorage.clear();
 break;

CHAPTER 39 USING WEB STORAGE

994

 }
 displayData();
 }

 function displayData() {
 var tableElem = document.getElementById("data");
 tableElem.innerHTML = "";
 var itemCount = sessionStorage.length;
 document.getElementById("count").innerHTML = itemCount;
 for (var i = 0; i < itemCount; i++) {
 var key = sessionStorage.key(i);
 var val = sessionStorage[key];
 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"
 + val + "</td></tr>";
 }
 }
 </script>
 </body>
</html>

This example works in the same way as the one for local storage, except the visibility and life are
restricted. These restrictions have a consequence on how the storage event is dealt with – remember
that storage events are only triggered for documents that share storage. In the case of session storage,
this means that the events will be triggered only for embedded documents, such as those in an iframe.
Listing 39-4 shows an iframe added to the previous example which contains the storage.html document.

Listing 39-4. Using storage events with session storage

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 body > * {float: left;}
 table {border-collapse: collapse; margin-left: 50px}
 th, td {padding: 4px;}
 th {text-align: right;}
 input {border: thin solid black; padding: 2px;}
 label {min-width: 50px; display: inline-block; text-align: right;}
 #countmsg, #buttons {margin-left: 50px; margin-top: 5px; margin-bottom: 5px;}
 iframe {clear: left;}
 </style>
 </head>
 <body>
 <div>
 <div><label>Key:</label><input id="key" placeholder="Enter Key"/></div>
 <div><label>Value:</label><input id="value" placeholder="Enter Value"/></div>
 <div id="buttons">
 <button id="add">Add</button>
 <button id="clear">Clear</button>
 </div>
 <p id="countmsg">There are items</p>

CHAPTER 39 USING WEB STORAGE

995

 </div>

 <table id="data" border="1">
 <tr><th>Item Count:</th><td id="count">-</td></tr>
 </table>

 <iframe src="storage.html" width="500" height="175"></iframe>

 <script>
 displayData();

 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 switch (e.target.id) {
 case 'add':
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;
 sessionStorage.setItem(key, value);
 break;
 case 'clear':
 sessionStorage.clear();
 break;
 }
 displayData();
 }

 function displayData() {
 var tableElem = document.getElementById("data");
 tableElem.innerHTML = "";
 var itemCount = sessionStorage.length;
 document.getElementById("count").innerHTML = itemCount;
 for (var i = 0; i < itemCount; i++) {
 var key = sessionStorage.key(i);
 var val = sessionStorage[key];
 tableElem.innerHTML += "<tr><th>" + key + ":</th><td>"
 + val + "</td></tr>";
 }
 }
 </script>
 </body>
</html>

You can see how the events are reported in Figure 39-3.

CHAPTER 39 USING WEB STORAGE

996

Figure 39-3. Storage events from session storage

Summary
In this chapter, I have described the web storage feature, which allows us to store key/value pairs in the
browser. This is a simple feature, but the longevity of local storage can make it especially useful,
particularly for storing simple user preferences.

C H A P T E R 40

997

Creating Offline Web Applications

The offline application cache feature lets us specify all of the resources that our web application
requires, so that the browser can download them all when the HTML document is loaded. By doing this,
we enable the user to continue to use our application even when they do not have network access.

At the time of writing, the support for the features in this chapter is exceptionally variable – I
recommend you consider this chapter as a signpost for the direction that offline applications are
generally following, rather than as a proscriptive reference. Table 40-1 provides the summary for this
chapter.

Table 40-1. Chapter Summary

Problem Solution Listing

Enable offline caching Create a manifest file and refer to it in the manifest
attribute of the html element

1-3

Specify the resources to
be cached in an offline
application

List the resources at the top or in the CACHE section of the
manifest file

4

Specify fallback content
to be used when
resources are not
available

List the content in the FALLBACK section of the manifest file 5-8

Specify resources which
are always requested
from the server

List the content in the NETWORK section of the manifest file 9

Determine if the
browser is offline

Read the value of the window.navigator.onLine property 10

Work with the offline
cache directly

Get an ApplicationCache object by reading the
window.applicationCache property

11-13

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

998

Defining the Problem
To understand the kind of problem we can solve by creating an offline web application, we need an
example. Listing 40-1 shows a very simple application that relies on resources which are loaded from the
server as-needed.

Listing 40-1. A simple web application

<!DOCTYPE HTML>
<html>
 <head>
 <title>Example</title>
 <style>
 img {border: medium double black; padding: 5px; margin: 5px;}
 </style>
 </head>
 <body>

 <div>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>
 <button id="cherries">Cherries</button>
 </div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 document.getElementById("imgtarget").src = e.target.id + "100.png";
 }
 </script>
 </body>
</html>

There is an img element, whose src attribute is set in response to button presses. Different buttons
will cause the browser to request different images from the web server. There are three images that may
be required through the life of the application:

• banana100.png

• apple100.png

• cherries100.png

One of the images, banana100.png is loaded when the document loads, since it is specified as the
initial value of the src attribute of the img element. You can see how the document appears in the
browser in Figure 40-1.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

999

Figure 40-1. A simple web application

I have used Firefox in this chapter because it has an easily accessible offline mode (there is an
option in the File – Web Developer menu). We can see the problem I am trying to fix when I switch the
browser to offline, which simulates losing the network connection without my having to disable my
wireless adapter, as shown in Figure 40-2.

Figure 40-2. Requesting an unavailable resource when offline

When I press the Apple button, the browser tries to load the apple100.png image, but, of course,
there is no network connection and the request fails. If I click on the Banana button, however, the correct
image is displayed because banana100.png is in the browser cache from when the document was first
loaded. Our goal in creating an offline application is to make sure that all of the resources we require are
available so that the application works, even when offline.

Defining the Manifest
The manifest allows us to list all of the resources that we need to work offline. Listing 40-2 shows a
manifest for the example web application.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1000

Listing 40-2. A simple manifest

CACHE MANIFEST
example.html
banana100.png
apple100.png
cherries100.png

A manifest file is a simple text file. The first line is always CACHE MANIFEST and then we list the
resources we require for the application, one per line of text.

 Tip The specification for offline application recommends that we add the HTML document itself to the manifest,
even though it will already be in the browser cache by the time the manifest is loaded and read.

There is no fixed naming scheme for manifest files, but the .appcache suffix is most commonly used.
I saved the file in the example as fruit.appcache. Whatever naming scheme you use, you must arrange
for the web server to describe the content to the browser using the text/cache-manifest MIME type.

 Caution The browser will not use the cache file if the MIME type is not correctly set by the server.

We associate the manifest file with the document through the manifest attribute of the html
element, as shown in Listing 40-3.

Listing 40-3. Associating a manifest file with an HTML document

<!DOCTYPE HTML>
<html manifest="fruit.appcache">
 <head>
 <title>Example</title>
 <style>
 img {border: medium double black; padding: 5px; margin: 5px;}
 </style>
 </head>
 <body>

 <div>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>
 <button id="cherries">Cherries</button>
 </div>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1001

 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 document.getElementById("imgtarget").src = e.target.id + "100.png";
 }
 </script>
 </body>
</html>

When we apply the manifest attribute to the html element, the browser may prompt the user to
allow us to store the offline content locally. The way browsers handle this varies. Chrome and Opera
allow us to cache offline data without the user being prompted. At the other end of the spectrum is
Firefox, which requires explicit approval from the user, as shown in Figure 40-3.

Figure 40-3. Seeking user permission to store offline data

The browser will download all of the content specified in the manifest even if it hasn’t yet been
required. For our simple application, this means that all three of our images are downloaded. Now the
application continues to work properly, even when I am offline, as shown in Figure 40-4.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1002

Figure 40-4. Creating an offline application

As you can see, creating an offline web application is very simple. We just create the manifest,
ensure it contains the resources our application needs, and then set the value of the manifest attribute
on the html element in our document.

Specifying Manifest Sections
We can add different sections to the manifest file. There are three different sections available, which I
describe in the sections that follow.

Defining the Cache Section
We can list the files we need to cache at the start of the manifest, or we can create a CACHE section in the
file. Listing 40-4 gives an example.

Listing 40-4. Defining a CACHE manifest file section

CACHE MANIFEST

example.html
banana100.png

CACHE:
apple100.png
cherries100.png

I have placed some of the resources in the default section at the start of the manifest file and others
in the CACHE section. This is equivalent to the previous manifest, but it allows us to define the resources
we want after the other sections I describe in the following section.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1003

Defining the Fallback Section
The FALLBACK section allows us to specify how the browser should handle resources which we haven’t
included in the manifest. Listing 40-5 gives an example.

Listing 40-5. Defining a FALLBACK section in the manifest

CACHE MANIFEST

example.html
banana100.png

FALLBACK:
*.png offline.png

CACHE:
apple100.png

In this example, I have added a FALLBACK section. This new section contains one item, which tells
the browser that it should use the offline.png file whenever it needs a png file that is not cached offline.

 Tip We don’t need to add fallback resources to the CACHE section of the manifest as the browser will
automatically download fallback resources.

I have removed cherries100.png from the CACHE section so that we have a resource that the application
requires which is not available. You can see how the browser handles the fallback in Figure 40-5.

Figure 40-5. Using fallback content

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1004

The offline.png image is a simple cross. Providing fallbacks for images isn’t ideal, but at least we
can maintain the structure and layout of the page. Fallbacks can be much more useful for links to other
documents. Listing 40-6 shows a change to our web application document that contains a link to
another HTML file.

Listing 40-6. Adding a link to another file

<!DOCTYPE HTML>
<html manifest="fruit.appcache">
 <head>
 <title>Example</title>
 <style>
 img {border: medium double black; padding: 5px; margin: 5px;}
 </style>
 </head>
 <body>

 <div>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>
 <button id="cherries">Cherries</button>
 </div>
 Link to another page
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 function handleButtonPress(e) {
 document.getElementById("imgtarget").src = e.target.id + "100.png";
 }
 </script>
 </body>
</html>

We can then create a fallback document that will be used if the HTML file that we linked to is not in
the offline cache. I have called this page offline.html and its contents are shown in Listing 40-7.

Listing 40-7. The offline.html document

<!DOCTYPE HTML>
<html>
 <head>
 <title>Offline</title>
 </head>
 <body>
 <h1>Your browser is offline.</h1>
 Here is some placeholder content
 </body>
</html>

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1005

We can then add a fallback entry to the cache manifest file, as shown in Listing 40-8.

Listing 40-8. Adding a fallback entry to the manifest for HTML files

CACHE MANIFEST

example.html
banana100.png

FALLBACK:
*.png offline.png
* offline.html

CACHE:
apple100.png

The file that I have linked to (otherpage.html) is not in the manifest and so it won’t be included in
the offline cache. If I click on the link in the main document while offline, I am shown the fallback
document instead, as illustrated by Figure 40-6. (The message that the fallback page displays isn’t
especially helpful, but it does demonstrate the feature. In a real application, we could display a more
useful message or even define scripts that provide some kind of reduced functionality with the resources
we have in the offline cache.)

Figure 40-6. Using fallback content for HTML documents

Defining the Network Section
The NETWORK section of the manifest file defines the set of resources that should not be cached, and which
the browser should always request from the server, even when offline. Listing 40-9 shows the use of the
NETWORK section.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1006

Listing 40-9. Defining the NETWORK section in the manifest

CACHE MANIFEST

example.html
banana100.png

FALLBACK:
* offline.html

NETWORK:
cherries100.png

CACHE:
apple100.png

In this example, I have added the cherries100.png image to the NETWORK section. This addition
means that the browser will try to request this image from the server, even when offline (although it will
use a cached copy of the image if it is loaded outside of the manifest, that is, the user presses the
Cherries button before the browser goes offline).

 Tip Having a network section for an offline application may seem odd, but the browser will use the cached data
even when it is online.

Detecting the Browser State
We can determine if the browser is online or offline through the window.navigator.onLine property,
which is described in Table 40-2.

Table 40-2. The onLine property

Name Description Returns

window.navigator.onLine Returns false if the browser is definitely offline and true if
the browser might be online

boolean

This property is only definitive if the browser is sure that it is offline. A true value doesn’t confirm

that the browser is online but rather that it doesn’t know for sure that it is offline. Listing 40-10 shows
this property in use.

Listing 40-10. Detecting the state of the browser

<!DOCTYPE HTML>
<html>
 <head>

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1007

 <title>Example</title>
 </head>
 <body>
 The browser is: unknown.
 <script>
 var statusValue;

 if (window.navigator.onLine) {
 statusValue = "online";
 } else {
 statusValue = "offline";
 }
 document.getElementById("status").innerHTML = statusValue;
 </script>
 </body>
</html>

You can see both states shown in Figure 40-7, achieved using the handy offline mode in Firefox. The
state is rarely so certain in real life. The browser is free to make its own assessment of its status and most
browsers don’t default to offline until they have tried and failed to make a request (on the other hand,
some mobile browsers will go into offline mode as soon as they lose network coverage).

Figure 40-7. Detecting the browser state

Working with the Offline Cache
We can work directly with the offline cache by calling the window.applicationCache property, which
returns an ApplicationCache object. The members that this object defines are described in Table 40-3.

 Caution This is an advanced topic and the caching mechanism can be incredibly frustrating to work with. Ask
yourself if you really need to take control of the cache before using the objects and techniques that I describe in
this section.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1008

Table 40-3. The ApplicationCache object

Name Description Returns

update() Updates the cache to ensure that the latest versions of the items in
the manifest are downloaded

void

swapCache() Swaps the current cache for a more recently updated one void

status Returns the status of the cache number

The status property will return a numeric vale that corresponds to the set shown in Table 40-4.

Table 40-4. Values for the ApplicationCache status property

Value Name Description

0 UNCACHED There is no caching for this document or the cached data has yet to be
downloaded

1 IDLE The cache is not performing any action

2 CHECKING The browser is checking for updates to the manifest or the items specified
in the manifest

3 DOWNLOADING The browser is downloading manifest or content updates

4 UPDATEREADY There updated cached data available

5 OBSOLETE The cached data is obsolete and should not be used – this is caused by the
request for the manifest file returning a 4xx HTTP code (usually indicating
that the manifest file has been removed/deleted)

In addition to the methods and the status property, the ApplicationCache object defines a set of

events which are triggered when the status of the cache changes. These events are described in Table 40-
5.

Table 40-5. Values for the ApplicationCache status property

Name Description

checking The browser is obtaining the initial manifest or is checking for a manifest update

noupdate There is no update available and the current manifest is the latest

downloading The browser is downloading content specified in the manifest

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1009

progress Triggered during the download phase

cached All of the content specified in the manifest has been downloaded and cached

updateready New resources have been downloaded and are ready for use

obsolete The cache has become obsolete

We can combine the methods and the values of the status property to take explicit control of the

offline cache, as demonstrated in Listing 40-11.

Listing 40-11. Working directly with the application cache

<!DOCTYPE HTML>
<html manifest="fruit.appcache">
 <head>
 <title>Example</title>
 <style>
 img {border: medium double black; padding: 5px; margin: 5px;}
 div {margin-top: 10px; margin-bottom: 10px}
 table {margin: 10px; border-collapse: collapse;}
 th, td {padding: 2px;}
 body > * {float: left;}
 </style>
 </head>
 <body>
 <div>

 <div>
 <button id="banana">Banana</button>
 <button id="apple">Apple</button>
 <button id="cherries">Cherries</button>
 </div>
 <div>
 <button id="update">Update</button>
 <button id="swap">Swap Cache</button>
 </div>
 The status is:
 </div>
 <table id="eventtable" border="1">
 <tr><th>Event Type</th></tr>
 </table>
 <script>
 var buttons = document.getElementsByTagName("button");
 for (var i = 0; i < buttons.length; i++) {
 buttons[i].onclick = handleButtonPress;
 }

 window.applicationCache.onchecking = handleEvent;

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1010

 window.applicationCache.onnoupdate = handleEvent;
 window.applicationCache.ondownloading = handleEvent;
 window.applicationCache.onupdateready = handleEvent;
 window.applicationCache.oncached = handleEvent;
 window.applicationCache.onobselete = handleEvent;

 function handleEvent(e) {
 document.getElementById("eventtable").innerHTML +=
 "<tr><td>" + e.type + "</td></td>";
 checkStatus();
 }

 function handleButtonPress(e) {
 switch (e.target.id) {
 case 'swap':
 window.applicationCache.swapCache();
 break;
 case 'update':
 window.applicationCache.update();
 checkStatus();
 break;
 default:
 document.getElementById("imgtarget").src = e.target.id
 + "100.png";
 }
 }

 function checkStatus() {
 var statusNames = ["UNCACHED", "IDLE", "CHECKING", "DOWNLOADING",
 "UPDATEREADY", "OBSOLETE"];
 var status = window.applicationCache.status;
 document.getElementById("status").innerHTML = statusNames[status];
 }

 </script>
 </body>
</html>

This example contains buttons that call the update and swapCache methods of the ApplicationCache
object. The script also defines a listener to some of the events and displays the event type in a table
element. Next, we need a manifest. Listing 40-12 shows the one used for this example.

Listing 40-12. The manifest for the cache example

CACHE MANIFEST

CACHE:
example.html
banana100.png
cherries100.png
apple100.png

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1011

FALLBACK:
* offline.html

There is nothing new in the manifest. It lists the main document, the image files it uses, and a
general fallback document. You can see how the example is displayed in Figure 40-8.

Figure 40-8. Manually controlling the cache

There are two points to note in this figure. The first is the sequence of events. When the document is
loaded, the browser detects the manifest attribute on the html element and starts downloading and
caching the content. You can see the effect of this in the table element—the checking, downloading and
cached events are fired.

Making the Update
To effect a change in the cache, we have to make an update of some kind on the server. To switch the
cherries for the lemon, I am simply going to overwrite the cherries100.png file on the server with my
lemon image. To be clear: the filename is still cherries100.png but the content has been changed to a
lemon.

The browser checks to see if the manifest file has changed when we call the update method on the
ApplicationCache object; however, it doesn’t check to see if any of the individual files specified in the
manifest have been modified. So, to get the browser to load my modified image, I also need to make a
change to the manifest file. For simplicity, I have changed the name of the fallback HTML file, as shown
in Listing 40-13.

Listing 40-13. Making a change to the manifest file

CACHE MANIFEST

CACHE:
example.html
banana100.png
cherries100.png
apple100.png

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1012

FALLBACK:
* offline2.html

 Caution A major cause of confusion when debugging the offline cache is that the browser honors the caching
policy for the individual entries in the manifest file. This means that you can get into a real mess if you have set
different cache expiration headers on different types of content, as the browser will check some for updates and
not others. To get immediate changes in the cache (well, sort-of-immediate—see the note later in this section
about that), the safest thing to do is to set your web server so that it sets the Cache-Control header to no-cache.
This tells the browser not to check for updates each time a resource is required (although you won’t want to do
this on a production server).

Getting the Update
Now that we have made a change at the server, we can ask the browser to update the offline cache. To do
this, press the Update button. The effect is shown in Figure 40-9.

Figure 40-9. Downloading an update to the offline cache

A new sequence of events will be shown (checking, downloading, updateready) and the status of the
cache will change to UPDATEREADY. At this point, the browser has downloaded the modified content, but it
has not been applied to the cache we are using, which is to say that clicking on the Cherries button will
still show us a picture of cherries, even though the browser has downloaded and cached the lemon
substitute with the same name.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1013

Applying the Update
When we are ready to receive the updated content, we can press the Swap Cache button, which calls the
swapCache method on the ApplicationCache object. The updated content is applied to the offline cache
for our application.

 Caution Another cause of confusion when working with the cache is the effect that applying an update has.
The changes are only used the next time that a resource is requested from the cache. This means that any
stylesheets or script files that are cached will not be reloaded by the browser and you will have to explicitly reload
the document that contains them to benefit from any changes.

When we press the Cherries button, we see the picture of the lemon, as shown in Figure 40-10.

Figure 40-10. Applying an update to the offline cache

 Caution The final area of frustration is that there can be a lag between applying the update and the updated
content being used in a document. In writing this chapter, I encountered delays that ranged from just a few
seconds to ten minutes or more.

CHAPTER 40 CREATING OFFLINE WEB APPLICATIONS

1014

Summary
In this chapter, I have shown you how to create offline applications that can function even when the
browser cannot connect to a network. This is a really useful feature and once you get the configuration
you need, the results are great; however, testing and debugging with the application cache can be a
maddening process, especially if you take direct control of the cache through the ApplicationCache
object.

1015

Index

 A
a element, 19, 41, 43, 47–49, 51–52, 109, 796
abbr element, 109, 253, 256
abbreviations, denoting, 173–174
abort() method, 845
aborting requests, for Ajax, 844–846
absolute lengths, 58
accesskey attribute, 13, 25–26
action attribute, 287–288
active selector, 457–458
addEventListener method, 701, 765, 772, 775–

776, 780–781, 783, 787, 792
address element, 111, 217–218, 222, 230, 233,

241, 244–246
after selector, 432–434
Ajax (Asynchronous JavaScript and XML), 821–

872
aborting requests, 844–846
cross-origin requests, 840–844
error handling, 832–836

application errors, 835–836
request errors, 835
setup errors, 834–835

events for, 829–832
headers for, 836–840

disabling content caching, 838
overriding request HTTP method, 836–

837
reading response headers, 838–840

and Opera browser, 827–829
overview, 822–827
receiving data with, 866–872

HTML fragments, 866–868
JSON data, 871–872
XML data, 869–870

sending data with
files, 861–862
form data, 853–856
JSON data, 859–861
server for, 851–853

tracking upload progress, 863–865
using FormData object, 856–859

align, 252–253, 256, 259–260, 262–263, 269, 272,
275

angles, CSS, 66
animation-iteration-count property, 596–597
animation-play-state property, 582, 603
animation properties, for CSS, 408
animations, 589–603

applying multiple, 601–603
applying to initial layout, 599
and end state, 597–598
key frames for, 592–595

reusing, 599–601
setting initial state, 592–593
specifying intermediate key frames, 594–

595
repeat direction for, 595–597
stopping and starting, 603
of transforms, 608–609

annotating
with text elements, 157–167

denoting foreign or technical terms, 160–
161

denoting important text, 163–164
denoting keywords and product names,

157–158
emphatic stress, 158–160
fine print, 165–166
showing inaccuracies or corrections, 161–

162
superscripts and subscripts, 167
underlining text, 164–165

application errors, for Ajax, 835–836
application/x-www-form-urlencoded encoding,

for forms, 290
ApplicationCache object, 997, 1007–1013

applying update, 1013
getting update, 1012
making update, 1011

arcs, in canvas element, 936–942

■ INDEX

1016

arcs, in canvas element (cont.)
using arc method, 940–942
using arcTo method, 937–940

area element, 114, 811
area elements, 638
Array() method, 72, 93
array notation, using to obtain elements, 669–

670
Array object, 95
arrays, 92–96

built-in methods for, 95–96
contents of

enumerating, 94–95
reading and modifying, 94

literal style, 93–94
article class, 217, 227, 237–238, 240–242, 244–245,

248
article element, 105, 107, 111, 237–240
aside element, 111, 217, 227, 240–244
asynchronous execution, of scripts, 147
Asynchronous JavaScript and XML (Ajax), 821–

872
aborting requests, 844–846
cross-origin requests, 840–844
error handling, 832–836

application errors, 835–836
request errors, 835
setup errors, 834–835

events for, 829–832
headers for, 836–840

disabling content caching, 838
overriding request HTTP method, 836–

837
reading response headers, 838–840

and Opera browser, 827–829
overview, 822–827
receiving data with, 866–872

HTML fragments, 866–868
JSON data, 871–872
XML data, 869–870

sending data with
files, 861–862
form data, 853–856
JSON data, 859–861
server for, 851–853
tracking upload progress, 863–865
using FormData object, 856–859

attachment, for backgrounds, 485–486
attributes

for elements, 19–20, 714–715
applying multiple attributes to, 19

Boolean attributes, 20
custom attributes, 20
data-* attributes, 713–714

global. See global attributes
selecting elements by, 418–421

audio element, 114
author defined attributes, 20
author styles, 49–50
autocomplete attribute, 291–292
axis, 253, 256

 B
b element, 105, 109
background-color property, 40, 42, 612, 628
background properties, for CSS, 402–404
backgrounds, 479–489

attachment for, 485–486
clipping style for, 486–488
image origin for, 486–488
position of, 483–484
setting, 480–482
shorthand properties for, 489
size of, 482–483

base element, 108, 117, 124–125, 793
bdi element, 182–184
bdo element, 180–181
before selector, 432–434
beginPath() method, 930
Bezier curves, in canvas element, 942–946

cubic Bezier curves, 942–944
quadratic Bezier curves, 944–946

bgcolor, 252–253, 256
block-level elements, 514–515
blockquote element, 110, 191, 199, 201, 204, 798
body element, 13, 18, 23, 108, 117, 121–122, 192,

194, 793
boolean attribute, 22
Boolean attributes, 20
boolean type, 78
border-box value, 487
border property, 44, 251–253, 261, 264, 266, 272,

277, 279
borders, 466–479

applying to single side, 469–470
collapsing, 615–616
images as, 475–479

slice repeat style, 478–479
slicing image, 475–477

properties for CSS, 402–404

■ INDEX

1017

with rounded corners, 471–474
separated, 617–618
shorthand properties for, 470–471
style of, 467–469
for tables, 277
width of, 467

box model, of CSS, 398–399
box properties, for CSS, 404–405
box-shadow declaration, 491
box-shadow element, 490
br element, 109
breaks, 168–171

forcing, 168–169
indicating opportunity for safe, 169–171
thematic, 202–203

browser state, detecting, 1006–1007
browser styles, 47–48, 67
browsers, 9

competition in market, 4
support for HTML, 7

browsing context
object element as, 389
targeting, 156–157

bubble phase, for DOM events, 780–782
built-in methods, for arrays, 95–96
button elements, 304–308, 803

as generic element, 307–308
to reset forms, 306–307
to submit forms, 305–306

buttons, 325–326

 C
Cache-Control header, 1012
cache section, of manifest file, 1002
calc keyword, 66
calc() method, 39, 66
calculations, of CSS units, 65–66
cancellable events, 783–784
canvas element, 114, 372, 393, 897, 927–956

arcs in, 936–942
using arc method, 940–942
using arcTo method, 937–940

Bezier curves in, 942–946
cubic Bezier curves, 942–944
quadratic Bezier curves, 944–946

clipping regions with, 946–947
composition in, 952–954
drawing state for, 904–918

fill style, 906–907

gradients in, 907–913
line join style, 905–906
patterns in, 916–918
radial gradient in, 913–916
saving and restoring, 919–921
stroke style, 906–907

getting context for, 899–900
images in, 921–927

canvas images, 925–927
video images, 922–925

overview, 898–899
rectangles in, 901–903
shadows with, 949–950
text in, 947–949
transformations in, 955–956
transparency in, 951–952
using paths in, 930–936

CanvasGradient method, 908–909
caption element, 112, 251, 269–272, 275, 277, 552
caption-side property, 611, 619, 621
captions, for tables, 269–270, 619–620
capture phase, for DOM events, 775–779
cascading, of styles, 49

specificity and order assessments, 51–54
tweaking order, 50

Cascading Style Sheets (CSS), 16, 39–69, 397–411,
436–465, 495–497, 529
angles, 66
animation properties, 408
animations, 589–603

applying multiple, 601–603
applying to initial layout, 599
and end state, 597–598
key frames for, 592–595, 599–601
repeat direction for, 595–597
stopping and starting, 603

background properties, 402–404
backgrounds, 479–489

attachment for, 485–486
clipping style for, 486–488
image origin for, 486–488
position of, 483–484
setting, 480–482
shorthand properties for, 489
size of, 482–483

border properties, 402–404
borders, 466–479

applying to single side, 469–470
images as, 475–479
with rounded corners, 471–474
shorthand properties for, 470–471

■ INDEX

1018

Cascading Style Sheets, borders (cont.)
style of, 467–469
width of, 467

box model of, 398–399
box properties, 404–405
colors, 56–57, 612–613
cursors, 628–629
defining styles, 129–135

media attribute, 131–135
scoped attribute, 131
type attribute, 131

elements in
block-level elements, 514–515
hiding, 521
inline-block elements, 517–518
inline-level elements, 516–517
minimum and maximum sizes, 506–507
run-in elements, 518–520
size for, 505
visibility of, 511–513

floating, 522–529
layout properties, 405–406
lengths, 57–66

absolute, 58
relative, 59–66

lists, 623–628
image as list marker, 625–626
list marker type, 623–625
positioning marker, 626–628

margins, 501–502
opacity, 613–614
outlines, 492–495
and overflowing content, 507–510
padding, 498–501
properties for DOM, 646
selectors for, 399–402, 430–434, 457–458

all elements, 412–413, 432–434
checked elements, 448–449
child elements, 425–427
child selectors, 439–445
counter feature, 434
default elements, 449–450
descendant elements, 423–425
disabled elements, 447–448
elements by attribute, 418–421
elements by class, 414–416
elements by ID, 417–418
elements by type, 413–414
elements with range limitations, 452–460
enabled elements, 447–448, 456–459
invalid input elements, 450–461

negation selector, 459–460
optional input elements, 453–454
required input elements, 438–462
sibling elements, 427–429
unions, 422–423
using to obtain elements, 672–673
valid input elements, 450–455

shadow, 490–492
standardization of, 397
styles, 40–47

applying inline, 41–42
browser, 47–48
cascading of, 49
CSS properties, 40–41
embedded, 42–44
external stylesheets, 44–47
inheritance, 54–56
user, 48

tables, 614–623
collapsing borders, 615–616
configuring separated borders, 617–618
empty cells, 619
positioning caption, 619–620
specifying layout, 621–623

testing for feature support, 67
text, 555–579

direction property, 562–563
and fonts, 571–577
spacing of, 564–565
text-align property, 556–558
text-decoration property, 568–569
text-indent property, 567–568
text-shadow property, 570–571
text-transform property, 568–569
whitespace property, 558–562
word-wrap property, 565–567

text properties, 407
times, 66
tools for, 67–69

browser style reporting, 67
CSS frameworks, 69
LESS, 69
SelectorGadget, 68

transform properties, 408
transforms, 604–609

animating of, 608–609
applying, 604–606
specifying origin, 606–608

transition properties, 408
transitions

creating, 582–589

■ INDEX

1019

selecting how intermediate values are
calculated, 587–589

catch clause, 96–97
cellpadding, 252
cells, in tables, 267–269
cellspacing, 252
chaining searches together, to obtain elements,

673–674
char, 253, 256, 259–261, 271, 275
character encoding

declaring, 128
of external stylesheets, 46–47

charoff, 253, 256, 259–261, 271, 275
charset attribute, 117, 126
checkboxes, 331–333
checked attribute, 643
checked elements, selectors for, 448–449
checkStatus() method, 1010
checkValidity() method, 805, 807, 809–811, 815
Cherries button, 1006, 1012–1013
cherries100.png file, 1011
child elements, selecting elements by, 425–427
child selectors, 439–445

nth-child selectors, 443–446
selectors for, 440–443

childNodes, 675
children, parents, descendants, siblings and, 23
Choose File button, 350
chunk.toString() method, 851–852
citations, 177–178
cite element, 106, 109
class attributes, 26–28, 195
classes

for elements, 708–711
overview, 279
selecting elements by, 414–416

clear element, 526
clear() method, 988
clear property, 498, 526–527
clearEventDetails() method, 831
clearInterval method, 680, 702–703
clearMessages() method, 833–834
clearTimeout method, 680, 702–703
clearWatch method, 975, 984
client-side image maps, with object element, 388
clip() method, 946
clipping regions, with canvas element, 946–947
clipping style, for backgrounds, 486–488
closePath() method, 930
code element, 15–16, 23, 109
col element, 112, 251, 271, 274–277, 279, 552, 800

colgroup element, 112, 251–252, 272–273, 275–
277, 552, 800

colgroups, 273
color picker, 340–342
color property, 40, 42, 49–53, 55
color value, 490
colors, CSS, 56–57, 612–613
ColorSwap, 599–603
colspan headers, 253, 256, 264–265, 269, 272,

274–275, 277, 279
columns, in tables, 271–276
compact attributes, 107, 205, 207
comparing, elements, 725–726
composition, in canvas element, 952–954
computed styles, for elements, 761–763
contact information, 244–245
containing block, 64
content elements, 811–816

area element, 811
embed element, 812
iframe element, 813
img elements, 813
map element, 814
meter element, 814
object element, 815
param element, 816
progress element, 816

content, embedding, 371–393
audio, 393
canvas element, 393
embed element, 382–383
iframe element, 379–382
img element, 372–379
map element, 375–379
meter element, 391–393
object element, 384–389

as browsing context, 389
client-side image maps with, 388
embedding images with, 387
fallback content for, 386–387

progress element, 389–391
video, 393

content property, 433, 435
contenteditable attribute, 13, 28–29
context, for canvas element, 899–900
contextmenu attribute, 14, 29
convenience properties, in CSSStyleDeclaration

object, 749–752
Convenience property, 749, 797, 812
cookie property, 663
cookies, reading and writing, 662–664

■ INDEX

1020

Coordinates object, 977
corrections, showing, 161–162
counter feature, 191, 211, 213, 434
counter-increment property, 435
counter-reset declaration, 435
counter-reset property, 434
createCaption() method, 800
createCookie function, 663
createTBody() method, 801
createTFoot() method, 801
createTHead() method, 801
cross-document messaging, with Window

object, 697–701
cross-origin requests, for Ajax, 840–844
CSS (Cascading Style Sheets), 16, 39–69, 397–411,

436–465, 495–497, 529
angles, 66
animation properties, 408
animations, 589–603

applying multiple, 601–603
applying to initial layout, 599
and end state, 597–598
key frames for, 592–595, 599–601
repeat direction for, 595–597
stopping and starting, 603

background properties, 402–404
backgrounds, 479–489

attachment for, 485–486
clipping style for, 486–488
image origin for, 486–488
position of, 483–484
setting, 480–482
shorthand properties for, 489
size of, 482–483

border properties, 402–404
borders, 466–479

applying to single side, 469–470
images as, 475–479
with rounded corners, 471–474
shorthand properties for, 470–471
style of, 467–469
width of, 467

box model of, 398–399
box properties, 404–405
colors, 56–57, 612–613
cursors, 628–629
defining styles, 129–135

media attribute, 131–135
scoped attribute, 131
type attribute, 131

elements in

block-level elements, 514–515
hiding, 521
inline-block elements, 517–518
inline-level elements, 516–517
minimum and maximum sizes, 506–507
run-in elements, 518–520
size for, 505
visibility of, 511–513

floating, 522–529
layout properties, 405–406
lengths, 57–66

absolute, 58
relative, 59–66

lists, 623–628
image as list marker, 625–626
list marker type, 623–625
positioning marker, 626–628

margins, 501–502
opacity, 613–614
outlines, 492–495
and overflowing content, 507–510
padding, 498–501
properties for DOM, 646
selectors for, 399–402, 430–434, 457–458

all elements, 412–413, 432–434
checked elements, 448–449
child elements, 425–427
child selectors, 439–445
counter feature, 434
default elements, 449–450
descendant elements, 423–425
disabled elements, 447–448
elements by attribute, 418–421
elements by class, 414–416
elements by ID, 417–418
elements by type, 413–414
elements with range limitations, 452–460
enabled elements, 447–448, 456–459
invalid input elements, 450–461
negation selector, 459–460
optional input elements, 453–454
required input elements, 438–462
sibling elements, 427–429
unions, 422–423
using to obtain elements, 672–673
valid input elements, 450–455

shadow, 490–492
standardization of, 397
styles, 40–47

applying inline, 41–42
browser, 47–48

■ INDEX

1021

cascading of, 49
CSS properties, 40–41
embedded, 42–44
external stylesheets, 44–47
inheritance, 54–56
user, 48

tables, 614–623
collapsing borders, 615–616
configuring separated borders, 617–618
empty cells, 619
positioning caption, 619–620
specifying layout, 621–623

testing for feature support, 67
text, 555–579

direction property, 562–563
and fonts, 571–577
spacing of, 564–565
text-align property, 556–558
text-decoration property, 568–569
text-indent property, 567–568
text-shadow property, 570–571
text-transform property, 568–569
whitespace property, 558–562
word-wrap property, 565–567

text properties, 407
times, 66
tools for, 67–69

browser style reporting, 67
CSS frameworks, 69
LESS, 69
SelectorGadget, 68

transform properties, 408
transforms, 604–609

animating of, 608–609
applying, 604–606
specifying origin, 606–608

transition properties, 408
transitions

creating, 582–589
selecting how intermediate values are

calculated, 587–589
CSS property, 40, 51, 64, 208, 748, 752–753, 755,

759, 761
CSS table, 112
cssFloat, 524, 528
CSSPrimitiveValue object, 758–761
CSSRuleList object, 742–743
CSSStyleDeclaration object, 646–647, 748–761

convenience properties in, 749–752
CSSPrimitiveValue object, 758–761
properties in, 753–758

CSSStyleDeclaration property, 743
CSSStyleDeclaration.cssText property, 746
CSSStyleDeclaration.getPropertyCSSValue

method, 758
CSSStyleRule object, 735, 742–743
CSSStyleSheet object, 735–736
CSSStyleSheet.media property, 739
ctx.beginPath() method, 931, 933–935, 939, 941,

943, 945, 947, 950
ctx.clip() method, 947
ctx.closePath() method, 931, 935–936, 941
ctx.fill() method, 931, 935–936, 941, 947, 950
ctx.restore() method, 920
ctx.save() method, 920
ctx.stroke() method, 931–933, 936–937, 939, 943–

945, 950
cubic Bezier curves, in canvas element, 942–944
cursor property, 611, 628
cursors, in CSS, 628–629
custom attribute, 20
Custom.css file, 48

 D
data-* attributes, for elements, 713–714
data, from forms, 285–287
data list, for text input, 316–319
datalist element, 113, 803
DataTransfer object, 957, 965–972
Date object, 798
dates

denoting with time element, 189–190
input elements for, 338–340

dayOfWeek object, 84
dd element, 111
debuggers, JavaScript, 102
default elements, selectors for, 449–450
defaultView property, 680
definitions, 174–175
del element, 109, 187–189, 797
delete keyword, 72, 85
DELETE method, 837
deleteCaption() method, 800
deleteTFoot() method, 801
deleteTHead() method, 801
deleting, elements, 720–721
descendant elements, selecting elements by,

423–425
descendants, children, parents, siblings and, 23
description lists, 210

■ INDEX

1022

details element, 112, 217, 229–230, 246–249, 799
details section, 246–249
detecting, browser state, 1006–1007
dfn element, 109
dir attribute, 14, 29, 643
direction property, 562–563
dirname attribute, for text input, 322
disabled attribute, 20, 643
disabled elements, selectors for, 447–448
disabling

elements, in forms, 298–299, 303–304
stylesheets, 741–742
text input, 320–322
validation, 368

displayData() method, 989, 993–995
displayStyle() method, 747
displayStyles() method, 750, 754–755, 757, 760,

762
displayValues() method, 893
div elements, 106, 111, 195–197
dl element, 111
DOCTYPE element, 22, 108
doctype element, 117–119
document elements, and metadata elements,

108
Document members, for DOM, 637–639
document/metadata Elements, 108
Document object, 635, 637, 640, 653–678, 784,

870
cookies, reading and writing, 662–664
element objects in, 667–674

chaining searches together, 673–674
searching with CSS selectors, 672–673
using array notation to obtain, 669–670
using properties to obtain, 667–669

events for, 784
getting information from, 657–658
implementation property, 666
Location object in, 659–662
navigating tree, 675–678
readyState property, 664–666

Document Object Model (DOM), 23, 633–652
compliance with, 635–637
CSS properties, 646
Document members, 637–639
elements in

attributes for, 713–715
classes for, 708–711
comparing objects, 725–726
creating and deleting, 720–721
duplicating, 722–723

inserting into text block, 732–733
moving, 723–724
text in, 716–719

events, 650, 770–784
bubble phase, 780–782
cancellable events, 783–784
capture phase, 775–779
distinguishing events by type, 773–774
target phase, 779

HTMLElement members, 643–645
innerHTML and outerHTML properties, 727–

732
changing document structure with, 728–

729
inserting HTML fragments with, 730–732

multimedia in, 886–895
assessing playback capabilities, 889–892
controlling media playback, 892–895
getting information about media, 887–889

overview, 633–635
Window members, 640–643

document.cookie property, 653, 663
Document.location property, 687
documents, 20–24, 117–150

content, 23
describing with metadata elements, 122–140

base, 124–125
declaring character encoding, 128
defining CSS styles, 129–135
denoting external resources, 135–140
simulating header, 128–129
specifying name/value pairs, 126–127
title, 122–123

element types, 24
metadata, 22–23
outer structure, 21–22
parents, children, descendants, and siblings,

23
scripting elements, 140–150

noscript element, 147–150
script element, 140–147

structure of, 118–122
body element, 121–122
doctype element, 118–119
head element, 120–121
html element, 119–120

document.writeln function, 76
DOM (Document Object Model), 23, 633–652

compliance with, 635–637
CSS properties, 646
Document members, 637–639

■ INDEX

1023

elements in
attributes for, 713–715
classes for, 708–711
comparing objects, 725–726
creating and deleting, 720–721
duplicating, 722–723
inserting into text block, 732–733
moving, 723–724
text in, 716–719

events, 650, 770–784
bubble phase, 780–782
cancellable events, 783–784
capture phase, 775–779
distinguishing events by type, 773–774
target phase, 779

HTMLElement members, 643–645
innerHTML and outerHTML properties, 727–

732
changing document structure with, 728–

729
inserting HTML fragments with, 730–732

multimedia in, 886–895
assessing playback capabilities, 889–892
controlling media playback, 892–895
getting information about media, 887–889

overview, 633–635
Window members, 640–643

DOM object, 736, 796, 921
drag & drop, 957–973

DataTransfer object, 965–972
drop zone for, 961–964
events for, 959–961
of files, 968–972
source items, 958–961

DragEvent object, 965
draggable attribute, 14, 30
draw() method, 920, 939, 943, 945, 954
drawing state, for canvas element, 904–918

fill style, 906–907
gradients in, 907–913
line join style, 905–906
patterns in, 916–918
radial gradient in, 913–916
saving and restoring, 919–921
stroke style, 906–907

drop zone, for drag & drop, 961–964
dropzone attribute, 14, 30
dt element, 111
duplicating, elements, 722–723

 E
editors, 10
elements

abbr element, 109, 253, 256
address element, 111, 217–218, 222, 230, 233,

241, 244–246
arcs, in canvas element, 936–942

using arc method, 940–942
using arcTo method, 937–940

area elements, 114, 638, 811
array notation, using to obtain elements,

669–670
article element, 105, 107, 111, 237–240
aside element, 111, 217, 227, 240–244
attributes for, 19–20, 714–715

applying multiple to element, 19
Boolean, 20
custom, 20
data-* attributes, 713–714

audio element, 114
b element, 105, 109
base element, 108, 117, 124–125, 793
bdi element, 182–184
bdo element, 180–181
Bezier curves, in canvas element, 942–946

cubic Bezier curves, 942–944
quadratic Bezier curves, 944–946

block-level elements, 514–515
blockquote element, 110, 191, 199, 201, 204,

798
body element, 13, 18, 23, 108, 117, 121–122,

192, 194, 793
box-shadow element, 490
br element, 109
button elements, 304–308, 803

as generic element, 307–308
to reset forms, 306–307
to submit forms, 305–306

canvas element, 114, 372, 393, 897, 927–956
arcs in, 936–942
Bezier curves in, 942–946
clipping regions with, 946–947
composition in, 952–954
drawing state for, 904–918
getting context for, 899–900
images in, 921–927
overview, 898–899
rectangles in, 901–903
shadows with, 949–950

■ INDEX

1024

text in, 947–949
transformations in, 955–956
transparency in, 951–952
using paths in, 930–936

caption element, 112, 251, 269–272, 275, 277,
552

chaining searches together, to obtain
elements, 673–674

checked elements, selectors for, 448–449
child elements, selecting elements by, 425–

427
cite element, 106, 109
classes for, 708–711
clear element, 526
client-side image maps, with object element,

388
clipping regions, with canvas element, 946–

947
code element, 15–16, 23, 109
col element, 112, 251, 271, 274–277, 279, 552,

800
colgroup element, 112, 251–252, 272–273,

275–277, 552, 800
comparing, elements, 725–726
comparing objects, 725–726
composition, in canvas element, 952–954
computed styles for, 761–763
content elements, 811–816

area element, 811
embed element, 812
iframe element, 813
img elements, 813
map element, 814
meter element, 814
object element, 815
param element, 816
progress element, 816

context, for canvas element, 899–900
creating and deleting, 720–721
in CSS

block-level elements, 514–515
hiding, 521
inline-block elements, 517–518
inline-level elements, 516–517
minimum and maximum sizes, 506–507
run-in elements, 518–520
size for, 505
visibility of, 511–513

CSSStyleDeclaration object, 748–761
convenience properties in, 749–752
CSSPrimitiveValue object, 758–761

properties in, 753–758
cubic Bezier curves, in canvas element, 942–

944
data-* attributes, for elements, 713–714
datalist element, 113, 803
dd element, 111
default elements, selectors for, 449–450
del element, 109, 187–189, 797
deleting, 720–721
descendant elements, selecting elements by,

423–425
descriptions of, 107–108
details element, 112, 217, 229–230, 246–249,

799
dfn element, 109
disabled elements, selectors for, 447–448
div elements, 106, 111, 195–197
dl element, 111
doctype, 118–119
DOCTYPE element, 22, 108
doctype element, 117–119
document and metadata, 108
document elements, 793–796

base element, 793
body element, 793
link element, 794
meta element, 794
and metadata elements, 108
script element, 795
style element, 795
title element, 796

document/metadata Elements, 108
in Document object, 667–674

chaining searches together, 673–674
searching with CSS selectors, 672–673
using array notation to obtain, 669–670
using properties to obtain, 667–669

drawing state, for canvas element, 904–918
fill style, 906–907
gradients in, 907–913
line join style, 905–906
patterns in, 916–918
radial gradient in, 913–916
saving and restoring, 919–921
stroke style, 906–907

dt element, 111
duplicating, 722–723
duplicating, elements, 722–723
a element, 19, 41, 43, 47–49, 51–52, 109, 796
em element, 109
embed elements, 114, 382–383, 638, 812

■ INDEX

1025

embedding, 114
empty elements, 17
enabled elements, selectors for, 447–448
fallback content, for object element, 386–387
fieldset element, 113, 804

adding labels to, 301–302
disabling groups of inputs with, 303–304

figcaption element, 111, 214
figure element, 105, 111
flow elements, 24
focusing input element, automatically, 297–

298
footer element, 112, 232, 236, 238, 243–244,

247, 261–263
form elements, 802–810

button element, 803
datalist element, 803
fieldset element, 804
form element, 804
input element, 805
label element, 807
legend element, 807
optgroup element, 807
option element, 808
output element, 808
select element, 809
textarea element, 810

formatted strings, input elements for, 336–
338

forms, 113
getElement methods, 673
grouping elements, 798–799

blockquote element, 798
in forms, 299–304
li element, 798
ol element, 799
overview, 110–111

h1 element, 217, 221, 225, 227, 232, 235, 239,
242, 244, 247

h1-h6 element, 112
h2 element, 218, 222, 224, 226, 231, 238, 241,

243, 247–248
h3 element, 217, 219–220, 223, 225–226, 231,

237, 241, 247
h6 element, 218, 220–222, 224, 226–227, 229,

232, 244
head element, 13, 23, 117, 120–123, 126, 140,

638
header element, 112, 220, 230, 232, 234, 236,

239, 242, 244, 247

hgroup element, 106, 217, 221, 225, 231, 235,
238, 241, 243, 247

hiding, of elements, 521
highlighting, with mark element, 186–187
hr element, 18, 111, 191, 202
html elements, 13, 18, 21–23, 108, 117, 119–

121
i element, 109
ID, selecting elements by, 417–418
iframe elements, 114, 379–382, 641, 699–700,

813
img elements, 114, 372–379, 813
inline-block elements, 517–518
inline-level elements, 516–517
input elements, 311, 350–362, 805

buttons, 325–326
hidden data items, 343–346
images, 346–348
keygen element, 361–362
output element, 360–361
password input, 322–324
restricted data type values, 326–342
search terms, 342–343
select element, 352–359
text input, 312–322
textarea element, 357–359
to upload files, 348
validation of, 362–368

ins element, 109, 187–189, 797
inserting into text block, 732–733
invalid input elements, selectors for, 450–451
kbd element, 109
keygen element, 113, 361–362
label element, 113, 807
language elements, 178–184

bdi element, 182–184
bdo element, 180–181
ruby, rt, and rp, 178–180

legend element, 113, 807
li element, 208–210, 219, 226, 234, 239, 243,

248, 798
link element, 39, 45, 108, 118, 135–139, 794
map element, 114, 375–379, 814
mark element, 109, 186–187
mark, highlighting text with, 186–187
meta element, 108, 117–118, 125–128, 149,

794
metadata elements, 13, 22–24, 122–140

base, for relative URLs, 124–125
declaring character encoding, 128
defining CSS styles, 129–135

■ INDEX

1026

denoting external resources, 135–140
document elements and, 108
setting document title with, 122–123
simulating header, 128–129
specifying name/value pairs, 126–127

meter element, 114, 391–393, 814
mouseenter element, 651
mouseleave element, 651
moving, 723–724
nav element, 112, 233, 235, 237, 239, 241–245
noscript element, 108, 118, 147–150
numbers, input elements for, 327–331
object element, 114, 384–389, 815

as browsing context, 389
client-side image maps with, 388
embedding images with, 387
fallback content for, 386–387

ol element, 107, 111, 204–206, 799
optgroup element, 113, 355–357, 807
option elements, 113, 808
optional input elements, selectors for, 453–

454
output element, 113, 360–361, 808
p element, 111, 191, 193–195
param element, 114, 816
paths, using in canvas element, 930–936
phrasing elements, 24
poster attribute, of video element, 878
pre element, 111, 191, 197–199, 655–656, 669,

675
preload attribute, of video element, 876–877
presentation, of elements, 105–106
progress element, 114, 389–391, 816
q element, 109, 797
quadratic Bezier curves, in canvas element,

944–946
rectangles, in canvas element, 901–903
required input elements, selectors for, 453–

454
resetting forms, button element for, 306–307
rp element, 110, 178–180
rt element, 110, 178–180
ruby element, 110, 178–180
run-in elements, 518–520
s element, 110
samp element, 110
script element, 140–147, 639, 795

deferring execution of script, 144–146
defining inline script, 142
executing script asynchronously, 147
loading external scripting library, 143–144

scripting elements, 140–150
noscript element, 147–150
script element, 140–147

search terms, input elements for, 342–343
section elements, 111–112, 224–229, 248
sectioning, 111–112
select element, 113, 352–359, 809
selecting, 106–107
selectors for

all elements, 412–413
attribute, 418–421
checked, 448–449
child elements, 425–427
class, 414–416
default, 449–450
descendant elements, 423–425
disabled, 447–448
enabled, 447–448
ID, 417–418
invalid input, 450–451
optional input, 453–454
with range limitations, 452
required input, 453–454
sibling elements, 427–429
type, 413–414
valid input, 450–451

self-closing tags, 17
semantic/presentation divide, 105–106
semantic/presentation divide, of elements,

105–106
sematic element, 15
sibling elements, selecting elements by, 427–

429
small element, 110
source element, 114
span element, 41, 54–56, 110–111, 184–185,

196
strong element, 110
style element, 34, 42, 45, 52, 109, 130–131,

137–138, 795
style property, 746–748
styleSheets property, 736–745

disabling, 741–742
getting information about, 737–738
individual styles in, 742–745
media attribute for, 739–740

sub element, 110
submitting forms, button element for, 305–

306
summary element, 112, 217, 230, 246–249,

251–252

■ INDEX

1027

sup element, 110
svg element, 114
table elements, 112, 551–552, 800–802, 1010–

1011
col and colgroup elements, 800
col element, 800
colgroup element, 800
table element, 800
tbody element, 801
tfoot element, 801
th element, 801
thead element, 801
thead, tbody, and tfoot elements, 801
tr element, 802

tbody element, 112, 260, 264, 269, 273, 275–
276, 278–279, 801

td element, 251, 253, 257, 261, 265, 267, 272,
274, 276, 279

text elements, 109–110, 151–190, 796–798
abbreviations, denoting, 173–174
annotating with, 157–167
breaks, 168–171
citations, 177–178
definitions, 174–175
del and ins elements, 797
del element, 797
a element, 796
hyperlinks, 153–157
ins element, 187–189, 797
language elements, 178–184
mark element, highlighting text with,

186–187
q element, 797
quotations, 175–176
representing inputs and outputs, 171–172
span element, 184–185
time element, 189–190, 798

text in, 716–719
textarea element, 113, 357–359, 810
tfoot element, 112, 252, 263, 268, 273, 275–

276, 278–279, 801
th element, 112, 801
thead element, 113, 801
time, denoting dates and times with, 189–190
time element, 110, 189–190, 798
title element, 22, 109, 117, 120–124, 796
tr element, 113, 802
track element, 114, 883
transformations, in canvas element, 955–956
transparency, in canvas element, 951–952
type, selecting elements by, 413–414

types of, 24
u element, 110
ul element, 111, 207–208, 234–236, 238, 242,

245
unimplemented, 115
unimplemented elements, 115
valid input elements, selectors for, 450–451
validation, of input elements, 362–368

disabling, 368
email type, 367–368
min and max attributes, 364–366
pattern attribute, 366–367
required attribute, 363–364
url type, 367–368

var element, 110
video element, 114, 874–883

poster attribute, 878
preload attribute, 876–877
size of, 879–880
src attribute, 880–882
track element, 883

visibility, of elements, 511–513
void elements, 17–18
wbr element, 110

else clause, 88
em element, 109
email type, 367–368
embed elements, 114, 382–383, 638, 812
embedded styles, 42–44
embedding content, 371–393

audio, 393
canvas element, 393
embed element, 382–383
iframe element, 379–382
img element, 372–379
map element, 375–379
meter element, 391–393
object element, 384–389

as browsing context, 389
client-side image maps with, 388
embedding images with, 387
fallback content for, 386–387

progress element, 389–391
video, 393

embedding, elements for, 114
emphatic stress, 158–160
empty cells, in tables, 619
empty elements, 17
empty selector, 460
enabled elements, selectors for, 447–448
encoding, for forms, 289–291

■ INDEX

1028

encoding, for forms (cont.)
application/x-www-form-urlencoded

encoding, 290
multipart/form-data encoding, 290
text/plain encoding, 291

enctype attribute, 349
end state, and animations, 597–598
entities, 24
enumerating

contents of arrays, 94–95
properties, 83

e.preventDefault() method, 783, 857, 860, 864,
868, 872, 964, 967, 969, 972

equality operator, and identity operator, 86–89
error handling

for Ajax, 832–836
application errors, 835–836
request errors, 835
setup errors, 834–835

for geolocation, 979–980
Error object, 96
Error.message property, 835
errors, handling, in JavaScript language, 96–97
e.stopPropagation() method, 778
Event object, 765, 770–771, 773, 784, 788, 826,

828, 835, 855
events, 765–792

for Ajax, 829–832
for DOM, 650
DOM events, 770–784

bubble phase, 780–782
cancellable events, 783–784
capture phase, 775–779
distinguishing events by type, 773–774
target phase, 779

for drag & drop, 959–961
handlers for, 766–770
HTML events, 784–792

document events, 784
focus events, 788–789
form events, 792
keyboard events, 790–792
mouse events, 785–787
window events, 784

Event.type property, 765
expando attributes, 20
external hyperlinks, 154–155
external resources, denoting, 135–140

defining favicon for page, 138–139
loading stylesheet, 137–138
preemptively fetching, 139–140

external scripts, 72, 143–144
external stylesheets, 44–47

importing from, 45–46
specifying character encoding of, 46–47

 F
fallback content, for object element, 386–387
fallback section, of manifest file, 1003–1005
favicons, defining for page, 138–139
fieldset element, 113, 804

adding labels to, 301–302
disabling groups of inputs with, 303–304

figcaption element, 111, 214
figure element, 105, 111
figures, 213–216
File object, 957, 970, 972
FileList object, 970
files

drag & drop of, 968–972
sending with Ajax, 861–862

fill() method, 930
fill style, in drawing state, 906–907
finally clause, 97
fine print, 165–166
first-child selector, 440–442
firstChild, 654, 675–676
flexbox layouts, 541–551

flexing elements in, 546–547
maximum sizes in, 549–551
simple, 544–545
vertical space in, 547–549

float property, 498, 522–526
float value, 524–525
floating, in CSS, 522–529
floating-point numbers, 78
Flow content, 253, 269
flow elements, 24
focus events, 788–789
focus selector, 458–459
FocusEvent object, 788, 790
focusing input element, automatically, 297–298
font-family property, 572–574, 578
font-size property, 57–58, 60, 64
font-size value, 61, 64
font sizes, relative lengths to, 59–61
font-style property, 556, 572, 576–578
fonts, 571–577

font-family property, 572–574
size of, 574–575

■ INDEX

1029

style of, 576–577
using web fonts, 577
weight of, 576–577

footer element, 112, 232, 236, 238, 243–244, 247,
261–263

footers, headers and, 229–232
for loop, 72, 94
foreign terms, denoting, 160–161
form elements, 802–810

button element, 803
datalist element, 803
fieldset element, 804
form element, 804
input element, 805
label element, 807
legend element, 807
optgroup element, 807
option element, 808
output element, 808
select element, 809
textarea element, 810

form events, 792
formats, preformatted content, 197–199
formatted strings, input elements for, 336–338
FormData() method, 858
FormData object, 849, 856–859, 861–863, 872,

957, 971–972
FormData.append method, 972
formnovalidate attribute, 369
forms, 281–309

action attribute, 287–288
autocomplete attribute, 291–292
automatically focusing input element, 297–

298
button element in, 304–308

as generic element, 307–308
to reset forms, 306–307
to submit forms, 305–306

creating, 282–287
data from, 285–287, 853–856
disabling elements in, 298–299
elements for, 113
elements outside of, 308
encoding for, 289–291

application/x-www-form-urlencoded
encoding, 290

multipart/form-data encoding, 290
text/plain encoding, 291

grouping elements in, 299–304
adding label to fieldset element, 301–302
disabling groups of inputs, 303–304

labels for, adding, 295–296
method attribute, 288
name of, 294–295
target attribute, 292–293

frame, 252
function keyword, 71
function() method, 30, 81, 84, 723, 727, 732, 744,

750, 772, 852
functions, 74–77

with parameters, 75–76
that return results, 76–77
using as methods, 80–81

 G
geolocation, 975–985

error handling, 979–980
getCurrentPosition method, 976–978
options for, 981–983
using, 975–978
watchPosition method, 983

Geolocation object, 975
GET method, 856
getAllResponseHeaders() method, 836
getCurrentPosition method, 975–983, 985
getElement methods, 673
getElementById method, 661–663, 665, 668, 670,

672–674, 676
getElementsByClassName method, 671
getElementsByName method, 671
getElementsByTagName method, 654–655, 671–

672, 674, 676
getRGBColorValue() method, 758
GetRGBColorValue method, 761
getStringValue() method, 758
global attributes, 25–36

accesskey, 25–26
class, 26–28
contenteditable, 28–29
contextmenu, 29
dir, 29
draggable, 30
dropzone, 30
hidden, 30–31
id, 31–32
lang, 32–33
spellcheck, 33–34
style, 34
tabindex, 34–35
title, 35–36

■ INDEX

1030

global variables, 77
gradients, in drawing state, 907–913
grouping, 191–216

div element, 195–197
elements for, 110–111
figures, 213–216
into lists, 204–213

custom, 211–213
description, 210
li element, 208–210
ol element, 204–206
ul element, 207–208

need for, 192–193
paragraphs, 193–195
preformatted content, 197–199
quoting from other sources, 199–201
thematic breaks, 202–203

grouping elements, 110, 798–799
blockquote element, 798
in forms, 299–304

adding label to fieldset element, 301–302
disabling groups of inputs, 303–304

li element, 798
ol element, 799

 H
h1 element, 217, 221, 225, 227, 232, 235, 239, 242,

244, 247
h1-h6 element, 112
h2 element, 218, 222, 224, 226, 231, 238, 241, 243,

247–248
h3 element, 217, 219–220, 223, 225–226, 231, 237,

241, 247
h6 element, 218, 220–222, 224, 226–227, 229, 232,

244
handleAbort() method, 846
handleMouseOver() method, 771
handleResponse() method, 828, 833, 839, 846,

857, 860, 865, 868, 872, 972
handlers, for events, 766–770
hasChildNodes() method, 654, 675–677
head element, 13, 23, 117, 120–123, 126, 140, 638
header element, 112, 220, 230, 232, 234, 236, 239,

242, 244, 247
headers

for Ajax, 836–840
disabling content caching, 838
overriding request HTTP method, 836–

837

reading response headers, 838–840
and footers, 229–232
simulating, 128–129
for tables, 256–257, 267–269

headings, 218–221
hiding subheadings, 221–224
for tables, 259–261

height property, 60–61, 253, 256
hgroup element, 106, 217, 221, 225, 231, 235, 238,

241, 243, 247
hidden attribute, 14, 30–31
hidden data items, 343–346
hiding, of elements, 521
highAccuracy property, 981
highlighting, with mark element, 186–187
History object, 642, 687–696

adding entry for different document, 692–694
inserting entry into, 690–692
navigating within, 688–690
replacing item in, 696
storing complex state in, 694–696

History.pushState method, 695
hover selector, 456
hr element, 18, 111, 191, 202
href attribute, 19, 124–125
href attributes, 638
html elements, 13, 18, 21–23, 108, 117, 119–121
HTML events, 784–792

document events, 784
focus events, 788–789
form events, 792
keyboard events, 790–792
mouse events, 785–787
window events, 784

HTML file, 143, 1004–1005, 1011
HTML fragments, receiving with Ajax, 866–868
HTML (Hypertext Markup Language), 13–36

documents, 20–24
content, 23
element types, 24
metadata, 22–23
outer structure, 21–22
parents, children, descendants, and

siblings, 23
elements, 14–18

attributes for, 19–20
empty, 17
self-closing tags, 17
void, 17–18

entities, 24
global attributes, 25–36

■ INDEX

1031

accesskey, 25–26
class, 26–28
contenteditable, 28–29
contextmenu, 29
dir, 29
draggable, 30
dropzone, 30
hidden, 30–31
id, 31–32
lang, 32–33
spellcheck, 33–34
style, 34
tabindex, 34–35
title, 35–36

tools, 36
HTML5 (Hypertext Markup Language 5), 3–8

current state of, 7
history of, 3–5

competition in browser market, 4
HTML standard, 5
JavaScript language, 3–4
plugins, 4
semantic HTML, 4

introduction to, 5–7
native multimedia, 6
programmatic content, 6
semantic web, 7
standards for HTML, 5–6

resources for, 8
HTMLAnchorElement object, 796
HTMLAudioElement object, 874, 886
HTMLBaseElement object, 793
HTMLBodyElement object, 793
HTMLButtonElement object, 803
HTMLCanvasElement object, 900, 927
HTMLDataListElement object, 803
HTMLDetailsElement object, 799
HTMLElement members, for DOM, 643–645
HTMLElement object, 643, 645, 706, 711, 720,

746, 765, 771, 784, 793
HTMLElement.style property, 746
HTMLEmbedElement object, 812
HTMLFieldSetElement object, 804
HTMLFormElement object, 804, 857, 859
HTMLHeadingElement object, 800
HTMLIFrameElement object, 813
HTMLImageElement object, 813, 916–917
HTMLInputElement object, 805
HTMLLabelElement object, 807
HTMLLegendElement object, 807
HTMLLIElement object, 798

HTMLLinkElement object, 794
HTMLMapElement object, 814
HTMLMediaElement object, 886–887, 896
HTMLMetaElement object, 794
HTMLMeterElement object, 814
HTMLObjectElement object, 815
HTMLOListElement object, 799
HTMLOptGroupElement object, 807
HTMLOptionElement object, 808
HTMLOutputElement object, 808
HTMLParamElement object, 816
HTMLProgressElement object, 816
HTMLQuoteElement object, 797–798
HTMLScriptElement object, 795
HTMLSelectElement object, 809
HTML.style property, 735
HTMLStyleElement object, 795
HTMLTableColElement object, 800
HTMLTableElement object, 800
HTMLTableHeaderCellElement object, 801
HTMLTableRowElement object, 802
HTMLTableSectionElement object, 801
HTMLTextAreaElement object, 810
HTMLTimeElement object, 798
HTMLTitleElement object, 796
HTMLVideoElement object, 886–887
HTTP method, 825–826, 836, 838, 844
httpRequest.abort() method, 846
httpRequest.getAllResponseHeaders() method,

839
httpRequest.send() method, 823, 825, 828, 831,

833, 837–839, 841, 846
hyperlinks, 153–157

external, 154–155
img element in, 373–375
internal, 156
relative URLs, 155
targeting browsing context, 156–157

Hypertext Markup Language 5 (HTML5), 3–8
current state of, 7
history of, 3–5

competition in browser market, 4
HTML standard, 5
JavaScript language, 3–4
plugins, 4
semantic HTML, 4

introduction to, 5–7
native multimedia, 6
programmatic content, 6
semantic web, 7
standards for HTML, 5–6

■ INDEX

1032

Hypertext Markup Language 5 (cont.)
resources for, 8

Hypertext Markup Language (HTML), 13–36
documents, 20–24

content, 23
element types, 24
metadata, 22–23
outer structure, 21–22
parents, children, descendants, and

siblings, 23
elements, 14–18

attributes for, 19–20
empty, 17
self-closing tags, 17
void, 17–18

entities, 24
global attributes, 25–36

accesskey, 25–26
class, 26–28
contenteditable, 28–29
contextmenu, 29
dir, 29
draggable, 30
dropzone, 30
hidden, 30–31
id, 31–32
lang, 32–33
spellcheck, 33–34
style, 34
tabindex, 34–35
title, 35–36

tools, 36

 I
i element, 109
icons, defining favicon for page, 138–139
id attribute, 14, 31–32, 195, 268–269, 272–273,

275, 277, 279
ID, selecting elements by, 417–418
id values, 51
identity operator, 72, 86–89, 101
if statement, 88, 100
iframe elements, 114, 379–382, 641, 699–700, 813
image, as list marker, 625–626
image origin, for backgrounds, 486–488
image type, 312, 346–347
images

as borders, 475–479
slice repeat style, 478–479

slicing image, 475–477
in canvas element, 921–927

canvas images, 925–927
video images, 922–925

embedding with object element, 387
input elements using, 346–348

img elements, 114, 372–379, 813
implementation property, 666
in expression, 72, 85
inaccuracies, showing, 161–162
infinite value, 597
inherit value, 55
inheritance, 54–56
initial state, for animations, 592–593
inline-block elements, 517–518
inline-level elements, 516–517
inline scripts, 71–72, 142
inline style application, 41–42
innerHTML property, 669, 727–732

changing document structure with, 728–729
inserting HTML fragments with, 730–732

input elements, 311, 350–362, 805
buttons, 325–326
hidden data items, 343–346
images, 346–348
keygen element, 361–362
output element, 360–361
password input, 322–324
restricted data type values, 326–342

checkboxes, 331–333
color picker, 340–342
dates and times, 338–340
formatted strings, 336–338
numbers only, 327–329
numbers within range, 329–331
radio buttons, 334–336

search terms, 342–343
select element, 352–359
text input, 312–322

dirname attribute, 322
disabling, 320–322
setting values for, 315
specifying size, 313–315
using data list, 316–319

textarea element, 357–359
to upload files, 348
validation of, 362–368

disabling, 368
email type, 367–368
min and max attributes, 364–366
pattern attribute, 366–367

■ INDEX

1033

required attribute, 363–364
url type, 367–368

inputs, representing outputs and, 171–172
ins element, 109, 187–189, 797
integer numbers, 78
interacting, with Window object, 683–684
interactive stage, 665
internal hyperlinks, 156
invalid input elements, selectors for, 450–451
irregular tables, 263–267

 J
JavaScript language

arrays, 92–96
built-in methods for, 95–96
contents of, 94–95
literal style, 93–94

comparing undefined and null values, 97–102
functions, 74–77

with parameters, 75–76
that return results, 76–77

handling errors, 96–97
operators, 86–92

equality and identity, 86–89
explicitly converting types, 89–92

overview, 3–4
statements, 74
tools for, 102–103
variables, 77–86

objects, 79–81
primitive types, 77–79

JavaScript object, 821, 859, 871, 898
JSON data, with Ajax

receiving, 871–872
sending, 859–861

JSON object, 860
JSON.parse method, 850
JSON.stringify method, 849

 K
kbd element, 109
key frames, for animations, 592–595

reusing, 599–601
setting initial state, 592–593
specifying intermediate key frames, 594–595

keyboard events, 790–792
keygen element, 113, 361–362
keywords, denoting product names and, 157–158

 L
label element, 113, 807
labels, for forms, 295–296, 301–302
lang attribute, 14, 32–33, 644
lang selector, 461
language elements, 178–184

bdi element, 182–184
bdo element, 180–181
ruby, rt, and rp, 178–180

last-child selector, 442–443
lastChild, 654, 675
layout properties, for CSS, 405–406
layouts, 531–554

flexbox layouts, 541–551
flexing elements in, 546–547
maximum sizes in, 549–551
simple, 544–545
vertical space in, 547–549

multicolumn layouts, 537–541
positioning content, 532–537

position type, 532–535
z-order, 535–537

table layouts, 551
for tables, 621–623

legend element, 113, 807
length property, 95, 668, 672
lengths, CSS, 57–66

absolute lengths, 58
relative lengths, 59–66

LESS framework, 69
li element, 208–210, 219, 226, 234, 239, 243, 248,

798
libraries

of external scripts, 143–144
JavaScript, 102

line join style, in drawing state, 905–906
link element, 39, 45, 108, 118, 135–139, 794
link selector, 454–455
list-style-image property, 611, 625
list-style-position property, 611, 626–627
list-style-type property, 435, 611, 623–624
lists, 623–628

grouping into, 204–213
custom list, 211–213
description list, 210
li element, 208–210
ol element, 204–206
ul element, 207–208

list markers for

■ INDEX

1034

lists, list markers for (cont.)
image as, 625–626
positioning, 626–628
specifying type, 623–625

literal format
arrays, 93–94
objects, 80

local storage, 987–992
local variables, 77
localStorage.clear() method, 989
Location object, 639, 659–662
Log In button, 25

 M
manifest attribute, 997, 1000–1002, 1011
manifest file, for offline applications, 999–1006

cache section, 1002
fallback section, 1003–1005
network section, 1005–1006

map element, 114, 375–379, 814
margins, 501–502
mark element, 109, 186–187
markers, for lists

image as, 625–626
positioning, 626–628
specifying type, 623–625

markup, keeping simple, 106
max attribute, 392
maximum sizes, in flexbox layouts, 549–551
media attribute, 131–135, 739–740
MediaController object, 896
mediaElem.pause() method, 895
mediaElem.play() method, 895
MediaList object, 735, 739, 741
message event, 701
MessageEvent object, 701
meta element, 108, 117–118, 125–128, 149, 794
metadata elements, 13, 22–24, 122–140

base, for relative URLs, 124–125
declaring character encoding, 128
defining CSS styles, 129–135

media attribute, 131–135
scoped attribute, 131
type attribute, 131

denoting external resources, 135–140
defining favicon for page, 138–139
loading stylesheet, 137–138
preemptively fetching, 139–140

document elements and, 108

setting document title with, 122–123
simulating header, 128–129
specifying name/value pairs, 126–127

meter element, 114, 391–393, 814
method attribute, 288
methods

adding and deleting properties and, 84–85
using functions as, 80–81

MIME type, 136, 154, 849, 870, 873, 882, 887, 970,
1000

min and max attributes, 364–366
min attribute, 392
MLHttpRequest object, 836, 844
modules, multipart, 11
mouse events, 785–787
mouseenter element, 651
MouseEvent object, 785–786, 965
mouseleave element, 651
moving, elements, 723–724
multicolumn layouts, 537–541
multimedia, 873–896

audio element, 884–886
in DOM, 886–895

assessing playback capabilities, 889–892
controlling media playback, 892–895
getting information about media, 887–889

native, 6
video element, 874–883

poster attribute, 878
preload attribute, 876–877
size of, 879–880
src attribute, 880–882
track element, 883

multipart/form-data encoding, for forms, 290
multipart module, 11
multipart.parser() method, 852
myArray variable, 93–97
myData variable, 79–82, 84–86, 98–100
myData.printMessages() method, 81
myFunc function, 75–76
myFunc() method, 75

 N
name attribute, 371, 376, 379–380, 389
name, of forms, 294–295
name/value pairs, specifying, 126–127
namedItem method, 668–670
namedItem property, 670
name=value form, 664

■ INDEX

1035

native multimedia, 6
nav element, 112, 233, 235, 237, 239, 241–245
navigating

Document object tree, 675–678
within History object, 688–690
with Location object, 660–662

navigation blocks, 233–237
negation selector, 459–460
network section, of manifest file, 1005–1006
nextSibling, 675–677
Node.js environment, 10–11
NodeList, 671
None, 218, 221, 225, 230, 233, 237, 241, 244, 247
noscript element, 108, 118, 147–150
novalidate attribute, 369
nowrap, 253, 256
nth-child selectors, 445–446
null values, comparing with undefined values,

97–102
Number function, 91–92
number type, 78–79, 90–91
numbers, input elements for, 327–331

 O
object element, 114, 384–389, 815

as browsing context, 389
client-side image maps with, 388
embedding images with, 387
fallback content for, 386–387

Object() method, 72, 79, 851, 860, 867–868, 870,
872

objects, 79–81
literal format, 80
properties

adding and deleting methods and, 84–85
determining if object has, 85–86
enumerating, 83
reading and modifying values of, 82

using functions as methods, 80–81
offline applications, 997–1014

ApplicationCache object, 1007–1013
applying update, 1013
getting update, 1012
making update, 1011

detecting browser state, 1006–1007
manifest file for, 999–1006

cache section, 1002
fallback section, 1003–1005
network section, 1005–1006

reason for, 998–999
ol element, 107, 111, 204–206, 799
only-child selector, 443–444
only-of-type selector, 444–445
opacity, in CSS, 613–614
Opera browser, and Ajax, 827–829
operators, 86–92

equality and identity, 86–89
explicitly converting types, 89–92

numbers to strings, 90–91
strings to numbers, 91–92

optgroup element, 113, 355–357, 807
optimum attribute, 392–393
option elements, 113, 808
optional input elements, selectors for, 453–454
options, for geolocation, 981–983
order assessments, specificity and, of styles, 51–

54
origin property, 701
otherclass class, 28
otherpage.html, 693–694
outerHTML property, 727–732

changing document structure with, 728–729
inserting HTML fragments with, 730–732

outlines, 492–495
output element, 113, 360–361, 808
outputs, representing inputs and, 171–172
overflowing content, 507–510

 P
p element, 111, 191, 193–195
padding property, 44, 498–501
paracount counter, 435
paragraphs, 193–195
param element, 114, 816
parameters, functions with, 75–76
parentNode, 675–676
parents, children, descendants, siblings and, 23
parseFloat, 92
parseInt, 92
password input, 322–324
paths, using in canvas element, 930–936
pattern attribute, 351, 366–368
patterns, in drawing state, 916–918
pause() method, 892
percentages, relative lengths with, 64
Phrasing content, 218, 247
phrasing elements, 24
pixels, relative lengths with, 61–63

■ INDEX

1036

play() method, 892
plugins, 4
polyglot documents, 21
popstate event, 695
Position object, 977
position, of backgrounds, 483–484
Position.coords property, 977
PositionError object, 979
PositionError.code property, 979
positioning

content, 532–537
position type, 532–535
z-order, 535–537

list markers, 626–628
PositionOptions object, 981, 983
POST method, 856
poster attribute, of video element, 878
postMessage method, 699–700
pre element, 111, 191, 197–199, 655–656, 669, 675
preformatted content, 197–199
preload attribute, of video element, 876–877
presentation, of elements, 105–106
preventDefault() method, 773
previousSibling, 675–677
primitive types, 77–79

boolean, 78
number, 78–79
string, 78

PRINT type, 739
printMessages method, 81, 83
processStyleSheet() method, 744
product names, denoting keywords and, 157–158
programmatic content, 6
progress element, 114, 389–391, 816
progress, when uploading files with Ajax, 863–

865
ProgressEvent object, 830
prompting user, with Window object, 685–686
prop variable, 83
properties

adding and deleting methods and, 84–85
in CSSStyleDeclaration object, 753–758
determining if object has, 85–86
enumerating, 83
reading and modifying values of, 82
using to obtain elements, 667–669
variables and, differentiating between

undefined and null values for, 100
pushState argument, 694
pushState method, 690–691, 693–694

 Q
q element, 109, 797
quadratic Bezier curves, in canvas element, 944–

946
querySelectorAll method, 653, 671, 673–674
quirks mode, and Document object, 658
quotations, 175–176
quoting, from other sources, 199–201

 R
radial gradient, in drawing state, 913–916
radio buttons, 334–336
reading, cookies, 662–664
readyState property, 664–666
readystatechange event, 665
real numbers, 78
receiving data, with Ajax, 866–872

HTML fragments, 866–868
JSON data, 871–872
XML data, 869–870

rectangles, in canvas element, 901–903
rel attribute, 118, 136, 140
relative lengths, 59–66

CSS units
calculations of, 65–66
without wide support, 64–65

to font size, 59–61
with percentages, 64
with pixels, 61–63

relative URLs
base element for, 124–125

href attribute, 124–125
target attribute, 125

overview, 155
repeat direction, for animations, 595–597
request errors, for Ajax, 835
required attribute, 351, 363–364, 366–368
required input elements, selectors for, 453–454
requirements, for HTML 5. See tools
res.end() method, 842–845, 851, 866, 869, 871
reset() method, 805
resetting forms, button element for, 306–307
restore() method, 919
restoring, drawing state, 919–921
restricted data type values, 326–342

checkboxes, 331–333
color picker, 340–342
dates and times, 338–340

■ INDEX

1037

formatted strings, 336–338
numbers only, 327–329
numbers within range, 329–331
radio buttons, 334–336

return keyword, 76
reusing key frames, for animations, 599–601
reverse() method, 95
reversed attribute, 107, 205–206
RGBColor object, 761
root selector, 438–439
rounded corners, for borders, 471–474
rowspan, 263–264, 266, 269–270, 272–273, 275–

276, 278
rp element, 110, 178–180
rt element, 110, 178–180
ruby element, 110, 178–180
run-in elements, 518–520

 S
s element, 110
samp element, 110
sample code, 11
save() method, 919
saving, drawing state, 919–921
scoped attribute, 131
scopes, 253, 256
Screen object, 641, 643, 681–682
screen property, 682
script element, 140–147, 639, 795

deferring execution of script, 144–146
defining inline script, 142
executing script asynchronously, 147
loading external scripting library, 143–144

scripting elements, 140–150
noscript element, 147–150
script element, 140–147

deferring execution of script, 144–146
defining inline script, 142
executing script asynchronously, 147
loading external scripting library, 143–144

search terms, input elements for, 342–343
section elements, 111–112, 224–229, 248
sectioning, elements for, 111–112
sections, 217–249

article element, 237–240
contact information, 244–245
details section, 246–249
headers and footers, 229–232
headings, 218–224

navigation blocks, 233–237
section element, 224–229
sidebars, 240–243

select element, 113, 352–359, 809
Selecting property, 53
SelectorGadget tool, 68
selectors, 430–432

all elements, 412–413, 432–434
checked elements, 448–449
child elements, 425–427
child selectors, 439–445

nth-child selectors, 443–446
valid input, 440–443

counter feature, 434
for CSS, 399–402
default elements, 449–450
descendant elements, 423–425
disabled elements, 447–448
elements by attribute, 418–421
elements by class, 414–416
elements by ID, 417–418
elements by type, 413–414
elements with range limitations, 452–460
enabled elements, 447–448, 456–459
invalid input elements, 450–461
negation selector, 459–460
optional input elements, 453–454
required input elements, 438–439, 453–462
root selector, 457–458
selecting elements by, 430–434
sibling elements, 427–429
unions, 422–423
valid input elements, 450–455

self-closing tags, 17
semantic HTML, 4
semantic/presentation divide, of elements, 105–

106
semantic web, 7
sematic element, 15
sending data, with Ajax

files, 861–862
form data, 853–856
JSON data, 859–861
server for, 851–853
tracking upload progress, 863–865
using FormData object, 856–859

server, for Ajax requests, 851–853
servers, web, 10
session storage, 992–995
sessionStorage.clear() method, 993, 995
setInterva.function() method, 924, 926

■ INDEX

1038

setInterval method, 680, 702–703
setTimeout method, 680, 702–703
setTimeout.function() method, 845
setup errors, for Ajax, 834–835
shadows, 490–492, 949–950
shift() method, 96
shorthand properties

for backgrounds, 489
for borders, 470–471

showModalDialog method, 679, 685–686
sibling elements, selecting elements by, 427–429
siblings, children, parents, descendants and, 23
sidebars, 240–243
sites, support for HTML, 7
size

of backgrounds, 482–483
of fonts, 574–575
for text input, 313–315
of video element, 879–880

small element, 110
sort() method, 96
source element, 114
source items, for drag & drop, 958–961
spacing, of text, 564–565
span element, 41, 54–56, 110–111, 184–185, 196
specificity, and order assessments, 51–54
spellcheck attribute, 14, 33–34
src attribute, 118, 141–143, 880–882
SSStyleSheet.cssRules property, 742
SSStyleSheet.disabled property, 741
standardization, of CSS, 397
standards, for HTML, 5–6
start attribute, 205
starting, animations, 603
statements, 74
stopImmediatePropagation() method, 773
stopping, animations, 603
stopPropagation() method, 773
storage event, local storage, 990–992
Storage object, 987–988, 990, 992
StorageEvent object, 990
string type, 78, 91–92
string values, 78, 92
stroke() method, 930
stroke style, in drawing state, 906–907
strong element, 110
style attribute, 14, 34, 39, 41–42, 61
style element, 34, 42, 45, 52, 109, 130–131, 137–

138, 795
style property, 746–748
styles, 40–47

applying inline, 41–42
of borders, 467–469
browser, 47–48
cascading of, 49

specificity and order assessments, 51–54
tweaking order, 50

CSS, defining, 129–135
CSS properties, 40–41
embedded, 42–44
external stylesheets, 44–47

importing from, 45–46
specifying character encoding of, 46–47

of fonts, 576–577
inheritance, 54–56
user, 48

stylesheets
external, 44–47

importing from, 45–46
specifying character encoding of, 46–47

loading, 137–138
styleSheets property, 736–745

disabling, 741–742
getting information about, 737–738
individual styles in, 742–745
media attribute for, 739–740

sub element, 110
subheadings, hiding, 221–224
submit() method, 805
submitting forms, button element for, 305–306
subscripts, superscripts and, 167
summary element, 112, 217, 230, 246–249, 251–

252
sup element, 110
superscripts, and subscripts, 167
svg element, 114
Swap Cache button, 1013
swapCache() method, 1008, 1010, 1013

 T
tabindex attribute, 14, 34–35
table elements, 112, 551–552, 800–802, 1010–

1011
col element, 800
colgroup element, 800
table element, 800
tbody element, 801
tfoot element, 801
th element, 801
thead element, 801

■ INDEX

1039

tr element, 802
table layouts, 551
tables, 251–279, 614–623

borders for, 277
captions for, 269–270
collapsing borders, 615–616
columns in, 271–276
configuring separated borders, 617–618
creating, 252–256
elements for, 112
empty cells, 619
headers for, 256–257, 267–269
irregular, 263–267
positioning caption, 619–620
specifying layout, 621–623
structure of, 257–263

adding footer, 261–263
denoting headings and body, 259–261

takeSnapshot() method, 926
target attribute, 125, 292–293, 380, 389
target phase, for DOM events, 779
target selector, 462
tbody element, 112, 260, 264, 269, 273, 275–276,

278–279, 801
td element, 251, 253, 257, 261, 265, 267, 272, 274,

276, 279
technical terms, denoting, 160–161
testing, for CSS feature support, 67
text, 555–579

in canvas element, 947–949
direction property, 562–563
in elements, 716–719
and fonts, 571–577

font-family property, 572–574
size of, 574–575
style of, 576–577
using web fonts, 577
weight of, 576–577

spacing of, 564–565
text-align property, 556–558
text-decoration property, 568–569
text-indent property, 567–568
text-shadow property, 570–571
text-transform property, 568–569
whitespace property, 558–562
word-wrap property, 565–567

text-align property, 556–558
text-decoration property, 568–569
text elements, 109–110, 151–190, 796–798

abbreviations, denoting, 173–174
annotating with, 157–167

denoting foreign or technical terms, 160–
161

denoting important text, 163–164
denoting keywords and product names,

157–158
emphatic stress, 158–160
fine print, 165–166
showing inaccuracies or corrections, 161–

162
superscripts and subscripts, 167
underlining text, 164–165

breaks, 168–171
forcing, 168–169
indicating opportunity for safe, 169–171

citations, 177–178
definitions, 174–175
del element, 797
a element, 796
hyperlinks, 153–157

external, 154–155
internal, 156
relative URLs, 155
targeting browsing context, 156–157

ins element, 187–189, 797
language elements, 178–184

bdi element, 182–184
bdo element, 180–181
ruby, rt, and rp, 178–180

mark element, highlighting text with, 186–187
q element, 797
quotations, 175–176
representing inputs and outputs, 171–172
span element, 184–185
time element, 189–190, 798

text-indent property, 567–568
text input, 312–322

dirname attribute, 322
disabling, 320–322
setting values for, 315
specifying size, 313–315
using data list, 316–319

Text object, 645
text/plain encoding, for forms, 291
text properties, for CSS, 407
text-shadow property, 570–571
text-transform property, 568–569
text type, 313, 317, 322, 342–343
textarea element, 113, 357–359, 810
tfoot element, 112, 252, 263, 268, 273, 275–276,

278–279, 801
tfooter, 262

■ INDEX

1040

th element, 112, 801
thead element, 113, 801
thematic breaks, 202–203
time element, 110, 189–190, 798
timers, with Window object, 702–704
times

CSS, 66
input elements for, 338–340

title attribute, 14, 35–36, 644
title element, 22, 109, 117, 120–124, 796
TMLMediaElement object, 892
toggleHidden() method, 30
tools, 9–11, 36

browsers, 9
for CSS, 67–69

browser style reporting, 67
CSS frameworks, 69
LESS framework, 69
SelectorGadget tool, 68

editors, 10
for JavaScript language, 102–103
Node.js environment, 10–11
sample code, 11
web servers, 10

toString() method, 90–91
tr element, 113, 802
track element, 114, 883
transform-origin property, 582, 606–607
transform property, 408, 582, 604, 606
transformations, in canvas element, 955–956
transforms, 604–609

animating of, 608–609
applying, 604–606
specifying origin, 606–608

transition properties, for CSS, 408
transitions

creating, 582–589
selecting how intermediate values are

calculated, 587–589
transparency, in canvas element, 951–952
try clause, 96
type attribute, 131, 205
type, selecting elements by, 413–414
types

explicitly converting, 89–92
numbers to strings, 90–91
strings to numbers, 91–92

primitive, 77–79
boolean, 78
number, 78–79
string, 78

 U
u element, 110
ul element, 111, 207–208, 234–236, 238, 242, 245
undefined values, comparing with null values,

97–102
underlining, 164–165
Uniform Resource Locators (URLs), 124–125, 155
unimplemented elements, 115
Update button, 1012
update() method, 1007, 1011
updateCookie function, 663
uploading files

with Ajax, showing progress, 863–865
input elements for, 348

url type, 367–368
URLs (Uniform Resource Locators), 124–125, 155
user agents, 21
user styles, 48

 V
val.getRGBColorValue() method, 760
valid input elements, selectors for, 450–451
validation, of input elements, 362–368

disabling, 368
email type, 367–368
min and max attributes, 364–366
pattern attribute, 366–367
required attribute, 363–364
url type, 367–368

valign, 253, 256, 259–261, 271, 275
value attribute, 191, 209, 213, 390, 392
values, for text input, 315
var element, 110
var keyword, 71, 77
variables, 77–86

objects, 79–81
literal format, 80
properties, 82–86
using functions as methods, 80–81

primitive types, 77–79
boolean, 78
number, 78–79
string, 78

and properties, differentiating between
undefined and null values for, 100

vertical space, in flexbox layouts, 547–549
video element, 114, 874–883

poster attribute, 878

■ INDEX

1041

preload attribute, 876–877
size of, 879–880
src attribute, 880–882
track element, 883

visibility, of elements, 511–513
visited selector, 454–455
void elements, 17–18

 W
watchPosition method, 983–985
wbr element, 110
weather property, 99
web developing, semantic, 7
web development tools. See tools
web fonts, 577
web servers, 10
web storage

local storage, 987–992
session storage, 992–995

weight, of fonts, 576–577
whitespace property, 558–562
width property, 57–58, 64, 252–253, 256, 271, 275,

467
window global variable, 679–680
Window members, for DOM, 640–643
Window object, 679–704

cross-document messaging, 697–701
events for, 784
getting information from, 681–682, 687
and History object, 687–696

adding entry for different document, 692–
694

inserting entry into, 690–692
navigating within, 688–690
replacing item in, 696
storing complex state in, 694–696

interacting with, 683–684
obtaining, 680
prompting user, 685–686
timers in, 702–704

window.applicationCache.swapCache()
method, 1010

window.applicationCache.update() method,
1010

Window.location property, 687
Window.print() method, 651, 784
word-wrap property, 565–567
writeln method, 73
writing, cookies, 662–664

 X, Y
XML data, receiving with Ajax, 869–870
XMLHttpRequest() method, 823, 833, 838, 841,

855, 858, 862, 867, 870, 972
XMLHttpRequest object, 822, 825–826, 829, 832,

835, 846, 856, 863, 870
XMLHttpRequest.readyState property, 826
XMLHttpRequest.responseText property, 827
XMLHttpRequestUpload object, 849, 863, 865
XMLHttpRequest.upload property, 865

 Z
z-order, 535–537

The Definitive Guide to
HTML5

Adam Freeman

The Definitive Guide to HTML5

Copyright © 2011 by Adam Freeman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3960-4

ISBN-13 (electronic): 978-1-4302-3961-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Development Editor: Ewan Buckingham
Technical Reviewers: Kevin Grant and Andy Olsen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jennifer L. Blackwell
Copy Editors: Lori Cavanaugh, Roger LeBlanc, Ralph Moore, Vanessa Moore, Marilyn Smith, Kim

Wimpsett
Compositor: Bytheway Publishing Services
Indexer: BIM Indexing & Proofreading Services
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

Dedicated to my lovely wife, Jacqui Griffyth

–Adam Freeman

vi

Contents

 About the Author.. xxxiii

 About the Technical Reviewers ... xxxiv

 Acknowledgments .. xxxv

 Part I: Getting Started...1

 Chapter 1: Putting HTML5 in Context..3

The History of HTML ..3
The Introduction of JavaScript ... 3
The End of the Browser Wars ... 4
The Dominance of Plugins.. 4
The Emergence of Semantic HTML .. 4
The Trend: The HTML Standard Lags Behind HTML Use .. 5

Introducing HTML5 ..5
The New Standard(s) .. 5
Embracing Native Multimedia .. 6
Embracing Programmatic Content ... 6
Embracing the Semantic Web .. 7

The Current State of HTML5 ..7
Browser Support for HTML5 ... 7
Site Support for HTML5 .. 7

The Structure of This Book ..7

Finding More Information About HTML5 ..8

 CONTENTS

vii

Summary ...8

 Chapter 2: Getting Ready ..9

Selecting a Browser...9

Selecting an HTML Editor ..10
Selecting a Web Server ...10

Obtaining Node.js ..10
Obtaining the Multipart Module .. 11

Getting the Sample Code ...11
Summary ...11

 Chapter 3: Getting Started with HTML ..13

Using Elements ..14
Understanding the Elements Used in This Chapter .. 16
Using Empty Elements.. 17
Using Self-Closing Tags.. 17
Using Void Elements... 17

Using Element Attributes ...19
Applying Multiple Attributes to an Element .. 19
Using Boolean Attributes .. 20
Using Custom Attributes... 20

Creating an HTML Document ...20
The Outer Structure .. 21
The Metadata.. 22
The Content .. 23
Understanding Parents, Children, Descendants, and Siblings ... 23
Understanding Element Types.. 24

Using HTML Entities...24
The HTML5 Global Attributes ...25

 CONTENTS

viii

The accesskey Attribute ... 25
The class Attribute.. 26
The contenteditable Attribute ... 28
The contextmenu Attribute ... 29
The dir Attribute.. 29
The draggable Attribute.. 30
The dropzone Attribute ... 30
The hidden Attribute ... 30
The id Attribute ... 31
The lang Attribute ... 32
The spellcheck Attribute... 33
The style Attribute .. 34
The tabindex Attribute .. 34
The title Attribute.. 35

Useful HTML Tools ...36
Summary ...36

 Chapter 4: Getting Started with CSS ...39

Defining and Applying a Style..40
Understanding the CSS Properties Used in This Chapter ... 40
Applying a Style Inline .. 41
Creating an Embedded Style .. 42
Using an External Stylesheet.. 44

Understanding How Styles Cascade and Inherit..47
Understanding Browser Styles ... 47
Understanding User Styles ... 48
Understanding How Styles Cascade... 49
Tweaking the Order with Important Styles... 50
Tie-Breaking with Specificity and Order Assessments .. 51

 CONTENTS

ix

Understanding Inheritance ... 54
Working with CSS Colors ...56

Specifying More Complex Colors.. 57
Understanding CSS Lengths ..57

Working with Absolute Lengths.. 58
Working with Relative Lengths... 59

Other CSS Units ...66
Using CSS Angles ... 66
Using CSS Times .. 66

Testing for CSS Feature Support ...67

Useful CSS Tools..67
Browser Style Reporting... 67
Creating Selectors with SelectorGadget... 68
Enhancing CSS with LESS .. 69
Using a CSS Framework... 69

Summary ...69

 Chapter 5: Getting Started with JavaScript ..71

Getting Ready to Use JavaScript ...72

Using Statements ..74
Defining and Using Functions ..74

Defining Functions with Parameters .. 75
Defining Functions That Return Results ... 76

Using Variables and Types...77
Using the Primitive Types ... 77
Creating Objects ... 79
Working with Objects ... 81

Using JavaScript Operators ...86

 CONTENTS

x

Using the Equality and Identity Operators .. 86
Explicitly Converting Types... 89

Working with Arrays ..92
Using an Array Literal ... 93
Reading and Modifying the Contents of an Array ... 94
Enumerating the Contents of an Array ... 94
Using the Built-in Array Methods.. 95

Handling Errors..96

Comparing the undefined and null Values...97
Checking Whether a Variable or Property Is null or undefined... 100
Differentiating Between null and undefined... 100

Useful JavaScript Tools ...102
Using a JavaScript Debugger ... 102
Using a JavaScript Library.. 102

Summary ...102

 Part II: The HTML Elements...103

 Chapter 6: HTML Elements in Context...105

Understanding the Sematic/Presentation Divide ...105
Understanding How to Select Elements ..106

Less Can Be More... 106
Don’t Abuse Elements .. 106
Be Specific and Consistent... 106
Don’t Make Assumptions About the Audience.. 107

Understanding Element Descriptions ..107
Element Quick Reference ..108

The Document and Metadata Elements.. 108
The Text Elements .. 109

 CONTENTS

xi

Grouping Content.. 110
Sectioning Content ... 111
Creating Tables... 112
Creating Forms ... 113
Embedding Content .. 114

Unimplemented Elements..115

Summary ...115

 Chapter 7: Creating HTML Documents ..117

Setting Up the Basic Document Structure ...118
The doctype Element .. 118
The html Element ... 119
The head Element... 120
The body Element... 121

Describing Documents with the Metadata Elements...122
Setting the Document Title ... 122
Setting the Base for Relative URLs... 124
Using Metadata to Describe the Document .. 125
Defining CSS Styles .. 129
Denoting External Resources ... 135

Using the Scripting Elements ..140
The script Element.. 140
The noscript Element.. 147

Summary ...150

 Chapter 8: Marking Up Text ..151

Creating Hyperlinks ...153
Creating External Hyperlinks .. 154
Creating Relative URLs ... 155

 CONTENTS

xii

Creating Internal Hyperlinks ... 156
Targeting a Browsing Context .. 156

Annotating Content with the Basic Text Elements...157
Denoting Keywords and Product Names .. 157
Adding Emphasis .. 158
Denoting Foreign or Technical Terms... 160
Showing Inaccuracies or Corrections... 161
Denoting Important Text ... 163
Underlining Text ... 164
Adding Fine Print .. 165
Adding Superscript and Subscript.. 167

Creating Breaks ...168
Forcing a Line Break... 168
Indicating an Opportunity for a Safe Line Break... 169

Representing Inputs and Outputs ..171
Creating Citations, Quotations, Definitions, and Abbreviations173

Denoting Abbreviations .. 173
Defining Terms ... 174
Quoting Content from Another Source.. 175
Citing the Title of Another Work.. 177

Working with the Language Elements ...178
The ruby, rt, and rp Elements ... 178
The bdo Element... 180
The bdi Element.. 182

Wrapping Up: The Other Text Elements ...184
Denoting a Generic Span of Content... 184
Highlighting Text... 186
Denoting Added or Removed Content... 187

 CONTENTS

xiii

Denoting Times and Dates.. 189
Summary ...190

 Chapter 9: Grouping Content...191

Understanding the Need to Group Content ..192
Creating Paragraphs ..193

Using the div Element..195
Working with Preformatted Content ..197

Quoting from Other Sources ..199
Adding Thematic Breaks..202
Grouping Content into Lists ...204

The ol Element.. 204
The ul Element.. 207
The li Element... 208
Creating Description Lists .. 210
Creating Custom Lists .. 211

Dealing with Figures..213

Summary ...216

 Chapter 10: Creating Sections ..217

Adding Basic Headings ..218
Hiding Subheadings...221

Creating Sections...224
Adding Headers and Footers ...229

Adding Navigation Blocks ..233
Working with Articles...237
Creating Sidebars ..240

Providing Contact Information ...244

 CONTENTS

xiv

Creating a Details Section . ..246
Summary . ..249

 Chapter 11: Table Elements ..251

Creating a Basic Table. ..252

Adding Headers Cells. ..256

Adding Structure to a Table . ..257
Denoting the Headings and the Table Body. .. 259
Adding a Footer . .. 261

Creating Irregular Tables . ..263
Associating Headers with Cells . ..267
Adding a Caption to a Table. ..269
Working with Columns. ..271

Calling Out Individual Columns. ... 274

Applying Borders to the table Element277

Summary . ..279

 Chapter 12: Working with Forms..281

Creating a Basic Form . ..282
Defining the Form. ... 283
Seeing the Form Data. ... 285

Configuring the Form. ..287
Configuring the Form action Attribute . .. 287
Configuring the HTTP method Attribute. .. 288
Configuring the Data Encoding 289
Controlling Form Completion. .. 291
Specifying a Target for the Form Response 292
Setting the Name of the Form . .. 294

 CONTENTS

xv

Adding Labels to a Form..295
Automatically Focusing on an input Element...297

Disabling Individual input Elements...298
Grouping Form Elements Together ..299

Adding a Descriptive Label to a fieldset Element ... 301
Disabling Groups of Inputs Using the fieldset Element... 303

Using the button Element ..304
Using the button Element to Submit Forms.. 305
Using the button Element to Reset Forms .. 306
Using button as a Generic Element .. 307

Working with Elements Outside the Form ...308
Summary ...309

 Chapter 13: Customizing the Input Element ...311

Using the input Element for Text Input ..312
Specifying the Element Size ... 313
Setting Values and Using Placeholders .. 315
Using a Data List... 316
Creating Read-Only and Disabled Text Boxes .. 320
Specifying Text Directionality ... 322

Using the input Element for Password Input ...322

Using the input Element to Create Buttons..325
Using the input Element to Restrict Data Entry ...326

Using the input Element to Obtain a Number ... 327
Using the input Element to Obtain a Number in a Given Range ... 329
Using the input Element to Obtain a Boolean Response... 331
Using the input Element to Create Fixed Choices... 334
Using the input Element to Obtain Formatted Strings .. 336

 CONTENTS

xvi

Using the input Element to Obtain Times and Dates .. 338
Using the input Element to Obtain a Color.. 340

Using the input Element to Obtain Search Terms..342
Using the input Element to Create Hidden Data Items...343

Using the input Element to Create Image Buttons and Maps ..346
Using the input Element to Upload Files..348

Summary ...350

 Chapter 14: Other Form Elements and Input Validation351

Using the Other Form Elements...352
Creating Lists of Options .. 352
Capturing Multiple Lines of Text... 357
Denoting the Result of a Calculation .. 360
Creating Public/Private Key Pairs ... 361

Using Input Validation..362
Ensuring the User Provides a Value.. 363
Ensuring a Value Is Within Bounds ... 364
Ensuring a Value Matches a Pattern... 366
Ensuring a Value Is an E-mail Address or URL ... 367

Disabling Input Validation ..368
Summary ...369

 Chapter 15: Embedding Content ...371

Embedding an Image...372
Embedding an Image in a Hyperlink... 373
Creating a Client-Side Image Map.. 375

Embedding Another HTML Document..379
Embedding Content Using Plugins...382

Using the embed Element... 382

 CONTENTS

xvii

Using the object and param Elements.. 384
Other Uses for the object Element ...387

Using the object Element to Embed Images... 387
Using the object Element to Create Client-Side Image Maps ... 388
Using the object Element as a Browsing Context... 389

Embedding Numeric Representations ...389
Showing Progress... 389
Showing a Ranged Value.. 391

Other Embedding Elements ...393
Embedding Audio and Video... 393
Embedding Graphics... 393

Summary ...393

 Part III: Cascading Style Sheets..395

 Chapter 16: CSS in Context ...397

Understanding CSS Standardization..397
Understanding the Box Model..398
Selectors Quick Reference ..399

Properties Quick Reference ...402
Border and Background Properties .. 402
Box Model Properties ... 404
Layout Properties.. 405
Text Properties ... 407
Transition, Animation, and Transform Properties... 408
Other Properties ... 409

Summary ...409

 CONTENTS

xviii

 Chapter 17: Using the CSS Selectors—Part I..411

Using the Basic CSS Selectors ..412
Selecting All Elements.. 412
Selecting Elements by Type ... 413
Selecting Elements by Class .. 414
Selecting Elements by ID.. 417
Selecting Elements by Attribute ... 418

Combining Selectors..422
Creating Selector Unions .. 422
Selecting Descendant Elements ... 423
Selecting Child Elements.. 425
Selecting Sibling Elements... 427

Using Pseudo-Element Selectors...429
Using the ::first-line Selector.. 430
Using the ::first-letter Selector ... 431
Using the :before and :after Selectors.. 432
Using the CSS Counter Feature .. 434

Summary ...435

 Chapter 18: Using the CSS Selectors—Part II...437

Using the Structural Pseudo-Class Selectors ..438
Using the :root Selector .. 438
Using the Child Selectors ... 439
Using the nth-Child Selectors... 445

Using the UI Pseudo-Class Selectors...446
Selecting Enabled/Disabled Elements .. 447
Selecting Checked Elements .. 448
Selecting Default Elements .. 449
Selecting Valid and Invalid input Elements... 450

 CONTENTS

xix

Selecting input Elements with Range Limitations .. 452
Selecting Required and Optional input Elements ... 453

Using the Dynamic Pseudo-Class Selectors ..454
Using the :link and :visited Selectors ... 454
Using the :hover Selector ... 456
Using the :active Selector... 457
Using the :focus Selector.. 458

Other Pseudo-Selectors...459
Using the Negation Selector ... 459
Using the :empty Selector .. 460
Using the :lang Selector ... 461
Using the :target Selector... 462

Summary ...463

 Chapter 19: Using Borders and Backgrounds...465

Applying a Border ..466
Defining the Border Width .. 467
Defining the Border Style ... 467
Applying a Border to a Single Side ... 469
Using the border Shorthand Properties .. 470
Creating a Border with Rounded Corners ... 471
Using Images As Borders ... 475

Setting Element Backgrounds ...479
Setting the Background Color and Image... 480
Setting the Background Image Size ... 482
Setting the Background Image Position ... 483
Setting the Attachment for the Background... 485
Setting the Background Image Origin and Clipping Style... 486
Using the background Shorthand Property... 489

 CONTENTS

xx

Creating a Box Shadow..490
Using Outlines..492

Summary ...495

 Chapter 20: Working with the Box Model ...497

Applying Padding to an Element..498

Appling Margin to an Element ...501
Controlling the Size of an Element...503

Setting the Sized Box ... 505
Setting Minimum and Maximum Sizes... 506

Dealing with Overflowing Content ...507

Controlling Element Visibility ...511
Setting an Element Box Type...513

Understanding Block-Level Elements... 514
Understanding Inline-Level Elements... 516
Understanding Inline-Block Elements .. 517
Understanding Run-In Elements... 518
Hiding Elements.. 521

Creating Floating Boxes...522
Preventing Floating Elements from Stacking Up .. 526

Summary ...529

 Chapter 21: Creating Layouts ...531

Positioning Content..532
Setting the Position Type.. 532
Setting the Z-Order... 535

Creating Multicolumn Layouts ...537
Creating Flexible Box Layouts..541

 CONTENTS

xxi

Creating a Simple Flexbox.. 544
Flexing Multiple Elements .. 546
Dealing with Vertical Space.. 547
Dealing with Maximum Sizes ... 549

Creating Table Layouts ..551
Summary ...554

 Chapter 22: Styling Text ...555

Applying Basic Text Styles...556
Aligning and Justifying Text ... 556
Dealing with Whitespace .. 558
Specifying Text Direction.. 562
Specifying the Space Between Words, Letters, and Lines ... 564
Controlling Word Breaks... 565
Indenting the First Line... 567

Decorating and Transforming Text ..568

Creating Text Shadows..570
Working with Fonts..571

Selecting a Font.. 572
Setting the Font Size .. 574
Setting the Font Style and Weight .. 576

Using Web Fonts..577
Summary ...579

 Chapter 23: Transitions, Animations, and Transforms581

Using Transitions ...582
Creating Inverse Transitions... 586
Selecting How Intermediate Values Are Calculated ... 587

Using Animations...589

 CONTENTS

xxii

Working with Key Frames... 592
Setting the Repeat Direction... 595
Understanding the End State.. 597
Applying Animations to the Initial Layout ... 599
Reusing Key Frames... 599
Applying Multiple Animations to Multiple Elements ... 601
Stopping and Starting Animations.. 603

Using Transforms...604
Applying a Transform ... 604
Specifying an Origin ... 606
Animating and Transitioning a Transform .. 608

Summary ...609

 Chapter 24: Other CSS Properties and Features ...611

Setting Element Color and Transparency ..612
Setting the Foreground Color ... 612
Setting Element Opacity ... 613

Styling Tables ..614
Collapsing Table Borders.. 615
Configuring Separated Borders .. 617
Dealing with Empty Cells.. 619
Positioning the Caption... 619
Specifying the Table Layout ... 621

Styling Lists ...623
Setting the List Marker Type .. 623
Using an Image As a List Marker.. 625
Positioning the Marker ... 626

Styling the Cursor ..628
Summary ...629

 CONTENTS

xxiii

 Part IV: Working with the DOM ...631

 Chapter 25: The DOM in Context ...633

Understanding the Document Object Model ..633
Understanding DOM Levels and Compliance...635

Testing for DOM Features... 636
The DOM Quick Reference...637

The Document Members .. 637
The Window Members.. 640
The HTMLElement Members .. 643
DOM CSS Properties ... 646
The DOM Events ... 650

Summary ...652

 Chapter 26: Working with the Document Object...653

Working with Document Metadata ..656
Getting Information from the Document... 657
Using the Location Object... 659
Reading and Writing Cookies.. 662
Understanding the Ready State .. 664
Getting DOM Implementation Details ... 666

Obtaining HTML Element Objects ..667
Using Properties to Obtain Element Objects... 667
Using Array Notation to Obtain a Named Element .. 669
Searching for Elements .. 670
Chaining Searches Together .. 673

Navigating the DOM Tree...675
Summary ...678

 CONTENTS

xxiv

 Chapter 27: Working with the Window Object ..679

Obtaining a Window Object . ..680
Getting Information about the Window. ...681
Interacting with the Window. ...683
Prompting the User. ...685
Getting General Information. ..687
Working with the Browser History . ..687

Navigating Within the Browsing History 688
Inserting an Entry into the History . .. 690
Adding an Entry for a Different Document. .. 692
Storing Complex State in the History. .. 694
Replacing an Item in the History . .. 696

Using Cross-Document Messaging. ...697

Using Timers. ...702

Summary . ..704

 Chapter 28: Working with DOM Elements...705

Working with Element Objects. ..706
Working with Classes 708
Working with Element Attributes. .. 711

Working with Text. ...716
Modifying the Model719

Creating and Deleting Elements 720
Duplicating Elements. .. 722
Moving Elements . .. 723
Comparing Element Objects 725
Working with HTML Fragments . .. 727
Inserting an Element into a Text Block. ... 732

 CONTENTS

xxv

Summary ...733

 Chapter 29: Styling DOM Elements ...735

Working with Stylesheets ..736
Getting Basic Information About Stylesheets ... 737
Working with Media Constraints .. 739
Disabling Stylesheets ... 741
Working with Individual Styles ... 742

Working with Element Styles...746
Working with CSSStyleDeclaration Objects ...748

Working with the Convenience Properties ... 749
Working with the Regular Properties.. 753
Using the Fine-Grained CSS DOM Objects.. 758

Working with Computed Styles..761

Summary ...763

 Chapter 30: Working with Events ...765

Using Simple Event Handlers...766
Implementing a Simple Inline Event Handler.. 766
Implementing a Simple Event-Handling Function .. 769

Using the DOM and the Event Object ...770
Distinguishing Events by Type.. 773
Understanding Event Flow.. 775
Working with Cancellable Events ... 783

Working with the HTML Events..784
The Document and Window Events .. 784
Working with Mouse Events ... 785
Working with Focus Events .. 788
Working with Keyboard Events... 790

 CONTENTS

xxvi

Working with Form Events ... 792
Summary ...792

 Chapter 31: Using the Element-Specific Objects ..793

The Document and Metadata Objects..793
The base Element ... 793
The body Element... 793
The link Element... 794
The meta Element... 794
The script Element.. 795
The style Element ... 795
The title Element... 796
Other Document and Metadata Elements... 796

The Text Elements ...796
The a Element... 796
The del and ins Elements ... 797
The q Element... 797
The time Element.. 798
Other Text Elements ... 798

The Grouping Elements..798
The blockquote Element ... 798
The li Element... 798
The ol Element.. 799
Other Grouping Elements.. 799

The Section Elements ..799
The details Element .. 799
Other Section Elements .. 800

The Table Elements ...800
The col and colgroup Elements .. 800

 CONTENTS

xxvii

The table Element... 800
The thead, tbody, and tfoot Elements... 801
The th Element ... 801
The tr Element .. 802
Other Table Elements ... 802

The Form Elements..802
The button Element .. 803
The datalist Element... 803
The fieldset Element... 804
The form Element ... 804
The input Element... 805
The label Element... 807
The legend Element.. 807
The optgroup Element .. 807
The option Element... 808
The output Element .. 808
The select Element ... 809
The textarea Element.. 810

The Content Elements..811
The area Element.. 811
The embed Element.. 812
The iframe Element .. 813
The img Elements... 813
The map Element.. 814
The meter Element ... 814
The object Element... 815
The param Element .. 816
The progress Element... 816

 CONTENTS

xxviii

Summary ...816

 Part V: Advanced Features ...819

 Chapter 32: Using Ajax – Part I...821

Getting Started with Ajax...822
Dealing with the Response... 826
The Lowest Common Dominator: Dealing with Opera.. 827

Using the Ajax Events ..829
Dealing with Errors ..832

Dealing with Setup Errors... 834
Dealing with Request Errors... 835
Dealing with Application Errors .. 835

Getting and Setting Headers..836
Overriding the Request HTTP Method... 836
Disabling Content Caching ... 838
Reading Response Headers.. 838

Making Cross-Origin Ajax Requests ..840
Using the Origin Request Header.. 843
Advanced CORS Features ... 844

Aborting Requests ...844

Summary ...847

 Chapter 33: Using Ajax—Part II..849

Getting Ready to Send Data to the Server ...850
Defining the Server... 851
Understanding the Problem.. 853

Sending Form Data ..853
Sending Form Data Using a FormData Object ...856

Creating a FormData Object ... 857

 CONTENTS

xxix

Modifying a FormData Object ... 858
Sending JSON Data..859

Sending Files ...861
Tracking Upload Progress..863

Requesting and Processing Different Content Types...866
Receiving HTML Fragments.. 866
Receiving XML Data.. 869
Receiving JSON Data.. 871

Summary ...872

 Chapter 34: Working with Multimedia..873

Using the video Element ..874
Preloading the Video... 876
Displaying a Placeholder Image ... 878
Setting the Video Size... 879
Specifying the Video Source (and Format) ... 880
The track Element .. 883

Using the audio Element..884
Working with Embedded Media via the DOM ..886

Getting Information About the Media.. 887
Assessing Playback Capabilities .. 889
Controlling Media Playback .. 892

Summary ...896

 Chapter 35: Using the Canvas Element – Part I ..897

Getting Started with the Canvas Element ..898
Getting a Canvas Context...899
Drawing Rectangles...901

Setting the Canvas Drawing State ...904

 CONTENTS

xxx

Setting the Line Join Style.. 905
Setting the Fill & Stroke Styles... 906
Using Gradients .. 907
Using a Radial Gradient .. 913
Using Patterns .. 916

Saving and Restoring Drawing State ...919

Drawing Images...921
Using Video Images .. 922
Using Canvas Images ... 925

Summary ...927

 Chapter 36: Using the Canvas Element – Part II ..929

Drawing Using Paths ...930
Drawing Paths with Lines... 931
Drawing Rectangles ... 934

Drawing Arcs ...936
Using the arcTo Method.. 937
Using the arc Method ... 940

Drawing Bezier Curves ..942
Drawing Cubic Bezier Curves ... 942
Drawing Quadratic Bezier Curves... 944

Creating a Clipping Region ..946
Drawing Text..947

Using Effects and Transformations..949
Using Shadows... 949
Using Transparency.. 951
Using Composition.. 952
Using a Transformation .. 955

 CONTENTS

xxxi

Summary ...956

 Chapter 37: Using Drag & Drop...957

Creating the Source Items ...958
Handling the Drag Events ... 959

Creating the Drop Zone..961
Receiving the Drop ... 963

Working with the DataTransfer Object...965
Filtering Dragged Items by Data ... 967
Dragging and Dropping Files .. 968

Summary ...973

 Chapter 38: Using Geolocation..975

Using Geolocation ..975
Getting the Current Position ... 976

Handling Geolocation Errors ..979
Specifying Geolocation Options ...981

Monitoring the Position..983
Summary ...985

 Chapter 39: Using Web Storage ..987

Using Local Storage...987
Listening for Storage Events .. 990

Using Session Storage...992

Summary ...996

 Chapter 40: Creating Offline Web Applications...997

Defining the Problem ...998

Defining the Manifest ..999
Specifying Manifest Sections ... 1002

 CONTENTS

xxxii

Defining the Fallback Section... 1003
Defining the Network Section... 1005

Detecting the Browser State..1006
Working with the Offline Cache ...1007

Making the Update ... 1011
Getting the Update.. 1012
Applying the Update ... 1013

Summary ...1014

 Index ...1015

xxxiii

About the Author

 Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as Chief Technology
Officer and Chief Operating Officer of a global bank. Now retired, he spends his
time writing and running. This is his thirteenth technology book.

xxxiv

About the Technical Reviewers

Kevin Grant is a full time PHP Developer, living and working in the Sheffield
area, UK. His current role involves maintaining Zend Framework based
websites for clients (thanks to a book on ZF from Apress!) and during the day
he enjoys a mixture of coding, server admin, performance profiling, and/or
advising others on implementing scalability technologies like memcached or
load balancing. On weekends he spends time with his family, occasionally
does odd jobs around the house and frequently complains about not going
climbing enough, despite the proximity of several local climbing walls and
crags. His first computer was a ZX Spectrum 48K+ but his all time favorite
game remains Parsec.

Andy Olsen is a freelance consultant based in the UK, and spends most
of his working time immersed in web/mobile technologies, .NET, and
Java. Andy had been working in IT for 25 years (where do the years go?)
and would like to play professional football when he grows up. Andy lives
by the seaside in Swansea in South Wales with his family, and enjoys
running, skiing, and watching the Swans. You can reach Andy at
andyo@olsensoft.com.

mailto:andyo@olsensoft.com

xxxv

Acknowledgments

I would like to thank everyone at Apress for working so hard to bring this book to print. In particular, I
would like to thank Jennifer Blackwell for keeping me on track (and for putting up with my refusal to use
SharePoint), and Ewan Buckingham and Ben Renow-Clarke for commissioning and editing this book. I
would also like to thank Kevin, Andy, Roger, Vanessa, Lori, Ralph, Kim, and Marilyn for their reviews and
copyediting.

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments

	Putting HTML5 in Context
	The History of HTML
	The Introduction of JavaScript
	The End of the Browser Wars
	The Dominance of Plugins
	The Emergence of Semantic HTML
	The Trend: The HTML Standard Lags Behind HTML Use

	Introducing HTML5
	The New Standard(s)
	Embracing Native Multimedia
	Embracing Programmatic Content
	Embracing the Semantic Web

	The Current State of HTML5
	Browser Support for HTML5
	Site Support for HTML5

	The Structure of This Book
	Finding More Information About HTML5
	Summary

	Getting Ready
	Selecting a Browser
	Selecting an HTML Editor
	Selecting a Web Server
	Obtaining Node.js
	Obtaining the Multipart Module

	Getting the Sample Code
	Summary

	Getting Started with HTML
	Using Elements
	Understanding the Elements Used in This Chapter
	Using Empty Elements
	Using Self-Closing Tags
	Using Void Elements

	Using Element Attributes
	Applying Multiple Attributes to an Element
	Using Boolean Attributes
	Using Custom Attributes

	Creating an HTML Document
	The Outer Structure
	The Metadata
	The Content
	Understanding Parents, Children, Descendants, and Siblings
	Understanding Element Types

	Using HTML Entities
	The HTML5 Global Attributes
	The accesskey Attribute
	The class Attribute
	The contenteditable Attribute
	The contextmenu Attribute
	The dir Attribute
	The draggable Attribute
	The dropzone Attribute
	The hidden Attribute
	The id Attribute
	The lang Attribute
	The spellcheck Attribute
	The style Attribute
	The tabindex Attribute
	The title Attribute

	Useful HTML Tools
	Summary

	Getting Started with CSS
	Defining and Applying a Style
	Understanding the CSS Properties Used in This Chapter
	Applying a Style Inline
	Creating an Embedded Style
	Using an External Stylesheet

	Understanding How Styles Cascade and Inherit
	Understanding Browser Styles
	Understanding User Styles
	Understanding How Styles Cascade
	Tweaking the Order with Important Styles
	Tie-Breaking with Specificity and Order Assessments
	Understanding Inheritance

	Working with CSS Colors
	Specifying More Complex Colors

	Understanding CSS Lengths
	Working with Absolute Lengths
	Working with Relative Lengths

	Other CSS Units
	Using CSS Angles
	Using CSS Times

	Testing for CSS Feature Support
	Useful CSS Tools
	Browser Style Reporting
	Creating Selectors with SelectorGadget
	Enhancing CSS with LESS
	Using a CSS Framework

	Summary

	Getting Started with JavaScript
	Getting Ready to Use JavaScript
	Using Statements
	Defining and Using Functions
	Defining Functions with Parameters
	Defining Functions That Return Results

	Using Variables and Types
	Using the Primitive Types
	Creating Objects
	Working with Objects

	Using JavaScript Operators
	Using the Equality and Identity Operators
	Explicitly Converting Types

	Working with Arrays
	Using an Array Literal
	Reading and Modifying the Contents of an Array
	Enumerating the Contents of an Array
	Using the Built-in Array Methods

	Handling Errors
	Comparing the undefined and null Values
	Checking Whether a Variable or Property Is null or undefined
	Differentiating Between null and undefined

	Useful JavaScript Tools
	Using a JavaScript Debugger
	Using a JavaScript Library

	Summary

	HTML Elements in Context
	Understanding the Sematic/Presentation Divide
	Understanding How to Select Elements
	Less Can Be More
	Don’t Abuse Elements
	Be Specific and Consistent
	Don’t Make Assumptions About the Audience

	Understanding Element Descriptions
	Element Quick Reference
	The Document and Metadata Elements
	The Text Elements
	Grouping Content
	Sectioning Content
	Creating Tables
	Creating Forms
	Embedding Content

	Unimplemented Elements
	Summary

	Creating HTML Documents
	Setting Up the Basic Document Structure
	The doctype Element
	The html Element
	The head Element
	The body Element

	Describing Documents with the Metadata Elements
	Setting the Document Title
	Setting the Base for Relative URLs
	Using Metadata to Describe the Document
	Defining CSS Styles
	Denoting External Resources

	Using the Scripting Elements
	The script Element
	The noscript Element

	Summary

	Marking Up Text
	Creating Hyperlinks
	Creating External Hyperlinks
	Creating Relative URLs
	Creating Internal Hyperlinks
	Targeting a Browsing Context

	Annotating Content with the Basic Text Elements
	Denoting Keywords and Product Names
	Adding Emphasis
	Denoting Foreign or Technical Terms
	Showing Inaccuracies or Corrections
	Denoting Important Text
	Underlining Text
	Adding Fine Print
	Adding Superscript and Subscript

	Creating Breaks
	Forcing a Line Break
	Indicating an Opportunity for a Safe Line Break

	Representing Inputs and Outputs
	Creating Citations, Quotations, Definitions, and Abbreviations
	Denoting Abbreviations
	Defining Terms
	Quoting Content from Another Source
	Citing the Title of Another Work

	Working with the Language Elements
	The ruby, rt, and rp Elements
	The bdo Element
	The bdi Element

	Wrapping Up: The Other Text Elements
	Denoting a Generic Span of Content
	Highlighting Text
	Denoting Added or Removed Content
	Denoting Times and Dates

	Summary

	Grouping Content
	Understanding the Need to Group Content
	Creating Paragraphs
	Using the div Element
	Working with Preformatted Content
	Quoting from Other Sources
	Adding Thematic Breaks
	Grouping Content into Lists
	The ol Element
	The ul Element
	The li Element
	Creating Description Lists
	Creating Custom Lists

	Dealing with Figures
	Summary

	Creating Sections
	Adding Basic Headings
	Hiding Subheadings
	Creating Sections
	Adding Headers and Footers
	Adding Navigation Blocks
	Working with Articles
	Creating Sidebars
	Providing Contact Information
	Creating a Details Section
	Summary

	Table Elements
	Creating a Basic Table
	Adding Headers Cells
	Adding Structure to a Table
	Denoting the Headings and the Table Body
	Adding a Footer

	Creating Irregular Tables
	Associating Headers with Cells
	Adding a Caption to a Table
	Working with Columns
	Calling Out Individual Columns

	Applying Borders to the table Element
	Summary

	Working with Forms
	Creating a Basic Form
	Defining the Form
	Seeing the Form Data

	Configuring the Form
	Configuring the Form action Attribute
	Configuring the HTTP method Attribute
	Configuring the Data Encoding
	Controlling Form Completion
	Specifying a Target for the Form Response
	Setting the Name of the Form

	Adding Labels to a Form
	Automatically Focusing on an input Element
	Disabling Individual input Elements
	Grouping Form Elements Together
	Adding a Descriptive Label to a fieldset Element
	Disabling Groups of Inputs Using the fieldset Element

	Using the button Element
	Using the button Element to Submit Forms
	Using the button Element to Reset Forms
	Using button as a Generic Element

	Working with Elements Outside the Form
	Summary

	Customizing the Input Element
	Using the input Element for Text Input
	Specifying the Element Size
	Setting Values and Using Placeholders
	Using a Data List
	Creating Read-Only and Disabled Text Boxes
	Specifying Text Directionality

	Using the input Element for Password Input
	Using the input Element to Create Buttons
	Using the input Element to Restrict Data Entry
	Using the input Element to Obtain a Number
	Using the input Element to Obtain a Number in a Given Range
	Using the input Element to Obtain a Boolean Response
	Using the input Element to Create Fixed Choices
	Using the input Element to Obtain Formatted Strings
	Using the input Element to Obtain Times and Dates
	Using the input Element to Obtain a Color

	Using the input Element to Obtain Search Terms
	Using the input Element to Create Hidden Data Items
	Using the input Element to Create Image Buttons and Maps
	Using the input Element to Upload Files
	Summary

	Other Form Elements and Input Validation
	Using the Other Form Elements
	Creating Lists of Options
	Capturing Multiple Lines of Text
	Denoting the Result of a Calculation
	Creating Public/Private Key Pairs

	Using Input Validation
	Ensuring the User Provides a Value
	Ensuring a Value Is Within Bounds
	Ensuring a Value Matches a Pattern
	Ensuring a Value Is an E-mail Address or URL

	Disabling Input Validation
	Summary

	Embedding Content
	Embedding an Image
	Embedding an Image in a Hyperlink
	Creating a Client-Side Image Map

	Embedding Another HTML Document
	Embedding Content Using Plugins
	Using the embed Element
	Using the object and param Elements

	Other Uses for the object Element
	Using the object Element to Embed Images
	Using the object Element to Create Client-Side Image Maps
	Using the object Element as a Browsing Context

	Embedding Numeric Representations
	Showing Progress
	Showing a Ranged Value

	Other Embedding Elements
	Embedding Audio and Video
	Embedding Graphics

	Summary

	CSS in Context
	Understanding CSS Standardization
	Understanding the Box Model
	Selectors Quick Reference
	Properties Quick Reference
	Border and Background Properties
	Box Model Properties
	Layout Properties
	Text Properties
	Transition, Animation, and Transform Properties
	Other Properties

	Summary

	Using the CSS Selectors—Part I
	Using the Basic CSS Selectors
	Selecting All Elements
	Selecting Elements by Type
	Selecting Elements by Class
	Selecting Elements by ID
	Selecting Elements by Attribute

	Combining Selectors
	Creating Selector Unions
	Selecting Descendant Elements
	Selecting Child Elements
	Selecting Sibling Elements

	Using Pseudo-Element Selectors
	Using the ::first-line Selector
	Using the ::first-letter Selector
	Using the :before and :after Selectors
	Using the CSS Counter Feature

	Summary

	Using the CSS Selectors—Part II
	Using the Structural Pseudo-Class Selectors
	Using the :root Selector
	Using the Child Selectors
	Using the nth-Child Selectors

	Using the UI Pseudo-Class Selectors
	Selecting Enabled/Disabled Elements
	Selecting Checked Elements
	Selecting Default Elements
	Selecting Valid and Invalid input Elements
	Selecting input Elements with Range Limitations
	Selecting Required and Optional input Elements

	Using the Dynamic Pseudo-Class Selectors
	Using the :link and :visited Selectors
	Using the :hover Selector
	Using the :active Selector
	Using the :focus Selector

	Other Pseudo-Selectors
	Using the Negation Selector
	Using the :empty Selector
	Using the :lang Selector
	Using the :target Selector

	Summary

	Using Borders and Backgrounds
	Applying a Border
	Defining the Border Width
	Defining the Border Style
	Applying a Border to a Single Side
	Using the border Shorthand Properties
	Creating a Border with Rounded Corners
	Using Images As Borders

	Setting Element Backgrounds
	Setting the Background Color and Image
	Setting the Background Image Size
	Setting the Background Image Position
	Setting the Attachment for the Background
	Setting the Background Image Origin and Clipping Style
	Using the background Shorthand Property

	Creating a Box Shadow
	Using Outlines
	Summary

	Working with the Box Model
	Applying Padding to an Element
	Appling Margin to an Element
	Controlling the Size of an Element
	Setting the Sized Box
	Setting Minimum and Maximum Sizes

	Dealing with Overflowing Content
	Controlling Element Visibility
	Setting an Element Box Type
	Understanding Block-Level Elements
	Understanding Inline-Level Elements
	Understanding Inline-Block Elements
	Understanding Run-In Elements
	Hiding Elements

	Creating Floating Boxes
	Preventing Floating Elements from Stacking Up

	Summary

	Creating Layouts
	Positioning Content
	Setting the Position Type
	Setting the Z-Order

	Creating Multicolumn Layouts
	Creating Flexible Box Layouts
	Creating a Simple Flexbox
	Flexing Multiple Elements
	Dealing with Vertical Space
	Dealing with Maximum Sizes

	Creating Table Layouts
	Summary

	Styling Text
	Applying Basic Text Styles
	Aligning and Justifying Text
	Dealing with Whitespace
	Specifying Text Direction
	Specifying the Space Between Words, Letters, and Lines
	Controlling Word Breaks
	Indenting the First Line

	Decorating and Transforming Text
	Creating Text Shadows
	Working with Fonts
	Selecting a Font
	Setting the Font Size
	Setting the Font Style and Weight

	Using Web Fonts
	Summary

	Transitions, Animations, and Transforms
	Using Transitions
	Creating Inverse Transitions
	Selecting How Intermediate Values Are Calculated

	Using Animations
	Working with Key Frames
	Setting the Repeat Direction
	Understanding the End State
	Applying Animations to the Initial Layout
	Reusing Key Frames
	Applying Multiple Animations to Multiple Elements
	Stopping and Starting Animations

	Using Transforms
	Applying a Transform
	Specifying an Origin
	Animating and Transitioning a Transform

	Summary

	Other CSS Properties and Features
	Setting Element Color and Transparency
	Setting the Foreground Color
	Setting Element Opacity

	Styling Tables
	Collapsing Table Borders
	Configuring Separated Borders
	Dealing with Empty Cells
	Positioning the Caption
	Specifying the Table Layout

	Styling Lists
	Setting the List Marker Type
	Using an Image As a List Marker
	Positioning the Marker

	Styling the Cursor
	Summary

	The DOM in Context
	Understanding the Document Object Model
	Understanding DOM Levels and Compliance
	Testing for DOM Features

	The DOM Quick Reference
	The Document Members
	The Window Members
	The HTMLElement Members
	DOM CSS Properties
	The DOM Events

	Summary

	Working with the Document Object
	Working with Document Metadata
	Getting Information from the Document
	Using the Location Object
	Reading and Writing Cookies
	Understanding the Ready State
	Getting DOM Implementation Details

	Obtaining HTML Element Objects
	Using Properties to Obtain Element Objects
	Using Array Notation to Obtain a Named Element
	Searching for Elements
	Chaining Searches Together

	Navigating the DOM Tree
	Summary

	Working with the Window Object
	Obtaining a Window Object
	Getting Information about the Window
	Interacting with the Window
	Prompting the User
	Getting General Information
	Working with the Browser History
	Navigating Within the Browsing History
	Inserting an Entry into the History
	Adding an Entry for a Different Document
	Storing Complex State in the History
	Replacing an Item in the History

	Using Cross-Document Messaging
	Using Timers
	Summary

	Working with DOM Elements
	Working with Element Objects
	Working with Classes
	Working with Element Attributes

	Working with Text
	Modifying the Model
	Creating and Deleting Elements
	Duplicating Elements
	Moving Elements
	Comparing Element Objects
	Working with HTML Fragments
	Inserting an Element into a Text Block

	Summary

	Styling DOM Elements
	Working with Stylesheets
	Getting Basic Information About Stylesheets
	Working with Media Constraints
	Disabling Stylesheets
	Working with Individual Styles

	Working with Element Styles
	Working with CSSStyleDeclaration Objects
	Working with the Convenience Properties
	Working with the Regular Properties
	Using the Fine-Grained CSS DOM Objects

	Working with Computed Styles
	Summary

	Working with Events
	Using Simple Event Handlers
	Implementing a Simple Inline Event Handler
	Implementing a Simple Event-Handling Function

	Using the DOM and the Event Object
	Distinguishing Events by Type
	Understanding Event Flow
	Working with Cancellable Events

	Working with the HTML Events
	The Document and Window Events
	Working with Mouse Events
	Working with Focus Events
	Working with Keyboard Events
	Working with Form Events

	Summary

	Using the Element-Specific Objects
	The Document and Metadata Objects
	The base Element
	The body Element
	The link Element
	The meta Element
	The script Element
	The style Element
	The title Element
	Other Document and Metadata Elements

	The Text Elements
	The a Element
	The del and ins Elements
	The q Element
	The time Element
	Other Text Elements

	The Grouping Elements
	The blockquote Element
	The li Element
	The ol Element
	Other Grouping Elements

	The Section Elements
	The details Element
	Other Section Elements

	The Table Elements
	The col and colgroup Elements
	The table Element
	The thead, tbody, and tfoot Elements
	The th Element
	The tr Element
	Other Table Elements

	The Form Elements
	The button Element
	The datalist Element
	The fieldset Element
	The form Element
	The input Element
	The label Element
	The legend Element
	The optgroup Element
	The option Element
	The output Element
	The select Element
	The textarea Element

	The Content Elements
	The area Element
	The embed Element
	The iframe Element
	The img Elements
	The map Element
	The meter Element
	The object Element
	The param Element
	The progress Element

	Summary

	Using Ajax – Part I
	Getting Started with Ajax
	Dealing with the Response
	The Lowest Common Dominator: Dealing with Opera

	Using the Ajax Events
	Dealing with Errors
	Dealing with Setup Errors
	Dealing with Request Errors
	Dealing with Application Errors

	Getting and Setting Headers
	Overriding the Request HTTP Method
	Disabling Content Caching
	Reading Response Headers

	Making Cross-Origin Ajax Requests
	Using the Origin Request Header
	Advanced CORS Features

	Aborting Requests
	Summary

	Using Ajax—Part II
	Getting Ready to Send Data to the Server
	Defining the Server
	Understanding the Problem

	Sending Form Data
	Sending Form Data Using a FormData Object
	Creating a FormData Object
	Modifying a FormData Object

	Sending JSON Data
	Sending Files
	Tracking Upload Progress
	Requesting and Processing Different Content Types
	Receiving HTML Fragments
	Receiving XML Data
	Receiving JSON Data

	Summary

	Working with Multimedia
	Using the video Element
	Preloading the Video
	Displaying a Placeholder Image
	Setting the Video Size
	Specifying the Video Source (and Format)
	The track Element

	Using the audio Element
	Working with Embedded Media via the DOM
	Getting Information About the Media
	Assessing Playback Capabilities
	Controlling Media Playback

	Summary

	Using the Canvas Element – Part I
	Getting Started with the Canvas Element
	Getting a Canvas Context
	Drawing Rectangles
	Setting the Canvas Drawing State
	Setting the Line Join Style
	Setting the Fill & Stroke Styles
	Using Gradients
	Using a Radial Gradient
	Using Patterns

	Saving and Restoring Drawing State
	Drawing Images
	Using Video Images
	Using Canvas Images

	Summary

	Using the Canvas Element – Part II
	Drawing Using Paths
	Drawing Paths with Lines
	Drawing Rectangles

	Drawing Arcs
	Using the arcTo Method
	Using the arc Method

	Drawing Bezier Curves
	Drawing Cubic Bezier Curves
	Drawing Quadratic Bezier Curves

	Creating a Clipping Region
	Drawing Text
	Using Effects and Transformations
	Using Shadows
	Using Transparency
	Using Composition
	Using a Transformation

	Summary

	Using Drag & Drop
	Creating the Source Items
	Handling the Drag Events

	Creating the Drop Zone
	Receiving the Drop

	Working with the DataTransfer Object
	Filtering Dragged Items by Data
	Dragging and Dropping Files

	Summary

	Using Geolocation
	Using Geolocation
	Getting the Current Position

	Handling Geolocation Errors
	Specifying Geolocation Options
	Monitoring the Position
	Summary

	Using Web Storage
	Using Local Storage
	Listening for Storage Events

	Using Session Storage
	Summary

	Creating Offline Web Applications
	Defining the Problem
	Defining the Manifest
	Specifying Manifest Sections
	Defining the Fallback Section
	Defining the Network Section

	Detecting the Browser State
	Working with the Offline Cache
	Making the Update
	Getting the Update
	Applying the Update

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

