{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "HTML('''\n", "
''')" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/javascript": [ " MathJax.Hub.Config({\n", " TeX: { equationNumbers: { autoNumber: \"AMS\" } }\n", " });" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%javascript\n", " MathJax.Hub.Config({\n", " TeX: { equationNumbers: { autoNumber: \"AMS\" } }\n", " });" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "HTML('''\n", "\n", "\n", "''')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Benchmark Problem 6: Electrostatics" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "{% include jupyter_benchmark_table.html num=\"[6]\" revision=0 %}" ], "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "HTML('''{% include jupyter_benchmark_table.html num=\"[6]\" revision=0 %}''')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "See the Overleaf document entitled [\"Phase Field Benchmark Problems for Dendritic Growth and Linear Elasticity\"][overleaf] for more details about the benchmark problems. Furthermore, read [the extended essay][benchmarks] for a discussion about the need for benchmark problems.\n", "\n", "[benchmarks]: ../ \n", "[overleaf]: https://www.overleaf.com/read/nqjkdwyybvdz" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Overview\n", "\n", "Diffusion of a charged species is often modeled with the phase field approach, such as for batteries, electrodeposition, and electromigration. This benchmark problem incorporates the first benchmark problem for spinodal decomposition [Jokisaari 2017][jokisaari2017benchmark] and extends it to incorporate coupling with electrostatics.\n", "\n", "## Governing Equations\n", "\n", "In this problem, two variables are used: $c$, the concentration field of our charged species, and $\\Phi$, the electric potential field. The free energy of the system is given as\n", "\n", "\\begin{equation}\n", "F=\\int_{V} \\left[\\frac{\\kappa}{2} |\\nabla c|^2+f_{chem}(c)+f_{elec}(c,\\Phi)\\right]\\,dV,\n", "\\end{equation}\n", "\n", "where $\\kappa$ is the gradient energy coefficient, $f_{chem}$ is the chemical free energy, and $f_{elec}$ is the electrostatic coupling energy. Here, $f_{chem}$ is a symmetric double-well function with minima between $0