

MEAP Edition
Manning Early Access Program

Copyright 2009 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Licensed to Alison Tyler <pedbro@gmail.com>

http://www.manning.com/

iii

Table of Contents
1. Introduction ... 1

The JavaScript Language ... 2
Writing Cross-Browser Code .. 3
Best Practices .. 5
Summary .. 6

2. Testing and Debugging .. 7
Debugging Code .. 7
Test Generation .. 8
Building a Test Suite ... 10

Asynchronous Testing ... 12
Summary ... 13

3. Functions ... 14
Function Definition ... 14
Anonymous Functions and Recursion ... 15
Functions as Objects ... 17

Storing Functions .. 18
Self-Memoizing Functions .. 18

Context ... 20
Looping .. 21
Fake Array Methods .. 22

Variable Arguments .. 22
Min/Max Number in an Array ... 23
Function Overloading .. 23
Function Length ... 24

Function Type .. 26
Summary ... 27

4. Closures .. 28
How closures work ... 28

Private Variables .. 29
Callbacks and Timers .. 29

Enforcing Function Context .. 30
Partially Applying Functions ... 32
Overriding Function Behavior ... 34

Memoization .. 34
Function Wrapping .. 36

(function(){})() ... 37
Temporary Scope and Private Variables .. 37
Loops ... 39
Library Wrapping ... 39

Summary ... 40
5. Function Prototypes ... 42

Instantiation and Prototypes .. 42
Instantiation ... 42
Object Type ... 44
Inheritance and the Prototype Chain ... 44
HTML Prototypes ... 46

Gotchas ... 47
Extending Object .. 47
Extending Number .. 48
Sub-classing Native Objects .. 49
Instantiation ... 50

Licensed to Alison Tyler <pedbro@gmail.com>

Secrets of the JavaScript Ninja

iv

Class-like Code .. 51
Summary ... 55

6. Timers ... 56
How Timers Work .. 56
Minimum Timer Delay and Reliability ... 58
Computationally-Expensive Processing ... 60
Central Timer Control ... 63
Asynchronous Testing ... 65
Summary ... 66

7. Regular Expressions .. 67
Compiling ... 67
Capturing .. 69

References to Captures .. 71
Non-capturing Groups ... 71

Replacing with Functions ... 72
Common Problems .. 73

Trimming a String .. 73
Matching Endlines .. 74
Unicode .. 75
Escaped Characters ... 75

Summary ... 75
8. With Statements .. 77

Convenience .. 79
Importing Namespaced Code .. 81
Clarified Object-Oriented Code ... 81
Testing .. 82
Templating .. 83
Summary ... 85

9. Code Evaluation ... 87
Code Evaluation ... 87

eval() .. 87
new Function ... 88
Evaluate in the global scope ... 88
Safe Code Evaluation .. 89

Function Decompilation ... 90
Examples ... 91

JSON .. 91
Importing Namespace .. 93
Compression and Obfuscation ... 94
Dynamic Code Rewriting ... 95
Aspect-Oriented Script Tags ... 95
Meta-Languages ... 96

Summary ... 99
10. Strategies for Cross-Browser Code .. 100

Picking Your Core Browsers ... 100
Development Concerns ... 101

Browser Bugs ... 102
External Code and Markup ... 103
Missing Features ... 104
Bug Fixes .. 105
Regressions .. 106

Implementing Cross-Browser Code .. 107
Safe Cross-Browser Fixes ... 107
Object Detection ... 108

Licensed to Alison Tyler <pedbro@gmail.com>

Secrets of the JavaScript Ninja

v

Feature Simulation .. 109
Untestable .. 111

Implementation Concerns ... 112
Summary ... 113

11. CSS Selector Engine .. 114
Selectors API ... 114
XPath .. 116
DOM .. 117

Parsing the Selector ... 119
Finding the Elements ... 120
Filtering ... 120
Recursing and Merging .. 121
Bottom Up Selector Engine .. 122

Summary ... 123
12. DOM Modification ... 125

Injecting HTML .. 125
Converting HTML to DOM .. 125
Inserting into the Document .. 128
Script Execution .. 129

Cloning Elements .. 131
Removing Elements ... 132
Text Contents ... 133
Summary ... 136

13. Attributes and CSS ... 137
DOM Attributes .. 137
Form Values .. 137
CSS .. 137

Computed Style .. 137
Height and Width .. 137
Opacity .. 137

Summary ... 137
14. Events .. 138

'this' .. 138
Event Propagation ... 138
Keyboard Events ... 138
Mouse Events ... 138
Custom Events .. 138
Triggering .. 138
Delegation ... 138
Summary ... 138

15. Ajax .. 139
XMLHttpRequest .. 139

File Loading ... 139
Caching ... 139

Cross-Domain Requests .. 139
Summary ... 139

16. Animation ... 140
Tweening ... 140
Smooth Animations ... 140
Stop/Pause ... 140
Summary ... 140

17. Performance .. 141
Performance Test Suite .. 141
Firebug Profiling ... 141

Licensed to Alison Tyler <pedbro@gmail.com>

Secrets of the JavaScript Ninja

vi

Techniques ... 141
File Distribution .. 141
Summary ... 141

Licensed to Alison Tyler <pedbro@gmail.com>

vii

List of Tables
1.1. ... 6
3.1. ... 19
7.1. ... 74
8.1. ... 79
9.1. ... 94
11.1. .. 117

Licensed to Alison Tyler <pedbro@gmail.com>

1

Chapter 1. Introduction
In this chapter:

• Overview of the purpose and structure of the book

• Overview of the libraries of focus

• Explanation of advanced JavaScript programming

• Theory behind cross-browser code authoring

• Examples of test suite usage

There is nothing simple about creating effective, cross-browser, JavaScript code. In addition to the
normal challenge of writing clean code you have the added complexity of dealing with obtuse browser
complexities. To counter-act this JavaScript developers frequently construct some set of common,
reusable, functionality in the form of JavaScript library. These libraries frequently vary in content and
complexity but one constant remains: They need to be easy to use, be constructed with the least amount
of overhead, and be able to work in all browsers that you target.

It stands to reason, then, that understanding how the very best JavaScript libraries are constructed and
maintained can provide great insight into how your own code can be constructed. This book sets out to
uncover the techniques and secrets encapsulated by these code bases into a single resource.

In this book we'll be examining the techniques of two libraries in particular:

• Prototype (http://prototypejs.org/): The godfather of the modern JavaScript libraries created by Sam
Stephenson and released in 2005. Encapsulates DOM, Ajax, and event functionality in addition to
object-oriented, aspect-oriented, and functional programming techniques.

• jQuery (http://jquery.com/): Created by John Resig and released January 2006, popularized the use of
CSS selectors to match DOM content. Includes DOM, Ajax, event, and animation functionality.

These two libraries currently dominate the JavaScript library market being used on hundreds of thousands
of web sites and interacted with by millions of users. Through considerable use they've become refined
over the years into the optimal code bases that they are today. In addition to Prototype and jQuery we'll
also look at a few of the techniques utilized by the following libraries:

• Yahoo UI (http://developer.yahoo.com/yui/): The result of internal JavaScript framework development
at Yahoo released to the public in February of 2006. Includes DOM, Ajax, event, and animation
capabilities in addition to a number of pre-constructed widgets (calendar, grid, accordion, etc.).

• base2 (http://code.google.com/p/base2/): Created by Dean Edwards and released March 2007
supporting DOM and event functionality. Its claim-to-fame is that it attempts to implement the various
W3C specifications in a universal, cross-browser, manner.

All of these libraries are well-constructed and tackle their desired problem areas comprehensively. For
these reasons they'll serve as a good basis for further analysis. Understanding the fundamental construction
of these code bases will be able to give you greater insight into the process of large JavaScript library
construction.

The make up of a JavaScript library can be broken down into three portions: Advanced use of the
JavaScript language, comprehensive construction of cross-browser code, and a series of best practices that

Licensed to Alison Tyler <pedbro@gmail.com>

http://prototypejs.org/
http://jquery.com/
http://developer.yahoo.com/yui/
http://code.google.com/p/base2/

Introduction

2

tie everything together. We'll be analyzing all three of these together to give us a complete set of knowledge
to create our own, effective, JavaScript code bases.

The JavaScript Language
Most JavaScript users get to a point at which they're actively using objects, functions, and even anonymous
functions throughout their code. Rarely, however, are those skills taken beyond the most fundamental
level. Additionally there is generally a very poor understanding of the purpose and implementation of
closures in JavaScript, which helps to irrevocably bind the importance of functions to the language.

Figure 0-1: A diagram showing the strong relation between the three, important, programmatic concepts
in JavaScript.

Understanding this strong relationship between objects, functions, and closures will improve your
JavaScript programming ability giving you a strong foundation for any type of application development.

There are, also, two features that are frequently used in JavaScript development that are woefully
underused: timers and regular expressions. These two features have applications in virtually any JavaScript
code base but aren't always used to their full potential due to their misunderstood nature. With timers the
express knowledge of how they operate within the browser is often a mystery but understanding how they
work can give you the ability to write complex pieces of code like: Long-running computations and smooth
animations. Additionally, having an advanced understanding of how regular expressions work allows you
to make some, normally quite complicated, pieces of code quite simple and effective.

Finally, in our advanced tour of the JavaScript language, we'll finish with a look at the with and eval
statements. Overwhelmingly these features are trivialized, misused, and outright condemned by most
JavaScript programmers but by looking at the work of some of the best coders you can see that, when
used appropriately, they allow for the creation of some fantastic pieces of code that wouldn't be possible
otherwise. To a large degree they can, also, be used for some interesting meta-programming exercises

Licensed to Alison Tyler <pedbro@gmail.com>

Introduction

3

molding JavaScript into whatever you want it to be. Learning how to use these features responsibly will
certainly affect your code.

All of these skills tie together nicely to give you a complete package of ability with which any type of
JavaScript application authoring should be possible. This gives us a good base for moving forward starting
to write solid cross-browser code.

Writing Cross-Browser Code
While JavaScript programming skills will get us far, when developing a browser-based JavaScript
application, they will only get us to the point at which we begin dealing with browser issues. The quality
of browsers vary but it's pretty much a given that they all have some bugs or missing APIs. Therefore it
becomes necessary to develop both a comprehensive strategy for tackling these browser issues in addition
to the knowledge of the bugs themselves.

The overwhelming strategy that we'll be employing in this book is one based upon the technique used by
Yahoo! to quantify their browser support. Named "Grade Browser Support" they assign values to the level
of support which they are willing to provide for a class of browser. The grades work as follows:

• A Grade: The most current and widely-used browsers, receives full support. They are actively tested
against and are guaranteed to work with a full set of features.

• C Grade: Old, hardly-used, browsers, receives minimal support. Effectively these browsers are given
a bare-bones version of the page, usually just plain HTML and CSS (no JavaScript).

• X Grade: Unknown browsers, receives no special support. These browsers are treated equivalent to A-
grade browsers, giving them the benefit of a doubt.

To give you a feel for what an A-grade browser looks like here is the current chart of browsers that Yahoo
uses:

Figure 0-2: A listing of A-grade browsers as deemed by Yahoo!, early 2009.

• Graded Browser Support: http://developer.yahoo.com/yui/articles/gbs/

What's good about this strategy is that it serves as a good mix of optimal browser coverage and pragmatism.
Since it's impractical in your daily development to actually be able to develop against a large number of
platforms simultaneously it's best to chose an optimal number. You end up having to balance the cost and
the benefit that is required in supporting a browser.

Licensed to Alison Tyler <pedbro@gmail.com>

http://developer.yahoo.com/yui/articles/gbs/

Introduction

4

What's interesting about analyzing the cost-benefit of a browser is that it's done completely differently from
straight-up analysis of browser market share. It's really a combination of market share and time that'll be
spent customizing your application to work in that browser. Here's a quick chart to represent my personal
choices when developing for browsers:

Figure 0-3: A cost-benefit rough comparison for popular web browsers. These numbers will vary based
upon your actual challenges relating to developing for a browser.

The "Cost" is represented by the % of time that will be spent, beyond normal application development,
spent exclusively with that browser. The "Benefit" is the % of market share that the browser has. Note that
any browser that has a higher cost, than benefit, needs to be seriously considered for development.

What's interesting about this is that it use to be much-more clear-cut when choosing to develop for IE
6 - it had 80-90% market share so it's benefit was always considerably higher (or, at least, equal to) the
time spent making it work in that browser. However, in 2009, that percentage will be considerably less
making it far less attractive as a platform. Note that Firefox and Safari, due to their less-buggy nature
(and standards compliance) always have a higher benefit than cost, making them an easy target to work
towards. Opera is problematic, however. It's, continued, low market share makes it a challenging platform
to justify. It's for this reason that major libraries, like Prototype, didn't treat Opera as an A-grade browser
for quite some time - and understandably so.

Now it's not always a one-to-one trade-off in-between cost and benefit. I think it would even be safe to
say that benefit is, at least, twice as important as cost. Ultimately, however, this depends upon the choices
of those involved in the decision making and the skill of the developers working on the compliance. Is
an extra 4-5% market share from Safari 3 worth 4-5 developer days? What about the added overhead to
Quality Assurance and testing? It's never an easy problem - but it's one that we can, certainly, all get better
at over time - but really only through hard work and experience.

These are the questions that you'll need to ask yourself when developer cross-browser applications.
Thankfully cross-browser development is one area where experience significantly helps in reducing the
cost overhead for a browser and this is something that will be supplemented further in this book.

Licensed to Alison Tyler <pedbro@gmail.com>

Introduction

5

Best Practices
Good JavaScript programming abilities and strong cross-browser code authoring skills are both excellent
traits to have but it's not a complete package. In order to be a good JavaScript developer you need
to maintain the traits that most good programmers have including testing, performance analysis, and
debugging.

It's important to utilize these skills frequently and especially within the context of JavaScript development
(where the platform differences will surely justify it).

In this book we'll be actively using a number of testing techniques in our examples to, both, show the use
of a basic test suite and to ensure that our examples operate as we would expect them to.

The basic unit of our testing library is the following assert function:

Listing 0-1: Simple example of assert statements from our test suite.

assert(true, "This statement is true.");
assert(false, "This will never succeed.");

The function has one purpose: To determine if the value being passed in as the first argument is true or
false and to assign a passing or failing mark to it based upon that. These results are then logged for further
examination.

Note: You should realize that if you were to try the assert() function (or any of the
other functions in this section) that you'll need the associated code to run them. You can
find the code for them in their respective chapters or in the code included with this book.

Additionally we'll be occasionally testing pieces of code that behave asynchronously (the begin instantly
but end at some indeterminate time later). To counter-act this we wrap our code in a function and call
resume() once all of our assert()s have been executed.

Listing 0-2: Testing an asynchronous operation.

test(function(){
 setTimeout(function(){
 assert(true, "Timer was successful.");
 resume();
 }, 100);
});

These two pieces give us a good test suite for further development, giving us the ability to write good
coverage of code easily tackling any browser issues we may encounter.

The second piece of the testing puzzle is in doing performance analysis of code. Frequently it becomes
necessary to quickly, and easily, determine how one function performs in relation to another. Throughout
this book we'll be using a simple solution that looks like the following:

Listing 0-3: Performing performance analysis on a function.

perf("String Concatenation", function(){
 var name = "John";
 for (var i = 0; i < 20; i++)
 name += name;
});

Licensed to Alison Tyler <pedbro@gmail.com>

Introduction

6

We provide a single function which will be execute a few times to determine its exact performance
characteristics. To which the output looks like:

Table 0-1: All time in ms, for 5 iterations, in Firefox 3.

Table 1.1.

Average Min Max Deviation

String
Concatenation

21.6 21 22 0.50

This gives us a quick-and-dirty method for immediately knowing how a piece of JavaScript code might
perform, providing us with insight into how we might structure our code.

Together these techniques, along with the others that we'll learn, will apply well to our JavaScript
development. When developing applications with the restricted resources that a browser provides coupled
with the increasingly complex world of browser compatibility having a couple set of skills becomes a
necessity.

Summary
Browser-based JavaScript development is much more complicated than it seems. It's more than just
a knowledge of the JavaScript language it's the ability to understand and work around browser
incompatibilities coupled with the development skills needed to have that code survive for a long time.

While JavaScript development can certainly be challenging there are those who've already gone down
this route route: JavaScript libraries. Distilling the knowledge stored in the construction of these code
bases will effectively fuel our development for many years to come. This exploration will certainly be
informative, particular, and educational - enjoy.

Licensed to Alison Tyler <pedbro@gmail.com>

7

Chapter 2. Testing and Debugging
In this chapter:

• Tools for Debugging JavaScript Code

• Techniques for Generating Tests

• How to Build a Test Suite

• How to Test Asynchronous Operations

Constructing an effective test suite for your code can be incredibly important in situations where
externalities have the potential to affect your code base - which is especially the case in cross-browser
JavaScript development. Not only do you have the typical problem of dealing with multiple developers
working on a single code base and the result of breaking portions of an API (generic problems that all
programmers deal with) but you also have the problem of determining if your code works in all the browsers
that you support.

We'll discuss the problem of cross-browser development in-depth when we look at Strategies for Cross-
Browser Code in a later chapter. For now, though, it's important that the importance of testing be outlined
and defined, since we'll be using it throughout the rest of the book.

In this chapter we're going to look at some tools and techniques for debugging JavaScript code, generating
tests based upon those results, and constructing a test suite to reliably run the tests.

Debugging Code
The ability to debug JavaScript code has dramatically improved in the last few years - in large part thanks
to the popularity of the Firebug developer extension for Firefox. There are now similar developer tools
for all major browsers:

• Firebug: The popular developer extension for Firefox http://getfirebug.org/

• IE Developer Tools: Included in Internet Explorer 8.

• Opera Dragonfly: Included in Opera 9.5 and newer - also works with Mobile versions of Opera.

• Safari Developer Tools: Introduced in Safari 3 and dramatically improved in Safari 4.

There are two important parts to debugging JavaScript: Logging statements and breakpoints. They are
both useful for tackling a very similar situation, but from a different angle: Figuring out what is occurring
at a specific line in your code.

Logging statements (such as using the console.log method in Firebug, Safari, and IE) are useful in
a cross-browser sense. You can write a single logging call in your code and you can benefit from seeing
the message in the console of all browsers. The browser consoles have dramatically improved this process
over the old 'add an alert into your page' technique, since all your statements can be collected into the
console and be browsed at a later time (not impeding the normal flow of the program). An example of a
simple, cross-browser, method for console logging can be seen in Listing 1-1.

Listing 1-1: A simple logging statement that works in all browsers.

function log() {
 try {

Licensed to Alison Tyler <pedbro@gmail.com>

http://getfirebug.org/

Testing and Debugging

8

 console.log.apply(console, arguments);
 } catch(e) {
 try {
 opera.postError.apply(opera, arguments);
 } catch(e){
 alert(Array.prototype.join.call(arguments, " "));
 }
 }
}

Breakpoints aren't as simple as logging statements but they do provide a notable advantage: They can halt
the execution of a script at a specific line of code (pausing the browser) and investigate all sorts of state
that you don't normally have access to (including all accessible variables, the context, and the scope chain,
like in the example showing in Figure 1-1:

Figure 1-1: A screenshot of Firebug paused at a breakpoint.

A full debugger, with breakpoint capabilities, is a feature that is highly dependent upon the browser
environment in which it is run - it's for this reason that the aforementioned developer tools were created,
since the functionality provided by them could not be duplicated in any other way. It's such a relief then
that all the browser developers have come on board to create effective utilities for performing this action.

Debugging code does serve a useful purpose (beyond the obvious fixing of bugs) it leads towards the good
practice of generating effective test cases.

Test Generation
There are a number of techniques that can be used for constructing a test with the two major ones being:
deconstructive tests and constructive tests. Regardless of the test type there are a few points that are
important to remember:

Licensed to Alison Tyler <pedbro@gmail.com>

Testing and Debugging

9

• Your tests should be highly reproducible. It should be possible to run your test over and over and
never receive a different result. Additionally, this includes making sure that your tests are dependent
upon outside issues like network or CPU load.

• Your tests should be as simple as possible. You should strive to remove as much HTML markup,
CSS, or JavaScript as you can without disrupting the original test case. The more that you can remove
the greater the likelihood that the test case will only be influenced by the exact bug that you're trying
to detect.

• Break tests apart. Try not to make the results from one test be dependent upon another. Break tests
down into their smallest possible unit (which helps you to determine the exact source of a bug when
an error occurs).

With those points in mind, let's look at the two techniques for developing test cases:

Deconstructive Test Cases

Deconstructive test cases center around the use of an existing site or page that exhibits an issue and tearing
it down to only show the representative problem. This is the ultimate case of applying the above points to
test generation. You might start with a complete site but after removing extra markup, CSS, and JavaScript
you'll arrive at a smaller site that reproduces the problem. You continue the process until no more code
can be removed.

Constructive Test Cases

With a constructive test case you start from a known, reduced, case and build up until you're able to
reproduce the bug in question. In order to do this style of testing you'll need a couple simple test files from
which to build and a way to generate these new tests with a clean copy of your code.

For example, when I'm attempting to create reduced test cases I'll end up having a few HTML files with
minimum functionality already included in them (one for DOM manipulation, one for Ajax tests, one for
animations, etc.). For example, in Listing 1-2, is the simple DOM test case that I use.

Listing 1-2: A reduced DOM test case for jQuery.

<script src="dist/jquery.js"></script>
<script>
$(document).ready(function(){
 $("#test").append("test");
});
</script>
<style>
#test { width: 100px; height: 100px; background: red; }
</style>
<div id="test"></div>

To generate a test, with a clean copy of the code base, I use a little shell script to check the library, copy
over the test case, and build the test suite, as shown in Listing 1-3.

Listing 1-3: A simple shell script used to generate a new test case.

#!/bin/sh
Check out a fresh copy of jQuery
svn co https://jqueryjs.googlecode.com/svn/trunk/jquery $1

Copy the dummy test case file in

Licensed to Alison Tyler <pedbro@gmail.com>

Testing and Debugging

10

cp $2.html $1/index.html

Build a copy of the jQuery test suite
cd $1 && make test

The above script would be run like so: ./gen.sh mytest dom (which would pull in the DOM test
case from dom.html).

Another alternative, entirely, is to use a pre-built service designed for creating simple test cases. One of
these services is JSBin (http://jsbin.com/), a simple tool for building a test case that then becomes available
at a unique URL - you can even include copies of some of the most popular JavaScript libraries, an example
of which is shown in Figure 1-2.

Figure 1-2: A screenshot of the JSBin web site in action.

With the tools and knowledge in place for figuring out how to reduce a test case we should start to build
a test suite around it so that it becomes easier to run these tests over-and-over again.

Building a Test Suite
The primary purpose of a test suite is to aggregate all the individual tests that your code base might have
into a single location, so that they can be run in bulk - providing a single resource that can be run easily
and repeatedly.

One would have to ask, though: Why would I want to build a new test suite? It's a good question. For most
cases it probably isn't necessary to write your own JavaScript test suite, there already exist a number of
good-quality suites to choose from:

• QUnit: http://docs.jquery.com/QUnit

• JSUnit: http://www.jsunit.net/

Licensed to Alison Tyler <pedbro@gmail.com>

http://jsbin.com/
http://docs.jquery.com/QUnit
http://www.jsunit.net/

Testing and Debugging

11

• YUI Test: http://developer.yahoo.com/yui/yuitest/

For the vast majority of use cases a JavaScript test suite should serve a single need: Display the result of
the tests (making it easy to determine which tests have passed or failed).

There are a number of features for which you might want to use a proper JavaScript unite testing
framework, those include:

• The ability to simulate browser behavior (clicks, keypresses, etc.)

• Interactive control of tests (pausing and resuming tests)

• Handling when asynchronous tests time out

• Filtering of tests to run

Although, if none of those features are ones that you need then I recommend writing your own unit testing
framework: It's surprisingly easy to do.

The core of a unit testing framework is the 'assert' method. This method takes a value and a description - if
the value is 'truth-y' then it passes, otherwise it is marked as a failure. The associated message is logged to a
list with the proper pass/fail indicator. A simple implementation of this concept can be seen in Listing 1-4.

Listing 1-4: A simple implementation of a JavaScript test suite.

<html>
<head>
 <title>Test Suite</title>
 <script>
 function assert(value, desc) {
 var li = document.createElement("li");
 li.className = value ? "pass" : "fail";
 li.appendChild(document.createTextNode(desc));
 document.getElementById("results").appendChild(li);
 }

 window.onload = function(){
 assert(true, "The test suite is running.");
 };
 </script>
 <style>
 #results li.pass { color: green; }
 #results li.fail { color: red; }
 </style>
</head>
<body>
 <ul id="results">
</body>
</html>

The above test suite is terribly simple - but it serves as a good building block for future development.
We'll be using the assert() method that we defined above throughout this book to test the individual code
listings, to verify their integrity.

Beyond simple testing of code the next important part of a testing framework is handling of asynchronous
operations.

Licensed to Alison Tyler <pedbro@gmail.com>

http://developer.yahoo.com/yui/yuitest/

Testing and Debugging

12

Asynchronous Testing
The first complicated step that most developers encounter, when using or developer a JavaScript test suite,
is handling asynchronous tests. These are tests whose results will come back after an indeterminate amount
of time (such as an Ajax test or an animation).

Often, handling this issue is made much more complicated than it need be. To handle asynchronous tests
you'll need to follow a couple steps:

1. Assertions that are relying upon the same asynchronous operation will need to be grouped into a
unifying 'test'.

2. Each test group will need to be placed on a queue to be run after all the previous test groups have
finished running.

3. Thus, each test group must be capable of run asynchronously.

An example implementation of this technique is shown in Listing 1-5.

Listing 1-5: A simple asynchronous test suite.

(function(){
 var queue = [], paused = false;

 this.test = function(fn){
 queue.push(fn);
 runTest();
 };

 this.pause = function(){
 paused = true;
 };

 this.resume = function(){
 paused = false;
 setTimeout(runTest, 1);
 };

 function runTest(){
 if (!paused && queue.length) {
 queue.shift()();
 if (!paused) {
 resume();
 }
 }
 }
})();

test(function(){
 pause();
 setTimeout(function(){
 assert(true, "First test completed");
 resume();
 }, 100);
});

Licensed to Alison Tyler <pedbro@gmail.com>

Testing and Debugging

13

test(function(){
 pause();
 setTimeout(function(){
 assert(true, "Second test completed");
 resume();
 }, 200);
});

To break down the functionality exposed in in Listing 1-5, there are three publicly accessible functions:
test, pause, and resume. These three functions have the following capabilities:

1. test(fn) takes a function (which contains a number of assertions which will be run either
synchronously or asynchronously), places it on the queue to await execution.

2. pause() should be called from within a test function and tells the test suite to pause executing tests
until the test group is done.

3. resume() un-pauses the tests and starts the next test running, after a short delay (this in place to avoid
long-running code blocks).

The one internal function, runTest, is called whenever a test is queued and dequeued. It checks to see if
the suite is currently un-paused and if there's something in the queue (if that's the case, then it'll dequeue
a test and try to execute it). Additionally, after the test group is finished executing it will check to see if
the suite is currently 'paused' and if not (meaning that only asynchronous tests were run in the test group)
it will begin executing the next group of tests.

Some of the techniques outlined above are explained better in the chapter on Timers, where much of the
nitty-gritty relating to delayed execution is gone into depth.

Summary
In this chapter we've looked at some of the basic technique surrounding debugging JavaScript code and
constructing simple test cases based upon those results. Building upon that we looked at how to construct
a simple test suite capable of handling asynchronous test cases - which we will be using throughout the
rest of the book to test the validity of the rest of the listings. Altogether this will serve as an important
cornerstone to the rest of your development with JavaScript.

Licensed to Alison Tyler <pedbro@gmail.com>

14

Chapter 3. Functions
In this chapter:

• Overview of the importance of functions

• Using functions as objects

• Context within a function

• Handling a variable number of arguments

• Determining the type of a function

The quality of all code that you'll ever write, in JavaScript, relies upon the realization that JavaScript is a
functional language. All functions, in JavaScript, are first-class: They can coexist with, and can be treated
like, any other JavaScript object.

One of the most important features of the JavaScript language is that you can create anonymous functions
at any time. These functions can be passed as values to other functions and be used as the fundamental
building blocks for reusable code libraries. Understanding how functions, and by extension anonymous
functions, work at their most fundamental level will drastically affect your ability to write clear, reusable,
code.

In this chapter we'll explore the various ways in which functions work, all the way from the absolute basics
(defining functions) to understanding the complex nature of function context and arguments.

Function Definition
While it's most common to define a function as a standalone object, to be accessed elsewhere within the
same scope, the definition of functions as variables, or object properties, is the most powerful means of
constructing reusable JavaScript code.

Let's take a look, in Listing 2-1, at some different ways of defining functions (one, the traditional way,
and two using anonymous functions):

Listing 2-1: Three different ways to define a function.

function isNimble(){ return true; }
var canFly = function(){ return true; };
window.isDeadly = function(){ return true; };
assert(isNimble() && canFly() && isDeadly(),
 "All are functions, all return true");

All those different means of definition are, at a quick glance, entirely equivalent (when evaluated within
the global scope - but we'll cover that in more detail, later). All of the functions are able to be called and
all behave as you would expect them to. However, things begin to change when you shift the order of the
definitions, as in Listing 2-2.

Listing 2-2: A look at how the location of function definition doesn't matter.

var canFly = function(){ return true; };
window.isDeadly = function(){ return true; };

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

15

assert(isNimble() && canFly() && isDeadly(),
 "Still works, even though isNimble is moved.");
function isNimble(){ return true; }

We're able to move the isNimble function because of a simple property of function definitions: No matter
where, within a scope, you define a function it will be accessible throughout. This is made incredibly
apparent in Listing 2-3:

Listing 2-3: Defining a function below a return statement.

function stealthCheck(){
 var ret = stealth() == stealth();
 assert(ret, "We'll never get below the return, but that's OK!")
 return true;
 function stealth(){ return true; }
}
stealthCheck();

In the above, stealth() will never be reached in the normal flow of code execution (since it's behind a
return statement). However, because it's specially privileged as a function it'll still be defined as we would
expect it to. Note that the other ways of defining the function (using anonymous functions) do not get this
benefit - they only exist after the point in the code at which they've been defined, as in Listing 2-4.

Listing 2-4: Types of function definition that can't be placed anywhere.

assert(typeof canFly == "undefined",
 "canFly doesn't get that benefit.");
assert(typeof isDeadly == "undefined", "Nor does isDeadly.");
var canFly = function(){ return true; };
window.isDeadly = function(){ return true; };

This is all very important as it begins to lay down the fundamentals for the naming, flow, and structure that
functional code can exist in - it also helps to establish the framework through which we can understand
anonymous functions.

Anonymous Functions and Recursion
Recursion is, generally speaking, a solved problem. When a function calls itself (from inside itself,
naturally) there is some level of recursion occurring. However, the solution becomes much less clear when
you begin dealing with anonymous functions, as in Listing 2-5.

Listing 2-5: Simple function recursion.

function yell(n){
 return n > 0 ? yell(n-1) + "a" : "hiy";
}
assert(yell(4) == "hiyaaaa",
 "Calling the function by itself comes naturally.");

A single named function works just fine, but what if we were to use anonymous functions, placed within
an object structure, like in Listing 2-6?

Listing 2-6: Function recursion within an object.

var ninja = {

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

16

 yell: function(n){
 return n > 0 ? ninja.yell(n-1) + "a" : "hiy";
 }
};
assert(ninja.yell(4) == "hiyaaaa",
 "A single object isn't too bad, either.");

This is all fine until we decide to create a new samurai object; duplicating the yell method from the ninja.
We can see how things start to break down, since the anonymous yell function, within the ninja object,
is still referencing the yell function from the ninja object. Thus, if the ninja variable is redefined we find
ourselves in a hard place, as seen in Listing 2-7.

Listing 2-7: Recursion using a function reference that no longer exists (using the code from Listing 2-6).

var samurai = { yell: ninja.yell };
var ninja = {};

try {
 samurai.yell(4);
} catch(e){
 assert("Uh, this isn't good! Where'd ninja.yell go?");
}

How can we work around this, making the yell method more robust? The most obvious solution is to
change all the instances of ninja, inside of the ninja.yell function, to 'this' (the generalized form of the
object itself). That would be one way, another way could be to give the anonymous function a name. This
may seem completely contradictory, but it works quite nicely, observe in Listing 2-8:

Listing 2-8: A named, anonymous, function.

var ninja = {
 yell: function yell(n){
 return n > 0 ? yell(n-1) + "a" : "hiy";
 }
};
assert(ninja.yell(4) == "hiyaaaa",
 "Works as we would expect it to!");

var samurai = { yell: ninja.yell };
var ninja = {};
assert(samurai.yell(4) == "hiyaaaa",
 "The method correctly calls itself.");

This ability to name an anonymous function extends even further. It can even be done in normal variable
assignments with, seemingly bizarre, results, like in Listing 2-9:

Listing 2-9: Verifying the identity of a named, anonymous, function.

var ninja = function myNinja(){
 assert(ninja == myNinja,
 "This function is named two things - at once!");
};
ninja();
assert(typeof myNinja == "undefined",
 "But myNinja isn't defined outside of the function.");

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

17

This brings up the most important point: Anonymous functions can be named but those names are only
visible within the functions themselves.

So while giving named anonymous functions may provide an extra level of clarity and simplicity, the
naming process is an extra step that we need to take in order to achieve that. Thankfully, we can circumvent
that entirely by using the callee property of the arguments object, as shown in Listing 2-10.

Listing 2-10: Using arguments.callee to reference a function itself.

var ninja = {
 yell: function(n){
 return n > 0 ? arguments.callee(n-1) + "a" : "hiy";
 }
};
assert(ninja.yell(4) == "hiyaaaa",
 "arguments.callee is the function itself.");

arguments.callee is available within every function (named or not) and can serve as a reliable way
to always access the function itself. Later on in this chapter, and in the chapter on closures, we'll take some
additional looks at what can be done with this particular property.

All together, these different techniques for handling anonymous functions will greatly benefit us as we
start to scale in complexity, providing us with an extra level of clarity and conciseness. Understanding the
object-oriented nature of functions in JavaScript helps to take this knowledge to the next level.

Functions as Objects
In JavaScript functions behave just like objects; they can have properties, they have an object prototype,
and generally have all the abilities of plain vanilla objects - the exception being that they are callable.

Let's look at some of the similarities and how they can be made especially useful. To start with, let's look
at the assignment of functions to a variable, in Listing 2-11.

Listing 2-11: Assigning a function to a variable.

var obj = {};
var fn = function(){};
assert(obj && fn, "Both the object and function exist.");

Note One thing that's important to remember is the semicolon after function(){}
definition. It's a good practice to have semicolons at the end of lines of code - especially
so after variable assignments. Doing so with anonymous functions is no exception.
When compressing your code (which will be discussed in the distribution chapter)
having thorough use of your semicolons will allow for greater flexibility in compression
techniques.

Now, just like with an object, we can attach properties to a function, like in Listing 2-12.

Listing 2-12: Attaching properties to a function.

var obj = {};
var fn = function(){};
obj.prop = "some value";
fn.prop = "some value";
assert(obj.prop == fn.prop,
 "Both are objects, both have the property.");

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

18

This aspect of functions can be used in a number of different ways throughout a library (especially so
when it comes to topics like event callback management). For now, let's look at some of more interesting
things that can be done.

Storing Functions
A challenge when storing a collection of unique functions is determining which functions are actually
new and need to be added (A solution to this is very useful for event callback management). An obvious
technique would be to store all the functions in an array and then loop through the array looking for
duplicate functions. However, this performs poorly and is impractical for most applications. Instead, we
can make good use of function properties to achieve an acceptable result, as in Listing 2-13.

Listing 2-13: Storing unique functions within a structure.

var store = {
 id: 1,
 cache: {},
 add: function(fn) {
 if (!fn.id) {
 fn.id = store.id++;
 return !!(store.cache[fn.id] = fn);
 }
 }
};

function ninja(){}
assert(store.add(ninja), "Function was safely added.");
assert(!store.add(ninja), "But it was only added once.");

In Listing 2-13, especially within the add function itself, we check to see if the incoming function already
has a unique id assigned to it (which is just an extra property that we could have added to the function,
previously). If no such property exists we then generate a unique id and attach it. Finally, we store the
function in the cache (we also return a boolean version of the function itself, if the addition was successful,
so that we have some way of externally determining its success).

Tip The !! construct is a simple way of turning any JavaScript expression into its
boolean equivalent. For example: !!"hello" === true and !!0 === false.
In the above example we end up converting a function (which will always be true) into
its boolean equivalent: true.

Another useful trick, that can be provided by function properties, is the ability of a function to modify
itself. This technique could be used to memorize previously-computed values; saving time with future
computations.

Self-Memoizing Functions
Memoization is the process of building a function which is capable of remembering its previously
computed answers. As a basic example, let's look at a simplistic algorithm for computing prime numbers.
Note how the function appears just like a normal function but has the addition of an answer cache to which
it saves, and retrieves, solved numbers, like in Listing 2-14.

Listing 2-14: A prime computation function which memorizes its previously-computed values.

function isPrime(num) {

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

19

 if (isPrime.answers[num] != null)
 return isPrime.answers[num];

 var prime = num != 1; // Everything but 1 can be prime
 for (var i = 2; i < num; i++) {
 if (num % i == 0) {
 prime = false;
 break;
 }
 }
 return isPrime.answers[num] = prime;
}
isPrime.answers = {};

assert(isPrime(5), "Make sure the function works, 5 is prime.");
assert(isPrime.answers[5], "Make sure the answer is cached.");

There are two advantages to writing a function in this manner: First, that the user gets the improved speed
benefits from subsequent function calls and secondly, that it happens completely seamlessly (the user
doesn't have to perform a special request or do any extra initialization in order to make it work). It should
be noted that any sort of caching will certainly sacrifice memory in favor of performance so should only
be used when absolutely needed

Let's take a look at a modern example, like in Listing 2-15. Querying for a set of DOM elements, by name,
is an incredibly common operation. We can take advantage of our new-found function property power by
building a cache that we can store the matched element sets in.

Listing 2-15: A simple example of using a self-caching function.

function getElements(name) {
 return getElements.cache[name] = getElements.cache[name] ||
 document.getElementsByTagName(name);
}
getElements.cache = {};

The code ends up being quite simple and doesn't add that much extra complexity to the overall querying
process. However, if were to do some performance analysis (the results shown in Table 2-1) upon it we
would find that this simple layer of caching yields us a 7x performance increase.

Table 2-1: All time in ms, for 1000 iterations, in a copy of Firefox 3.

Table 3.1.

Average Min Max Deviation

Original
getElements

12.58 12 13 0.50

Cached
getElements

1.73 1 2 0.45

Even without digging too deep the usefulness of function properties should be quite evident: We have all of
the state and caching information stored in a single location, gaining all the benefits of performance without
any extra storage or caching objects polluting the scope. We'll be revisiting this concept throughout the
upcoming chapters, as its applicability extends throughout the JavaScript language. Much of a function's
power is related to its context, which we'll explore next.

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

20

Context
A function's context is, simultaneously, one of its most powerful and confusing features. By having an
implicit 'this' variable be included within every function it gives you great flexibility for how the function
can be called and executed. There's a lot to understand about context - but understanding it well can make
a drastic improvement in the quality of your functional code.

To start, it's important to realize what that the function context represents: The object within which the
function is being executed. For example, defining a function within an object structure will ensure that its
context always refers to that object - unless otherwise overwritten, like in Listing 2-16:

Listing 2-16: Examining context within a function.

var katana = {
 isSharp: true,
 use: function(){
 this.isSharp = !this.isSharp;
 }
};
katana.use()
assert(!katana.isSharp,
 "Verify the value of isSharp has been changed.");

However, what about a function that isn't explicitly declared as a property of an object? Then the function's
context refers to the global object, as in Listing 2-17.

Listing 2-17: What context refers to within a function.

function katana(){
 this.isSharp = true;
}
katana();
assert(isSharp === true,
 "A global object now exists with that name and value.");

var shuriken = {
 toss: function(){
 this.isSharp = true;
 }
};
shuriken.toss();
assert(shuriken.isSharp === true,
 "It's an object property, the value is set within the object.");

All of this becomes quite important when we begin to deal with functions in a variety of contexts - knowing
what the context will represent affects the end result of your functional code.

Note In ECMAScript 3.1 strict mode a slight change has taken place: Just because a
function isn't defined as a property of an object doesn't meant that its context will be the
global object. The change is that a function defined within an other function will inherit
the context of the outer function. What's interesting about this is that it ends up affecting
very little code - having the context of inner functions default to the global object turned
out to be quite useless in practice (hence the change).

Now that we understand the basics of function context, it's time to dig deep and explore its most complex
usage: The fact that a function context can be redefined anytime that it's called.

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

21

JavaScript provides two methods (call and apply), on every function, that can be used to call the function,
define its context, and specify its incoming arguments, an example of which can be seen in Listing 2-18.

Listing 2-18: Modifying the context of a function, when call.

var object = {};
function fn(){
 return this;
}
assert(fn() == this, "The context is the global object.");
assert(fn.call(object) == object,
 "The context is changed to a specific object.");

The two methods are quite similar to each other, as to how they're used, but with a distinction: How they
set incoming argument values. Simply, .call() passes in arguments individually whereas .apply()
passes in arguments as an array, as shown in Listing 2-19.

Listing 2-19: Two methods of modifying a function's context.

function add(a, b){
 return a + b;
}
assert(add.call(this, 1, 2) == 3,
 ".call() takes individual arguments");
assert(add.apply(this, [1, 2]) == 3,
 ".apply() takes an array of arguments");

Let's look at some simple examples of this is used, practically, in JavaScript code.

Looping
The first example is that of using call to make an array looping function with a function callback. This is a
frequent addition to most JavaScript libraries. The result is a function that can help to simplify the process
of looping through an array, as in Listing 2-20.

Listing 2-20: Looping with a function callback.

function loop(array, fn){
 for (var i = 0; i < array.length; i++)
 if (fn.call(array, array[i], i) === false)
 break;
}
var num = 0;
loop([0, 1, 2], function(value, i){
 assert(value == num++,
 "Make sure the contents are as we expect it.");
});

The end result to this looping is, arguably, syntactically cleaner than a traditional for loop and can be of
great service for when you want to simplify the rote looping process. Additionally, the callback is always
able to access the original array via the 'this' context, regardless of its actual instantiation (so it even works
on anonymous arrays, like in the example above).

One thing that's especially important about the previous example is the use of a (typically anonymous)
function argument being called in response to some action - generally referred to as a 'callback.'

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

22

Callbacks are a staple of JavaScript libraries. Overwhelmingly, callbacks are related to asynchronous, or
indeterministic, behavior (such as a user clicking a button, an Ajax request completing, or some number
of values being found in an array). We'll see this pattern repeat again-and-again in user code.

Fake Array Methods
Let's pretend that we wanted to create an object that behaved similarly to an array (say, a collection of
aggregated DOM elements) but take on additional functionality not related to most arrays. One option
might be to create a new array every time you wish to create a new version of your objects and imbue
it with your desired properties and methods. Generally, however, this can be quite slow. Instead, let's
examine the possibility of using a normal object and just giving it the functionality that we desire. For
example in Listing 2-21:

Listing 2-21: Simulating array-like methods.

<input id="first"/><input id="second"/>
<script>
var elems = {
 find: function(id){
 this.add(document.getElementById(id));
 },
 length: 0,
 add: function(elem){
 Array.prototype.push.call(this, elem);
 }
};

elems.add("first");
assert(elems.length == 1 && elems[0].nodeType,
 "Verify that we have an element in our stash");

elems.add("second");
assert(elems.length == 2 && elems[1].nodeType,
 "Verify the other insertion");
</script>

A couple important aspect, to take note of, in this example. We're accessing a native object method
(Array.prototype.push) and are treating it just like any other function or method - by using
.call(). The most interesting part is the use of 'this' as the context. Normally, since a push method is
part of an array object, setting the context to any other object is treated as if it was an array. This means that
when we push this new element on to the current object, its length will be modified and a new numbered
property will exist containing the added item.

This behavior is almost subversive, in a way, but it's one that best exemplifies what we're capable of doing
with mutable object contexts and offers an excellent segue into discussing the complexities of dealing with
function arguments.

Variable Arguments
JavaScript, as a whole, is very flexible in what it can do and much of that flexibility defines the language,
as we know it, today. Incidentally, a powerful feature of a JavaScript function is its ability to accept any
number of arguments, this flexibility offers the developer great control over how their applications can
be written.

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

23

Let's take a look at a prime example of how we can use flexible arguments to our advantage.

Min/Max Number in an Array
Finding the smallest, or the largest, values contained within an array can be a tricky problem - there is no,
included, method for performing this action in the JavaScript language. This means that we'll have to write
our own, from scratch. At first glance it seems as if it might be necessary to loop through the contents of
the array in order to determine the correct numbers, however we have a trick up our sleeve. See, the call
and apply methods also exist as methods of built-in JavaScript functions - and some built-in methods are
able to take any number of arguments. In our case, the methods Math.min() and Math.max() are able
to take any number of arguments and find their appropriate values. Thus, if we were to use .apply() on
these methods then we'd be able to find the smallest, or largest, value within an array, in one fell swoop,
like in Listing 2-22:

Listing 2-22: A generic min and max function for arrays.

function smallest(array){
 return Math.min.apply(Math, array);
}
function largest(array){
 return Math.max.apply(Math, array);
}
assert(smallest([0, 1, 2, 3]) == 0, "Locate the smallest value.");
assert(largest([0, 1, 2, 3]) == 3, "Locate the largest value.");

Also note that we specify the context as being the Math object. This isn't necessary (the min and max
methods will continue to work regardless of what's passed in as the context) but there's no reason not to
be tidy in this situation.

Function Overloading
All functions are, also, provided access to an important local variable, arguments, which gives them
the power necessary to handle any number of provided arguments. Even if you only ask for - or expect - a
certain number of arguments you'll always be able to access all specified arguments with the arguments
variable.

Let's take a quick look at an example of effective overloading. In the following we're going to merge
the contents of multiple objects into a single, root, object. This can be an effective utility for performing
multiple inheritance (which we'll discuss more when we talk about Object Prototypes), an example of
which is shown in Listing 2-23.

Listing 2-23: Changing function actions based upon the arguments.

function merge(root){
 for (var i = 1; i < arguments.length; i++)
 for (var key in arguments[i])
 root[key] = arguments[i][key];
 return root;
}

var merged = merge({name: "John"}, {city: "Boston"});
assert(merged.name == "John", "The original name is intact.");
assert(merged.city == "Boston",
 "And the city has been copied over.");

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

24

Obviously this can be an effective mechanism for, potentially, complex methods. Let's take a look at
another example where the use of the arguments variable isn't so clean-cut. In the following example we're
building a function which multiplies the largest remaining argument by the first argument - a simple math
operation. We can gain an advantage by using the Math.max() technique that we used earlier, but there's
one small hitch: The arguments variable isn't a true array. Even thought it looks and feels like one it
lacks basic methods necessary to make this operation possible (like .slice()). Let's examine Listing
2-24 and see what we can do to make our desired result.

Listing 2-24: Handling a variable number of function arguments.

function multiMax(multi){
 return multi * Math.max.apply(Math,
 Array.prototype.slice.call(arguments, 1));
}
assert(multiMax(3, 1, 2, 3) == 9, "3*3=9 (First arg, by largest.)");

Here we use a technique, similar to the one we used with the Math.max() method, but allows us to use
native Array methods on the arguments variable - even though it isn't a true array. The important aspect
is that we want to find the largest value in everything but the first argument. The slice method allows us
to chop off that first argument, so by applying it via .call() to the arguments variable we can get
our desired result.

Function Length
There's an interesting property on all functions that can be quite powerful, when working with function
arguments. This isn't very well known, but all functions have a length property on them. This property
equates to the number of arguments that the function is expecting. Thus, if you define a function that
accepts a single argument, it'll have a length of 1, like in Listing 2-25:

Listing 2-25: Inspecting the number of arguments that a function is expecting.

function makeNinja(name){}
function makeSamurai(name, rank){}
assert(makeNinja.length == 1, "Only expecting a single argument");
assert(makeSamurai.length == 2, "Multiple arguments expected");

What's important about this technique, however, is that the length property will only represent the
arguments that are actually specified. Therefore if you specify the first argument and accept and additional,
variable, number of arguments then your length will still only be one (like in the multiMax method
shown above).

Incidentally, the function length property can be used to great effect in building a quick-and-dirty function
for doing simple method overloading. For those of you who aren't familiar with overloading, it's just a way
of mapping a single function call to multiple functions based upon the arguments they accept.

Let's look at Listing 2-26 which shows an example of the function that we would like to construct and
how we might use it:

Listing 2-26: An example of method overloading using the addMethod function from Listing 2-27.

function Ninjas(){
 var ninjas = ["Dean Edwards", "Sam Stephenson", "Alex Russell"];
 // addMethod is defined in Listing 2-27
 addMethod(this, "find", function(){
 return ninjas;
 });

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

25

 addMethod(this, "find", function(name){
 var ret = [];
 for (var i = 0; i < ninjas.length; i++)
 if (ninjas[i].indexOf(name) == 0)
 ret.push(ninjas[i]);
 return ret;
 });
 addMethod(this, "find", function(first, last){
 var ret = [];
 for (var i = 0; i < ninjas.length; i++)
 if (ninjas[i] == (first + " " + last))
 ret.push(ninjas[i]);
 return ret;
 });
}

var ninjas = new Ninjas();
assert(ninjas.find().length == 3, "Finds all ninjas");
assert(ninjas.find("Sam").length == 1,
 "Finds ninjas by first name");
assert(ninjas.find("Dean", "Edwards").length == 1,
 "Finds ninjas by first and last name");
assert(ninjas.find("Alex", "X", "Russell") == null, "Does nothing");

There's a couple things that we can determine about the functionality of addMethod. First, we can use
it to attach multiple functions to a single property - having it look, and behave, just like a normal method.
Second, depending on the number of arguments that are passed in to the method a different bound function
will be executed. Let's take a look at a possible solution, as shown in Listing 2-27:

Listing 2-27: A simple means of overloading methods on an object, based upon the specified arguments.

function addMethod(object, name, fn){
 var old = object[name];
 object[name] = function(){
 if (fn.length == arguments.length)
 return fn.apply(this, arguments)
 else if (typeof old == 'function')
 return old.apply(this, arguments);
 };
}

Let's dig in and examine how this function works. To start with, a reference to the old method (if there is
one) is saved and a new method is put in its place. We'll get into the particulars of how closures work, in the
next chapter, but suffice it to say that we can always access the old function within this newly bound one.

Next, the method does a quick check to see if the number of arguments being passed in matches the number
of arguments that were specified by the passed-in function. This is the magic. In our above example, when
we bound function(name){...} it was only expecting a single argument - thus we only execute
it when the number of incoming arguments matches what we expect. If the case arises that number of
arguments doesn't match, then we attempt to execute the old function. This process will continue until a
signature-matching function is found and executed.

This technique is especially nifty because all of these bound functions aren't actually stored in any typical
data structure - instead they're all saved as references within closures. Again, we'll talk more about this
in the next chapter.

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

26

It should be noted that there are some pretty caveats when using this particular technique:

• The overloading only works for different numbers of arguments - it doesn't differentiate based on type,
argument names, or anything else.

• All methods will have some function call overhead. Thus, you'll want to take that into consideration in
high performance situations.

Nonetheless, this function provides a good example of the potential usefulness of the function length
property, to great effect as well.

Function Type
To close out this look at functions I wanted to take a quick peek at a common cross-browser issue relating
to them. Specifically relating to how you determine if an object, or property, is actually a function that
you can call.

Typically, and overwhelmingly for most cases, the typeof statement is more than sufficient to get the
job done, for example in Listing 2-28:

Listing 2-28: A simple way of determining the type of a function.

function ninja(){}
assert(typeof ninja == "function",
 "Functions have a type of function");

This should be the de-facto way of checking if a value is a function, however there exist a few cases where
this is not so.

• Firefox 2 and 3: Doing a typeof on the HTML <object/> element yields an inaccurate "function" result
(instead of "object"), like so: typeof objectElem == "function".

• Firefox 2: A little known feature: You can call regular expressions as if they were functions, like
so: /test/("a test"). This can be useful, however it also means that typeof /test/ ==
"function" in Firefox 2 (was changed to "object" in 3).

• Internet Explorer: When attempting to find the type of a function that was part of another window (such
as an iframe) and no longer exists, its type will be reported as 'unknown'.

• Safari 3: Safari considers a DOM NodeList to be a function, like so: typeof
document.body.childNodes == "function"

Now, for these specific cases, we need a solution which will work in all of our target browsers, allowing
us to detect if those particular functions (and non-functions) report themselves correctly.

There's a lot of possible avenues for exploration here, unfortunately almost all of the techniques end up
in a dead-end. For example, we know that functions have an apply() and call() method - however
those methods don't exist on Internet Explorers problematic functions. One technique, however, that does
work fairly well is to convert the function to a string and determine its type based upon its serialized value,
for example in Listing 2-29:

Listing 2-29: A more complex, but more resistant, way of determining if a value is a function.

function isFunction(fn) {
 return Object.prototype.toString.call(fn) ===
 "[object Function]";

Licensed to Alison Tyler <pedbro@gmail.com>

Functions

27

}

Now this function isn't perfect, however in situations (like the above), it'll pass all the cases that we need,
giving us a correct value to work with. There is one notable exception, however: Internet Explorer reports
methods of DOM elements with a type of "object", like so: typeof domNode.getAttribute ==
"object" and typeof inputElem.focus == "object" - this particular technique does not
cover this case.

The implementation of the function requires a little bit of magic, in order to make it work correctly. We
start by accessing the internal toString method of the Object.prototype this particular method, by
default, is designed to return a string that represents the internal representation of the object (such as a
Function or String). Using this method we can then call it against any object to access its true type (this
technique expands beyond just determining if something is a function and also works for Strings, RegExp,
Date, and other objects).

The reason why we don't just call fn.toString() to try and get this result is two-fold: 1) Individual
objects are likely to have their own toString implementation and 2) Most types in JavaScript already have
a pre-defined toString that overrides the method provided by Object.prototype. By accessing this
internal method directly we can end up with the exact information that we need.

This is just a quick taste of the strange world of cross-browser scripting. While it can be quite challenging
the result is always rewarding: Allowing you to painlessly write cross browser applications with little
concern for the painful minutia.

Summary
In this chapter we took a look at various, fascinating, aspects of how functions work in JavaScript. While
their use is completely ubiquitous, understanding of their inner-workings is essential to the writing of high-
quality JavaScript code.

Specifically, within this chapter, we took a look at different techniques for defining functions (and how
different techniques can benefit clarity and organization). We also examined how recursion can be a
tricky problem, within anonymous functions, and looked at how to solve it with advanced properties like
arguments.callee. Then we explored the importance of treating functions like objects; attaching
properties to them to store additional data and the benefits of doing such. We also worked up an
understanding of how function context works, and can be manipulated using apply and call. We then
looked at a number of examples of using a variable number of arguments, within functions, in order to
make them more powerful and useful. Finally, we closed with an examination of cross-browser issues that
relate to functions.

In all, it was a thorough examination of the fundamentals of advanced function usage that gives us a great
lead-up into understanding closures, which we'll do in the next chapter.

Licensed to Alison Tyler <pedbro@gmail.com>

28

Chapter 4. Closures
In this chapter:

• The basics of how closures work

• Using closures to simplify development

• Improving the speed of code using closures

• Fixing common scoping issues with closures

Closures are one of the defining features of JavaScript. Without them, JavaScript would likely be another
hum-drum scripting experience, but since that's not the case, the landscape of the language is forever
shaped by their inclusion.

Traditionally, closures have been a feature of purely functional programming languages and having them
cross over into mainstream development has been particularly encouraging, and enlightening. It's not
uncommon to find closures permeating JavaScript libraries, and other advanced code bases, due to their
ability to drastically simplify complex operations.

How closures work
Simply: A closure is a way to access and manipulate external variables from within a function. Another
way of imagining it is the fact that a function is able to access all the variables, and functions, declared in
the same scope as itself. The result is rather intuitive and is best explained through code, like in Listing 3-1.

Listing 3-1: A few examples of closures.

var outerValue = true;

function outerFn(arg1){
 var innerValue = true;

 assert(outerFn && outerValue, "These come from the closure.");
 assert(typeof otherValue === "undefined",
 "Variables defined late are not in the closure.");

 function innerFn(arg2){
 assert(outerFn && outerValue,
 "These still come from the closure.");
 assert(innerFn && innerValue && arg1,
 "All from a closure, as well.");
 }

 innerFn(true);
}

outerFn(true);

var otherValue = true;

assert(outerFn && outerValue,
 "Globally-accessible variables and functions.");

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

29

Note that Listing 3-1 contains two closures: function outerFn() includes a closured reference to itself
and the variable outerValue. function innerFn() includes a closured reference to the variables
outerValue, innerValue, and arg1 and references to the functions outerFn() and innerFn().

It's important to note that while all of this reference information isn't immediately visible (there's no
"closure" object holding all of this information, for example) there is a direct cost to storing and referencing
your information in this manner. It's important to remember that each function that accesses information
via a closure immediately has at "ball and chain," if you will, attached to them carrying this information.
So while closures are incredibly useful, they certainly aren't free of overhead.

Private Variables
One of the most common uses of closures is to encapsulate some information as a "private variable," of
sorts. Object-oriented code, written in JavaScript, is unable to have traditional private variables (properties
of the object that are hidden from outside uses). However, using the concept of a closure, we can arrive
at an acceptable result, as in Listing 3-2.

Listing 3-2: An example of keeping a variable private but accessible via a closure.

function Ninja(){
 var slices = 0;

 this.getSlices = function(){
 return slices;
 };
 this.slice = function(){
 slices++;
 };
}

var ninja = new Ninja();
ninja.slice();
assert(ninja.getSlices() == 1,
 "We're able to access the internal slice data.");
assert(ninja.slices === undefined,
 "And the private data is inaccessible to us.");

In Listing 3-2 we create a variable to hold our state, slices. This variable is only accessible from within
the Ninja() function (including the methods getSlices() and slice()). This means that we can
maintain the state, within the function, without letting it be directly accessed by the user.

Callbacks and Timers
Another one of the most beneficial places for using closures is when you're dealing with callbacks or
timers. In both cases a function is being called at a later time and within the function you have to deal with
some, specific, outside data. Closures act as an intuitive way of accessing data, especially when you wish
to avoid creating extra variables just to store that information. Let's look at a simple example of an Ajax
request, using the jQuery JavaScript Library, in Listing 3-3.

Listing 3-3: Using a closure from a callback in an Ajax request.

<div></div>
<script src="jquery.js"></script>
<script>
var elem = jQuery("div");

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

30

elem.html("Loading...");

jQuery.ajax({
 url: "test.html",
 success: function(html){
 assert(elem, "The element to append to, via a closure.");
 elem.html(html);
 }
});
</script>

There's a couple things occurring in Listing 3-3. To start, we're placing a loading message into the div to
indicate that we're about to start an Ajax request. We have to do the query, for the div, once to edit its
contents - and would typically have to do it again to inject the contents when the Ajax request completed.
However, we can make good use of a closure to save a reference to the original jQuery object (containing
a reference to the div element), saving us from that effort.

Listing 3-4 has a slightly more complicated example, creating a simple animation.

Listing 3-4: Using a closure from a timer interval.

<div id="box" style="position:absolute;">Box!</div>
<script>
var elem = document.getElementById("box");
var count = 0;

var timer = setInterval(function(){
 if (count < 100) {
 elem.style.left = count + "px";
 count++;
 } else {
 assert(count == 100,
 "Count came via a closure, accessed each step.");
 assert(timer, "The timer reference is also via a closure.");
 clearInterval(timer);
 }
}, 10);
</script>

What's especially interesting about the Listing 3-4 is that it only uses a single (anonymous) function
to accomplish the animation, and three variables, accessed via a closure. This structure is particularly
important as the three variables (the DOM element, the pixel counter, and the timer reference) all must be
maintained across steps of the animation. This example is a particularly good one in demonstrating how
the concept of closures is capable of producing some surprisingly intuitive, and concise, code.

Now that we've had a good introduction, and inspection, into closures, let's take a look at some of the other
ways in which they can be applied.

Enforcing Function Context
Last chapter, when we discussed function context, we looked at how the .call() and .apply()
methods could be used to manipulate the context of a function. While this manipulation can be incredibly
useful, it can also be, potentially, harmful to object-oriented code. Observe Listing 3-5 in which an object
method is bound to an element as an event listener.

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

31

Listing 3-5: Binding a function, with a specified context, to an element.

<button id="test">Click Me!</button>
<script>
var Button = {
 click: function(){
 this.clicked = true;
 }
};

var elem = document.getElementById("test");
elem.addEventListener("click", Button.click, false);
trigger(elem, "click");
assert(elem.clicked,
 "The clicked property was accidentally set on the element");
</script>

Now, Listing 3-5 fails because the 'this' inside of the click function is referring to whatever context
the function currently has. While we intend it to refer to the Button object, when it's re-bound to
another object context the clicked property is transferred along with it. In this particular example
addEventListener redefines the context to be the target element, which causes us to bind the
clicked property to the wrong object.

Now, there's a way around this. We can enforce a particular function to always have our desired context,
using a mix of anonymous functions, .apply(), and closures. Observe Listing 3-6 - same as Listing 3-5
- but actually working with our desired result, now.

Listing 3-6: An alternative means of enforcing function context when binding a function.

<button id="test">Click Me!</button>
<script>
function bind(context, name){
 return function(){
 return context[name].apply(context, arguments);
 };
}

var Button = {
 click: function(){
 this.clicked = true;
 }
};

var elem = document.getElementById("test");
elem.addEventListener("click", bind(Button, "click"), false);
trigger(elem, "click");
assert(Button.clicked,
 "The clicked property was set on our object");
</script>

The secret here is the new bind() method that we're using. This method is designed to create - and
return a new function which will continually enforce the context that's been specified. This particular
function makes the assumption that we're going to be modifying an existing method (a function attached
as a property to an object). With that assumption, we only need to request two pieces of information: The
object which contains the method (whose context will be enforced) and the name of the method.

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

32

With this information we create a new, anonymous, function and return it as the result. This particular
function uses a closure to encapsulate the context and method name from the original method call. This
means that we can now use this new (returned) function in whatever context we wish, as its original context
will always be enforced (via the .apply() method).

The bind() function, above, is a simple version of the function popularized by the Prototype JavaScript
Library. Prototype promotes writing your code in a clean, classicial-style, object-oriented way. Thus, most
object methods have this particular "incorrect context" problem when re-bound to another object. The
original version of the method looks something like the code in Listing 3-7.

Listing 3-7: An example of the function binding code used in the Prototype library.

Function.prototype.bind = function(){
 var fn = this, args = Array.prototype.slice.call(arguments),
 object = args.shift();

 return function(){
 return fn.apply(object,
 args.concat(Array.prototype.slice.call(arguments)));
 };
};

var myObject = {};
function myFunction(){
 return this == myObject;
}

assert(!myFunction(), "Context is not set yet");

var aFunction = myFunction.bind(myObject)
assert(aFunction(), "Context is set properly");

Note that this method is quite similar to the function implemented in Listing 3-7, but with a couple, notable,
additions. To start, it attaches itself to all functions, rather than presenting itself as a globally-accessible
function. You would, in turn, use the function like so: myFunction.bind(myObject). Additionally,
with this method, you are able to bind arguments to the anonymous function. This allows you to pre-specify
some of the arguments, in a form of partial function application (which we'll discuss in the next section).

It's important to realize that .bind() isn't meant to be a replacement for methods like .apply() or
.call() - this is mostly due to the fact that its execution is delayed, via the anonymous function and
closure. However, this important distinction makes them especially useful in the aforementioned situations:
event handlers and timers.

Partially Applying Functions
Partially applying a function is a, particularly, interesting technique in which you can pre-fill-in arguments,
to a function, before it is ever executed. In effect, partially applying a function returns a new function
which you can call. This is best understood through an example, as in Listing 3-8.

Listing 3-8: Partially applying arguments to a native function (using the code from Listing 3-10).

String.prototype.csv = String.prototype.split.partial(/,\s*/);

var results = ("John, Resig, Boston").csv();
assert(results[1] == "Resig",

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

33

 "The text values were split properly");

In Listing 3-8 we've taken a common function - a String's .split() method - and have pre-filled-in
the regular expression upon which to split. The result is a new function, .csv() that we can call at any
point to convert a list of comma-separated values into an array. Filling in the first couple arguments of a
function (and returning a new function) is typically called currying. With that in mind, let's look at how
the curry method is, roughly, implemented in the Prototype library, in Listing 3-9.

Listing 3-9: An example of a curry function (filling in the first specified arguments).

Function.prototype.curry = function() {
 var fn = this, args = Array.prototype.slice.call(arguments);
 return function() {
 return fn.apply(this, args.concat(
 Array.prototype.slice.call(arguments)));
 };
};

This is a good example of using a closure to remember state. In this case we want to remember the
arguments that were pre-filled-in (args) and transfer them to the newly-constructed function. This new
function will have the filled-in arguments and the new arguments concat'd together and passed in. The
result is a method that allows us to fill in arguments, giving us a new function that we can use.

Now, this style of partial function application is perfectly useful, but we can do better. What if we wanted
to fill in any missing argument from a given function - not just the first ones. Implementations of this
style of partial function application have existed in other languages but Oliver Steele was one of the first
to demonstrate it with his Functional.js (http://osteele.com/sources/javascript/functional/) library. Listing
3-10 has a possible implementation.

Listing 3-10: An example of a more-complex partial application function (filling in the specified
arguments, leaving undefined arguments blank).

Function.prototype.partial = function(){
 var fn = this, args = Array.prototype.slice.call(arguments);
 return function(){
 var arg = 0;
 for (var i = 0; i < args.length && arg < arguments.length; i++)
 if (args[i] === undefined)
 args[i] = arguments[arg++];
 return fn.apply(this, args);
 };
};

This implementation is fundamentally similar to the .curry() method, but has a couple important
differences. Notably, when called, the user can specify arguments that will be filled in later by specifying
undefined, for it. To accommodate this we have to increase the ability of our arguments-merging
technique. Effectively, we have to loop through the arguments that are passed in and look for the
appropriate gaps, filling in the missing pieces that were specified.

We already had the example of constructing a string splitting function, above, but let's look at some other
ways in which this new functionality could be used. To start we could construct a function that's able to
be easily delayed, like in Listing 3-11.

Listing 3-11: Using partial application on a timer function.

var delay = setTimeout.partial(undefined, 10);

Licensed to Alison Tyler <pedbro@gmail.com>

http://osteele.com/sources/javascript/functional/

Closures

34

delay(function(){
 assert(true,
 "A call to this function will be temporarily delayed.");
});

This means that we now have a new function, named delay, which we can pass another function in to,
at any time, to have it be called asynchronously (after 10 milliseconds).

We could, also create a simple function for binding events, as in Listing 3-12.

Listing 3-12: Using partial application on event binding.

var bindClick = document.body.addEventListener
 .partial("click", undefined, false);

bindClick(function(){
 assert(true, "Click event bound via curried function.");
});

This technique could be used to construct simple helper methods for event binding in a library. The
result would be a simpler API where the end-user wouldn't be inconvenienced by unnecessary function
arguments, reducing them to a single function call with the partial application.

In the end we've used closures to easily, and simply, reduce the complexity of some code, easily
demonstrating some of the power that functional JavaScript programming has.

Overriding Function Behavior
A fun side effect of having so much control over how functions work, in JavaScript, is that you can
completely manipulate their internal behavior, unbeknownst to the user. Specifically there are two
techniques: The modification of how existing functions work (no closures needed) and the production of
new self-modifying functions based upon existing static functions.

Memoization
Memoization is the process of building a function which is capable of remembering its previously
computed answers. As we demonstrated in the chapter on functions, it's pretty straight-forwards
implementing these into an existing function. However, we don't always have access to the functions that
we need to optimize.

Let's examine a method, .memoized(), in Listing 3-13 that we can use to remember return values from
an existing function. There are no closures involved here, only functions.

Listing 3-13: An example of function value memoization.

Function.prototype.memoized = function(key){
 this._values = this._values || {};
 return this._values[key] !== undefined ?
 this._values[key] :
 this._values[key] = this.apply(this, arguments);
};

function isPrime(num) {
 var prime = num != 1;

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

35

 for (var i = 2; i < num; i++) {
 if (num % i == 0) {
 prime = false;
 break;
 }
 }
 return prime;
}

assert(isPrime.memoized(5),
 "Make sure the function works, 5 is prime.");
assert(isPrime._values[5], "Make sure the answer is cached.");

We're using the same isPrime() function from when we talked about functions - it's still painfully slow
and awkward, making it a prime candidate for memoization.

Our ability to introspect into an existing function is limited. However, by adding a new .memoized()
method we do have the ability to modify and attach properties that are associated with the function itself.
This allows us to create a data store (._values) in which all of our pre-computed values can be saved.
This means that the first time the .memoized() method is called, looking for a particular value, a result
will be computed and stored from the originating function. However upon subsequent calls that value will
be saved and be returned immediately.

Let's walk through the .memoized() method and examine how it works.

To start, before doing any computation or retrieval of values, we must make sure that a data store exists
and that it is attached to the parent function itself. We do this via a simple short-circuiting:

this._values = this._values || {};

If the computed values already exist, then just re-save that reference to the property, otherwise create the
new data store (an object) and save that to the function property.

To retrieve the value we have to look into the data store and see if anything exists and, if not, compute and
save the value. What's interesting about the above code is that we do the computation and the save in a
single step. The value is computed with the .apply() call to the function and is saved directly into the
data store. However, this statement is within the return statement meaning that the resulting value is also
returned from the parent function. So the whole chain of events: computing the value, saving the value,
returning the value is done within a single logical unit of code.

Now that we have a method for memoizing the values coming in-and-out of an existing function let's
explore how we can use closures to produce a new function, capable of having all of its function calls be
memoized, in Listing 3-14.

Listing 3-14: A different technique for building a memoized function (using the code from Listing 3-13).

Function.prototype.memoize = function(){
 var fn = this;
 return function(){
 return fn.memoized.apply(fn, arguments);
 };
};

var isPrime = (function(num) {
 var prime = num != 1;
 for (var i = 2; i < num; i++) {

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

36

 if (num % i == 0) {
 prime = false;
 break;
 }
 }
 return prime;
}).memoize();

assert(isPrime(5), "Make sure the function works, 5 is prime.");
assert(isPrime._values[5], "Make sure the answer is cached.");

Listing 3-14 builds upon our previous .memoized() method constructing a new method:
.memoize(). This method returns a function which, when called, will always be the memoized results
of the original function.

Note that within the .memoize() method we construct a closure remembering the original function that
we want to memoize. By remembering this function we can return a new function which will always call
our, previously constructed, .memoized() method; giving us the appearance of a normal, memoized,
function.

In Listing 3-14 we show a, comparatively, strange case of defining a new function, when we define
isPrime(). Since we want isPrime to always be memoized we need to construct a temporary function
whose results won't be memoized (much like what we did in the first example - but in a temporary fashion).
We take this anonymous, prime-figuring, function and memoize it immediately, giving us a new function
which is assigned to the isPrime name. We'll discuss this construct, in depth, in the (function()
{})() section. Note that, in this case, it is impossible to compute if a number is prime in a non-memoized
fashion. Only a single isPrime function exists and it completely encapsulates the original function,
hidden within a closure.

Listing 3-14 is a good demonstration of obscuring original functionality via a closure. This can be
particularly useful (from a development perspective) but can also be crippling: If you obscure too much of
your code then it becomes unextendable, which can be undesirable. However, hooks for later modification
often counter-act this. We'll discuss this matter in depth throughout the book.

Function Wrapping
Function wrapping is a means of encapsulating the functionality of a function, and overwriting it, in a
single step. It is best used when you wish to override some previous behavior of a function, while still
allowing certain use-cases to still execute. The use is best demonstrated when implementing pieces of
cross-browser code, like in Listing 3-15 from Prototype:

Listing 3-15: Wrapping an old function with a new piece of functionality.

function wrap(object, method, wrapper){
 var fn = object[method];
 return object[method] = function(){
 return wrapper.apply(this, [fn.bind(this)].concat(
 Array.prototype.slice.call(arguments)));
 };
}

// Example adapted from Prototype
if (Prototype.Browser.Opera) {
 wrap(Element.Methods, "readAttribute", function(orig, elem, attr){
 return attr == "title" ?

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

37

 elem.title :
 orig(elem, attr);
 });
}

The wrap() function overrides an existing method (in this case readAttribute) replacing it with
a new function. However, this new function still has access to the original functionality (in the form of
the original argument) provided by the method. This means that a function can be safely overriden
without any loss of functionality.

In Listing 3-15 the Prototype library is using the wrap function to implement a piece of browser-specific
functionality. Specifically they're attempting to work around some bug with Opera's implementation of
accessing title attributes. Their technique is interesting, as opposed to having a large if/else block within
their readAttribute function (debatably messy and not a good separation of concerns) they, instead,
opt to completely override the old method, simply implementing this fix, and deferring the rest of the
functionality back to the original function. As with the previous example, in which we overwrote, and
encapsulated, the isPrime function, so we are doing here, using a closure.

Let's dig in to how the wrap() function works. To start we save a reference to the original method in fn,
which we'll access later via the anonymous function's closure. We then proceed to overwrite the method
with our new function. This new function will execute our wrapper function (brought to us via a closure)
and pass in our desired arguments. Notably, however, the first argument is the original function that we're
overriding. Additionally, the function's context has been overridden using our previously-implemented
.bind() method, enforcing its context to be the same as the wrapper's.

The full result is a reusable function that we can use to override existing functionality of object methods
in an unobtrusive manner, all making efficient use of closures.

(function(){})()
So much of advanced JavaScript, and the use of closures, centers around one simple construct:
(function(){})(). This single piece of code is incredibly versatile and ends up giving the JavaScript
language a ton of unforeseen power. Since the syntax is a little strange, let's deconstruct what's going on.

First, let's examine the use of (...)(). We know that we can call a function using the
functionName() syntax. In this case the extra set of parentheses sort of hides us from whatever is
inside of it. In the end we just assume that whatever is in there will be a reference to a function and executed.
For example, the following is also valid: (functionName)(). Thus, instead of providing a reference
to an existing function, we provide an anonymous function, creating: (function(){})().

The result of this code is a code block which is instantly created, executed, and discarded. Additionally,
since we're dealing with a function that can have a closure, we also have access to all outside variables. As it
turns out, this simple construct ends up becoming immensely useful, as we'll see in the following sections.

Temporary Scope and Private Variables
Using the executed anonymous function we can start to build up interesting enclosures for our work. Since
the function is executed immediately, and all the variables inside of it are kept inside of it, we can use this
to create a temporary scope within which our state can be maintained, like in Listing 3-16.

Remember Variables in JavaScript are scoped to the function within which they were
defined. By creating a temporary function we can use this to our advantage and create
a temporary scope for our variables to live in.

Listing 3-16: Creating a temporary enclosure for persisting a variable.

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

38

(function(){
 var numClicks = 0;

 document.addEventListener("click", function(){
 alert(++numClicks);
 }, false);
})();

Since the above anonymous function is executed immediately the click handler is also bound right away.
Additionally, a closure is created allowing the numClicks variable to persist with the handler. This is the
most common way in which executed anonymous functions are used, just as a simple wrapper. However
it's important to remember that since they are functions they can be used in interesting ways, like in Listing
3-17.

Listing 3-17: An alternative to the example in Listing 3-16, returning a value from the enclosure.

document.addEventListener("click", (function(){
 var numClicks = 0;

 return function(){
 alert(++numClicks);
 };
})(), false);

This is a, debatably, more complicated version of our first example in Listing 3-16. In this case we're,
again, creating an executed anonymous function but this time we return a value from it. Since this is just
like any other function that value is returned and passed along to the addEventListener method.
However, this function that we've created also gets the necessary numClicks variable via its closure.

This technique is a very different way of looking at scope. In most languages you can scope things based
upon the block which they're in. In JavaScript variables are scope based upon the function they're in.
However, with this simple construct, we can now scope variables to block, and sub-block, levels. The
ability to scope some code to a unit as small as an argument within a function call is incredibly powerful
and truly shows the flexibility of the language.

Listing 3-18 has a quick example from the Prototype JavaScript library:

Listing 3-18: Using the anonymous function wrapper as a variable shortcut.

(function(v) {
 Object.extend(v, {
 href: v._getAttr,
 src: v._getAttr,
 type: v._getAttr,
 action: v._getAttrNode,
 disabled: v._flag,
 checked: v._flag,
 readonly: v._flag,
 multiple: v._flag,
 onload: v._getEv,
 onunload: v._getEv,
 onclick: v._getEv,
 ...
 });
})(Element._attributeTranslations.read.values);

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

39

In this case they're extending an object with a number of new properties and methods. In that code they
could've created a temporary variable for Element._attributeTranslations.read.values
but, instead, they chose to pass it in as the first argument to the executed anonymous function. This means
that the first argument is now a reference to this data structure and is contained within this scope. This
ability to create temporary variables within a scope is especially useful once we start to examine looping.

Loops
One of the most useful applications of executed anonymous functions is the ability to solve a nasty issue
with loops and closures. Listing 3-19 has a common piece of problematic code:

Listing 3-19: A problematic piece of code in which the iterator is not maintained in the closure.

<div></div>
<div></div>
<script>
var div = document.getElementsByTagName("div");
for (var i = 0; i < div.length; i++) {
 div[i].addEventListener("click", function(){
 alert("div #" + i + " was clicked.");
 }, false);
}
</script>

In Listing 3-19 we encounter a common issue with closures and looping, namely that the variable that's
being enclosed (i) is being updated after the function is bound. This means that every bound function
handler will always alert the last value stored in i (in this case, '2'). This is due to the fact that closures
only remember references to variables - not their actual values at the time at which they were called. This
is an important distinction and one that trips up a lot of people.

Not to fear, though, as we can combat this closure craziness with another closure, like in Listing 3-20.

Listing 3-20: Using an anonymous function wrapper to persist the iterator properly.

<div></div>
<div></div>
<script>
var div = document.getElementsByTagName("div");
for (var i = 0; i < div.length; i++) (function(i){
 div[i].addEventListener("click", function(){
 alert("div #" + i + " was clicked.");
 }, false);
})(i);
</script>

Using this executed anonymous function as a wrapper for the for loop (replacing the existing {...}
braces) we can now enforce that the correct value will be enclosed by these handlers. Note that, in order to
achieve this, we pass in the iterator value to the anonymous function and then re-declare it in the arguments.
This means that within the scope of each step of the for loop the i variable is defined anew, giving our
click handler closure the value that it expects.

Library Wrapping
The final concept that closures, and executed anonymous functions, encapsulate is an important one to
JavaScript library development. When developing a library it's incredibly important that you don't pollute

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

40

the global namespace with unnecessary variables, especially ones that are only temporarily used. This is
a point at which the executed anonymous functions can be especially useful: Keep as much of the library
private as possible and only selectively introduce variables into the global namespace. The jQuery library
actually does a good job of this, completely enclosing all of its functionality and only introducing the
variables it needs, like jQuery, in Listing 3-21.

Listing 3-21: Placing a variable outside of a function wrapper.

(function(){
 var jQuery = window.jQuery = function(){
 // Initialize
 };

 // ...
})();

Note that there are two assignments done here, this is intentional. First, the jQuery constructor is assigned
to window.jQuery in an attempt to introduce it as a global variable. However, that does not guarantee
that that variable will be the only named jQuery within our scope, thus we assign it to a local variable,
jQuery, to enforce it as such. That means that we can use the jQuery function name continuously
within our library while, externally, someone could've re-named the global jQuery object to something
else. Since all of the functions and variables that are required by the library are nicely encapsulated it ends
up giving the end user a lot of flexibility in how they wish to use it.

However, that isn't the only way in which that type of definition could be done, another is shown in Listing
3-22.

Listing 3-22: An alternative means of putting a variable in the outer scope.

var jQuery = (function(){
 function jQuery(){
 // Initialize
 }

 // ...

 return jQuery;
})();

The code in Listing 3-22 would have the same effect as what was shown in the Listing 3-21, but structured
in a different manner. Here we define a jQuery function within our anonymous scope, use it and define it,
then return it back out the global scope where it is assigned to a variable, also named jQuery. Oftentimes
this particular technique is preferred, if you're only exporting a single variable, as it's clearer as to what
the result of the function is.

In the end a lot of this is left to developer preference, which is good, considering that the JavaScript
language gives you all the power you'll need to make any particular application structure happen.

Summary
In this chapter we dove in to how closures work in JavaScript. We started with the basics, looking at how
they're implemented and then how to use them within an application. We looked at a number of cases
where closures were particularly useful, including the definition of private variables and in the use of
callbacks and timers. We then explored a number of advanced concepts in which closures helped to sculpt
the JavaScript language including forcing function context, partially applying functions, and overriding

Licensed to Alison Tyler <pedbro@gmail.com>

Closures

41

function behavior. We then did an in-depth exploration of the (function(){})() construct which,
as we learned, has the power to re-define how the language is used. In total, understanding closures will
be an invaluable asset when developing complex JavaScript applications and will aid in solving a number
of common problems that we encounter.

Licensed to Alison Tyler <pedbro@gmail.com>

42

Chapter 5. Function Prototypes
In this chapter:

• Examining function instantiation

• Exploring function prototypes

• A number of common gotchas

• A full system for building classes and doing inheritance

Function prototypes are a convenient way to quickly attaching properties to an instance of a function. It can
be used for multiple purposes, the primary of which is as an enhancement to Object-Oriented programming.
Prototypes are used throughout JavaScript as a convenient means of carrying functionality, applying it to
instances of objects. The predominant use of prototypes is in producing a classical-style form of Object-
Oriented code and inheritance.

Instantiation and Prototypes
All functions have a prototype property which, by default, contains an empty object. This property
doesn't serve a purpose until the function is instantiated. In order to understand what it does it's important
to remember the simple truth about JavaScript: Functions serve a dual purpose. They can behave both as
a regular function and as a "class" (where they can be instantiated).

Instantiation
Let's examine the simplest case of using the prototype property to add functionality to an instance of a
function, in Listing 4-1.

Listing 4-1: Creating an instance of an function that has a prototyped method.

function Ninja(){}

Ninja.prototype.swingSword = function(){
 return true;
};

var ninja1 = Ninja();
assert(ninja1 === undefined,
 "Is undefined, not an instance of Ninja.");

var ninja2 = new Ninja();
assert(ninja2.swingSword(), "Method exists and is callable.");

There's two points to learn from Listing 4-1: First that in order to produce an instance of a function
(something that's an object, has instance properties, and has prototyped properties) you have to call the
function with the new operator. Second we can see that the swingSword function has now become a
property of the ninja2 Ninja instance.

In some respects the base function (in this case, Ninja) could be considered a "constructor" (since it's
called whenever the new operator is used upon it). This also means that when the function is called with

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

43

the new operator it's this context is equal to the instance of the object itself. Let's examine this a little
bit more in Listing 4-2.

Listing 4-2: Extending an object with both a prototyped method and a method within the constructor
function.

function Ninja(){
 this.swung = false;

 // Should return true
 this.swingSword = function(){
 return !this.swung;
 };
}

// Should return false, but will be overridden
Ninja.prototype.swingSword = function(){
 return this.swung;
};

var ninja = new Ninja();
assert(ninja.swingSword(),
 "Calling the instance method, not the prototype method.");

In Listing 4-2 we're doing an operation very similar to the previous example: We add a new method by
adding it to the prototype property. However, we also add a new method within the constructor function
itself. The order of operations is as such:

1. Properties are bound to the object instance from the prototype.

2. Properties are bound to the object instance within the constructor function.

This is why the swingSword function ends up returning true (since the binding operations within the
constructor always take precedence). Since the this context, within the constructor, refers to the instance
itself we can feel free to modify it until our heart's content.

An important thing to realize about a function's prototype is that, unlike instance properties which are
static, it will continue to update, live, as its changed - even against all existing instance of the object. For
example if we were to take some of the code in Listing 4-2 and re-order it, it would still work as we would
expect it to, as shown in Listing 4-3.

Listing 4-3: The prototype continues to update instance properties live even after they've already been
created.

function Ninja(){
 this.swung = true;
}

var ninja = new Ninja();

Ninja.prototype.swingSword = function(){
 return this.swung;
};

assert(ninja.swingSword(), "Method exists, even out of order.");

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

44

These, seamless, live updates gives us an incredible amount of power and extensibility, to a degree at
which isn't typically found in other languages. Allowing for these live updates it makes it possible for you
to create a functional framework which users can extend with further functionality - even well after any
objects have been instantiated.

Object Type
Since we now have this new instance of our function it becomes important to know which function
constructed the object instance, so we can refer back to later (possibly even performing a form of type
checking, if need be), as in Listing 4-4.

Listing 4-4: Examining the type of an instance and its constructor.

function Ninja(){}

var ninja = new Ninja();

assert(typeof ninja == "object",
 "However the type of the instance is still an object.");
assert(ninja instanceof Ninja,
 "The object was instantiated properly.");
assert(ninja.constructor == Ninja,
 "The ninja object was created by the Ninja function.");

In Listing 4-4 we start by examining the type of a function instance. Note that the typeof operator isn't of
much use to us here; all instance will be objects, thus always returning "object" as its result. However,
the instanceof operator really helps in this case, giving us a clear way to determine if an instance was
created by a particular function.

On top of this we also make use of an object property: .constructor. This is a property that exists
on all objects and offers a reference back to the original function that created it. We can use this to verify
the origin of the instance (much like how we do with the instanceof operator). Additionally, since
this is just a reference back to the original function, we can, once-again, instantiate a new Ninja object,
like in Listing 4-5.

Listing 4-5: Instantiating a new object using only a reference to its constructor.

var ninja = new Ninja();
var ninja2 = new ninja.constructor();

assert(ninja2 instanceof Ninja, "Still a ninja object.");

What's especially interesting about Listing 4-5 is that we can do this without ever having access to the
original function; taking place completely behind the scenes.

Note The .constructor property of an object can be changed - but it doesn't have
any immediate, or obvious, purpose (since it's primary purpose is to inform as to where
it was constructed from).

Inheritance and the Prototype Chain
There's an additional feature of the instanceof operator that we can use to our advantage when
performing object inheritance. In order to make use of it, however, we need to understand how the
prototype chain works in JavaScript, an example of which is shown in Listing 4-6.

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

45

Listing 4-6: Different ways of copying functionality onto a function's prototype.

function Person(){}
Person.prototype.dance = function(){};

function Ninja(){}

// Achieve similar, but non-inheritable, results
Ninja.prototype = Person.prototype;
Ninja.prototype = { dance: Person.prototype.dance };

// Only this maintains the prototype chain
Ninja.prototype = new Person();

var ninja = new Ninja();
assert(ninja instanceof Ninja,
 "ninja receives functionality from the Ninja prototype");
assert(ninja instanceof Person, "... and the Person prototype");
assert(ninja instanceof Object, "... and the Object prototype");

Since the prototype of a function is just an object there are multiple ways of copying functionality
(such as properties or methods). However only one technique is capable of creating a prototype 'chain':
SubFunction.prototype = new SuperFunction();. This means that when you perform an
instanceof operation you can determine if the function inherits the functionality of any object in its
prototype chain.

Note Make sure that you don't use the Ninja.prototype =
Person.prototype; technique. When doing this any changes to the Ninja
prototype will also change the Person prototype (since they're the same object) - which
is bound to have undesired side effects.

An additional side-effect of doing prototype inheritance in this manner is that all inherited function
prototypes will continue to update live. The result is something akin to what's shown in Figure 4-1.

Figure 4-1: The order in which properties are bound to an instantiated object.

It's important to note from Figure 4-1 is that our object has properties that are inherited from the Object
prototype. This is important to note: All native objects constructors (such as Object, Array, String, Number,
RegExp, and Function) have prototype properties which can be manipulated and extended (which makes
sense, since each of those object constructors are functions themselves). This proves to be an incredibly
powerful feature of the language. Using this you can extend the functionality of the language itself,
introducing new, or missing, pieces of the language.

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

46

For example, one such case where this becomes quite useful is with some of the features of JavaScript 1.6.
This version of the JavaScript language introduces a couple helper methods, including some for Arrays.
One such method is forEach which allows to iterate over the properties of an array, calling a function
on every property. This can be especially handy for situations where we want to plug in different pieces
of functionality without changing the overall looping structure. We can duplicate this functionality, right
now, completely circumventing the need to wait until the next version of the language is ready, like in
Listing 4-7.

Listing 4-7: Implementing the JavaScript 1.6 array forEach method in a future-compatibile manner.

if (!Array.prototype.forEach) {
 Array.prototype.forEach = function(fn, thisp){
 for (var i = 0; i < this.length; i++) {
 fn.call(thisp || null, this[i], i, this);
 }
 };
}

["a", "b", "c"].forEach(function(value, index, array){
 assert(value, "Is in position " + index + " out of " +
 (array.length - 1));
});

Since all the built-in objects include these prototypes it ends up giving you all the power necessary to
extend the language to your desire.

An important point to remember when implementing properties or methods on native objects is that
introducing them is every bit as dangerous as introducing new variables into the global scope. Since there's
only ever one instance of a native object there still significant possibility for naming collisions to occur.

When implementing features on native prototypes that are forward-looking (such as the previously-
mentioned implementation of Array.prototype.forEach) there's a strong possibility that your
implementation won't match the final implementation (causing issues to occur when a browser finally does
implement the functionality correctly). You should always take great care when treading in those waters.

HTML Prototypes
There's a fun feature in Internet Explorer 8, Firefox, Safari, and Opera which provides base functions
representing objects in the DOM. By making these accessible the browser is providing you with the ability
to extend any HTML node of your choosing, like this in the Listing 4-8.

Listing 4-8: Adding a new method to all HTML elements via the HTMLElement prototype.

<div id="a">I'm going to be removed.</div>
<div id="b">Me too!</div>
<script>
HTMLElement.prototype.remove = function(){
 if (this.parentNode)
 this.parentNode.removeChild(this);
};

// Old way
var a = document.getElementById("a");
a.parentNode.removeChild(a);

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

47

// New way
document.getElementById("b").remove();
</script>

More information about this particular feature can be found in the HTML 5 specification:

• http://www.whatwg.org/specs/web-apps/current-work/multipage/section-elements.html

One library that makes heavy use of this feature is the Prototype library, adding all forms of functionality
onto existing DOM elements (including the ability to inject HTML, manipulate CSS, amongst other
features).

The most important thing to realize, when working with these prototypes, is that they don't exist in older
versions of Internet Explorer. If that isn't a target platform for you, then these features should serve you
well.

Another point that often comes in contention is the question of if HTML elements can be instantiated
directly from their constructor function, perhaps something like this:

var elem = new HTMLElement();

However, that does not work, at all. Even though browsers expose the root function and prototype they
selectively disable the ability to actually call the root function (presumably to limit element creation to
internal functionality, only).

Save for the overwhelming difficulty that this feature presents, in platform compatibility, the benefits of
clean code can be quite dramatic and should be strongly investigated in applicable situations.

Gotchas
As with most things, in JavaScript, there are a series of gotchas associated with prototypes, instantiation,
and inheritance. Some of them can be worked around, however, most of them will simply require a
dampening of your excitement.

Extending Object
Perhaps the most egregious mistake that someone can make with prototypes is to extend the native
Object.prototype. This difficulty is that when you extend this prototype ALL objects receive those
additional properties. This is especially problematic since when you iterate over the properties of the object
these new properties appear, causing all sorts of unexpected behavior, as shown in Listing 4-9.

Listing 4-9: The unexpected behavior of adding extra properties to the Object prototype.

Object.prototype.keys = function(){
 var keys = [];
 for (var i in this)
 keys.push(i);
 return keys;
};

var obj = { a: 1, b: 2, c: 3 };

Licensed to Alison Tyler <pedbro@gmail.com>

http://www.whatwg.org/specs/web-apps/current-work/multipage/section-elements.html

Function Prototypes

48

assert(obj.keys().length == 4,
 "The 3 existing properties plus the new keys method.");

There is one workaround, however. Browsers provide a method called hasOwnProperty which can be
used to detect properties which are actually on the object instance and not be imported from a prototype.
The result can be seen in Listing 4-10.

Listing 4-10: Using the hasOwnProperty method to tame Object prototype extensions.

Object.prototype.keys = function(){
 var keys = [];
 for (var i in this)
 if (this.hasOwnProperty(i))
 keys.push(i);
 return keys;
};

var obj = { a: 1, b: 2, c: 3 };

assert(obj.keys().length == 3,
 "Only the 3 existing properties are included.");

Now just because it's possible to work around this issue doesn't mean that it should be abused. Looping
over the properties of an object is an incredibly common behavior and it's uncommon for people to
use hasOwnProperty within their code. Generally you should avoid using it if only but in the most
controlled situations (such as a single developer working on a single site with code that is completely
controlled).

Extending Number
It's safe to extend most native prototypes (save for Object, as previously mentioned). One other problematic
natives is that of Number. Due to how numbers, and properties of numbers, are parsed by the JavaScript
engine the result can be rather confusing, like in Listing 4-11.

Listing 4-11: Adding a method to the Number prototype.

Number.prototype.add = function(num){
 return this + num;
};

var n = 5;
assert(n.add(3) == 8,
 "It works fine if the number is in a variable.");

assert((5).add(3) == 8,
 "Also works if a number is wrapping in parentheses.");

// Won't work, causes a syntax error
// assert(5.add(3) == 8, "Doesn't work, causes error.");

This can be a frustrating issue to deal with since the logic behind it can be rather obtuse. There have
been libraries that have continue to include Number prototype functionality, regardless, and have simply
stipulated how they should be used (Prototype being one of them). That's certainly an option, albeit one
that'll have to be rectified with good documentation and clear tutorials.

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

49

Sub-classing Native Objects
Another tricky point is in the sub-classing of native objects. The one object that's quite simple to sub-class
is Object (since it's the root of all prototype chains to begin with). However once you start wanting to sub-
class other native objects the situation becomes less clear-cut. For example, with Array, everything works
as you might expect it to, as shown in Listing 4-12.

Listing 4-12: Inheriting functionality from the Array object.

function MyArray(){}
MyArray.prototype = new Array();

var mine = new MyArray();
mine.push(1, 2, 3);
assert(mine.length == 3,
 "All the items are on our sub-classed array.");
assert(mine instanceof Array,
 "Verify that we implement Array functionality.");

Of course, until you attempt to perform this functionality in Internet Explorer. For whatever reason the
native Array object does not allow for it to be inherited from (the length property is immutable - causing
all other pieces of functionality to become stricken).

In general it's a better strategy to implement individual pieces of functionality from native objects, rather
than attempt to sub-class them completely, such as implementing the push method directly, like in Listing
4-13.

Listing 4-13: Simulating Array functionality but without the true sub-classing.

function MyArray(){}
MyArray.prototype.length = 0;

(function(){
 var methods = ['push', 'pop', 'shift', 'unshift',
 'slice', 'splice', 'join'];

 for (var i = 0; i < methods.length; i++) (function(name){
 MyArray.prototype[name] = function(){
 return Array.prototype[name].apply(this, arguments);
 };
 })(methods[i]);
})();

var mine = new MyArray();
mine.push(1, 2, 3);
assert(mine.length == 3,
 "All the items are on our sub-classed array.");
assert(!(mine instanceof Array),
 "We aren't sub-classing Array, though.");

In Listing 4-13 we end up calling the native Array methods and using .apply() to trick them into
thinking that they're working on an array object. The only property that we have to implement ourselves
is the length (since that's the one property that must remain mutable - the feature that Internet Explorer
does not provide).

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

50

Instantiation
Let's start by looking at a simple case of a function which will be instantiated and populated with some
values, in Listing 4-14.

Listing 4-14: The result of leaving off the new operator from a function call.

function User(first, last){
 this.name = first + " " + last;
}

var user = User("John", "Resig");
assert(typeof user == "undefined",
 "Since new wasn't used, the instance is undefined.");

On a quick observation of the above code it isn't immediately obvious that the function is actually
something that is meant to be instantiated with the 'new' operator. Thus, a new user might try to call the
function without the operator, causing severely unexpected results (e.g. 'user' would be undefined).

If a function is meant to be instantiated, and isn't, it can in turn end up polluting the current scope (frequently
the global namespace), causing even more unexpected results. For example, observe the following code
in Listing 4-15.

Listing 4-15: An example of accidentally introducing a variable into the global namespace.

function User(first, last){
 this.name = first + " " + last;
}

var name = "Resig";
var user = User("John", name);

assert(name == "John Resig",
 "The name variable is accidentally overridden.");

This can result in a debugging nightmare. The developer may try to interact with the name variable again
(being unaware of the error that occurred from mis-using the User function) and be forced to dance down
the horrible non-deterministic wormhole that's presented to them (Why is the value of their variables
changing underneath their feet?).

Listing 4-16 shows a solution to all of the above problems, with a simple technique.

Listing 4-16: Enforcing the correct context with arguments.callee and instanceof.

function User(first, last){
 if (!(this instanceof arguments.callee))
 return new User(first, last);

 this.name = first + " " + last;
}

var name = "Resig";
var user = User("John", name);

assert(user,

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

51

 "This was defined correctly, even if it was by mistake.");
assert(name == "Resig", "The right name was maintained.");

This new function seems straightforward but takes a little bit of consideration. What we're doing is
checking to see if we're currently inside of an instantiated version of the function, rather than just the
function itself. Let's look at a simpler example, in Listing 4-17.

Listing 4-17: Determining if we're inside of an instantiated function, or not.

function test(){
 return this instanceof arguments.callee;
}

assert(!test(), "We didn't instantiate, so it returns false.");
assert(new test(), "We did instantiate, returning true.");

Using this bit of logic we can now construct our structure within the constructor function. This means
that if the 'this instanceof arguments.callee' expression is true then we need to behave like we normally
would, within a constructor (initializing property values, etc.). But if the expression is false, we need to
instantiate the function, like so:

return new User(first, last);

It's important to return the result, since we're just inside a normal function at the point. This way, no matter
which way we now call the User() function, we'll always get an instance back.

// New Style:
assert(new User(), "Normal instantiation works.");
assert(User(), "As does a normal function call.");

// Old Style:
assert(new User(), "Normal instantiation works.");
assert(!User(), "But a normal function call causes problems.");

This can be a trivial addition to most code bases but the end result is a case where there's no longer a
delineation between functions that are meant to be instantiated, and not, which can be quite useful.

Class-like Code
A common desire, for most developers, is a simplification - or abstraction - of JavaScript's inheritance
system into one that they are more familiar with. This tends to head towards the realm of, what a typical
developer would consider to be, Classes. While JavaScript doesn't support classical inheritance natively.

Generally there are a couple features that developers crave:

• A system which trivializes the syntax building new constructor functions and prototypes

• An easy way of performing prototype inheritance

• A way of accessing methods overridden by the function's prototype

For example, if you had a system which made this process easier, Listing 4-18 shows an example of what
you can do with it:

Listing 4-18: An example of classical-style inheritance, using the code from Listing 4-19.

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

52

var Person = Object.subClass({
 init: function(isDancing){
 this.dancing = isDancing;
 },
 dance: function(){
 return this.dancing;
 }
});

var Ninja = Person.subClass({
 init: function(){
 this._super(false);
 },
 dance: function(){
 // Call the inherited version of dance()
 return this._super();
 },
 swingSword: function(){
 return true;
 }
});

var p = new Person(true);
assert(p.dance(), "Method returns the internal true value.");

var n = new Ninja();
assert(n.swingSword(), "Get true, as we expect.");
assert(!n.dance(),
 "The inverse of the super method's value - false.");

// Should all be true
assert(p instanceof Person && n instanceof Ninja &&
 n instanceof Person,
 "The objects inherit functionality from the correct sources.");

A couple things to note about this implementation:

• Creating a constructor had to be simple (in this case simply providing an init method does the trick).

• In order to create a new 'class' you must extend (sub-class) an existing constructor function.

• All of the 'classes' inherit from a single ancestor: Object. Therefore if you want to create a brand new
class it must be a sub-class of Object (completely mimicking the current prototype system).

• And the most challenging one: Access to overridden methods had to be provided (with their context
properly set). You can see this with the use of this._super(), above, calling the original init()
and dance() methods of the Person super-class.

There are a number of different JavaScript classical-inheritance-simulating libraries that already exist. Out
of all them there are two that stand up above the others: The implementations within base2 and Prototype.
While they contain a number of advanced features the absolute core is the important part of the solution and
is what's distilled in the implementation. The code in Listing 4-19 helps to enforce the notion of 'classes'
as a structure, maintains simple inheritance, and allows for the super method calling.

Listing 4-19: A simple class creation library.

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

53

// Inspired by base2 and Prototype
(function(){
 var initializing = false,
 // Determine if functions can be serialized
 fnTest = /xyz/.test(function(){xyz;}) ? /\b_super\b/ : /.*/;

 // Create a new Class that inherits from this class
 Object.subClass = function(prop) {
 var _super = this.prototype;

 // Instantiate a base class (but only create the instance,
 // don't run the init constructor)
 initializing = true;
 var proto = new this();
 initializing = false;

 // Copy the properties over onto the new prototype
 for (var name in prop) {
 // Check if we're overwriting an existing function
 proto[name] = typeof prop[name] == "function" &&
 typeof _super[name] == "function" && fnTest.test(prop[name]) ?
 (function(name, fn){
 return function() {
 var tmp = this._super;

 // Add a new ._super() method that is the same method
 // but on the super-class
 this._super = _super[name];

 // The method only need to be bound temporarily, so we
 // remove it when we're done executing
 var ret = fn.apply(this, arguments);
 this._super = tmp;

 return ret;
 };
 })(name, prop[name]) :
 prop[name];
 }

 // The dummy class constructor
 function Class() {
 // All construction is actually done in the init method
 if (!initializing && this.init)
 this.init.apply(this, arguments);
 }

 // Populate our constructed prototype object
 Class.prototype = proto;

 // Enforce the constructor to be what we expect
 Class.constructor = Class;

 // And make this class extendable

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

54

 Class.subClass = arguments.callee;

 return Class;
 };
})();

The two trickiest parts of Listing 4-19 are the "initializing/don't call init" and "create _super method"
portions. Having a good understanding of what's being achieved in these areas will help with your
understanding of the full implementation.

Initialization

In order to simulate inheritance with a function prototype we use the traditional technique of creating an
instance of the super-class function and assigning it to the prototype. Without using the above it would
look something like the code in 4-20.

Listing 4-20: Another example of maintaining the prototype chain.

function Person(){}
function Ninja(){}
Ninja.prototype = new Person();
// Allows for instanceof to work:
(new Ninja()) instanceof Person

What's challenging about Listing 4-20, though, is that all we really want is the benefits of 'instanceof', not
the whole cost of instantiating a Person object and running its constructor. To counteract this we have a
variable in our code, initializing, that is set to true whenever we want to instantiate a class with the
sole purpose of using it for a prototype.

Thus when it comes time to actually construct the function we make sure that we're not in an initialization
mode and run the init method accordingly:

if (!initializing)
 this.init.apply(this, arguments);

What's especially important about this is that the init method could be running all sorts of costly startup
code (connecting to a server, creating DOM elements, who knows) so circumventing this ends up working
quite well.

Super Method

When you're doing inheritance, creating a class that inherits functionality from a super-class, a frequent
desire is the ability to access a method that you've overridden. The final result, in this particular
implementation, is a new temporary method (._super) which is only accessible from within a sub-
classes' method, referencing the super-classes' associated method.

For example, if you wanted to call a super-classes' constructor you could do that with the technique shown
in Listing 4-21.

Listing 4-21: An example of calling the inherited super method.

var Person = Class.extend({
 init: function(isDancing){
 this.dancing = isDancing;
 }
});

Licensed to Alison Tyler <pedbro@gmail.com>

Function Prototypes

55

var Ninja = Person.extend({
 init: function(){
 this._super(false);
 }
});

var p = new Person(true);
assert(p.dancing, "The person is dancing.");

var n = new Ninja();
assert(!n.dancing, "The ninja is never dancing.");

Implementing this functionality is a multi-step process. To start, note the object literal that we're using to
extend an existing class (such as the one being passed in to Person.extend) needs to be merged on to
the base new Person instance (the construction of which was described previously). During this merge
we do a rather complex check: Is the property that we're attempting to merge a function and is what we're
replacing also a function - and does our function contain any use of the _super method? If that's the case
then we need to go about creating a way for our super method to work.

In order to determine if our function contains the use of a _super method we must use a trick provided
by most browsers: function decompilation. This occurs when you convert a function to a string, you end
up with the contents of the function in a serialized form. We're simply using this as a shortcut so that we
won't have to add the extra super-method overhead if we don't have to. In order to determine this we must
first see if we can serialize methods properly (currently, only Opera Mobile doesn't do the serialization
properly - but it's better to be safe here). That gives us this line:

fnTest = /xyz/.test(function(){xyz;}) ? /\b_super\b/ : /.*/

All this is doing is determining if the string version of the function contains the variable that we're expecting
and, if so, producing a working regular expression and if not, producing a regular expression that'll match
any function.

Note that we create an anonymous closure (which returns a function) that will encapsulate the new super-
enhanced method. To start we need to be a good citizen and save a reference to the old this._super
(disregarding if it actually exists) and restore it after we're done. This will help for the case where a variable
with the same name already exists (don't want to accidentally blow it away).

Next we create the new _super method, which is just a reference to the method that exists on the super-
class' prototype. Thankfully we don't have to make any additional changes, or re-scoping, here as the
context of the function will be set automatically when it's a property of our object (this will refer to our
instance as opposed to the super-class').

Finally we call our original method, it does its work (possibly making use of _super as well) after which
we restore _super to its original state and return from the function.

Now there's a number of ways in which a similar result, to the above, could be achieved (there
are implementations that have bound the super method to the method itself, accessible from
arguments.callee) but this particular technique provides the best mix of usability and simplicity.

Summary
Function prototypes and prototypal inheritance are two features that, when used properly, provide an
incredible amount of wealth to developers. By allowing for greater amounts of control and structure to the
code your JavaScript applications will easily improve in clarity and quality. Additionally, due to the inherit
extensibility that prototypes provide you'll have an easy platform to build off of for future development.

Licensed to Alison Tyler <pedbro@gmail.com>

56

Chapter 6. Timers
In this chapter:

• An overview of how timers work

• In depth examination of timer speed

• Processing large tasks using timers

• Managing animations with timers

• Better testing with timers

Timers are one of the poorly understood, and often misused, feature of JavaScript that actually can provide
great benefit to the developer in complex applications. Timers provide the ability to asynchronously delay
the execution of a piece of code by a number of milliseconds. Since JavaScript is, by nature, single-threaded
(only one piece of JavaScript code can be executing at a time) timers provide a way to dance around this
restriction resulting in a rather oblique way of executing code. (It should be mentioned that timers will
never interrupt another currently-running timer.)

One point that's interesting is that timers are not, contrary to popular belief, part of the actual JavaScript
language but, rather, part of the objects and methods that a web browser introduces. This means that if you
choose to use JavaScript in another, non-browser, environment it's very likely that timers will not exist
and you'll have to implement your own version of them using implementation-specific features (such as
Threads in Rhino).

How Timers Work
At a fundamental level it's important to understand how timers work. Often times they behave unintuitively
because of the single thread which they are in. Let's start by examining the three functions to which we
have access that can construct and manipulate timers.

• var id = setTimeout(fn, delay); - Initiates a single timer which will call the specified
function after the delay. The function returns a unique ID with which the timer can be cancelled at a
later time.

• var id = setInterval(fn, delay); - Similar to setTimeout but continually calls the
function (with a delay every time) until it is cancelled.

• clearInterval(id);, clearTimeout(id); - Accepts a timer ID (returned by either of the
aforementioned functions) and stops the timer callback from occurring.

In order to understand how the timers work internally there's one important concept that needs to be
explored: timer delay is not guaranteed. Since all JavaScript in a browser executes on a single thread
asynchronous events (such as mouse clicks and timers) are only run when there's been an opening in the
execution. This is best demonstrated with a diagram, like in Figurer 5-1.

Figure 5-1: An explanation of timers.

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

57

There's a lot of information in Figure 5-1 to digest but understanding it completely will give you a better
realization of how asynchronous JavaScript execution works. This diagram is one dimensional: vertically
we have the (wall clock) time, in milliseconds. The blue boxes represent portions of JavaScript being
executed. For example the first block of JavaScript executes for approximately 18ms, the mouse click
block for approximately 11ms, and so on.

Since JavaScript can only ever execute one piece of code at a time (due to its single-threaded nature) each
of these blocks of code are "blocking" the progress of other asynchronous events. This means that when an
asynchronous event occurs (like a mouse click, a timer firing, or an XMLHttpRequest completing) it gets
queued up to be executed later (how this queueing actually occurs surely varies from browser-to-browser,
so consider this to be a simplification).

To start with, within the first block of JavaScript, two timers are initiated: a 10ms setTimeout and a
10ms setInterval. Due to where and when the timer was started it actually fires before we actually
complete the first block of code. Note, however, that it does not execute immediately (it is incapable of
doing that, because of the threading). Instead that delayed function is queued in order to be executed at
the next available moment.

Additionally, within this first JavaScript block we see a mouse click occur. The JavaScript callbacks
associated with this asynchronous event (we never know when a user may perform an action, thus it's
consider to be asynchronous) are unable to be executed immediately thus, like the initial timer, it is queued
to be executed later.

After the initial block of JavaScript finishes executing the browser immediately asks the question: What
is waiting to be executed? In this case both a mouse click handler and a timer callback are waiting. The
browser then picks one (the mouse click callback) and executes it immediately. The timer will wait until
the next possible time, in order to execute.

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

58

Note that while mouse click handler is executing the first interval callback executes. As with the timer
its handler is queued for later execution. However, note that when the interval is fired again (when the
timer handler is executing) this time that handler execution is dropped. If you were to queue up all interval
callbacks when a large block of code is executing the result would be a bunch of intervals executing with
no delay between them, upon completion. Instead browsers tend to simply wait until no more interval
handlers are queued (for the interval in question) before queueing more.

We can, in fact, see that this is the case when a third interval callback fires while the interval, itself, is
executing. This shows us an important fact: Intervals don't care about what is currently executing, they
will queue indiscriminately, even if it means that the time between callbacks will be sacrificed.

Finally, after the second interval callback is finished executing, we can see that there's nothing left for
the JavaScript engine to execute. This means that the browser now waits for a new asynchronous event
to occur. We get this at the 50ms mark when the interval fires again. This time, however, there is nothing
blocking its execution, so it fires immediately.

Let's take a look at an example to better illustrate the differences between setTimeout and
setInterval, in Listing 5-1.

Listing 5-1: Two examples of repeating timers.

setTimeout(function(){
 /* Some long block of code... */
 setTimeout(arguments.callee, 10);
}, 10);

setInterval(function(){
 /* Some long block of code... */
}, 10);

The two pieces of code in Listing 5-1 may appear to be functionally equivalent, at first glance, but they are
not. Notably the setTimeout code will always have at least a 10ms delay after the previous callback
execution (it may end up being more, but never less) whereas the setInterval will attempt to execute
a callback every 10ms regardless of when the last callback was executed.

There's a lot that we've learned here, let's recap:

• JavaScript engines only have a single thread, forcing asynchronous events to queue waiting for
execution.

• setTimeout and setInterval are fundamentally different in how they execute asynchronous
code.

• If a timer is blocked from immediately executed it will be delayed until the next possible time of
execution (which will be longer than the desired delay).

• Intervals may execute back-to-back with no delay if they take long enough to execute (longer than the
specified delay).

All of this is incredibly important knowledge to build off of. Knowing how a JavaScript engine works,
especially with the large number of asynchronous events that typically occur, makes for a great foundation
when building an advanced piece of application code.

Minimum Timer Delay and Reliability
While it's pretty obvious that you can have timer delays of seconds, minutes, hours - or whatever large
interval you desire - what isn't obvious is the smallest timer delay that you can choose.

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

59

At a certain point a browser is simply incapable of providing a fine-enough resolution on the timers in order
to handle them accurately (since they, themselves, are restricted by the timings of the operating system).
Across most browsers, however, it's safe to say that the minimum delay interval is around 10-15ms.

We can come to that conclusion by performing some simple analysis upon the presumed timer intervals
across platforms. For example if we analyze a setInterval delay of 0ms we can find what the minimum
delay is for most browsers, as in Figure 5-2 and Figure 5-3.

Figure 5-2: OSX Browsers, From Top Left: Firefox 2, Safari 3, Firefox 3, Opera 9.

Figure 5-3: Windows Browsers, From Top Left: Firefox 2, Internet Explorer 6, Firefox 3, Opera 9

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

60

In Figure 5-2 and Figure 5-3 the lines and numbers indicate the number of simultaneous intervals being
executed by the browser.

We can come to some conclusions: Browsers all have a 10ms minimum delay on OSX and a
(approximately) 15ms delay on Windows. We can achieve either of those values by providing '0' (or any
other number below 10ms) as the value to the timer delay.

There is one catch, though: Internet Explorer is incapable of providing a 0ms delay to a setInterval
(even though it'll happily work with a setTimeout). Whenever a 0ms delay is provided the interval turns
into a single setTimeout (only executing the callback once). We can get around this by providing a
1ms delay instead. Since all browsers automatically round up any value below their minimum delay using
a 1ms delay is just as safe as effective using 0ms - only moreso (since Internet Explorer will now work).

There's some other things that we can learn from these charts. The most important aspect is simply a
reinforcement from what we learned previously: browsers do not guarantee the exact interval that you
specify. Browsers like Firefox 2 and Opera 9 (on OSX) have difficulties providing a reliable timer
execution rate. A lot of this has to do with how browsers perform garbage collection on JavaScript (the
significant improvement that was made in Firefox 3 in JavaScript execution and garbage collection is
immediately obvious in these results).

So while very small delay values can be provided by a browser the exact accuracy is not always guaranteed.
This needs to be taken into account in your applications when using timers (if the difference between 10ms
and 15ms is problematic then you might have to re-think how your application code is structured).

Computationally-Expensive Processing
Probably the largest gotcha in complex JavaScript application development is the single-threaded nature
of the user interface and the script that powers it. While JavaScript is executing user interaction becomes,

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

61

at best, sluggish and, at worst, unresponsive - causing the browser to hang (all updates to the rendering of
a page are suspended while JavaScript is executing). Because of this fact reducing all complex operations
(any more than a few hundred milliseconds) into manageable portions becomes a necessity. Additionally
some browsers will produce a dialog warning the user that a script has become 'unresponsive' if it has run
for, at least, 5 seconds non-stop (browsers such as Firefox and Opera do this). The iPhone actually kills
any script running for more than 5 seconds (without even opening a dialog).

These issues are, obviously, less than desirable. Producing an unresponsive user interface is never good.
However there will, almost certainly, arise situations in which you'll need to process a significant amount
of data (situations such as manipulating a couple thousands DOM elements can cause this to occur).

This is where timers becomes especially useful. Since timers are capable of, effectively, suspending
execution of a piece of JavaScript until a later time it also prevents the browser from hanging (as long as
the individual pieces of code aren't enough to cause the browser to hang). Taking this into account we can
now convert normal, intensive, loops and operations into non-blocking operations. Let's look at Listing
5-2 where this type of operation would become necessary.

Listing 5-2: A long-running task.

<table><tbody></tbody></table>
<script>
// Normal, intensive, operation
var table = document.getElementsByTagName("tbody")[0];
for (var i = 0; i < 2000; i++) {
 var tr = document.createElement("tr");
 for (var t = 0; t < 6; t++)
 var td = document.createElement("td");
 td.appendChild(document.createTextNode("" + t));
 tr.appendChild(td);
 }
 table.appendChild(tr);
}
</script>

In this example we're creating a total of 26,000 DOM nodes, populating a table with numbers. This
is incredibly expensive and will likely hang the browser preventing the user from performing normal
interactions. We can introduce timers into this situation to achieve a different, and perhaps better, result,
as shown in Listing 5-3

Listing 5-3: Using a timer to break up a long-running task.

<table><tbody></tbody></table>
<script>
var table = document.getElementsByTagName("tbody")[0];
var i = 0, max = 1999;

setTimeout(function(){
 for (var step = i + 500; i < step; i++) {
 var tr = document.createElement("tr");
 for (var t = 0; t < 6; t++)
 var td = document.createElement("td");
 td.appendChild(document.createTextNode("" + t));
 tr.appendChild(td);
 }

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

62

 table.appendChild(tr);
 }

 if (i < max) {
 setTimeout(arguments.callee, 0);
 }
}, 0);
</script>

In our modified example we've broken up our intense operation into 4 smaller operations, each creating
6,500 DOM nodes. These operations are much less likely to interrupt the flow of the browser. Worst case
these numbers can always be tweaked (changing 500 to 250, for example, would give us 8 steps of 3,500
DOM nodes each). What's most impressive, however, is just how little our code has to change in order to
accommodate this new, asynchronous, system. We have to do a little more work in order to make sure that
the correct number of elements are being constructed (and that the looping doesn't continue on forever)
but beyond that the code looks very similar to what we started with. Note that we make use of a closure
to maintain the iterator state from code segment to code segment undoubtedly without the use of closures
this code would be much more complicated.

There's one perceptible change when using this technique, in relation to the original technique, namely that
a long browser hang is now replaced with 4 visual updates of the page. While the browser will attempt to
do these segments as quickly as possible it will also render the DOM changes after each step of the timer
(just as it would after one large bulk update). Most of the time it's imperceptible to the user to see these
types of updates occur but it's important to remember that they occur.

One situation in which this technique has served me particularly well was in an application that I
constructed to compute schedule permutations for college students. Originally the application was a typical
CGI (communicating from the client to the server, where the schedules were computed and sent back) but
I converted it to move all schedule computation to the client-side. A view of the schedule computation
screen can be seen in Figure 5-4.

Figure 5-4: A screenshot of a web-based schedule computation application.

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

63

These operations were quite expensive (having to run through thousands of permutations in order to find
correct results). This problem was solved by breaking up clumps of schedule computation into tangible
bites (updating the user interface with a percentage of completion as it went). In the end the user was
presented with a usable interface that was fast, responsive, and highly usable.

It's often surprising just how useful this technique can be. You'll frequently find it being used in long-
running processes, like test suites, which we'll be discussing at the end of this chapter. Most importantly
though this technique shows us just how easy it is to work around the restrictions of the browser
environment with the features of JavaScript language, while still providing a useful experience to the user.

Central Timer Control
A problem that arises, in the use of timers, is in just how to manage them when dealing with a large number
of them. This is especially critical when dealing with animations as you'll be attempting to manipulate a
large number of properties simultaneously and you'll need a way to manage that.

Having a central control for your timers gives you a lot of power and flexibility, namely:

• You only have to have one timer running per page at a time.

• You can pause and resume the timers at your will.

• The process for removing callback functions is trivialized.

It's also important to realize that increasing the number of simultaneous timers is likely to increase the
likelihood of a garbage collection occurring in the browser. Roughly speaking this is when the browser
goes through and tries to tie up any loose ends (removing unused variables, objects, etc.). Timers are
particularly problematic since they are generally managed outside of the flow of the normal JavaScript

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

64

engine (through other threads). While some browsers are more capable of handling this situation others
cause long garbage collection cycles to occur. You might have noticed this when you see a nice, smooth,
animation in one browser - view it in another and see it stop-and-start its way to completion. Reducing the
number of simultaneous timers being used will drastically help with this (and is the reason why all modern
animation engines include a construct like the central timer control).

Let's take a look at an example where we have multiple functions animating separate properties but being
managed by a single timer function in Listing 5-4.

Listing 5-4: Using a central timer control to manage multiple animations.

<div id="box" style="position:absolute;">Hello!</div>
<script>
var timers = {
 timerID: 0,
 timers: [],
 start: function(){
 if (this.timerID)
 return;

 (function(){
 for (var i = 0; i < timers.timers.length; i++)
 if (timers.timers[i]() === false) {
 timers.timers.splice(i, 1);
 i--;
 }
 timers.timerID = setTimeout(arguments.callee, 0);
 })();
 },
 stop: function(){
 clearTimeout(this.timerID);
 this.timerID = 0;
 },
 add: function(fn){
 this.timers.push(fn);
 this.start();
 }
};

var box = document.getElementById("box"), left = 0, top = 20;

timers.add(function(){
 box.style.left = left + "px";
 if (++left > 50)
 return false;
});

timers.add(function(){
 box.style.top = top + "px";
 top += 2;
 if (top > 120)
 return false;
});
</script>

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

65

We've created a central control structure in Listing 5-4 that we can add new timer callback functions to and
stop/start the execution of them. Additionally, the callback functions have the ability to remove themselves
at any time by simply returning 'false' (which is much easier to do than the typical clearTimeout
pattern). Let's step through the code to see how it works.

To start, all of the callback functions are stored in a central array (timers.timers) alongside the ID
of the current timer (timers.timerID). The real meat comes in with in the start() method. Here
we need to verify that there isn't already a timer running, and if that's the case, start our central timer.

This timer consists of a loop which moves through all of our callback functions, executing them in order.
It also checks to see what the return value of the callback is - if it's false then the function is removed from
being executed. This proves to be a much simpler manner of managing timers than

One thing that's important to note: Organizing timers in this manner ensures that the callback functions
will always execute in the order in which they are added. That is not always guaranteed with normal timers
(the browser could choose to execute one before another).

This manner of timer organization is critical for large applications or really any form of JavaScript
animations. Having a solution in place will certainly help in any form of future application development
and especially when we discuss how to create [[Animations|Cross-Browser Animations]].

Asynchronous Testing
Another situation in which a centralized timer control comes in useful is in the case where you wish to
do asynchronous testing. The issue here is that when we need to perform testing on actions that may not
complete immediately (such as something within a timer or an XMLHttpRequest) we need to break our
test suite out such that it works completely asynchronously.

For example in a normal test suite we could easily just run the tests as we come to them however once we
introduce the desire to do asynchronous testing we need to break all of those tests out and handle them
separately. Listing 5-5 has some code that we can use to achieve our desired result.

Listing 5-5: A simple asynchronous test suite.

(function(){
 var queue = [], paused = false;

 this.test = function(fn){
 queue.push(fn);
 runTest();
 };

 this.pause = function(){
 paused = true;
 };

 this.resume = function(){
 paused = false;
 setTimeout(runTest, 1);
 };

 function runTest(){
 if (!paused && queue.length) {
 queue.shift()();

Licensed to Alison Tyler <pedbro@gmail.com>

Timers

66

 if (!paused) {
 resume();
 }
 }
 }
})();

test(function(){
 pause();
 setTimeout(function(){
 assert(true, "First test completed");
 resume();
 }, 100);
});

test(function(){
 pause();
 setTimeout(function(){
 assert(true, "Second test completed");
 resume();
 }, 200);
});

The important aspect in Listing 5-5 is that each function passed to test() will contain, at most, one
asynchronous test. It's asynchronicity is defined by the use of the pause() and resume() functions, to
be called before and after the asynchronous event. Really, the above code is nothing more than a means of
keeping asynchronous behavior-containing functions executing in a specific order (it doesn't, exclusively,
have to be used for test cases, but that's where it's especially useful).

Let's look at the code necessary to make this behavior possible. The bulk of the functionality is contained
within the resume() and runTest() functions. It behaves very similarly to our start() method
in the previous example but handles a queue of data instead. Its sole purpose is to dequeue a function
and execute it, if there is one waiting, otherwise completely stop the interval from running. The important
aspect here is that since the queue-handling code is completely asynchronous (being contained within an
interval) it's guaranteed to attempt execution after we've already called our pause() function.

This brief piece of code enforces our suite to behave in a purely asynchronous manner while still
maintaining the order of test execution (which can be very critical in some test suites, if their results are
destructive, affecting other tests). Thankfully we can see that it doesn't require very much overhead at all
to add a reliable asynchronous testing to an existing test suite, with the use of the most-effective timers.

This problem id discussed more in the chapter on Testing and Debugging.

Summary
Learning about how JavaScript timers function has been illuminating: These seemingly simple features are
actually quite complex in their implementations. Taking all their intricacies into account, however, gives
us great insight into how we can best exploit them for our gain. It's become apparent that where timers
end up being especially useful is in complex applications (computationally-expensive code, animations,
asynchronous test suites). But due to their ease of use (especially with the addition of closures) they tend
to make even the most complex situations easy to grasp.

Licensed to Alison Tyler <pedbro@gmail.com>

67

Chapter 7. Regular Expressions
Covered in this chapter:

• Compiling regular expressions

• Capturing Within regular expressions

• Frequent problems and how to resolve them

Regular expressions are a necessity of modern development. They trivialize the process of tearing apart
strings, looking for information. Everywhere you look, in JavaScript development, the use of regular
expressions is prevalent:

• Manipulating strings of HTML nodes

• Locating partial selectors within a CSS selector expression

• Determining if an element has a specific class name

• Extracting the opacity from Internet Explorer's filter property

While this chapter won't be covering the actual syntax of regular expressions in this chapter - there are a
number of excellent books on the subject, including O'Reilly's ''Mastering Regular Expressions'' - instead
this chapter will be examining a number of the peculiar complexities that come along from using regular
expressions in JavaScript.

Compiling
Regular expressions go through multiple phases of execution - understanding what happens during each of
these phases can help you to write optimized JavaScript code. The two prominent phases are compilation
and execution. Compilation occurs whenever the regular expression is first defined. The expression is
parsed by the JavaScript engine and converted into its internal representation (whatever that may be).
This phase of parsing and conversion must occur every time a regular expression is encountered (unless
optimizations are done by the browser).

Frequently, browsers are smart enough to determine that if an identically-defined regular expression is
compiled again-and-again to cache the compilation results for that particular expression. However, this
is not necessarily the case in all browsers. For complex expressions, in particular, we can begin to get
some noticeable speed improvements by pre-defining (and, thus, pre-compiling) our regular expressions
for later use.

There are two ways of defining a compiled regular expression in JavaScript, as shown in Listing 6-1.

Listing 6-1: Two examples of creating a compiled regular expression.

var re = /test/i;
var re2 = new RegExp("test", "i");

assert(re.toString() == "/test/i",
 "Verify the contents of the expression.");
assert(re.test("TesT"), "Make sure the expression work.");
assert(re2.test("TesT"), "Make sure the expression work.");
assert(re.toString() == re2.toString(),
 "The contents of the expressions are equal.");
assert(re != re2, "But they are different objects.");

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

68

In the above example, both regular expressions are now in their compiled state. Note that they each have
unique object representations: Every time that a regular expression is defined, and thus compiled, a new
regular expression object is also created. This is unlike other primitive types (like string, number, etc.)
since the result will always be unique.

Of particular importance, though, is the new use new RegExp(...) to define a new regular expression.
This technique allows you to build and compile an expression from a string. This can be immensely useful
for constructing complex expressions that will be heavily re-used.

Note The second parameter to new RegExp(...) is the list of flags that you wish
to construct the regular expression with ('i' for case insensitive, 'g' for a global match,
'ig' for both).

For example, let's say that you wanted to determine which elements, within a document, had a particular
class name. Since elements are capable of having multiple class names associated with them (separated
via a space) this makes for a good time to try regular expression compilation, shown in Listing 6-2.

Listing 6-2: Compiling a regular expression for future use.

<div class="foo ninja"></div>
<div class="ninja foo"></div>
<div></div>
<div class="foo ninja baz"></div>
<script>
function find(className, type) {
 var elems = document.getElementsByTagName(type || "*");
 var re = new RegExp("(^|\\s)" + className + "(\\s|$)");
 var results = [];

 for (var i = 0, length = elems.length; i < length; i++)
 if (re.test(elems[i].className))
 results.push(elems[i]);

 return results;
}

assert(find("ninja", "div").length == 3,
 "Verify the right amount was found.");
assert(find("ninja").length == 3,
 "Verify the right amount was found.");
</script>

There are a number of things that we can learn from Listing 6-2. To start, note the use of new
RegExp(...) to compile a regular expression based upon the input of the user. We construct this
expression once, at the top of the function, in order to avoid frequent calls for re-compilation. Since the
contents of the expression are dynamic (based upon the incoming className argument) we can get a
major performance savings by handling the expression in this manner.

Another thing to notice is the use of a double-escape within new RegExp: \\s. Normally, when creating
regular expressions with the /\s/ syntax we only have to provide the backslash once. However, since
we're writing these backslashes within a string, we must doubly-escape them. This is a nuisance, to be
sure, but one that you must be aware of when constructing custom expressions.

The ultimate example of using regular expression compilation, within a library, can be seen in the RegGrp
package of the base2 library. This particular piece of functionality allows you to merge regular expressions

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

69

together - allowing them to operate as a single expression (for speed) while maintaining all capturing and
back-references (for simplicity). While there are too many details within the RegGrp package to go into,
in particular, we can instead create a simplified version for our own purposes, like in Listing 6-3.

The full source to base2's RegGrp function can be found here:

• http://code.google.com/p/base2/source/browse/trunk/src/base2/RegGrp.js

Listing 6-3: Merging multiple regular expressions together.

function RegMerge() {
 var expr = [];
 for (var i = 0; i < arguments.length; i++)
 expr.push(arguments[i].toString().replace(/^\/|\/\w*$/g, ""));
 return new RegExp("(?:" + expr.join("|") + ")");
}

var re = RegMerge(/Ninj(a|itsu)/, /Sword/, /Katana/);
assert(re.test("Ninjitsu"),
 "Verify that the new expression works.");
assert(re.test("Katana"),
 "Verify that the new expression works.");

The pre-construction and compilation of regular expressions is a powerful tool that can be re-used
time-and-time again. Virtually all complex regular expression situations will require its use - and the
performance benefits of handling these situations in a smart way will be greatly appreciated.

Capturing
The crux of usefulness, in regular expressions, relies upon capturing the results that you've found, so that
you can do something with them. Simply matching results (or determining if a string contains a match) is
an obvious first step, but determining what you matched can be used in so many situations.

For example in Listing 6-4 we extract the opacity value out of the filter value that Internet Explorer
provides:

Listing 6-4: A simple function for getting the current opacity of an element.

<div id="opacity" style="opacity:0.5;filter:alpha(opacity=50);"></div>
<script>
function getOpacity(elem){
 var filter = elem.style.filter;
 return filter ?
 filter.indexOf("opacity=") >= 0 ?
 (parseFloat(filter.match(/opacity=([^)]*)/)[1]) / 100) + "" :
 "" :
 elem.style.opacity;
}

window.onload = function(){
 assert(getOpacity(document.getElementById("opacity")) == "0.5",
 "Get the current opacity of the element.");
};
</script>

Licensed to Alison Tyler <pedbro@gmail.com>

http://code.google.com/p/base2/source/browse/trunk/src/base2/RegGrp.js

Regular Expressions

70

The opacity parsing code may seem a little bit confusing, but it's not too bad once you break it down. To
start with we need to determine if a filter property even exists for us to parse (if not, we try to access the
opacity style property instead). If the filter is available, we need to verify that it will contain the opacity
string that we're looking for (with the indexOf call).

At this point we can, finally, get down to the actual opacity extraction. The match method returns an
array of values, if a match is found, or null if no match is found (we can be confident that there will be a
match, since we already determined that with the indexOf call). The array returned by match includes
the entire match in the first and each, subsequent, capture following. Thus, when we match the opacity
value, the value is actually contained in the 1 position of the array.

Note that this return set is not always the case, from match, as shown in Listing 6-5.

Listing 6-5: The difference between a global and local search with match.

var html = "<div class='test'>Hello <i>world!</i></div>";

var results = html.match(/<(\/?)(\w+)([^>]*?)>/);

assert(results[0] == "<div class='test'>", "The entire match.");
assert(results[1] == "", "The (missing) slash.");
assert(results[2] == "div", "The tag name.");
assert(results[3] == " class='test'", "The attributes.");

var all = html.match(/<(\/?)(\w+)([^>]*?)>/g);

assert(all[0] == "<div class='test'>", "Opening div tag.");
assert(all[1] == "", "Opening b tag.");
assert(all[2] == "", "Closing b tag.");
assert(all[3] == "<i>", "Opening i tag.");
assert(all[4] == "</i>", "Closing i tag.");
assert(all[5] == "</div>", "Closing div tag.");

While doing a global search with the match method is certainly useful, it is not equivalent to doing
a regular, local, match - we lose out on all the useful capturing information that the method normally
provides.

We can regain this functionality, while still maintaining a global search, by using the regular expression
exec method. This method can be repeatedly called against a regular expression - causing it to return the
next matched set of information every time it gets called. A typical pattern, for how it is used, looks like
something seen in Listing 6-6.

Listing 6-6: Using the exec method to do both capturing and a global search.

var html = "<div class='test'>Hello <i>world!</i></div>";
var tag = /<(\/?)(\w+)([^>]*?)>/g, match;
var num = 0;

while ((match = tag.exec(html)) !== null) {
 assert(match.length == 4,
 "Every match finds each tag and 3 captures.");
 num++;
}

assert(num == 6, "3 opening and 3 closing tags found.");

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

71

Using either match or exec (where the situation permits) we can always find the exact matches (and
captures) that we're looking for. However, we find that we'll need to dig further when we need to begin
referring back to the captures themselves.

References to Captures
There are two ways in which you can refer back to portions of a match that you've captured. One within
the match, itself, and one within a replacement string (where applicable).

For example, let's revisit the match in Listing 6-6 (where we match an opening, or closing, HTML tag)
and modify it to, also, match the inner contents of the tag, itself, in Listing 6-7.

Listing 6-7: Using back-references to match the contents of an HTML tag.

var html = "<b class='hello'>Hello <i>world!</i>";
var tag = /<(\w+)([^>]+)>(.*?)<\/\1>/g;

var match = tag.exec(html);

assert(match[0] == "<b class='hello'>Hello",
 "The entire tag, start to finish.");
assert(match[1] == "b", "The tag name.");
assert(match[2] == " class='hello'", "The tag attributes.");
assert(match[3] == "Hello", "The contents of the tag.");

match = tag.exec(html);

assert(match[0] == "<i>world!</i>",
 "The entire tag, start to finish.");
assert(match[1] == "i", "The tag name.");
assert(match[2] == "", "The tag attributes.");
assert(match[3] == "world!", "The contents of the tag.");

In Listing 6-7 we use \1 in order to refer back to the first capture within the expression (which, in this case,
is the name of the tag). Using this information we can match the appropriate closing tag - referring back
to the right one (assuming that there aren't any tags of the same name within the current tag, of course).
These back-reference codes continue up, referring back to each, individual, capture.

Additionally, there's a way to get capture references within the replace string of a replace method.
Instead of using the back-reference codes, like in the previous example, we use the syntax of $1, $2, $3,
up through each capture number, show in Listing 6-8.

Listing 6-8: Using a capture reference, within a replace.

assert("fontFamily".replace(/([A-Z])/g, "-$1").toLowerCase() ==
 "font-family", "Convert the camelCase into dashed notation.");

Having references to regular expression captures helps to make a lot of difficult code quite easy. The
expressive nature that it provides ends up allowing for some terse statements that would, otherwise, be
rather obtuse and convoluted.

Non-capturing Groups
In addition to the ability to capture portions of a regular expression (using the parentheses syntax) you can
also specify portions to group - but not capture. Typically this is done with the modified syntax: (?:...)
(where ... is what you're attempting to match, but not capture).

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

72

Probably the most compelling use case for this method is the ability to optionally match entire words
(multiple-character strings) rather than being restricted to just single character optional matches, an
example of which is shown in Listing 6-9.

Listing 6-9: Matching multiple words using a non-capturing group

var re = /((?:ninja-)+)sword/;
var ninjas = "ninja-ninja-sword".match(re);

assert(ninjas[1] == "ninja-ninja-",
 "Match both words, without extra capture.");

Wherever possible, in your regular expressions, you should strive to use non-capturing groups in place of
capturing. The expression engine has to do much less work in remembering and returning your captures.
If you don't actually need to results, then there's no need to ask for them!

Replacing with Functions
Perhaps the most powerful feature presented by JavaScript regular expression support is the ability to
provide a function as the value to to replace with, in a replace method call.

For example, in Listing 6-10 we use the function to provide a dynamic replacement value to adjust the
case of a character.

Listing 6-10: Converting a string to camel case with a function replace regular expression.

assert("font-family".replace(/-(\w)/g, function(all, letter){
 return letter.toUpperCase();
 }) == "fontFamily", "CamelCase a hyphenated string.");

The second argument, the function, receives a number of arguments which correspond to the results from
a similar match method call. The first argument is always the entire expression match and the remaining
arguments are represented by the captured characters.

The replace-function technique can even be extended beyond doing actual replacements and be used as a
means of string traversal (as an alternative to doing the typical exec-in-a-while-loop technique).

For example, if you were looking to convert a query string
like "foo=1&foo=2&blah=a&blah=b&foo=3" into one that looks like this:
"foo=1,2,3&blah=a,b" a solution using regular expressions and replace could result in some,
especially, terse code as shown in Listing 6-11.

Listing 6-11: A technique for compressing a query string.

function compress(data){
 var q = {}, ret = [];

 data.replace(/([^=&]+)=([^&]*)/g, function(m, key, value){
 q[key] = (q[key] ? q[key] + "," : "") + value;
 return "";
 });

 for (var key in q)
 ret.push(key + "=" + q[key]);

 return ret.join("&");

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

73

}

assert(compress("foo=1&foo=2&blah=a&blah=b&foo=3") ==
 "foo=1,2,3&blah=a,b", "Verify the compression.");

The interesting aspect of Listing 6-11 is in using the string replace function as a means of traversing a
string for values, rather than as an actual search-and-replace mechanism. The trick is two-fold: Passing in
a function as the replace value argument to the .replace() method and, instead of returning a value, simply
utilizing it as a means of searching.

Let's examine this piece of code:

data.replace(/([^=&]+)=([^&]*)/g, function(m, key, value){});

The regular expression, itself, captures two things: A key in the query string and its associated value. This
match is performed globally, locating all the key-value pairs within the query string.

The second argument to the replace method is a function. It's not uncommon to utilize this function-as-
an-argument technique when attempting to replace matches with complex values (that is values that are
dependent upon their associated matches). The return value of the function is injected back into the string
as its replacement. In this example we return an empty value from the function therefore we end up clearing
out the string as we go.

We can see this behavior in Listing 6-12.

Listing 6-12: Replacing a value with a empty string, in a function.

assert("a b c".replace(/a/, function(){ return ""; }) == " b c",
 "Returning an empty result removes a match.");

Now that we've collected all of our key values pairs (to be re-serialized back into a query string) the final
step isn't really a step at all: We simply don't save the search-and-replaced data query string (which, most
likely, looks something like "&&").

In this manner we can use a string's replace method as our very-own string searching mechanism. The
result is, not only, fast but also simple and effective.

Using a function as a replace, or even a search, mechanism should not be underestimated. The level of
power that it provides for the amount of code is quite favorable.

Common Problems
A few idioms tend to occur again, and again, in JavaScript - but their solutions aren't always obvious. A
couple of them are outlined here, for your convenience.

Trimming a String
Removing extra whitespace from a string (generally from the start and end) is used all throughout libraries
- especially so within implementations of selector engines.

The most-commonly seen solution looks something like the code in Listing 6-13.

Listing 6-13: A common solution to stripping whitespace from a string.

function trim(str){
 return str.replace(/^\s+|\s+$/g, "");

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

74

}

assert(trim(" #id div.class ") == "#id div.class",
 "Trimming the extra whitespace from a selector string.");

Steven Levithan has done a lot of research into this subject, producing a number of alternative solutions,
which he details:

• http://blog.stevenlevithan.com/archives/faster-trim-javascript

It's important to note, however, that in his test cases he works against an incredibly-large document
(certainly the fringe case, in most applications).

Of those solutions two are particularly interesting. The first is done using regular expressions, but with no
\s+ and no | or operator, shown in Listing 6-14.

Listing 6-14: A trim method breaking down into two expressions.

function trim(str){
 return str.replace(/^\s\s*/, '').replace(/\s\s*$/, '');
}

The second technique completely discards any attempt at stripping whitespace from the end of the string
using a regular expression and does it manually, as seen in Listing 6-15.

Listing 6-15: A trim method which slices at the rear of the string.

function trim(str) {
 var str = str.replace(/^\s\s*/, ''),
 ws = /\s/, i = str.length;
 while (ws.test(str.charAt(--i)));
 return str.slice(0, i + 1);
}

Looking at the final breakdown in performance the difference becomes quite noticeable - and easy to see
how that even when a particular method of trimming strings is particular scalable (as is seen in the third
trim method) and in Table 6-1.

Table 6-1: All time in ms, for 1000 iterations.

Table 7.1.

Selector Trim Document Trim

Listing 6-13 8.7 2075.8

Listing 6-14 8.5 3706.7

Listing 6-15 13.8 169.4

Ultimately, it depends on the situation in which you're going to find the trim method to be used. Most
libraries use the first solution (and use it primarily on small strings) so that seems to be a safe assumption.

Matching Endlines
When performing a search it's frequently desired that the . (which normally matches any character, except
for endlines) would also include endline characters. Other regular expression implementations, in other
languages, frequently include an extra flag for making this possible. In JavaScript, there are two ways,
as shown in Listing 6-16.

Licensed to Alison Tyler <pedbro@gmail.com>

http://blog.stevenlevithan.com/archives/faster-trim-javascript

Regular Expressions

75

Listing 6-16: Matching all characters, including endlines.

var html = "Hello\n<i>world!</i>";
assert(/.*/.exec(html)[0] === "Hello",
 "A normal capture doesn't handle endlines.");
assert(/[\S\s]*/.exec(html)[0] === "Hello\n<i>world!</i>",
 "Matching everything with a character set.");
assert(/(?:.|\s)*/.exec(html)[0] === "Hello\n<i>world!</i>",
 "Using a non-capturing group to match everything.");

Obviously, due to its simplicity (and implicit speed benefits), the solution provided by [\S\s] is the
optimal one. It works by simultaneously matching all non-whitespaces characters (\S) and whitespace
characters - endlines included (\s).

Unicode
Frequently, for an expression, you'll want to match alphanumeric characters (such as for an ID selector in a
CSS selector engine implementation) for later use. However, assuming that the alpha characters will only
be in English is a little short-sited. Expanding the set to include unicode characters ends up becoming quite
useful - explicitly supporting multiple languages not covered by the traditional alphanumeric character
set, as seen in Listing 6-17.

Listing 6-17: Matching Unicode characters in a CSS selector.

var str = "\u0130\u0131\u0132";
assert(("#" + str).match(new RegExp("#([\\w\u0128-\uFFFF_-]+)")),
 "Verify that our RegExp matches a Unicode selector.");

There's a specific trick that we have to use in order to get the Unicode range of characters to work,
however. Specifically, we have to create the regular expression dynamically using new RegExp(...)
and populate it with a singly-escaped version of each of the unicode characters that we want to represent
the range. Starting at 128 gives us some high ascii characters and all Unicode characters. We need to create
the expression in this manner because doing it with a traditional /.../ expression creation it ends up
causing older versions of Safari to crash - which is undesirable in any situation.

Escaped Characters
Another, common, desire for matching in an implementation of a CSS selector engine is to support escaped
characters. This allows the user to specify complex names that don't conform to typical naming conventions
(either specified by the HTML or CSS specification) an example of which is in Listing 6-18.

Listing 6-18: Matching escaped characters in a CSS selector.

assert("#form\\:update".match(/#((?:\w|\\.)+)/)[1] == "form:update",
 "Matching an escaped expression.");

These particular expression works by using a non-capturing group to allow for the match of either an
alphanumeric character or a sequence of a backslash followed by any character (which is acceptable - since
we're assuming that the user will be escaping their desired characters).

Summary
Regular expressions permeate modern JavaScript development. Virtually every aspect of development
depends on their use in some way. With a good understanding of the advanced concepts that have been

Licensed to Alison Tyler <pedbro@gmail.com>

Regular Expressions

76

covered in this chapter, any developer should feel comfortable in tackling a challenging piece of regular
expression-using JavaScript code. The techniques including compiling regular expressions, capturing
values, and replacing with functions - not to mention the many minor tricky points, such as dealing with
Unicode. Together these these techniques make for a formidable development armada.

Licensed to Alison Tyler <pedbro@gmail.com>

77

Chapter 8. With Statements
Covered in this chapter:

• How with(){} statements work

• Code simplification

• Tricky gotchas

• Templating

with(){} statements are a powerful, and frequently misunderstood, feature of JavaScript. They allow
you to put all the properties of an object within the current scope - as if they were normal JavaScript
variables (allowing you to reference them and assign to them - while having their values be maintained in
the original object). Figuring out how to use them correctly can be tricky, but doing so gives you a huge
amount of power in your application code.

To start, let's take a look at the basics of how they work, as shown in Listing 7-1.

Listing 7-1: Exposing the properties of the katana object using with(){}.

var use = "other";
var katana = {
 isSharp: true,
 use: function(){
 this.isSharp = !this.isSharp;
 }
};

with (katana) {
 assert(true, "You can still call outside methods.");

 isSharp = false;
 use();

 assert(use !== "other",
 "Use is a function, from the katana object.");
 assert(this !== katana,
 "this isn't changed - it keeps its original value");
}

assert(typeof isSharp === "undefined",
 "Outside the with, the properties don't exist.");
assert(katana.isSharp,
 "Verify that the method was used correctly in the with.");

In the above listing we can see how the properties of the katana object are selectively introduced within
the scope of the with(){} statement. You can use them directly as if they were first-class variables
or methods. Note that within the scope of the statement the properties introduced by with(){} take
absolute precedence over the other variables, of the same name, that might exist (as we can see with the
use property and variable). You can also see that the this context is preserved while you are within
the statement - as is true with virtually all variables keywords - only the ones specified by the original
object are introduced. Note that the with(){} statement is able to take any JavaScript object, it's not
restricted in any sense.

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

78

Let's take a look at a different example of assignment within a with(){} statement:

Listing 7-2: Attempting to add a new property to a with(){}'d object.

var katana = {
 isSharp: true,
 use: function(){
 this.isSharp = !!this.isSharp;
 }
};

with (katana) {
 isSharp = false;
 cut = function(){
 isSharp = false;
 };
}

assert(!katana.cut, "The new cut property wasn't introduced here.");
assert(cut, "It was made as a global variable instead.");

One of the first things that most people try, when using with(){}, is to assign a new property to the
original object. However, this does not work. It's only possible to use and assign existing properties within
the with(){} statement - anything else (assigning to new variables) is handled within the native scope
and rules of JavaScript (as if there was no with(){} statement there at all).

In the above listing we can see that the cut method - which we presumed would be assigned to the katana
object - is instead introduced as a global variable.

This should be implied with the results from above but misspelling a property name can lead to strange
results (namely that a new global variable will be introduced rather than modifying the existing property on
the with(){}'d object). Of course, this is, effectively, the same thing that occurs with normal variables,
so you'll just need to carefully monitor your code, as always.

There's one major caveat when using with(){}, though: It slows down the execution performance of
any JavaScript that it encompasses - and not just objects that it interacts with. Let's look at three examples,
in Listing 7-3.

Listing 7-3: Examples of interacting with a with statement.

var obj = { foo: "bar" }, value;

// "No With"
for (var i = 0; i < 1000; i++) {
 value = obj.foo;
}

// "Using With"
with(obj){
 for (var i = 0; i < 1000; i++){
 value = foo;
 }
}

// "Using With, No Access"

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

79

with(obj){
 for (var i = 0; i < 1000; i++){
 value = "no test";
 }
}

The results of running the statements in Listing 7-3 result in some rather dramatic performance differences,
as seen in Table 7-1.

Table 7-1: All time in ms, for 1000 iterations, in a copy of Firefox 3.

Table 8.1.

Average Min Max Deviation

No With 0.14 0 1 0.35

Using With 1.58 1 2 0.50

Using With, No
Access

1.38 1 2 0.49

Effectively, any variables accesses must now run through an additional with-scope check which provides
an extra level of overhead (even if the result of the with statement isn't being used, as in the third case).
If you are uncomfortable with this extra overhead, or if you aren't interested in any of the conveniences,
then with(){} statements probably aren't for you.

Convenience
Perhaps the most common use case for using with(){} is as a simple means of not having to duplicate
variable usage or property access. JavaScript libraries frequently use this as a means of simplification to,
otherwise, complex statements.

Here are a few examples from a couple major libraries, starting with Prototype in Listing 7-4.

Listing 7-4: A case of using with(){} in the Prototype JavaScript library.

Object.extend(String.prototype.escapeHTML, {
 div: document.createElement('div'),
 text: document.createTextNode('')
});

with (String.prototype.escapeHTML) div.appendChild(text);

Prototype uses with(){}, in this case, as a simple means of not having to call
String.prototype.escapeHTML in front of both div and text. It's a simple addition and one
that saves three extra object property calls.

The example in Listing 7-5 is from the base2 JavaScript library.

Listing 7-5: A case of using with(){} in the base2 JavaScript library.

with (document.body.style) {
 backgroundRepeat = "no-repeat";
 backgroundImage =
 "url(http://ie7-js.googlecode.com/svn/trunk/lib/blank.gif)";

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

80

 backgroundAttachment = "fixed";
}

Listing 7-5 uses with(){} as a simple means of not having to repeat document.body.style
again, and again - allowing for some super-simple modification of a DOM element's style object. Another
example from base2 is in Listing 7-6.

Listing 7-6: A case of using with(){} in the base2 JavaScript library.

var Rect = Base.extend({
 constructor: function(left, top, width, height) {
 this.left = left;
 this.top = top;
 this.width = width;
 this.height = height;
 this.right = left + width;
 this.bottom = top + height;
 },

 contains: function(x, y) {
 with (this)
 return x >= left && x <= right && y >= top && y <= bottom;
 },

 toString: function() {
 with (this) return [left, top, width, height].join(",");
 }
});

This second case within base2 uses with(){} as a means of simply accessing instance properties.
Normally this code would be much longer but the terseness that with(){} is able to provide, in this
case, adds some much-needed clarity.

The final example, in Listing 7-7, is from the Firebug developer extension for Firefox.

Listing 7-7: An example of with(){} use within the Firebug Firefox extension.

const evalScriptPre = "with(__scope__.vars){ with(__scope__.api){" +
 " with(__scope__.userVars){ with(window){";
const evalScriptPost = "}}}}";

The lines in Listing 7-7, from Firebug, are especially complex - quite possibly the most complex uses of
with(){} in a publicly-accessible piece of code. These statements are being used within the debugger
portion of the extension, allowing the user to access local variables, the firebug API, and the global object
all within the JavaScript console. Operations like this are generally outside the scope of most applications,
but it helps to show the power of with(){} and in how it can make incredibly complex pieces of code
possible, with JavaScript.

One interesting takeaway from the Firebug example, especially, is the dual-use of with(){}, bringing
precedence to the window object over other, introduced, objects. Performing an action like the following:

with (obj) { with (window) { ... } }

Will allow you to have the obj object's properties be introduced by with(){}, while having the global
variables (available by window) take precedence, exclusively.

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

81

Importing Namespaced Code
As shown previously one of the most common uses for the with(){} statement is in simplifying existing
statements that have excessive object property use. You can see this most commonly in namespaced code
(objects within objects, providing an organized structure to code). The side effect of this technique is that
it becomes quite tedious to re-type the object namespaces again-and-again.

Note Listing 7-8, both performing the same operation using the Yahoo UI JavaScript library, but also
gaining extra simplicity and clarity by using with(){}.

Listing 7-8: Binding click events to two elements using Yahoo UI - done both normally and using with()
{}.

YAHOO.util.Event.on(
 [YAHOO.util.Dom.get('item'), YAHOO.util.Dom.get('otheritem')],
 'click', function(){
 YAHOO.util.Dom.setStyle(this,'color','#c00');
 }
);

with (YAHOO.util.Dom) {
 YAHOO.util.Event.on([get('item'), get('otheritem')], 'click',
 function(){ setStyle(this,'color','#c00'); });
}

The addition of this single with(){} statement allows for a considerable increase in code simplicity.
The resulting clarity benefits are debatable (especially when , although the reduction in code size

Clarified Object-Oriented Code
When writing object-oriented JavaScript a couple issues come into play - especially when creating objects
that include private instance data. with(){} statements are able to change the way this code is written
in a particularly interesting way. Observe the constructor code in Listing 7-9.

Listing 7-9: Defining an object which has both private and public data, equally exposed using with(){}.

function Ninja(){with(this){
 // Private Information
 var cloaked = false;

 // Public property
 this.swings = 0;

 // Private Method
 function addSwing(){
 return ++swings;
 }

 // Public Methods
 this.swingSword = function(){
 cloak(false);
 return addSwing();
 };

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

82

 this.cloak = function(value){
 return value != null ?
 cloaked = value :
 cloaked;
 };
}}

var ninja = new Ninja();

assert(!ninja.cloak(), "We start out uncloaked.");
assert(ninja.swings == 0, "And with no sword swings.");

assert(ninja.cloak(true),
 "Verify that the cloaking worked correctly.");
assert(ninja.swingSword() == 1, "Swing the sword, once.");
assert(!ninja.cloak(),
 "The ninja became uncloaked with the sword swing.");

A couple points to consider about the style of the code in Listing 7-9:

• There is an explicit difference between how private and public instance data are defined (as is the case
with most object-oriented code).

• There is absolutely no difference in how private data is accessed, from public data. All data is accessed
in the same way: by its name. This is made possible by the use of with(this){} at the top of the
code - forcing all public properties to become local variables.

• Methods are defined similarly to variables (publicly and privately). Public methods must include the
this. prefix when assigning - but are accessed in the same ways as private methods.

The ability to access properties and methods using a unified naming convention (as opposed to some being
through direct variable access and others through the instance object) is quite valuable.

Testing
When testing pieces of functionality in a test suite there's a couple things that you end up having to watch
out for. The primary of which is the synchronization between the assertion methods and the test case
currently being run. Typically this isn't a problem but it becomes especially troublesome when you begin
dealing with asynchronous tests. A common solution to counteract this is to create a central tracking object
for each test run. The test runner used by the Prototype and Scriptaculous libraries follows this model
- providing this central object as the context to each test run. The object, itself, contains all the needed
assertion methods (easily collecting the results back to the central location). You can see an example of
this in Listing 7-10.

Listing 7-10: An example of a test from the Scriptaculous test suite.

new Test.Unit.Runner({
 testSliderBasics: function(){with(this){
 var slider = new Control.Slider('handle1', 'track1');
 assertInstanceOf(Control.Slider, slider);
 assertEqual('horizontal', slider.axis);
 assertEqual(false, slider.disabled);
 assertEqual(0, slider.value);
 slider.dispose();

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

83

 }},
 // ...
});

You'll note the use of with(this){} in the above test run. The instance variable contains all the
assertion methods (assertInstanceOf, assertEqual, etc.). The above method calls could've,
also, been written explicitly as this.assertEqual - but by using with(this){} to introduce the
methods that we wish to use we can get an extra level of simplicity in our code.

Templating
The last - and likely most compelling - example of using with(){} exists within a simplified templating
system. A couple goals for a templating system are usually as follows:

• There should be a way to both run embedded code and print out data.

• There should be a means of caching the compiled templates

• and, perhaps, most importantly: It should be simple to easily access mapped data.

The last point is where with(){} becomes especially useful. To begin to understand how this is possible,
let's look at the templating code in Listing 7-11.

Listing 7-11: A simple templating solution using with(){} for simplified templates.

(function(){
 var cache = {};

 this.tmpl = function tmpl(str, data){
 // Figure out if we're getting a template, or if we need to
 // load the template - and be sure to cache the result.
 var fn = !/\W/.test(str) ?
 cache[str] = cache[str] ||
 tmpl(document.getElementById(str).innerHTML) :

 // Generate a reusable function that will serve as a template
 // generator (and which will be cached).
 new Function("obj",
 "var p=[],print=function(){p.push.apply(p,arguments);};" +

 // Introduce the data as local variables using with(){}
 "with(obj){p.push('" +

 // Convert the template into pure JavaScript
 str
 .replace(/[\r\t\n]/g, " ")
 .split("<%").join("\t")
 .replace(/((^|%>)[^\t]*)'/g, "$1\r")
 .replace(/\t=(.*?)%>/g, "',$1,'")
 .split("\t").join("');")
 .split("%>").join("p.push('")
 .split("\r").join("\\'")
 + "');}return p.join('');");

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

84

 // Provide some basic currying to the user
 return data ? fn(data) : fn;
 };
})();

assert(tmpl("Hello, <%= name %>!", {name: "world"}) ==
 "Hello, world!", "Do simple variable inclusion.");

var hello = tmpl("Hello, <%= name %>!");
assert(hello({name: "world"}) == "Hello, world!",
 "Use a pre-compiled template.");

This templating system provides a quick-and dirty solution to simple variable substitution. By giving
the user the ability to pass in an object (containing the names and values of template variables that they
want to populate) in conjunction with an easy means of accessing the variables, the result is a simple,
reusable, system. This is made possible largely in part due to the existence of the with(){} statement.
By introducing the data object all of its properties immediately become first-class accessible within the
template - which makes for some simple, re-usable, template writing.

The templating system works by converting the provided template strings into an array of values -
eventually concatenating them together. The individual statements, like <%= name %> are then translated
into the more palatable , name, - folding them inline into the array construction process. The result is
a template construction system that is blindingly fast and efficient.

Additionally, all of these templates are generated dynamically (out of necessity, since inline code is allowed
to be executed). In order to facilitate re-use of the generated templates we can place all of the constructed
template code inside a new Function(...) - which will give us a template function that we can
actively plug our needed data into.

A good question should now be: How do we use this templating system in a practical situation, especially
within an HTML document? We can see this in Listing 7-12.

Listing 7-12: Using our templating system to generate HTML.

<html>
<head>
 <script type="text/tmpl" id="colors">
 <p>Here's a list of <%= items.length %> items:</p>

 <% for (var i=0; i < items.length; i++) { %>
 <li style='color:<%= colors[i % colors.length] %>'>
 <%= items[i] %>
 <% } %>

 and here's another...
 </script>
 <script type="text/tmpl" id="colors2">
 <p>Here's a list of <%= items.length %> items:</p>

 <% for (var i=0; i < items.length; i++) {
 print("<li style='color:", colors[i % colors.length], "'>",
 items[i], "");
 } %>

 </script>

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

85

 <script src="tmpl.js"></script>
 <script>
 var colorsArray = ['red', 'green', 'blue', 'orange'];

 var items = [];
 for (var i = 0; i < 10000; i++)
 items.push("test");

 function replaceContent(name) {
 document.getElementById('content').innerHTML =
 tmpl(name, {colors: colorsArray, items: items});
 }
 </script>
</head>
<body>
 <input type="button" value="Run Colors"
 onclick="replaceContent('colors')">
 <input type="button" value="Run Colors2"
 onclick="replaceContent('colors2')">
 <p id="content">Replaced Content will go here</p>
</body>
</html>

Listing 7-12 shows a couple examples of functionality that's possible with this templating system,
specifically the ability to run inline JavaScript in the templates, a simple print function, and the ability to
embed the templates inline in HTML.

To be able to run full JavaScript code inline we break out of the array construction process and defer to the
user's code. For example, the final result of the loop in the above colors template would look something
like this:

p.push('<p>Here's a list of', items.length, ' items:</p> ');
for (var i=0; i < items.length; i++) {
 p.push('<li style=\'color', colors[i % colors.length], '\'>',
 items[i], '');
}
p.push(' and here's another...');

The print() method plays into this nicely, as well, being just a simple wrapper pointing back to
p.push().

Finally, the full templating system is pulled together with the use of embedded templates. There's a great
loophole provided by modern browsers and search engines: <script/> tags that specify a type="" that
they don't understand are completely ignored. This means that we can specify scripts that contain our
templates, given them a type of "text/tmpl", along with a unique ID, and use our system to extract the
templates again, later.

The total result of this templating system is one that is easy to use (due, in large part, to the abilities of
with(){}), fast, and cacheable: a sure win for development.

Summary
If anything has become obvious, over the course of this chapter, is that the primary goal of with(){}
is to make complex code simple: simplifying access to namespaced code, improving the usability of test

Licensed to Alison Tyler <pedbro@gmail.com>

With Statements

86

suites, building usable templating utilities, and even improving the use of existing JavaScript libraries.
Discretion should be applied when using it, but having a good understanding of how it works can only
lead to better-quality code.

Licensed to Alison Tyler <pedbro@gmail.com>

87

Chapter 9. Code Evaluation
Covered in this chapter:

• We examine how code evaluation works.

• Different techniques for evaluating code.

• How to be use evaluation in your applications.

JavaScript includes the ability to dynamically execute pieces of code at runtime. Code evaluation is
simultaneously the most advanced and most frequently misused feature of JavaScript. Understanding the
situations in which it can and should be used (along with the best techniques for using it) can give you a
definite advantage when creating advanced applications.

Code Evaluation
Within JavaScript there are a number of different ways to evaluate code. Each have their own advantages
and disadvantages and should be chosen carefully based upon the context in which they are to be used.

eval()
The eval() function is the most commonly used means of evaluating code. The most consistent means
of accessing it is as a global function. The eval function executes all code passed in to it, within the current
context, returning the result of the last evaluated expression, as in Listing 8-1.

Listing 8-1: A basic example of the eval function executing and returning a result.

assert(eval("5 + 5") === 10,
 "The code is evaluated and result returned ");
assert(eval("var t = 5;") === undefined, "No result returned.");
assert(t === 5, "But the t variable now exists.");

(function(){
 eval("var t = 6;");
 assert(t === 6, "eval is executed within the current scope.");
})();

assert(t === 5,
 "Verify that the scope execution was done correctly.");

The simplest way to determine if a result will be returned from eval is to pretend that the last expression
is wrapped in parentheses and still syntactically correct. For example, the code in Listing 8-2 will return
values when wrapped in parentheses.

Listing 8-2: Examples of values returned from eval.

assert((true) === true,
 "Variables, objects, and primitives all work.");
assert((t = 5), === 5, "Assignment returns the assigned value.");
assert(typeof (function(){}) === "function",
 "A function is returned.");

It should be noted that anything that isn't a simple variable, primitive, or assignment will actually need to
be wrapped in a parentheses in order for the correct value to be returned, for example in Listing 8-3.

Licensed to Alison Tyler <pedbro@gmail.com>

Code Evaluation

88

Listing 8-3: Getting a value from an evaluated object.

var obj = eval("({name:'Ninja'})");
assert(obj.name === "Ninja",
 "Objects require the extra parentheses.");

var fn = eval("(function(){return 'Ninja';})");
assert(fn() === "Ninja", "As do functions.");

Now the last one is interesting because is technically should work that simply (and does in Firefox, Safari,
and Opera) however Internet Explorer has a problem executing the function with that particular syntax.
Instead we are forced to use some boolean-expression trickery to get the function to be generated correctly.
For example Listing 8-4 shows a technique found in jQuery to create a function of that nature.

Listing 8-4: Dynamically creating a function with eval().

var fn = eval("false||function(){return true;}");
assert(fn() === true,
 "Verify that the function was created correctly.");

Now one might wonder why we would even want to create a function in this manner in the first place.
One important point is that all code executed by the eval is done so within the current scope and, thus,
it has all the properties of it as well - including any enclosed variables. Thus, using the above code, we
can dynamically create a function that has a closure to all the variables within the current scope and all
the externally enclosed variables as well.

Of course, if we don't need that additional closure, there's a proper alternative that we can make use of.

new Function
All functions in JavaScript are an instance of Function. Traditionally the function name(...)
{...} syntax is used to define a new function however we can go a step further and instantiate functions
directly using new Function, like in Listing 8-5.

Listing 8-5: Dynamically create a function using new Function.

var add = new Function("a", "b", "return a + b;");
assert(add(3, 4) === 7, "Function is created and works.");

The last argument to new Function is always the code that will be contained within the function. Any
arguments that go before it will represent the name of the arguments passed in to the function itself.

It's important to remember that no closures are created when functions are created in this manner. This can
be a good thing if you don't want to incur any of the overhead associated with possible variable lookups.

It should be noted that code can also be evaluated is asynchronously, using timers. Normally one would
pass in a function reference to a timer (which is the recommended behavior) however setTimeout and
setInterval also accept strings which can be evaluated. It's very rare that you would need to use this
behavior (it's roughly equivalent to using new Function) and it's essentially unused at this point.

Evaluate in the global scope
There's one problem that is frequently encountered, when working with eval, and it's the desire to evaluate
a piece of code within the global scope. For example having the following code execute and become global
variables, like in Listing 8-6.

Licensed to Alison Tyler <pedbro@gmail.com>

Code Evaluation

89

Listing 8-6: Attempting to evaluate code into a global variable.

(function(){
 eval("var test = 5;");
})();

assert(typeof test === "undefined",
 "Variable is confined to temporary enclosures.");

However there is one trick that we can use in modern browsers to achieve an acceptable result: Injecting
a dynamic <script/> tag into the document with the script contents that we need to execute.

Andrea Giammarchi developed the specific technique for making this work properly cross-platform. An
adaptation of his work can be found in Listing 8-7.

• Original Example: http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html

Listing 8-7: An example implementation of evaluating code in the global scope.

<script>
function globalEval(data) {
 data = data.replace(/^\s*|\s*$/g, "");

 if (data) {
 var head = document.getElementsByTagName("head")[0] ||
 document.documentElement,
 script = document.createElement("script");

 script.type = "text/javascript";
 script.text = data;

 head.appendChild(script);
 head.removeChild(script);
 }
}

window.onload = function(){
 (function(){
 globalEval("var test = 5;");
 })();

 assert(test === 5, "The code is evaluated globally.");
};
</script>

The most common place for using this code is in dynamically executing code returned from a server. It's,
almost always, a requirement that code of that nature be executed within the global scope (making the
above a necessity).

Safe Code Evaluation
One question that frequently arrives is related to the safe execution of JavaScript code, namely: It is
possible to safely execute untrusted JavaScript on your page without compromising the integrity of your
site. Generally the answer to that question is: No. There are simply too many ways to skirt around any
barriers put forth that can result in code getting access to information that it's not supposed to.

Licensed to Alison Tyler <pedbro@gmail.com>

http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html

Code Evaluation

90

There is one project, though, produced by Google called Caja. It's an attempt to create a translator for
JavaScript that converts JavaScript into a safer form (and immune to malicious attacks).

• Google Caja: http://code.google.com/p/google-caja/

For example, look at Listing 8-8 and the (relatively simple) JavaScript code and the final Caja code that
it gets converted into.

Listing 8-8: The result of a Caja conversion process.

// Original Code:
var test = true;
(function(){ var foo = 5; })();
Function.prototype.toString = function(){};

// Cajoled Code:
{
___.loadModule(function (___, IMPORTS___) {
{
 var Function = ___.readImport(IMPORTS___, 'Function');
 var x0___;
 var x1___;
 var x2___;
 var test = true;
 ___.asSimpleFunc(___.primFreeze(___.simpleFunc(function () {
 var foo = 5;
 })))();
 IMPORTS___['yield'] ((x0___ = (x2___ = Function,
 x2___.prototype_canRead___?
 x2___.prototype: ___.readPub(x2___, 'prototype')),
 x1___ = ___.primFreeze(___.simpleFunc(function () {})),
 x0___.toString_canSet___? (x0___.toString = x1___):
 ___.setPub(x0___, 'toString', x1___)));
}
});
}

Note the extensive use of built-in methods and properties to verify the integrity of the data (most of which is
verified at runtime, however a number of possible loopholes are discovered during the conversion process).
For example the following snippet throws an immediate exception during the conversion process:

(function(){ return this; })();
// FATAL_ERROR :4+2 - 28: Implicit xo4a only allowed in warts mode

The desire for secure JavaScript stems from wanting to create mashups and safe AD embedding without
worrying about your user's security becoming compromised. We're certainly going to see a lot of work in
this realm and Google Caja is leading the way.

Function Decompilation
Most JavaScript implementations also provide access to decompiling already-compiled JavaScript code.
Specifically this is done with the .toString() method of functions. A sample result will look something like
the following in Listing 8-9.

Listing 8-9: Decompiling a function into a string.

Licensed to Alison Tyler <pedbro@gmail.com>

http://code.google.com/p/google-caja/

Code Evaluation

91

function test(a){
 return a + a;
}

assert(test.toString() ===
 "function test(a) {\n return a + a;\n}",
 "A decompiled function.");

This act of decompilation has a number of potential uses (especially in the area of macros and code
rewriting) however one of the most popular is one presented in the Prototype JavaScript library. In there
they decompile a function in order to read out its arguments (resulting in an array of named arguments).
This is frequently used to introspect into functions to determine what sort of values they are expecting
to receive.

Below is a simple rewrite of the code in Prototype to become more generic in nature, in Listing 8-10.

Listing 8-10: A function for extracting the argument names for a function.

function argumentNames(fn) {
 var found = /^[\s\(]*function[^(]*\(\s*([^)]*?)\s*\)/.exec(fn);
 return found && found[1] ? found[1].split(/,\s*/) : [];
}

assert(argumentNames(argumentNames)[0] === "fn",
 "Get the first argument name.");

function temp(){}

assert(argumentNames(temp).length === 0, "No arguments found.");

There is one point to take into consideration when working with functions in this manner: It's possible that a
browser may not support decompilation. There aren't many that don't, but one such browser is Opera Mini.

We can do two things to counteract this: One we can write our code in a resilient manner (like was done
above with the argumentNames function) or two we can perform a quick test to see if decompilation
works in the browser, like in Listing 8-11.

Listing 8-11: Testing to see if function decompilation works as we expect it to.

assert(/abc(.|\n)*xyz/.test(function(abc){xyz;}),
 "Decompilation works as we except it to.");

We used this test in the chapter on Function Prototypes when we built our simple Class implementation
in order to determine if we could analyze methods for if they were accessing a super method.

Examples
There are a number of ways in which code evaluation can be used for both interesting, and practical,
purposes. Examining some examples of evaluation is used can give us a better understanding of when and
where we should try to use it in our code.

JSON
Probably the most wide-spread use of eval comes in the form of converting JSON strings into their
JavaScript object representations. Since JSON data is simply a subset of the JavaScript language it is
perfectly capable of being evaluated.

Licensed to Alison Tyler <pedbro@gmail.com>

Code Evaluation

92

There is one minor gotcha that we have to take into consideration, however: We need to wrap our object
input in parentheses in order for it to evaluate correctly. However, the result is quite simple, as seen in
Listing 8-12.

Listing 8-12: Converting a JSON string into a JavaScript object using the eval function.

var json = '{"name":"Ninja"}';
var object = eval("(" + json + ")");

assert(object.name === "Ninja",
 "Verify that the object evaluated and came out.");

Not only does the eval function win in simplicity but it also wins in performance (running drastically
faster than any manual JSON parser).

However there's a major caveat to using eval() for JSON parsing: Most of the time JSON data is coming
from a remote server and blindly executing code from a remote server is rarely a good thing.

The most popular JSON script is written by Douglas Crockford (the original specifier of the JSON markup)
in it he does some initial parsing of the JSON string in an attempt to prevent any malicious information
from passing through. The full code can be found here:

• http://json.org/json2.js

The important pieces of the JSON script (that pre-parses the JSON string) can be found in Listing 8-13.

Listing 8-13: The json2.js pre-parsing code (enforcing the integrity of incoming JSON strings).

var cx = /[\u0000\u00ad\u0600-\u0604\u070f\u17b4\u17b5\
 \u200c-\u200f\u2028-\u202f\u2060-\u206f\ufeff\ufff0-\uffff]/g;

cx.lastIndex = 0;
if (cx.test(text)) {
 text = text.replace(cx, function (a) {
 return '\\u' + ('0000' +
 (+(a.charCodeAt(0))).toString(16)).slice(-4);
 });
}

if (/^[\],:{}\s]*$/.test(
 text.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, '@')
 .replace(/"[^"\\\n\r]*"|true|false|null|-?\d+\
 (?:\.\d*)?(?:[eE][+\-]?\d+)?/g, ']')
 .replace(/(?:^|:|,)(?:\s*\[)+/g, ''))) {

 j = eval('(' + text + ')');
}

The pre-parsing works in a couple stages, in the words on Douglas Crockford:

• First we replace certain Unicode characters with escape sequences. JavaScript handles many characters
incorrectly, either silently deleting them, or treating them as line endings.

• Next we run the text against regular expressions that look for non-JSON patterns. We are especially
concerned with '()' and 'new' because they can cause invocation, and '=' because it can cause mutation.
But just to be safe, we want to reject all unexpected forms.

Licensed to Alison Tyler <pedbro@gmail.com>

http://json.org/json2.js

Code Evaluation

93

• We then split the second stage into 4 regexp operations in order to work around crippling inefficiencies
in IE's and Safari's regexp engines. First we replace the JSON backslash pairs with '@' (a non-JSON
character). Second, we replace all simple value tokens with ']' characters. Third, we delete all open
brackets that follow a colon or comma or that begin the text. Finally, we look to see that the remaining
characters are only whitespace or ']' or ',' or ':' or '{' or '}'. If that is so, then the text is safe for eval.

• Finally we use the eval function to compile the text into a JavaScript structure. The '{' operator is subject
to a syntactic ambiguity in JavaScript: it can begin a block or an object literal. We wrap the text in
parens to eliminate the ambiguity.

Once all the steps have been taken to protect our incoming JSON strings eval then becomes the preferred
means of converting JSON data into JavaScript objects.

Importing Namespace
Importing namespaced code into the current context can be a challenging problem - especially considering
that there is no simple way to do it in JavaScript. Most of the time we have to perform an action similar
to the following:

var DOM = base2.DOM;
var JSON = base2.JSON;
// etc.

The base2 library provides a very interesting solution to the problem of importing namespaces into the
current context. Since there is no way to automate this problem, traditionally, we can make use of eval in
order to make the above trivial to implement.

Whenever a new class or module is added to a package a string of executable code is constructed which
can be evaluated to introduce the function into the context, like in Listing 8-14.

Listing 8-14: Examining how the base2 namespace property works.

base2.namespace ==
 "var Base=base2.Base;var Package=base2.Package;" +
 "var Abstract=base2.Abstract;var Module=base2.Module;" +
 "var Enumerable=base2.Enumerable;var Map=base2.Map;" +
 "var Collection=base2.Collection;var RegGrp=base2.RegGrp;" +
 "var Undefined=base2.Undefined;var Null=base2.Null;" +
 "var This=base2.This;var True=base2.True;var False=base2.False;" +
 "var assignID=base2.assignID;var detect=base2.detect;" +
 "var global=base2.global;var lang=base2.lang;" +
 "var JavaScript=base2.JavaScript;var JST=base2.JST;" +
 "var JSON=base2.JSON;var IO=base2.IO;var MiniWeb=base2.MiniWeb;" +
 "var DOM=base2.DOM;var JSB=base2.JSB;var code=base2.code;" +
 "var doc=base2.doc;"

assert(typeof DOM === "undefined", "The DOM object doesn't exist.");

eval(base2.namespace);

assert(typeof DOM === "object",
 "And now the namespace is imported.");
assert(typeof Collection === "object",
 "Verifying the namespace import.");

and we can see how this list is constructed in the base2 Package code:

Licensed to Alison Tyler <pedbro@gmail.com>

Code Evaluation

94

this.namespace = format("var %1=%2;", this.name,
 String2.slice(this, 1, -1));

This is a very ingenious way of tackling this complex problem. Albeit it isn't, necessarily, done in the
most graceful manner but until implementations of future versions of JavaScript exist we'll have to make
do with what we have.

Compression and Obfuscation
A popular piece of JavaScript software is that of Dean Edwards' Packer. This particular script compresses
JavaScript code, providing a resulting JavaScript file that is significantly smaller while still being capable
of executing and self-extracting itself to run again.

• Dean Edwards' Packer: http://dean.edwards.name/packer/

The result is an encoded string which is converted into a string of JavaScript code and executed, using
eval(). The result typically looks something like the code in Listing 8-15.

Listing 8-15: An example of code compressed using Packer.

eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(
 parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):
 c.toString(36))};if(!''.replace(/^/,String)){while(c--)
 r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];
 e=function(){return'\\w+'};c=1};while(c--)if(k[c])
 p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);
 return p}(' // ... long string ...

While this technique is quite interesting there are some fundamental flaws with it: Namely that the overhead
of uncompressing the script every time it loads is quite costly.

When distributing a piece of JavaScript code it's traditional to think that the smallest (byte-size) code will
download and load the fastest. This is not true - and is a fascinating result of this survey. Looking at the
speed of loading jQuery in three forms: normal, minified (using Yahoo! Minifier - removing whitespace
and other simple tricks), and packed (using Dean Edwards' Packer - massive rewriting and uncompression
using eval). By order of file size, packed is the smallest, then minifed, then normal. However, the packed
version has an overhead: It must be uncompressed, on the client-side, using a JavaScript decompression
algorithm. This unpacking has a tangible cost in load time. This means, in the end, that using a minifed
version of the code is much faster than the packed one - even though its file size is quite larger.

It breaks down to a simple formula:

Total_Speed = Time_to_Download + Time_to_Evaluate

You can see the result of a study that was done on the jQuery library, analyzing thousands of file
downloads:

• http://ejohn.org/blog/library-loading-speed/

The results of which can be seen in Table 8-1.

Table 8-1: A comparison of transfer speeds, in various formats, of the jQuery JavaScript library.

Table 9.1.

Minified Time Avg # of Samples

Licensed to Alison Tyler <pedbro@gmail.com>

http://dean.edwards.name/packer/
http://ejohn.org/blog/library-loading-speed/

Code Evaluation

95

minified 519.7214 12611

packed 591.6636 12606

normal 645.4818 12589

This isn't to say that using code from Packer is worthless (if you're shooting for performance then it may
be) but it's still quite valuable as a means of code obfuscation.

If nothing else Packer can serve as a good example of using eval() gratuitously - where superior
alternatives exist.

Dynamic Code Rewriting
Since we have the ability to decompile existing JavaScript functions using a function's .toString() method
that means that we can create new functions, extracting the old function's contents, that take on new
functionality.

One case where this has been done is in the unit testing library Screw.Unit.

• Screw.Unit: http://github.com/nkallen/screw-unit/tree/master

Screw.Unit takes the existing test functions and dynamically re-writes their contents to use the functions
provided by the library. For example, Listing 8-16 shows what a typical Screw.Unit test looks like.

Listing 8-16: A sample Screw.Unit test.

describe("Matchers", function() {
 it("invokes the provided matcher on a call to expect", function() {
 expect(true).to(equal, true);
 expect(true).to_not(equal, false);
 });
});

Especially note the describe, it, and expect methods - all of which don't exist in the global scope. To
counteract this Screw.Unit rewrites this code on the fly to wrap all the functions with multiple with()
{} statements - injecting the function internals with the functions that it needs in order to execute, as seen
in Listing 8-17.

Listing 8-17: The code used by Screw.Unit to introduce new methods into an existing function.

var contents = fn.toString().match(/^[^{]*{((.*\n*)*)}/m)[1];
var fn = new Function("matchers", "specifications",
 "with (specifications) { with (matchers) { " + contents + " } }"
);

fn.call(this, Screw.Matchers, Screw.Specifications);

This is a case of using code evaluation to provide a simpler user experience to the end-user without having
to negative actions (such as introducing many variables into the global scope).

Aspect-Oriented Script Tags
We've previously discussed using script tags that have invalid type attributes as a means of including new
pieces of data in the page that you don't want the browser to touch. We can take that concept one step
further and use it to enhance existing JavaScript.

Licensed to Alison Tyler <pedbro@gmail.com>

http://github.com/nkallen/screw-unit/tree/master

Code Evaluation

96

Let's say that we created a new script type called "onload" - it contained normal JavaScript code but was
only executed whenever that page was already loaded (as opposed to being normally executed inline). The
script in Listing 8-18 achieves that goal.

Listing 8-18: Creating a script tag type that executes only after the page has already loaded.

<script>
window.onload = function(){
 var scripts = document.getElementsByTagName("script");
 for (var i = 0; i < scripts.length; i++) {
 if (scripts[i].type == "onload") {
 // You may want to use a globalEval implementation here
 eval(scripts[i].innerHTML);
 }
 }
};
</script>
<script type="onload">
 ok(true, "I will only execute after the page has loaded.");
</script>

Obviously this technique could be extended beyond this simple example: Executing scripts on user
interaction, when the DOM is ready to be manipulated, or even relatively based upon adjacent elements.

Meta-Languages

The most poignant example of the power of code evaluation can be seen in the implementation of other
programming languages on top of the JavaScript language: dynamically converting these languages into
JavaScript source and evaluating them.

There have been two such language conversions that have been especially interesting.

Processing.js

This was a port of the Processing Visualization Language (which is typically implemented using Java) to
JavaScript, running on the HTML 5 Canvas element - by John Resig.

• Processing Visualization Language: http://processing.org/

• Processing.js: http://ejohn.org/blog/processingjs/

The result is a full programming language that you can usual to manipulate the visual display of a drawing
area. Arguably Processing is particularly well suited towards it making it an effective port.

An example of Processing.js code can be seen in Listing 8-19.

Listing 8-19: An example of a class defined using Processing.

<script type="application/processing">
class SpinSpots extends Spin {
 float dim;
 SpinSpots(float x, float y, float s, float d) {
 super(x, y, s);

Licensed to Alison Tyler <pedbro@gmail.com>

http://processing.org/
http://ejohn.org/blog/processingjs/

Code Evaluation

97

 dim = d;
 }
 void display() {
 noStroke();
 pushMatrix();
 translate(x, y);
 angle += speed;
 rotate(angle);
 ellipse(-dim/2, 0, dim, dim);
 ellipse(dim/2, 0, dim, dim);
 popMatrix();
 }
}
</script>

The above Processing code is then converted into the following JavaScript code and executed using an
eval(), the resulting code can be seeing in Listing 8-20.

Listing 8-20: The end JavaScript result of the above Processing code.

function SpinSpots() {with(this){
 var __self=this;function superMethod(){
 extendClass(__self,arguments,Spin);
 this.dim = 0;
 extendClass(this, Spin);
 addMethod(this, 'display', function() {
 noStroke();
 pushMatrix();
 translate(x, y);
 angle += speed;
 rotate(angle);
 ellipse(-dim/2, 0, dim, dim);
 ellipse(dim/2, 0, dim, dim);
 popMatrix();
 });
 if (arguments.length == 4) {
 var x = arguments[0];
 var y = arguments[1];
 var s = arguments[2];
 var d = arguments[3];
 superMethod(x, y, s);
 dim = d;
 }
}}

Using the Processing language you gain a few immediate benefits over using JavaScript alone:

• You get the benefits of Processing advanced features (Classes, Inheritance)

• You get Processing's simple drawing API

• You get all of the existing documentation and demos on Processing

The important point, though: All of this is occurring in pure JavaScript - all made possible because of
code evaluation.

Licensed to Alison Tyler <pedbro@gmail.com>

Code Evaluation

98

Objective-J

The second major project put forth was a port of the Objective-C programming language to JavaScript,
called Objective-J, by the company 280 North for the product 280 Slides (an online slideshow builder).

• 280 Slides (uses Objective-J): http://280slides.com/

The 280 North team had extensive experience developing applications for OS X (which are primarily
written in Objective-C). To create a more-productive environment to work in they ported the Objective-C
language to JavaScript, providing a thin layer over the JavaScript language. An important point, though:
They allow JavaScript code mixed in with their Objective-C code; the result of which they dub Objective-
J, an example of which is in Listing 8-21.

Listing 8-21: An example of some Objective-J code.

// DocumentController.j
// Editor
//
// Created by Francisco Tolmasky.
// Copyright 2005 - 2008, 280 North, Inc. All rights reserved.

import <AppKit/CPDocumentController.j>
import "OpenPanel.j"
import "Themes.j"
import "ThemePanel.j"
import "WelcomePanel.j"

@implementation DocumentController : CPDocumentController
{
 BOOL _applicationHasFinishedLaunching;
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification
{
 [CPApp runModalForWindow:[[WelcomePanel alloc] init]];
 _applicationHasFinishedLaunching = YES;
}

- (void)newDocument:(id)aSender
{
 if (!_applicationHasFinishedLaunching)
 return [super newDocument:aSender];

 [[ThemePanel sharedThemePanel]
 beginWithInitialSelectedSlideMaster:SaganThemeSlideMaster
 modalDelegate:self
 didEndSelector:@selector(themePanel:didEndWithReturnCode:)
 contextInfo:YES];
}

- (void)themePanel:(ThemePanel)aThemePanel
 didEndWithReturnCode:(unsigned)aReturnCode
{
 if (aReturnCode == CPCancelButton)

Licensed to Alison Tyler <pedbro@gmail.com>

http://280slides.com/

Code Evaluation

99

 return;

 var documents = [self documents],
 count = [documents count];

 while (count--)
 [self removeDocument:documents[0]];

 [super newDocument:self];
}

In their parsing application (which is written in JavaScript and converts the Objective-J code on-the-fly
at runtime) they use light expressions to match and handle the Objective-C syntax, without disrupting the
existing JavaScript. The result is a string of JavaScript code which is evaluated.

While this implementation has less far-reaching benefits (it's a specific hybrid language that can only be
used within this context). It's potential benefits to users who are already familiar with Objective-C, but
wish to explore web programming, will become greatly endowed.

Summary
In this chapter we've looked at the fundamentals of code evaluation in JavaScript. Exploring a number
of different techniques for evaluating code and looking at what makes each method well suited to its
conditions. We then looked at a variety of use cases for code evaluation along with some examples of
how it has been best used. While potential for misuse will always remain, the incredible power that comes
with harnessing code evaluation correctly is sure to give you an excellent tool to wield in your daily
development.

Licensed to Alison Tyler <pedbro@gmail.com>

100

Chapter 10. Strategies for Cross-
Browser Code

In this chapter:

• A sound strategy for developing reusable JavaScript code.

• Analyzing the types of issues that need to be tackled.

• How to tackle issues in a smart way.

When developing capable cross-browser code there is a wide field of points, and counter-points, that need
to be taken into consideration. Everything from the basic level of development to planning for future
browser releases and web pages that have yet to be encountered. This is certainly a non-trivial task - the
result of which must be balanced in a way that best works for your development methodologies. It doesn't
matter if you wish your site to work in every browser that ever existed - and ever will exist - if you only
have a finite amount of development resources. You must plan your resources appropriately and carefully;
getting the maximum result from your effort.

Picking Your Core Browsers
Your primary concern should be taking into account which browsers will be the primary target on which
your development will take place. As with virtually any aspect of web development you need to end up
picking a number of browsers on which you'll want your users to have an optimal experience. When you
choose to support a browser you are typically promising a couple things:

1. That you'll actively test against that browser with your test suite.

2. You'll fix bugs and regressions associated with that browser.

3. That the browser will have comparably reasonable performance.

For example, most JavaScript libraries end up supporting about 12 browser: The previous release, the
current release, and the upcoming release of Internet Explorer, Firefox, Safari, and Opera. The choice of
the JavaScript library is generally independent of the actual time required to support these browsers or their
associated market share (as they are trying to, simultaneously, match actual market share and developer
market share - which are often quite the opposite) - however this may not be the case in your development,
an example of which is seen in Figure 9-1.

Figure 9-1: An example break-down of browser support for a JavaScript library.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

101

A JavaScript library (or, really, any piece of reusable JavaScript code) is in a unique situation: It must
be willing to encounter a large number of situations in which their code may not work correctly. Thus it
is optimal to try and work on as many platforms as possible, simultaneously, without sacrificing quality
or efficiency.

In order to understand what we're up against we must break down the different types of situations that
JavaScript code will encounter and then examine the best ways to write preventative code which will
assuage any potential problems that might occur.

Development Concerns
There are about five major points on which your reusable JavaScript code will be challenged. You'll want
to balance how much time you spend on each point with how much benefit you'll receive in the end result.
Is an extra 40 hours of development time worth better support for Netscape Navigator 4? Ultimately it's
a question that you'll have to answer yourself, but it's one that can be determined rather concretely after
some simple analysis.

There's one axiom that can be used when developing: Remember the past, consider the future - test
the present.

When attempting to develop reusable JavaScript code you must take all points into consideration: You
have to pay primary attention to the most-popular browsers that exist right now (as stated previously), then
you have to take into concern what changes are upcoming in the next versions of the browsers, and then
try to keep good compatibility with old browser versions (supporting as many features as you can without
being susceptible to becoming unusable), summarized in Figure 9-2.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

102

Figure 9-2: A breakdown of the different points that need to be considered when developing reusable
JavaScript code.

Let's break down the various concerns so that we can have a better understanding of what we're up against.

Browser Bugs
The primary concern of reusable JavaScript code development should be in handling the browser bugs and
API inequality associated with the set of browsers that you support. This means that any features that you
provide in your application should be completely - and verifiably - usable in all of those browsers.

The solution to this is quite straight forward, albeit challenging: You need a comprehensive suite of tests to
cover the common (and fringe) use cases of your code. With good coverage you can feel safe in knowing
that the code that you develop will, both, work in the most commonly-used browsers (hopefully covering
some 95-99% of your total browser market share) and in the next versions of those browsers (giving you
that guaranteed percentage many years into the future).

The trick becomes, however: How can you implement fixes for current browser bugs in a way that is
resistant to fixes implemented in future versions of the browser? Assuming that a browser will forever
contain a bug is quite foolhardy and is a dangerous development strategy. Its best to use a form of Feature
Simulation (as we discuss later on) to determine if a bug has been fixed (and that a browser feature works
as you expect it to).

Where the line blurs, though, is in determining what exactly a browser bug is. If a browser implements a
private API for handling a piece of functionality can you safely assume that the API will be maintained?
We'll look at a number of these issues when we examine how to handle regressions and bug fixes coming
in from future browser versions.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

103

External Code and Markup
A tricky point in developing reusable JavaScript code is in the code and markup that surrounds it. If you're
expecting your code to work on any web site then you need to expect it to be able to handle the random
code associated with it. This has two meanings: Your code must strive to be able to survive poorly written
external code and not affect any external code.

This point of concern depends a lot upon which environments you expect your code to be used. For
example, if you are using your reusable code on a limited number of web sites, but targeting a large number
of browsers, it's probably best to worry less about external code (as you have the power and control to fix
it yourself). However if you're trying to develop code that'll have the broadest applicability you'll need to
make sure that your code is robust and effective.

To keep your code from affecting other pieces of code on the page it's best to practice encapsulation. Keep
an incredibly-small footprint when introducing your code into a page (usually a single global variable).
This includes modifying existing variables, function prototypes, or even DOM elements. Any place that
your code modifies is a potential area for collision and confusion.

You can even extend these practices further and introduce other libraries in your test suite - making sure
that their code doesn't affect how yours performs, and vice versa.

Secondly, when expecting outside code or markup you need to assume the worst (that they will be
modifying function prototypes and existing DOM element methods, etc.). There aren't many steadfast rules
when dealing when situations of this nature, but here are a couple tips:

hasOwnProperty: When looping through the properties of an object you'll want to verify that the
properties that you're expecting are from the object itself and not introduced by an extension to
Object.prototype. Thankfully the number of scripts that use this technique is very small but the harm is
quite large. You can counter this by using the method hasOwnProperty to determine if the property is
coming from this object or another one, as shown in Listing 9-1.

Listing 9-1: Using hasOwnProperty to build resilient object looping.

Object.prototype.otherKey = "otherValue";

var object = { key: "value" };
for (var prop in object) {
 if (object.hasOwnProperty(prop)) {
 assert(prop, "key",
 "There should only be one iterated property.");
 }
}

Greedy IDs: Internet Explorer and Opera both have the concept of "greedy DOM IDs" - in which elements
become properties of other objects based upon their ID names. Listing 9-2 shows two examples of this
nasty trick in action.

Listing 9-2: A simple example of markup that's capable of causing great confusion in development.

<form id="form">
 <input type="text" id="length"/>
 <input type="submit" id="submit"/>
</form>

If you were to call document.getElementsByTagName("input").length you'd
find that the length property (which should contain a number) would now contain a

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

104

reference to the input element with the ID of length. Additionally if you were to call
document.getElementById("form").submit() that would no longer work as the submit
method will have be overwritten by the submit input element. This particular "feature" of the browser can
cause numerous problems in your code and will have to be taken in to consideration when calling default
properties in the above situations.

Order of Stylesheets: The best way to ensure that CSS rules (provided by stylesheets) are available when
the JavaScript code on the page executes is to specifying the external stylesheets prior to including the
external script files. Not doing so can cause unexpected results as the script attempts to access the incorrect
style information. Unfortunately this isn't an issue that can be easily rectified with pure JavaScript and
should be, instead, relegated to user documentation.

These are just some basic examples of how externalities can truly affect how your code works - frequently
in a very unintentional manner. Most of the time these issues will pop up once users try to integrate your
code into their sites - at which point you'll be able to diagnose the issue and build appropriate tests to
handle them. It's unfortunate that there are no better solutions to handling these integration issues other
than to take some smart first steps and to write your code in a defensive manner.

Missing Features
For a large segment of the browsers that exist, but aren't in your list of actively supported browsers, they
will most-likely be missing some key features that you need to power your code (or have enough bugs
to make them un-targetable).

The fundamental problem, in this area, is that the harder you work to support more browsers the less your
ultimate result will be worth. For example, if you worked incredibly hard and were able to bring Internet
Explorer 4 support to your library what would the end result be? There would be so few users and the
time that you spent to create that result would be so much as to be ludicrous. And that's saying nothing of
determining if the CSS of your page would render in this situation, as well.

The strategy usually becomes, at this point: How can we get the most functionality delivered to the user
while failing gracefully when we cannot. However there is one flaw in this, take this example: What if
a browser is capable of initializing and hiding a number of pieces of navigation on a page (in hopes of
creating a drop-down menu) but then the event-related code doesn't work. The result is a half-functional
page, which helps no one.

The better strategy is to design your code to be as backwards-compatible as possible and then actively
direct known failing browsers over to a tailored version of the page. Yahoo! adopts this strategy with their
web sites, breaking down browsers with graded levels of support. After a certain amount of time they
"blacklist" a browser (usually when it hits an infinitesimal market-share - like 0.05%) and direct users of
that browser (based upon the detected user agent) to a pure-HTML version of the application (no CSS or
JavaScript involved).

This means that their developers are able to target, and build, an optimal experience for the vast majority
of their users (around 99%) while passing off antiquated browsers to a functional equivalent (albeit with
a less-optimal experience).

The key points of this strategy:

• No assumptions are made about the user experience of old browsers. After a browser is no longer able
to be tested (and has a negligible market-share) it is simply cut off and served with a simplified page.

• All users of current and past browsers are guaranteed to have a page that isn't broken.

• Future/unknown browsers are assumed to work.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

105

With this strategy most of the extra development effort (beyond the currently-targeted browsers and
platforms) is focused towards handling future browsers. This is a smart strategy as it will allow your
applications to last longer with only minimal changes.

Bug Fixes
When writing a piece of reusable JavaScript code you'll want to make sure that it's able to last for a long
time. As with writing any aspect of a web site (CSS, HTML, etc.) it's undesirable to have to go back and
change a broken web site (caused by a new browser release).

The most common form of web site breakage comes in when making assumptions about browser bugs. This
can be generalized as: Specific hacks that are put in place to workaround bugs introduced by a browser,
which break when the browsers fix the bugs in future releases. The issue is frequently circumvented by
building pieces of feature simulation code (discussed in this chapter) instead of making assumptions about
the browser.

The issue with handling browser bugs callously is two-fold:

1. First, your code will break if the browser ever resolves the issue.

2. Second, browser vendors become more inclined to not fix the bugs, for fear of causing web sites to
break.

An interesting example of the above situation occurred during the development of Firefox 3. A change
was introduced which forced DOM nodes to be adopted by a DOM document if they were going to be
injected into them (in accordance with the DOM specification), like in Listing 9-3.

Listing 9-3: Examples of having to use adoptNode before injecting a node into a new document.

// Shouldn't work
var node = documentA.createElement("div");
documentB.documentElement.appendChild(node);

// Proper way
var node = documentA.createElement("div");
documentB.adoptNode(node);
documentB.documentElement.appendChild(node);

However, since there was a bug in Firefox (it allowed the first situation to work, when it shouldn't have)
users wrote their code in a manner that depended on that code working. This forced Mozilla to rollback
their change, for fear of breaking a number of web sites.

This brings up an important point concerning bugs, though: When determining if a piece of functionality
is, potentially, a bug - go back to the specification. In the above case Internet Explorer was actually more
forceful (throwing an exception if the node wasn't in the correct document - which was the correct behavior)
but users just assumed that it was an error with Internet Explorer, in that case, and wrote conditional code
to fall back. This caused a situation in which users were following the specification for only a subset of
browsers and forcefully rejecting it in others.

A browser bug should be differentiated from an unspecified API. It's important to point back to browser
specifications since those are the exact standards that browsers will be using in order to develop and
improve their code. Whereas with an unspecified API the implementation could change at any point
(especially if the implementation ever attempts to become specified - and changed in the process). In
the case of inconsistency in unspecified APIs you should always test for your expected output, running
additional cases of feature simulation. You should always be aware of future changes that could occur in
these APIs as they become solidified.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

106

Additionally, there's a distinction between bug fixes and API changes. Whereas bug fixes are easily
foreseen (a browser will eventually fix the bugs with its implementation - even if it takes a long amount
of time) API changes are much harder to spot. While you should always be cautious when using an
unspecified API it is possible for a specified API to change. While this will rarely happen in a way that will
massively break most web applications the result is effectively undetectable (unless, of course, you tested
every single API that you ever touched - but the overhead incurred in such an action would be ludicrous).
API changes in this manner should be handled like any other regression.

In summary: Blanketing a bug to a browser is very dangerous. Your web application will break, it's
only a matter of time before it occurs. Using feature simulation to gracefully fall back to a working
implementation is the only smart way to handle this issue.

Regressions
Regressions are the hardest problem that you can encounter in reusable, sustainable, JavaScript
development. These are bugs, or API changes, that browsers have introduced that caused your code to
break in unpredicted ways.

There are some API changes that can be easily detected and handled. For example, if Internet Explorer
introduces support for DOM event handlers (bound using addEventListener) simple object detection will
be able to handle that change, as shown in Listing 9-4.

Listing 9-4: A simple example of catching the implementation of a new API.

function attachEvent(elem, type, handle) {
 // bind event using proper DOM means
 if (elem.addEventListener)
 elem.addEventListener(type, handle, false);

 // use the Internet Explorer API
 else if (elem.attachEvent)
 elem.attachEvent("on" + type, handle);
}

However most API changes aren't that easy to predict and neither are bugs. For this reason the best that
you can hope for is to be diligent in your monitoring and testing in upcoming browser releases.

For example, in Internet Explorer 7 a basic XMLHttpRequest wrapper around the native ActiveX request
object. This caused virtually all JavaScript libraries to default to using the XMLHttpRequest object to
perform their Ajax requests (as it should - opting to use a standards-based API is nearly always optimal).
However, in Internet Explorer's implementation they broke the handling of requesting local files (a site
loaded from the desktop could no longer request files using the XMLHttpRequest object). No one really
caught this bug (or really could've pre-empted it) until it was too late, causing it to escape into the wild and
breaking many pages in the process. The solution was to opt to use the ActiveX implementation primarily
for local file requests.

Keeping close track of upcoming browser releases is absolutely the best way to avoid future regressions
of this nature. It doesn't have to be a complete tax on your normal development cycle - it can be as simple
as opening your applications in each of the upcoming browsers every couple weeks to make sure no major
regressions have taken place.

You can get the upcoming browser releases from the following locations:

• Internet Explorer (their blog - but releases are announced here): http://blogs.msdn.com/ie/

• Firefox: http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/latest-trunk/

Licensed to Alison Tyler <pedbro@gmail.com>

http://blogs.msdn.com/ie/
http://ftp.mozilla.org/pub/mozilla.org/firefox/nightly/latest-trunk/

Strategies for Cross-Browser Code

107

• WebKit (Safari): http://nightly.webkit.org/

• Opera: http://snapshot.opera.com/

Diligence is important in this respect. Since you can never be fully precogniscent of the bugs that will
be introduced by a browser it is best to make sure that you stay on top of your code and avert any crises
that may arrive.

Thankfully, browser vendors are doing a lot to make sure that regressions of this nature do not occur. Both
Firefox and Opera have test suites from various JavaScript libraries integrated into their main browser test
suite. This allows them to be sure that no future regressions will be introduced that affect those libraries
directly. While this wont catch all regressions (and certainly wont in all browsers) it's a great start and
shows good progress by the browser vendors towards preventing as many issues as possible.

Implementing Cross-Browser Code
Knowing which issues to be aware of is only half the battle. Figuring out effective strategies for
implementing cross-browser code is a whole other aspect to development. There exist a range of strategies
that can be used. While not every strategy will work in every situation - the combination should provide
good coverage for most concerns with a code base.

Safe Cross-Browser Fixes
The simplest, and safest, class of cross-browser fixes are those that will have no negative effects on other
browsers whatsoever, while simultaneously using no forms of browser or feature detection.

These instances are, generally, rather rare - but it's a result that should always be strived for in your
applications. To give an example, examine Listing 9-5.

Listing 9-5: Preventing negative values to be set on CSS height and width properties.

// ignore negative width and height values
if ((key == 'width' || key == 'height') && parseFloat(value) < 0)
 value = undefined;

This change, in jQuery, came about when working with Internet Explorer. The browser throws an exception
when a negative value is set on height or width style properties. All other browsers simply ignore this
input. The workaround that was introduced, shown in the above listing, was to simply ignore all negative
values - in all browsers. This change prevented an exception from being thrown in Internet Explorer and
had no effect on any other browser. This was a painless addition which provided a unified API to the user
(throwing unexpected exceptions is never desired).

Another example of this simplification can be seen in jQuery in the attribute manipulation code is shown
in Listing 9-6.

Listing 9-6: Disallow attempts to change the type attribute on input elements in all browsers.

if (name == "type" && elem.nodeName.toLowerCase() == "input" &&
 elem.parentNode)
 throw "type attribute can't be changed";

Internet Explorer doesn't allow you to manipulate the type attribute of input elements that have already
been inserted into the document. Attempts to do so result in an unpredictable exception being thrown.
jQuery came to a middle-ground solution: It simply disallowed all attempts to manipulate the type attribute
on injected input elements in all browsers equally (throwing an informational exception).

Licensed to Alison Tyler <pedbro@gmail.com>

http://nightly.webkit.org/
http://snapshot.opera.com/

Strategies for Cross-Browser Code

108

This change to the jQuery code base required no browser or feature detection - it was simply introduced
as a means of unifying the API across all browsers. Certainly this particular feature addition is quite
controversial - it actively limits the features of the library in browsers that are unaffected by this bug. The
jQuery team weighed the decision carefully and decided that it was better to have a unified API that worked
consistently than an API would break unexpectedly when developing cross-browser. It's very possible that
you'll come across situations like this when developing your own reusable code bases.

The important thing to remember from these style of code changes: They provide a solution that works
seamlessly across browsers with no browser or feature detection (effectively making them immune to
changes going forward). One should always strive to use solutions that work in this manner - even if they
are few and far-between.

Object Detection
Object detection is one of the most commonly used ways of writing cross-browser code. It's simple and
generally quite effective. It works by simply determining if a certain object or object property exists (and,
if so, assuming that it provides the functionality implies).

Most common object detection is used to toggle between multiple APIs that provide duplicate pieces
of functionality. For example, like in the code shown in Listing 9-4 and Listing 9-7, object detection is
frequently used to choose the appropriate event-binding APIs provided by the browser.

Listing 9-7: Binding an event listener using the W3C DOM Events API or the Internet Explorer-specific
API using object detection.

function attachEvent(elem, type, handle) {
 // bind event using proper DOM means
 if (elem.addEventListener)
 elem.addEventListener(type, handle, false);

 // use the Internet Explorer API
 else if (elem.attachEvent)
 elem.attachEvent("on" + type, handle);
}

In this case we look to see if a property exists named addEventListener and, if so, we assume that it's
a function that we can execute and that it'll bind an event listener to that element. Note that we start with
addEventListener (the method provided by the W3C DOM Events specification). This is intentional.
Whenever possible we should strive to default to the specified way of performing an action. As mentioned
before this will help to make our code advance well into the future and encourage browser vendors to work
towards the specified way of performing actions.

One of the most important uses of object detection is in detecting the basic features of a library, or
application, and providing a fallback. As discussed previously you'll want to target your code to a specific
set of browsers. The best way to do this is to figure out the APIs that the browser provides, that you need,
and test for their existence.

Listing 9-9 has a basic example of detecting a number of browser features, using object detection, in order
to determine if we should be providing a full application or a reduced fallback experience.

Listing 9-9: An example of using object detection to provide a fallback experience for a browser.

if (typeof document !== "undefined" &&
 (document.addEventListener || document.attachEvent) &&
 document.getElementsByTagName && document.getElementById) {

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

109

 // We have enough of an API to work with to build our application
} else {
 // Provide Fallback
}

What is done in the fallback is up to you. There are a couple options:

1. You could do further object detection and figure out how to provide a reduce experience that still uses
some JavaScript.

2. Simply opt to not execute any JavaScript (falling back to the HTML on the page).

3. Redirect a user to a plain version of the site (Google does this with GMail, for example).

Since object detection has very little overhead associated with it (it's just simple property/object lookups)
and is relatively simplistic in its implementation, it makes for a good candidate to provide basic levels of
fallbacks - both at the API and at the application level. It absolutely should serve as a good first line of
defense in your reusable code authoring.

Feature Simulation
The final means that we have of preventing regressions - and the most effective means of detecting fixes to
browser bugs - exists in the form of feature simulation. Contrary to object detection, which are just simple
object/property lookups, feature simulation runs a complete run-through of a feature to make sure that it
works as one would expect it to.

Typically object detection isn't enough to know if a feature will behave as is intended but if we know of
specific bugs we can quickly build contrived tests for future knowledge. For example, Internet Explorer
will return both elements and comments if you do getElementsByTagName("*"). Doing simple
object detection isn't enough to determine if this will happen. Additionally this bug will, most likely, be
fixed by the Internet Explorer team at some future release of the browser.

We can see an example of using feature simulation to determine if the getElementsByTagName
method will work as we expect it to in Listing 9-10.

Listing 9-10: Defining a global variable that captures information about how a browser feature works and
using it later on.

// Run once, at the beginning of the program
var ELEMENTS_ONLY = (function(){
 var div = document.createElement("div");
 div.appendChild(document.createComment("test"));
 return div.getElementsByTagName("*").length === 0;
})();

// Later on:
var all = document.getElementsByTagName("*");

if (ELEMENTS_ONLY) {
 for (var i = 0; i < all.length; i++) {
 action(all[i]);
 }
} else {
 for (var i = 0; i < all.length; i++) {
 if (all[i].nodeType === 1) {
 action(all[i]);

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

110

 }
 }
}

Feature simulation works in two ways. To start a simple test is run to determine if a feature work as we
expect it to. It's important to try and verify the integrity of a feature (making sure it works correctly) rather
than explicitly testing for the presence of a bug. It's only a semantic distinction but it's one that its important
to maintain in your coding.

Secondly we use the results of the test run later on in our program to speed up looping through an array
of elements. Since a browser that returns only elements doesn't need to perform these element checks on
every stage of the loop we can completely skip it and get the performance benefit in the browsers that
work correctly.

The is the most common idiom used in feature simulation: Making sure a feature works as you expect it
to and providing browsers, that work correctly, with optimized code - an example of which can be seen
in Listing 9-11.

Listing 9-11: Figure out the attribute name used to access textual element style information.

<div id="test" style="color:red;"></div>
<div id="test2"></div>
<script>
// Perform the initial attribute check
var STYLE_NAME = (function(){
 var div = document.createElement("div");
 div.style.color = "red";

 if (div.getAttribute("style"))
 return "style";

 if (div.getAttribute("cssText"))
 return "cssText";
})();

// Later on:
window.onload = function(){
 document.getElementsById("test2").getAttribute(STYLE_NAME) =
 document.getElementById("test").getAttribute(STYLE_NAME);
};
</script>

In this example we, again, break down into two parts. We start by creating a dummy element, setting a
style property, and then attempt to get the complete style information back out again. We start by using
the standards-compliant way (accessing the style attribute) then by trying the Internet Explorer-specific
way. In either case we return the name of the property that worked.

We can then use that property name at any point in our code when it comes time to get or set style attribute
values, which is what we do when the page fully loads.

There's a couple points to take into consideration when examining feature simulation. Namely that it's a
trade-off. For the extra performance overhead of the initial simulation and extra lines of code added to
your program you get the benefit of knowing exactly how a feature works in the current browser and you
become immune of future bug fixes. The immunity can be absolutely priceless when dealing with reusable
code bases.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

111

Untestable
Unfortunately there are a number of features in JavaScript and the DOM that are either impossible or
prohibitively expensive to test. These features are, generally, quite rare. If you encounter an issue in your
code that appears to be untestable it will always pay to investigate the matter further.

Following are some issues that are impossible to be tested using any conventional JavaScript interactions.

Determining if an event handler has been bound. Browsers do not provide a way of determining if if any
functions have been bound to an event listener on an element. Because of this there is no way to remove
all bound event handlers from an element unless you have foreknowledge of, and maintain references to,
all bound handlers.

Determining if an event will fire. While it's possible to determine if a browser supports a means of binding
an event (such as using bindEventListener) it's not possible to know if a browser will actually fire
an event. There are a couple places where this becomes problematic.

First, if a script is loaded dynamically, after the page has already loaded, it may try to bind a listener to
wait for the window to load when, in fact, that event happened some time ago. Since there's no way to
determine that the event already occurred the code may wind up waiting indefinitely to execute.

Second, if a script wishes to uses specific events provided by a browser as an alternative. For example
Internet Explorer provides mouseenter and mouseleave events which simplify the process of determining
when a user's mouse enters and leaves an element. These are frequently used as an alternative to the
mouseover and mouseout events. However since there's no way of determining if these events will fire
without first binding the events and waiting for some user interaction against them it becomes prohibitive
to use them for interaction.

Determining if changing certain CSS properties affects the presentation. A number of CSS properties
only affect the visual representation of the display and nothing else (don't change surrounding elements or
event other properties on the element) - like color, backgroundColor, or opacity. Because of this there is no
way to programmatically determine if changing these style properties are actually generating the effects
that are desired. The only way to verify the impact is through a visual examination of the page.

Testing script that causes the browser to crash. Code that causes a browser to crash is especially
problematic since, unlike exceptions which can be easily caught and handled, these will always cause the
browser to break.

For example, in older versions of Safari, creating a regular expression that used Unicode characters ranges
would always cause the browser to crash, like in the following example:

new RegExp("[\\w\u0128-\uFFFF*_-]+");

The problem with this occurring is that it's not possible to test how this works using regular feature
simulation since it will always produce an undesired result in that older browser. Additionally bugs that
cause crashes to occur forever become embroiled in difficulty since while it may be acceptable to have
JavaScript be disabled in some segment of the population using your browser, it's never acceptable to
outright crash the browser of those users.

Testing bugs that cause an incongruous API. In Listing 9-6 when we looked at disallowing the ability
to change the type attribute in all browsers due to a bug in Internet Explorer. We could test this feature and
only disable it in Internet Explorer however that would give us a result where the API works differently
from browser-to-browser. In issues like this - where a bug is so bad that it causes an API to break - the
only option is to write around the affected area and provide a different solution.

The following are items that are not impossible to test but are prohibitively difficult to test effectively.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

112

The performance of specific APIs. Sometimes specific APIs are faster or slower in different browsers.
It's important to try and use the APIs that will provide the fastest results but it's not always obvious which
API will yield that. In order to do effective performance analysis of a feature you'll need to make it difficult
enough as to take a large amount of time in order

Determining if Ajax requests work correctly. As mentioned when we looked at regressions, Internet
Explorer broke requesting local files via the XMLHttpRequest object in Internet Explorer 7. We could
test to see if this bug has been fixed but in order to do so we would have to perform an extra request
on every page load that attempted to perform a request. Not only that but an extra file would have to be
included with the library whose sole purpose would be to exist for these extra requests. The overhead of
both these matters is quite prohibitive and would, certainly, not be worth the extra effort of simply doing
object detection instead.

While untestable features are a significant hassle (limiting the effectiveness of writing reusable JavaScript)
they are almost always able to be worked around. By utilizing alternative techniques, or constructing your
APIs in a manner as to obviate these issues in the first place, it will most likely be possible that you'll be
able to build effective code, regardless.

Implementation Concerns
Writing cross-browser, reusable, code is a battle of assumptions. By using better means of detection
and authoring you're reducing the number of assumptions that you make in your code. When you make
assumptions about the code that you write you stand to encounter problems later on. For example, if you
assume that a feature or a bug will always exist in a specific browser - that's a huge assumption. Instead,
testing for that functionality proves to be much more effective.

In your coding you should always be striving to reduce the number of assumptions that you make,
effectively reducing the room that you have for error. The most common area of assumption-making, that is
normally seen in JavaScript, is that of user agent detection. Specifically, analyzing the user agent provided
by a browser (navigator.userAgent) and using it to make an assumption about how the browser
will behave. Unfortunately, most user agent string analysis proves to be a fairly large source of future-
induced errors. Assuming that a bug will always be linked to a specific browser is a recipe for disaster.

However, there is one problem when dealing with assumptions: it's virtually impossible to remove all of
them. At some point you'll have to assume that a browser will do what it proposes. Figuring out the best
point at which that balance can be struck is completely up to the developer.

For example, let's re-examine the event attaching code that we've been looking at, in Listing 9-12.

Listing 9-12: A simple example of catching the implementation of a new API.

function attachEvent(elem, type, handle) {
 // bind event using proper DOM means
 if (elem.addEventListener)
 elem.addEventListener(type, handle, false);

 // use the Internet Explorer API
 else if (elem.attachEvent)
 elem.attachEvent("on" + type, handle);
}

In the above listing we make three assumptions, namely:

1. That the properties that we're checking are, in fact, callable functions.

Licensed to Alison Tyler <pedbro@gmail.com>

Strategies for Cross-Browser Code

113

2. That they're the right functions, performing the action that we expect.

3. That these two methods are the only possible ways of binding an event.

We could easily negate the first assumption by adding checks to see if the properties are, in fact, functions.
However how we tackle the remaining two points is much more problematic.

In your code you'll need to decide how many assumptions are a correct level for you. Frequently when
reducing the number of assumptions you also increase the size and complexity of your code base. It's fully
possible to attempt to reduce assumptions to the point of insanity but at some point you'll have to stop and
take stock of what you have and work from there. Even the least assuming code is still prone to regressions
introduced by a browser.

Summary
Cross-browser development is a juggling act between three points:

• Code Size: Keeping the file size small.

• Performance Overhead: Keeping the performance hits to a palatable minimum.

• API Quality: Making sure that the APIs that are provided work uniformly across browsers.

There is no magic formula for determining what the correct balance of these points are. They are something
that will have to be balanced by every developer in their individual development efforts. Thankfully using
smart techniques like object detection and feature simulation it's possible to defend against any of the
numerous directions from which reusable code will be attacked, without making any undue sacrifices.

Licensed to Alison Tyler <pedbro@gmail.com>

114

Chapter 11. CSS Selector Engine
In this chapter:

• The tools that we have for building a selector engine

• The strategies for engine construction

CSS selector engines are a, relatively, new development in the world of JavaScript but they've taken the
world of libraries by storm. Every major JavaScript library includes some implementation of a JavaScript
CSS selector engine.

The premise behind the engine is that you can feed it a CSS selector (for example "div > span") and it
will return all the DOM elements that match the selector on the page (in this case all spans that are a child
of a div element). This allows users to write terse statements that are incredibly expressive and powerful.
By reducing the amount of time the user has to spend dealing with the intricacies of traversing the DOM
it frees them to handle other tasks.

It's standard, at this point, that any selector engine should implement CSS 3 selectors, as defined by the
W3C:

• http://www.w3.org/TR/css3-selectors/

There are three primary ways of implementing a CSS selector engine:

1. Using the W3C Selectors API - a new API specified by the W3C and implemented in most newer
browsers.

2. XPath - A DOM querying language built into a variety of modern browsers.

3. Pure DOM - A staple of CSS selector engines, allows for graceful degradation if either of the first two
don't exist.

This chapter will explore each of these strategies in depth allowing you to make some educated decisions
about implementing, or at least understanding, a JavaScript CSS selector engine.

Selectors API
The W3C Selectors API is a, comparatively, new API that is designed to reduce much of the work that it
takes to implement a full CSS selector engine in JavaScript. Browser vendors have pounced on this new
API and it's implemented in all major browsers (starting in Safari 3, Firefox 3.1, Internet Explorer 8, and
Opera 10). Implementations of the API generally support all selectors implemented by the browser's CSS
engine. Thus if a browser has full CSS 3 support their Selectors API implementation will reflect that.

The API provides two methods:

• querySelector: Accepts a CSS selector string and returns the first element found (or null if no
matching element is found).

• querySelectorAll: Accepts a CSS selector string and returns a static NodeList of all elements
found by the selector.

and these two methods exist on all DOM elements, DOM documents, and DOM fragments.

Listing 10-1 has a couple examples of how it could be used.

Listing 10-1: Examples of the Selectors API in action.

Licensed to Alison Tyler <pedbro@gmail.com>

http://www.w3.org/TR/css3-selectors/

CSS Selector Engine

115

<div id="test">
 Hello, I'm a ninja!
</div>
<div id="test2"></div>
<script>
window.onload = function(){
 var divs = document.querySelectorAll("body > div");
 assert(divs.length === 2, "Two divs found using a CSS selector.");

 var b = document.getElementById("test")
 .querySelector("b:only-child");
 assert(b,
 "The bold element was found relative to another element.");
};
</script>

Perhaps the one gotcha that exists with the current Selectors API is that it more-closely capitulates to the
existing CSS selector engine implementations rather than the implementations that were first created by
JavaScript libraries. This can be seen in the matching rules of element-rooted queries, as seen in Listing
10-2.

Listing 10-2: Element-rooted queries.

<div id="test">
 Hello, I'm a ninja!
</div>
<script>
window.onload = function(){
 var b = document.getElementById("test").querySelector("div b");
 assert(b, "Only the last part of the selector matters.");
};
</script>

Note the issue here: When performing an element-rooted query (calling querySelector or
querySelectorAll relative to an element) the selector only checks to see if the final portion of the
selector is contained within the element. This will probably seem counter-intuitive (looking at the previous
listing we can verify that there are no div elements with the element with an ID of test - even though that's
what the selector looks like it's verifying).

Since this runs counter to how most users expect a CSS selector engine to work we'll have to provide a
work-around. The most common solution is to add a new ID to the rooted element to enforce its context,
like in Listing 10-3.

Listing 10-3: Enforcing the element root.

<div id="test">
 Hello, I'm a ninja!
</div>
<script>
(function(){
 var count = 1;

 this.rootedQuerySelectorAll = function(elem, query){
 var oldID = elem.id;
 elem.id = "rooted" + (count++);

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

116

 try {
 return elem.querySelectorAll("#" + elem.id + " " + query);
 } catch(e){
 throw e;
 } finally {
 elem.id = oldID;
 }
 };
})();

window.onload = function(){
 var b = rootedQuerySelectorAll(
 document.getElementById("test"), "div b");
 assert(b.length === 0, "The selector is now rooted properly.");
};
</script>

Looking at the previous listing we can see a couple important points. To start we must assign a unique ID
to the element and restore the old ID later. This will ensure that there are no collisions in our final result
when we build the selector. We then prepend this ID (in the form of a "#id " selector) to the selector.

Normally it would be as simple as removing the ID and returning the result from the query but there's a
catch: Selectors API methods can throw exceptions (most commonly seen for selector syntax issues or
unsupported selectors). Because of this we'll want to wrap our selection in a try/catch block. However
since we want to restore the ID we can add an extra finally block. This is an interesting feature of of the
language - even though we're returning a value in the try, or throwing an exception in the catch, the code in
the finally will always execute after both of them are done executing (but before the value is return from the
function or the object is thrown). In this manner we can verify that the ID will always be restored properly.

The Selectors API is absolutely one of the most promising APIs to come out of the W3C in recent history.
It has the potential to completely replace a large portion of most JavaScript libraries with a simple method
(naturally after the supporting browsers gain a dominant market share).

XPath
A unified alternative to using the Selectors API (in browsers that don't support it) is the use of XPath
querying. XPath is a querying language utilized for finding DOM nodes in a DOM document. It is
significantly more powerful than traditional CSS selectors. Most modern browsers (Firefox, Safari 3+,
Opera 9+) provide some implementation of XPath that can be used against HTML-based DOM documents.
Internet Explorer 6, 7, and 8 provide XPath support for XML documents (but not against HTML documents
- the most common target).

If there's one thing that can be said for utilizing XPath expressions: They're quite fast for complicated
expressions. When implementing a pure-DOM implementation of a selector engine you are constantly at
odds with the ability of a browser to scale all the JavaScript and DOM operations. However, XPath loses
out for simple expressions.

There's a certain indeterminate threshold at which it becomes more beneficial to use XPath expressions
in favor of pure DOM operations. While this might be able to be determined programatically there are
a few gives: Finding elements by ID ("#id") and simple tag-based selectors ("div") will always be faster
with pure-DOM code.

If you and your users are comfortable using XPath expressions (and are happy limiting yourself to the
modern browsers that support it) then simply utilize the method shown in Listing 10-4 and completely
ignore everything else about building a CSS selector engine.

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

117

Listing 10-4: A method for executing an XPath expression on an HTML document, returning an array of
DOM nodes, from the Prototype library.

if (typeof document.evaluate === "function") {
 function getElementsByXPath(expression, parentElement) {
 var results = [];
 var query = document.evaluate(expression,
 parentElement || document,
 null, XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);
 for (var i = 0, length = query.snapshotLength; i < length; i++)
 results.push(query.snapshotItem(i));
 return results;
 }
}

While it would be nice to just use XPath for everything it simply isn't feasible. XPath, while feature-packed,
is designed to be used by developers and is prohibitively complex, in comparison to the expressions that
CSS selectors make easy. While it simply isn't feasible to look at the entirety of XPath we can take a quick
look at some of the most common expressions and how they map to CSS selectors, in Table 10-1.

Table 10-1: Map of CSS selectors to their associated XPath expressions.

Table 11.1.

Goal CSS 3 XPath

All Elements * //*

All P Elements p //p

All Child Elements p > * //p/*

Element By ID #foo //*[@id='foo']

Element By Class .foo //*[contains(concat(" ", @class, "
")," foo ")]

Element With Attribute *[title] //*[@title]

First Child of All P p > *:first-child //p/*[0]

All P with an A descendant Not possible //p[a]

Next Element p + * //p/following-sibling::*[0]

Using XPath expressions would work as if you were constructing a pure-DOM selector engine (parsing the
selector using regular expressions) but with an important deviation: The resulting CSS selector portions
would get mapped to their associated XPath expressions and executed.

This is especially tricky since the result is, code-wise, about as large as a normal pure-DOM CSS
selector engine implementation. Many developers opt to not utilize an XPath engine simply to reduce the
complexity of their resulting engines. You'll need to weigh the performance benefits of an XPath engine
(especially taking into consideration the competition from the Selectors API) against the inherent code
size that it will exhibit.

DOM
At the core of every CSS selector engine exists a pure-DOM implementation. This is simply
parsing the CSS selectors and utilizing the existing DOM methods (such as getElementById or
getElementsByTagName) to find the corresponding elements.

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

118

It's important to have a DOM implementation for a number of reasons:

1. Internet Explorer 6 and 7. While Internet Explorer 8 has support for querySelectorAll the lack of XPath
or Selectors API support in 6 and 7 make a DOM implementation necessary.

2. Backwards compatibility. If you want your code to degrade in a graceful manner and support browsers
that don't support the Selectors API or XPath (like Safari 2) you'll have to have some form of a DOM
implementation.

3. For speed. There are a number of selectors that a pure DOM implementation can simply do faster (such
as finding elements by ID).

With that in mind we can take a look at the two possible CSS selector engine implementations: Top down
and bottom up.

A top down engine works by parsing a CSS selector from left-to-right, matching elements in a document as
it goes, working relatively for each additional selector segment. It can be found in most modern JavaScript
libraries and is, generally, the preferred means of finding elements on a page.

For example, given the selector "div span" a top down-style engine will find all div elements in the page
then, for each div, find all spans within the div.

There are two things to take into consideration when developing a selector engine: The results should be
in document order (the order in which they've been defined) and the results should be unique (no duplicate
elements returned). Because of these gotchas developing a top down engine can be quite tricky.

Take the following piece of markup, from Listing 10-5, into consideration, as if we were trying to
implement our "div span" selector.

Listing 10-5: A simple top down selector engine.

<div>
 <div>
 Span
 </div>
</div>
<script>
window.onload = function(){
 function find(selector, root){
 root = root || document;

 var parts = selector.split(" "),
 query = parts[0],
 rest = parts.slice(1).join(" "),
 elems = root.getElementsByTagName(query),
 results = [];

 for (var i = 0; i < elems.length; i++) {
 if (rest) {
 results = results.concat(find(rest, elems[i]));
 } else {
 results.push(elems[i]);
 }
 }

 return results;

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

119

 }

 var divs = find("div");
 assert(divs.length === 2, "Correct number of divs found.");

 var divs = find("div", document.body);
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var divs = find("body div");
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var spans = find("div span");
 assert(spans.length === 2, "A duplicate span was found.");
};
</script>

In the above listing we implement a simple top down selector engine (one that is only capable of finding
elements by tag name). The engine breaks down into a few parts: Parsing the selector, finding the elements,
filtering, and recursing and merging the results.

Parsing the Selector
In this simple example our parsing is reduced to converting a trivial CSS selector ("div span") into an
array of strings (["div", "span"]). As introduced in CSS 2 and 3 it's possible to find elements by attribute
or attribute value (thus it's possible to have additional spaces in most selectors - making our splitting of
the selector too simplistic. For the most part this parsing ends up being "good enough" for now.

For a full implementation we would want to have a solid series of parsing rules to handle any expressions
that may be thrown at us (most likely in the form of regular expressions).

Listing 10-6 has an example of a regular expression that's capable of capturing portions of a selector and
breaking it in to pieces (splitting on commas, if need be):

Listing 10-6: A regular expression for breaking apart a CSS selector.

var selector = "div.class > span:not(:first-child) a[href]"
var chunker = /((?:\([^\)]+\)|\[[^\]]+\]|[^ ,\(\[]+)+)(\s*,\s*)?/g;
var parts = [];

// Reset the position of the chunker regexp (start from beginning)
chunker.lastIndex = 0;

// Collect the pieces
while ((m = chunker.exec(selector)) !== null) {
 parts.push(m[1]);

 // Stop if we've countered a comma
 if (m[2]) {
 extra = RegExp.rightContext;
 break;
 }
}

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

120

assert(parts.length == 4,
 "Our selector is broken into 4 unique parts.");
assert(parts[0] === "div.class", "div selector");
assert(parts[1] === ">", "child selector");
assert(parts[2] === "span:not(:first-child)", "span selector");
assert(parts[3] === "a[href]", "a selector");

Obviously this chunking selector is only one piece of the puzzle - you'll need to have additional parsing
rules for each type of expression that you want to support. Most selector engines end up containing a map
of regular expressions to functions - when a match is made on the selector portion the associated function
is executed.

Finding the Elements
Finding the correct elements on the page is one piece of the puzzle that has many solutions. Which
techniques are used depends a lot on which selectors are being support and what is made available by the
browser. There are a number of obvious correlations, though.

getElementById: Only available on the root node of HTML documents, finds the first element on the
page that has the specified ID (useful for the ID CSS selector "#id"). Internet Explorer and Opera will also
find the first element on the page that has the same specified name. If you only wish to find elements by
ID you will need an extra verification step to make sure that the correct result is being found.

If you wish to find all elements that match a specific ID (as is customary in CSS selectors - even though
HTML documents are generally only permitted one specific ID per page) you will need to either: Traverse
all elements looking for the ones that have the correct ID or use document.all["id"] which returns
an array of all elements that match an ID in all browsers that support it (namely Internet Explorer, Opera,
and Safari).

getElementsByTagName: Tackles the obvious result: Finding elements that match a specific tag name. It
has a dual purpose, though - finding all elements within a document or element (using the "*" tag name).
This is especially useful for handling attribute-based selectors that don't provide a specific tag name, for
example: ".class" or "[attr]".

One caveat when finding elements comments using "*" - Internet Explorer will also return comment nodes
in addition to element nodes (for whatever reason, in Internet Explorer, comment nodes have a tag name
of "!" and are thusly returned). A basic level of filtering will need to be done to make sure that the correct
nodes are matched.

getElementsByName: This is a well-implemented method that serves a single purpose: Finding all
elements that have a specific name (such as for input elements that have a name). Thus it's really only
useful for implementing a single selector: "[name=NAME]".

getElementsByClassName: A relatively new method that's being implemented by browsers (most
prominently by Firefox 3 and Safari 3) that finds elements based upon the contents of their class attribute.
This method proves to be a tremendous speed-up to class-selection code.

While there are a variety of techniques that can be used for selection the above methods are, generally,
the primary tools used to what you're looking for on a page. Using the results from these methods it will
be possible to

Filtering
A CSS expression is generally made up of a number of individual pieces. For example the expression
"div.class[id]" has three parts: Finding all div elements that have a class name of "class" and have an
attribute named "id".

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

121

The first step is to identify a root selector to being with. For example we can see that "div" is used - thus we
can immediately use getElementsByTagName to retrieve all div elements on the page. We must, then,
filter those results down to only include those that have the specified class and the specified id attribute.

This filtering process is a common feature of most selector implementations. The contents of these filters
primarily deal with either attributes or the position of the element relative to its siblings.

Attribute Filtering: Accessing the DOM attribute (generally using the getAttribute method) and verifying
their values. Class filtering (".class") is a subset of this behavior (accessing the className attribute and
checking its value).

Position Filtering: For selectors like ":nth-child(even)" or ":last-child" a combination of methods are used
on the parent element. In browser's that support it .children is used (IE, Safari, Opera, and Firefox
3.1) which contains a list of all child elements. All browsers have .childNodes (which contains a list
of child nodes - including text nodes, comments, etc.). Using these two methods it becomes possible to
do all forms of element position filtering.

Constructing a filtering function serves a dual purpose: You can provide it to the user as a simple method
for testing their elements, quickly checking to see if an element matches a specific selector.

Recursing and Merging
As was shown in Listing 10-1, we can see how selector engines will require the ability to recurse (finding
descendant elements) and merge the results together.

However our implementation is too simple, note that we end up receiving two spans in our results instead
of just one. Because of this we need to introduce an additional check to make sure the returned array of
elements only contains unique results. Most top down selector implementations include some method for
enforcing this uniqueness.

Unfortunately there is no simple way to determine the uniqueness of a DOM element. We're forced to
go through and assign temporary IDs to the elements so that we can verify if we've already encountered
them, as in Listing 10-7.

Listing 10-7: Finding the unique elements in an array.

<div id="test">
 Hello, I'm a ninja!
</div>
<div id="test2"></div>
<script>
(function(){
 var run = 0;

 this.unique = function(array) {
 var ret = [];

 run++;

 for (var i = 0, length = array.length; i < length; i++) {
 var elem = array[i];

 if (elem.uniqueID !== run) {
 elem.uniqueID = run;
 ret.push(array[i]);

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

122

 }
 }

 return ret;
 };
})();

window.onload = function(){
 var divs = unique(document.getElementsByTagName("div"));
 assert(divs.length === 2, "No duplicates removed.");

 var body = unique([document.body, document.body]);
 assert(body.length === 1, "body duplicate removed.");
};
</script>

This unique method adds an extra property to all the elements in the array - marking them as having been
visited. By the time a complete run through is finished only unique elements will be left in the resulting
array. Variations of this technique can be found in all libraries.

A longer discussion on the intricacies of attaching properties to DOM nodes see the chapter on Events.

Bottom Up Selector Engine
If you prefer not to have to think about uniquely identifying elements there is an alternative style of CSS
selector engine that doesn't require its use.

A bottom up selector engine works in the opposite direction of a top down one. For example, given the
selector "div span" it will first find all span elements then, for each element, navigate up the ancestor
elements to find an ancestor div element. This style of selector engine construction matches the style found
in most browser engines.

This engine style isn't as popular as the others. While it works well for simple selectors (and child selectors)
the ancestor travels ends up being quite costly and doesn't scale very well. However the simplicity that
this engine style provides can end up making for a nice trade-off.

The construction of the engine is simple. You start by finding the last expression in the CSS selector and
retrieve the appropriate elements (just like with a top down engine, but the last expression rather than the
first). From here on all operations are performed as a series of filter operations, removing elements as they
go, like in Listing 10-8.

Listing 10-8: A simple bottom up selector engine.

<div>
 <div>
 Span
 </div>
</div>
<script>
window.onload = function(){
 function find(selector, root){
 root = root || document;

 var parts = selector.split(" "),
 query = parts[parts.length - 1],

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

123

 rest = parts.slice(0,-1).join("").toUpperCase(),
 elems = root.getElementsByTagName(query),
 results = [];

 for (var i = 0; i < elems.length; i++) {
 if (rest) {
 var parent = elems[i].parentNode;
 while (parent && parent.nodeName != rest) {
 parent = parent.parentNode;
 }

 if (parent) {
 results.push(elems[i]);
 }
 } else {
 results.push(elems[i]);
 }
 }

 return results;
 }

 var divs = find("div");
 assert(divs.length === 2, "Correct number of divs found.");

 var divs = find("div", document.body);
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var divs = find("body div");
 assert(divs.length === 2,
 "Correct number of divs found in body.");

 var spans = find("div span");
 assert(spans.length === 1, "No duplicate span was found.");
};
</script>

Listing 10-8 shows the construction of a simple bottom up selector engine. Note that it only works one
ancestor level deep. In order to work more than one level deep the state of the current level would need
to be tracked. This would result in two state arrays: The array of elements that are going to be returned
(with some elements being set to undefined as they don't match the results) and an array of elements that
correspond to the currently-tested ancestor element.

As mentioned before, this extra ancestor verification process does end up being slightly less scalable than
the alternative top down method but it completely avoids having to utilize a unique method for producing
the correct output, which some may see as an advantage.

Summary
JavaScript-based CSS selector engines are deceptively powerful tools. They give you the ability to easily
locate virtually any DOM element on a page with a trivial amount of selector. While there are many
nuances to actually implementing a full selector engine (and, certainly, no shortage of tools to help) the
situation is rapidly improving.

Licensed to Alison Tyler <pedbro@gmail.com>

CSS Selector Engine

124

With browsers working quickly to implement versions of the W3C Selector API having to worry about
the finer points of selector implementation will soon be a thing of the past. For many developers that day
cannot come soon enough.

Licensed to Alison Tyler <pedbro@gmail.com>

125

Chapter 12. DOM Modification
In this chapter:

• Injecting HTML strings into a page

• Cloning elements

• Removing elements

• Manipulating element text

Next to traversing the DOM the most common operation required by most pieces of reusable JavaScript
code is that of modifying DOM structures - in addition to modifying DOM node attributes or CSS
properties (which we'll discuss later) - the brunt of the work falls back to injecting new nodes into a
document, cloning nodes, and removing them again.

Injecting HTML
In this chapter we'll start by looking at an efficient way to insert an HTML string into a document at an
arbitrary location. We're looking at this technique, in particular, since it's frequently used in a few ways:
Injecting arbitrary HTML into a page, manipulating and inserting client-side templates, and retrieving and
injecting HTML sent from a server. No matter the framework it'll have to deal with, at least, some of these
problems.

On top of those points it's technically very challenging to implement correctly. Compare this to building
an object-oriented style DOM construction API (which are certainly easier to implement but require an
extra layer of abstraction from injecting the HTML).

There already exists an API for injecting arbitrary HTML strings - introduced by Internet Explorer (and
in the process of being standardized in the W3C HTML 5 specification). It's a method that exists on all
HTML DOM elements called insertAdjacentHTML. We'd spend more time looking at this API but
there are a few problems.

1. It currently only exists in Internet Explorer (thus an alternative solution would have to be implemented
anyway).

2. Internet Explorer's implementation is incredibly buggy (only working on a subset of all available
elements).

For these reasons we're going to have to implement a clean API from scratch. An implementation is broken
down into a couple steps:

1. Converting an arbitrary, valid, HTML/XHTML string into a DOM structure.

2. Injecting that DOM structure into an arbitrary location in the DOM as efficiently as possible.

3. Executing any inline scripts that were in the string.

All together, these three steps will provide a user with a smart API for injecting HTML into a document.

Converting HTML to DOM
Converting an HTML string to a DOM structure doesn't have a whole lot of magic to it - it uses the exact
tool that you are already familiar with: innerHTML. It's a multi-step process:

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

126

• Make sure the HTML string contains valid HTML/XHTML (or, at least, tweak it so that it's closer to
valid).

• Wrap the string in any enclosing markup required

• Insert the HTML string, using innerHTML, into a dummy DOM element.

• Extract the DOM nodes back out.

The steps aren't too complex - save for the actual insertion, which has some gotchas - but they can be
easily smoothed over.

Pre-Process XML/HTML

To start, we'll need to clean up the HTML to meet user expectations. This first step will certainly depend
upon the context, but within the construction of jQuery it became important to be able to support XML-
style elements like "<table/>".

The above XML-style of elements, in actuality, only works for a small subset of HTML elements -
attempting to use that syntax otherwise is able to cause problems in browsers like Internet Explorer.

We can do a quick pre-parse on the HTML string to convert elements like "<table/>" to "<table>></
table>" (which will be handled uniformly in all browsers).

Listing 11-1: Make sure that XML-style HTML elements are interpreted correctly.

var tags = /^(abbr|br|col|img|input|link|meta|param|hr|area|embed)$/i;

function convert(html);
 return html.replace(/(<(\w+)[^>]*?)\/>/g, function(all, front, tag){
 return tags.test(tag) ?
 all :
 front + "></" + tag + ">";
 });
}

assert(convert("<a/>") === "<a>", "Check anchor conversion.");
assert(convert("<hr/>") === "<hr/>", "Check hr conversion.");

HTML Wrapping

We now have the start of an HTML string - but there's another step that we need to take before injecting it
into the page. A number of HTML elements must be within a certain container element before they must
be injected. For example an option element must be within a select. There are two options to solve this
problem (both require constructing a map between problematic elements and their containers).

• The string could be injected directly into a specific parent, previously constructed using
createElement, using innerHTML. While this may work in some cases, in some browsers, it is
not universally guaranteed to work.

• The string could be wrapped with the appropriate markup required and then injected directly into any
container element (such as a div).

The second technique is the preferred one. It involves very little browser-specific code in contrast with the
other one, which would be mostly browser-specific code.

The set of elements that need to be wrapped is rather manageable (with 7 different groupings occurring).

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

127

• option and optgroup need to be contained in a <select multiple="multiple">...</
select>

• legend need to be contained in a <fieldset>...</fieldset>

• thead, tbody, tfoot, colgroup, and caption need to be contained in a <table>...</table>

• tr need to be in a <table><thead>...</thead></table>, <table><tbody>...</
tbody></table>, or a <table><tfoot>...</tfoot></table>

• td and th need to be in a <table><tbody><tr>...</tr></tbody></table>

• col in a <table><tbody></tbody><colgroup>...</colgroup></table>

• link and script need to be in a div<div>...</div>

Nearly all of the above are self-explanatory save for the multiple select, the col, and the link and script
ones. A multiple select is used (instead of a regular select) because it won't automatically check any of the
options that are placed inside of it (whereas a single select will auto-check the first option). The col fix
includes an extra tbody, without which the colgroup won't be generated properly. The link and script fix is
a weird one: Internet Explorer is unable to generate link and script elements, via innerHTML, unless they
are both contained within another element and there's an adjacent node.

Generating the DOM

Using the above map of characters we not have enough information to generate the HTML that we need
to insert in to a DOM element.

Listing 11-2: Generate a list of DOM nodes from some markup.

function getNodes(htmlString){
 var map = {
 "<td": [3, "<table><tbody><tr>", "</tr></tbody></table>"],
 "<option": [1, "<select multiple='multiple'>", "</select>"]
 // a full list of all element fixes
 };

 var name = htmlString.match(/<\w+/),
 node = name ? map[name[0]] || [0, "", ""];

 var div = document.createElement("div");
 div.innerHTML = node[1] + htmlString + node[2];

 while (node[0]--)
 div = div.lastChild;

 return div.childNodes;
}

assert(getNodes("<td>test</td><td>test2</td>").length === 2,
 "Get two nodes back from the method.");
assert(getNodes("<td>test</td>").nodeName === "TD",
 "Verify that we're getting the right node.");

There are two bugs that we'll need to take care of before we return our node set, though - and both are
bugs in Internet Explorer. The first is that Internet Explorer adds a tbody element inside an empty table

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

128

(checking to see if an empty table was intended and removing any child nodes is a sufficient fix). Second
is that Internet Explorer trims all leading whitespace from the string passed to innerHTML. This can be
remidied by checking to see if the first generated node is a text and contains leading whitespace, if not
create a new text node and fill it with the whitespace explicitly.

After all of this we now have a set of DOM nodes that we can begin to insert into the document.

Inserting into the Document
Once you have the actual DOM nodes it becomes time to insert them into the document. There are a couple
steps the need to take place - none of which are particularly tricky.

Since we have an array of elements that we need to insert and, potentially, into any number of locations
into the document, we'll need to try and cut down on the number of operations that need to occur.

We can do this by using DOM Fragments. Fragments are part of the W3C DOM specification and are
supported in all browsers. They give you a container that you can use to hold a collection of DOM nodes.
This, in itself, is useful but it also has two extra advantages: The fragment can be injected and cloned in a
single operation instead of having to inject and clone each individual node over and over again. This has
the potential to dramatically reduce the number of operations required for a page.

In the following example, derived from the code in jQuery, a fragment is created and passed in to the clean
function (which converts the incoming HTML string into a DOM). This DOM is automatically appended
on to the fragment.

Listing 11-3: Inserting a DOM fragment into multiple locations in the DOM, using the code from Listing
11-1 and Listing 11-4.

<div id="test">Hello, I'm a ninja!</div>
<div id="test2"></div>
<script>
window.onload = function(){
 function insert(elems, args, callback){
 if (elems.length) {
 var doc = elems[0].ownerDocument || elems[0],
 fragment = doc.createDocumentFragment(),
 scripts = getNodes(args, doc, fragment),
 first = fragment.firstChild;

 if (first) {
 for (var i = 0; elems[i]; i++) {
 callback.call(root(elems[i], first),
 i > 0 ? fragment.cloneNode(true) : fragment);
 }
 }
 }
 }

 var divs = document.getElementsByTagName("div");

 insert(divs, ["Name:"], function(fragment){
 this.appendChild(fragment);
 });

 insert(divs, ["First Last"],

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

129

 function(fragment){
 this.parentNode.insertBefore(fragment, this);
 });
};
</script>

There's another important point here: If we're inserting this element into more than one location in the
document we're going to need to clone this fragment again and again (if we weren't using a fragment we'd
have to clone each individual node every time, instead of the whole fragment at once).

One final point that we'll need to take care of, albeit a relatively minor one. When users attempt to inject a
table row directly into a table element they normally mean to insert the row directly in to the tbody that's
in the table. We can write a simple mapping function to take care of that for us.

Listing 11-4: Figure out the actual insertion point of an element.

 function root(elem, cur) {
 return elem.nodeName.toLowerCase() === "table" &&
 cur.nodeName.toLowerCase() === "tr" ?
 (elem.getElementsByTagName("tbody")[0] ||
 elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
 elem;
 }

Altogether we now have a way to both generate and insert arbitrary DOM elements in an intuitive manner.

Script Execution
Aside from the actual insertion of HTML into a document a common requirement is the execution of inline
script elements. This is mostly used when a piece of HTML is coming back from a server and there's script
that needs to be executed along with the HTML itself.

Usually the best way to handle inline scripts is to strip them out of the DOM structure before they're
actually inserted into the document. In the function that's used to convert the HTML into a DOM node the
end result would look something like the following code from jQuery.

Listing 11-5: Collecting the scripts from a piece an array of

for (var i = 0; ret[i]; i++) {
 if (jQuery.nodeName(ret[i], "script") &&
 (!ret[i].type ||
 ret[i].type.toLowerCase() === "text/javascript")) {
 scripts.push(ret[i].parentNode ?
 ret[i].parentNode.removeChild(ret[i]) :
 ret[i]);
 } else if (ret[i].nodeType === 1) {
 ret.splice.apply(ret, [i + 1, 0].concat(
 jQuery.makeArray(ret[i].getElementsByTagName("script"))));
 }
}

The above code is dealing with two arrays: ret (which holds all the DOM nodes that have been
generated) and scripts (which becomes populated with all the scripts in this fragment, in document order).
Additionally, it takes care to only remove scripts that are normally executed as JavaScript (those with no
type or those with a type of 'text/javascript').

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

130

Then after the DOM structure is inserted into the document take the contents of the scripts and evaluate
them. None of this is particularly difficult - just some extra code to shuffle around.

But it does lead us to the tricky part:

Global Code Evaluation

When users are including inline scripts to be executed, they're expecting them to be evaluated within the
global context. This means that if a variable is defined it should become a global variable (same with
functions, etc.).

The built-in methods for code evaluation are spotty, at best. The one fool-proof way to execute code in the
global scope, across all browsers, is to create a fresh script element, inject the code you wish to execute
inside the script, and then quickly inject and remove the script from the document. This will cause the
browser to execute the inner contents of the script element within the global scope. This technique was
pioneered by Andrea Giammarchi and has ended up working quite well. Below is a part of the global
evaluation code that's in jQuery.

Listing 11-6: Evaluate a script within the global scope.

function globalEval(data) {
 data = data.replace(/^\s+|\s+$/g, "");

 if (data) {
 var head = document.getElementsByTagName("head")[0] ||
 document.documentElement,
 script = document.createElement("script");

 script.type = "text/javascript";
 script.text = data;

 head.insertBefore(script, head.firstChild);
 head.removeChild(script);
 }
}

Using this method it becomes easy to rig up a generic way to evaluate a script element. We can even add
in some simple code for dynamically loading in a script (if it references an external URL) and evaluate
that as well.

Listing 11-7: A method for evaluating a script (even if it's remotely located).

function evalScript(elem) {
 if (elem.src)
 jQuery.ajax({
 url: elem.src,
 async: false,
 dataType: "script"
 });

 else
 jQuery.globalEval(elem.text || "");

 if (elem.parentNode)
 elem.parentNode.removeChild(elem);
}

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

131

Note that after we're done evaluating the script we remove it from the DOM. We did the same thing earlier
when we removed the script element before it was injected into the document. We do this so that scripts
won't be accidentally double-executed (appending a script to a document, which ends up recursively calling
itself, for example).

Cloning Elements
Cloning an element (using the DOM cloneNode method) is straightforward in all browsers, except
Internet Explorer. Internet Explorer has three behaviors that, when they occur in conjunction, result in a
very frustrating scenario for handling cloning.

First, when cloning an element, Internet Explorer copies over all event handlers on to the cloned element.
Additionally, any custom expandos attached to the element are also carried over.

In jQuery a simple test to determine if this is the case.

Listing 11-8: Determining if a browser copies event handlers on clone.

<script>
var div = document.createElement("div");

if (div.attachEvent && div.fireEvent) {
 div.attachEvent("onclick", function(){
 // Cloning a node shouldn't copy over any
 // bound event handlers (IE does this)
 jQuery.support.noCloneEvent = false;
 div.detachEvent("onclick", arguments.callee);
 });
 div.cloneNode(true).fireEvent("onclick");
}
</script>

Second, the obvious step to prevent this would be to remove the event handler from the cloned element -
but in Internet Explorer, if you remove an event handler from a cloned element it gets removed from the
original element as well. Fun stuff. Naturally, any attempts to remove custom expando properties on the
clone will cause them to be removed on the original cloned element, as well.

Third, the solution to all of this is to just clone the element, inject it into another element, then read
the innerHTML of the element - and convert that back into a DOM node. It's a multi-step process
but one that'll result in an untainted cloned element. Except, there's another IE bug: The innerHTML
(or outerHTML, for that matter) of an element doesn't always reflect the correct state of an element's
attributes. One common place where this is realized is when the name attributes of input elements are
changed dynamically - the new value isn't represented in the innerHTML.

This solution has another caveat: innerHTML doesn't exist on XML DOM elements, so we're forced to
go with the traditional cloneNode call (thankfully, though, event listeners on XML DOM elements are
pretty rare).

The final solution for Internet Explorer ends up becoming quite circuitous. Instead of a quick call to
cloneNode it is, instead, serialized by innerHTML, extracted again as a DOM node, and then monkey-
patched for any particular attributes that didn't carry over. How much monkeying you want to do with the
attributes is really up to you.

Listing 11-9: A portion of the element clone code from jQuery.

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

132

function clone() {
 var ret = this.map(function(){
 if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
 var clone = this.cloneNode(true),
 container = document.createElement("div");
 container.appendChild(clone);
 return jQuery.clean([container.innerHTML])[0];
 } else
 return this.cloneNode(true);
 });

 var clone = ret.find("*").andSelf().each(function(){
 if (this[expando] !== undefined)
 this[expando] = null;
 });

 return ret;
}

Note that the above code uses jQuery's jQuery.clean method which converts an HTML string into a
DOM structure (which was discussed previously).

Removing Elements
Removing an element from the DOM should be simple (a quick call to removeChild) - but of course it isn't.
We have to do a lot of preliminary cleaning up before we can actually remove an element from the DOM.

There's usually two steps of cleaning that need to occur on an DOM element before it can be removed
from the DOM. Both of them relate to events, so we'll be discussing this in more detail when we cover
it in the Events chapter.

The first thing to clean up are any bound event handlers from the element. If a framework is designed well
it should only be binding a single handler for an element at a time so the cleanup shouldn't be any harder
than just removing that one function. This step is important because Internet Explorer will leak memory
should the function reference an external DOM element.

The second point of cleanup is removing any external data associated with the element. We'll discuss this
more in the Events chapter but a framework needs a good way to associate pieces of data with an element
(especially without directly attaching the data as an expando property). It is a good idea to clean up this
data simply so that it doesn't consume any more memory.

Now both of these points need to be done on the element that is being removed - and on all descendant
elements, as well (since all the descendant elements are also being removed - just in a less-obvious way).

For example, here's the relevant code from jQuery:

Listing 11-10: The remove element function from jQuery.

function remove() {
 // Go through all descendants and the element to be removed
 jQuery("*", this).add([this]).each(function(){
 // Remove all bound events
 jQuery.event.remove(this);

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

133

 // Remove attached data
 jQuery.removeData(this);
 });

 // Remove the element (if it's in the DOM)
 if (this.parentNode)
 this.parentNode.removeChild(this);
}

The second part to consider, after all the cleaning up, is the actual removal of the element from the DOM.
Most browsers are perfectly fine with the actual removal of the element from the page -- except for Internet
Explorer. Every single element removed from the page fails to reclaim some portion of its used memory,
until the page is finally left. This means that long-running pages, that remove a lot of elements from the
page, will find themselves using considerably more memory in Internet Explorer as time goes on.

There's one partial solution that seems to work quite well. Internet Explorer has a proprietary property
called outerHTML. This property will give you an HTML string representation of an element. For
whatever reason outerHTML is also a setter, in addition to a getter. As it turns out, if you set outerHTML
= "" it will wipe out the element from Internet Explorer's memory more-completely than simply doing
removeChild. This step is done in addition to the normal removeChild call .

Listing 11-11: Set outerHTML in an attempt to reclaim more memory in Internet Explorer.

// Remove the element (if it's in the DOM)
if (this.parentNode)
 this.parentNode.removeChild(this);

if (typeof this.outerHTML !== "undefined")
 this.outerHTML = "";

It should be noted that it isn't successful in reclaiming all of the memory that was used by the element, but
it absolutely reclaims more of it (which is a start, at least).

It's important to remember that any time an element is removed from the page that you should go through
the above three steps - at the very least. This includes emptying out the contents of an element, replacing
the contents of an element (with either HTML or text), or replacing an element directly. Remember to
always keep your DOM tidy and you won't have to work so much about memory issues later on.

Text Contents
Working with text tends to be much easier than working with HTML elements, especially since there are
built-in methods, that work in all browsers, for handling this behavior. Of course, there are all sorts of bugs
that we end up having to work around, making these APIs obsolete in the process.

There are typically two desired scenarios: Getting the text contents out of an element and setting the text
contents of an element.

W3C-compliant browsers provide a .textContent property on their DOM elements. Accessing the
contents of this property gives you the textual contents of the element (both its direct children and
descendant nodes, as well).

Internet Explorer has its own property, .innerText, for performing the exact-same behavior as
.textContent.

Listing 11-12: Using textContent and innerText.

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

134

<div id="test">Hello, I'm a ninja!</div>
<div id="test2"></div>
<script>
window.onload = function(){
 var b = document.getElementById("test");
 var text = b.textContent || b.innerText;

 assert(text === "Hello, I'm a ninja!",
 "Examine the text contents of an element.");
 assert(b.childNodes.length === 2,
 "An element and a text node exist.");

 if (typeof b.textContent !== "undefined") {
 b.textContent = "Some new text";
 } else {
 b.innerText = "Some new text";
 }

 text = b.textContent || b.innerText;

 assert(text === "Some new text", "Set a new text value.");
 assert(b.childNodes.length === 1,
 "Only one text nodes exists now.");
};
</script>

Note that when we set the textContent/innerText properties the original element structure is
removed. So while both of these properties are very useful there are a certain number of gotchas. First,
as when we discussed removing elements from the page, not having an sort of special consideration for
element memory leaks will come back to bite you. Additionally, the cross-browser handling of whitespace
is absolutely abysmal in these properties. No browser appears capable of returning a consistent result.

Thus, if you don't care about preserving whitespace (especially endlines) feel free to use textContent/
innerText for accessing the element's text value. For setting, though, we'll need to devise an alternative
solution.

Setting Text

Setting a text value comes in two parts: Emptying out the contents of the element and inserting the new
text contents in its place. Emptying out the contents is straightforward - we've already devised a solution
in Listing 11-10.

To insert the new text contents we'll need to use a method that'll properly escape the string that we're about
to insert. An important difference between inserting HTML and inserting text is that the inserted text will
have any problematic HTML-specific characters escaped. For example '<' will appear as <

We can actually use the built-in createTextNode method, that's available on DOM documents, to
perform precisely that.

Listing 11-13: Setting the text contents of an element.

<div id="test">Hello, I'm a ninja!</div>
<div id="test2"></div>
<script>
window.onload = function(){

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

135

 var b = document.getElementById("test");

 // Replace with your empty() method of choice
 while (b.firstChild)
 b.removeChild(b.firstChild);

 // Inject the escaped text node
 b.appendChild(document.createTextNode("Some new text"));

 var text = b.textContent || b.innerText;

 assert(text === "Some new text", "Set a new text value.");
 assert(b.childNodes.length === 1,
 "Only one text nodes exists now.");
};
</script>

Getting Text

To get an accurate text value of an element we have to ignore the results from textContent and innerText.
The most common problem is related to endlines being unnecessarily stripped from the return result.
Instead we must collect all the text node values manually to get an accurate result.

A possible solution would look like this, making good use of recursion:

Listing 11-14: Getting the text contents of an element.

<div id="test">Hello, I'm a ninja!</div>
<div id="test2"></div>
<script>
window.onload = function(){
 function getText(elem) {
 var text = "";

 for (var i = 0, l = elem.childNodes.length; i < l; i++) {
 var cur = elem.childNodes[i];

 // A text node has a nodeType === 3
 if (cur.nodeType === 3)
 text += cur.nodeValue;

 // If it's an element we need to recurse further
 else if (cur.nodeType === 1)
 text += getText(cur);
 }

 return text;
 }

 var b = document.getElementById("test");
 var text = getText(b);

 assert(text === "Hello, I'm a ninja!",
 "Examine the text contents of an element.");
 assert(b.childNodes.length === 2,

Licensed to Alison Tyler <pedbro@gmail.com>

DOM Modification

136

 "An element and a text node exist.");
};
</script>

In your applications if you can get away with not worrying about whitespace definitely stick with
textContent/innerText as it'll make your life so much simpler.

Summary
We've taken a comprehensive look at the best ways to tackle the difficult problems surrounding DOM
manipulation. While these problems should be easier than they are - the cross-browser issues introduced
make their actual implementations much more difficult. With a little bit of extra work we can have a unified
solution that will work well in all major browsers - which is exactly what we should strive for.

Licensed to Alison Tyler <pedbro@gmail.com>

137

Chapter 13. Attributes and CSS
In this chapter:

• blah

DOM Attributes
Attributes vs. DOM properties

Attribute names (cssText, className, etc.)

URL resolution (IE) .getAttribute("...", 2);

ID override in IE/Opera

Form Values

CSS
Style property names

Computed Style

Height and Width
Elements

document

window

Opacity

Summary

Licensed to Alison Tyler <pedbro@gmail.com>

138

Chapter 14. Events
In this chapter:

• blah

'this'

Event Propagation

Keyboard Events
Blocking arrow keys

Mouse Events
Cursor position position relative to element

Custom Events

Triggering

Delegation
... throttling?

Summary

Licensed to Alison Tyler <pedbro@gmail.com>

139

Chapter 15. Ajax
In this chapter:

• blah

XMLHttpRequest
IE7 local file

File Loading
XML JavaScript (eval in global scope) JSON (eval) XML

Caching

Cross-Domain Requests
JSONP getScript

Summary

Licensed to Alison Tyler <pedbro@gmail.com>

140

Chapter 16. Animation
In this chapter:

• blah

Tweening
Value interpolation

Animatable Values (height, width, top, left, etc.)

Smooth Animations

Stop/Pause

Summary

Licensed to Alison Tyler <pedbro@gmail.com>

141

Chapter 17. Performance
In this chapter:

• blah

Performance Test Suite

Firebug Profiling

Techniques
Looping Variable caching

File Distribution
JSMin YUIMin Packer GZip

Summary

