{ "cells": [ { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "# Import necessary librares\n", "\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "from sklearn.preprocessing import LabelEncoder, MinMaxScaler\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.metrics import classification_report, confusion_matrix\n", "from sklearn.linear_model import SGDClassifier\n", "from sklearn.model_selection import train_test_split, GridSearchCV\n", "from sklearn.utils import resample\n", "from imblearn.over_sampling import SMOTE\n", "from collections import Counter" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Read the data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>fixed acidity</th>\n", " <th>volatile acidity</th>\n", " <th>citric acid</th>\n", " <th>residual sugar</th>\n", " <th>chlorides</th>\n", " <th>free sulfur dioxide</th>\n", " <th>total sulfur dioxide</th>\n", " <th>density</th>\n", " <th>pH</th>\n", " <th>sulphates</th>\n", " <th>alcohol</th>\n", " <th>quality</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>7.4</td>\n", " <td>0.70</td>\n", " <td>0.00</td>\n", " <td>1.9</td>\n", " <td>0.076</td>\n", " <td>11.0</td>\n", " <td>34.0</td>\n", " <td>0.9978</td>\n", " <td>3.51</td>\n", " <td>0.56</td>\n", " <td>9.4</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>7.8</td>\n", " <td>0.88</td>\n", " <td>0.00</td>\n", " <td>2.6</td>\n", " <td>0.098</td>\n", " <td>25.0</td>\n", " <td>67.0</td>\n", " <td>0.9968</td>\n", " <td>3.20</td>\n", " <td>0.68</td>\n", " <td>9.8</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>7.8</td>\n", " <td>0.76</td>\n", " <td>0.04</td>\n", " <td>2.3</td>\n", " <td>0.092</td>\n", " <td>15.0</td>\n", " <td>54.0</td>\n", " <td>0.9970</td>\n", " <td>3.26</td>\n", " <td>0.65</td>\n", " <td>9.8</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>11.2</td>\n", " <td>0.28</td>\n", " <td>0.56</td>\n", " <td>1.9</td>\n", " <td>0.075</td>\n", " <td>17.0</td>\n", " <td>60.0</td>\n", " <td>0.9980</td>\n", " <td>3.16</td>\n", " <td>0.58</td>\n", " <td>9.8</td>\n", " <td>6</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>7.4</td>\n", " <td>0.70</td>\n", " <td>0.00</td>\n", " <td>1.9</td>\n", " <td>0.076</td>\n", " <td>11.0</td>\n", " <td>34.0</td>\n", " <td>0.9978</td>\n", " <td>3.51</td>\n", " <td>0.56</td>\n", " <td>9.4</td>\n", " <td>5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n", "0 7.4 0.70 0.00 1.9 0.076 \n", "1 7.8 0.88 0.00 2.6 0.098 \n", "2 7.8 0.76 0.04 2.3 0.092 \n", "3 11.2 0.28 0.56 1.9 0.075 \n", "4 7.4 0.70 0.00 1.9 0.076 \n", "\n", " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n", "0 11.0 34.0 0.9978 3.51 0.56 \n", "1 25.0 67.0 0.9968 3.20 0.68 \n", "2 15.0 54.0 0.9970 3.26 0.65 \n", "3 17.0 60.0 0.9980 3.16 0.58 \n", "4 11.0 34.0 0.9978 3.51 0.56 \n", "\n", " alcohol quality \n", "0 9.4 5 \n", "1 9.8 5 \n", "2 9.8 5 \n", "3 9.8 6 \n", "4 9.4 5 " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Read the data\n", "data = pd.read_csv('winequality-red.csv')\n", "\n", "# See the data\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 1599 entries, 0 to 1598\n", "Data columns (total 12 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 fixed acidity 1599 non-null float64\n", " 1 volatile acidity 1599 non-null float64\n", " 2 citric acid 1599 non-null float64\n", " 3 residual sugar 1599 non-null float64\n", " 4 chlorides 1599 non-null float64\n", " 5 free sulfur dioxide 1599 non-null float64\n", " 6 total sulfur dioxide 1599 non-null float64\n", " 7 density 1599 non-null float64\n", " 8 pH 1599 non-null float64\n", " 9 sulphates 1599 non-null float64\n", " 10 alcohol 1599 non-null float64\n", " 11 quality 1599 non-null int64 \n", "dtypes: float64(11), int64(1)\n", "memory usage: 150.0 KB\n" ] } ], "source": [ "# Information about the data\n", "data.info()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>count</th>\n", " <th>mean</th>\n", " <th>std</th>\n", " <th>min</th>\n", " <th>25%</th>\n", " <th>50%</th>\n", " <th>75%</th>\n", " <th>max</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>fixed acidity</th>\n", " <td>1599.0</td>\n", " <td>8.319637</td>\n", " <td>1.741096</td>\n", " <td>4.60000</td>\n", " <td>7.1000</td>\n", " <td>7.90000</td>\n", " <td>9.200000</td>\n", " <td>15.90000</td>\n", " </tr>\n", " <tr>\n", " <th>volatile acidity</th>\n", " <td>1599.0</td>\n", " <td>0.527821</td>\n", " <td>0.179060</td>\n", " <td>0.12000</td>\n", " <td>0.3900</td>\n", " <td>0.52000</td>\n", " <td>0.640000</td>\n", " <td>1.58000</td>\n", " </tr>\n", " <tr>\n", " <th>citric acid</th>\n", " <td>1599.0</td>\n", " <td>0.270976</td>\n", " <td>0.194801</td>\n", " <td>0.00000</td>\n", " <td>0.0900</td>\n", " <td>0.26000</td>\n", " <td>0.420000</td>\n", " <td>1.00000</td>\n", " </tr>\n", " <tr>\n", " <th>residual sugar</th>\n", " <td>1599.0</td>\n", " <td>2.538806</td>\n", " <td>1.409928</td>\n", " <td>0.90000</td>\n", " <td>1.9000</td>\n", " <td>2.20000</td>\n", " <td>2.600000</td>\n", " <td>15.50000</td>\n", " </tr>\n", " <tr>\n", " <th>chlorides</th>\n", " <td>1599.0</td>\n", " <td>0.087467</td>\n", " <td>0.047065</td>\n", " <td>0.01200</td>\n", " <td>0.0700</td>\n", " <td>0.07900</td>\n", " <td>0.090000</td>\n", " <td>0.61100</td>\n", " </tr>\n", " <tr>\n", " <th>free sulfur dioxide</th>\n", " <td>1599.0</td>\n", " <td>15.874922</td>\n", " <td>10.460157</td>\n", " <td>1.00000</td>\n", " <td>7.0000</td>\n", " <td>14.00000</td>\n", " <td>21.000000</td>\n", " <td>72.00000</td>\n", " </tr>\n", " <tr>\n", " <th>total sulfur dioxide</th>\n", " <td>1599.0</td>\n", " <td>46.467792</td>\n", " <td>32.895324</td>\n", " <td>6.00000</td>\n", " <td>22.0000</td>\n", " <td>38.00000</td>\n", " <td>62.000000</td>\n", " <td>289.00000</td>\n", " </tr>\n", " <tr>\n", " <th>density</th>\n", " <td>1599.0</td>\n", " <td>0.996747</td>\n", " <td>0.001887</td>\n", " <td>0.99007</td>\n", " <td>0.9956</td>\n", " <td>0.99675</td>\n", " <td>0.997835</td>\n", " <td>1.00369</td>\n", " </tr>\n", " <tr>\n", " <th>pH</th>\n", " <td>1599.0</td>\n", " <td>3.311113</td>\n", " <td>0.154386</td>\n", " <td>2.74000</td>\n", " <td>3.2100</td>\n", " <td>3.31000</td>\n", " <td>3.400000</td>\n", " <td>4.01000</td>\n", " </tr>\n", " <tr>\n", " <th>sulphates</th>\n", " <td>1599.0</td>\n", " <td>0.658149</td>\n", " <td>0.169507</td>\n", " <td>0.33000</td>\n", " <td>0.5500</td>\n", " <td>0.62000</td>\n", " <td>0.730000</td>\n", " <td>2.00000</td>\n", " </tr>\n", " <tr>\n", " <th>alcohol</th>\n", " <td>1599.0</td>\n", " <td>10.422983</td>\n", " <td>1.065668</td>\n", " <td>8.40000</td>\n", " <td>9.5000</td>\n", " <td>10.20000</td>\n", " <td>11.100000</td>\n", " <td>14.90000</td>\n", " </tr>\n", " <tr>\n", " <th>quality</th>\n", " <td>1599.0</td>\n", " <td>5.636023</td>\n", " <td>0.807569</td>\n", " <td>3.00000</td>\n", " <td>5.0000</td>\n", " <td>6.00000</td>\n", " <td>6.000000</td>\n", " <td>8.00000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " count mean std min 25% \\\n", "fixed acidity 1599.0 8.319637 1.741096 4.60000 7.1000 \n", "volatile acidity 1599.0 0.527821 0.179060 0.12000 0.3900 \n", "citric acid 1599.0 0.270976 0.194801 0.00000 0.0900 \n", "residual sugar 1599.0 2.538806 1.409928 0.90000 1.9000 \n", "chlorides 1599.0 0.087467 0.047065 0.01200 0.0700 \n", "free sulfur dioxide 1599.0 15.874922 10.460157 1.00000 7.0000 \n", "total sulfur dioxide 1599.0 46.467792 32.895324 6.00000 22.0000 \n", "density 1599.0 0.996747 0.001887 0.99007 0.9956 \n", "pH 1599.0 3.311113 0.154386 2.74000 3.2100 \n", "sulphates 1599.0 0.658149 0.169507 0.33000 0.5500 \n", "alcohol 1599.0 10.422983 1.065668 8.40000 9.5000 \n", "quality 1599.0 5.636023 0.807569 3.00000 5.0000 \n", "\n", " 50% 75% max \n", "fixed acidity 7.90000 9.200000 15.90000 \n", "volatile acidity 0.52000 0.640000 1.58000 \n", "citric acid 0.26000 0.420000 1.00000 \n", "residual sugar 2.20000 2.600000 15.50000 \n", "chlorides 0.07900 0.090000 0.61100 \n", "free sulfur dioxide 14.00000 21.000000 72.00000 \n", "total sulfur dioxide 38.00000 62.000000 289.00000 \n", "density 0.99675 0.997835 1.00369 \n", "pH 3.31000 3.400000 4.01000 \n", "sulphates 0.62000 0.730000 2.00000 \n", "alcohol 10.20000 11.100000 14.90000 \n", "quality 6.00000 6.000000 8.00000 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Examine the statistics of the data\n", "data.describe().T" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Quality values ranges from 3 to 8:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([5, 6, 7, 4, 8, 3])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Show output values\n", "data[\"quality\"].unique()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Data Analysis" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABawAAAKVCAYAAAAjjKzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADqaklEQVR4nOzde5xcdX34/9d7k3AJF7ksymWBpSbR2v7wllKtlUshaCyXalsLrbr1UtAW1PrtxWrEBNN+bautBluF4mWtrdZaLUETSFQo9msVAQHl0rBigJXrBgK5AMlm378/Zjbs7H03M3Pm8no+HvOY/czMmfOek8l8znmfz3l/IjORJEmSJEmSJKloHUUHIEmSJEmSJEkSmLCWJEmSJEmSJDUIE9aSJEmSJEmSpIZgwlqSJEmSJEmS1BBMWEuSJEmSJEmSGoIJa0mSJEmSJElSQzBhLUmSpAoR0R0RGRFzC47jHRHxUERsjYhDa7yu90XE5dN87eciYuUkz2dELKhedLUTEb8XEeuKjmNPjPz3iIhXRsT/Fh2TJEmSZs+EtSRJUgOJiI0R8WQ5SftYRHwjIo4uOq6JRMTyiPhCDd53HvB3wOmZuX9mbqr2OkbKzL/KzLfVch2NKDP/JTNP39P3aZQkfWZ+JzOfN9wu/386rciYJEmSNDMmrCVJkhrPmZm5P3AE8BBwScHxFOE5wD7AbbVeUdEjySVJkiQ9w4S1JElSg8rMp4CvAC8YfiwinhURn4+IRyLinohYFhEdEXFIRPRHxJnl1+0fEX0R8abx3jsiro2I/xsR10fE4xFxRUQcMsFrj4yI1RHxaPk9/6D8+KuB9wG/Ux4Rfkv58d+PiLsjYktE/DQifm+C9907Ij4WEfeXbx8rP7YIGC7rsDkivj3OsldFxAWjHrslIl5X/vvjEXFfRDwRETdGxCtHvG55RHwlIr4QEU8Avz96pHhE/HtEPFjeNtdFxC+MCqEzItaXP+N/RcSxk3zGj0TEveXyJp+KiH3Lz3VGxNcjYnN5234nIsbdP5/i8+wbEb3lEfl3RMSfRUT/iOffGxE/Kcd6e0S8dsRzvx8R/z2inRHx9oi4q/x+/xARUX5uQfmzPh4RAxHxb+XHrysvfkv5e/A748Q/p7wdBsrfjT+KEWVnYtRI6Fn8ewy/7uThzx4R/wwcA1xZjuvPonTFwoWjlrk1In5jvPeTJElS/ZmwliRJalARMR/4HeB7Ix6+BHgW8HPAScCbgDdn5qPAW4B/iohnA38P3JyZn59kFW8qL3MkMAismuB1XwT6y6/7LeCvIuLUzLwK+Cvg38plO14YEfuV32dpZh4A/Apw8wTv+37gZcCLgBcCJwDLMnMDMJyQPCgzf22cZf8VOHe4EREvAI4FvlF+6Afl9z2k/Np/j4h9Rix/NqWTAQcB/zLO+68FFgLPBm4a5zW/B3wI6Cx/vvHeA+CvgUXlWBYARwEXlZ/7P5S262GURpS/D8gJ3meyz/NBoJvSd2IJ8IZRy/4EeCWl780K4AsRccQE6wE4A/glSv8mrwdeVX78Q8A64GCgi/LI/8w8sfz8C8vfg38b5z3/oPy+LwYWU/oezcRU/x5jZOYbgXspX7GQmX8D9DJi+0TECyn9m6yZYTySJEmqERPWkiRJjec/I2Iz8ASlBOTfQmmUKqUE9l9k5pbM3Ah8FHgjQGauA/4d+Bbw68D5U6znnzPzx5m5DfgA8PryOnaLUv3sXwX+PDOfysybgcuH1zmBIeAXI2LfzHwgMycq6/F7wMWZ+XBmPkIpmTrZ+470NeBFI0Y2/x7w1cx8GiAzv5CZmzJzMDM/CuwNPG/E8v+Tmf+ZmUOZ+eToN8/Mz5S38dPAcuCFEfGsES/5RmZeV37+/cDLY1St8fLI5D8A/jgzH83MLZQS/OeUX7KTUtmXYzNzZ7n+8rgJ6yk+z+uBv8rMxzKzn1EnHjLz3zPz/vJn/TfgLkonByby4czcnJn3AtdQSpQPx3sscGT5u/DfE73BOF4PfCwz7yufXPm/M1h2Ov8e03UFsDAiFpbbb6R0wmXHLN5LkiRJNWDCWpIkqfH8RmYeRCkpeQHwXxFxOKXRvHsB94x47T2URogOuwz4ReCz05io8L5R7zOvvI6RjgSGk60TrXO3cvL7d4C3Aw+USzA8f4L1HznOZzlyipiH17OF0mjq4eTvOYwYdRsR/6dcHuPxcvL/WaM+28jPXqFcvuLD5TIaTwAby0+Nu3xmbgUeHSf2w4D5wI3lsh+bgavKj0PpREQfsK5cJuO9k8Q02ec5ctTnuW/Usm+KiJtHxPCLjP13HunBEX9vB/Yv//1nQADXR8RtEfGWSd5jtNEx3jPRC0eb5r/HtJQT3l8G3lAuv3Iu8M8zfR9JkiTVjglrSZKkBpWZuzLzq8AuSqOcB3hmlOuwY4Cfwe4R2JcCnwfeERELpljFyBHBx5Tfe2DUa+4HDomIA8ZbJ+OUsMjMqzNzCaXRw3cC/zTB+u8f57PcP0XMI30RODciXg7sS2k0MOX6zn9OaVTvweXk/+OUkq27w5zkfX+XUsmQ0yglhrvLj49cfve2i4j9KZXqGB37APAk8AuZeVD59qzyhJqURwz/n8z8OeBM4D0RceroYKbxeR6gVKJjvNiOpbT9LwAOLS/741GfZVoy88HM/IPMPJLS6P1/nMZ3bNgDjP2+jbSNUnJ/2OEj/p7Ov8eEYY/zWC+lEfmnAtsz83+m8T6SJEmqExPWkiRJDSpKzqZUM/iOzNxFaXToX0bEAeVk5HuA4cnp3le+fwvwEeDzo0t8jPKGiHhBuVb2xcBXyuvYLTPvA74L/N+I2CcijgfeyjOjmR8CusujVYmI50TEWeVa1k8DWykl3MfzRWBZRBwWEZ2Uajt/YYLXjmcNpYT3xZTKOgyVHz+AUk3uR4C5EXERcOAM3veAcuybKCVR/2qc17wmIn41IvaiVNv5++VttVs5nn8C/r5cV5yIOCoiXlX++4zyRIZBqfzLLsbfVlN9ni8DfxERB0fEUZSS08P2o5S0faS8zjdTGmE9YxHx2xExnBh/rPy+w/E+RKmG9kS+DLwzIroi4mBg9Gjym4FzImJeRIyucT2df4+JjImrnKAeolROx9HVkiRJDcaEtSRJUuO5MiK2Ukpi/iXQM6IO9IWURqPeDfw3pQn4PhMRL6WUvH5TOen815QSihOWmaCUrPscpRIQ+wDvnOB151Ia1Xo/pdrRH8zM9eXn/r18vykibqK0f/l/yq99lNLEkH84wfuuBG4AbgV+RGkyvZWTxFuhXN7hq5RG3v7riKeupjRJ3wZKpSeeYpISIOP4fHm5nwG3Uznp5bB/pTTZ4aPASymN2B3Pn1Mq+/G9cjmLb/JM7emF5fZW4H+Af8zMa8d5j6k+z8WUJm/8afn9vkIpwUtm3k4pMfs/lJK3/x/w/yb57JP5JeD75e/mauBdmfnT8nPLgd5y2ZHXj7PsP5U/xy2U/p2/Our5DwDPpZQIX0Hlv+d0/j0m8n8pnRTZHBF/Muo9/z9mdoJEkiRJdRATzOsiSZKkFhYR1wJfyMzLi45F1RUR7wDOycyTio5lIhHRTSnBPi8zBwtY/5uA8zLzV+u9bkmSJE3OEdaSJElSE4uIIyLiFRHRERHPozTC/WtFx9WoyiVw/pDSBKWSJElqMCasJUmSpOa2F6XJNrcA3wauAP6x0IgaVLl++COUyqP86xQvlyRJUgEsCSJJkiRJkiRJagiOsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhmDCWpIkSZIkSZLUEExYS5IkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJYkSZIkSZIkNQQT1pIkSZIkSZKkhjC36ACqqbOzM7u7u4sOQ5LUom688caBzDys6Dianf21JKmW7K+rw/5aklRrE/XZLZWw7u7u5oYbbig6DElSi4qIe4qOoRXYX0uSasn+ujrsryVJtTZRn21JEKnOBgYGuPDCC9m0aVPRoUhS2/K3WJLUbCLiMxHxcET8eILnIyJWRURfRNwaES8Z8dyrI+J/y8+9t35Rq9rch5HUDkxYS3XW29vLrbfeSm9vb9GhSFLb8rdYktSEPge8epLnlwILy7fzgE8CRMQc4B/Kz78AODciXlDTSFUz7sNIagcmrKU6GhgYYO3atWQma9as8ay4xnDEhFR7I3+L165d6/83SVJTyMzrgEcnecnZwOez5HvAQRFxBHAC0JeZd2fmDuBL5deqybgPI6ldmLCW6qi3t5edO3cCsHPnTs+KawxHTEi119vbS2YCMDQ05P83SVKrOAq4b0S7v/zYRI+rybgPI6ldmLCW6mjdunW7dzAyk6uvvrrgiNRIHDEh1cf69esrTh6uW7eu4IgkSaqKGOexnOTxsW8QcV5E3BARNzzyyCNVDU57zn0YSe3ChLVURwcddFBF++CDDy4mEDUkR0yo0UxjcqeTI+LxiLi5fLuo3jHOxpIlS5g3bx4A8+bN4/TTTy84IkmSqqIfOHpEuwu4f5LHx8jMyzJzcWYuPuyww2oWqGbHfRhJ7cKEtVRHDzzwQEX7/vvH3U9Um3LEhBrQ55h8cieA72Tmi8q3i+sQ0x7r6ekhojTYrKOjg56enoIjkiSpKlYDb4qSlwGPZ+YDwA+AhRFxXETsBZxTfq2ajPswktqFCWtJahCOmFCjmcbkTk2ps7OTpUuXEhEsXbqUQw89tOiQJEmaUkR8Efgf4HkR0R8Rb42It0fE28svWQPcDfQB/wT8IUBmDgIXAFcDdwBfzszb6v4BtMfch5HULubW6o0j4jPAGcDDmfmL5ceWA38ADBfDel9mrhln2VcDHwfmAJdn5odrFadUT11dXfT391e0pWE9PT2sWbOmoi01gZdHxC2ULi3+k2Y5AO7p6WHjxo3+P5MkNY3MPHeK5xP4owmeW0Mpoa0m5z6MpHZQyxHWn2P8y4j/fsSlw+Mlq+cA/wAsBV4AnBsRL6hhnFLdLF++vKJ98cVNcfW86qSzs5O9994bgL333tsRE2oGNwHHZuYLgUuA/5zohY02iVNnZyeXXHKJ/88kSVJTcR9GUjuoWcJ6Dy4jPgHoy8y7M3MH8CXg7KoGJxVk0aJFu0dVd3V1sWDBgoIjUiPZsGEDW7duBWDr1q309fUVHJE0ucx8IjO3lv9eA8yLiM4JXuskTpIkSZKkKRVRw/qCiLg1Ij4TEQeP8/xRwH0j2v3lx6SWsHz5cvbbbz9HV2uMlStXVrT9jqjRRcThUZ75JyJOoLRfsanYqCRJkiRJzaxmNawn8EngQ0CW7z8KvGXUa2Kc5XKiN4yI84DzAI455pjqRCnV0KJFi1i7dm3RYagBbdy4cdK2VG/lyZ1OBjojoh/4IDAPIDM/BfwW8I6IGASeBM4p18+UJEmSJGlW6pqwzsyHhv+OiH8Cvj7Oy/qBo0e0uyhN5DTRe14GXAawePFiD5IlNa3u7u6KJHV3d3dhsUgwrcmdPgF8ok7hSJIkSZLaQF1LgkTEESOarwV+PM7LfgAsjIjjImIv4BxgdT3ik6QiLVu2rKJ90UUXFRSJJEmSJElSMWqWsC5fRvw/wPMioj8i3gr8TUT8KCJuBU4B/rj82iMjYg1AZg4CFwBXA3cAX87M22oVp6RiDQwMcOGFF7Jpk2VvFy1atHtUdXd3t5NySpIkSZKktlOzhHVmnpuZR2TmvMzsysxPZ+YbM/P/y8zjM/OszHyg/Nr7M/M1I5Zdk5mLMvO5mfmXtYpRUvF6e3u59dZb6e3tLTqUhrBs2TL2228/R1dLkiRJkqS2VNeSIJI00sDAAGvXriUzWbt2raOseWZSTkdXS5IkSZKkdmTCWlJhent7GRoaAmDXrl2OspYkNYwNGzawdOlS+vr6ig5FkiRJaismrCUVZv369QwODgIwODjIunXrCo5IkqSSlStXsm3bNi6++OKiQ5EkSZLaiglrSYV55StfWdE+8cQTC4pEkqRnbNiwgY0bNwKwceNGR1lLkiRJdWTCWpIkSRph5cqVFW1HWUuSJEn1Y8JaqrOBgQEuvPBCJxgErr322or2NddcU0wgUouLiBsi4o8i4uCiY5GawfDo6onakiSpMXh8LbUmE9ZSnfX29nLrrbc6wSCliRYna0uqmnOAI4EfRMSXIuJVERFFByU1qu7u7knbkiSpMXh8LbUmE9ZSHQ0MDLBmzRoykzVr1rT9WeDhCRcnakuqjszsy8z3A4uAfwU+A9wbESsi4pBio5Maz7JlyyraF110UUGRSJKkiQwMDLB27Voyk7Vr17b98bXUSkxYS3XU29u7Oym7c+fOtj8LvN9++03allQ9EXE88FHgb4H/AH4LeAL4dpFxSY1o0aJFdHV1AdDV1cWCBQsKjkiSJI3W29tLZgIwNDTU9sfXUiuZW3QAUjtZt27d7g41M7n66qt5z3veU3BUxXn+85/PjTfeuLv98z//8wVGI7WuiLgR2Ax8GnhvZj5dfur7EfGKwgKTGtiCBQvo7+9n4cKFRYciSbtFxKuBjwNzgMsz88Ojnv9T4PfKzbnAzwOHZeajEbER2ALsAgYzc3HdApdqYP369ezcuRMoDQhbt25dSx1fr1q1ir6+vhkv19/fD7D75Pt0LViwgHe+850zXp9UCyaspTrq7Ozkvvvuq2i3sx/+8IcV7ZtuuqmgSGpjNjsYs925AHcwNKnfzsy7Rz4QEcdl5k8z83VFBSU1qoGBAb773e8C8N3vfpdNmzZx6KGHFhyVpHYXEXOAfwCWAP2U5qZYnZm3D78mM/+W0tVURMSZwB9n5qMj3uaUzByoY9hSzSxZsoQ1a9awc+dO5s2bx+mnn150SA3hySefLDoEaY9NmbCOiBuAzwL/mpmP1T4kqXXdf//9k7bbzdDQ0KTtduTOhWrkK8BLxnnspQXEIjW88S4xbqURW5Ka1glA3/BJ6Ij4EnA2cPsErz8X+GKdYpP22EwH/OzcuXP3COvBwUHuuuuuGQ3gafQBP7ONbXi5VatWVTOcwtV7xDk0/neklU1nhPU5wJspnb0dTl6vy+G9eEnSuGbTsbXqzoWKERHPB34BeFZEjBxJfSCwTzFRSY2v1S8xltS0jgLuG9HuB355vBdGxHzg1cAFIx5OYF1EJHBpZl5Wq0Clepg3bx5z585lcHCQQw45hHnz5hUdkhqQg8Ka05QJ68zsA94fER8AzgA+AwxFxGeAj4+6vEjSJI444ojdZ/eG261iNmc799prL3bs2FHRbqUz4lIDeB6lvvsg4MwRj28B/qCIgKRmsGTJElavXk1mEhFeYiypUcQ4j000kOxM4P+NOl5/RWbeHxHPBtZHxJ2ZeV3FCiLOA84DOOaYY6oRszRtszm2e8c73sHGjRu5/PLLLd/V4hxx3l46pvOiiDge+CilWlj/AfwW8ATw7dqFJrWeTZs2TdpuN93d3ZO2Je2ZzLwiM98MnJGZbx5xe2dmfrfo+KRGdeaZZ1ZMknzWWWcVHJEkAaUR1UePaHcBE9UYPIdR5UAy8/7y/cPA1yiVGGHUay7LzMWZufiwww6rStBSLc2bN4+FCxearJZazHRqWN8IbAY+Dbw3M58uP/X9iHjFJMt9htKorocz8xfLj/0tpTO9O4CfAG/OzM3jLLsRZy9uCQMDA6xYsYLly5fbgQAvetGL+J//+Z/d7Re/+MUFRlNdsz3bedppp7Fjxw6OPvpoLr/88ipHJbW3iPizzPwb4Hcj4tzRz2dm01+iYC071cKVV15JROweYb169WpLgkhqBD8AFkbEccDPKCWlf3f0iyLiWcBJwBtGPLYf0JGZW8p/nw5cXJeoJUmaoenUsP7t4UkdhkXEcZn508x83UQLAZ8DPgF8fsRj64G/yMzBiPhr4C+AP59geWcvbgG9vb3ceuutTlZUduutt1a0b7nlloIiaRzd3d309fWxYsWKokORWtEd5fsbCo2iAVnLTpNZv359xQhra1hLagTl4+gLgKuBOcBnMvO2iHh7+flPlV/6WkrzTm0bsfhzgK9FBJTyAP+amVfVL3pJUrXNZvBOswzcmU7C+ivAS8Z57KWTLZSZ10VE96jH1o1ofo9SaRG1qIGBAdauXUtmsnbtWnp6etp+lPW2bdsmbbej+fPnc/zxx7NgwYKiQ1GN1XskrKNgITOvLN/3Fh1LrVjLTrWwZMkS1qxZw86dO5k3b541rCU1jMxcA6wZ9dinRrU/R2kA2cjH7gZeWOPwJEkNrlkG7kyYsI6I5wO/ADwrIkaOpD4Q2KcK634L8G8TPOfsxS2gt7d39+ikoaEhR1lLmpVm6VAbUURcycSTMZGZFuaVxtHT08PatWsB6OjooKenp+CIJLWCiPgRk/fLx9cxHElSk5vN4J1mGbgz2Qjr51GqQX0QpbrTw7YAf7AnK42I9wODwL9M8JIpZy8e8V7OYtyg1q9fz86dOwHYuXOnl9NKbc6RsIX4SPn+dcDhwBfK7XOBjUUEpNrzaoY919nZydKlS1m9ejVLly5t+yvEJFXNGeX7Pyrf/3P5/veA7fUPR5KkxjRhwjozrwCuiIiXZ+b/TPS6mYqIHkod9ak5PPx27Lp3z14cEcOzF4+bsC6Pvr4MYPHixROerVb9LVmyhG984xsMDg4yd+5cL6eVpDrLzP8CiIgPZeaJI566MiLG7VfVvryaodKZZ57JN7/5Tc46ywsRJFVHZt4DEBGvyMxXjHjqvRHx/3ASREmSgMlLgvxZZv4N8LsRce7o5zNzxkNpIuLVlCZZPCkzxz2D7OzFraOnp4crr7wSKJUE8XJaSSrMYRHxc8OTKEfEccBhBcekGvFqhuq48sor2b59O6tXr/YKMUnVtl9E/Gpm/jdARPwKsF/BMUmS1DAmKwlyR/n+htm8cUR8ETgZ6IyIfuCDwF8Ae1Mq8wHwvcx8e0QcCVyema/B2YslSaq2PwaujYi7y+1u4PziwpEa28DAAGvWrCEzWbNmjRNHU9omK1asYPny5W2/LaQqeCvwmYh4Vrm9mdIcTy1tNiWrZluuClqzZJUktYvJSoJcWb7vnc0bZ+aYUdnApyd47f3Aa8p/O3txi+jt7aV84oGIcNJFSSpIZl4VEQuB55cfujMzny4yJqmR9fb27p6HY8eOHe7DUNomt956q9tCqoLMvBF4YUQcCERmPl50TI3KclWS1J4mKwlyJZPPYGxBP01q/fr17Nq1C4Bdu3Y56SLQ0dHB0NBQRVuSaiUifi0zvx0Rrxv11HMjgsz8aiGBSQ1u3bp1Fe2rr766rfdhHHEuVUdEvCEzvxAR7xn1OACZ+XeFBFYnsxntbLkqSWpPk2XLPgJ8FPgp8CTwT+XbVuDHtQ9Nze6Vr3xlRfvEE0+c4JXtY2Syery2JFXZSeX7M8e5nTHVwhHxmYh4OCLG7fejZFVE9EXErRHxkmoFLhXpoIMOmrTdbsYbcS5pVobrVB8wwU2SJDF5SZD/AoiID2XmyEzjlRFxXc0jK9hs6mvB7GtsWV+r+cz2OzLadP/d/Y5ImqnM/GD5/s2zfIvPAZ8APj/B80uBheXbLwOfLN9LTe2BBx6YtN1uHHEuVUdmXlq+X1F0LJIkNbLp1CM4LCJ+brgREccBh9UupOb25JNPWmer7Dvf+U5F+7rrWv48x5SGL/ebqC1JtRARfxURB41oHxwRK6daLjOvAx6d5CVnA5/Pku8BB0XEEXscsKSGcsABlQM/DzzwwIIikVpDRPSO0y9/psCQJElqKBOOsB7hj4FrI+LucrsbOL9mETWI2Y5ktcbWM5YsWcI3vvENBgcHmTt3LqeffnrRIVXVbL4jH/3oR7niiit2t88++2xHKEmqh6WZ+b7hRmY+FhGvAZbt4fseBdw3ot1ffmxWw1GrdeXKdNx1113A7Pv7mfIqmeYyd+5cBgcHK9rt7OGHH65oP/TQQwVFIrWM4zNz83Cj3C+/uMB4JElqKFPufWfmVRGxEHh++aE7M/Pp2oalVtDT08PatWsBmDNnDj09PQVHVLyenh5Wr15NZjJv3jy3iaR6mRMRew/33xGxL7B3Fd53vMtExp2wOSLOA84DOOaYY8Z9s76+Pn74o9sZmn9IFUKbXOwohXnjTx6s+bo6tk82SF2NaGSyery2JO2hjog4ODMfA4iIQ5jeYDJJktrChJ1iRPxaZn47Il436qnnRgSZ+dUax6Ym19nZydKlS1m9ejVLly51NnlK2+SQQw5h06ZN/Pqv/7rbRFK9fAH4VkR8llJC+S1ANWZN6weOHtHuAu4f74WZeRlwGcDixYvHTWoDDM0/hKdeMOV8kE1ln9u/XnQIbW02I/f33ntvnn766Yr2TEbIt9qI+jlz5rBr166KtqQ98lHguxHxlXL7t4G/LDAeSZIaymRncU8Cvg2cOc5zCZiw1pR6enrYuHGjI4lHOPzww3nqqafcJpLqJjP/JiJ+BJxKaVT0hzLz6iq89Wrggoj4EqXJFh/PzPaenU4t4dhjj2XDhg0V7XaWmZO2Jc1MZn4+Im4ETqHUL78uM28vOCxJkhrGhAnrzPxg+f7N9QtHraazs5NLLrmk6DAayrx581i4cKGjqyXVVWauBdbOZJmI+CJwMtAZEf3AB4F55ff7FLAGeA3QB2wH3GdQw5ntSOclS5bw9NNP093dzeWXX17lqJpLR0cHQ0NDFW3BwMAAK1asYPny5e7XacYy87aIeATYByAijsnMewsOS5KkhjDl3mZE/NU4MxivrGlUkiSpaiLiZRHxg4jYGhE7ImJXRDwx1XKZeW5mHpGZ8zKzKzM/nZmfKieryZI/ysznZub/l5k31P7TSPVx7LHH0tHRwUUXXVR0KIU79dRTK9qnnXZaQZE0lt7eXm699VZ6e6tRYUntJCLOioi7gJ8C/wVsZIYnlSVJamXTGR6xdPQMxpRGU0mSpObwCeBc4C5gX+BtgJe/SJOYP38+xx9/PAsWLCg6lMKdf/75u0dVd3R0cP755xccUfEGBgZYu3YtmcnatWvZtGlT0SGpuXwIeBmwITOPo1Sy6/8VG5IkSY1jOjMRz4mIvTPzaYCI2BfYu7ZhSZKkasrMvoiYk5m7gM9GxHeLjklSMWYzEeW8efN4+umnedaznsWKFStmtGyrTUIJpdHVw7W8h4aG6O3t5T3veU/BUamJ7MzMTRHREREdmXlNRPx10UGpvmbzWwzQ398PQFdX14yXbcXfY0mtaToJ6y8A34qIz1KabPEtgNe9SZLUPLZHxF7AzRHxN8ADwH4FxySpiXR0dNDR0cGRRx5ZdCgNYf369ezcuROAnTt3sm7durZPWFvTe0Y2R8T+wHXAv0TEw8DgdBaMiFcDHwfmAJdn5odHPX8ycAWlciMAX83Mi6ezrJrDk08+WXQIkqpstiewZuOuu+4CZj/Py2zM5mTZlAnrzPybiPgRpcuUAvhQZl49uxDVrDz7K0lN7Y2UyoBdAPwxcDTwm4VGJKkws9m/Gl5m1apV1Q6nKS1ZsoSvf/3r7Nq1izlz5nD66acXHVLhRtb0bvfk/TScDTxJqU/+PeBZwMVTLRQRc4B/AJYA/cAPImJ1Zt4+6qXfycwzZrms6mS2x7r+Hkutp6+vjx/fcgsH7DWdccV7ZnBwFwD33HFbzdcFsGXHtM7HjjGtLZGZa3ESCM2CZ38lqXiZeU/5z6eAmV3Lr8LUc6QF1H+0hSem1cx6enq44oorANi1axc9PT0FR1Ss0TW9e3p6HGU9iczcVv5ziJldvXwC0JeZdwNExJcoJb+nk3Tek2UlSTV2wF5zOeE5BxcdRtVd/9Bjs1puyoR1RLyM0sRMPw/sRenyoW2ZeeAUy30GOAN4ODN/sfzYIcC/Ad2UZkJ+fXkSx9HLeqlSg/HsryRJ9dXX18eGH9/EMfvvqsv69tpZmlTvqY0/qPm67t06p+brkGrp7rvvrmhv3LixrRO01vSum6OA+0a0+4FfHud1L4+IW4D7gT/JzNtmsKwkSYWbzgjrTwDnAP8OLAbeBExnuvTPlZf9/IjH3gt8KzM/HBHvLbf/fORCXqokSY3NUZ+qlf7+fjq2P84+t3+96FCqqmP7Jvr7Z3cp3DH772LZ4q1Vjqh4K2/Yv+gQpD2yfPnyivYHPvAB1qxZU0wwDcCa3nUT4zyWo9o3Acdm5taIeA3wn8DCaS5LRJwHnAdwzDHH7FGwkjSRVq7Z7PFkdUy3JEhfRMzJzF3AZyPiu9NY5rqI6B718NnAyeW/e4FrGZWwxkuVJDWYVu5MYeYdaj3ra0F9a2zNtr5Ws4iI/UZchixJmqWtW7dO2m43S5YsYc2aNezcuZN58+ZZ03sKEbEf8GRmDpXbHcA+mbl9ikX7Kc1DMayL0ijq3TLziRF/r4mIf4yIzuksW17mMuAygMWLF49JaEtSNfT19XHbj+7goPnPrvm6hnaUztf97Cebar6uzdsfrvk62sV0sg3bI2Iv4OaI+BvgAWC/Wa7vOZn5AEBmPhAR430zvVRJUkNp1c4UZt+hWl+ruUTErwCXA/sDx0TEC4HzM/MPi42sUldXFw89PZenXnDG1C9uIvvc/nW6ug4vOgxJVTR37lwGBwcr2u2sp6eHtWtLUx51dHS0fU3vafgWcBowfKZjPrAO+JUplvsBsDAijgN+RulK6N8d+YKIOBx4KDMzIk6gNOnyJmDzVMtKUj0dNP/ZnPL8c4oOo6quufNLRYfQMqazZ/VGSp3cBZRmMT4a+M0axjStS5V2v3iKS5a8dF1SNbRiZwp2qG3k74FXAasBMvOWiDix2JAkqXnNmTOnImE9Z05712Xv7Oxk6dKlrF69mqVLl7Z1Pe9p2iczdw/LL5fvmD/VQpk5GBEXAFdTmu/pM5l5W0S8vfz8p4DfAt4REYPAk8A5WSowPu6yVf9kkiRVwZQJ68y8p/znU8CKPVzfQxFxRHl09RHAeEP7pnWp0oj4Jr1kqa+vjx/+6HaG5h+yZ5FPU+wohXDjTx6s+bo6tj9a83VIklpDZt4XUXFOuD4z+UlSC3r1q1/NFVdcsbu9dOnSAqNpDD09PWzcuNHR1dOzLSJekpk3AUTESykll6eUmWuANaMe+9SIvz9BaS6paS0rSVIjqve1a6uBHuDD5fsrxnnNlJc5zdTQ/ENa7vJioOUmpZIk1cx95bIgWS7z9U7gjoJjkqSm1dPTwze+8Q0GBweZO3euSVpKo6wvueSSosNoFu8G/j0ihgdmHQH8TnHhSJLUWDpq9cYR8UXgf4DnRUR/RLyVUqJ6SUTcBSwpt4mIIyNiDZQuc6JUfuRqSgfTX/ZSJUmS9sjbgT+iNE9EP/CicluSNAudnZ38+q//OhHBGWecYQkMzUhm/gB4PvAO4A+Bn8/MG4uNSpKkxlGzEdaZee4ET506zmvvB14zou2lSlKB6ln73brvUu1l5gDwe0XHIUmtxBIYmqmI+LXM/HZEvG7UUwsjgsz8aiGBSaop51aTZm7ChHVEXMkkkx1m5lk1iUhS4fr6+rjz5ps5vA7rGr7MY/PNN9d8XbWvLC81loi4hMn7cvcsJbW92SYS+vv7AVixYmbT/Hhg39ZOAr4NnDnOcwmYsJZaUD2Pr8Fj7GbU39/Plh2DXP/QY0WHUnVbdgzu3meaiclGWH+kfP864HDgC+X2ucDGGa9JUlM5HHgrMeXrmsmnJ87bSa3qhqIDkKRW9eST05ojT9otMz8YER3A2sz8ctHxSKqfVjy+Bo+xVTsTJqwz878AIuJDmXniiKeujIjrah6ZJEnaI5nZW3QMktToZjvaeXi5VatWVTMctbjMHIqICwAT1pLaVn9/P49v38I1d36p6FCqavP2h8n+mZ/Q7urqYteWxznhOQfXIKpiXf/QY3R1dc14uenUsD4sIn4uM+8GiIjjgMNmvCZJklRXEfGxzHz3RGW+LO8lSVIh1kfEnwD/BmwbfjAzHy0uJEmSGsd0EtZ/DFwbEXeX293A+TWLSKozJ0CQ1ML+uXz/kUlfJUmS6ukt5fs/GvFYAj9XQCySVHddXV3E05s45fnnFB1KVV1z55c4quvQosNoCVMmrDPzqohYCDy//NCdmfl0bcOS6qevr48f3vZDOKhOKxwq3f3wZz+s/bo2134V7aBVL1eC2V+ypOaQmTeW/3xRZn585HMR8S7gv+oflaarv7+fbVvmsPKG/YsOperu2TKH/WYx+Uo9TzJ7gllSDf18Zj418oGI2KeoYCRJajRTJqwjYj7wHuDYzPyDiFgYEc/LzK/XPjypTg6CoZOHio6i6jqu7Zj6RZLaQQ/w8VGP/f44jxWuY/uj7HN77Xcx4qknAMh9Dqz5ujq2Pwp1mxe+tdX1JLMnmCXVzneBl0zjMakptfIJZvAks1QP0ykJ8lngRuDl5XY/8O+ACWtJbaFVL1cCL1lqdRFxLvC7wHERsXrEUwcAm4qJamILFiyo27ruumsLAAufW49E8uGz+mxdXV08NfgAyxZvrUFMxVp5w/7sM4vJV4CWPMnsCWapPUTE4cBRwL4R8WIgyk8dCMwvLDCpylr2BDN4klmqk+kkrJ+bmb9TPuglM5+MiJhqIUmSVLjvAg8AncBHRzy+Bbi1kIgmUc+RKsPrWrVqVd3WKUnNYLYjI/vLZX66ZnEyqo1GK76K0hVOXcDfjXh8C/C+IgKSauag1jvBDJ5kluplOgnrHRGxL6VJIIiI5wLWsG5iXp4jSe0hM+8B7uGZq6QkSaqJJ590ToypZGYv0BsRv5mZ/1F0PJIkNarpJKyXA1cBR0fEvwCvAN5cy6BUW319fWz48U0cs/+umq9rr52ls49PbfxBzdcFcO/WOXVZj9TO+vv72bJjkOsfeqzoUKpuy47B3SPEWklEvAy4BPh5YC9gDrAtM2tfwFlSzTgIQbUw223ulStTi4g3ZOYXgO6IeM/o5zPz78ZZrOH42yNJqrUpE9aZuS4ibgReRqnG1rsyc6Dmkammjtl/V8vWxJQkjfEJ4BxKc1AsBt4E1K9gtFQl/f398HgLXo67Gfpz5ifL+vr6uPPmm+sypefwFt988811WBs8WJe1SHW3X/m+qQ9a+vr6+OGPbmdo/iE1X1fsSABu/El9fhVKEyVLkoo2ZcI6Iv4ZuCAzv1FuHxsR/5aZp9Y8OklSw+nq6mLXlsc54TkHFx1K1V3/0GOzqr3ZDDKzLyLmZOYu4LMR8d2iY5K05w4H3krrTS/z6VI1QqmlZOal5fsVRceyp4bmH8JTLzij6DCqbp/bv150CFLb2Lz9Ya6580s1X8/Wp0pXBu+/T+2PXzdvf5ijOLTm62kH0ykJ8t/A98uXLB0F/Cnwf2oalSRJqqbtEbEXcHNE/A2liRj3m2IZqeF0dXXxSDzScpM4dVzbQddRrXmyTNJYEdFL6crlzeX2wcBHM/MthQYmSXWyYEH9Lva8667SlRNHPbf2ieSjOHTWn61eZTe3D5bKA8+fW5+Sult2DM5quemUBLk0Im4DrgEGgBdn5qyvx4mI5wH/NuKhnwMuysyPjXjNycAVwE/LD301My+e7TolzUx/fz9baL3RTQ8AW1uwPrE0DW+kVLf6AuCPgaOB35zOghHxauDj5eUvz8wPj3r+ZOyzJUmaieOHk9UAmflYRLy4wHgkqa7qWSe+GeZYqG8CvzQ3wLELF9ZtnbP5fNMpCfJG4AOU6l0eD6yJiDdn5i0zXhuQmf8LvKj83nOAnwFfG+el38nM1rvGSA2nZethwqxrYkpqLZl5T/nPJ4FpX4Zc7qf/AVgC9AM/iIjVmXn7qJfaZ9fIvVvn1G1+hoe2l/rB58yv/ejle7fOYVHN1yJJDasjIg7OzMcAIuIQpnf183ROJP8e8Ofl5lbgHcPH7hGxEdgC7AIGM3NxFT6LJGkPmcAfazqd4m8Cv5qZDwNfjIivAb2Uk8576FTgJyMOpCU1gK6uLjYPDLRcTcxPkxzUovWJpfFExI9g4kslMvP4Kd7iBKAvM+8uv9+XgLOB0Qlr1UA9R1oA7CiPttinu/ajLRZR/88nSQ3ko8B3I+IrlPrp1wN/OdVC0zyR/FPgpPKo7aXAZcAvj3j+lMwcqNLnUNmqVavo6+ury7qGR0fWK8G1YMGCuibTJAmmVxLkN0a1r4+IE6q0/nOAL07w3Msj4hbgfuBPMvO22aygv7+fju2Pt+TkCR3bN9HfP/NaMP39/WzbUr8RW/V0z5Y57DfDkg+tWg8TrIkpiT0d9XwUcN+Idj+VB73DqtJnq1K9Dw6bZbSFJDW7zPx8RNwA/BoQwOvGuXppPFOeSM7MkZMqfw/wYKAO+vr62PDjmzhm/101X9deO0tXRD218Qc1X9e9W+tT47bVtWrJTbDspmpnwoR1RPxZZv5NRFzC+KOz9ugoqjz501nAX4zz9E3AsZm5NSJeA/wnMO5wn4g4DzgP4JhjjtmTkCRpQq04gzE4i3GrG3kFU0Q8B/ilcvP68pVTUxnvMovR+wTT6rPtr6Xq8wC4Uj1HOIKjHLVnygnqmV6xNN0TycPeCqwduVpgXUQkcGlmXjbD9WsSx+y/i2WLtxYdRlW14iA3Sc1hshHWw53nDTVa91Lgpsx8aPQTmfnEiL/XRMQ/RkTneJculTvZywAWL148Zm+9q6uLh56ey1MvaL3Smvvc/nW6ug6f8XJdXV08NfhAy3WmUOpQ97Hkg6qsVWcwhj2bxVjNIyJeD/wtcC2lJPQlEfGnmfmVKRbtpzRB47AuSqOod5tunz1Vfy1Je6qvr4/bfnQHB81/dl3WN7SjdE7vZz/ZVPN1bd4+nXOMY1mmoOVM50Ry6YURp1BKWP/qiIdfkZn3R8SzgfURcWdmXjdqOU8wS1XWqiU3wbKbqp3JEta/A3wdOCgzP16DdZ/LBOVAIuJw4KHMzHL5kQ6g9nuCkjQOJ0AYa8uOQa5/6LG6rGv7YOnSyvlza39J4pYdMy+z1CTeD/zS8KjqiDgM+CYwVcL6B8DCiDiO0iTJ5wC/O/IF9tmqu811mih5+Lx+PQaXbaY0bnKGPAAe66D5z+aU559Tg4iKNdurvPr6+vjxLbdwwF7Tms9vjwyW++t77qh9VagW7q+nMuWJZICIOB64HFiambv75My8v3z/cHluqhOAioS1J5hVDf39/fB4nfrretsM/WkJDKnWJttzeWlEHAu8JSI+z6izuZn56GxXGhHzKU0Ucf6Ix95eft9PAb8FvCMiBoEngXMyc9adZcf2R+tWwzqeKg00y30OrPm6OrY/Csx8hLXGsbmOnWkTHABLk6n3iOzhEVvHLqz9RHDQshPBdYwqAbKJUmJ5Upk5GBEXAFcDc4DPZOZtteyzZ2q2owf3ZCRgm47qawj1veKl9B1ZeFQdfnuOatnfHjWAA/aaywnPqU+psXqp10nzBjSdE8nHAF8F3piZG0Y8vh+l/YEt5b9PBy6uW+SSJM3AZAnrTwFXAT8H3EhlwjrLj89KZm6HyqKp5YPe4b8/AXxitu8/Uv0TK1sAWPjceiSSD/fgpgqKSr41+gHwg9SnJubwkI96FMB4EDioDutpdU4E15SuioireebKpt8B1kxnwcxcM/q1teqz62nfffctOgTNgle8SGpn0zyRfBGlXet/jAiAwcxcDDwH+Fr5sbnAv2bmVQV8DLWBrq4uHolHGDp5qOhQqq7j2g66jrIEhlRrEyasM3MVsCoiPpmZ76hjTFVlYkVT8TsyVj2T+I+UE/gH1WH07EE4gk3tKTP/NCJeR6mOZQCXZebXCg6rKhzpLElqJ9M4kfw24G3jLHc38MKaByhJUhVMWcysmZPVmti9W+fUZcbfh7aXrjh/zvz6nFm9d+scFtVlTa3NEWxSa4mIPwb+PTO/WnQskiRJkiRNpvazbzSpetfErGc9zHqOMN1R3h77dNen9uwiHEErSeM4ELg6Ih4FvgR8JTMfKjgmSZIkSZLGMGFdZc1QE9PRs5LUXjJzBbAiIo6nVL/6vyKiPzNPKzg0SXuoFeecAOedkCRJamcmrCdgTUxJUgt6mFIeaBPw7IJjkbSHWnXOCZjdvBP9/f08vn0L19z5pZrEVKTN2x8m+5+c8XL9/f1s2THI9Q89VoOoirNlxyD9/f1FhyFJkmrEhLUkSS0uIt5BaWT1YcBXgD/IzNuLjUrSnvKqOUmSJLUiE9aSJLW+Y4F3Z+bNRQciSbXS1dVFPL2JU55/TtGhVN01d36Jo7pmXpClq6uLzZs2Tf3CKtg+uAuA+XPn1GV9XV1ddVmPJEmqPxPWkiS1uMx8b9ExSJLqr55lY4Ynnz+2TmVjnGhdkqTWZcJakiRJklqQZWMkSVIzMmEtSZIkqSVs3v5w3SZd3PpUaSLD/fc5uObr2rz9YY5i5iVBJEmSmpEJa0mSJElNr94lIu6661EAjnpu7RPJR3GoJTAkSVLbMGEtSZIkqenVs/zFyPVZAkOSJKm6TFhLkiRJkoBSAr6vr2/Gyw1PujibEwcLFiyo+wkHqZr6+/vZtmUOK2/Yv+hQquqeLXPYr79/dgtvho5rO6oaz7i2lu/rtek3A0fNfLEHgU+TVQ5mfJvK9/UoJPUgcFAd1qP2Y8JakiRJkrRH9t1336JDkNQg6lnCaPhk2cKjFtZnhUfN/PPVu6TTI+VtctDC2m+Tg6j/51N7MGEtSZLUQuo9OtKRkVJr8f+zNHNdXV08NfgAyxZvnfrFTWTlDfuzT1fXjJer5+9IM5RnsmSVNHOFJKwjYiOwBdgFDGbm4lHPB/Bx4DXAduD3M/OmescpSZLULhwdKUmSJKkRFDnC+pTMHJjguaXAwvLtl4FPlu8lSZI0CUdHSpIkSWpmdaiAPytnA5/Pku8BB0XEEUUHJUmSJEmSJKk5PProo9x8881cc801RYeiGShqhHUC6yIigUsz87JRzx8F3Dei3V9+7IE6xSdNyRqh0sz4f0ZSEer92wP+/khqbf39/XRsf5x9bv960aFUXcf2TfT3DxYdhqQquvfeewFYsWIFp5xySsHRaLqKSli/IjPvj4hnA+sj4s7MvG7E8zHOMjneG0XEecB5AMccc0z1I5WqzBqh7WM2SRITJGP5f0ZSEVr5t8f+SWpeEfFqSvM9zQEuz8wPj3p+wvmgplpWe+berXNYecP+NV/PQ9tLF8o/Z/5Qzdd179Y5LKr5WqTpmc3+y6OPPrr776GhId7whjdwyCGHTHv5Rt+HaeV9ukIS1pl5f/n+4Yj4GnACMDJh3Q8cPaLdBdw/wXtdBlwGsHjx4nGT2lItNPKPlppXKydI/D8jqQj+9lRHK/dPUrOIiDnAPwBLKB0z/yAiVmfm7SNeNu58UNNcdlq6urp46Om5PPWCM/bsAzWgfW7/Ol1dh894uQULFtQgmvHtKCeb9uleWPN1LaK+n02qtuHR1SPbM0lYt6Jm2aere8I6IvYDOjJzS/nv04GLR71sNXBBRHyJUif7eGZaDkRqYF5yPVYjxyZJal/2T1LTOgHoy8y7AcrHy2cDI5POu+eDAr4XEcPzQXVPY9lp69j+aF1KgsRTTwCQ+xxY83VB6XPBzBPW9fxdHV7XqlWr6rZOqRHM5v/ZiSeeOOaxVvq/08r7dEWMsH4O8LXSlUrMBf41M6+KiLcDZOangDWULmHqo3QZ05sLiFMjmIxUrTTL2T1JktSanGNBTWS8uZ5+eRqvOWqay07LbEfc9vf38+STT85omSd3PQXAvkPjVQ2d3L777ktXV9cMlzq8biOKPcYeq5XLG8yG/ZPaWd0T1uUzui8c5/FPjfg7gT+qZ1yqDZOR7cOOTZIktRP3c1WA6cz1NNFrpjVP1HTmiJrtfv9skm/9/f0As0g8t27yzd+eSm6PsdwmagVFTbqoJtOKHb0kSZLkfq6ayHTmeproNXtNY9mazhHl/7VKbo+x3CaV3B5qZx1FByBJkiRJkqb0A2BhRBwXEXsB51Ca/2mk1cCbouRlPDMf1HSWlaSW8rrXva6i/frXv76gSDRTJqwlSZIkSWpwmTkIXABcDdwBfDkzb4uItw/PCUVpPqi7Kc0H9U/AH062bJ0/giTV1bvf/e6K9gUXXFBMIJoxS4JIkiRJktQEMnMNpaT0yMemNR/UeMtKUqt73etex1e/+lVHVzeZKPVnrSEiHgHuKToOoBMYKDqIBuL2GMttUsntUcntMVajbJNjM/OwooNodvbXDc1tUsntUcntMZbbpFKjbA/76yqwv25obpNKbo+x3CaV3B6VGml7jNtnt1TCulFExA2ZubjoOBqF22Mst0klt0clt8dYbhPVgt+rsdwmldweldweY7lNKrk9VAt+r8Zym1Rye4zlNqnk9qjUDNvDGtaSJEmSJEmSpIZgwlqSJEmSJEmS1BBMWNfGZUUH0GDcHmO5TSq5PSq5PcZym6gW/F6N5Tap5Pao5PYYy21Sye2hWvB7NZbbpJLbYyy3SSW3R6WG3x7WsJYkSZIkSZIkNQRHWEuSJEmSJEmSGoIJ6yqJiH0i4vqIuCUibouIFUXH1AgiYk5E/DAivl50LI0gIjZGxI8i4uaIuKHoeIoWEQdFxFci4s6IuCMiXl50TEWKiOeVvxvDtyci4t1Fx1WkiPjj8m/qjyPiixGxT9ExqfnZZ4/PPruSfXYl++xn2F+PZX+tWrC/Hp/9dSX760r215Xss8dqlj7bkiBVEhEB7JeZWyNiHvDfwLsy83sFh1aoiHgPsBg4MDPPKDqeokXERmBxZg4UHUsjiIhe4DuZeXlE7AXMz8zNBYfVECJiDvAz4Jcz856i4ylCRBxF6bf0BZn5ZER8GViTmZ8rNjI1O/vs8dlnV7LPrmSfPT77a/tr1Y799fjsryvZX1eyv56YfXZz9dmOsK6SLNlabs4r39r6bEBEdAG/DlxedCxqPBFxIHAi8GmAzNxhR1rhVOAn7dqRjjAX2Dci5gLzgfsLjkctwD57LPtsTcY+e1L21yX216o6++ux7K81GfvrKdlnlzRFn23CuorKl+bcDDwMrM/M7xccUtE+BvwZMFRwHI0kgXURcWNEnFd0MAX7OeAR4LPlS9ouj4j9ig6qgZwDfLHoIIqUmT8DPgLcCzwAPJ6Z64qNSq3CPnuMj2GfPZp99jPssydmf21/rRqyvx7jY9hfj2Z//Qz768nZZzdRn23Cuooyc1dmvgjoAk6IiF8sOKTCRMQZwMOZeWPRsTSYV2TmS4ClwB9FxIlFB1SgucBLgE9m5ouBbcB7iw2pMZQv3ToL+PeiYylSRBwMnA0cBxwJ7BcRbyg2KrUK++xn2GdPyD77GfbZ47C/LrG/Vi3ZXz/D/npC9tfPsL+egH12STP12Sasa6B8ycW1wKuLjaRQrwDOKteT+hLwaxHxhWJDKl5m3l++fxj4GnBCsREVqh/oHzFK4iuUOleVdrZuysyHig6kYKcBP83MRzJzJ/BV4FcKjkktxj4bsM8el312Bfvs8dlfl9hfq+bsrwH763HZX1ewv56YfXZJ0/TZJqyrJCIOi4iDyn/vS+lLcGehQRUoM/8iM7sys5vSZRffzsyGPGtTLxGxX0QcMPw3cDrw42KjKk5mPgjcFxHPKz90KnB7gSE1knNp80uVyu4FXhYR88uT7pwK3FFwTGoB9tmV7LPHss+uZJ89IfvrEvtr1YT9dSX767HsryvZX0/KPrukafrsuUUH0EKOAHrLs452AF/OzK8XHJMay3OAr5V+E5gL/GtmXlVsSIW7EPiX8uU5dwNvLjiewkXEfGAJcH7RsRQtM78fEV8BbgIGgR8ClxUblVqEfbamYp89ln32CPbXz7C/Vg3ZX2sq9tdj2V+PYp/9jGbqsyOzrSfZlSRJkiRJkiQ1CEuCSJIkSZIkSZIagglrSZIkSZIkSVJDMGEtSZIkSZIkSWoIJqwlSZIkSZIkSQ3BhLUkSZIkSZIkqSGYsJbaXER0R8SPy38vjohV5b9PjohfKTY6SZIE9teSJDUL+2xpz80tOgBJjSMzbwBuKDdPBrYC3y0sIEmSNIb9tSRJzcE+W5odR1hLTSwi3h8R/xsR34yIL0bEn0TEtRGxuPx8Z0RsLP/dHRHfiYibyrcxZ3bLZ3y/HhHdwNuBP46ImyPilRHx04iYV37dgRGxcbgtSZImZn8tSVJzsM+WGkNkZtExVE1nZ2d2d3cXHYYkqUXdeOONA5l5WNFxNDv7a0lSLdlfV4f9tSSp1ibqs1uqJEh3dzc33HDD1C+UCjQwMMCKFStYvnw5hx56aNHhSJqBiLin6Bhagf21moH9tdS87K+rw/5aak7uw6iZTNRnWxJEqrPe3l5uvfVWent7iw6lIWzYsIGlS5fS19dXdCiS1NYGBga48MIL2bRpU9GhNAT7a0mS1Izch1ErMGEt1dHAwABr164lM1m7dq1JAWDlypVs27aNiy++uOhQJI0jIl5druPXFxHvneA1J5dr8d0WEf9V7xhVHR7cPMP+WpIkNSP3YdQqTFhLddTb28tw3fihoaG2Twps2LCBjRs3ArBx40ZHWUsNJiLmAP8ALAVeAJwbES8Y9ZqDgH8EzsrMXwB+u95xas95cFPJ/lqSJDUj92HUKgpPWEfEZyLi4Yj48YjHlkfEz8qjtW6OiNcUGaNULevXr2fnzp0A7Ny5k3Xr1hUcUbFWrlxZ0XaUtdRwTgD6MvPuzNwBfAk4e9Rrfhf4ambeC5CZD9c5RlWBBzeV7K8lSVIzch9GraLwhDXwOeDV4zz+95n5ovJtTZ1jkmpiyZIlzJs3D4B58+Zx+umnFxxRsYZHV0/UllS4o4D7RrT7y4+NtAg4OCKujYgbI+JNdYtOVePBTSX7a0mS1Izch1GrKDxhnZnXAY8WHYdUDz09PUQEAB0dHfT09BQcUbG6u7snbUsqXIzzWI5qzwVeCvw68CrgAxGxaMwbRZwXETdExA2PPPJI9SPVHvHgppL9tSRJzWHDhg0sXbrU8pJl7sOoVRSesJ7EBRFxa7lkyMFFByNVQ2dnJ0uXLiUiWLp0KYceemjRIRVq2bJlFe2LLrqooEgkTaAfOHpEuwu4f5zXXJWZ2zJzALgOeOHoN8rMyzJzcWYuPuyww2oWsGbHg5tK9teSJDWHlStXsm3bNstLlrkPo1bRqAnrTwLPBV4EPAB8dKIXOmJLzaanp4fjjz++7ZMBAIsWLdo9qrq7u5sFCxYUG5Ck0X4ALIyI4yJiL+AcYPWo11wBvDIi5kbEfOCXgTvqHKf2kAc3Y9lfS5LU2DZs2LC7rOTGjRsdZV3mPoxaQUMmrDPzoczclZlDwD9RmvRpotc6YktNpbOzk0suucRkQNmyZcvYb7/9HF0tNaDMHAQuAK6mlIT+cmbeFhFvj4i3l19zB3AVcCtwPXB5Zv54ovdU4/LgppL9tSRJjW3lypUVbUdZl7gPo1Ywt+gAxhMRR2TmA+XmawEPfKUWtWjRItauXVt0GJImUJ74eM2oxz41qv23wN/WMy5V3/DBjSRJUjMYHl09UVtS8yo8YR0RXwROBjojoh/4IHByRLyI0sROG4Hzi4pPkiRJkiRJjaWrq4v+/v6KtqTWUHhJkMw8NzOPyMx5mdmVmZ/OzDdm5v+Xmcdn5lkjRltLajEDAwNceOGFbNq0qehQJEmSJElNYvQcSAsXLiwoEknVVnjCWmo3GzZsYOnSpU4IUdbb28utt95Kb29v0aFIkiRJkprE9ddfX9H+/ve/X1AkkqrNhLVUZytXrmTbtm1OCEFpdPXatWvJTNauXesoa0mSJGmEiDg2Ik4r/71vRBxQdExSo1iyZAlz5swBYM6cOZx++ukFRySpWkxYS3W0YcOG3RNBbNy4se1HWff29pKZAAwNDTnKWpIkSSqLiD8AvgJcWn6oC/jPwgKSGkxPT8/uhPXcuXPp6ekpOCJJ1WLCWqqjlStXVrTbfZT1+vXr2blzJwA7d+5k3bp1BUckSZIkNYw/Al4BPAGQmXcBzy40IqmBdHZ2snTpUiKCpUuXcuihhxYdkqQqMWEt1dHw6OqJ2u1myZIlRAQAEeElXJIkSdIzns7MHcONiJgLZIHxSA2np6eH448/3tHVUosxYS3VUXd396TtdnPmmWfuLgmSmZx11lkFRyRJkiQ1jP+KiPcB+0bEEuDfgSsLjklqKJ2dnVxyySWOrpZajAlrqY6WLVtW0b7ooosKiqQxXHnllRUjrFevXl1wRJIkSVLDeC/wCPAj4HxgDbBs0iWAiDgoIr4SEXdGxB0R8fKIOCQi1kfEXeX7g2scuyRJs2bCWjU1MDDAhRdeyKZNm4oOpSEsWrRo96jq7u5uFixYUGxABVu/fn3FCGtrWEuSJEklmTmUmf+Umb+dmb9V/ns6JUE+DlyVmc8HXgjcQSn5/a3MXAh8q9yWJKkhmbBWTfX29nLrrbfS29tbdCgNY9myZey3335tP7oaSjWs582bB8C8efOsYS1JkqS2FxE/iohbJ7pNseyBwInApwEyc0dmbgbOBoYPynqB36jdJ5Akac+YsFbNDAwMsHbtWjKTtWvXOsq6bNGiRaxdu7btR1dDaYKM4ZIgHR0dTpQhSZIkwRnAmcBV5dvvlW9rgK9MsezPUSoj8tmI+GFEXB4R+wHPycwHAMr3z65V8JIk7amqJKwjoiMifqUa76XW0dvbu7vcw9DQkKOsNUZnZydLly4lIli6dKkTZUiSJKntZeY9mXkP8IrM/LPM/FH59l7gVVMsPhd4CfDJzHwxsI0ZlP+IiPMi4oaIuOGRRx6Z9WeQ6sUypFJrqkrCOjOHgI9W473UOtavX8/OnTsB2Llzp/WJNa6enh6OP/54R1dLkiRJlfaLiF8dbpQHie03xTL9QH9mfr/c/gqlBPZDEXFE+X2OAB4eb+HMvCwzF2fm4sMOO2yPP4BUa5YhlVpTNUuCrIuI34zh6/vV9qxPrOno7OzkkksucXS1JEmSVOmtwD9ExMaI2Aj8I/CWyRbIzAeB+yLieeWHTgVuB1YDwyNEeoArahKxVEeWIZVaVzUT1u8B/h14OiKeiIgtEfFEFd9fTcb6xJIkqVl5ibGkomXmjZn5QuB44IWZ+aLMvGkai14I/Et5gsYXAX8FfBhYEhF3AUvKbampWYZ0fBs2bGDp0qX09fUVHYo0a1VLWGfmAZnZkZl7ZeaB5faB1Xp/NR/rE0uSpGZ16aWXcsstt3DppZcWHYqkNhMRbyjfvyci3gO8DXjriPakMvPmclmP4zPzNzLzsczclJmnZubC8v2jtf4cUq1ZhnR8K1euZNu2bVx88cVFhyLNWjVHWBMRB0fECRFx4vCtmu+v5mN9YkmS1GwGBgZYv349AOvWrXOUtaR6G65TfcAEN0lYhnQ8GzZsYOPGjQBs3LjRUdZ41VyzqlrCOiLeBlwHXA2sKN8vr9b7qzlZn1iSJDWbSy+9lKGhIaB0ibGjrCXVU2ZeWr5fMfoG/N+Cw5MahmVIx1q5cmVF21HWXjXXrKo5wvpdwC8B92TmKcCLgUeq+P6SJElSzX3rW9+qaH/zm98sKBJJ7Swiro2I7hHtXwJ+UFxEUmOxDOlYw6OrJ2q3G6+aa17VTFg/lZlPAUTE3pl5J/C8KZaRJEmSGsrwBE4TtSWpTv4vcFVE/GFE/CVwKfDmgmOSGsorX/lKIoKTTjqp6FAaQnd396TtduNVc82rmgnr/og4CPhPYH1EXAHcX8X3lyRJkmrutNNOq2gvWbKkoEgktbPMvBp4O/Bx4C3AazLzpmKjkhrL3/7t3zI0NMSHP/zhokNpCMuWLatoX3TRRQVF0hhGXyU3PNpaja9qCevMfG1mbs7M5cAHgE8Dv1Gt95fUmjZs2MDSpUudDEKS1DDOP/98OjpKu8kdHR2cf/75BUckqR1FxAeAS4ATKc0PdW1E/HqhQUkNZMOGDTz00EMAPPTQQx5TAoccckhF++CDDy4oksYwXON8orYaVzUnXTxk+Ab8CPhvwOsnJU1q5cqVbNu2zckgJEkNo7OzkxNPPBGAk046yZqYkorSCZyQmf9TnojxVcC7iw1Jahzvf//7K9p/8Rd/UVAkjWN0yYt2L4Fx6qmnVrRHX0WnxlXNkiA3UZpkcQNwV/nvn0bETRHx0iquR1KL2LBhw+5JIDZu3OgZcUlSw9h7770r7iWp3jLzXcCBEXFGRJwBPJmZ1iiSyoZHV0/UbkeWwKjkVXPNq5oJ66so1dTqzMxDgaXAl4E/BP6xiuuR1CJWrlxZ0XaUtSSpEQwMDOw+4PvmN7/pjPLA9ddfz8knn8yNN95YdChS24iI3wauB34beD3w/Yj4rWKjkqTm0dnZuXsuktNPP92r5ppINRPWi8uTQgCQmeuAEzPze4BDUySNMTy6eqK2JElF6O3tZdeuXQAMDg7S29tbcETFW758OUNDQ3zgAx8oOhSpnSwDfikzezLzTcAJlOaLkgTMmTNn0nY7OvLIIydtt6Pzzz+fF77whY6ubjLVTFg/GhF/HhHHlm9/BjwWEXOAoSquR1KLOProoydtS6qOiPibiDgwIuZFxLciYiAi3jDNZV8dEf8bEX0R8d5JXvdLEbHLkV9qBVdddVVFe+3atQVF0hiuv/56tm7dCsDWrVsdZS3VT0dmPjyivYnqHsNLTW3u3LmTttvRwMDApO121NnZySWXXOLo6iZTzc7ud4Eu4D+BK4Bjyo/NoXT5kiRVeO5zn1vRXrBgQUGRSC3v9Mx8AjgD6AcWAX861ULlk87/QKnM1wuAcyPiBRO87q+Bq0c/JzWj4dHVE7XbzfLlyyvajrKW6uaqiLg6In4/In4f+AawpuCYpIbxkpe8pKL90pc6fdrwpNHDTjrppIIikfZM1U4/ZeYAcOEETzuTmqQxrr/++or297///YIikVrevPL9a4AvZuajETGd5U4A+jLzboCI+BJwNnD7qNddCPwH8EvVCVcq1uDg4KTtdjM8unqitqTayMw/jYjfBF4BBHBZZn6t4LCkhnHLLbdUtG+++eZiApFUdVUbYR0R10TEt0ffprHcZyLi4Yj48YjHDomI9RFxV/n+4GrFKalxLFmyZHedsTlz5nD66acXHJHUsq6MiDuBxcC3IuIw4KlpLHcUcN+Idn/5sd0i4ijgtcCnqhSrVLjRJ3SmeYKnZe2///6TtiXVTmb+R2a+JzP/2GS1VGn79u2TttvRd77znYr2ddddV1AkjWPDhg0sXbqUvj7H0jaTapYE+RNKlxf/KaWJIG4GbpjGcp8DXj3qsfcC38rMhcC3ym1JLaanp2d3wnru3Ln09PQUHJHUmjLzvcDLKU2QvBPYTmmk9FTGy9LlqPbHgD/PzElrJkTEeRFxQ0Tc8Mgjj0xj1VJxMnPSdrsZXRLkQx/6UDGBSG0iIv67fL8lIp4YcdsSEU8UHZ+kxrVkyZLdtbznzp3roDBg5cqVbNu2jYsvvrjoUDQDVUtYZ+aNI27/LzPfA/zyNJa7Dnh01MNnA8PTsfcCv1GtOCU1js7OTpYuXUpEsHTpUidBkGokIuYDfwR8svzQkZRGW0+lHxg5G2oXcP+o1ywGvhQRG4HfAv4xIn5j9Btl5mWZuTgzFx922GEz+wBSnTkpcKUTTjhh96jq/fff3xqhUo1l5q+W7w/IzANH3A7IzAOLjk9qFKOPHz2eLA0K6+gopfrmzJnT9oPCNmzYwMaNGwHYuHGjo6ybSDVLghwy4tYZEa8CDp/l2z0nMx8AKN8/u1pxSmosPT09HH/88W3fkUo19llgB/Ar5XY/sHIay/0AWBgRx0XEXsA5wOqRL8jM4zKzOzO7ga8Af5iZ/1mtwKUiOCnwWMuXL6ejo8PR1VIdjDq2HnMrOj6pUWzevHnSdjvq7OzklFNOAeCUU05p+yT+ypWVhzyOsm4eVZt0EbiR0mXCAQwCPwXeWsX3H1dEnAecB3DMMcfUenWSqqyzs5NLLrmk6DCkVvfczPydiDgXIDOfjGkU5c3MwYi4ALgamAN8JjNvi4i3l5+3brVakpMCj3XCCSdw7bXXFh2G1C5GHlsfAzxW/vsg4F7guMIikxqIc05oKsOjqydqq3FVsyTIcZn5c+X7hZl5emb+9yzf7qGIOAKgfP/wJOv1EmNJkia3IyL2pVx/OiKeCzw9nQUzc01mLsrM52bmX5Yf+9R4yerM/P3M/Eo1A5eKcMIJJ1S0f/mXp6xypzY0MDDAhRdeyKZNm4oORS1m+Nia0gnjMzOzMzMPBc4AvlpsdFLjOPXUUyvap512WkGRNI6BgQG+/e1vA/Dtb3+77fuo7u7uSdvtqFn2X6o2wjoifhu4KjO3RMQy4CXAysy8aRZvtxroAT5cvr+iWnFKktSGPghcBRwdEf8CvAL4/UIjkhrY//7v/07algB6e3u59dZb6e3t5T3veU/R4ag1/VJmvn24kZlrI8K6PG1uYGCAFStWsHz58pYr97Bq1aoZ1RjeuXNnRfu+++7jne9857SXX7BgwYxe3wx6e3t3b5cdO3a0fR+1bNky3va2t+1uX3TRRQVG0xiaZf+laiOsgQ+Uk9W/CryK0mSJn5xiGSLii8D/AM+LiP6IeCulRPWSiLgLWFJuS2pBzXJ2T2pmmbkeeB2lJPUXgcWZeW2RMUmN7IEHHqho33//6LlG1e4GBgZYu3YtmcnatWvdj1GtDETEsojojohjI+L9gF+2Njcy2dTu5s2bx5w5cwA4+OCDmTdvXsERFW/dunUV7auvvrqgSBrDokWLdo+q7u7ubvt5SZpp/6WaNax3le9/HfhkZl4REcunWigzz53gqVMneFxSC2mWs3v10sojJlR/EfGSUQ8NZ+GOiYhjZnkVlNTyIoLMrGi3O/unSr29vbu/I0NDQ+7HqFbOpXSV1NcolfW6rvzYlCJiDnAD8LPMPKM8WeO/Ad3ARuD1mflYDWJWDY1ONvX09LTUb/JsRju/4x3vYOPGjXzmM59pqW0xW/vuuy9PPvnk7vb8+fMLjKYxLFu2jHe9612Orqa59l+qOcL6ZxFxKfB6YE1E7F3l95fUYgYGBvjGN75BZvKNb3yjoc/u1YsjJlRlHy3f/gH4PnAZ8E/lv1cVGJfU0F72spdVtF/+8pcXFEnjWLVqFbfccgurVvnTAbB+/frdl1zv3LlzzIg2qRoy89HMfFdmvjgzX5KZ787MR6e5+LuAO0a03wt8KzMXAt8qt9Vkxks2tbt58+axcOFCk9Vljz5a+RPhMXZplPXatWvbfnQ1NNf+SzVHWL8eeDXwkczcXJ4s8U+r+P6SWkxvby+Dg4NA6ceykc/u1UOrj5hQ/WXmKQAR8SXgvMz8Ubn9i8CfFBmb1MgOPPDASdvtZmBggGuvvRaAa665hne+851t3z8tWbKENWvWsHPnTubNm8fpp59edEjSbhHRRenK578EhneuzwZOLv/dC1wL/Hm9Y9OeGS/Z1M7HT61upjW9JzLdkeutWNNblZpp/6VqI6Azc3tmfjUz7yq3H8jMxk3VSyrc6HpaV111VUGRNAZHTKiGnj+crAbIzB8DLyouHKmxfec736loX3fddQVF0hhGj6p2lDX09PTsLhXT0dFBT09PwRFJFT4G/BkwNOKx52TmA1A6VgeeXUBc2kNLlizZXae50ZNNUqPYsGEDS5curUryv9k10/5LNUdYS9KMDE+QMVG73ThiQjV0R0RcDnyBUg3MN1B5mbCkEZYsWcI3vvENBgcHmTt3btsnBIZHVw+75pprWLFiRTHBNIjOzk6WLl3K6tWrWbp0aduPOFf1lWtQvzMz/36Gy50BPJyZN0bEybNY73nAeQDHHHPMTBdXjfX09LB27Vqg8ZNN2nOzGe38ta99jb//+2d+Nv7kT/6Es846q5phNZ33ve99bNu2jfe+97185StfKTqcQjXT/os1piUVZtu2bZO2282SJUsq2u2eIFFVvRm4jVI9y3cDt5cfkzSOnp4eOjpKu8lz5swxIaBx9fT0cPzxx/v9UE1k5i5KZTxm6hXAWRGxEfgS8GsR8QXgoXLZTsr3D0+w3ssyc3FmLj7ssMNmF7xqZjjZFBENn2xSMV772tdWtNs9Wb1hwwYefrj0c/fwww87yprm2X8xYS3VmZejaCKvfOUrK9onnXRSQZGo1WTmU5n595n52vLt7zPzqaLjkhqVCYFKRx999KTtdtXZ2ckll1zS9t8P1dT/i4hPRMQrI+Ilw7fJFsjMv8jMrszsBs4Bvp2ZbwBWA8PZiR7gippGrpo588wzmT9/ftsnIjWxo446CiiNrm5373vf+yra732v8802y/7LHiesI2JLRDwxzm1LRDxRjSClVvL+97+fbdu2jfnhbEdHHHHEpO1284lPfKKi/fGPf7ygSNQqIuLL5fsfRcSto29Fxyc1smYZfVIPH/zgByva7V4ORKqjXwF+AbgY+Gj59pFZvteHgSURcRewpNxWE7ryyivZvn07q1evLjoUNajDDjuMF73oRZ7UgN2jqydqq3HtcQ3rzDygGoFI7WDDhg089NBDADz44IP09fWxYMGCgqMqzubNmydtt5uNGzdO2pZm4V3l+zMKjUJqQsOjTwSLFi3i6KOP5r777uPoo49u630XqZ4y85Q9XP5a4Nry35uAU/c8KhVpYGCAtWvXkpmsXbuWnp6ehh8lKUmzUfVJFyPi2cA+w+3MvLfa65Ca1fvf//6K9vve9z6+/OUvFxRN8U4//XSuuOKZqxFf9apXFRhN8bq7uyuS1N3d3YXFotaQmQ+UJ236dGaeVnQ8kprXBz/4Qd71rnc5ulqqo4i4aLzHM/PiesdSlIGBAVasWMHy5ctNzAK9vb1kJgBDQ0P09vY6SbvaxqpVq2ZcWrWjo4OhoaGK9kwms1ywYMGsJr9sZM3yu1q1GtYRcVb58qKfAv8FbATWVuv9pVYwPLp62IMPPlhQJI2hp6eHefPmAbDXXnu1/WXXy5Ytq2hfdNG4xyjSjJQnbdoeEc8qOhZJzWvRokWsXbvW0dVSfW0bcdsFLAW6iwyo3np7e7n11lvp7e0tOpSGsH79enbu3AnAzp07WbduXcERSY1t9CAwB4U1z+9qNUdYfwh4GfDNzHxxRJwCnFvF95fUYjo7O3nNa17D6tWrec1rXtPQZ/fqYdGiRbtHWXd3d5sUUDU9BfwoItZTOugFIDNba7iAJEktJDM/OrIdER+hNHliW7D8xVhLlixhzZo17Ny5k3nz5nH66acXHZJUN7Md6XzyySczNDTE/Pnz+dznPlfdoJpMM/2uVm2ENbCzXBerIyI6MvMa4EVVfH9JLchJrSotW7aM/fbbz9HVqrZvAB8ArgNuHHGTJEnNYz7wc0UHUS/jlb9odz09PUQEABHhMZQ0DcOjqv/yL/+y2EAaQDP9rlYzYb05IvandDD8LxHxcWCwiu8vNb1999130nY7Gp7UqlHP6tWbl1yrFjKzF/gizySq/7X8WNsaGBjgwgsvZNOmTUWHogbld0RS0SLiRxFxa/l2G/C/wMeLjqteLH8xVmdnJ0ceeSQARx55pMdQ0jQceOCBvOhFL+KlL31p0aEUrpl+V6uZsD4beBL4Y+Aq4CfAmVV8f6np7dq1a9K2JNVCRJwM3AX8A/CPwIaIOLHImIrWLLXbVJxLL72UW265hUsvvbToUCS1mYg4rvznGZSOqc8ETgeOzMxPFBZYnS1ZsmT3fDeWvygZGBjgZz/7GQD333+/J1UlzUgz/a5WLWGdmdsyc1dmDmZmb2auKpcIkVS21157TdqWpBr5KHB6Zp6UmScCrwL+vuCYCjO6dpsHexptYGCA9evXA7Bu3Tq/I5Lq7Svl+89k5j3l288ys62uYB5Z/qKjo8PyF1Bxoj0zPfEuaUaa6Xe1agnriNgSEU+Ub09FxK6IeKJa7y+1gq1bt07alrwEXTUyLzP/d7iRmRuAeQXGU6hmqt2mYlx66aUMDQ0Bpe+Io6ztn6Q664iIDwKLIuI9o29FB1cvnZ2dLF26lIhg6dKllr+guS7nl9R4mul3tZojrA/IzAPLt32A3wTa5nIlaTr233//SdvSqlWruOWWW1i1alXRoai13BARn46Ik8u3f6KNJ130YE9T+eY3v1nRHh5t3c4skSLV1TnAU8Bc4IBxbm3DCdorNdPl/JIaU7P8rlazhnWFzPxP4Ndq9f5SMxpOkEzUVnsbGBjg2muvBeCaa65xFFuZo/qq4h3AbcA7gXcBtwNvLzSiAnmwp6kMXyo5UbvdDAwM7D6xc/XVV/t7LNVYZv5vZv418JbMXDH6VnR89eQE7ZWa6XJ+SY2pWX5Xq1kS5HUjbr8VER8Gslrvr+ZkoqnSIYccUtFu9B+IevA78ozRo6odZV3i5Hh7LjOfzsy/y8zXZeZrM/PvM/PpouMqigd7msqpp55a0T7ttNMKiqQxXHrppbvL6GSmo6ylGhtR+uPn27kkiMZqpsv5JWlPVHOE9Zkjbq8CtgBnV/H91YRMNFV68MEHK9oPPPBAQZE0Di8xfsbw6Oph11xzTTGBNBAnx9szEfGjiLh1olvR8RXFgz1N5fzzz5+03W5Gl0SxjI5Uc+OVAWnLkiAaq1ku55ekPTG3Wm+UmW+u1nupNYxONPX09LR9UmB4dNJE7XYzMDCw+yB43bp1nH/++W3/HVGl8SbHe897HFg0A2cUHUCj6unpYePGjR7saVyPPvpoRfuxxx5r6/7J/Repvtqt7Ee7WrVqFX19fTNerr+/H4AVK2b+NVmwYAHvfOc7Z7ycpMY0m9+R4d+Qrq6uGa+vnr8hezzCOiIuiYhVE92qEaSa03iJJmmkSy+9lKGhIaD0HWn3UdbPec5zJm23IyfH2zOZec9kt6LjK1Kz1G5TMVauXFnRvvjiiwuKpDFY03t8ljVTrUXEZyPiM6NvRcelYj355JM8+eSTRYchqUk1y29INUZY31C+fwXwAuDfyu3fBm6swvs3lYGBAVasWMHy5cvb/iB4vERTu4+MPPDAA3niiSd2t5/1rGcVGE3xvvWtb1W0v/nNb/K+972voGiKN3oSzsHBwYIiaRxLlixhzZo17Ny508nx9kBEvA74a+DZQJRvmZkHFhqY1KA2btw4abvdmLAe38jSd+2+j6ua+fqIv/cBXgvcX1AsqrLZjlIcXs75biTN5nekWX5D9niEdWb2ZmYvsBA4JTMvycxLgFOBF+3p+zcbazY/Y8mSJcydWzonMnfuXBNNUJGsBnj88ccLiqQxeIlxpdGXoDtiy8nxquhvgLMy81mZeWBmHmCyWppYd3f3pO12s2vXrknb7cg5FlQPmfkfI27/Arwe+MWi45IkqdaqOenikVROALF/+bG24Y5rpZ6enopyDyaaNNppp51W0V6yZElBkahROTle1TyUmXfMZsGIeHVE/G9E9EXEe8d5/vdGTOT43Yh44Z6HKxVr2bJlFe2LLrqooEjUqCx9p4IsBI4pOghJkmqtmgnrDwM/jIjPRcTngJuAv6ri+zc8d1ylmTn//PMnbUvgTOh7IiJeVy4HckNE/FtEnDv8WPnxqZafA/wDsJRS2a9zI+IFo172U+CkzDwe+BBwWZU/hiQ1HOdYUD1ExJaIeGL4BlwJ/HnRcUmSVGtVS1hn5meBXwa+Vr69vFwqpG2441qpt7eXjo7SV6yjo8MEvsa4++67K9rtXiNUqoEzy7cDgO3A6SMeO2May58A9GXm3Zm5A/gScPbIF2TmdzPzsXLze8DMp5uWGoyTLmoqS5YsYd68eQDOsaCaGS7hNeK2KDP/o+i4JEmqtT2edDEinp+Zd0bES8oP3Ve+PzIijszMm/Z0Hc3CycEqrV+/fvekcYODg066qDGWL19e0f7ABz7AmjVriglGDctJrWYvM98MEBG9wLsyc3O5fTDw0Wm8xVE8068D9FM6OT2RtwJrZxXsLK1atYq+vr4ZL9ff3w9AV9fM8+sLFiyY9URJag5Oulhp7ty5FRMBD89R0s56enpYu7b0c+ccC6qViHgFcHNmbouINwAvAT6emfcUHJokSTVVjb3N9wDnMf6BbwK/Nts3joiNwBZgFzCYmYtn+1714I5rJRP4msrWrVsnbbebiKiYeHJ4ssF2NnpugJ6eHutYz87xw8lqgMx8LCJePI3lxvsSjjs7akScQilh/asTPH8epf0Fjjmm+PKbTz75ZNEhqIF1d3dXJKnbfdLFF7zgBdx6662727/4i875NjzHwurVq51jQbX0SeCF5fkh/gz4NPB54KRCo5KmMNsBBbNx1113AdR1MIGDF6Ta2+OEdWaeV74/Zc/DGdcpmTlQo/euKndcK5nAl2bmpJNO4tprr93dPvnkkwuLpVGMNzeAo6xnpSMiDh4u3RERhzC9fYB+4OgR7S7g/tEviojjgcuBpZk57ozDmXkZ5frWixcvHjfpPRuzPVgYXm7VqlXVCqXpDQwMsGLFCpYvX972+zAXXHABf/Inf7K7/a53vavAaIp3++23V7R//OMfFxRJY+np6WHjxo3u46qWBjMzI+JsSiOrPx0Rk37hIuJoSkntw4Eh4LLM/Hi57/83oBvYCLx+REkvqar6+vr44W0/hIPqsLKh0t0Pf/bDOqwM2Fyf1UjtrmrX80XEbwNXZeaWiFhG6XKlD2VmnX41GoM7rs8wgT/W3nvvzdNPP727vc8++xQYjRrNG97whoqE9Rvf+MbigmkQ480NYMJ6Vj4KfDcivkJphPTrgb+cxnI/ABZGxHHAz4BzgN8d+YKIOAb4KvDGzNxQ1ahVV5bfecbXv/71ivbq1at56UtfWlA0xRsaGpq03a46Ozu55JJLig5DrW1LRPwF8AbgxPJkyPOmWGYQ+D+ZeVNEHADcGBHrgd8HvpWZH46I9wLvxQkcVUsHwdDJrddfdFxbtangJE2imgXoPpCZ/x4Rvwq8CvgI8Ckmr3U5lQTWRUQCl5ZHZzU0d1wrnXnmmXzzm9/krLPOKjqUhjAyWQ3w1FNPFRSJGtGVV15Z0V69enXbJ40sLVQdmfn5iLiBUpmuAF6XmbdPsRiZORgRFwBXA3OAz2TmbRHx9vLznwIuAg4F/rFcxqbhS3hpLMvvVPqv//qvivbIk4nt6JBDDmFg4JkLHtv5uyHV2e9QOlH81sx8sHyS+G8nWyAzHwAeKP+9JSLuoDQnxdnAyeWX9QLXYsJaqot6lkiB+pdJsUSKaqGaCetd5ftfBz6ZmVdExPI9fM9XZOb9EfFsYH1E3JmZ1418QaPVxFSlL3zhC2zbto1//ud/ZsWKFUWHU7g5c+awa9euirY0bN26dRXtq6++uu0T1pYWqp5ygnrKJPU4y60B1ox67FMj/n4b8LY9DlCFsvxOpZHzCYzXbjcjk9UAjzzySEGRSO0lMx8E/m5E+15K5T6mJSK6gRcD3weeU05mk5kPlI+x62o2STsnSVYr6Ovr486bb+bwOq1veAz45ptvrvm6Hqz5GtSuqpmw/llEXAqcBvx1ROzNM/9PZiUz7y/fPxwRXwNOAK4b9Zqa1MTUnhsYGNg9Iumaa67hne98Z9uPyBmZrB6v3W5GJ/Dnzq3mT1LzOeiggyomgjv44IMLjKYxWFpIqg/L70hSa4mI/YH/AN6dmU9MdzLvRhsQ5iTJahWHA28ddz7z5vbp8edjl/ZYNbNDrwdeDXwkMzdHxBHAn872zSJiP6CjfBnTfsDpwMXVCVX1MHoiq1WrVjnKWpNq9xFsDz5YeX76gQceKCiSxuLcAFLtLVmyhG984xsMDg4yd+5cy++owr777luRNNp3330LjKZxOFGpGlVEzKOUrP6XzPxq+eGHIuKI8ujqI4CHx1u2lgPCZjPa2UmSJak9VS1hnZnbI+Jh4FeBuyhN9nDXHrzlc4Cvlc8EzwX+NTOv2uNAVTej6z1ec801JqxVwRHnlbwEfXzODSDVXk9Pz+46+kNDQ54gUoXRCev58+cXGE3jcKJS1UNE7Asck5n/O83XB/Bp4I7M/LsRT60GeoAPl++vqHaskjRd9azrbU3v5lS1hHVEfBBYDDwP+Cyl2Yu/ALxiNu+XmXcDL6xWfDM12/88s62x5RdakiRJjejRRx+taG/atKmgSBqHE5WqHiLiTOAjwF7AcRHxIuDizJxsRvtXAG8EfhQRN5cfex+lRPWXI+KtwL3Ab9cqbkmaSl9fH7f96A4Oml/7cvpDO0qlWH72k9rvv2zePu7FK5qFapYEeS2lCR1uglL96Yg4oIrv3xSssfWMiKgYITrdumlSu9pnn3146qmnKtpSO3GkRXF6e3vp6OhgaGiIjo4OR4xKU+jt7WVoaAgoXSHm/xnVyHJK8zhdC5CZN5cnUpxQZv43TFgo99QqxiZJe+Sg+c/mlOefU3QYVXXNnV+a1XKtfBwEszsWqmbCekdmZkQk7K5B3bRm+w9nja1nnHTSSRVlQU4++eTCYpGawchk9XhtqdX19fXxwx/dztD8Q2q+rthROqF6409qP7d5x/ZHp35RwdavX8/g4CAAg4ODTrqoCoccckjFKGtHEvt/RnUzmJmPO/BHklpbX18fP77lFg7Yq5pp2vENDpZKsd5zx201XxfAlh2Ds1qumlviyxFxKXBQRPwB8Bbgn6r4/irQbM727Ny5s6L98MMPz+hEQKOPRpOmUo2zpP6fUbsZmn8IT73gjKLDqKp9bv960SFMacmSJaxevZrMJCLaftLFvffem6effrqi3c5GX0G4ffv2giJpHK985Su5+uqrd7dPPPHEAqNRC/txRPwuMCciFgLvBL5bcEySpBo4YK+5nPCcg4sOo+quf+ixWS1XlYR1eWKHfwOeDzxBqY71RZm5vhrvr+Y0b9485syZw65du3jWs57FvHnzig5Jamh77bUXO3bsqGhLUj2ceeaZXHFFaf6tzOSssyYrj9r6Riarx2u3m9EJa0vgSXVzIfB+4GngX4GrgZWFRoSXro+nlbfJbLZHf38/PA4d13bUKKoCbYb+7C86CqnlVSVhXS4F8p+Z+VLAJHULmm1n+I53vIONGzfyuc99ruUuH63WTsl0t62jZ5vPTP+9NmzYwNve9rbd7U996lMsWLCg2mEVxslspcZ15ZVX7p57IiJYvXp1y5Q3qHd/Df7+NJvZfEduvfXWiva6det48MHplRjy+6HpysztwPsj4q8yc1vR8Qxr1RJeMPsyXn19fWz48U0cs/+uKkc01l47S0ngpzb+oObrunfrnJqvox309/ezBfg0OeVrm80DwNZ+E/iqvmqWBPleRPxSZtb+V1NNY968eSxcuLDlktWzNTyh1ch2qzAhsOcWLVq0e5T1kUce2VLJ6j3hSD6p9tavX797ouTMbPt6vPPmzasobdZqV4lZsmrPHXzwwWzatKmiLVVbRPwKcDmwP3BMRLwQOD8z/7DYyFqzhBfsWRmvY/bfxbLFW6sYTfFW3rD/rJbr6urikXiEoZOHpn5xk+m4toOuo2Y2kEbSzFUzYX0KcH5E3ANsozQzcWbm8VVch9QwZnPgNXoE7eWXX25SUhW6u7vp6+tj5crCr/asOiezlepjNsnIfffdt6Iu8b777tsyVwBVo7++9NJL7a9b2Gy+IwMDA/zmb/4mmcnee+/N5Zdf7gAN1cLfA68CVgNk5i0RYcF0qcl0dXWxeWCAt9J6E6h+muSgGV4JK01HNRPWS6v4XlJLWrRo0e5R1vvvv39LHfzO5mDvm9/8JhdffPHu9ooVKzjllFOqGVbTmT9/Pscff3xLfTckNb7DDz9892jRiODwww8vOKJiLVq0aPco61a84mWmffZ4Ewq2+0nEzs5ODjnkEDZt2sTSpUtNVqtmMvO+0pRRu9W+5oQkSQWrWsI6M++p1ntVUz0nP4DmmABBxVqwYAF9fX1tf6AHcNppp+1OWM+ZM6ftk9WSVA2z3S947Wtfy6ZNmzj77LPbuhzIsOOOO65lr3iZqde97nV89atf3d1+/etfX2A0jePwww/nqaeeoqenp+hQ1LruK5cFyYjYC3gncEfBMUmSVHPVHGHdkOo5IQTUd1KI2U4IoWI5grbSMcccw7333stFF11UdCiS1NaaIflWz4EIP/vZz9h3333rdoK5kQchvPvd765IWF9wwQUFRtM4nKtFdfB24OPAUUA/sA74o0Ij0rj6+/vZtmXOrGs+N6p7tsxhPyfUUw309/fz+PYtXHPnl4oOpao2b3+Y7HcOpmpo+YQ1OCHEaPU82Kv3iHNo7AM+jXXIIYdwyCGHNPToav/PSPXR399Px/bH92jCo0bUsX0T/f2DM16u3leJbdy4ESiVZ6qH2fz29PX18cPbfggH1SamCuV5on74sx/Wfl2bZ7dYPb8jwyXNDj300Ia9ktArK9VKImIO8LHM/L2iY5Ekqd7aImGtSn19fWz48U0cs3/ty5/ttbMDgKc2/qDm6wK4d+ucGS/jwY2m0tfXx20/uoOD5j+75usa2lGqUfizn2yq+bqgdAZ4pvw/I9VHPftrqG+fPZv+GkonNeqmzoPkZvPZ+vr6uPPmm6lHxfH9yvcHbNrE5k2176Nmc61iPftrqG+fPZv+erZm288Pf4e7ZjH5ln3vWJm5KyIOi4i9MnNH0fFocl1dXTw1+ADLFm8tOpSqWnnD/uzjhHqqga6uLuLpTZzy/HOKDqWqrrnzSxzV5ZVX1WDCuk0ds/+ulutMgVldglXX0VrgiK1RmiUZedD8Z7dcZwrM6hKsvr4+fnzLLRywV326kMHBUrLunjtuq/m6tuyY+ShYVU9XVxePPPZEXdYVT5XWk/scWI+1zSqB09/fT2YNwpnAc+YP1W1dmXVOPreo/v5+6vUVqfehVzK774j9daXZ7NP19/fz5JMzv5x5eJnZLNvf3z/jONskyb0R+H8RsRrYNvxgZv5dYRFJ07UZOq7tqP16htMa9TrRvJlSkR5JNWXCWgI4CIZOrt+Ber3MdgehniO2hiPcfPPNNV9X7SvLt48D9prLCc85uOgwqu76hx4rOoS2Vs/a/nfdtQWAhc+txy/d4c5bUCVdXV088vgj9VlZnQ+AZ3NSQ5VatR4mzL4m5rXXXsvAwABzI2oQVaUsn2F7evv2GS/79PbtMxq5P5hJf39/OySs7y/fOoADCo5Fmrb67tOVBkAtPGphfVZ41Ow+34PAp+t0mnn417QeJ5sfpH5j/9ReTFir7fX398PjdTr7W2+boT9nPjqpVUdszXa0lgfAUn3UM/EwvK56Tag3G11dXWzYXL8yAA9tL/WD9RhpHTH7sgH1UtcD4Fke/HZ1dXHnwEANAhqrnge/AIFJ/GqZG1G3q6LqpdWviIqIf87MNwKbM/PjRccjzZT7dJXqPXDhkfI+zEELa78PcxD1/3ytqL+/ny07BltyANWWHYOzysO01p7LOFp1AieY/SROrTqDMTiLsVQPdqZqJLMtYbQn5YjqdRl6vXf+d5S3yT7dtT+4WcTsPl89D4Df8Y53sHHjRj74wQ9y6KGNWYuwnt+Reh78wuwOgLu6unj8sTtqEs94tj5V6gf336c+VxzNJoHf1dVVl5rjANvLJbzmz51djfqZavETGi+NiGOBt0TE5ymdw9ktMx8tJixJs1Hvq0GaIYkvTaXlE9Ya39O7gnu21H5ncudQad9qXkd9xus+vSt2Two0XXW9vBia4hLjVh2xNdvRWvU8AK73wS+0/AGfNK5999236BCm5MFNsfr7+9m2bRurVq1ixYoVRYczLhP4lep9kueuu0o5w6OeW/vtcRSHzurzFXFVwrF1OqnR4iP6PgVcBfwccCOVCessP14YB4WN796t9RkUVs8rou7dOodFNV+L2tXm7Q/X5Srmeh5jb97+MEfNIrvRyieYYXY5h5ZPWNdzAidojkmcTj755LpPqLewTjuuMPOd1/of3DT+JcatOmLrIBp/e9Tz4BdmdwBcz84UHLGlybVB/VIVYGBggMcffxwo1QDetGlTwyZp6+X+++9n27ZtXHrppbzvfe8rOpxxeZJnLC/Lb06ZuQpYFRGfzMx3FB2PplbP44VmuCJKmkqrHmN7gnl8s/l8LZ+wrn8ysvEncXLHtZIHN2P5Hank9qhU1EkeR2xJ01PvMin1KpEyW7PZHj/96U93/52Z/P7v/z7HHXfctJdv9G0yUwMDAzz2WGl00rp16zj//PPbPoHfylq51FKzadRkdT0HhdV3QBjMdlCYxwvSzPh/ppLbY6yWT1ibjJSk6vJ3VWpNzVAmpV6GR1dP1G52M01I3nPPPbv/Hhoa4i1veQvHHnvstJdv9GSkJ3mqw9+Q9lHfkYD1HBAGsx0UJkmqrpZPWEuSGoMJAak+/N5Xms32OPHEE8c81s4nzYZHV49szyRh3apaNUHrb4im4khASVKtmbDWtHhpoGpl+/bt9PX10dfX52gGjatVEwKSGldXVxf9/f0V7VYy0/2rU045hV27du1uz5kzp6WSR7Pd39ywYQPvete7eOc73+k+jDQNszmmbOXjSY+xx/I7osn4f2asVv4/Y8J6Ao4ErI5WTjT5Ham0J9sjM3nHO97Bz//8z89o2VbcJs3SecxGI8cmSSMtX76ct73tbbvbF198cYHRFO+0007j6quv3t1esmRJgdE0jpUrV7Jt2zYuvvhiPv/5zxcdjjQtEfFq4OPAHODyzPxwwSFNqpWPJ2fLbVLJ7aGp+B2p1Czbw4R1lTXLP/xMmWiqnlb9jszG9u3byUwAnn76abZv3878+fMLjqpYfj/UaKY6sI2IKD//GmA78PuZeVPdA5WqaNGiRbtHWXd1dbX96Nnzzz+f9evXMzQ0REdHB+eff37RIRVuw4YNbNy4EYCNGzd6pZiaQkTMAf4BWAL0Az+IiNWZeXs91u8xZSW3x1huE03G78dYrbxNTFhPoJX/0VUdfkcqzWZ7vOlNb6po79ixg8svv7xaIRXO74ia3TQPbJcCC8u3XwY+Wb6Xmtry5ct517ve1fajqwE6OztZsmQJV199NaeffjqHHnpo0SEVbuXKlRVtR1mrSZwA9GXm3QAR8SXgbKAuCWtJM+NV3WpnJqwlFWZ4ZNJEbUmFm86B7dnA57N0ucT3IuKgiDgiMx+of7hS9SxatIi1a9cWHUbDOP/883nwwQcdXV3mPoya1FHAfSPa/XiSWWo5XrWrVmDCWlJhuru7Kw7wuru7C4tF0rimc2A73muOAkxYSy2ks7OTSy65pOgwGob7MGpSMc5jWfGCiPOA8wCOOeaYesQkaQKOdlY76yg6AEnta9myZRXtiy66qKBIJE1gygPbab6GiDgvIm6IiBseeeSRqgQnSUVxH0ZNqh84ekS7C7h/5Asy87LMXJyZiw877LC6BidJ0jAT1pIKs2jRot0jkrq7u52sSGo8Ux7YTvM1HgBLainuw6hJ/QBYGBHHRcRewDnA6oJjkiRpDBPWkgq1bNky9ttvP0cmSY1pOge2q4E3RcnLgMetXy2pHbgPo2aTmYPABcDVwB3AlzPztmKjkiRprCjNkdQaIuIR4J6i4wA6gYGig2ggbo+x3CaV3B6V3B5jNco2OTYz22p4cES8BvgYMAf4TGb+ZUS8HSAzPxURAXwCeDWwHXhzZt4wxXvaXzcut0klt0clt8dYbpNKjbI92q6/rgX764bmNqnk9hjLbVLJ7VGpkbbHuH12SyWsG0VE3JCZi4uOo1G4PcZym1Rye1Rye4zlNlEt+L0ay21Sye1Rye0xltukkttDteD3aiy3SSW3x1huk0puj0rNsD0sCSJJkiRJkiRJaggmrCVJkiRJkiRJDcGEdW1cVnQADcbtMZbbpJLbo5LbYyy3iWrB79VYbpNKbo9Kbo+x3CaV3B6qBb9XY7lNKrk9xnKbVHJ7VGr47WENa0mSJEmSJElSQ3CEtSRJkiRJkiSpIZiwrpKI2Cciro+IWyLitohYUXRMjSAi5kTEDyPi60XH0ggiYmNE/Cgibo6IG4qOp2gRcVBEfCUi7oyIOyLi5UXHVKSIeF75uzF8eyIi3l10XEWKiD8u/6b+OCK+GBH7FB2Tmp999vjssyvZZ1eyz36G/fVY9teqBfvr8dlfV7K/rmR/Xck+e6xm6bMtCVIlERHAfpm5NSLmAf8NvCszv1dwaIWKiPcAi4EDM/OMouMpWkRsBBZn5kDRsTSCiOgFvpOZl0fEXsD8zNxccFgNISLmAD8Dfjkz7yk6niJExFGUfktfkJlPRsSXgTWZ+bliI1Ozs88en312JfvsSvbZ47O/tr9W7dhfj8/+upL9dSX764nZZzdXn+0I6yrJkq3l5rzyra3PBkREF/DrwOVFx6LGExEHAicCnwbIzB12pBVOBX7Srh3pCHOBfSNiLjAfuL/geNQC7LPHss/WZOyzJ2V/XWJ/raqzvx7L/lqTsb+ekn12SVP02Sasq6h8ac7NwMPA+sz8fsEhFe1jwJ8BQwXH0UgSWBcRN0bEeUUHU7CfAx4BPlu+pO3yiNiv6KAayDnAF4sOokiZ+TPgI8C9wAPA45m5rtio1Crss8f4GPbZo9lnP8M+e2L21/bXqiH76zE+hv31aPbXz7C/npx9dhP12Sasqygzd2Xmi4Au4ISI+MWCQypMRJwBPJyZNxYdS4N5RWa+BFgK/FFEnFh0QAWaC7wE+GRmvhjYBry32JAaQ/nSrbOAfy86liJFxMHA2cBxwJHAfhHxhmKjUquwz36GffaE7LOfYZ89DvvrEvtr1ZL99TPsrydkf/0M++sJ2GeXNFOfbcK6BsqXXFwLvLrYSAr1CuCscj2pLwG/FhFfKDak4mXm/eX7h4GvAScUG1Gh+oH+EaMkvkKpc1VpZ+umzHyo6EAKdhrw08x8JDN3Al8FfqXgmNRi7LMB++xx2WdXsM8en/11if21as7+GrC/Hpf9dQX764nZZ5c0TZ9twrpKIuKwiDio/Pe+lL4EdxYaVIEy8y8ysyszuylddvHtzGzIszb1EhH7RcQBw38DpwM/Ljaq4mTmg8B9EfG88kOnArcXGFIjOZc2v1Sp7F7gZRExvzzpzqnAHQXHpBZgn13JPnss++xK9tkTsr8usb9WTdhfV7K/Hsv+upL99aTss0uaps+eW3QALeQIoLc862gH8OXM/HrBMamxPAf4Wuk3gbnAv2bmVcWGVLgLgX8pX55zN/DmguMpXETMB5YA5xcdS9Ey8/sR8RXgJmAQ+CFwWbFRqUXYZ2sq9tlj2WePYH/9DPtr1ZD9taZifz2W/fUo9tnPaKY+OzLbepJdSZIkSZIkSVKDsCSIJEmSJEmSJKkhmLCWJEmSJEmSJDUEE9aSJEmSJEmSpIZgwlqSJEmSJEmS1BBMWEuSJEmSJEmSGkJdEtYRsU9EXB8Rt0TEbRGxovz4IRGxPiLuKt8fPGKZv4iIvoj434h4VT3ilNpRRHRHxI/Lfy+OiFXlv0+OiF8pNjpJkgT215IkNQv7bGnPza3Tep4Gfi0zt0bEPOC/I2It8DrgW5n54Yh4L/Be4M8j4gXAOcAvAEcC34yIRZm5q07xSm0pM28Abig3Twa2At8tLCBJkv7/9u49Ps66zP//60oaaENhCw0U6VDCklblyw9Qs3hasAgpBFHWXd2F/aqzrv2CrtLu9uuRrdBiXdFVV1J2gQrqsCqIqGvFhLb45eQqYgulHLcdMcBwaJtCoW1KmzTX74+ZtJmcZzJzf+bwfj4eeWQ+98yd+8rdNFfmuj/39ZEhlK9FRETKg3K2SH4imWHtaTszw7rMhwMXAInM9gTwF5nHFwC3uPsed/8jkAROiyJWkXJiZv+cuQvhTjO72cw+bWZ3m1lz5vkGM+vMPG40s/vM7MHMx5Aru5krvrebWSPwceCfzGy9mZ1uZn/MXHDCzA4zs87+sYiIiIxM+VpERKQ8KGeLlAZz92gOZFYLrAOagH9398+Z2XZ3nzbgNS+7++Fmdg1wv7t/P7P9RqDD3W8b7RgNDQ3e2NhYtO9BRESq27p167rc/cjQcZQ75WsRESkm5evCUL4WEZFiGylnR9UShEw7j1PNbBrwMzM7aZSX23BfYtgXml0MXAwwa9Ys1q5dO9zLRETKQldXF0uXLmXJkiVMnz49dDgyiJk9HTqGStDY2Kh8LVJmNm7cyMKFC1m+fDlNTU2hwxEZlfJ1YShfi5Qn5WwpJyPl7Ehaggzk7tuBu4Fzgc1m9jqAzOctmZelgGMH7BYDnh/h661w92Z3bz7ySF1EF5Hylkgk2LBhA4lEYuwXi4iIRGTZsmXs2rWLK6+8MnQoIjICM6s1s4fM7PZhnjMzazOzpJltMLM3h4hRRIpPOVsqQSQFazM7MjOzGjObApwNPAmsBOKZl8WBn2cerwQuNLODzex4YDbwQBSxioiE0tXVRUdHB+5OR0cH27ZtCx2SiIgIGzdupLOzE4DOzk6SyWTYgERkJAuBJ0Z4rpX0++rZpO9QvjaqoEQkOsrZUimimmH9OuAuM9sA/B5Y4+63A1cBLWa2CWjJjHH3x4BbgceBO4BPZlqKiIhUrEQiQf+6An19fZplLSIiJWHZsmVZY83YEik9ZhYD3gPcMMJLLgBu8rT7gWn9dzuLSOVQzpZKEUnB2t03uPub3P1kdz/J3a/MbN/m7me5++zM55cG7PNldz/B3V/v7h1RxCkiEtKaNWvo6ekBoKenh9WrVweOSESkej3wwAPMnTuXdevWhQ4luP6ZWiONq1VXVxeXXnqp7oiSUvEt4LNA3wjPzwSeHTBOZbaJSAVRzpZKEXkPaxERGV5LSwtm6TVnzYx58+YFjkhEpHotWbKEvr4+vvjFL4YOJbjGxsZRx9VK605IqTCz84Et7j7aFTYbZpsP87UuNrO1ZrZ269atBYtRRKKhnC2VQgVrEZES8d73vnd/SxB3533ve1/giEREqtMDDzzAzp07Adi5c2fVz7JevHhx1vjyyy8PFEnp0LoTUmLeCbzPzDqBW4B3m9n3B70mBRw7YBwDnh/8hdx9hbs3u3vzkUceWax4RaRIlLOlUqhgLSJSIn7xi19kzbBeuXJl4IhERKrTkiVLssbVPst6zpw5+2doNTY20tTUFDagEqB1J6SUuPsX3D3m7o3AhcD/c/cPDXrZSuAjlvY24BV3fyHqWEWkuJSzpVKoYC0iUiLWrFmTNcNaPaxFRMLon1090rgaLV68mEMOOUQztTK07oSUAzP7uJl9PDNsB54CksC3gX8IFpiIFJVytlQCFaxFREpES0sLdXV1ANTV1amHtYhIIJMmTRp1XI2OOOIImpqaOPzww0OHUhKUs6VUufvd7n5+5vF17n5d5rG7+yfd/QR3///cfW3YSCVfWvBVxqKcLZVABWsRkRIRj8f3twSpqakhHo8HjkhEpDrV1taOOq5GWmAwm3K2iISi38cyFv2MSCVQwVpEpEQ0NDTQ2tqKmdHa2sr06dNDhyQiUpXmzp2bNT7zzDPDBFIitMDgUMrZIhKCfh/LWPQzIpUi54K1mR1nZmdnHk8xs0MLH5aISHWKx+OcfPLJmqklIhLQq6++Ouq42miBweGdfvrpmBnvete7QociIlVCv49lLPoZkUqRU8HazP4PcBtwfWZTDPivAsckIlK1GhoaWL58uWZqiYgE9Nvf/jZr/Jvf/CZQJKVBCwwO75prrqGvr4+rr746dCgiUiX0+1jGop8RqRS5zrD+JPBO4FUAd98EHFXooEREREREpDS0tLRkjbXAIGzcuJHOzk4AOjs7SSaTYQMSkaqgBV9lLC0tLfsXi540aZJ+RqRs5Vqw3uPue/sHZjYJ8MKGJCIiIiISzrHHHjvquNqcfvrpWWO1wIBly5Zlja+88spAkYhINdGCrzKWeDxOX18fkG4Jop8RKVe5FqzvMbPLgClm1gL8GPhF4cMSEREREQnjiiuuyBovXbo0UCSl4ZprrskaqwUG+2dXjzQWESkGLfgqItUi14L154GtwCPAJUA7sLjQQYmIiIiIhHLEEUdkjQ8//PBAkZQGFWeHamxsHHUsIlIsWqRdRpNIJKipSZf6ampqtOiilK2cCtbu3ufu33b3D7r7BzKP1RJERERERCqG3uxlU3F2qMWLs+fsXH755YEiEZFqo0XaZTRr1qyht7cXgN7eXi26KGVrXAVrM3vEzDaM9FHsIEVEREREorJmzZqs/o/V/mZPxdmh5syZw9SpUwGYOnUqTU1NgSMSERHRwpxSOSaN83XnZz5/MvP5PzOf/zfQXdCIREREREQCOv3001m1atX+8RlnnBEwmsJra2sjmUzmtE9NTQ19fX0cfPDBtLW15bRvU1MTCxYsyGmfUtfV1cWePXsA2LNnD9u2bdNsRxERCS4ej9Pe3g6Amal1DOmcvXTpUpYsWaJcXUbGNcPa3Z9296eBd7r7Z939kczH54FzihuiiIiIiBRbV1cXl156Kdu2bQsdipSggw46CIDjjjsucCSlYXCbmGpvGyMiIqWhoaGBmTNnAnDMMceoQEs6R2/YsEG5usyMd4Z1v0PM7M/d/dcAZvYO4JDChyUiIiIiURr4x/yiRYtChxPUfffdlzW+9957ueyyywJFU3j5zHbu3yfX2dWVas2aNfT09ADQ09PD6tWrq/7/jYiIhNfV1cXzzz8PwPPPP1/1dwB1dXXR0dGBu9PR0UE8Hq/q81FOclp0EfgY8O9m1mlmncB/AH9f8KhEREREJDKD/5iv9lnWp5xyStb41FNPDROIlCz1CBURKQ26QyxbIpHA3QFw96qfVTzwfPT19VX9+SgnORWs3X2du58CnAyc4u6nuvuDxQlNRERERKKgP+azbdiQvab4ww8/HCgSKVXxeBwzA9L9vdUjVEQkDLV7yDbcHUDVTOejfI2rJYiZfcjdv29miwZtB8Ddv1mE2EREREQkAmpvkG3Xrl2jjkUaGhpobW1l5cqVtLa26vZiEclZPgvgAqRSKQBisVjO+1baIrhdXV388pe/xN355S9/qXYPpO8Aam9vp6enR3cAofMxnHJZhHK8Paz7+1QfWqxARERERHKlN3uFoT/ms02dOpWdO3dmjUUGi8fjdHZ2ana1iERq9+7doUMoGYlEgt7eXiB9wV3rcKRzU3t7e9a4msXjcX75y19mjatduaxbM66Ctbtfn/m8dPBzZnZQoYMSERERKSa92csWj8fp6OgA0nfQVfsf8xdddBHf/va3948//OEPB4xGSlVDQwPLly8PHYaIlKl8L35rEdwDVq1alTW+4447SroAF4WGhgYOPvhgenp6OPjgg0t6Bm0UGhoa9j9296o/H+W0COV4Z1gDYGZ3A3/n7p2Z8Z8BNwCnjLKbiIiISFHozV5hNDQ0cMwxx9DZ2ckxxxxTsn+4RuXmm2/OGv/nf/4nF110UaBoREREZDiTJk0adVyNNm7cuP8usZ07d5JMJmlqagocVTgPPPDA/ln4vb29rFu3jre85S2BowpnuHVrSvUiT67/m78C3GFmbcBMoBX4aMGjEhERkYIys+8A5wNb3P2kYZ434GrgPKCb9AXqBzPPnZt5rha4wd2vymw/AvgR0Ah0An/t7i8X/ZuRguvq6uK5554D4Pnnn2fbtm0VU7TOp23MwHYg/eNcLo5UYtuYShZ1ayH9fIiIFMZw+braLVu2LGt85ZVXctNNNwWKJrwlS5Zkjb/4xS9mtUypNuW0bk1OBWt3X2VmHwfWAF3Am9z9xaJEJiIiIoX0PeAaYKS/WFuB2ZmPtwLXAm81s1rg34EWIAX83sxWuvvjwOeBX7n7VWb2+cz4c0X9LqQoEonE/sfuXtKzLaJQU1NDX19f1lhkMLUWEhEprFwvIB588MHs2bMna1xJF5jzuaDa2dk5ZDze77HUz0c+dFEjWzmtW5NrS5AvAn8NnAGcDNxtZv/X3X85+p4iIiISkrvfa2aNo7zkAuAmT98jdr+ZTTOz15GePZ1096cAzOyWzGsfz3yem9k/AdyNCtZlqZxmW+QqnzdeDzzwAJ/+9Kf3j7/xjW9U9e2jlU6thUREytNxxx3Hxo0bs8bVbrgifjWbNGnS/pYg/eNqNnDdmpqampJetybXf6kG4DR33w381szuIN3DWgVrERGR8jYTeHbAOJXZNtz2t2Yez3D3FwDc/QUzOyqKQKXwymm2RRROO+20/bOsp06dqmK1iIhIBPK5gNjS0sKePXtobGzkhhtuKEJU4eRzPjZu3Mj8+fP3j6+99tqq7mFdW1ubVbCura0NGE14DQ0NtLa2snLlSlpbW0u6BWBO9ze6+0LgMDM738zOB3a7e0txQhMREZEI2TDbfJTtuX1xs4vNbK2Zrd26dWvOwUlxxeNx0m3MS3+2RVQaGxsB+NKXvhQ2EBERERnRcccdR01NDZdffnnoUErCnDlz9s+qbmxsrOpiNcC5556bNW5tbQ0USemIx+OcfPLJJf/3fk4FazP7IPAA8EHSrUF+Z2YfGMd+x5rZXWb2hJk9ZmYLM9uPMLM1ZrYp8/nwAft8wcySZvY/ZnZObt+WiIiI5CgFHDtgHAOeH2U7wOZM2xAyn7eM9MXdfYW7N7t785FHHlnQwGXi+mdbmFnJz7aIymGHHcapp56q2dUiIiIlrL6+npNPPrnqC7MDqYh/QDwe398GpK6uruSLtFFoaGhg+fLlJf/3fq4tQRYDf+buWwDM7EjgTuC2MfbrBf6vuz9oZocC68xsDfB3DLNYk5mdCFwI/C/gGOBOM5vj7vtyjFdERETGZyXwqUyP6rcCr2TafGwFZpvZ8cBzpPPz3w7YJw5clfn88+jDlsHyWaAH4JlnnqG2tpZNmzZV1IJFIiJSGvLJT6lUCoBYLJbz8ZSfpFqpiH9AQ0MD73nPe1i5ciXvec97Sr5IKwfkWrCu6S9WZ2xjHLO0M/0t+3tc7jCzJ0j3xBxpsaYLgFvcfQ/wRzNLAqcBv80xXhEREQHM7GbSObfBzFLAFUAdgLtfB7QD5wFJoBv4aOa5XjP7FLAKqAW+4+6PZb7sVcCtZvYx4BnSd2BJmdqzZw8HH3wwdXV1oUMREREBYPfu3aFDEJEyF4/H6ezs1OzqMpNrwfoOM1sF3JwZ/w3pN7jjZmaNwJuA3zHyYk0zgfsH7Na/8JOIiIjkwd0vGuN5Bz45wnPtDJPv3X0bcFZBApSCyXc2Wf9+bW1thQxHREQEyC8/KTeJyET1t8CQ8pJTwdrdP2NmfwW8k/QiTCvc/Wfj3d/MpgI/Af7R3V/tX9xnuJcOd/gRvubFwMUAs2bNGm8oIiIiIiIiIiIiIlJicp1hjbv/hHTROSdmVpfZ7wfu/tPM5s1m9rrM7OqBizWNtsDT4HhWACsAmpubhy1qi4iIiIiIiIiIiEjpG1fB2sx+7e5/bmY7yJ7pbKTvIj5sjP0NuBF4wt2/OeCpkRZrWgn80My+SXrRxdnAA+OJVURERERERERERCpHvguLa/HW8jSugrW7/3nm86F5HuedwIeBR8xsfWbbZYywWJO7P2ZmtwKPA73AJ919X57HFhERqShmdj7Q7u59oWMREREREREpVZW8eGs+RfxyKeCPd4b1EaM97+4vjfH8rxm+LzWMsFiTu38Z+PJ44hMREakyFwJXm9lPgO+6+xOhAyqEfGdN5GPTpk1A/gsU5kqzM0SkXGgGm4iIlCItLF4Y5VLAH28P63WkW4EYMAt4OfN4GumZ0ccXIzgREREZyt0/ZGaHARcB3zUzB74L3OzuO8JGl79kMslDjzxOX/2o18kLwvamO5yt+8OLRT9WTfeo1/VFRCpCubwBrkRmNhm4FziY9Hv829z9ikGvmUu6BecfM5t+6u5XRhimiIgUWD5F/HIp4I+3JcjxAGZ2HbDS3dsz41bg7OKFJyIiIsNx91czM6ynAP8IvB/4jJm1ufvyoMFNQF/9Ebx24vmhwyioyY/fHjoEEZFx0wy2srQHeLe77zSzOuDXZtbh7vcPet197l5ZSVZERCpSTY6v/7P+YjWAu3cA7ypsSCIiIjIaM3ufmf0M+H9AHXCau7cCpwCfDhqciIiIRMrTdmaGdZkPDxiSiIjIhIy3JUi/LjNbDHyfdAL8ELCt4FGJiIjIaD4A/Ju73ztwo7t3m9nfB4pJREREAjGzWtKtPJuAf3f33w3zsreb2cPA88Cn3f2xKGOsZFqHQ0SksHItWF8EXAH8jHTB+t7MNhGRvHR1dbF06VKWLFnC9OnTQ4cjUi5eGFysNrOvuvvn3P1XoYISERGRMNx9H3CqmU0DfmZmJ7n7owNe8iBwXKZtyHnAfwGzB38dM7sYuBhg1qxZwx6rkouzkF+BNplMsvHRB5k1dV+RojrgoJ70jfKvdf6+6Md6Zmdt0Y8hIjKcnArW7v4SsLBIsYhIFUokEmzYsIFEIsGiRYtChyNSLlqAzw3a1jrMNhEREaki7r7dzO4GzgUeHbD91QGP283sP8yswd27Bu2/AlgB0NzcPGxbkUpdJBkmtlDyrKn7WNy8c+wXlpFla6eGDkFEqlSuM6xFRAqmq6uL9vZ23J329nbi8bhmWYuMwsw+AfwDcIKZbRjw1KHAf4eJSiQ6lTyrL58ZfZV8PkC3oYuMl5kdCfRkitVTgLOBrw56zdHAZnd3MzuN9HpWebf3rMRFkkELJYuIlAoVrEUkmEQiQW9vLwA9PT2aZS0yth8CHcBXgM8P2L4jcxeUSEVLJpM89NhDMC2Cg/WlPz303EPFP9b2/HZLJpM8uX49Rxc0mOH1r9S+ff36CI4G0cylFKkYrwMSmT7WNcCt7n67mX0cwN2vI73+xSfMrBfYDVzo7lqYUUREStK4C9aZ5LfA3f+tiPGISBVZvXo1/X8nuzurVq1SwVpkdO7unWb2ycFPmNkRKlpLVZgGfXP7QkdRUDV314z9ohEcDXwMK1wwJeJGVEcTGS933wC8aZjt1w14fA1wTZRxiYiI5GvcBWt332dmFwAqWItIQcyYMYPOzs6ssYiM6ofA+cA60osfD6xSOfCnIYIqlFQqRU33KxV3O25N9zZSqd6c94uy3QOURwsMERERERGpfLm2BPlvM7sG+BGwq3+juz9Y0KhEpCps3rx51LGIZHP38zOfjw8dixRfMplk46MPMmvqvkiOd1BPepbva52/L/qxntlZW/RjSPXRRR4RERGRypBrwfodmc9XDtjmwLsLE45I+cj3TVEqlQIgFovltF8lvkmZN28eP//5z/ePzznnnIDRiJQPM3snsN7dd5nZh4A3A99y92cChzYhsViMzXsmVdwiTpMfv51YLL8uw7Om7mNx884CRxTesrVTQ4cgFSiZTPLYI08wrf6oSI7Xtzd9k8tzf8h73bpx2969Ja/9Knlhzkr729jMHoFhe+EY6ZZgJ0cckogUiC6oiuQup4K1u59ZrEBEqsXu3btDh1Ay3vve92YVrN/3vvcFjEakrFwLnGJmpwCfBW4E/hN4V9CoREQCm1Z/FGe+4cLQYRTcXU/ektd+yWSSRx9+mEMPynWeUu56e9N3gzz9xGNFP9aOvbm3WSoD/VdrDfglcF7AWEQmpJIvlkHuBdooF0mGaBdK1iLJUiw5/eViZpcPt93drxxuu0glyzch9u/X1tZWyHDK0o9//OOs8a233spll10WKBqRstLr7p5ZW+Jqd7/RzOKhgxIptlQqBa9MbJHCkrQdUp4KHYVUqEMPmsRpMw4PHUZBPbD55dAhFJy7P93/2Mz2DByXmkpdcwLyX3dCsiWTSR567CGYFsHBMuswP/TcQxEcDNie325aJDlbJV/U0Izzwsj1UvuuAY8nk74K/EThwhGRanLnnXdmjdesWaOCtcj47DCzLwAfAs4ws1qgLnBMIiIiIlUplUqxa0dtxbW8enpHLYek8rygOg365vYVNJ5SUHEXzQOJso1XObTwkqFybQnyjYFjM/s6sLKgEYlI1TCzUcciMqK/Af4W+Ji7v2hms4B/DRyTSNHFYjG22taKewNcc3cNsZm5rW0hIpXFzN48YDhl0Bh3fzDikEZUqWtOwMTWnRCR3FRiG698W3jJUBNtZlYP/GkhAhGR6nPWWWexatWq/eOzzz47YDQi5cPdXwS+OWD8DHBTuIhEJIRUKsUO8r8dt5S9AOzMd1afSHkaODnsReDrmcdGejHGd0cekYxbLBbjtd4XKm6h5GVrpzI5pguqIsVWyS1SIL82Kbn2sB64cnEtcCSg/tUikpeWlpasgvU555wTMBqR8mFmfwl8FTiK9BtZA9zdDwsamBRUpd5eDBO8xVhEpAK5+5kAZjYF+Afgz0m/976P9GLLIiJSoSp1kWTIf6HkcZ0JMzve3f/IgZWLAXqBze6uFQlEJC/XXHNN1vjqq6/mpps0SVRkHL4GvNfdtY6ESBWLxWJs7+qq2EWcpmlWn1SnBPAq0L9C+0Wk76L662ARiYhI0VXiIsmQ/0LJ4y3d3wa8BfiOu5+V15FERAbp7OwcdSwiI9qsYnXlq9Tbi2GCtxhvj2jBo/7THsUE9+3AzAiOIyLl4PXufsqA8V1m9nCwaEZQ0/0Skx+/vejHsddeBcAnR3MTWU33S4B6WEthqYWXSO7GW7CuMbMrgDlmtmjwk+7+zWH2EREZVWNjY1aRurGxMVgsImVmrZn9CPgvYE//Rnf/abCICqQS3wDrzW/hNDU1RXas/v5+s2fOLv7BZkb7vYlISXvIzN7m7vcDmNlbgf8OHFOWaH8X7wBg9glR5dGj8/7+ntkZTRuvzd3pi7Yz6ou/APEzO2uZk8d+qVQKXonoAnPUtkPKVaAVKbbxFqwvBP4i8/pDixaNiFSVxYsXM3/+/P3jyy+/PGA0ImXlMKAbmDdgmwNlXbCu3DfA+b/5lWxRLg7Tf6y2trYxXikiUlBvBT5iZs9kxrOAJ/rXk3L3k8OFlqbfxUNFmef3Zi6oTm4s/gXVOeiCaiGohZdI7sZVsHb3/wG+amYb3L2jyDFJBenq6mLp0qUsWbKE6dOnhw5HSsycOXP2z7JubGzUH0Mi4+TuHw0dQzHoDbCIiAjnhg5Acqe/YbLFYjG22lb65hZ/FnjUau6uITZTBdqJSqVSvNK9g7uevCV0KAW1vXsLntodOoyKMN5FFxcNePzGwc+rJYiMJJFIsGHDBhKJBIsWDekmI8LixYtZuHChZleL5MDM5gDXAjPc/SQzOxl4n7svCxyaiEgwlfrmF/QGuJq4+9OhYxAREQltvC1B1AZEctbV1UV7ezvuTnt7O/F4XLOsZYgjjjiCpqYmDj+88lbDFSmibwOfAa4HcPcNZvZDQAXrChNVP0woj56YIiIiIlL+YrEYtmcbZ77hwtChFNRdT97CzJjqXoUw3pYgS4sdiFSeRCJBb28vAD09PZplLcPSLHyRvNS7+wNmWX3wekMFI8URdZsk9cSUclepb35Bb4BFRESkuox3hjUAZvZd0os6ZXH3vy9YRFIxVq9ejXv6x8XdWbVqlQqSkqWrq4tf/vKXuDu33367ZuGLjF+XmZ1AJieb2QeAF8bayczOBa4GaoEb3P2qQc8fDnwHOAF4Dfh7d38089xC4P8ABnzb3b+V2b4ks31r5stc5u7tE/z+hGj7YQ48Xin3xJShXiS94FGxbct8jipLvwhMi+hYIiIiIiGlUil27O3lgc0vhw6l4Hbs7SWVSuW8X04Fa+D2AY8nA+8Hns/5qFIVZsyYQWdnZ9ZYZKCBs/B7e3s1yxotVCrj9klgBfAGM3sO+CPwv0fbwcxqgX8HWoAU8HszW+nujw942WXAend/v5m9IfP6s8zsJNJF6dOAvcAdZvZLd9+U2e/f3P3rBfz+RGQcopylvjUzA3/a7OLPwId0sVqz8EVEpFJEdYEZor3IrAvMUiw5Fazd/ScDx2Z2M3BnQSOSirF58+ZRxyJ33HFH1rijo6PqC9bXX389Dz/8MNdffz2XXXZZ6HCkxAxcBBloB+4CaoBdwF8Boy2CfBqQdPenMl/rFuACYGDB+kTgKwDu/qSZNZrZDOCNwP3u3p3Z9x7SF62/VojvS0TyE+UsfM3AFxERyU/UF2CjvMg8DV1gLoRYLMa+Ha9w2ozKW9vrgc0vE4vFct4v1xnWg80GZo3nhWb2HeB8YIu7n5TZdgTwI6AR6AT+2t1fzjz3BeBjwD5ggbuvmmCsErF58+axcuVK3B0z45xzzgkdkpSYnp6eUcfVpquri1Wr0r/q7rjjDi655BLNspbB+hdBfj3wZ8DPSbfo+DBw7xj7zgSeHTBOAW8d9JqHgb8Efm1mpwHHATHgUeDLZjYd2A2cB6wdsN+nzOwjmW3/tz+Xi4hIWJV6i3G+txeLSIS2Q83dNcU/zs7M52jWqIbtpP+qzoHavA1ve/cW7nrylqIfZ+dr6Rw4dXLxi8Hbu7cwM7IGapUt1x7WO8juYf0i8Llx7v494BrgpgHbPg/8yt2vMrPPZ8afM7MTgQuB/wUcA9xpZnPcfV8u8UpY8Xicjo4O9u7dS11dHfF4PHRIUmL6+vpGHVeb66+/fshYs6xloP5FkM1sNfBmd9+RGS8BfjzG7jbMtsH3JV4FXG1m64FHgIeAXnd/wsy+Cqwh/bbgYQ4s8ngt8KXM1/oS8A1gyNoWZnYxcDHArFnjutYtIiIiImUoyhm3mzKziWfPjKZlFTM1o7gQov0ZeQmAmScUv5A8k+n6+SiQXFuCHDr2q0bc914zaxy0+QJgbuZxAribdAH8AuAWd98D/NHMkqRvZf5tvseX6DU0NNDa2srKlSs577zzNFNUZAyrV6/OGq9atUoFaxnJLNK9pPvtJX230mhSwLEDxjEGrUPh7q8CHwUwMyPdG/uPmeduBG7MPPcvma+Hu+/v92Rm3yZ7vYuBX3sF6b7bNDc3F6yBX1tbG8lkMuf9+t/c5DPjpampKfKZMiIyPlHN1oLymLFVqbcY53t7sYhEQy2rZCz6GZGx5DrD+p2kF2PaZWYfAt4MXO3uT+d5/Bnu/gKAu79gZkdlts8E7h/wuhQ533QhpSAej9PZ2anZ1VUg36LRYLkkrkorGrn7qGORAf4TeMDMfkZ6ZvP7SV/4Hc3vgdlmdjzwHOk7mf524AvMbBrQ7e57gfnAvZkiNmZ2lLtvMbNZpNuGvD2z/XX9uTwTx6MF+P6KbsqUKaFDEJECi3pGk2ZsieQmn/cLusAsItUiqhZe3b3p5hX1k2qLfixIf1/5yLWH9bXAKWZ2CvBZ0jOtbgLeldfRRzae25bTL9QtxiWtoaGB5cuXhw5DSlRdXV1W3+q6urqA0Uip6urqYunSpSxZskR3amS4+5fNrAM4PbPpo+7+0Bj79JrZp4BVQC3wHXd/zMw+nnn+OtKLK95kZvtIL8b4sQFf4ieZHtY9wCcH9Kn+mpmdSjpPdwKXFOJ7HC+9ERWRfuoRKlJ5dIFZRKpBiDY6x0WwKGe/fL6/XAvWve7uZnYB6ZnVN5rZRKbObu6fmWVmrwO2ZLaPedtyv2LdYiwiucnnTeLGjRuZP3/+/vH1119f1bOH6uvr6e7uzhpL+ufi4YcfVk/vQdz9QeDBHPdpB9oHbbtuwOPfkl5Qebh9Tx9h+4dziUFERESqky4yi4gMTy1Shsq1YL3DzL4AfAg4w8xqgYlMiVwJxEkv8hQHfj5g+w/N7JukF12cDTwwgeOISAmaM2fO/lnWM2bMqOpiNcAxxxyTdZukejOmZ1evWbMGSPf4vuSSSzTLWkREJAeVeItxvrcXi4iISHnItWD9N6T7XX7M3V/M9LH81/HsaGY3k15gscHMUsAVpAvVt5rZx4BngA8CZG5RvpX07ci9pG893pdjrCJSBo4//niSySRf+cpXQocS3OCefhs3bgwUSem4/vrr6evrA6Cvr0+zrEVERHJQybcYV/tEBxERkUqWU8Ha3V8Evjlg/AzpHtbj2feiEZ46a4TXfxn4ci7xSfHku6BeKpUC8pspqkUyqkN9fT0nn3yy3nTIsO68886s8Zo1a1SwFpFIdHd3k0wmSSaTylFStnSLsYiIiJSjXGdYi+Rk9+7doUMYU77F+HxNZKXrfKjwL+XMzEYdi4gUy1NPPUVfXx+f+9zn+MlPfhI6HBERERGRqqGCtYxLvgXPcphpkUwmeeixh2BaRAdMdzfgoeceKv6xthf/EFI4b3nLW1i3bt3+cXNzc8BoSsNZZ53FqlWr9o/PPvvsgNGISDnK58J0d3c3vb3pHrlbt25l/vz5OS2Eq4vFIiIiIiL5U8FaBGAa9M3tCx1FwdXcXRM6hKqWa5Gkp6cna7x79+6cCh6VWCC55JJLWLNmDX19fdTU1HDJJZeEDklEqsBTTz01ZHzSSScFikZEREREpLqMq2BtZo8APtxTgLv7yQWNSkSkCtXV1e1/fMghh2SNq1VDQwMtLS2sWrWKefPmMX369NAhiZS8fFtd5duyqtQvluUT2xlnnJE17u3tLem7xUREpPxEna+h9HO2iEi/8c6wPr+oUYiIVKB8/hj8xCc+QWdnJ9///vcrrjib7x/lzzzzDJMmTeLZZ5+t+hnnIsU0ZcqU0CGIiIjIGJSvRaQajKtg7e5PFzsQERFJz7KePXt2xRWrJ2LPnj0cfPDBmnEuMk66UCMiUl3MbDJwL3Aw6ff4t7n7FYNeY8DVwHlAN/B37v5g1LHKAcrXIiIjy6mHtZm9DVgOvBE4CKgFdrn7YUWITUREKkglL94qIiIiEtAe4N3uvtPM6oBfm1mHu98/4DWtwOzMx1uBazOfRURESk6uK7JdA1wEbAKmAPNJF7BFRERERCpCbW3tqGMRkVLiaTszw7rMx+A1qC4Absq89n5gmpm9Lso4RURExivXgjXungRq3X2fu38XOLPwYYmIiIiIhHHMMceMOhYRKTVmVmtm64EtwBp3/92gl8wEnh0wTmW2iYiIlJycWoIA3WZ2ELDezL4GvAAcUviwRERERETC2LJly6hjEZFS4+77gFPNbBrwMzM7yd0fHfASG263wRvM7GLgYoBZs2YVI1QRESmQtrY2kslkTvts2rQJyK9lZ1NTU2T993OdYf3hzD6fAnYBxwJ/WeigRERERERCGbzIqxZ9FZFy4e7bgbuBcwc9lSL9/r1fDHh+mP1XuHuzuzcfeeSRxQpTREQCmTJlClOmTAkdxphynWH9F+5+NfAasBTAzBaSXm1YRCpEPlfp8jWRq3v5iPKKoIiIlKedO3eOOhYRKSVmdiTQ4+7bzWwKcDbw1UEvWwl8ysxuIb3Y4ivu/kLEoYpIBLq7u0kmkySTSZqamkKHE1xPTw+dnZ1s27aN6dOnhw6noCq5tpFrwTrO0OL03w2zTUTKWDKZ5Mn16zk6gmP13+axff36oh/rxaIfQUREKkFjYyOdnZ1ZYxGREvY6IGFmtaT/vL7V3W83s48DuPt1QDtwHpAEuoGPhgpWRIrr6aefpq+vjyuvvJKbbropdDgFk+/Euv/5n/+ht7eX+fPnc+yxx469wwCa8BbOuArWZnYR8LfA8Wa2csBThwHbihFYaPn+R0ilUgDEYrGc9ovyP0Elz54F/UIplKOBjw3b6q583Ti0TZ+IiMgQixcvZv78+fvHl19+ecBoRERG5+4bgDcNs/26AY8d+GSUcYnIxORTu+nu7mbPnj0AdHZ2Mn/+fOrr68e1byXWUnp6eujt7QXgpZde4uijj1artzIx3hnWvyG9wGID8I0B23cAGwodVDnbvXt36BDGlEwm2fjog8yauq/oxzqoJz1/9rXO3xf9WADP7KzNeZ9UKgWvQM3dubZ0LwPbIeWp0FGIiIiUlTlz5uyfZd3Y2Kjbaans22lFRKQ05FOgffLJJ3nttddyKsz2q8QC7dNPPz1k/MY3vjFQNIWVz7/VN77xDTZu3EhPTw+TJk1i9uzZLFq0qAjRSaGNq2Dt7k8DTwNvN7MZwJ9lnnrC3XuLFVxI+f7S6t+vra2tkOEU3Kyp+1jcXHn9GJetnRo6BBEREakAixcvZuHChRU5uzqfgsATTzxBX18fH/nIRzjhhBNy2rcSCwIiIlIaBs4mPvHEEwNHU1j55M4zzjgja7xnz56Sr08V05o1a+jp6QHSF99Xr15d9QXrrq4uli5dypIlS0p6EkJOPazN7IPA10mvOmzAcjP7jLvfVoTYCiLK9hegBeTKUSwWY6ttpW9uX+hQCq7m7hpiM3NrTyNDqY1ONv1eFZFqMGfOHDo6OkKHURJ6enro60v/nbRjxw56enp0O62IiBRcrn+Db9y4cX8Lr71797JgwYKqvyuqvr6e7u7urHE1a2lpob29ff/fLvPmzQsdUnCJRIINGzaQSCRKunif66KLi4E/c/ctsH814juBki1YJ5NJHnrkcfrqj4jkeLY33SN33R+Kv7xbTfdLRT+GiKR/jzz2yBNMqz+q6Mfq25vuG/7cH6JZHmB795ac90kmkzz68MMcelCuKSQ/vb3p9kVPP/FY0Y+1Y29F3jQkIpIl14LA5z73uazxn/zJn3DVVVcVMiQREZGcLVmyJGt8+eWX88Mf/jBMMCVicJvacmhbW0zxeHz/BISamhri8XjgiMLq6uqio6MDd6ejo4N4PF6ys6xzrTbU9BerM7aRXoW4pPXVH8FrJ54fOoyCm/z47aFDEKka0+qP4sw3XBg6jIK768lb8trv0IMmcdqMwwscTXgPbH45dAgiIiXnt7/9bdb4N7/5TaBIiiPfO4fyvQNId/KIiBRGKpUadVyN0uurjjyuNg0NDbS2trJy5UpaW1tLtjgblUQisf9noq+vr6RnWedasL7DzFYBN2fGfwPoXkmRCpNKpdgB3EhlJbcXgJ36I0ZEREQKYMqUKaFDEBGpamaWVZA1s4DRlIba2lr27duXNa528Xiczs7Oqp9dDeXV0zungrW7f8bM/hL4c9I9rFe4+8+KEpmIiIiIiARX6f0wNdtZRKQ8vetd7+Luu+/eP547d26wWErFwGL1cONq1NDQwPLly0OHURLKqad3rosuftXdPwf8dJhtIlIhYrEY27u6+BiVdYX6RpxpMS1CKSIikotTTjklqy3IqaeeGi4YERGRjAULFnDPPffg7piZLkACjY2NdHZ2Zo1F+pVTT+9cW4K0AIOL063DbJMSlkql2LWjlmVrp4YOpeCe3lHLIfm0fNgONXdH1I59Z+ZzFKd/OzAzguNUuFQqxSvdO/Lu91zKtndvwVPVvRCHiIiM7uGHH84ar1+/PkwgJWbjxo0sXLiQ5cuX09TUFDocEZGq09DQsH+W9dy5c6u+PzHA4sWLmT9//v7x5ZdfHjAaKTXl1NN7XAVrM/sE8A/An5rZhgFPHQr8dzECE4lK1G8w+hfomT1zdvEPNjP/7+9FoulhvS3zOYpfky8C0yI4joiISCU5/fTTWbVq1f7xGWecETCa0rFs2TJ27drFlVdeyU033RQ6HBGRqrRgwQJefvllza7OmDNnzv5Z1o2NjbqgKkOUS0/v8c6w/iHpxRW/Anx+wPYd7v5SwaOSoorFYrzW+wKLm3eO/eIys2ztVCbn2PIh6sTWf7y2trZIj5uLKJPa1kwBf9rs4hfwp5Hf9xaLxbA92zjzDRcWPKbQ7nryFmbGcrtckEql2LG3lwc2v1ykqMLZsbdXq4uLiMiYNm7cuP+W687OTpLJZMUUBdra2kgmkznv1z8pI5+/rZuamlRsEpG8qD/xUIsXL2bhwoWaXS3DKpf/M+MqWLv7K8ArwEXFDUdESkGUbxjKoYAP6dYZUbQE2flaugg8dfLhRT8WpL+vmZHMbxcRkXJ13333ZY3vvfdeLrvsskDRlIZly5ZljTXLGqZMmRI6BBERIT3Lur9PsUi5yrWHddlJpVLUdL/C5MdvDx1KwdV0byOV6g0dhkjFi3LG1KZN6ZtWZp4QTRF5JtNz/v5isRjbt20b+4UF0t2bXtm6flJtJMeLaWFOEZEsLS0t3H777ezbt4/a2tqSXlE+KgMXtBpuXM4001lERERCq/iCNQD7eqnpjqi40pcurFATQWFlX/7F6md2RrPo4ubu9EKGM+r7in4sSH9fcyI5klQTzTjPlm8BP5VKsXt37gs89vSk99k76aCc9psyZUpexedKuaV7OGZ2LnA1UAvc4O5XDXr+cOA7wAnAa8Dfu/ujmecWAv8HMODb7v6tzPYjgB8BjUAn8NfuXnn9YkSqWDwe5xe/+AUA7l7yPQ+j0N8fdOBYRCQKXV1dLF26lCVLlpT0gmkiIhNR8QXruXPn5tWDLd/CSv8+UyaXbmElymLM3kwvu8mNESwwCMyhsotNIqUg3wJ+vj0x+3tK5/o7Uv0ws5lZLfDvQAuQAn5vZivd/fEBL7sMWO/u7zezN2Ref5aZnUS6WH0asBe4w8x+6e6bSK9t8St3v8rMPp8Zfy6670xEotDX15f1udotXryY+fPn7x+rT6iIRCWRSLBhwwYSiQSLFi0KHY6ISFGUdMF6rJlg46HCylD5HCff8zERKjZJucvn/00lL1hUyrFVidOApLs/BWBmtwAXAAML1ieSXmAZd3/SzBrNbAbwRuB+d+/O7HsP8H7ga5mvMTezfwK4GxWsRSrK4Lt+2traWLp0aaBoSsOcOXP2z7JubGzUhAkRiURXVxcdHR24Ox0dHcTjcc2yFpGKVLIF63HOBCsaFVYKo5IXX4l6BfVSL0ZqRfnCqOT/MxLcTODZAeMU8NZBr3kY+Evg12Z2GnAcEAMeBb5sZtOB3cB5wNrMPjPc/QUAd3/BzI4q3rcgIiHcc889WeO77747TCAlZvHixSxcuFCzq0UkMolEAncH0ne8aJa1iFSqki1YM76ZYBKRSisKhqSCZLZKPh/6fyMlxobZ5oPGVwFXm9l64BHgIaDX3Z8ws68Ca4CdpAvbOS2kYGYXAxcDzJo1K7fIRSSo/uLISONqNWfOHDo6OkKHISJVZM2aNfT09ADQ09PD6tWrVbAWkYpUygXr8cwEEwlGxchsOh8iJS8FHDtgHAOeH/gCd38V+CiAmRnwx8wH7n4jcGPmuX/JfD2AzWb2uszs6tcBW4Y7uLuvAFYANDc3q9olUkZisdj+tnf9YxERiV5LSwvt7e309PRQV1fHvHnzQockIlIUNaEDGMV4ZoJhZheb2VozW7t169YIwhIRESlLvwdmm9nxZnYQcCGwcuALzGxa5jmA+cC9mSI2/a0+zGwW6bYhN2detxKIZx7HgZ8X9bsQkcgtWbIka3zllVeGCUREpMrF43HScwqgpqaGeDw+xh4iIuWplAvWY84Eg/SMLXdvdvfmI488MrLgREREyom79wKfAlYBTwC3uvtjZvZxM/t45mVvBB4zsyeBVmDhgC/xEzN7HPgF8El3fzmz/Sqgxcw2kV53IucFkkWktM2ZM2f/rOpYLKYFBkVEAmloaKC1tRUzo7W1VQsuikjFKuWWIPtnggHPkZ4J9rdhQxIRESlf7t4OtA/adt2Ax78FZo+w7+kjbN8GnFXAMEWkBC1ZsoSFCxdqdrWISGDxeJzOzk7NrhaRimalvGiKmZ0HfAuoBb7j7l8e4/VbgacjCG0sDUBX6CBKiM7HUDon2XQ+sul8DFUq5+Q4d9ftPBOkfF3SdE6y6Xxk0/kYSuckW6mcD+XrAlC+Lmk6J9l0PobSOcmm85GtlM7HsDm7pAvW5crM1rp7c+g4SoXOx1A6J9l0PrLpfAylcyLFoJ+roXROsul8ZNP5GErnJJvOhxSDfq6G0jnJpvMxlM5JNp2PbOVwPkq5h7WIiIiIiIiIiIiIVBEVrEVERERERERERESkJKhgXRwrQgdQYnQ+htI5yabzkU3nYyidEykG/VwNpXOSTecjm87HUDon2XQ+pBj0czWUzkk2nY+hdE6y6XxkK/nzoR7WIiIiIiIiIiIiIlISNMNaREREREREREREREqCCtYFYmaTzewBM3vYzB4zs6WhYyoFZlZrZg+Z2e2hYykFZtZpZo+Y2XozWxs6ntDMbJqZ3WZmT5rZE2b29tAxhWRmr8/8bPR/vGpm/xg6rpDM7J8yv1MfNbObzWxy6Jik/ClnD085O5tydjbl7AOUr4dSvpZiUL4envJ1NuXrbMrX2ZSzhyqXnK2WIAViZgYc4u47zawO+DWw0N3vDxxaUGa2CGgGDnP380PHE5qZdQLN7t4VOpZSYGYJ4D53v8HMDgLq3X174LBKgpnVAs8Bb3X3p0PHE4KZzST9u/REd99tZrcC7e7+vbCRSblTzh6ecnY25exsytnDU75WvpbiUb4envJ1NuXrbMrXI1POLq+crRnWBeJpOzPDusxHVV8NMLMY8B7ghtCxSOkxs8OAM4AbAdx9rxJplrOAP1RrIh1gEjDFzCYB9cDzgeORCqCcPZRytoxGOXtUytdpytdScMrXQylfy2iUr8eknJ1WFjlbBesCytyasx7YAqxx998FDim0bwGfBfoCx1FKHFhtZuvM7OLQwQT2p8BW4LuZW9puMLNDQgdVQi4Ebg4dREju/hzwdeAZ4AXgFXdfHTYqqRTK2UN8C+XswZSzD1DOHpnytfK1FJHy9RDfQvl6MOXrA5SvR6ecXUY5WwXrAnL3fe5+KhADTjOzkwKHFIyZnQ9scfd1oWMpMe909zcDrcAnzeyM0AEFNAl4M3Ctu78J2AV8PmxIpSFz69b7gB+HjiUkMzscuAA4HjgGOMTMPhQ2KqkUytkHKGePSDn7AOXsYShfpylfSzEpXx+gfD0i5esDlK9HoJydVk45WwXrIsjccnE3cG7YSIJ6J/C+TD+pW4B3m9n3w4YUnrs/n/m8BfgZcFrYiIJKAakBsyRuI51cJf3H1oPuvjl0IIGdDfzR3be6ew/wU+AdgWOSCqOcDShnD0s5O4ty9vCUr9OUr6XolK8B5ethKV9nUb4emXJ2WtnkbBWsC8TMjjSzaZnHU0j/EDwZNKiA3P0L7h5z90bSt138P3cvyas2UTGzQ8zs0P7HwDzg0bBRhePuLwLPmtnrM5vOAh4PGFIpuYgqv1Up4xngbWZWn1l05yzgicAxSQVQzs6mnD2UcnY25ewRKV+nKV9LUShfZ1O+Hkr5Opvy9aiUs9PKJmdPCh1ABXkdkMisOloD3OrutweOSUrLDOBn6d8JTAJ+6O53hA0puEuBH2Ruz3kK+GjgeIIzs3qgBbgkdCyhufvvzOw24EGgF3gIWBE2KqkQytkyFuXsoZSzB1C+PkD5WopI+VrGonw9lPL1IMrZB5RTzjb3ql5kV0RERERERERERERKhFqCiIiIiIiIiIiIiEhJUMFaREREREREREREREqCCtYiIiIiIiIiIiIiUhJUsBYRERERERERERGRkqCCtYiIiIiIiIiIiIiUBBWsRaqcmTWa2aOZx81m1pZ5PNfM3hE2OhEREQHlaxERkXKhnC0ycZNCByAipcPd1wJrM8O5wE7gN8ECEhERkSGUr0VERMqDcrZIfjTDWqSMmdk/m9n/mNmdZnazmX3azO42s+bM8w1m1pl53Ghm95nZg5mPIVd2M1d8bzezRuDjwD+Z2XozO93M/mhmdZnXHWZmnf1jERERGZnytYiISHlQzhYpDebuoWMomIaGBm9sbAwdhoiIVKh169Z1ufuRoeMod8rXIiJSTMrXhaF8LSIixTZSzo68JYiZHQvcBBwN9AEr3P3qQa8x4GrgPKAb+Dt3f3Csr93Y2MjatWvHeplEqKuri6VLl7JkyRKmT58eOhwRkQkxs6dDx1AJlK+lHOhvGJHypXw9MjP7J2A+4MAjwEfd/bXhXqt8LSIixTZSzg7REqQX+L/u/kbgbcAnzezEQa9pBWZnPi4Gro02RCmURCLBhg0bSCQSoUMpGV1dXVx66aVs27YtdCgiIiIyAv0NIyKVxsxmAguAZnc/CagFLgwblYiIyFCRF6zd/YX+2dLuvgN4Apg56GUXADd52v3ANDN7XcShygR1dXXR0dGBu9PR0aECbYbeAIuIiJQ2/Q0jIhVsEjDFzCYB9cDzgeMREREZIvKWIANlms6/CfjdoKdmAs8OGKcy216IJjIphEQiQX+P9L6+PhKJBIsWLQocVViD3wDH4/Gqv81448aNLFy4kOXLl9PU1BQ6HBEREf0NIyIVyd2fM7OvA88Au4HV7r46cFgiIlWvra2Njo6OnPfr7u4myrUJzYz6+vqc92ttbWXBggU57ROiJQgAZjYV+Anwj+7+6uCnh9ll2H8BM7vYzNaa2dqtW7cWOkyZgDVr1tDT0wNAT08Pq1frb6Hh3gBXu2XLlrFr1y6uvPLK0KGIiIgA+htGRCqTmR1O+m7m44FjgEPM7EODXqP31yIiElyQGdZmVke6WP0Dd//pMC9JAccOGMcY4VYld18BrABobm6O7rKCjKmlpYX29nZ6enqoq6tj3rx5oUMKbrg3wNU8Y2vjxo10dnYC0NnZSTKZ1CxrEREJTn/DiEiFOhv4o7tvBTCznwLvAL7f/wK9vxYRid6CBQtynoFc6SKfYW1mBtwIPOHu3xzhZSuBj1ja24BX3F3tQMpMPB4n/c8NNTU1xOPxwBGF19LSQl1dHYDeAJOeXT2QZlmLiEgp0N8wIlKhngHeZmb1mfflZ5FeU0pERKSkhGgJ8k7gw8C7zWx95uM8M/u4mX0885p24CkgCXwb+IcAccoENTQ00NraipnR2tpa9b2aQW+AB+ufXT3SWEREJAT9DSMilcjdfwfcBjwIPEK6HrAiaFAiIiLDiLwliLv/muF7VA98jQOfjCYiKaZ4PE5nZ2fVF2b79b8BXrlypd4AA42NjVlF6sbGxmCxiIiIDKS/YUSkErn7FcAVoeMQEREZTbBFF6U6NDQ0sHz58qovzA4Uj8c5+eST9QYYWLx4cdb48ssvDxSJiIhINv0NIyIiIiIShgrWIhHTG+AD5syZs39WdWNjoxZcFBERERERERGpcipYi0hQixcv5pBDDtHsahERERERERERib6HtYjIQHPmzKGjoyN0GCIiIiIiIiIiUgI0w1pERERERERERERESoIK1iIiIiIiIiIiIiJSElSwFhERkTGZ2XfMbIuZPTrMc582MzezhhCxiUjx3XnnnZxxxhncddddoUMRERERkQqngrWIiIiMx/eAcwdvNLNjgRbgmagDEpHo/Mu//AsAX/rSlwJHIiIiIiKVTgVrERERGZO73wu8NMxT/wZ8FvBoIxKRqNx555309vYC0Nvbq1nWIiIiIlJUk0IHICIiIuXJzN4HPOfuD5tZ6HBEpEj6Z1f3+9KXvsSZZ54ZKJrCa2trI5lM5rxfKpUCIBaL5bRfU1MTCxYsyPl4UYn6fEDpnxMRERGJlgrWIiIikjMzqwf+GZg3ztdfDFwMMGvWrCJGJiKF1j+7eqRxtdq9e3foEEqKzoeIiIgUigrWIiIiko8TgOOB/tnVMeBBMzvN3V8c/GJ3XwGsAGhublb7EJEyMmnSpKwi9aRJlfUWIt+Zvf37tbW1FTKc4HQ+REREJDT1sBYREZGcufsj7n6Uuze6eyOQAt48XLFaRMrbZZddljX+4he/GCgSEREREakGKliLiIjImMzsZuC3wOvNLGVmHwsdk4hE4+yzz6a/T72ZVVT/ahEREREpPZV1P5+IiIgUhbtfNMbzjRGFIiIR6+rqoqamhn379lFbW8u2bduYPn166LBEREREpEKpYC0Ssa6uLpYuXcqSJUv0Zk9ERERKXiKR2F+wNjMSiQSLFi0KHZaIiIiUqba2Njo6OnLap7u7G/dol8IxM+rr63Pap7W1Ne/1IOQAtQQRiVgikWDDhg0kEonQoZSErq4uLr30UrZt2xY6FBERERnGmjVr6OnpAaCnp4fVq1cHjkhEREREKplmWItEqKuri46ODtyd9vZ24vF41c+yHljA12wtERGR4mtrayOZTI779VOmTKG7uztrnMvMoaamJs00EhERkf0WLFigvw1kVJphLRKhRCKRNUOp2mdZDyzgd3R0aJa1iIhICTr66KP3PzazrLGIiIiISKFphrVIhFavXr2/55K7s2rVqqqeVZxIJPafj76+Ps2yFhERiUA+M5re//73s23bNi644ALlahEREREpKs2wFonQjBkzRh1XG/XEFBERKQ9HH300hxxyCPF4PHQoIiIiIlLhVLAWidCLL7446rjatLS0UFdXB0BdXR3z5s0LHJGIiIgMp66ujtmzZ1f92hsiIiIiUnwqWItEaHDPx2rvARmPxzEzAGpqajRrS0RESsadd97JGWecwV133RU6FBERERGRqhKkYG1m3zGzLWb26AjPzzWzV8xsfebj8qhjFCmGzZs3jzquNg0NDbS2tmJmtLa2ataWiIiUjH/5l38B4Etf+lLgSEREREREqkuoRRe/B1wD3DTKa+5z9/OjCUckGvPmzWPlypW4O2bGOeecEzqk4OLxOJ2dnZpdLSJSIG1tbSSTyZz3S6VSAMRisZz2a2pqymsRv1J255130tvbC0Bvby933XUXZ555ZuCoRERERESqQ5AZ1u5+L/BSiGOLhBSPx5k0KX2dqK6uTkVa0rOsly9frtnVIiKB7d69m927d4cOoyT0z67up1nWIiIiIiLRCTXDejzebmYPA88Dn3b3x0IHJDJRDQ0NnHfeeaxcuZLzzjtPRVoRESm4fGc79+/X1tZWyHDKUv/s6pHGIiIiIiJSPBMqWJvZ14BlwG7gDuAU4B/d/fsTjOtB4Dh332lm5wH/BcweIYaLgYsBZs2aNcHDihSfWmCIiIiISBTybRGUj02bNgH5XzTLVSW2IxIREZG0ic6wnufunzWz9wMp4IPAXcCECtbu/uqAx+1m9h9m1uDuXcO8dgWwAqC5udknclyRKPS3wBARERERKaZkMsmjDz/MoQcV/8ba3t59ADz9RPFvjN2xV3c9iIiIVLKJ/uVSl/l8HnCzu79kZhP8kmBmRwOb3d3N7DTSvba3TfgLi4iIiIiMYerUqezcuTNrLFKuDj1oEqfNODx0GAX1wOaXQ4cgIiIiRTTRgvUvzOxJ0i1B/sHMjgReG2snM7sZmAs0mFkKuIJM8dvdrwM+AHzCzHozX/tCd9fsaREREREpOvWwFhEREREJZ0IFa3f/vJl9FXjV3feZWTdwwTj2u2iM568BrplIbCIiIiIi+XjXu97FqlWr9o/nzp0bLhgRERERkSpTM5Gdzawe+CRwbWbTMUDzRIMSkeqxceNGWltbI1sQqNR1dXVx6aWXsm2buiCJiIiIiIiISPWZUMEa+C6wF3hHZpwClk3wa4pUNBUksy1btoxdu3Zx5ZVXhg6lJCQSCTZs2EAikQgdiohI1brvvvuyxvfee2+gSEREhjKz2tAxiIiIFNNEC9YnuPvXgB4Ad98NTHzVRZEKpoLkARs3bqSzsxOAzs7Oqp9l3dXVRUdHB+5OR0eHLmpIwZnZI2a2YZiPR8xsQ+j4REpFS0sLkyalO+dNmjSJefPmBY5IRCRL0sz+1cxOzHVHM5tmZreZ2ZNm9oSZvb0YAYqIiEzERAvWe81sCuAAZnYCsGfCUYlUqIEFyfb29qovSC5bln1DRrXPsk4kEvSvL9vX16eLGlIM5wPvHeajf7uIAPF4nJqa9J/JtbW1xOPxwBGJiGQ5GdgI3GBm95vZxWZ22Dj3vRq4w93fAJwCPFGsIEVERPI10YL1EuAO4Fgz+wHwK+BzEw1KpFIlEgl6enoA6OnpqfqCZP/s6pHG1WbNmjVZPx+rV68OHJFUGnd/uv8DeA34/zIfuzPbRARoaGjgzDPPBODMM89k+vTpgSMSETnA3Xe4+7fd/R3AZ4ErgBfMLGFmTSPtlylqnwHcmPk6e919exQxi4iI5GLSRHZ299Vmtg54G+lWIAvdvasgkYlUoNWrV++fQevurFq1ikWLFgWOKpypU6eyc+fOrHE1a2lpob29nZ6eHurq6nQLuhSNmf018K/A3aTz93Iz+4y73xY0MJESsmfPnqzPIiKlItPD+j3AR4FG4BvAD4DTgXZgzgi7/imwFfiumZ0CrCP9Hn5XsWMWqWZtbW10dHTkvF93d/f++kEUzIz6+vqc92ttbWXBggVFiEiq2YRmWJvZr9x9m7v/0t1vd/cuM/tVoYITqTQzZswYdVxtent7Rx1Xm3g8jll6GYCamhrdgi7F9M/An7l73N0/ApwGfDFwTCIlo6ura/9Ci/fcc0/Vt/ASkZKzCbgA+Fd3f5O7f9PdN2cuPN8xyn6TgDcD17r7m4BdwOcHviDTXmStma3dunVrseIXEREZVV4zrM1sMlAPNJjZ4RxYaPEw4JgCxSZScV544YVRx9XmnHPO4ec///n+8bnnnhswmvAaGhpobW1l5cqVtLa26hZ0KaYad98yYLyNMS5im9l3SPe63uLuJ2W2/Svp3td7gT8AH9WtxVIJrr/+evr6+oD0mgLXX389l112WeCoRHKXSqXYsbeXBza/HDqUgtqxt5dUKhU6jJA+4u6/HrjBzN7p7v/t7qNNc0wBKXf/XWZ8G4MK1u6+AlgB0NzcHN3UTpEKtmDBAs1AFslRvi1BLgH+kXRxeh0HCtavAv8+8bBEKlNdXV3WrcV1dXUBowkvHo9ntcDQjOL0Oens7NS5kGK7w8xWATdnxn9D+hbi0XwPuAa4acC2NcAX3L3XzL4KfAGtZSEV4M4778war1mzRgXrMtDW1kYymYzseJs2bQKIrAjR1NSkgof0ayM9U3qg5cNsy+LuL5rZs2b2enf/H+As4PEixSgiIpK3vArW7n41cLWZXeruywsck0jFGtivebhxtWloaOC8885j5cqVvOc979GMYtLnZPly/VqV4nL3z5jZXwHvJH3ReYW7/2yMfe41s8ZB2wauDHo/8IFCxyoiMl7JZJLHHnmCafVHRXK8vr3pOTvP/aH4LWO2d28Z+0XDiMVi7NvxCqfNOLzAEYX1wOaXicViocOInJm9HXgHcKSZDVwI5zCgdpxf5lLgB2Z2EPAU6T7YIiIiJWWiiy4uN7OTgBOByQO23zTyXiLVS4sMDqUZxSJhuPtPgJ8U8Ev+PfCjAn49kWCOOuqorLZd1b7mRDmZVn8UZ77hwtBhFNxdT94SOgQpDQcBU0m/jz90wPZXGedFY3dfDzQXPDIREZECmlDB2syuAOaSLli3A63Ar8m+XVhEMnp6ekYdVyPNKBaJnpn9JfBV4CjSM6wNcHc/LM+v989AL/CDUV5zMXAxwKxZs/I5jEhkNm/enDV+8cUXA0UiInKAu98D3GNm33P3p0PHIyIiUiyjLrA0Dh8g3ffqRXf/KHAKcPCEoxKpUEcdddSo42q0ceNGWltbI+05KSJ8DXifu/+Jux/m7odOoFgdJ70Y4/929xEXZ3L3Fe7e7O7NRx55ZJ5hi0Sjf8HFkcYiIiGY2bcyD68xs5WDP0LGJiIiUkgTmmEN7Hb3PjPrNbPDgC3AnxYgLpGK9Pzzz486rkZLly5l165dXHHFFfzgByNOzhSRwtrs7k9M9IuY2bmkF1l8l7t3TzwsERERGcV/Zj5/PWgUIiIiRTbRgvVaM5sGfBtYB+wEHphoUCKVat++faOOq83GjRt59tlnAXj22WdJJpM0NTUFjkqkcmVagUA6f/8I+C9gT//z7v7TUfa9mXQbsAYzSwFXAF8gfWfVGjMDuN/dP16U4EVERKqcu6/LfL4ndCwiIiLFNNFFF/8h8/A6M7sDOMzdN0w8LBGpBkuXLs0aa5Z1uoi/cOFCli9fruK9FMN7BzzuBuYNGDswYsHa3S8aZvONBYpLpKTU19fT3d2dNRYRCc3MHiGdr4fl7idHGI6IiEjRTHSGNWY2Eziu/2uZ2Rnufu9Ev65Uhq6uLpYuXcqSJUuYPn166HCkxPTPrh5pXI2WLVvGrl27uPLKK7npJq1fK4WVWW9CRMagO6JEpESdHzoAERGRKExo0UUz+yrw38Bi4DOZj08XIC6pEIlEgg0bNpBIJEKHIiUo00JgxHG12bhxI52dnQB0dnZqIcqMrq4uLr30UrZt2xY6lIphZjEz+5mZbTGzzWb2EzOLhY5LpFRMmzYta3z44YeHCUREZAB3f3q0j9DxiYiIFMpEZ1j/BfB6d98z1gul+nR1ddHe3o67097eTjwe1yxryfK2t72N3/72t/vHb3/72wNGE96yZcuyxpplnTbwwteiRYtCh1Mpvgv8EPhgZvyhzLaWYBGJlJDNmzdnjV988cVAkUguUqkUr3Tv4K4nbwkdSsFt796Cp3aHDkNKhJm9DVgOvBE4CKgFdrn7YUEDExERKZAJzbAGngLqChGIVJ5EIkFvby8APT09mmUNHHLIIaOOq81hhx026rja9M+uHmlcjbq6uujo6MDd6ejo0CzrwjnS3b/r7r2Zj+8BR4YOSkRERMblGuAiYBMwBZhPuoAtIiJSEfKaYW1my0kv9tANrDezXwH7Z1m7+4LChCflbPXq1bin1wRxd1atWlX1syPf8IY3sG7duv3jE088MWA04d17b3a7+3vuuYfLLrssUDThNTY2ZhWpGxsbg8VSKhKJxP7fI319fZplXThdZvYh4ObM+CJAVwNEpKzFYjFszzbOfMOFoUMpuLuevIWZMd2pKAe4e9LMat19H/BdM/tN6JhEREQKJd+WIGszn9cBKwsUi1SYGTNmZBXfZsyYES6YErF+/fqs8YMPPhgmkBJx6KGHsnv37qxxJWlra8upD/VBBx00ZLxgwfiv/zU1NeX0+nKwZs0aenp6gPSdGqtXr1bBujD+nvTsrH8jfQH6N5ltIhUn19/FIynF38eF+t7GY9OmTUBu52GiKjGvhbBjby8PbH656Mfp7k0vTlo/qbbox9qxt7foxyhx3WZ2EOnJY18DXgCq+9ZNERGpKHkVrN19f2+HTKJ8A+k3vP/j7nsLFJuUucH9HwePq9G+fftGHVebLVu2jDquNvX19ZgZ7s7BBx9MfX196JCCa2lpob29nZ6eHurq6pg3b17okCqCuz8DvC90HCIyMclkkifXr+foCI7V30dw+6CL78WiruGF0dTUFNmx+i9qHDd7diTHi/J7K0EfJt23+lPAPwHHAn8VNCIREZECmtCii2Z2HnA98AfAgOPN7BJ37xhjv+8A5wNb3P2kYZ434GrgPNJtR/7O3at7KmoZmjdvHitXrsTdMTPOOeec0CGJRCqfWWHz588nmUxy7bXXVvsbMQDi8TgdHemUUlNTQzweDxxRZTCzBLDQ3bdnxocD33B3zbKWipPP7+KvfOUr+3/3ALz3ve/lM5/5TCHDKpijgY9hocMouBvx0CFUhChnqPcfq62tLbJjVit3fzrzcDewNGQsIiIixTDRRRe/CZzp7nPd/V3AmaRvLx7L94BzR3m+FZid+bgYuHaCcUoA8Xicurr0mpx1dXUqNMkQ6WtTI4+rUX19PSeffLKK1RkNDQ20trZiZrS2tjJ9uvp3FsjJ/cVqAHd/GXhTuHBESssXvvCFrHGpFqtFpDqZ2R/N7KnBH6HjEhERKZSJFqy3uPvAxnlPAWPe0+/u9wIvjfKSC4CbPO1+YJqZvW5ioUrUBhaazjvvPBWaZIj+xfRGGotA+uLXySefrItehVWTmVUNgJkdwQTvuhKpNNOmTQPSs6tFREpMM/BnmY/TgTbg+0EjEhERKaCJvjl9zMzagVtJ97D+IPB7M/tLAHf/aZ5fdybw7IBxKrPthQnEKgHE43E6OztVaKoC+Sz8dPDBB7Nnz56scSkuaiVhNTQ0sHz58tBhVJpvAL8xs9sy4w8CXw4YT97yXXQulUoBEIvFct63EhfUg+gX1Sv13+GNjY2AZleLSOlx922DNn3LzH4NXB4iHpHB2traslprjVd3d3ekk5jMLK91g1pbW0v6bxiRSjDRgvVkYDPwrsx4K3AE8F7SBex8C9bD9QUY9reWmV1Mum0Is2bNyvNwUiwqNGVraGigq6sra1zNjjvuODZu3Jg1FpHic/ebzGwt8G7SOfcv3f3xwGFFavfu3aFDGFMymWTjow8ya2o0C/Qe1JO+8e61zt8X/VjP7Kwt+jFERCqVmb15wLCG9IzrQwOFIyIiUnATKli7+0cLFcggKdIrHfeLAc+PEMMKYAVAc3Oz+glISRtYrB5uXM7yvcLc0tLCnj17aGxs5IYbbihwVCIyUKb1R78XgR8OfM7dR2vXVZLy/d1TLouDzZq6j8XNO0OHUXDL1k4NHYKISDn7BgcmdPUCnaTvlhIpCQsWLNAMZBGZkLwK1ma2nBFmPAO4+0R/M60EPmVmtwBvBV5xd7UDEalAxx13HMlkkssv1x2MIhFYRzp/99/J1J/LLfP4T0MEJSIiIjm5naH5/Pz+Bczd/ZuB4hIRESmIfGdYr53IQc3sZmAu0GBmKeAKoA7A3a8D2oHzgCTQDRRrJreIBFZfX8/JJ59MU1NT6FBEKp67H9//ODPbejbp9l4iIhVhe/cW7nrylkiOtfO1lwGYOvnwMV45cdu7tzATLWAu+72F9IKLPyddtH4vcC/Z60CJiIiUrbwK1u6emMhB3f2iMZ534JMTOYaIiJSWqBfHK/UF3UIys/nAQtItt9YDbwN+A5wVMCwRkQmJ+uL3pk3pLkozTyh+IXkm03VxXwZqAN7s7jsAzGwJ8GN3nx80KhERkQKZUA9rM7uLYVqDuPu7J/J1y1lXVxdLly5lyZIlTJ+uWRA6HyIyUeWwOF4ZWkh6Ztb97n6mmb0BWBo4JhGRCYn6ImW59MKXijQL2DtgvBdoDBOKiIhI4U2oYA18esDjycBfkV70oWolEgk2bNhAIpFg0aJFocMJTudDRPpV+uJ4ZeY1d3/NzDCzg939STN7feig8p2Fn49NmzYB0RW4NONfREQK6D+BB8zsZ6QnkL0fmNBd0CIiIqVkQgVrd183aNN/m9k9E/ma5ayrq4uOjg7cnY6ODuLxeFXPKtb5EBEpWSkzmwb8F7DGzF4Gng8aEZBMJnnokcfpqz+i6MeyvekbxNb94cWiH6um+6WiH0NERKqHu3/ZzDqA0zObPuruD4WMSUREpJAm2hJk4DvKGqAZOHpCEZWxRCJBuv029PX1Vf2sYp0PEZHS5O7vzzxckmnv9SfAHQFD2q+v/gheO/H80GEU1OTHbw8dglSoVCrFDuDGoR36yt4LwM7MGgYiMpS7Pwg8GDoOERGRYqiZ4P7rgLWZz78BFgEfm2hQ5WrNmjX09PQA0NPTw+rVqwNHFJbOh4hI6XP3e9x9pbvvHfvVIiIiIiIiIsU10R7WnwPucPdXzeyLwJuB7omHVZ5aWlpob2+np6eHuro65s2bFzqkoCr9fOTTa7Wmpoa+vr6s8Xh7mqr/aTiV3FcX9LMlIlKuYrEY27u6+BgWOpSCuxFnWiwWOgwRERERCWCiBevF7n6rmf050AJ8A7gWeOuEIytD8Xicjo4OIF2IjMfjgSMKS+djqMbGRp566qmssZS+ZDLJY488wbT6o4p+rL696aLDc3/YVvRjAWzv3pLzPlEW8EGL44mIiIiIiIhUk4kWrPdlPr8HuM7df25mSyb4NctWQ0MDra2trFy5ktbW1qpfYLDSz0e+Ba25c+fS19dHfX093/ve9woblBTNtPqjOPMNF4YOo+DuevKWnPdJJpM8+vDDHHrQRFPI+PT2plPN0088VvRj7djbW/RjiIiIiIiIiMjIJlpteM7MrgfOBr5qZgcz8b7YZS0ej9PZ2anZxBk6H0P1z7L+8pe/HDoUkbwdetAkTptxeOgwCu6BzS+HDqFkmdl3gPOBLe5+UmbbEcCPgEagE/hrd9dJlKKp5BZNurtDRERERCRtogXrvwbOBb7u7tvN7HXAZyYeVvlqaGhg+fLlocMoGTofQx122GGceuqpvOUtbwkdiohILr4HXAPcNGDb54FfuftVZvb5zPhzAWKTKpFMJnnosYdgWgQHyyw58dBzDxX/WNuLfwgRERERkXIxoYK1u3cDPx0wfgF4YaJBiUhYmsEmIoO5+71m1jho8wXA3MzjBHA3KlhLsU2Dvrl9Y76snNTcXdU3KIqIiIiIZImmAamIlJVkMsmT69dzdATH6n+Lvn39+qIf68U890ulUrzSvSOvfs+lbnv3Fjy1O6d9UqkUO/b2VmT7jB17e0mlUqHDKCczMhercfcXzKz4K5NWkVQqxa4dtSxbOzV0KAX39I5aDtH/NRERERERGYYK1jIu+c647S/8xGKxnPfVTNiwjgY+hoUOo6BuxEOHIFK1zOxi4GKAWbNmDfuaVCpFTfcrTH789ihDK7qa7m2kUlrQU0REREREZDxUsJai2r07t5mbIqUoFothe7Zx5hsuDB1Kwd315C3MjE3PaZ9YLMa+Ha9U7KKL+Vxgq2Kbzex1mdnVrwO2jPRCd18BrABobm7W1aNxiMVivNb7Aoubd4YOpeCWrZ3KZP1fExGJnJnVAmuB59z9/NDxiIiIDEcFaxmXfGc69+/X1tZWyHBEJLAoW4J09+4DoH5SbdGPtWOvZsHmaCUQB67KfP75RL5YLBZj855JvHZiZb1/nvz47cRiUTRZkmr0ItHcQbQt8zm3S5z5e5Fo1taUofK9s3Ii65LozspILQSeAA4LHYiIiMhIVLAWEZGcNDU1RXq8/jfAx82eHcnxov7+yoWZ3Ux6gcUGM0sBV5AuVN9qZh8DngE+GC5CkeoT5e+rrZnfxdMi+l08Df0+LjdTpkwJHYKMwcxiwHuALwOLAocjIiIyIhWsperlO4skXxOZfZIPzViRQov650l3apQGd79ohKfOKuRxarpfiqSHtb32KgA+ufgTzGq6X4JIlrGtfKlUCl6Bmrtrxn5xOdkOKc99Ecoofx/rd3H10N+NFe1bwGeBQwPHUXHa2tro6OjIaZ/u7m7co+2SZmbU19fntE9ra6t+L4hI5FSwlqqXTCZ56LGHorvvtC/96aHnHir+sbbnt1sqlWIHlbdI4QvAzlTuBQGA7d1buOvJWwob0DB2vpZuszF1cjT9obd3b2FmZDd4i4wuytmUmzbtAGD2CVEUko/WTFEREQnKzM4Htrj7OjObO8rrxlwkWUREpNhUsB5BvrNuU5liWK6LdmkWbGDToG9uX+goCq7iZqAFEm0R7SUAZp4QTRF5JtMj+/6i7omp36vlR7NFh3pmZy3L1k6N5Fibu9M5Y0Z98fPhMztrmZPHfrFYjK22teJyds3dNcRmahFKESmqdwLvM7PzgMnAYWb2fXf/0MAXaZHk/CxYsEB/d4qIFFDFF6wnUnjevXt3zvv175PrvqlUKq84VZCRYojFYmzv6uJjWOhQCupGnGk5XkwCFdFCU09MqVZRz8rem7k4NLmx+D2K56D+xCIiUXL3LwBfAMjMsP704GK1iIhIqaj4gnUymeShRx6nr/6IHPecBDW5t/ay2vRF6Fdz3PfVPbD5Dy/mtE+6J2buouzZHHW/ZlARX6RU6f+lSG7UL15ERERERKpRxResAfrqj+C1E88PHUbB5bsoVTKZZOOjDzJr6r4CRzTUQT3p24tf6/x90Y8F6VuMc1WxCzhB3os4AbxIND2st2U+R9EA40Wia1UuIiJFsj2inL0z8zmKjizbgZkRHEdEBHD3u4G7A4chIiIyoqooWMtQs6buY3HzzrFfWGai6vNZ6aK8TXtrZhb+tNnFvwV9GroFXUSknEW7pkA6P82eWfz8xEzlJxERERGRfkEK1mZ2LnA1UAvc4O5XDXp+LvBz4I+ZTT919yujjLGSpVIpdu2IbhGnKD29o5ZDUrnNKK7UBZwg/0Wc1LNZRERKkfKTiIiIiEjli7xgbWa1wL8DLUAK+L2ZrXT3xwe99D53n3Afj1QqRU33K3m3zyhlNd3bSKV6Q4chIiIiIlK28l3fJd+1WrTeioiIiMjoQsywPg1IuvtTAGZ2C3ABMLhgLUUSi8V4rfeFim0JMjmW+4ziyPphgnpiioiIiFSAKVOmhA5BREREpCKFKFjPBJ4dME4Bbx3mdW83s4eB54FPu/tj+RwsFoux9eVX89k1L/Za+lg++bAojkYsn+KsZIm6Z6R6YoqIiIiUDs12FhERESktIQrWNsw2HzR+EDjO3Xea2XnAfwHDVvfM7GLgYoBZs2YNeT76YuQOAGafcHQERzs67+/vmZ3R9LDe3J2etTyjPpr+0M/srGVOjvtE/SZFPTFFRERERERERESGF6JgnQKOHTCOkZ5FvZ+7vzrgcbuZ/YeZNbh71+Av5u4rgBUAzc3NgwvfKkYOI8oi/t7MbOLJjRHMJgbmoBnFIiLVJOres1D6/WfVj1dERERERMpZiIL174HZZnY88BxwIfC3A19gZkcDm93dzew0oAbYFnmkFSrKN5XlUMAXEZHqo96zQ+mciIiIiIhIKYi8YO3uvWb2KWAVUAt8x90fM7OPZ56/DvgA8Akz6wV2Axe6+5DZ0yIiIlLdNLN3KJ0TEREREREpZyFmWOPu7UD7oG3XDXh8DXBN1HGJiIiIiIiIiIiISDg1oQMQEREREREREREREYFAM6zLgRYsEsmNFj4TEREREREREZGJUsG6wLRgkUhuKvn/TD5FfBXwRaLR1dXF0qVLWbJkCdOnTw8djoiIiIiIiGSoYD0CFX1kLJqFn62UYysnlVzAFykliUSCDRs2kEgkWLRoUehwREREREREJEMFa5GIqSBZPVTEFylNXV1ddHR04O50dHQQj8c1y7qCqWWViIiIiEh5UcFaxkVv9oYq5dhERGRkiUQCdwegr69Ps6xlWJV8gVktq0RkItra2ujo6Mh5v+7u7v35NwpmRn19fc77tba26neWiEhgKlhLUVXymz0RESlPa9asoaenB4Cenh5Wr16tgnUFU9GhMPQ3nYiIiIhERQVrGRe92RMRkUrR0tJCe3s7PT091NXVMW/evNAhiURKf9eJyEQsWLBAv0dERKSoakIHICIiIhKleDyOmQFQU1NDPB4PHJGIiIiIiIj0U8FaREREqkpDQwOtra2YGa2trVpwUUREREREpISoJYiIiIhUnXg8Tmdnp2ZXi4iIiIiIlBgVrEVERKTqNDQ0sHz58tBhiIiIiIiIyCDm7qFjKBgz2wo8HToOoAHoCh1ECdH5GErnJJvORzadj6FK5Zwc5+5Hhg6i3ClflzSdk2w6H9l0PobSOclWKudD+boAlK9Lms5JNp2PoXROsul8ZCul8zFszq6ognWpMLO17t4cOo5SofMxlM5JNp2PbDofQ+mcSDHo52oonZNsOh/ZdD6G0jnJpvMhxaCfq6F0TrLpfAylc5JN5yNbOZwPLbooIiIiIiIiIiIiIiVBBWsRERERERERERERKQkqWBfHitABlBidj6F0TrLpfGTT+RhK50SKQT9XQ+mcZNP5yKbzMZTOSTadDykG/VwNpXOSTedjKJ2TbDof2Ur+fKiHtYiIiIiIiIiIiIiUBM2wFhEREREREREREZGSoIJ1gZjZZDN7wMweNrPHzGxp6JhKgZnVmtlDZnZ76FhKgZl1mtkjZrbezNaGjic0M5tmZreZ2ZNm9oSZvT10TCGZ2eszPxv9H6+a2T+GjiskM/unzO/UR83sZjObHDomKX/K2cNTzs6mnJ1NOfsA5euhlK+lGJSvh6d8nU35OpvydTbl7KHKJWerJUiBmJkBh7j7TjOrA34NLHT3+wOHFpSZLQKagcPc/fzQ8YRmZp1As7t3hY6lFJhZArjP3W8ws4OAenffHjiskmBmtcBzwFvd/enQ8YRgZjNJ/y490d13m9mtQLu7fy9sZFLulLOHp5ydTTk7m3L28JSvla+leJSvh6d8nU35Opvy9ciUs8srZ2uGdYF42s7MsC7zUdVXA8wsBrwHuCF0LFJ6zOww4AzgRgB336tEmuUs4A/VmkgHmARMMbNJQD3wfOB4pAIoZw+lnC2jUc4elfJ1mvK1FJzy9VDK1zIa5esxKWenlUXOVsG6gDK35qwHtgBr3P13gUMK7VvAZ4G+wHGUEgdWm9k6M7s4dDCB/SmwFfhu5pa2G8zskNBBlZALgZtDBxGSuz8HfB14BngBeMXdV4eNSiqFcvYQ30I5ezDl7AOUs0emfK18LUWkfD3Et1C+Hkz5+gDl69EpZ5dRzlbBuoDcfZ+7nwrEgNPM7KTAIQVjZucDW9x9XehYSsw73f3NQCvwSTM7I3RAAU0C3gxc6+5vAnYBnw8bUmnI3Lr1PuDHoWMJycwOBy4AjgeOAQ4xsw+FjUoqhXL2AcrZI1LOPkA5exjK12nK11JMytcHKF+PSPn6AOXrEShnp5VTzlbBuggyt1zcDZwbNpKg3gm8L9NP6hbg3Wb2/bAhhefuz2c+bwF+BpwWNqKgUkBqwCyJ20gnV0n/sfWgu28OHUhgZwN/dPet7t4D/BR4R+CYpMIoZwPK2cNSzs6inD085es05WspOuVrQPl6WMrXWZSvR6acnVY2OVsF6wIxsyPNbFrm8RTSPwRPBg0qIHf/grvH3L2R9G0X/8/dS/KqTVTM7BAzO7T/MTAPeDRsVOG4+4vAs2b2+syms4DHA4ZUSi6iym9VyngGeJuZ1WcW3TkLeCJwTFIBlLOzKWcPpZydTTl7RMrXacrXUhTK19mUr4dSvs6mfD0q5ey0ssnZk0IHUEFeByQyq47WALe6++2BY5LSMgP4Wfp3ApOAH7r7HWFDCu5S4AeZ23OeAj4aOJ7gzKweaAEuCR1LaO7+OzO7DXgQ6AUeAlaEjUoqhHK2jEU5eyjl7AGUrw9QvpYiUr6WsShfD6V8PYhy9gHllLPNvaoX2RURERERERERERGREqGWICIiIiIiIiIiIiJSElSwFhEREREREREREZGSoIK1iIiIiIiIiIiIiJQEFaxFREREREREREREpCSoYC0iIiIiIiIiIiIiJUEFa5EqZ2aNZvZo5nGzmbVlHs81s3eEjU5ERERA+VpERKRcKGeLTNyk0AGISOlw97XA2sxwLrAT+E2wgERERGQI5WsREZHyoJwtkh/NsBYpY2b2z2b2P2Z2p5ndbGafNrO7zaw583yDmXVmHjea2X1m9mDmY8iV3cwV39vNrBH4OPBPZrbezE43sz+aWV3mdYeZWWf/WEREREamfC0iIlIelLNFSoNmWIuUKTN7C3Ah8CbS/5cfBNaNsssWoMXdXzOz2cDNQPNwL3T3TjO7Dtjp7l/PHO9u4D3Af2WO+xN37ynMdyMiIlKZlK9FRETKg3K2SOnQDGuR8nU68DN373b3V4GVY7y+Dvi2mT0C/Bg4Mcfj3QB8NPP4o8B3c9xfRESkGilfi4iIlAflbJESoRnWIuXNh9nWy4GLUZMHbP8nYDNwSub513I6kPt/Z255ehdQ6+6P5hGviIhINVK+FhERKQ/K2SIlQDOsRcrXvcD7zWyKmR0KvDezvRN4S+bxBwa8/k+AF9y9D/gwUDvG198BHDpo202kb3PSlV8REZHxUb4WEREpD8rZIiVCBWuRMuXuDwI/AtYDPwHuyzz1deATZvYboGHALv8BxM3sfmAOsGuMQ/yCdLJeb2anZ7b9ADicdEIVERGRMShfi4iIlAflbJHSYe7D3e0gIuXGzJYwYAGHIh3jA8AF7v7hYh1DRESkkilfi4iIlAflbJFw1MNaRMbFzJYDrcB5oWMRERGR4Slfi4iIlAflbJGRaYa1iIiIiIiIiIiIiJQE9bAWERERERERERERkZKggrWIiIiIiIiIiIiIlAQVrEVERERERERERESkJKhgLSIiIiIiIiIiIiIlQQVrERERERERERERESkJKliLiIiIiIiIiIiISEn4/wEQiZevgrOv0wAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 1800x720 with 12 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Define the number of rows and columns for the subplot\n", "nrows, ncols = 4, 3\n", "\n", "# Create the subplot using the defined number of rows and columns\n", "fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(25, 10))\n", "\n", "# Define the columns to plot\n", "cols_to_plot = data.columns\n", "\n", "# Loop through each column and plot it against the quality column\n", "for i, col in enumerate(cols_to_plot):\n", " row_idx = i // ncols\n", " col_idx = i % ncols\n", " sns.boxplot(x='quality', y=col, data=data, ax=axes[row_idx][col_idx])\n", " \n", "# Add a title for the entire plot\n", "fig.suptitle('Box plots of variables against quality')\n", "\n", "# Show the plot\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABwAAAAWYCAYAAACxvdIYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde7xlZ1kn+N+TFBe5aTAFJpUqEjXQEkbDWKY1NHaUtomXMdIjJGkHo2ZMaEMrtm1LcFrodvIZRrn1tIIpTEzoxpAoIFERjGmEtiOXCsaQEGhCgqlKlUlxEVA0WlXP/LFXkZ3KOVWnTp299zn7fL+fz/7std71rrWfs06yz1PrWet9q7sDAAAAAAAAzIdjZh0AAAAAAAAAsHIUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzZMOsAzgaxx9/fJ988smzDgMAWAduvvnmT3f3xlnHMUlyKwBgGuRVAAArZ7Hcak0XAE8++eRs37591mEAAOtAVf3FrGOYNLkVADAN8ioAgJWzWG5lCFAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAGBdqKpHV9UHq+rPq+r2qvoPQ/sTq+qGqvrE8H7c2D6XVtWdVfXxqnru7KIHAFg6BUAAAAAA1osHknxnd39TktOTnF1V35rkpUlu7O5Tk9w4rKeqnp7kvCSnJTk7yeur6thZBA4AcCQUAAEAAABYF3rkr4fVRwyvTnJOkquH9quT/MCwfE6St3T3A919d5I7k5wxvYgBAJZHARAAAACAdaOqjq2qW5Lcn+SG7v5Akid39+4kGd6fNHTflGTH2O47h7aFjntRVW2vqu179uyZWPwAAEuhAAgAAADAutHd+7r79CQnJTmjqp5xiO610CEWOe627t7a3Vs3bty4ApECACyfAiAAAAAA6053/1WSP85obr/7quqEJBne7x+67UyyeWy3k5Lsml6UAADLowAIAAAAwLpQVRur6quG5a9I8s+SfCzJ9UkuGLpdkOQdw/L1Sc6rqkdV1SlJTk3ywakGDQCwDBtmHQAAAAAATMkJSa6uqmMzujH+uu7+var60yTXVdWFSe5J8vwk6e7bq+q6JB9NsjfJJd29b0axAwAsmQIgAAAAAOtCd9+a5JkLtH8myXMW2eeyJJdNODQAgBVlCFDmyqbNW1JVy3pt2rxl1uEDALAClpsTygcBWCuO5vqHv5EAsD54ApC5smvnjpx7+U3L2vfai89c4WgAAJiF5eaE8kEA1oqjuf6xHP5GAsDa4wlAAAAAAAAAmCMKgAAAAAAAADBHFAABAAAAAABgjigAAgAAAAAAwBxRAAQAAAAAAIA5ogAIAAAAAAAAc0QBEAAAAAAAAOaIAiAAAAAAAADMEQVAAAAAAAAAmCMKgAAAAAAAADBHFAABAAAAAABgjigAAgAAAAAAwByZWAGwqjZX1Xuq6o6qur2qfmpof2JV3VBVnxjejxvb59KqurOqPl5Vz51UbAAAAAAAADCvJvkE4N4kP9Pd35DkW5NcUlVPT/LSJDd296lJbhzWM2w7L8lpSc5O8vqqOnaC8QEAAAAAAMDcmVgBsLt3d/eHh+UvJrkjyaYk5yS5euh2dZIfGJbPSfKW7n6gu+9OcmeSMyYVHwAAAAAAAMyjqcwBWFUnJ3lmkg8keXJ3705GRcIkTxq6bUqyY2y3nUPbwce6qKq2V9X2PXv2TDRuAIDVoqqurKr7q+q2sbZrq+qW4fWpqrplaD+5qv52bNuvzSxwAAAAAKZuw6Q/oKoel+StSV7S3V+oqkW7LtDWD2vo3pZkW5Js3br1YdsBAObUVUl+JcmbDjR097kHlqvq1Uk+P9b/k919+rSCAwAAAGD1mOgTgFX1iIyKf2/u7rcNzfdV1QnD9hOS3D+070yyeWz3k5LsmmR8AABrRXe/L8lnF9pWozusXpDkmqkGBQAAAMCqNLEC4HAh6ookd3T3a8Y2XZ/kgmH5giTvGGs/r6oeVVWnJDk1yQcnFR8AwBx5dpL7uvsTY22nVNWfVdV7q+rZswoMAAAAgOmb5BCgz0rywiQfOTAfTZKXJXllkuuq6sIk9yR5fpJ09+1VdV2SjybZm+SS7t43wfgAAObF+Xno03+7k2zp7s9U1Tcn+Z2qOq27v3DwjlV1UZKLkmTLli1TCRYAAACAyZpYAbC7/yQLz+uXJM9ZZJ/Lklw2qZgAAOZNVW1I8i+SfPOBtu5+IMkDw/LNVfXJJE9Nsv3g/c2vDAAAADB/JjoHIAAAE/fPknysu3ceaKiqjVV17LD8tRkNrX7XjOIDAAAAYMoUAAEA1oCquibJnyZ5WlXtHIZTT5Lz8tDhP5Pk25PcWlV/nuS3k7youz87vWgBAAAAmKVJzgEIAMAK6e7zF2n/kQXa3prkrZOOCQAAAIDVyROAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAA1oWq2lxV76mqO6rq9qr6qaH9FVV1b1XdMry+Z2yfS6vqzqr6eFU9d3bRAwAs3YZZBwAAAAAAU7I3yc9094er6vFJbq6qG4Ztr+3uV413rqqnJzkvyWlJTkzyR1X11O7eN9WoAQCOkCcAAQAAAFgXunt3d394WP5ikjuSbDrELuckeUt3P9Dddye5M8kZk48UAODoKAACAAAAsO5U1clJnpnkA0PTi6vq1qq6sqqOG9o2JdkxttvOLFIwrKqLqmp7VW3fs2fPpMIGAFgSBUAAAAAA1pWqelyStyZ5SXd/IckbknxdktOT7E7y6gNdF9i9Fzpmd2/r7q3dvXXjxo0rHzQAwBFQAAQAAABg3aiqR2RU/Htzd78tSbr7vu7e1937k7wxDw7zuTPJ5rHdT0qya5rxAgAshwIgAAAAAOtCVVWSK5Lc0d2vGWs/Yazb85LcNixfn+S8qnpUVZ2S5NQkH5xWvAAAy7Vh1gEAAAAAwJQ8K8kLk3ykqm4Z2l6W5PyqOj2j4T0/leTiJOnu26vquiQfTbI3ySXdvW/KMQMAHLGJFQCr6sok35fk/u5+xtB2bZKnDV2+Kslfdffpw6TLdyT5+LDt/d39oknFBgAAAMD6091/koXn9XvnIfa5LMllEwsKAGACJvkE4FVJfiXJmw40dPe5B5ar6tVJPj/W/5PdffoE4wEAAAAAAIC5N7ECYHe/b3iy72GG8dZfkOQ7J/X5AAAAAAAAsB4dM6PPfXaS+7r7E2Ntp1TVn1XVe6vq2YvtWFUXVdX2qtq+Z8+eyUcKAAAAAAAAa8isCoDnJ7lmbH13ki3d/cwk/ybJb1bVExbasbu3dffW7t66cePGKYQKAAAAAAAAa8fUC4BVtSHJv0hy7YG27n6guz8zLN+c5JNJnjrt2AAAAAAAAGCtm8UTgP8syce6e+eBhqraWFXHDstfm+TUJHfNIDYAAAAAAABY0yZWAKyqa5L8aZKnVdXOqrpw2HReHjr8Z5J8e5Jbq+rPk/x2khd192cnFRsAAAAAAADMqw2TOnB3n79I+48s0PbWJG+dVCwAAGtdVV2Z5PuS3N/dzxjaXpHkx5PsGbq9rLvfOWy7NMmFSfYl+cnufvfUgwYAAABgJmYxBCgAAEfuqiRnL9D+2u4+fXgdKP49PaNRF04b9nn9geHWAQAAAJh/CoAAAGtAd78vyVKHSD8nyVu6+4HuvjvJnUnOmFhwAAAAAKwqCoAAAGvbi6vq1qq6sqqOG9o2Jdkx1mfn0PYwVXVRVW2vqu179uxZqAsAAAAAa4wCIADA2vWGJF+X5PQku5O8emivBfr2Qgfo7m3dvbW7t27cuHEiQQIAAAAwXQqAAABrVHff1937unt/kjfmwWE+dybZPNb1pCS7ph0fAAAAALOhAAgAsEZV1Qljq89LctuwfH2S86rqUVV1SpJTk3xw2vEBAAAAMBsbZh0AAACHV1XXJDkryfFVtTPJy5OcVVWnZzS856eSXJwk3X17VV2X5KNJ9ia5pLv3zSBsAAAAAGZAARAAYA3o7vMXaL7iEP0vS3LZ5CICAAAAYLUyBCgAAAAAAADMEQVAAAAAAAAAmCMKgAAAAAAAADBHFABhhWzavCVVtazXps1bZh0+AAAAAAAwJzbMOgCYF7t27si5l9+0rH2vvfjMFY4GAAAAAABYrzwBCAAAAAAAAHNEARAAAAAAAADmiAIgAACsUcudg9j8wwAAADDfzAEIAABr1HLnIDb/MAAAAMw3TwACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAYMY2bd6SqjriFwAAAMBCNkzqwFV1ZZLvS3J/dz9jaHtFkh9Psmfo9rLufuew7dIkFybZl+Qnu/vdk4oNAABWk107d+Tcy2864v2uvfjMCUQDAAAArHWTfALwqiRnL9D+2u4+fXgdKP49Pcl5SU4b9nl9VR07wdgAAAAAAABgLk2sANjd70vy2SV2PyfJW7r7ge6+O8mdSc6YVGwAAAAAAAAwr2YxB+CLq+rWqrqyqo4b2jYl2THWZ+fQBgAAAAAAAByBaRcA35Dk65KcnmR3klcP7bVA317oAFV1UVVtr6rte/bsWagLAAAAAAAArFtTLQB2933dva+79yd5Yx4c5nNnks1jXU9KsmuRY2zr7q3dvXXjxo2TDRgAADhqmzZvSVUd8WvT5i2zDh0AAADWpA3T/LCqOqG7dw+rz0ty27B8fZLfrKrXJDkxyalJPjjN2AAAgMnYtXNHzr38piPe79qLz5xANAAAADD/JlYArKprkpyV5Piq2pnk5UnOqqrTMxre81NJLk6S7r69qq5L8tEke5Nc0t37JhUbAAAAAAAAzKuJFQC7+/wFmq84RP/Lklw2qXjgsI7ZkKqFpqMEAAAAAABYO6Y6BCisavv3LmtoqgMMUQUAAACrW1VtTvKmJF+TZH+Sbd39n6rqiUmuTXJyRqNWvaC7Pzfsc2mSC5PsS/KT3f3uGYQOAHBEjpl1AAAAAKvCMCLEkb42bd4y68gBWLq9SX6mu78hybcmuaSqnp7kpUlu7O5Tk9w4rGfYdl6S05KcneT1VXXsTCIHADgCngAEAABIlj0ihJEgANaO7t6dZPew/MWquiPJpiTnJDlr6HZ1kj9O8nND+1u6+4Ekd1fVnUnOSPKn040cAODIeAIQAAAAgHWnqk5O8swkH0jy5KE4eKBI+KSh26YkO8Z22zm0LXS8i6pqe1Vt37Nnz8TiBgBYCgVAAIA1oKqurKr7q+q2sbZfrqqPVdWtVfX2qvqqof3kqvrbqrpleP3azAIHAFiFqupxSd6a5CXd/YVDdV2grRfq2N3buntrd2/duHHjSoQJALBsCoAAAGvDVRnNOzPuhiTP6O5vTPI/k1w6tu2T3X368HrRlGIEAFj1quoRGRX/3tzdbxua76uqE4btJyS5f2jfmWTz2O4nJdk1rVgBAJZLARAAYA3o7vcl+exBbX/Y3XuH1fdndEEKAIBFVFUluSLJHd39mrFN1ye5YFi+IMk7xtrPq6pHVdUpSU5N8sFpxQsAsFwKgAAA8+HHkvzB2PopVfVnVfXeqnr2YjuZqwYAWGeeleSFSb5zbLj070nyyiTfVVWfSPJdw3q6+/Yk1yX5aJJ3Jbmku/fNJnQAgKXbMOsAAAA4OlX180n2Jnnz0LQ7yZbu/kxVfXOS36mq0xaa36a7tyXZliRbt25dcD4bAIB50d1/koXn9UuS5yyyz2VJLptYUAAAE+AJQACANayqLkjyfUl+qLs7Sbr7ge7+zLB8c5JPJnnq7KIEAAAAYJoUAAEA1qiqOjvJzyX5/u7+0lj7xqo6dlj+2ozmqrlrNlECAAAAMG2GAAUAWAOq6pokZyU5vqp2Jnl5kkuTPCrJDVWVJO/v7hcl+fYk/7Gq9ibZl+RF3f3ZmQQOAAAAwNQpAAIArAHdff4CzVcs0vetSd462YhY047ZkKFofEROPGlz7t1xzwQCWsQy4wQAAID1TgEQAADWm/17c+7lNx3xbtdefOYEgjmEtRInAAAArDLmAAQAAAAAAIA5ogAIAAAAAAAAc0QBEAAAAAAAAOaIAiCryqbNW1JVy34BAAAAAACsdxtmHQCM27VzR869/KZl73/txWeuYDQAAAAAAABrjycAAQAAAAAAYI4oAAIAAAAAAMAcUQAEAAAAAACAOaIACAAAAAAAAHNEARAAAAAAAADmiAIgAAAAAAAAzBEFQAAAAAAAAJgjEysAVtWVVXV/Vd021vbLVfWxqrq1qt5eVV81tJ9cVX9bVbcMr1+bVFwAAMAyHbMhVXXELwAAAGC6Nkzw2Fcl+ZUkbxpruyHJpd29t6r+3ySXJvm5Ydsnu/v0CcYDAAAcjf17c+7lNx3xbtdefOYEggEAAAAWM7EnALv7fUk+e1DbH3b33mH1/UlOmtTnAwAAAAAAwHo0yzkAfyzJH4ytn1JVf1ZV762qZ88qKAAAAAAAAFjLJjkE6KKq6ueT7E3y5qFpd5It3f2ZqvrmJL9TVad19xcW2PeiJBclyZYtW6YVMgAAAAAAAKwJU38CsKouSPJ9SX6ouztJuvuB7v7MsHxzkk8meepC+3f3tu7e2t1bN27cOK2wAQAAAAAAYE2YagGwqs5O8nNJvr+7vzTWvrGqjh2WvzbJqUnummZsAAAAAAAAMA8mNgRoVV2T5Kwkx1fVziQvT3JpkkcluaGqkuT93f2iJN+e5D9W1d4k+5K8qLs/O6nYAAAAAAAAYF5NrADY3ecv0HzFIn3fmuStk4oFAAAAAAAA1oupzwEIAAAAAAAATM6SCoBV9ayltAEAcGjyKgCAlSGvAgBY3FKfAPzPS2wDAODQ5FUAACtDXgUAsIhDzgFYVd+W5MwkG6vq34xtekKSYycZGADAPJFXAQCsDHkVAMDhHbIAmOSRSR439Hv8WPsXkvzgpIICAJhD8ioAgJUhrwIAOIxDFgC7+71J3ltVV3X3X0wpJgCAuSOvAgBYGfIqAIDDO9wTgAc8qqq2JTl5fJ/u/s5JBAUAMMfkVQAAK0NeBQCwiKUWAH8rya8l+fUk+yYXDgDA3JNXAQCsDHkVa8qmzVuya+eOqXzWiSdtzr077pnKZwGwOi21ALi3u98w0UgAANaHZeVVVXVlku9Lcn93P2Noe2KSazO66/1TSV7Q3Z8btl2a5MKMLob9ZHe/e0WiBwBYPVyvYk3ZtXNHzr38pql81rUXnzmVzwFg9Tpmif1+t6p+oqpOqKonHnhNNDIAgPm03LzqqiRnH9T20iQ3dvepSW4c1lNVT09yXpLThn1eX1XHrthPAACwOrheNS3HbEhVTeW1afOWWf+0ADAXlvoE4AXD+8+OtXWSr13ZcAAA5t6y8qrufl9VnXxQ8zlJzhqWr07yx0l+bmh/S3c/kOTuqrozyRlJ/vRoAgcAWGVcr5qW/Xs9uQYAa8ySCoDdfcqkAwEAWA9WOK96cnfvHo67u6qeNLRvSvL+sX47hzYAgLnhehUcwvDU5rSYcxBg9VlSAbCqfnih9u5+08qGAwAw36aUVy30L/1eJJ6LklyUJFu2GG4JAFg7XK+CQ5jiU5uJJzcBVqOlDgH6LWPLj07ynCQfTiKhAgA4MiuZV91XVScMT/+dkOT+oX1nks1j/U5KsmuhA3T3tiTbkmTr1q0LFgkBAFYp16sAABax1CFA//X4elV9ZZL/MpGIYD06imEZDLEAsLascF51fUZz37xyeH/HWPtvVtVrkpyY5NQkH1zmZwAArEquVwEALG6pTwAe7EsZXUgCVsJRDMtgiAWANW9JeVVVXZPkrCTHV9XOJC/PqPB3XVVdmOSeJM9Pku6+vaquS/LRJHuTXNLd+yYTPgDAqrHUvOrKJN+X5P7ufsbQ9ookP55kz9DtZd39zmHbpUkuTLIvyU9297tXPnQAgJW11DkAfzcPzhtzbJJvSHLdpIICAJhXy82ruvv8RTY9Z5H+lyW5bDkxAgCsBUdxveqqJL+Shw8V+truftVBn/H0JOclOS2jkRX+qKqe6uYqAGC1W+oTgOPJz94kf9HdOycQDwDAvJNXAQCsjGXlVd39vqo6eYmfcU6St3T3A0nurqo7k5yR5E+PNFgAgGk6Zimduvu9ST6W5PFJjkvy95MMCgBgXsmrAABWxgTyqhdX1a1VdWVVHTe0bUqyY6zPzqHtYarqoqraXlXb9+zZs1AXYI3ZtHlLqmpqr02bt8z6RwbmyFKHAH1Bkl9O8sdJKsl/rqqf7e7fnmBsAABzR14FALAyVjivekOSX8xoSNFfTPLqJD82HPdgvUBbuntbkm1JsnXr1gX7AGvLrp07cu7lN03t8669+MypfRYw/5Y6BOjPJ/mW7r4/SapqY5I/SuJCFQ+zafOW7Nq54/AdAWB9klcBAKyMFcuruvu+A8tV9cYkvzes7kyyeazrSUl2LTdgAIBpWWoB8JgDydTgM1ni8KGsP0dzZ4y7XABYB+RVAAArY8Xyqqo6obt3D6vPS3LbsHx9kt+sqtckOTHJqUk+uMx4AQCmZqkFwHdV1buTXDOsn5vknZMJCQBgrsmrAABWxrLyqqq6JslZSY6vqp1JXp7krKo6PaPhPT+V5OIk6e7bq+q6JB9NsjfJJd29b2V/DACAlXfIAmBVfX2SJ3f3z1bVv0jyTzIa+/xPk7x5CvEBAMwFeRUAwMo42ryqu89foPmKQ/S/LMllywwXAGAmDjcswuuSfDFJuvtt3f1vuvunM7qb6nWTDQ1YkmM2pKqW/dq0ecusfwKA9eJ1kVfBfFpmPiYPA1i210VexQrYtHnLUV1TOdIXAEzT4YYAPbm7bz24sbu3V9XJkwkJOCL79y57zsXEvIsAUySvgnm1zHxMHgawbPIqVsSunTuO6prKkfK3H4BpOtwTgI8+xLavONSOVXVlVd1fVbeNtT2xqm6oqk8M78eNbbu0qu6sqo9X1XOXFj4AwJqx7LwKAICHkFcBABzG4QqAH6qqHz+4saouTHLzYfa9KsnZB7W9NMmN3X1qkhuH9VTV05Ocl+S0YZ/XV9Wxh40eAGDtOJq8ijXgaIaQAgCOiLwKAOAwDjcE6EuSvL2qfigPJlBbkzwyyfMOtWN3v2+BYRfOSXLWsHx1kj9O8nND+1u6+4Ekd1fVnUnOyGjyZgCAefCSLDOvYm04miGkDAcFAEfkJZFXwbq1afOW7Nq5Y9ZhAKx6hywAdvd9Sc6squ9I8oyh+fe7+78t8/Oe3N27h2PvrqonDe2bkrx/rN/Ooe1hquqiJBclyZYtW5YZBgDAdE0grwIAWJfkVbC+TXPuRjfqAWvZ4Z4ATJJ093uSvGeCcSw07lEvEsu2JNuSZOvWrQv2AQBYraaQVwEArAvyKgCAxR1uDsCVdl9VnZAkw/v9Q/vOJJvH+p2UZNeUYwMAAAAAAIA1b9oFwOuTXDAsX5DkHWPt51XVo6rqlCSnJvnglGMDAAAAAACANW9JQ4AuR1Vdk+SsJMdX1c4kL0/yyiTXVdWFSe5J8vwk6e7bq+q6JB9NsjfJJd29b1KxAQAAAAAAwLyaWAGwu89fZNNzFul/WZLLJhUPAAAAAAAArAfTHgIUAAAAAAAAmCAFQAAAAAAAAJgjCoAAAAAAAAAwRxQAAQAAAAAAYI4oAAIAAAAAAMAcUQAEAAAAAACAOaIACAAAAAAAAHNEARAAAAAAAADmiAIgAAAAAAAAzBEFQAAAAAAAAJgjCoAAAAAAAAAwRxQAYb07ZkOqalmvTZu3zDp6AAAAAADgIBtmHQAwY/v35tzLb1rWrtdefOYKBwMAAAAAABwtBUAAgDWsqp6W5Nqxpq9N8gtJvirJjyfZM7S/rLvfOd3oAAAAAJgFBUAAgDWsuz+e5PQkqapjk9yb5O1JfjTJa7v7VbOLDgAAAIBZMAcgAMD8eE6ST3b3X8w6EAAAAABmRwEQAGB+nJfkmrH1F1fVrVV1ZVUdt9AOVXVRVW2vqu179uxZqAsAAAAAa4wCIADAHKiqRyb5/iS/NTS9IcnXZTQ86O4kr15ov+7e1t1bu3vrxo0bpxEqAAAAABOmAAgAMB++O8mHu/u+JOnu+7p7X3fvT/LGJGfMNDoAAAAApkYBEABgPpyfseE/q+qEsW3PS3Lb1CMCAAAAYCY2zDoAAACOTlU9Jsl3Jbl4rPmXqur0JJ3kUwdtAwAAAGCOKQACAKxx3f2lJF99UNsLZxQOAAAAADNmCFAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACa9KmzVtSVct6bdq8ZdbhAwAAAADAxGyY9gdW1dOSXDvW9LVJfiHJVyX58SR7hvaXdfc7pxsdsFbs2rkj515+07L2vfbiM1c4GgAAAAAAWD2mXgDs7o8nOT1JqurYJPcmeXuSH03y2u5+1bRjAgAAAAAAgHkx6yFAn5Pkk939FzOOAwAAAAAAAObCrAuA5yW5Zmz9xVV1a1VdWVXHLbRDVV1UVduravuePXsW6gIAAAAAAADr1swKgFX1yCTfn+S3hqY3JPm6jIYH3Z3k1Qvt193buntrd2/duHHjNEIFAAAAYE4MN57fX1W3jbU9sapuqKpPDO/HjW27tKrurKqPV9VzZxM1AMCRmeUTgN+d5MPdfV+SdPd93b2vu/cneWOSM2YYGwAAAADz6aokZx/U9tIkN3b3qUluHNZTVU/PaASr04Z9Xl9Vx04vVACA5ZllAfD8jA3/WVUnjG17XpLbHrYHAADAvDhmQ6rqiF+bNm+ZdeQAa1p3vy/JZw9qPifJ1cPy1Ul+YKz9Ld39QHffneTOuGkdAFgDNsziQ6vqMUm+K8nFY82/VFWnJ+kknzpoGwAAwHzZvzfnXn7TEe927cVnTiAYgHXvyd29O0m6e3dVPWlo35Tk/WP9dg5tD1NVFyW5KEm2bHGzBgAwWzMpAHb3l5J89UFtL5xFLAAAAACwiFqgrRfq2N3bkmxLkq1bty7YBwBgWmY5BCgAAAAArAb3HZieZni/f2jfmWTzWL+TkuyacmwAAEdMARAAAACA9e76JBcMyxckecdY+3lV9aiqOiXJqUk+OIP4AACOyEyGAAUAAACAWaiqa5KcleT4qtqZ5OVJXpnkuqq6MMk9SZ6fJN19e1Vdl+SjSfYmuaS7980kcACAI6AACCzfMRtStdB0CId34kmbc++Oe1Y4IAAAADi07j5/kU3PWaT/ZUkum1xEAAArTwEQWL79e3Pu5Tcta9drLz5zhYMBAAAA1ryjuNkYAHiQAiAAAIzZtHlLdu3cMeswAADWp6O42fhIuTkZgHmmAAgAAGN27dyxrItOLiABAAAAq8Uxsw4AAAAAAAAAWDmeAAQAAAAAYPnM3Qiw6igAAgAAAACwfOZuXBlTLKSeeNLm3Lvjnql8FjAbCoAAAAAAADBrCqnACjIHIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmyYdYBAABwdKrqU0m+mGRfkr3dvbWqnpjk2iQnJ/lUkhd09+dmFSMAAAAA0+MJQGD9OWZDqmrZr02bt8z6JwBYyHd09+ndvXVYf2mSG7v71CQ3DusAAAAArAOeAATWn/17c+7lNy1792svPnMFgwGYmHOSnDUsX53kj5P83KyCAQAAAGB6PAEIALD2dZI/rKqbq+qioe3J3b07SYb3Jy20Y1VdVFXbq2r7nj17phQuAAAAAJPkCUAAgLXvWd29q6qelOSGqvrYUnfs7m1JtiXJ1q1be1IBAgAAADA9ngAEAFjjunvX8H5/krcnOSPJfVV1QpIM7/fPLkIAAAAApkkBEABgDauqx1bV4w8sJ/nnSW5Lcn2SC4ZuFyR5x2wiBAAAAGDaDAEKALC2PTnJ26sqGeV2v9nd76qqDyW5rqouTHJPkufPMEYAAAAApkgBEABgDevuu5J80wLtn0nynOlHBEzcMRsyFP2PyIknbc69O+6ZQEAAAACsNjMpAFbVp5J8Mcm+JHu7e2tVPTHJtUlOTvKpJC/o7s/NIj4AAIBVa//enHv5TUe827UXnzmBYAAAAFiNZjkH4Hd09+ndvXVYf2mSG7v71CQ3DusAAAAAAADAEZhlAfBg5yS5eli+OskPzC4UAAAAAAAAWJtmVQDsJH9YVTdX1UVD25O7e3eSDO9PWmjHqrqoqrZX1fY9e/ZMKdz1Z9PmLamqZb0AAAAAAACYnZnMAZjkWd29q6qelOSGqvrYUnfs7m1JtiXJ1q1be1IBrne7du5Y1rwiiblFAAAAAAAAZmkmTwB2967h/f4kb09yRpL7quqEJBne759FbAAAAAAAALCWTb0AWFWPrarHH1hO8s+T3Jbk+iQXDN0uSPKOaccGAAAAAAAAa90shgB9cpK3D3PFbUjym939rqr6UJLrqurCJPckef4MYgMAAAAAAIA1beoFwO6+K8k3LdD+mSTPmXY8AAAAAAAAME9mMgcgAAAAAAAAMBkKgAAAAAAAADBHFAABAAAAAABgjigAAgAAAAAAwBxRAAQAAAAAAIA5ogAIAAAAAAAAc0QBEAAAAAAAAObIhlkHAKxTx2xIVc06CgAAAAAAmDsKgMBs7N+bcy+/adm7X3vxmSsYDAAAAAAAzA9DgAIAAAAAAMAc8QQgAAAAACSpqk8l+WKSfUn2dvfWqnpikmuTnJzkU0le0N2fm1WMAABL4QlAAAAAAHjQd3T36d29dVh/aZIbu/vUJDcO6wAAq5oCIAAAAAAs7pwkVw/LVyf5gdmFAgCwNAqAAAAAADDSSf6wqm6uqouGtid39+4kGd6fNLPoAACWyByAAAAAADDyrO7eVVVPSnJDVX1sqTsOBcOLkmTLli2Tig8AYEk8AQgAAAAASbp71/B+f5K3JzkjyX1VdUKSDO/3L7Lvtu7e2t1bN27cOK2QAQAWpAAIAAAAwLpXVY+tqscfWE7yz5PcluT6JBcM3S5I8o7ZRAgAsHSGAAUAYC5t2rwlu3bumHUYAMDa8eQkb6+qZHTN7De7+11V9aEk11XVhUnuSfL8GcYIALAkCoAAAMylXTt35NzLbzri/a69+MwJRANr13KL6SeetDn37rhnAhEBTEZ335XkmxZo/0yS50w/IgCA5VMABAAAYFGK6QAAc+iYDRmeeJ44N4bBbCgAAgAAAADAerJ/77Ju8loON4bBbBwz6wAAAFi+qtpcVe+pqjuq6vaq+qmh/RVVdW9V3TK8vmfWsQIAAAAwHQqAAGvEps1bUlXLfm3avGXWPwIwGXuT/Ex3f0OSb01ySVU9fdj22u4+fXi9c3YhAgAAADBNhgAFWCOWO//OAYZbgPnU3buT7B6Wv1hVdyTZNNuoAAAAYDDF+QYTcw7CAQqAAABzoqpOTvLMJB9I8qwkL66qH06yPaOnBD83w/AAAABYj6Y432DiJng4wBCgc+pohwoEDmG4a8kwnMBqUlWPS/LWJC/p7i8keUOSr0tyekZPCL56kf0uqqrtVbV9z5490woXAAAAgAma+hOAVbU5yZuSfE2S/Um2dfd/qqpXJPnxJAeuPL3MXDXLZ6hAmKCjuGvJ/1vAJFTVIzIq/r25u9+WJN1939j2Nyb5vYX27e5tSbYlydatW3vy0QIAAAAwabMYAnRvRkNQfbiqHp/k5qq6Ydj22u5+1QxiAgBYk2r06P4VSe7o7teMtZ8wzA+YJM9Lctss4gMAAABg+qZeABwuRO0elr9YVXck2TTtOAAA5sSzkrwwyUeq6pah7WVJzq+q05N0kk8luXgWwQEAAAAwfbN4AvDLqurkJM9M8oGMLl69uKp+OMn2jJ4S/NwC+1yU5KIk2bLFXFoASzbMXbgcJ560OffuuGeFAwJWQnf/SZKF/uc2lDoAAADAOjWzAmBVPS6juWpe0t1fqKo3JPnFjO5S/8Ukr07yYwfvZ54aYE07iiLcUTN3IQAAAADAujCTAmBVPSKj4t+bu/ttSdLd941tf2OS35tFbAATpQgHAAAAAMCEHTPtD6zRoy9XJLmju18z1n7CWLfnJblt2rEBAACwQoaRD5bz2rTZdA8AAABHYxZPAD4ryQuTfKSqbhnaXpbk/Ko6PaMhQD+V5OIZxAYAAMBKMPIBAADAzEy9ANjdf5JkoQmw3jntWAAAANaNWc5FDAAAwFTNZA5AAAAApmyZT+R5Gg8AAGDtmfocgOvJps1blj3nRVVlwyMfvex9AQAAAAAAWJ88AThBu3buWPacF8noTltzZgDzYNPmLdm1c8ey9j3xpM25d8c9KxwRAAAAAMD8UgAEYOKO5oYINzQAAAAAABwZQ4ACAAAAAADAHFEABABgVVvuvMoAAAAA65UhQAEAWNWWO4ywIYQBAACA9coTgAAAAAAAADBHFAABAAAAAID5cMyGZU0jsZzXps1bZv3TwqIMAQoAAAAAAMyH/XuXNY3Ecph6gtXME4AAAAAAAAAwRxQAAQAAAAAAYI4oAAIAADAXNm3esqy5WzY88tHmfAEAAOaKOQABAACYC7t27ljWfC/XXnzmsvcDAABYjTwBCAAAAAAAAHNEARCAwztmw7KGxTrwmtVnG5YLAAAAAFiPDAEKwOHt37usYbEOOKrhsY7isw3LBQBr1HADEAAAAMujAAgAAMDqsswbgNz8AwAAMGIIUAAAAAAAgCN1lNPmmO6GSfIEIADz6yiHDzvxpM25d8c9KxgQAAAAAHPjKKfNOVJGvOBIKAACML9mOXchAAAAAMCMGAIUAICp2LR5y7KGOAEAAADgyHgCEACAqdi1c8eynsr1NC4AAADAkfEEIAAAACzHMN/wkb42bd4y68gBAIA55wlAAAAAWI5lzjfsyWYAAGDSPAF4GMudq8Z8NQBzYJl39buzf3mO5m+ucw4AAAAAD1p1TwBW1dlJ/lOSY5P8ene/cpbxLHeumsRdnQBr3jLv6k+Sa//Vtx/VzSAnnrQ59+64Z9n7L9emzVuya+eOZe9/7CMelX3/8MCy91/u+U783V3IasurABgMNxkdqeXmB8v9+z6rfORIzfvPx+ogrwIA1ppVVQCsqmOT/GqS70qyM8mHqur67v7obCMDgCN0FMXDZHbFrKO58SUZxe3GmdVBXgWwii136NCjuMFomp837cLacvOX9ZB7KI6uDHkVAKvGMm8kWw75wNq3qgqASc5Icmd335UkVfWWJOckkVABsL4cRUInQWMgrwKYN9Oec9Ach2ue4uiKkVcBsDoc5Q3nR2Ke84GjHQHrSMzyOl1190w+eCFV9YNJzu7u/3NYf2GSf9zdLx7rc1GSi4bVpyX5+NQDnX/HJ/n0rIOYU87t5Di3k+X8To5zOzkrfW6f0t0bV/B4E7WUvGpon9fcyv9bD+V8PMi5eCjn40HOxUM5Hw9yLh5qJc6HvOro+e9y9fC7WB38HlYPv4vVwe9h9ZjG72LB3Gq1PQG40KMOD6lQdve2JNumE876VFXbu3vrrOOYR87t5Di3k+X8To5zOznO7eHzqmR+cyu//4dyPh7kXDyU8/Eg5+KhnI8HORcPtU7Px6rLq9bp72FV8rtYHfweVg+/i9XB72H1mOXv4phZfOgh7EyyeWz9pCS7ZhQLAMBaJq8CAFgZ8ioAYM1ZbQXADyU5tapOqapHJjkvyfUzjgkAYC2SVwEArAx5FQCw5qyqIUC7e29VvTjJu5Mcm+TK7r59xmGtR3M3DNgq4txOjnM7Wc7v5Di3k7Ouz628an3//hfgfDzIuXgo5+NBzsVDOR8Pci4eat2dj1WaV62738Mq5nexOvg9rB5+F6uD38PqMbPfRXU/bMhyAAAAAAAAYI1abUOAAgAAAAAAAEdBARAAAAAAAADmiAIgD1FVX1VVv11VH6uqO6rq22Yd07yoqp+uqtur6raquqaqHj3rmNaqqrqyqu6vqtvG2p5YVTdU1SeG9+NmGeNatci5/eXhO+HWqnp7VX3VDENcsxY6t2Pb/m1VdVUdP4vY5sFi57eq/nVVfXz4/v2lWcXH5FTV2cPv+M6qeukC239o+P66tapuqqpvmkWc03C4czHW71uqal9V/eA045u2pZyPqjqrqm4ZviPeO+0Yp2UJ/598ZVX9blX9+XAufnQWcU7Dof4eD9urqv6/4VzdWlX/67RjnKYlnI/19B16yHMx1m+9fIce9nysl+/QWVvCd/i6+t6aJXnn6iDnXT3k26uDXH91WK3/zlAA5GD/Kcm7uvsfJfmmJHfMOJ65UFWbkvxkkq3d/YyMJg0/b7ZRrWlXJTn7oLaXJrmxu09NcuOwzpG7Kg8/tzckeUZ3f2OS/5nk0mkHNSeuysPPbapqc5LvSnLPtAOaM1floPNbVd+R5Jwk39jdpyV51QziYoKq6tgkv5rku5M8Pcn5VfX0g7rdneSfDt9hv5g5nQh9iefiQL//N8m7pxvhdC3lfNTohpbXJ/n+4Tvi+dOOcxqW+N/GJUk+2t3flOSsJK+uqkdONdDpuSoL/D0e891JTh1eFyV5wxRimqWrcujzsS6+QwdX5dDnYt18hw6uyiHOx3r5Dp21JX6Hr7fvrZmQd64Oct7VQ769Osj1V5Wrsgr/naEAyJdV1ROSfHuSK5Kku/++u/9qpkHNlw1JvqKqNiR5TJJdM45nzeru9yX57EHN5yS5eli+OskPTDOmebHQue3uP+zuvcPq+5OcNPXA5sAi/90myWuT/LskPd2I5ssi5/dfJXlldz8w9Ll/6oExaWckubO77+ruv0/yloz+HnxZd9/U3Z8bVuf5O+yw52Lwr5O8Ncm8//+wlPPxL5O8rbvvSeb6O2Ip56KTPL6qKsnjMvo+3Zs5dIi/xweck+RNPfL+JF9VVSdMJ7rpO9z5WEffoUv5byNZP9+hSzkf6+U7dNaW8h2+rr63ZkjeuTrIeVcP+fbqINdfJVbrvzMUABn3tUn2JPmNqvqzqvr1qnrsrIOaB919b0ZPntyTZHeSz3f3H842qrnz5O7enSTD+5NmHM+8+rEkfzDrIOZFVX1/knu7+89nHcucemqSZ1fVB6rqvVX1LbMOiBW3KcmOsfWdQ9tiLsz8focd9lwMIxI8L8mvTTGuWVnKfxtPTXJcVf1xVd1cVT88teimaynn4leSfENGN6h9JMlPdff+6YS36hzp98p6Ms/foYe1zr5Dl2K9fIfO2lK+k3xvTYe8c3WQ864e8u3VQa6/dszk77UCIOM2JPlfk7yhu5+Z5G9iGMUVUaP56M5JckqSE5M8tqr+j9lGBUemqn4+ozuE3jzrWOZBVT0myc8n+YVZxzLHNiQ5Lsm3JvnZJNcNd7wxPxb6fS74NO0wJOyFSX5uohHNzlLOxeuS/Fx375t8ODO3lPOxIck3J/neJM9N8u+r6qmTDmwGlnIunpvklozy1NOT/MowOsh6tOTvlfVkHXyHLsXrsn6+Q5divXyHztpSvpN8b02HvHN1kPOuHvLt1UGuv3bM5O/1hkl/AGvKziQ7u/sDw/pvRwFwpfyzJHd3954kqaq3JTkzyX+daVTz5b6qOqG7dw+PTxtWYAVV1QVJvi/Jc7rbPyZXxtdldFPAnw81qZOSfLiqzujuv5xpZPNjZ0bDjXSSD1bV/iTHZ/S0O/NhZ5LNY+snZYEhtqvqG5P8epLv7u7PTCm2aVvKudia5C3Dd87xSb6nqvZ29+9MJcLpWsr52Jnk0939N0n+pqrel9Ec2P9zOiFOzVLOxY9mNGRyJ7mzqu5O8o+SfHA6Ia4qS/peWU/WyXfoUqyn79ClWC/fobO21L9nvrcmT965Osh5Vw/59uog1187ZvL32hOAfNlwwXlHVT1taHpOko/OMKR5ck+Sb62qxwxPnzwnyR0zjmneXJ/kgmH5giTvmGEsc6Wqzs7ozsXv7+4vzTqeedHdH+nuJ3X3yd19ckaJwP+q+LeififJdybJcJfhI5N8epYBseI+lOTUqjplmMT8vIz+HnxZVW1J8rYkL+zuef6H5mHPRXefMvad89tJfmKOL4Qc9nxklCs8u6o2DE9l/+PMZ362lHNxT0b5aarqyUmeluSuqUa5elyf5Idr5FszGrp/96yDmpV19B16WOvsO3Qp1st36Kwt5Tvc99Z0yDtXBznv6iHfXh3k+mvHTP5eewKQg/3rJG8evjDuyugOAY5Sd3+gqn47yYczGkLxz5Jsm21Ua1dVXZPkrCTHV9XOJC9P8sqMhve7MKM/bM+fXYRr1yLn9tIkj0pyw3AH3fu7+0UzC3KNWujcdvcVs41qfizy3+6VSa6sqtuS/H2SCzzBOl+6e29VvTjJu5Mcm+TK7r69ql40bP+1jIbZ/eokrx++w/Z299ZZxTwpSzwX68ZSzkd331FV70pya5L9SX69u2+bXdSTscT/Nn4xyVVV9ZGMhqb5ue6eyxsmFvl78Yjky+finUm+J8mdSb6UOf/30BLOx7r4Dk2WdC7WlcOdj/XyHTprS/wOX1ffW7Mi71wd5Lyrh3x7dZDrrx6r9d8Z5ToYAAAAAAAAzA9DgAIAAAAAAMAcUQAEAAAAAACAOaIACAAAAAAAAHNEARAAAAAAAADmiAIgAAAAAAAAzBEFQOCoVdUvVNW9VbW/qq6qqrOqqqvqGVP6/E9X1Sum8DmvqKpPL6Hf9qq6amz9qqraPrZ+xjTiBQDmz1LzkYP2eeSw3+kHtZ885GzfN9b2qap61QqFe1QWim+Rfi+uqh5bf0guutjPDwBwOFX1I0Ne8bhh/UlDXnHyERyjq+rFEwty6XEs6XpdVb2qqj41pbCACdow6wCAta2qtib5D0leluSPk9yfZE+Sb0vyydlFNhG/nuR3l7HfLyb5irH1M5K8PMkrViAmAIDDeWRGucenktwy1r47o5ztY9MPaUmWG9+H89BcdLGfHwDgcH4/o7ziS8P6kzLKK/44o9xiKb4tyd0rHdgyHJwjAXNOARA4Wv9oeP/V7v7CWPv7ZxHMJHX3ziQ7l7GfxAoAWHW6+4Gs4pxtufENOemq/bkAgLWju/dkdKP7Eauqr+juv+3uVZGXyJFg/TEEKLBswzCX/2VY/fwwjMBZCwy79PxheNDnjO17clV9oar+77G2f1JV762qL1XVZ6rqjVX1+IM+89ur6s+r6u+q6uaqOnOJsf5MVX2oqj5fVfdV1e9W1dcv0O95VfXBqvrbIYZ3VtVThm0PG3Krqp5RVf9jiOeOqvr+hc7TgSFAq+pHkvznYbmH1x9X1WnD8j89aN/HVdVfV9VPLuXnBABWn6r60ap6oKq+6qD2A3//x3OkF1fVJ4b+d1bVTx/m2I+tql+pqo8POdTdVfWrVfWEsW5fHN5/Yyz/OPkIhtg8bI62wD7fVlXXV9Wuqvqbqrqlqn5ogX5PqaprajSk+5eq6taq+pfDtoWGKH3U8PP+VVV9tqpem+QRBx3z4OGtFvv5P1RVv7FATFdX1YcP9fMBAPNjuNb0nuH6y+eH6zTPHLZ9eQjQGg37+ZFht/ccyCuGfgfyj+cOOdBfJ/mVYdvDhgA91PWnRWL83qq6oarur9H1tPdX1T9foN83Dte8/mr4eT5YVd91UIzPGOv/VVX1m0O+truqfv7oziawmigAAkfjF5McKOB9Z0bDCDzsYkl3/1aSa5NcWVVPqKpKcmVGwx/8xySpqmcluTHJXyb5wSQvSfI9Sb58UaaqTkzyB0k+O/S5PMmbkzxmCbGelFHidU6SH09ybJL/UVVfOXb8FyZ5W0ZDIbwgyY8m+Z9JNi50wKr6iiTvTvK4JP9yOBevS7LlEHH8fpJXD8vfNrx+ortvz+gurB89qP/zM7qo9ZtL+BkBgNXpbcP78w5qPzej4dP/OEmq6sczulHo+iT/W5LfSvLqqnrpIY79mIzymp9P8t1J/n1GedlvjfX5zuH9/86D+cfupQS+lBxtEU9J8j+S/J/Dz/LWjApw548d+0lJ/jTJtyT5t0O/K5JsPsRxXzkc8xeT/NDwOT9zmFgW+/l/Pcnza5jTZ4jpcUn+9yX8fADAHKiqszLKdf4hyQUZ5Wf/PcmmBbrvzij/SJJL8mBeMe6KJH+e5PuH5YU+84iuPw1OyWhamhdmlKvclOQPhlztwHH/UUb51wlJXpRR7vn2HDq3+o2McsiXJLkoyT9Pct4h+gNriCFAgWXr7k9W1YHhLT/U3X+dJKP63sNckuS2JK/NKBH6J0m+pbv/ftj+yiQ3dfe5B3aoqnuT3FhVz+ju2zJKRv4uyfd295eGPn+T5L8uIdYv3z1fVccmuSGjC27nJHlTVR0zxPD27j5/bNfrD3HYH81o7Pd/PAwPmhpNkvwnh4hjz9AnCwwBcUWS11XViw+cy+Ezfre7Px0AYE3q7s9X1bsyuqA0Xlg6N8lvdfe+IRd5RZKruvtAQesPh5uVLq2q13X33y1w7D1J/tWB9arakNFNVn9SVVu6+54kHxo2f3I8/1gkZzvYUnK0hX7mt4z1ryTvy+iGrB9Pcs2w6aeTfGWSb+7uAwXJGxcLpKq+OqOLWS/v7lcPbe9O8tHD/AyL/fzXJHlNRjdcHfi9vCBuvgKA9eT/yeg61XO7u4e2dy3UsbsfqKpbh9WPLjK05291979f7MOWef0p3f0rBx3jPUlOS3JhRkW/ZDQ34eeTPLu7/3Zou+EQsZyW5AeSnNfd1w5t70lyT5IvLLYfsHZ4AhCYiu7+bEYXfH4syS8n+Q/d/edJUlWPyeiOqeuqasOBV0aFtH9I8s3DYc5IcsOB4t/gbVmCqvrWYaiEzyTZm9HkzY9L8tShy9OSnJgju9v7jCQ3Hyj+DT/n/8iosLgcBy6UPX+I+esyKpS6Ax0A1r5rkzynqo5Pkqo6PaM85Nph+0kZ5SK/tcB+T0jyvyx24Kp6YVX92TDU1D/kwZuRnrrYPktxBDnaQvseV1X/X1X9xdD3HzK6q3w8pu9M8q6x4t/h/C9JHp3kHQcaunv/+PqRGObB+e0kPzLW/CNJru/uzyznmADA2lFVj03yj5NcPVb8O1q/f5jty7n+lKo6aRim/N6Mrmv9Q0ZP6x2cW107Vvw7nG8Z3r9cfBxuSF+0aAisLQqAwDT9tyT3ZfTd88ax9uMyGrrq9XnwAtE/JHkgozuwDwxV8DU5qLg2JDV/nUOoqi1J/jBJJbk4ybMySnLuz+giUpJ89fC+1AtQC8YzWFYBcEiyrsuDw4D+SEbDbS145xkAsKZcn1F+8y+G9XOT3JsHi3UnDO/3HbTfgfUnLnTQqnpekjdlNJTm85N8ax4cavTRC+1zBJaaoy3kqox+xl/O6OLUt2Q0BPx4TF+dI8+9kofnWsu9+SoZjcDw7Kr6uuHmq2dnFCcAMP+Oy+ha0ZHkI4dzcC53sCO+/jQ88Xd9kjOT/EKS78got/qDHH1u9cUFCoZHk1sBq4ghQIFpemVGF5H+MqO58v7l0P5XSTqjYa/eucB+u4b3v8xoyM0vG+bhe9zD9nioszOaH+ec7v6bYb8NeeiFtAN3eZ+QpfvLJP9ogfYnLdC2VL+e0dyEpyb54SRv6u59R3E8AGAV6O6/rqrfz6goti2joSavG7vb/MDFmoPziCcP759d5NDPT/KB7v6JAw1V9U9XJuol52gPUVWPTvK9SV7c3b821n7wDaifyZHnXsnoHI2fj2XnXt39vqr6REZz/lRGP9MfLvd4AMCa8rkk+3Nk+cjhHO5JwuVcf/r6JM9M8t3d/eWbxIdrYgcf+0hzq8dX1VccVAQ8mutawCriCUBgKoYLUf86ozlqLkxyflX970kyFOXen+Rp3b19gdeBi0sfSvJdw3BUB/yLHN5XZJTQ7R1re0EeehPExzO6C/+CI/ixPpTkm6vqpLGf81k5fKL090Pfh92V3903JflYRneeb8no7nkAYD68Jck/rar/LcnX5sHhv5NkZ0bFp+cftM8LMpqD5SOLHPMrMnoib9wPHbR+YM7lI3oi8AhytIM9KqObvr4cV1U9Psn3H9TvxiTPraonZ2k+ktF80OeMHfeY8fVFHO7nvzKjHNDNVwCwjgy5zgeS/HAtcXLkLDOvGrOc608HCn3judVTMhrhatyNSV6w0PWmRRyYJ/nLOVpVPS7Jdx1BbMAq5glAYOKG5OE3MhqH/LeHtsuTvKGq3tfde5L8uyQ3VtX+jOZi+WJGBbDvTfLz3f0/M3pq8JIkv1dVr8lozPRLkxxubPP/ltFFqN+oqisymiT532Z0V3uS0fwxVfXvkry5qt6c5JqM7tr6ziTXdPf2BY77G0n+ryS/X1WvyCgh+8Uknz5MPB8b3n+qqv5bki9098fHtl+R0XBZf9rdH3vY3gDAWvX7Gc1DfHmSu7v7gwc2DLnIK5JcPsxZfEOSf5rRzVMv6+6/W+SYNyT51ar6+YwuYH1PkueMd+juv6+quzO6IHRbRkW0W5cY81JytIfo7s9X1YeS/EJVfSGjG7FemuTzGc1neMBrMyq6/fequizJjiTfkOSx3f1LCxz3M1W1Lcl/qKq9SW7PaI7pQ44GsdjP390HLuBdneT/zujfx1ct4ZwAAPPjpUn+KMkfDHnG32Q0B/L27v69Bfrfk9F1qAuq6vNJ/mGRa0YLWub1p49ldLPYq6vq3yd5fJL/kFEhcdx/yKio976qenVGTwQ+M8lnuvthQ5x39+1VdX1G1+eekNGIFD+bUb4KzAFPAALT8OqMimMvHmv7txnN3fdrSdLdf5Lk25NsTPJfkvxuRhecdmQYP727783ootbxSd6a5CeS/B85TGLS3R/JaF69f5zk9zIaevT5GV2EGu/3m0n+94yG9fztjObT+UdJ9ixy3C8leW5GyeFbkrw8yc8k+YtDxZPkv2dU4PupjC7UXX7Q9t8Z3s0/AwBzZCjiXZ/R0EzXLrD9jUl+MqM5/H4vyflJfqa7X3mIw16eUa71U0neluQpeXCY9XEvyiiH+qOMLgyduMSYD5ujLeJfJrk7o3zqP2WUu73poGPvyejO9T/L6Eav30tyUUYX1hbz7zLKkX4howtmu5K8Zgk/yqI/f3f/ZUY52f846KYsAGDOdff7Mnri7TFJ/mtGOdo/zajgtlD/v8voBqRvTvLePPgU3ZF85pFef3ogoxGw9g79fzHJ/zN8/ni/jyf5JxndmP7rSd6e5Adz6OtUP5LR8Oevy+iG9Bvz0FEqgDWsHpxyAoDVoKp+IskvJTmxu78w63gAAOZZVT0xozvoX9zdV8w6HgAAgJVgCFCAVaKqTk7y1CQvS3KV4h8AwOQM8xI+PaOnJ7+Y0ROFAAAAc8EQoACrxysyGvrqjiT/frahAADMvW9O8v4kZyb54WF4dwAAgLlgCFAAAAAAAACYI54ABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmyYdYBHI3jjz++Tz755FmHAQCsAzfffPOnu3vjrOOYJLkVADAN8ioAgJWzWG61pguAJ598crZv3z7rMACAdaCq/mLWMUya3AoAmAZ5FQDAylkstzIEKAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEc2zDoAlm/fvn258847H9L29V//9Tn22GNnFBEAwPqxf//+7N69+8vrJ5xwQo45xv11AAAAwOwpAK5hd955Zy761d/PY48/MUnyN5/elW2XfG+e9rSnzTgyAID5t3v37vzor747j/7K4/N3n/90fuOS52bTpk2zDgsAYCo2bd6SXTt3HNUxTjxpc+7dcc8KRQQAjFMAXOMee/yJecLXPGXWYQAArEuP/srj85jjNs46DACAqdu1c0fOvfymozrGtRefuULRAAAHM0YRAAAAAAAAzBEFQAAAAAAAAJgjCoAAAAAAAAAwRxQAAQAAAAAAYI4oAAIAAAAAAMAcUQAEAFjlqmpzVb2nqu6oqtur6qeG9idW1Q1V9Ynh/bixfS6tqjur6uNV9dzZRQ8AAADAtCkAAgCsfnuT/Ex3f0OSb01ySVU9PclLk9zY3acmuXFYz7DtvCSnJTk7yeur6tiZRA4AAADA1CkAAgCsct29u7s/PCx/MckdSTYlOSfJ1UO3q5P8wLB8TpK3dPcD3X13kjuTnDHVoAEAAACYmYkVAA8xVNUrqureqrpleH3P2D6GqgIAOISqOjnJM5N8IMmTu3t3MioSJnnS0G1Tkh1ju+0c2hY63kVVtb2qtu/Zs2dicQMAAAAwPRsmeOwDQ1V9uKoen+Tmqrph2Pba7n7VeOeDhqo6MckfVdVTu3vfBGMEAFgzqupxSd6a5CXd/YWqWrTrAm29UMfu3pZkW5Js3bp1wT4AAAAArC0TewLwEENVLcZQVQAAi6iqR2RU/Htzd79taL6vqk4Ytp+Q5P6hfWeSzWO7n5Rk17RiBQAAAGC2pjIH4EFDVSXJi6vq1qq6sqqOG9qWNFSVYaoAgPWmRo/6XZHkju5+zdim65NcMCxfkOQdY+3nVdWjquqUJKcm+eC04gUAAABgtiZeADx4qKokb0jydUlOT7I7yasPdF1g94cNQ9Xd27p7a3dv3bhx42SCBgBYXZ6V5IVJvvOgeZRfmeS7quoTSb5rWE93357kuiQfTfKuJJcYVh0AIKmqzVX1nqq6o6pur6qfGtpfUVX3HpRrHdjn0qq6s6o+XlXPnV30AABLN8k5ABccqqq77xvb/sYkvzesGqoKAGAB3f0nWfhmqSR5ziL7XJbksokFBQCwNu1N8jPd/eGqenySm6vqhmHba7v7VeOdq+rpSc5LclqSE5P8UVU91c1VAMBqN7EnABcbqurAPDWD5yW5bVg2VBUAAAAAE9Pdu7v7w8PyF5PckQWmoBlzTpK3dPcD3X13kjuTnDH5SAEAjs4khwBdbKiqX6qqj1TVrUm+I8lPJ4aqAgAAAGB6qurkJM9M8oGh6cVVdWtVXVlVxw1tm5LsGNttZxYpGFbVRVW1vaq279mzZ1JhAwAsycSGAD3EUFXvPMQ+hqoCAAAAYKKq6nEZTVvzku7+QlW9IckvJunh/dVJfiwLX9vqhY7Z3duSbEuSrVu3LtgHAGBaJvkEIAAAAACsKlX1iIyKf2/u7rclSXff1937unt/kjfmwWE+dybZPLb7SUl2TTNeAIDlUAAEAAAAYF2oqkpyRZI7uvs1Y+0njHV7XpLbhuXrk5xXVY+qqlOSnJrkg9OKFwBguSY2BCgAAAAArDLPSvLCJB+pqluGtpclOb+qTs9oeM9PJbk4Sbr79qq6LslHk+xNckl375tyzAAAR0wBEAAAAIB1obv/JAvP6/fOQ+xzWZLLJhYUAMAEGAIUAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEA1oCqurKq7q+q28barq2qW4bXp6rqlqH95Kr627FtvzazwAEAAACYug2zDgAAgCW5KsmvJHnTgYbuPvfAclW9Osnnx/p/srtPn1ZwAAAAAKweCoAAAGtAd7+vqk5eaFtVVZIXJPnOqQYFAAAAwKpkCFAAgLXv2Unu6+5PjLWdUlV/VlXvrapnL7ZjVV1UVduravuePXsmHykAAAAAE6cACACw9p2f5Jqx9d1JtnT3M5P8myS/WVVPWGjH7t7W3Vu7e+vGjRunECoAAAAAk6YACACwhlXVhiT/Ism1B9q6+4Hu/sywfHOSTyZ56mwiBAAAAGDaFAABANa2f5bkY92980BDVW2sqmOH5a9NcmqSu2YUHwAAAABTpgAIALAGVNU1Sf40ydOqamdVXThsOi8PHf4zSb49ya1V9edJfjvJi7r7s9OLFgAAAIBZ2jDrAAAAOLzuPn+R9h9ZoO2tSd466ZgAAAAAWJ08AQgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOTKwAWFWbq+o9VXVHVd1eVT81tD+xqm6oqk8M78eN7XNpVd1ZVR+vqudOKjYAAAAAAACYV5N8AnBvkp/p7m9I8q1JLqmqpyd5aZIbu/vUJDcO6xm2nZfktCRnJ3l9VR07wfgAAAAAAABg7kysANjdu7v7w8PyF5PckWRTknOSXD10uzrJDwzL5yR5S3c/0N13J7kzyRmTig8AAAAAAADm0VTmAKyqk5M8M8kHkjy5u3cnoyJhkicN3TYl2TG2286hDQAAAAAAAFiiiRcAq+pxSd6a5CXd/YVDdV2grRc43kVVtb2qtu/Zs2elwgQAAABgzlXV5qp6T1XdUVW3V9VPDe1PrKobquoTw/txY/tcWlV3VtXHq+q5s4seAGDpJloArKpHZFT8e3N3v21ovq+qThi2n5Dk/qF9Z5LNY7uflGTXwcfs7m3dvbW7t27cuHFywQMAAAAwb/Ym+Znu/oYk35rkkqp6epKXJrmxu09NcuOwnmHbeUlOS3J2ktdX1bEziRwA4AhMrABYVZXkiiR3dPdrxjZdn+SCYfmCJO8Yaz+vqh5VVackOTXJBycVHwAAAADrS3fv7u4PD8tfTHJHRlPQnJPk6qHb1Ul+YFg+J8lbuvuB7r47yZ1Jzphq0AAAy7Bhgsd+VpIXJvlIVd0ytL0sySuTXFdVFya5J8nzk6S7b6+q65J8NKO7sS7p7n0TjA8AAACAdaqqTk7yzCQfSPLk7t6djIqEVfWkodumJO8f223n0LbQ8S5KclGSbNmyZUJRAwAszcQKgN39J1l4Xr8kec4i+1yW5LJJxQQAAAAAVfW4jKateUl3f2E0kNXCXRdo64U6dve2JNuSZOvWrQv2AQCYlonOAQgAAAAAq0lVPSKj4t+bu/ttQ/N9VXXCsP2EJPcP7TuTbB7b/aQku6YVKwDAcikAAgAAALAu1OhRvyuS3NHdrxnbdH2SC4blC5K8Y6z9vKp6VFWdkuTUJB+cVrwAAMs1yTkAAQAAAGA1eVaSFyb5SFXdMrS9LMkrk1xXVRcmuSfJ85Oku2+vquuSfDTJ3iSXdPe+qUcNAHCEFAABAAAAWBe6+0+y8Lx+SfKcRfa5LMllEwsKAGACDAEKALAGVNWVVXV/Vd021vaKqrq3qm4ZXt8ztu3Sqrqzqj5eVc+dTdTzaf/+/bn33nuze/fupGcdDQAAAMDDeQIQAGBtuCrJryR500Htr+3uV403VNXTk5yX5LQkJyb5o6p6quGqVsbu3bvzo7/67vzdFz+XxzzpKXnMrAMCAAAAOIgnAAEA1oDufl+Szy6x+zlJ3tLdD3T33UnuTHLGxIJbhx79lcfnUY9/4qzDAAAAAFiQAiAAwNr24qq6dRgi9LihbVOSHWN9dg5tD1NVF1XV9qravmfPnknHCgAAAMAUKAACAKxdb0jydUlOT7I7yauH9lqg74Kz1XX3tu7e2t1bN27cOJEgAQAAAJguBUAAgDWqu+/r7n3dvT/JG/PgMJ87k2we63pSkl3Tjg8AAACA2VAABABYo6rqhLHV5yW5bVi+Psl5VfWoqjolyalJPjjt+AAAAACYjQ2zDgAAgMOrqmuSnJXk+KrameTlSc6qqtMzGt7zU0kuTpLuvr2qrkvy0SR7k1zS3ftmEDYAAAAAM6AACACwBnT3+Qs0X3GI/pcluWxyEQEAAACwWhkCFAAAAAAAAOaIAiAAAAAAAADMEQVAAAAAAGDd2bR5S6rqqF6bNm+Z9Y8BAAsyByAAAAAAsO7s2rkj515+01Ed49qLz1yhaABgZXkCEAAAAAAAAOaIAiAAAAAAAADMEUOAAgDAYezfvz+7d+9OktF7zzggAAAAgENQAAQAgMPYvXt3fvRX351Hf+Xx+audn8hjnvSUWYcEAAAAsChDgAIAwBI8+iuPz2OO25hHPf6Jsw4FAAAA4JAUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAADAHFEABAAAAAAAgDmiAAgAAAAAAABzRAEQAAAAAAAA5ogCIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAKwBVXVlVd1fVbeNtf1yVX2sqm6tqrdX1VcN7SdX1d9W1S3D69dmFjgAAAAAU6cACACwNlyV5OyD2m5I8ozu/sYk/zPJpWPbPtndpw+vF00pRgAAAABWgQ2zDoCl27dvX+68884vr991113pnmFAAMDUdPf7qurkg9r+cGz1/Ul+cKpBAQAAALAqKQCuIXfeeWcu+tXfz2OPPzFJsucTt+Txm79hxlEBAKvEjyW5dmz9lKr6syRfSPJ/dfd/n01YAAAAAEybAuAa89jjT8wTvuYpSZK//vSuGUcDAKwGVfXzSfYmefPQtDvJlu7+TFV9c5LfqarTuvsLC+x7UZKLkmTLli3TChkAAACACTIHIADAGlZVFyT5viQ/1D0aHLy7H+juzwzLNyf5ZJKnLrR/d2/r7q3dvXXjxo3TChsAAACACVIABABYo6rq7CQ/l+T7u/tLY+0bq+rYYflrk5ya5K7ZRAkAAADAtBkCFABgDaiqa5KcleT4qtqZ5OVJLk3yqCQ3VFWSvL+7X5Tk25P8x6ram2Rfkhd192dnEjgAAAAAU6cACACwBnT3+Qs0X7FI37cmeetkI2Jc79+f3bt3f3n9hBNOyDHHGGwDAAAAmI2JXZWoqiur6v6qum2s7RVVdW9V3TK8vmds26VVdWdVfbyqnjupuAAAYKX93Rc/l3977c35V//15vzor777IcVAAAAAgGmb5BOAVyX5lSRvOqj9td39qvGGqnp6kvOSnJbkxCR/VFVP7e59E4wPAABWzKOf8NV5zHEbZx0GAAAAwOSeAOzu9yVZ6lwz5yR5S3c/0N13J7kzyRmTig0AAAAAAADm1SwmJnlxVd06DBF63NC2KcmOsT47h7aHqaqLqmp7VW3fs2fPpGMFAAAAYI6YtgYAWA+mXQB8Q5KvS3J6kt1JXj201wJ9e6EDdPe27t7a3Vs3bjTEEgAAAABH5KokZy/Q/truPn14vTN52LQ1Zyd5fVUdO7VIAQCWaaoFwO6+r7v3dff+JG/Mg8N87kyyeazrSUl2TTM2AAAAAOafaWsAgPVgSQXAqnrWUtqWcJwTxlafl+TAUAvXJzmvqh5VVackOTXJB4/0+AAAq91K5VUAAOvdBPIq09YAAHNjqU8A/ucltn1ZVV2T5E+TPK2qdlbVhUl+qao+UlW3JvmOJD+dJN19e5Lrknw0ybuSXNLd+5YYGwDAWnLEeRUAAAtaybzKtDUAwFzZcKiNVfVtSc5MsrGq/s3YpickOeR45919/gLNVxyi/2VJLjvUMQEA1qqjyasAAHjQJPKq7r5v7PhvTPJ7w6ppawCANelwTwA+MsnjMioUPn7s9YUkPzjZ0AAA5oq8CgBgZax4XmXaGgBg3hzyCcDufm+S91bVVd39F1OKCQBg7sirAABWxtHmVcO0NWclOb6qdiZ5eZKzqur0jIb3/FSSi4fPur2qDkxbszdzNG3Nps1bsmvnjsN3BADWpEMWAMc8qqq2JTl5fJ/u/s5JBAUAMMfkVQAAK2NZeZVpa0Z27dyRcy+/adn7X3vxmSsYDQCw0pZaAPytJL+W5NeTzMVdTgAAMyKvAgBYGfIqAIBFLLUAuLe73zDRSAAA1gd5FQDAypBXAQAs4pgl9vvdqvqJqjqhqp544DXRyAAA5pO8CgBgZcirAAAWsdQnAC8Y3n92rK2TfO3KhgMAMPfkVQAAK0NeBQCwiCUVALv7lEkHAgCwHsirAABWhrxqDhyzIVW17N1PPGlz7t1xzwoGBADzY0kFwKr64YXau/tNKxsOAMB8k1cBAKwMedUc2L83515+07J3v/biM1cwGACYL0sdAvRbxpYfneQ5ST6cREIFAHBk5FUAACtDXgUAsIilDgH6r8fXq+ork/yXiUQEADDH5FUAACtDXgUAsLhjlrnfl5KcupKBAACsU/IqAICVIa8CABgsdQ7A303Sw+qxSb4hyXWTCgoAYF7JqwAAVoa8CgBgcUudA/BVY8t7k/xFd++cQDwAAPNOXjXnev/+7N69+8vrJ5xwQo45ZrkDbwAAhyCvAgBYxFLnAHxvVT05D06u/InJhQQAML/kVfPv7774ufzba+/LE44/IX/3+U/nNy55bjZt2jTrsABg7sirAAAWt6RbkavqBUk+mOT5SV6Q5ANV9YOTDGw92rdvXz7+8Y8/5LVv375ZhwUArCB51frw6Cd8dR5z3MY8+iuPn3UoADC35FXkmA2pqmW/AGCeLXUI0J9P8i3dfX+SVNXGJH+U5LcnFdh6dOedd+aiX/39PPb4E5Mkf/PpXdl2yffmaU972owjAwBWkLxqHTEcKABMlLxqvdu/N+deftOyd7/24jNXMBgAWF2WWgA85kAyNfhMlvj0IEfmscefmCd8zVNmHQYAMDnyqnXEcKAAMFHyKgCARSy1APiuqnp3kmuG9XOTvHMyIQEAzLVl5VVVdWWS70tyf3c/Y2h7YpJrk5yc5FNJXtDdnxu2XZrkwiT7kvxkd797ZX8MlurAcKAAwIpzvQoAYBGHvCuqqr6+qp7V3T+b5PIk35jkm5L8aZJtU4gPAGAurEBedVWSsw9qe2mSG7v71CQ3DuupqqcnOS/JacM+r6+qY1fi5wAAmDXXqwAADu9wwyK8LskXk6S739bd/6a7fzqju6leN9nQAADmyutyFHlVd78vyWcPaj4nydXD8tVJfmCs/S3d/UB3353kziRnHGX8AACrxeviehUAwCEdrgB4cnffenBjd2/PaKgpAACWZhJ51ZO7e/dwnN1JnjS0b0qyY6zfzqHtYarqoqraXlXb9+zZs8wwAACmyvUqAIDDOFwB8NGH2PYVKxkIAMCcm2ZeVQu09UIdu3tbd2/t7q0bN5qnDgBYE1yvAgA4jMMVAD9UVT9+cGNVXZjk5smEBAAwlyaRV91XVScMxzkhyf1D+84km8f6nZRk1zI/AwBgtXG9CgDgMDYcZvtLkry9qn4oDyZQW5M8MsnzJhgXAMC8eUlWPq+6PskFSV45vL9jrP03q+o1SU5McmqSDy7zMwAAVpuXxPUqAIBDOmQBsLvvS3JmVX1HkmcMzb/f3f9t4pEBAMyRo82rquqaJGclOb6qdiZ5eUaFv+uGu93vSfL84bNur6rrknw0yd4kl3T3vpX8eQAAZsX1KgCAwzvcE4BJku5+T5L3TDgWAIC5t9y8qrvPX2TTcxbpf1mSy470cwAA1grXqwAAFne4OQABAAAAAACANUQBEAAAAAAAAOaIAiAAAAAAwHIcsyFVtezXps1bZv0TADCnljQHIAAAAAAAB9m/N+deftOyd7/24jNXMBgAeJAC4CrW+/fnrrvu+vL6XXfdle4ZBgQAAAAAAMCqpwC4iv3NZ/8yr/idv8hXb/p8kmTPJ27J4zd/w4yjAgAAAAAAYDVTAFzlHvvVJ+YJX/OUJMlff3rXjKMBAAAAAABgtTtm1gEAAAAAAAAAK0cBEAAAAAAAAOaIAiAAAAAAAADMEQVAAAAAAAAAmCMKgAAAAAAAADBHNsw6AFZO79+fu+666yFtX//1X59jjz12RhEBAAAAAAAwbQqAc+RvPvuXecXv/EW+etPnR+uf3pVtl3xvnva0p804MgAAAAAAAKZFAXDOPParT8wTvuYpsw4DAAAAAACAGTEHIAAAAAAAAMwRBUAAAAAAAACYIwqAAAAAAAAAMEcUAAEAAAAAAGCOKAACAAAAAAD8/+zdfZxlVXkn+t/TtEoAQaQbLJpu0QiO4p2g02ESnCjREDXhSnSi4OSFMU7A+JLkJjqKGaMZxxsnxJfciTF0IhFnooKKL2NEJSTqzSW+IEEFUWkRobsq0PhCq7SY7lr3j7Mbiuqq7lPddc6pOvX9fj7nc85ee+19nrNq16lV+9lrbRgjEoAAAAAAAAAwRgaWAKyqi6rq9qq6bkbZg6vqiqq6sXs+csa686tqc1V9paqeMqi4AAAAAAAAYJwNcgTg25I8dVbZy5Nc2Vo7IcmV3XKq6tFJzk5yUrfNn1XVQQOMDQAAAIAVyEXrAMBKMLAEYGvtk0m+Nav4zCQXd68vTvILM8rf1Vq7u7X29SSbk5wyqNgAAAAAWLHeFhetAwBjbtj3ADymtTaVJN3z0V35uiS3zqi3pSvbQ1WdW1VXV9XV27ZtG2iwAAAAAIwXF60DACvB6lEH0Kk5ytpcFVtrm5JsSpKNGzfOWQcAAA7U9PR0pqamkqT3vEg9z5n7TZKJiYmsWjXs6/IAgFnuc9F6Vc28aP1TM+rNe9E6AMBSMuwE4G1VNdF1pCaS3N6Vb0myfka945JMDjk2AAC4x9TUVJ775o/m4CPW5DtbbswhRz80hyzyfn9w5x35qxc+JevWOY8IAEtU3xetV9W5Sc5Nkg0bNgwyJgCAfRr2pcYfTHJO9/qcJB+YUX52VT2gqh6W5IQknxlybAAAy05VPbKqrp3x2F5Vv11Vr66qrTPKf27UsS5HBx+xJoccuTYPeOCDB7Lfg49Ys6j7BQD2223dxerZ34vWW2ubWmsbW2sb165dO9BgAQD2ZWAJwKp6Z5J/TPLIqtpSVc9L8rokp1fVjUlO75bTWrs+yaVJvpTkI0le2FrbNajYAADGRWvtK621k1trJyf5N0nuSvK+bvUbd69rrX14ZEECACx9LloHAMbKwKYAba09Z55VT56n/muTvHZQ8QAArABPTvK11to3quaarYp9GdR9/wCApaO7aP20JGuqakuSV6V3kfql3QXstyR5VtK7aL2qdl+0vjMuWgcAlolh3wMQAIDBOTvJO2csv6iqfjXJ1Ul+t7X27dkbuFfNfQ3qvn8AwNLhonUAYCUY9j0AAQAYgKq6f5KnJ3l3V/SWJD+a5OQkU0leP9d27lWzp0Hd9w8AAABgWIwABAAYD09Lck1r7bYk2f2cJFX1F0k+NKrAljrTfgIAAADjRgIQAGA8PCczpv+sqonW2lS3+Iwk140kqmXAtJ8AACxn69ZvyOSWW/d7+2OPW5+tt96yiBEBsBRIAAIALHNVdUiS05OcN6P4j6rq5PTGs908ax2z7J72c8ed3xx1KAAAsCCTW27NWRdetd/bX3LeqYsYDQBLhQQgAMAy11q7K8lRs8p+ZUThAAAAADBiEoBDtGvXrmzevPk+ZY94xCNy0EEHjSiiPS2HGAEAAAAAAJifBOAQbd68Oee++W9y6JpjkyTfv2Mym17483nkIx854sjutRxiBAAAAAAAYH4SgEN26Jpjc/hDHjqU92rT07npppvuU9bPaL5hxggAAAAAAMDikgAcY9//1j/n1e//Ro5ad2dv2Wg+AAAAAACAsScBOOYOPere0Xz7OyIQAAAAAACA5UMCcAUxIhAAAAAAAGD8SQCuMDNHBAIAAAAAI7Rqdapq1FEcsHXrN2Ryy637vf2xx63P1ltvWcSIAJAABAAAAAAYhemdOevCqw5oF5ecd+oiBbP/JrfcekCfYyl8BoBxs2rUAQAAAAAAAACLRwIQAAAAAAAAxogpQFewNj2dm2666T5lN910U1obUUAAAAAAAAAcMAnAFez73/rnvPr938hR6+68p2zbjdfmgesfNcKoAAAAAAAAOBASgCM0ewTeKEbfHXrUsTn8IQ+9Z/l7d0wONwAAgBWiTU9namqqWxhtLAAAAMB4kwAcodkj8Iy+AwAYXz/47rfzkktuy/QPvpdDjn5oDhl1QAAAAMDYkgAcsZkj8Iy+AwAYbwcfflR23e/+ow4DAAAAGHOrRh0AAAAAAAAAsHgkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAAAAAgDEiAQgAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIwRCUAAAAAAAAAYIxKAAAAAAAAAMEYkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAAAAAgDGyetQBAABwYKrq5iTfTbIryc7W2saqenCSS5Icn+TmJM9urX17VDECAAAAMDxGAAIAjIefbq2d3Frb2C2/PMmVrbUTklzZLQMAANzXqtWpqgN6ALD0GAEIADCezkxyWvf64iQfT/KyUQUDAAAsUdM7c9aFVx3QLi4579RFCgaAxWIEIADA8teSfKyqPldV53Zlx7TWppKkez56rg2r6tyqurqqrt62bduQwgUAAABgkIwABABY/h7fWpusqqOTXFFVX+53w9bapiSbkmTjxo1tUAECAAAAMDxGAAIALHOttcnu+fYk70tySpLbqmoiSbrn20cXIQAAAADDJAEIALCMVdWhVfXA3a+T/GyS65J8MMk5XbVzknxgNBECAAAAMGymAAUAWN6OSfK+qkp6fbt3tNY+UlWfTXJpVT0vyS1JnjXCGAEAAAAYIglAAIBlrLV2U5Ifm6P8m0mePPyIAAAAABg1U4ACAAAAAADAGJEABAAAAAAAgDEiAQgAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIyR1aN406q6Ocl3k+xKsrO1trGqHpzkkiTHJ7k5ybNba98eRXwAAAAAAACwXI1yBOBPt9ZObq1t7JZfnuTK1toJSa7slgEAYCCmp6ezdevWTE1NJW3U0QAAS0FV3VxVX6yqa6vq6q7swVV1RVXd2D0fOeo4163fkKo6oAcAMN5GMgJwHmcmOa17fXGSjyd52aiCAQBgvE1NTeW5b/5ofvDdb+eQox+aQ0YdEACwVPx0a+2OGcu7L1p/XVW9vFse6TmryS235qwLrzqgfVxy3qmLFA0AsBSNagRgS/KxqvpcVZ3blR3TWptKku756BHFBgDACnHwEWvygAc+eNRh7GH36MTdj+np6VGHBAAr2ZnpXaye7vkXRhcKMCgHOrJ23foNo/4IAPcxqhGAj2+tTVbV0UmuqKov97thlzA8N0k2bPClCgDA+Nk9OvHgI9bkB3fekb964VOybt26UYcFACvB7ovWW5ILW2ubMuui9e581h6cs4Ll7UBH1hpVCyw1IxkB2Fqb7J5vT/K+JKckua2qJpKke759nm03tdY2ttY2rl27dlghAwDAUB18xJoccuTaHHzEmlGHAgAryeNba49L8rQkL6yqJ/S7oXNWAMBSMvQEYFUdWlUP3P06yc8muS7JB5Oc01U7J8kHhh0bAAAAACvXgVy0DgCwlIxiBOAxSf6hqj6f5DNJ/qa19pEkr0tyelXdmOT0bhkAAAAABs5F6wDAOBn6PQBbazcl+bE5yr+Z5MnDjgcAAAAA0rto/X1VlfTOmb2jtfaRqvpskkur6nlJbknyrBHGCADQl6EnAAEAYFSmp6czNTWVJL3nNuKAAIAlw0XrMEKrVqdLvu+XY49bn6233rKIAQEsfxKAAACsGFNTU3numz+ag49Yk+9suTGHHP3QUYcEAABM78xZF16135tfct6pixgMwHgYxT0AAQBgZA4+Yk0OOXJtHvDAB486FAAAAICBMAIQAABGpM2YkjRJJiYmsmqVa/QAAACAAyMBCAAAI/KD7347L7nkthy+ZiI/uPOO/NULn5J169aNOiwAAABgmZMABACAETr48KNyyJFrRx0GAAAAMEbMLwQAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIwRCUAAAAAAAAAYIxKAAAAAAAAAMEZWjzqAcbZr165s3rz5nuWbbroprY0wIAAAAACAcbNqdapq1FEALCkSgAO0efPmnPvmv8mha45Nkmy78do8cP2jRhwVADBOqmp9krcneUiS6SSbWmt/UlWvTvLrSbZ1VV/RWvvwaKIEAAAYoOmdOevCqw5oF5ecd+oiBQOwNEgADtiha47N4Q95aJLke3dMjjgaAGAM7Uzyu621a6rqgUk+V1VXdOve2Fr74xHGBgAAAMAISAACACxjrbWpJFPd6+9W1Q1J1o02KgZheno6U1NT9yxPTExk1Sq39AYAAAD25IwBAMCYqKrjkzw2yae7ohdV1Req6qKqOnKebc6tqqur6upt27bNVYUlYmpqKs9980fzG//rc3numz96n2QgAAAAwEwSgAAAY6CqDkvy3iS/3VrbnuQtSX40ycnpjRB8/VzbtdY2tdY2ttY2rl27dljhsp8OPmJNDjlybQ4+Ys2oQwEAAACWMFOAAgAsc1V1v/SSf3/dWrssSVprt81Y/xdJPjSi8EZu5tSZU1NTSRtxQAAAAAADJgEIALCMVVUleWuSG1prb5hRPtHdHzBJnpHkulHEtxTsnjrz4CPW5DtbbswhRz80h4w6KAAAAIABkgAEAFjeHp/kV5J8saqu7cpekeQ5VXVyeuPdbk5y3iiCWyp2T525485vjjqUeTUjFQEAAIBFIgEIALCMtdb+IUnNserDw46FA/OD7347L7nkthy+ZsJIRQAAAOCASACyILt27crmzZvvU/aIRzwiBx100KLUBwBYyQ4+/KglP1IRAAAAWPokANmrNj2dm2666Z7lm266KX/44Rty2NpjkyTfv2Mym17483nkIx855/abN2/OuW/+mxy6pr/6AACLYdp0mgAAwDCtWp3eLdr337HHrc/WW29ZpICAlU4CkL36/rf+Oa9+/zdy1Lo7kyTbbrw2D1z/qBz+kIf2vY9D1xy7oPoAAAdqamoqz33zR3PwEWtMpwkAAAze9M6cdeFVB7SLS847dZGCAZAApA+HHnVvAu97d0yOOBoAgP4cfMSaFTed5syRj0kyMTGRVatWjTAiAAAAYBQkAAEAYEzMHPn4gzvvyF+98ClZt27dqMMCAAAAhkwCEAAAxsjukY8AAADAymU+IAAAAAAAABgjEoAAAAAAAAAwRiQAAQAAAAAAYIy4ByAAAGNheno6U1NTSdJ7biMOaEhW6ucGAADua936DZnccusB7ePY49Zn6623LFJEwChJALKs7Nq1K5s3b75P2SMe8YgcdNBBI4oIAFgqpqam8tw3fzQHH7Em39lyYw45+qE5ZNRBDcFK/dwAAMB9TW65NWddeNUB7eOS805dpGiAUZMAZFnZvHlzzn3z3+TQNccmSb5/x2Q2vfDn88hHPnLEkQEAS8HBR6zJIUeuzY47vznqUIZqpX5uAAAAYG4SgCyq2SP0brrpprRFnobq0DXH5vCHPHRxdwoAsES1GVN8mt4TAAAA6IcEIItq9gi9bTdemweuf9SIowIAWL5+8N1v5yWX3JbpH3zvnuk9m/v+AQAAAHshAciimzlC73t3TI44GgCA5e/gw4/Krvvd/57l3UnBw9dMuO8fAAAAsAcJQAAAWIYOPvwo9/0DAIBxsmp1qmrUUQBjQgIQAAAAAABGbXpnzrrwqv3e/JLzTl3EYIDlbtWoAwAAAAAAAAAWjxGArGi7du3K5s2b71P2iEc8IgcddNCIIgIAAAAAADgwEoCM1KgTcJs3b865b/6bHLrm2CTJ9++YzKYX/nwe+chH7tf+Rv15AGAlmp6eztTUVKamppI26mgAAAAARk8C8ABI9hy4fSXgZrfxTTfdlLaAE3v9/IwOXXNsDn/IQw/gU9xroQlFxxAAHLipqak8980fzQ++++0ccvRDc8ioAwIAAAAYMQnAA7DYo8eWozY9nZtuuume5YUm6JK9J+Bmt/G2G6/NA9c/qu99j+JntJCEomMIAPbP7lF/SS8BePDha9JSI44KAACA5W7d+g2Z3HLrAe3j2OPWZ+uttyxSRLB/JAAP0GKOHluOvv+tf86r3/+NHLXuziQLT9D1Y2Ybf++Oyfusm52A3LVrV5LcM4LupptuyiFHLe2f0czPN/vzJEYEAsBcdo/6O/iINfnOlhtzyNFL9289S9PMJHKSTExMZNWqVSOMiJXOMQkAsDRMbrk1Z1141QHt45LzTl2kaGD/SQBywA49av4E3aDNlYBcdcgROWrdw+5ZXuyE5CDN/jxGBALA/A4+Yk0OOXJtdtz5zVGHsmwsJMGwGMmImfuYnp5Oknv2Merkxswk8g/uvCN/9cKnZN26dSOLBxyTAADAYpIAXESLMR3mSrc/bTg7Abn6sKNGlpBcDDM/z1wjApMDGxXovoMAsHItJMGwGMmI2SM1Vx18WA5fM7Fkkhu7k8iwVDgmAYCRW7U6Vft/e4UDnfrS9JuweCQAF9EwpsMcd4Nuw+WWpJ3dHsmeowJnJ/RmT4Oa3DfBt6/7DkoQAsB4aDNG380cbbeQBMNcdRc6qm/mSM2DfuSBe93fqEcFAgDAije984CmvzzQqS9NvwmLRwJwkY1yOszloJ8E3CDbcF8Jxn3dUzAZfjLs0Fn3MJyrDf/wwzfksLW9hN7saVC/d/uWnP/zJ+XhD3/4PfX3dl/EfSUIl5qFJiwXO8EpYQqj4Xdv+XFvq+H7wXe/nZdcclvuf7/7zTnaru3nz2S+UX07vnN7/vDfn5yJiYl97mvme09NTeUVl30hSRZ1VOBiT2E61/bzvYek5tI17O8i330sF45VAIDxs+QSgFX11CR/kuSgJH/ZWnvdqGJxcnHxLYVRkntLMO7rnoJLIRk2XxvubRrUV7//2gW1+aFr9j4N6Sh/D2b/Xs5OgO5rROO+6i/UckuYjoLv0uFbCW3ud68/S6lf5d5Wo3Hw4Ufl/ve//5zrdicI92dKzrlG9e2485t5ySWfmzfhON97f2fLjTnk6IfOG+f+WswpTJO5k5Pzvce+tmN0hv1d5LuP5cKxum9LqV8FsKQd4BSiY2PEU6lCssQSgFV1UJI3Jzk9yZYkn62qD7bWvjSKeJxcHIylPkpyb/cUnG2u5NLephRdaP1+Y1zs+jPNTjgudMrQhU5Ruq/9zf69nJ0AnW2h9WfrJ5Gyr4TpXNssZwtNLvkuPfCE3IG2+eyRwAt9/6Vq5u8ee1pq/arkwO9tNT1r1FiW8DTeS8ns0XYz2+3gw4+ad0rO/Wnjgw8/Kvdbvbqvn9Pu995x5zf3us/5phyd+XqukXdTU1M5+PCFH3Nz7SO19/VzvcfBR6yZd7/J3kfX9POZ97WP5aKfzzrXz3qh+9vfaXD39R7Jvn8O+3q/ff3OLZWRWbvjGMfjkB73oJzfUuxXASxZI55CNMnSSEIuhXZgxd9TckklAJOckmRza+2mJKmqdyU5M8mS6VDNnnrx+zOSKTu+fXtW3X13th/8gGW5vBRiWOrL379jMjfddMR9joH/8j+vzCFHHp0k+dY3vpzD1p2Q3X9fFlp/FD+juWLc47g+5N71u+vM95nu+vbt+W+/8uT7TDk6+zMfdPADc8Qx6/qqP9f62b7/zcm9fp6F1J+tn3hmttcdX/tCXnbdjns+31zbLHf7apO56vdTNs4W2mYHuv3s9t1x5x152Vs/Mu/v3XI0+3ev9/qxowtoaVpy/aof3HnHPc8zT2b3a2pqKr/zto/nAQ88Mtunbs6PrD0uqeTu734rq/7lh5n+wfey6l9+mLvuf/97yvp5Pe7b3fWD7+XFf3FDDnvw0XO22133v/99fia72/nu7915T93Z63f/LPf3/eb8fPe735zHxeyf+6oHHHLPvlc94JDc7373yxv+42mZmJiY9xiZ65ib+Tnm+vwz93H/GbH18x4z9z3Xdnd/99v3xNzPsT77Mx/24KP3uY/lop/POtfPeiH7m32MLOZ3UT8/y329Xz+/c/2+3yDNjHPcjkP2PFbZw5LrVwGwF+OQfDOCMMniJPAO+J6Sv/GEZfuzqLY/w48GpKp+MclTW2v/qVv+lST/trX2ohl1zk1ybrf4yCRfGXqgo7cmiR75vbTHvbTFfWmPe2mLe2mL+9Ie99pXWzy0tbZsLovvp1/VlS9G38pxtHi05eLQjotDOy4O7bg4tOPiWQptqV/Vn6Xws1qKtMuetMnctMuetMmetMnctMuelnKbzNm3WmojAOdKo94nQ9la25Rk03DCWZqq6urW2sZRx7FUaI97aYv70h730hb30hb3pT3uNYZtsc9+VbI4fasxbLuR0ZaLQzsuDu24OLTj4tCOi0db7peh9avu86Z+VnPSLnvSJnPTLnvSJnvSJnPTLntajm2y1Cbq35Jk/Yzl45IsvZvEAQAsffpVAACLQ78KAFh2lloC8LNJTqiqh1XV/ZOcneSDI44JAGA50q8CAFgc+lUAwLKzpKYAba3trKoXJflokoOSXNRau37EYS1FK3oK1Dloj3tpi/vSHvfSFvfSFvelPe41Vm0x5H7VWLXdiGnLxaEdF4d2XBzacXFox8WjLRdohOer/Kzmpl32pE3mpl32pE32pE3mpl32tOzapFrbY8pyAAAAAAAAYJlaalOAAgAAAAAAAAdAAhAAAAAAAADGiATgMlJV66vq76vqhqq6vqp+a9QxjVpVHVRV/1RVHxp1LKNWVQ+qqvdU1Ze7Y+QnRx3TqFTV/9X9jlxXVe+sqoNHHdMwVdVFVXV7VV03o+zBVXVFVd3YPR85yhiHZZ62uKD7PflCVb2vqh40whCHaq72mLHuJVXVqmrNKGIbtvnaoqpeXFVf6b5D/mhU8S1VVfXUrn02V9XL51hfVfX/dOu/UFWPG0WcS10f7fivquofq+ruqnrJKGJcDvpox1/qjsMvVNVVVfVjo4hzOeijLc/s2vHaqrq6qv7dKOJc6vbVjjPq/XhV7aqqXxxmfMtFH8fjaVV1Z3c8XltVvz+KOJe6fo7Hri2v7fo9nxh2jOxdv98p487/t3ua7/zgSm6Xqjq4qj5TVZ/v2uQPuvIV2ya71axzp9okqaqbq+qLu/u2XdmKbpea47yyNqlHzuhvXltV26vqt5dbu0gALi87k/xua+1RSX4iyQur6tEjjmnUfivJDaMOYon4kyQfaa39qyQ/lhXaLlW1LslvJtnYWntMejdoP3u0UQ3d25I8dVbZy5Nc2Vo7IcmV3fJK8Lbs2RZXJHlMa+1fJ/lqkvOHHdQIvS17tkeqan2S05PcMuyARuhtmdUWVfXTSc5M8q9baycl+eMRxLVkVdVBSd6c5GlJHp3kOXP0Q56W5ITucW6Stww1yGWgz3b8Vnp/yxyD8+izHb+e5Ind9/1rsgxv2D4MfbbllUl+rLV2cpJfS/KXQw1yGeizHXfX++9JPjrcCJeHftsxyf/bWju5e/zXoQa5DPTTjtW7CO7Pkjy96/c8a9hxMr8F/C6sBG+L/29nm+/84Epul7uTPKm19mNJTk7y1Kr6iazsNtlt9rlTbdLz010/YmO3vNLbZa7zyiu6TVprX9nd30zyb5LcleR9WWbtIgG4jLTWplpr13Svv5veL+K60UY1OlV1XJKfjxMQqarDkzwhyVuTpLX2w9bad0Ya1GitTvIjVbU6ySFJJkccz1C11j6Z3snjmc5McnH3+uIkvzDMmEZlrrZorX2stbazW/xUkuOGHtiIzHNsJMkbk/znJG24EY3OPG3xG0le11q7u6tz+9ADW9pOSbK5tXZTa+2HSd6V3nfLTGcmeXvr+VSSB1XVxLADXeL22Y6ttdtba59N8i+jCHCZ6Kcdr2qtfbtbXFHf9wvUT1t+r7W2+2/EoVlBfy8WoJ/vyCR5cZL3JvE3Zm79tiN71087/ockl7XWbkn0e5Ygvwsd/9/uaS/nB1dsu3T/f3yvW7xf92hZwW2SzHvudEW3yV6s2HbZy3nlFdsmc3hykq+11r6RZdYuEoDLVFUdn+SxST494lBG6U3pnbCeHnEcS8HDk2xL8lfdsP6/rKpDRx3UKLTWtqY3YuKWJFNJ7mytfWy0US0Jx7TWppLePwtJjh5xPEvFryW5fNRBjFJVPT3J1tba50cdyxJwYpKfqqpPV9UnqurHRx3QErMuya0zlrdkzwuR+qmz0mmjxbHQdnxeVvj3/V701ZZV9Yyq+nKSv0nv7yf3tc927GaqeEaSPx9iXMtNv7/bP9lN83Z5VZ00nNCWlX7a8cQkR1bVx6vqc1X1q0OLjn7oL+yd/287s84Pruh26aa6vDa9i2yuaK2t+DbJ3OdOV3qbJL3k8Me6v3/ndmUruV3mO6+8kttktrOTvLN7vazaRQJwGaqqw9K7avS3W2vbRx3PKFTVGUlub619btSxLBGrkzwuyVtaa49N8v0s8eHHg9LNu3xmkoclOTbJoVX1y6ONiqWoqn4vvalT/nrUsYxKVR2S5PeSuHdOz+okR6Y3jc5Lk1xaVTXakJaUudpi9iigfuqsdNpocfTdjt30vs9L8rKBRrR89dWWrbX3dVMC/UJ6U6pyX/2045uSvKy1tmvw4Sxb/bTjNUke2k3z9j+SvH/QQS1D/bTj6vSms/r5JE9J8sqqOnHQgdE3/QX2yfnB+2qt7eqm6jsuySlV9ZgRhzRSzp3u1eNba49Lb5rlF1bVE0Yd0Ig5r7wXVXX/JE9P8u5Rx7I/JACXmaq6X3p/3P+6tXbZqOMZoccneXpV3ZzeVBhPqqr/NdqQRmpLki3d1U1J8p70vrhXop9J8vXW2rbW2r8kuSzJqSOOaSm4bfc0fN3zip7ip6rOSXJGkl+aMaXZSvSj6SXLP999nx6X5JqqeshIoxqdLelNhdVaa59J7yrJNSOOaSnZkmT9jOXjsucUy/3UWem00eLoqx2r6l+nN+XRma21bw4ptuVmQcdkNxXbj1aV78f76qcdNyZ5V/c39xeT/FlV/cJQols+9tmOrbXtu6d5a619OMn9HI976Pdv9kdaa99vrd2R5JPp3fOHpUF/Ye9W/P+385wfXPHtkiTd1IUfT+/ekSu5TeY7d7qS2yRJ0lqb7J5vT++ebqdkZbfLfOeVV3KbzPS0JNe01m7rlpdVu0gALiPdKIS3JrmhtfaGUcczSq2181trx7XWjk9vCO7ftdZW7Civ1to/J7m1qh7ZFT05yZdGGNIo3ZLkJ6rqkO535sm5782OV6oPJjmne31Okg+MMJaRqqqnpjcK5OmttbtGHc8otda+2Fo7urV2fPd9uiXJ47rvlJXo/UmelCTdFfD3T3LHKANaYj6b5ISqelh3BdzZ6X23zPTBJL9aPT+R3jTMU8MOdInrpx3Zt322Y1VtSO9CoF9prX11BDEuF/205SN2j4iuqsel9/0ooXpf+2zH1trDZvzNfU+SF7TW3j/0SJe2fo7Hh8w4Hk9J77yG4/G++vlb84H0pj5f3c0K8W/j/6alRH9h71b0/7d7OT+4YtulqtZW1YO61z+S3sXhX84KbpO9nDtdsW2SJFV1aFU9cPfrJD+b5Lqs4HbZy3nlFdsmszwn907/mSyzdlk96gBYkMcn+ZUkX+zmtE6SV3RXPcKLk/x198/BTUmeO+J4RqK19umqek96UwPtTPJPSTaNNqrhqqp3JjktyZqq2pLkVUlel950hs9LL0n6rNFFODzztMX5SR6Q5Iru3NGnWmvPH1mQQzRXe7TW3jraqEZjnmPjoiQXVdV1SX6Y5JwVPkL0PlprO6vqRUk+muSgJBe11q6vqud36/88yYeT/FySzUnuygr9W7Q3/bRjNwr36iSHJ5muqt9O8mhTO92rz+Px95Mcld4oqyTZ2VrbOKqYl6o+2/Lfp5fc/5ckO5Kc5fvxvvpsR/ahz3b8xSS/UVU70zsez3Y83lc/7dhau6GqPpLkC+nNevCXrbXrRhc1M833MxxxWCPh/9s5zXl+MCu7XSaSXFxVB6V3YcilrbUPVdU/ZuW2yXxW8nGSJMckeV/3/8HqJO9orX2kqj6bld0uc51XXpWV3Sa7b51zepLzZhQvq9+h0k8GAAAAAACA8WEKUAAAAAAAABgjEoAAAAAAAAAwRiQAAQAAAAAAYIxIAAIAAAAAAMAYkQAEAAAAAACAMSIBCIxUVb2tqq7uo94dVfXqAcXQqupFg9g3AMCoVNV/7Po5h+2j3ser6j2L+L777FtV1RldveMX630BgOWpqn6/qrZW1XRVvW3U8RyIufpVVfXrVfX1qtpZVR8fYiyP6fpbp80oW/RzYFV1fLffM/ZR70VV1RbzvYG9Wz3qAIAV7zVJfmTUQQAAsGh+MsnXRx0EALD0VdXGJH+Q5BVJPp7k9pEGtMiq6iFJ3pLkT5O8O8m3RxvRQPppU91+v7zI+wUOkAQgsGBVdVCSg1prPzzQfbXWvrYIIa14VXW/JNOttV2jjgUAWJmq6kdaaztaa58adSwAwLLxr7rnN7fWts9XaXc/Y0gxLaZHJDkoyUWttS8cyI4W43zcIPpprbW7k+j/wRJkClBgn3ZP01lVv1BV1yf5QZJ/2607s1v3g6r656r6oy4ZtXvb46rq0qq6vap2VNXXquo1s/c96/2eUFWf7/b5uao6dY6Ybq6qP55Vdp9prqrq0Kr606r6SlXd1U238OaqOnw/2uB5VXV99xnuqKpPVNVJ3brTuvd9zKxt5pr24UVVdWtVfb+q3l9VT55jOobfrarPVtWdVXVbVf3vqnrEXPuuqnOr6mvp/UyOXejnAgCWv67v9PdV9b2u//DxqnrsjCoPq6oruv7Hl6vqmX3s80lV9emuP3ZbVf3ZzKlEZ/R/nlJVH6yq76V3ZfseU0tVz6u7/uB3q+rtSfboj1XVwV1f8taqurvrD/7crDpP7/qH36+qb3cxPnE/mg0AGLHqTff5P7vFO3efH9lHP2NDVb2rqr7Vnev5aFU9ctZ+99mnmCee86tq84z+z0eqN4Jv3qnV5zo/NWPdq5P8v93i57vt/2O/55FqL+fj5nm/F8w45/S/k0zMUWePKUC7c1U3dm21uar+rxnrnlW9qVmfPKPs+KraXlX/bcbyfaYAraoHVO+c3He6n9Ubk9wvs1TVg6vqwq69f1BVV1XVvJ8RWBgjAIF+HZ/kj5L81yS3Jfl6VT07yTuTXJjeVA0/muQP07u44CXddm9Pb4rPc5N8J8nDc+/VXXuoqmOTXJ7kM0l+Mb2k1l8nOWQ/Yj4kvausfi/JtiTru9fvTvKUfndSVU9I8udJfj/JP6Z3wuonkxyxkGCq6hlJ/keSP0vygST/Lslb56h6XHod22907/X8JP9fVZ3YWrtzRr3Hp9fmL0tyV5I7Z+8IABhv1buI6Iokf5/knCTfT6+PsG5GtXck2ZTkgiQvTvKuqnp4a23LPPt8dJKPdPv99+n1oV6XXj/uqbOqvzXJXyV5U3onpebym+n1o/7v9E6CPTO9fuVs70lySpJXJflakmcn+WBVbWytXVtVP9rV+ZMkL01ycJJ/k+TB87wvALC0vSbJrUn+S5InJdmR5EtJHtetv08/o6oenOQfknwzvXMldyV5eZK/7c6Z7B4huNc+xVyBVNWvpndu62VJrk9yVBfToQfw+f4yvSlN35zkl5Lc1MVz0gL2cXxmnY+bq1JVndm9z58neX+SJya5aF87r6pfT+9c1RuSfDTJTyd5fVU9oLX2utbau6t38dhFVfV/JPlut9+vdzHN53VJ/lN65+G+lOTXkzxr1ns/IMnfJnlQen2725P8Rno/zxNaa/+8r/iBvZMABPp1VJKf2d1RqqpK7yTS21trL9hdqaruTvLmqvrD1to30+twPae19r+7Kh/fx/v8dnonj36+tXZXt8/vJ/lfCw24tbYtvY7D7thWp9dB+Yeq2tBau6XPXZ2S5AuttT+cUfbBhcaTXkfyw621F3bLH6uqNTNj7OKeeaXVQemdfLs9yZnpJVR3e1CSx+oQAcCK9odJPp/kKa211pV9JOldqd4tv7G1dlFX9rn0Th6dkd4Jorn8fnoXIj199/TiVfWtJJdU1U+21v5xRt13t9ZeOV9wXV/mZUkubK39l674o1V1RWYkKburyn8+yWmttU90xR+rqhPTO3H0rCSPTfLd1tpLZ7zFh+d7bwBgaWutfa16sxolyWdba99Lkt4ppySz+hnVm1Hq0CQnt9a+1ZX9f0luTvJr6Z2P6qdPMZdTknystfZnM8ouO8DPt6WqvtQtfqG1dt2sz9eP+5yP24vfS/KR1truc0wfraq16SXh5lRVq5K8OsnbWmu/2xV/rKqOSHJ+Vb2ptfaDJC9Mcl2SN6bX7/x3SX58vqlIq+qo9BK0r2qtvb4r+2h6icCZfjnJY5Kc1Fq7sav3t0m+kuR300sKAgfAFKBAv7bO6mycmGRDkkuravXuR5K/S+9q7N3TGFyb5A+7KQ429PE+pyS5Ynfyr7PfHa6q+pWq+qfqTRfxL+ldKbY7/n5dm+SxVfXG6k2xdf/9iOOgJCdnz8ThHonEqvqJ6k3T9c0kO9O7ou2wOWL+nOQfAKxcVXVoetNAXTwj+TeXj+1+0V2gdXt6Mw7M55Qk75t1b+H3ptcv+Xez6v7NPsJcn970Ux+YVT67f/czSf45vVkPZvYtr0yysavzxSRHVNXFVfWz3ecHAMbX7H7Gz6R3kfT2GX2F7yb5XO7tL/TTp5jLtUl+rqr+oKpO6c7jLAWzz8ftoYv1sdl3f2u249Kbeevds8ovSW9Gqv8jSbpk66+nl2S9IMkftNY+v5f9/h/pnRu8J57W2vQc8f1Mej+7r8/4OSXJJ7L3nxXQJwlAoF+3zVpe0z1/OL3E2u7H7qkI1nfPZyW5Or2rhL5RVdfOnDd8Dg9J76TUPbopHL630IC7KTffnt60nc9K8hNJntGtPrjf/bTW/jbJc5M8Ib0RjHdU7z44CznptDa9UdfbZpXfZ7lLkn4sSSU5L70pvH48vTaZHfPsnwkAsLIcmV6fYWof9b4za/mH2XtfaCKz+hldMvCb2XO6zX31Rx7SPd8+q3z28pqu7r/Merw6Xb+ytfaV9GZEeHh6fdA7quod3dXtAMD4metc1FnZs7/w07n3PNQ++xTzuCi9mZueneTTSW6rqtcsgURgP+d+dp9z2ld/a7bd9wic/R67l2f2+/6uK1+V5C/2sd+F9P9+Inv+rJ6bvf+sgD6ZAhTo1+yryr/VPZ+b5J/mqP/1JGmtbU3yH7tpBU5Jr8P1wW4Kzm/Osd0/Jzl6ZkFV/Uh6I+Bm+kGS2SPxZp+QelaST8+aovSJc7znPrXWLk5ycXeC6ZnpJTS3pzfX/O773cwVzx3d623pXTU/+wTV7OWnpnfvwjNba9/vYl6due9ts7cr/QGA8fftJNO59+TNYpnKnv2xg9Kbgupbs+ruqz+ye7aCo2eVz17+VpKtSX5hbztrrf1Nkr/ppqb6+fTuCfQ/kpy9jzgAgOVnrnNRH0zv3oGzfXdGnX32KfZ4o94ItTcmeWNVrU/vnn2v7fb155n/3M+RC3mfTj/nke4JrY/97T7ntK/+1my7LyKbXe+Y7nlmv+91SQ5Kr2/3piT/YS/7ndn/m7mPufp/V2fWrXE6d+9l/0CfjAAE9tdX0usEHd9au3qOx32Se6216dbap5L8QXoJrofOs9/PJjm9qg6ZUfbMOeptSfKoWWWnz1r+kezZYfil+T/SvrXWtrXWLkzy/yZ59IxYMjOerrP4yBnb7UpvOokzZ+3y6XPEPJ1ex223Z8cFGwDALN3FQp9O8qu1wJvJ7MOnkzxj1hXvz0yvP/IPc28yr1vTOwk0uw80u393ZXpXi39vrr7l7J221u5srb0jyftyb58MABhvVyY5Kcn1c/QXvjKjTt99irm01m5trb0uyebs/dzPv01vqsyF2ud5pIXYyzmnuc6nzY5jMnveF/HZ6V30/sUuticmeXF6ibrnJXlOVf37vez3i+klOe+JpxsYMDu+K5M8Isktc/ysvriP2IE+OKEM7JfW2nRV/W6S/1lVhye5PL3ppB6e3lVWv5jkfkk+mt40nF9N8oD0buL7z0lumGfXb0rv5sIfqqo3pDcX+flJdsyq974k/6OqXpFe0vCZ6XUCZ7oivRtA/156J7J+Lsneph+dU1X9QXpXYX08vSuxHpvkiemN/tt9U+fPJnlNVd2V3sUVr8ieV8j/30kuq6o/Te+Ktcend+V60kv6Jb0pFQ5K8ldV9dbuM70ke07dBQCQ9Pojf5vk8qralOT7SX4yvaup99d/S2+Gh/dX1VvSuz/Mf0/y0dbaPy5kR621XVX1R0n+uKruSO8iqn+fPS/kuiK9fuMVVfXfk1yf3gm1k5Mc3Fo7v6rOS++zfSS9k1UnpHfC6u379SkBgOXmDUl+OcnfVdX/SO/C9GPSO0fzD621d6aPPsVcO66qC9M7j/OpJHemN63oCUle1lX5TPd+/09VvTK980T/Ob1E2YIs4DzSQuw+5/SW9M6ZPTG9Wab2Fsd0Vb06yYVV9c302u6J6SX6XtFa+0FVHZbkr5Jc0lp7T3JPW72lqj7ZWpt9q5u01r7Z9Uv/oKp2pvcz+PXsObvX25M8P8nHq+qPk9yU3owTpyT559baG/enIYB7GQEI7LfW2iXpXb1zcno3DL4syQuSXJNeMvAH6V3181vpJbwuTnJXkp/t7us31z63ppeoW5Pkvd3+frnbbqZN6SULfzPJpd37/bdZdS5M8vru/S9Lb9Th3qYomM9n07vi68/T60T+RnpTmf7JjDr/IcktSf5Xep2u/5reKMmZn+19Xby/kOT96d3b7yXd6u1dnS+mN9f5v03yoW6/z0qv8wkAcB+ttU+mNwvCIen1Qy5J78TNlr1tt499Xp/kaelN03RZen2sd6Z3gdf+eFN6/aPnp9e/Oyy9E2Yz37Old0HXRUl+O70+14XpJfx2jzr8QnrTp78hvXsm/5f07kHzsgAAY6+1dkd694z7cnrTdX4syR8lOSK9fkK/fYq5/GOSJ6SX7Ppwkmck+fXW2vu7/f6wK5tO8p70LnD/jfSmZN8f+zyPtBDdOacXJ/k/0zvn9Nj0Ruvta7u/SO9c1TPSOw/1nCS/242ATHrn1X4kyYtmbPaSJN9L7zzZfP5zej+D30+vHzmZXh9u5nv/IL1E6xXpzRj2sfTOtZ2QXsIVOEDV+04EYBSq6r8k+b0kD54vKQoAAAAAAAthClCAIamqtelNZ/r36Y1o/Kn0rlh/q+QfAAAAAACLRQIQYHh+mORfJfnV9KanmEpvaoNXjjIoAAAAAADGiylAAQAAAAAAYIysGnUAAAAAAAAAwOKRAAQAAAAAAIAxIgEIAAAAAAAAY0QCEAAAAAAAAMaIBCAAAAAAAACMEQlAAAAAAAAAGCMSgAAAAAAAADBGJAABAAAAAABgjEgAAgAAAAAAwBhZPeoADsSaNWva8ccfP+owAIAV4HOf+9wdrbW1o45jkPStAIBh0K8CAFg88/WtlnUC8Pjjj8/VV1896jAAgBWgqr4x6hgGTd8KABgG/SoAgMUzX9/KFKAAAAAAAAAwRiQAAQAAAAAAYIxIAAIAAAAAAMAYkQAEAAAAAACAMSIBCAAAAAAAAGNEAhAAAAAAAADGiAQgAAAAAAAAjBEJQAAAAAAAABgjEoAAAMtAVV1UVbdX1XWzyl9cVV+pquur6o9mlJ9fVZu7dU8ZfsQAAAAAjMrqUQcAAEBf3pbkT5O8fXdBVf10kjOT/OvW2t1VdXRX/ugkZyc5KcmxSf62qk5sre0aetQAAAAADJ0RgAAAy0Br7ZNJvjWr+DeSvK61dndX5/au/Mwk72qt3d1a+3qSzUlOGVqwAAAAAIyUBCAAwPJ1YpKfqqpPV9UnqurHu/J1SW6dUW9LV7aHqjq3qq6uqqu3bds24HABAAAAGAYJQACA5Wt1kiOT/ESSlya5tKoqSc1Rt821g9baptbaxtbaxrVr1w4uUgAAAACGxj0AF9ljTn5cpqam+qo7MTGR6669ZsARAQBjbEuSy1prLclnqmo6yZqufP2MesclmRxBfMAIrFu/IZNbbt13xVmOPW59tt56ywAiAgBYek581EmZnNzad/1jj12Xr95w/QAjAlhcEoCLbGpqKqe/5rK+6l7xymcOOBoAYMy9P8mTkny8qk5Mcv8kdyT5YJJ3VNUbkhyb5IQknxlVkMBwTW65NWddeNWCt7vkvFMHEA0AwNI0Obk1Z1xwed/1P/TSpw0wGoDFJwEIALAMVNU7k5yWZE1VbUnyqiQXJbmoqq5L8sMk53SjAa+vqkuTfCnJziQvbK3tGk3kAAAAAAybBCAAwDLQWnvOPKt+eZ76r03y2sFFBAAAAMBStWrUAQAAAAAAAACLRwIQAAAAAAAAxogEIAAAAAAAAIwRCUAAAAAAAAAYIxKAAAAAAAAAMEYkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAAGDFqKqLqur2qrpuRtklVXVt97i5qq7tyo+vqh0z1v35yAIHAFiA1aMOYCXbvn17jjpmou/6ExMTue7aawYYEQAAAMDYe1uSP03y9t0FrbWzdr+uqtcnuXNG/a+11k4eVnAAAItBAnCEpqenc/prLuu7/hWvfOYAowEAAAAYf621T1bV8XOtq6pK8uwkTxpqUAAAi8wUoAAAAADQ81NJbmut3Tij7GFV9U9V9Ymq+qn5Nqyqc6vq6qq6etu2bYOPFABgLwaWAKyq9VX191V1Q1VdX1W/1ZU/uKquqKobu+cjZ2xzflVtrqqvVNVTBhUbAAAAAMzhOUneOWN5KsmG1tpjk/xOkndU1eFzbdha29Ra29ha27h27dohhAoAML9BjgDcmeR3W2uPSvITSV5YVY9O8vIkV7bWTkhyZbecbt3ZSU5K8tQkf1ZVBw0wPgAAAABIklTV6iTPTHLJ7rLW2t2ttW92rz+X5GtJThxNhAAA/RtYArC1NtVau6Z7/d0kNyRZl+TMJBd31S5O8gvd6zOTvKvrWH09yeYkpwwqPgAAAACY4WeSfLm1tmV3QVWt3X2BelU9PMkJSW4aUXwAAH0byj0AuxsrPzbJp5Mc01qbSnpJwiRHd9XWJbl1xmZburLZ+zKfOgAAwBKwbv2GVNWCH+vWbxh16MAKVlXvTPKPSR5ZVVuq6nndqrNz3+k/k+QJSb5QVZ9P8p4kz2+tfWt40QIA7J/Vg36DqjosyXuT/HZrbXtVzVt1jrK2R0Frm5JsSpKNGzfusR4AAIDhmNxya8668KoFb3fJeacOIBqA/rTWnjNP+X+co+y96Z3XAgBYVgY6ArCq7pdeJ+mvW2uXdcW3VdVEt34iye1d+ZYk62dsflySyUHGBwAAAAAAAONmYAnA6g31e2uSG1prb5ix6oNJzulen5PkAzPKz66qB1TVw9KbU/0zg4oPAAAAAAAAxtEgpwB9fJJfSfLFqrq2K3tFktclubSbX/2WJM9Kktba9VV1aZIvJdmZ5IWttV0DjA8AAAAAAADGzsASgK21f8jc9/VLkifPs81rk7x2UDEBAAAAAADAuBvoPQABAAAAAACA4ZIABAAAAAAAgDEiAQgAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIwRCUAAAAAAAAAYI6tHHQAAAABLwKrVqapRRwEAAMAikAAEAAAgmd6Zsy68akGbXHLeqfv3XvuZbDz2uPXZeust+/eeAAAAK4gEIADAMlBVFyU5I8ntrbXHzFr3kiQXJFnbWrujKzs/yfOS7Erym621jw45ZID57UeyMTmAhCMAAMAK4x6AAADLw9uSPHV2YVWtT3J6kltmlD06ydlJTuq2+bOqOmg4YQIAAAAwahKAAADLQGvtk0m+NceqNyb5z0najLIzk7yrtXZ3a+3rSTYnOWXwUQIAAACwFEgAAgAsU1X19CRbW2ufn7VqXZJbZyxv6crm2se5VXV1VV29bdu2AUUKAAAAwDBJAAIALENVdUiS30vy+3OtnqOszVGW1tqm1trG1trGtWvXLmaIAAAAAIzI6lEHAADAfvnRJA9L8vmqSpLjklxTVaekN+Jv/Yy6xyWZHHqEAAAAAIyEEYAAAMtQa+2LrbWjW2vHt9aOTy/p97jW2j8n+WCSs6vqAVX1sCQnJPnMCMMFAAAAYIgkAAEAloGqemeSf0zyyKraUlXPm69ua+36JJcm+VKSjyR5YWtt13AiBQAAAGDUTAEKALAMtNaes4/1x89afm2S1w4yJgAAAACWJiMAAQAAAAAAYIxIAAIAAAAAAMAYkQAEAAAAAACAMSIBCAAAAAAAAGNEAhAAAAAAAADGiAQgAAAAAAAAjBEJQAAAAAAAABgjEoAAAAAAAAAwRgaWAKyqi6rq9qq6bkbZJVV1bfe4uaqu7cqPr6odM9b9+aDiAgAAAAAAgHG2eoD7fluSP03y9t0FrbWzdr+uqtcnuXNG/a+11k4eYDwAAAAAAAAw9gY2ArC19skk35prXVVVkmcneeeg3h8AAAAAZptn1qpXV9XWGbNT/dyMdedX1eaq+kpVPWU0UQMALMyo7gH4U0lua63dOKPsYVX1T1X1iar6qRHFBQAAAMB4e1uSp85R/sbW2snd48NJUlWPTnJ2kpO6bf6sqg4aWqQAAPtpVAnA5+S+o/+mkmxorT02ye8keUdVHT7XhlV1blVdXVVXb9u2bQihAgAAADAu9jZr1RzOTPKu1trdrbWvJ9mc5JSBBQcAsEiGngCsqtVJnpnkkt1lXSfqm93rzyX5WpIT59q+tbaptbaxtbZx7dq1wwgZAAAAgPH3oqr6QjdF6JFd2bokt86os6Ur24OL1gGApWQUIwB/JsmXW2tbdhdU1drd0ydU1cOTnJDkphHEBgAAAMDK85YkP5rk5PRmqnp9V15z1G1z7cBF6wDAUjKwBGBVvTPJPyZ5ZFVtqarndavOzn2n/0ySJyT5QlV9Psl7kjy/tdbvVAwAAAAAsN9aa7e11na11qaT/EXuneZzS5L1M6oel2Ry2PEBACzU6kHtuLX2nHnK/+McZe9N8t5BxQIAAAAA86mqidbaVLf4jCTXda8/mOQdVfWGJMemN2vVZ0YQIgDAggwsAQgAAAAAS003a9VpSdZU1ZYkr0pyWlWdnN70njcnOS9JWmvXV9WlSb6UZGeSF7bWdo0gbACABZEABAAAAGDFmGfWqrfupf5rk7x2cBEBACy+gd0DEAAAAAAAABg+CUAAAAAAAAAYIxKAAAAAAAAAMEYkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAAAAAgDEiAQgAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIwRCUAAgGWgqi6qqtur6roZZRdU1Zer6gtV9b6qetCMdedX1eaq+kpVPWUkQQMAAAAwEhKAAADLw9uSPHVW2RVJHtNa+9dJvprk/CSpqkcnOTvJSd02f1ZVBw0vVAAAAABGSQIQAGAZaK19Msm3ZpV9rLW2s1v8VJLjutdnJnlXa+3u1trXk2xOcsrQggUAAABgpCQAAQDGw68lubx7vS7JrTPWbenK9lBV51bV1VV19bZt2wYcIgAAAADDIAEIALDMVdXvJdmZ5K93F81Rrc21bWttU2ttY2tt49q1awcVIgAAAABDJAEIALCMVdU5Sc5I8kuttd1Jvi1J1s+odlySyWHHBtxr3foNqaoFPdat3zDqsAEAAFimVo86APq3ffv2HHXMRN/1JyYmct211wwwIgBglKrqqUleluSJrbW7Zqz6YJJ3VNUbkhyb5IQknxlBiEBncsutOevCqxa0zSXnnTqgaAAAABh3EoDLyPT0dE5/zWV917/ilc8cYDQAwDBV1TuTnJZkTVVtSfKqJOcneUCSK6oqST7VWnt+a+36qro0yZfSmxr0ha21XaOJHAAAAIBhkwAEAFgGWmvPmaP4rXup/9okrx1cRAAAAAAsVe4BCAAAAAAAAGNEAhAAAAAAAADGiAQgAAAAAAAAjBEJQAAAAAAAABgjq0cdAAAAAHNYtTpVNeooAAAYkhMfdVImJ7f2Xf/YY9flqzdcP8CIgOVMAhAAAGApmt6Zsy68asGbXXLeqQMIBgCAhVhoMi9Jdty1I89688f7rv+hlz5tgVEBK8nAEoBVdVGSM5Lc3lp7TFf26iS/nmRbV+0VrbUPd+vOT/K8JLuS/GZr7aODig0AAAAAAAZlcnJrzrjg8gVtc+kLnjigaICVaJD3AHxbkqfOUf7G1trJ3WN38u/RSc5OclK3zZ9V1UEDjA0AAAAAAADG0sASgK21Tyb5Vp/Vz0zyrtba3a21ryfZnOSUQcUGAAAAAAAA42qQIwDn86Kq+kJVXVRVR3Zl65LcOqPOlq5sD1V1blVdXVVXb9u2ba4qAAAAAAAAsGINOwH4liQ/muTkJFNJXt+V1xx121w7aK1taq1tbK1tXLt27UCCBAAAAAAAgOVqqAnA1tptrbVdrbXpJH+Re6f53JJk/YyqxyWZHGZsAAAAAAAAMA5WD/PNqmqitTbVLT4jyXXd6w8meUdVvSHJsUlOSPKZYcY2jrZv356jjpnou/7ExESuu/aaAUYEAAAAAADAoA0sAVhV70xyWpI1VbUlyauSnFZVJ6c3vefNSc5Lktba9VV1aZIvJdmZ5IWttV2Dim2lmJ6ezumvuazv+le88pkDjAYAAABg9KrqoiRnJLm9tfaYruyCJP9nkh8m+VqS57bWvlNVxye5IclXus0/1Vp7/vCjBgBYmIElAFtrz5mj+K17qf/aJK8dVDwAAAAAkORtSf40ydtnlF2R5PzW2s6q+u9Jzk/ysm7d11prJw81QgCAAzTUewACAAAAwCi11j6Z5Fuzyj7WWtvZLX4qyXFDDwwAYBFJAAIAAADAvX4tyeUzlh9WVf9UVZ+oqp8aVVAAAAsxsClAAQAAYFGtWp2qWvBmxx63PltvvWUAAQHjpqp+L8nOJH/dFU0l2dBa+2ZV/Zsk76+qk1pr2+fY9twk5ybJhg0bhhUyMCQ7dtydw454UP/179oxuGAA+iABCAAAwPIwvTNnXXjVgje75LxTBxAMMG6q6pwkZyR5cmutJUlr7e4kd3evP1dVX0tyYpKrZ2/fWtuUZFOSbNy4sQ0rbmA42vSunHHB5fuu2Ln0BU8cYDQA+2YKUAAAAABWtKp6apKXJXl6a+2uGeVrq+qg7vXDk5yQ5KbRRAkA0D8jAAEAAABYMarqnUlOS7KmqrYkeVWS85M8IMkV3VTDn2qtPT/JE5L816ramWRXkue31r41ksABABZAAhAAAACAFaO19pw5it86T933JnnvYCMCAFh8pgAFAAAAAACAMSIBCAAAAAAAAGNEAhAAAAAAAADGiAQgAAAAAAAAjBEJQAAAAAAAABgjEoAAAAAAAAAwRiQAAQCWgaq6qKpur6rrZpQ9uKquqKobu+cjZ6w7v6o2V9VXquopo4kaAAAAgFGQAAQAWB7eluSps8penuTK1toJSa7sllNVj05ydpKTum3+rKoOGl6oAAAAAIzS6lEHwNKxffv2HHXMRF91JyYmct211ww4IgBgt9baJ6vq+FnFZyY5rXt9cZKPJ3lZV/6u1trdSb5eVZuTnJLkH4cSLAAAAAAjJQHIPaanp3P6ay7rq+4Vr3zmgKMBAPpwTGttKklaa1NVdXRXvi7Jp2bU29KVAQAAALACmAIUAGD81Bxlbc6KVedW1dVVdfW2bdsGHBYAAAAAwyABCACwfN1WVRNJ0j3f3pVvSbJ+Rr3jkkzOtYPW2qbW2sbW2sa1a9cONFgAAAAAhsMUoAAAy9cHk5yT5HXd8wdmlL+jqt6Q5NgkJyT5zEgiBAAAGLATH3VSJie3LmibHXftGFA0AEuDBCAAwDJQVe9MclqSNVW1Jcmr0kv8XVpVz0tyS5JnJUlr7fqqujTJl5LsTPLC1tqukQQOAAAwYJOTW3PGBZcvaJtLX/DEAUUDsDRIAAIALAOttefMs+rJ89R/bZLXDi4iAAAAAJYq9wAEAAAAAACAMSIBCAAAAAAAAGNEAhAAAAAAAADGiAQgAAAAAAAAjJGBJQCr6qKqur2qrptRdkFVfbmqvlBV76uqB3Xlx1fVjqq6tnv8+aDiAgAAAAAAgHE2yBGAb0vy1FllVyR5TGvtXyf5apLzZ6z7Wmvt5O7x/AHGBQAAAAAAAGNrYAnA1tonk3xrVtnHWms7u8VPJTluUO8PAAAAAAAAK9Eo7wH4a0kun7H8sKr6p6r6RFX91HwbVdW5VXV1VV29bdu2wUcJAAAAAAAAy8hIEoBV9XtJdib5665oKsmG1tpjk/xOkndU1eFzbdta29Ra29ha27h27drhBAwAAAAAAADLxNATgFV1TpIzkvxSa60lSWvt7tbaN7vXn0vytSQnDjs2AAAAAAAAWO6GmgCsqqcmeVmSp7fW7ppRvraqDupePzzJCUluGmZsAAAAAAAAMA5WD2rHVfXOJKclWVNVW5K8Ksn5SR6Q5IqqSpJPtdaen+QJSf5rVe1MsivJ81tr3xpUbAAAAAAAADCuBpYAbK09Z47it85T971J3juoWAAAAAAAAGCl6GsK0Kp6fD9lAADsnX4VAMDi0K8CAJhfv/cA/B99lgEAsHf6VQAAi0O/CgBgHnudArSqfjLJqUnWVtXvzFh1eJKDBhkYAMA40a8CAFgc+lUAAPu2r3sA3j/JYV29B84o357kFwcVFADAGNKvAgBYHPpVAAD7sNcEYGvtE0k+UVVva619Y0gxAQCMHf0qAIDFcaD9qqq6KMkZSW5vrT2mK3twkkuSHJ/k5iTPbq19u1t3fpLnJdmV5Ddbax9djM8BADBI+xoBuNsDqmpTep2ge7ZprT1pEEEtJY85+XGZmprqu/727dsHGM3SsX379hx1zETf9ScmJnLdtdcMMCIAWDZWbL8KAGCR7W+/6m1J/jTJ22eUvTzJla2111XVy7vll1XVo5OcneSkJMcm+duqOrG1tmvRPgUAwAD0mwB8d5I/T/KX6V3ttGJMTU3l9Ndc1nf9d794ZZy7m56eXlC7XPHKZw4wGgBYVlZsvwoAYJHtV7+qtfbJqjp+VvGZSU7rXl+c5ONJXtaVv6u1dneSr1fV5iSnJPnHAwkcAGDQ+k0A7mytvWWgkQAArAz6VQAAi2Mx+1XHtNamkqS1NlVVR3fl65J8aka9LV3ZHqrq3CTnJsmGDRsWKSwYDyc+6qRMTm7tu/6//MvO3O9+/Z66TnbctWN/wgIYa/1+i/7vqnpBkvcluXt3YWvtWwOJCgBgfOlXwTK2bv2GTG65ddRhANAzjH5VzVHW5qrYWtuUZFOSbNy4cc46sFJNTm7NGRdc3nf9S1/wxDzjTVcsqD4A99VvAvCc7vmlM8pakocvbjgAAGNPvwqWscktt+asC69a8HaXnHfqAKIBWPEWs191W1VNdKP/JpLc3pVvSbJ+Rr3jkkzux/4BAIaqrwRga+1hgw4EAGAl0K8CAFgci9yv+mB6CcXXdc8fmFH+jqp6Q5Jjk5yQ5DOL+L4AAAPRVwKwqn51rvLW2tsXNxwAgPGmXwUAsDj2t19VVe9MclqSNVW1Jcmr0kv8XVpVz0tyS5Jndfu6vqouTfKlJDuTvLC1tmvRPgQAwID0OwXoj894fXCSJye5JokTVQAAC6NfBQCwOParX9Vae848q548T/3XJnnt/gQIADAq/U4B+uKZy1V1RJL/OZCIAADGmH4VAMDi0K8CAJjfqv3c7q705jwHAODA6FcBACwO/SoAgE6/9wD830lat3hQkkcluXRQQQEAjCv9KgCAxaFfBQAwv37vAfjHM17vTPKN1tqWAcQDADDuFrVfVVX/V5L/lN7Jry8meW6SQ5JckuT4JDcneXZr7dv7+x4AAEuU81UAAPPoawrQ1tonknw5yQOTHJnkh4MMCgBgXC1mv6qq1iX5zSQbW2uPSe/K97OTvDzJla21E5Jc2S0DAIwV56sAAObXVwKwqp6d5DNJnpXk2Uk+XVW/OMjAAADG0QD6VauT/EhVrU5v5N9kkjOTXNytvzjJLxzA/gEAliTnq2A0TnzUSTnsiAct6LHjrh2jDhtgxel3CtDfS/LjrbXbk6Sq1ib52yTvGVRgAABjatH6Va21rVX1x0luSbIjycdaax+rqmNaa1NdnamqOnq+fVTVuUnOTZINGzYs+MMAAIyQ81UwApOTW3PGBZcvaJtLX/DEAUUDwHz6TQCu2t2Z6nwzfY4eBADgPhatX1VVR6Y32u9hSb6T5N1V9csL2UdrbVOSTUmycePGtj9xAACMiPNVAAtw4qNOyuTk1gVtc+yx6/LVG64fUETAIPWbAPxIVX00yTu75bOSfHgwIQEAjLXF7Ff9TJKvt9a2JUlVXZbk1CS3VdVEN/pvIsnte9sJAMAy5XwVwALsz+jND730aQOKBhi0vSYAq+oRSY5prb20qp6Z5N8lqST/mOSvhxAfAMBYGFC/6pYkP1FVh6Q3BeiTk1yd5PtJzknyuu75AwcYPgDAkuF8FQDAvu1rBOCbkrwiSVprlyW5LEmqamO37v8cYGwAAOPkTVnkflVr7dNV9Z4k1yTZmeSf0pvO87Akl1bV89JLEj7rwMMHAFgy3hTnqwAA9mpfCcDjW2tfmF3YWru6qo4fTEgAAGNpIP2q1tqrkrxqVvHd6Y0GBAAYR85XAQDsw75ujHzwXtb9yN42rKqLqur2qrpuRtmDq+qKqrqxez5yxrrzq2pzVX2lqp7SX/gAAMvGfverAAC4D/0qAIB92FcC8LNV9euzC7vppD63j23fluSps8penuTK1toJSa7sllNVj05ydpKTum3+rKoO2mf0AADLx4H0qwAAuJd+FQDAPuxrCtDfTvK+qvql3NuB2pjk/kmesbcNW2ufnGPahTOTnNa9vjjJx5O8rCt/V2vt7iRfr6rNSU5J7+bNAADj4Lezn/0qAADu47ejXwUAsFd7TQC21m5LcmpV/XSSx3TFf9Na+7v9fL9jWmtT3b6nqurornxdkk/NqLelKwMAGAsD6FcBAKxI+lUAAPu2rxGASZLW2t8n+fsBxlFzve2cFavOTXJukmzYsGGAIQEALL4h9KsAAFYE/SoAgPnt6x6Ai+22qppIku759q58S5L1M+odl2Ryrh201ja11ja21jauXbt2oMECAAAAAADAcjPsBOAHk5zTvT4nyQdmlJ9dVQ+oqoclOSHJZ4YcGwAAAAAAACx7fU0Buj+q6p1JTkuypqq2JHlVktclubSqnpfkliTPSpLW2vVVdWmSLyXZmeSFrbVdg4oNAAAAAAAAxtXAEoCttefMs+rJ89R/bZLXDioeAAAAAAAYFzt23J3DjnhQ//Xv2jG4YIAlZ2AJQAAAAAAAYDDa9K6cccHlfde/9AVPHGA0wFIz7HsAAgAAAAAAAAMkAQgAAAAAAABjRAIQAAAAAAAAxogEIAAAAAAAAIwRCUAAAAAAAAAYIxKAAAAAAAAAMEYkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAVpx16zekqhb8AAAAgOVg9agDAAAAGLbJLbfmrAuvWvB2l5x36gCiAWApqKpHJrlkRtHDk/x+kgcl+fUk27ryV7TWPjzc6AAAFsYIQAAAAMbbqtULHu25bv2GUUcNDFlr7SuttZNbaycn+TdJ7kryvm71G3evk/wDAJYDIwABAAAYb9M7Fzzi02hPWPGenORrrbVvmAIaAFiOjAAEAACA2fZj1KCRgzBWzk7yzhnLL6qqL1TVRVV15FwbVNW5VXV1VV29bdu2uaoAAAyNEYAAAAAw236MGkyMHIRxUFX3T/L0JOd3RW9J8pokrXt+fZJfm71da21Tkk1JsnHjxjaUYAEA5iEByJL0mJMfl6mpqb7rT0xM5LprrxlgRAAAAMAK8bQk17TWbkuS3c9JUlV/keRDowoMAKBfEoAsSVNTUzn9NZf1Xf+KVz5zgNEAAAAAK8hzMmP6z6qaaK3tvkr5GUmuG0lUAAALIAEIAAAAAEmq6pAkpyc5b0bxH1XVyelNAXrzrHUAAEuSBCAAAAAAJGmt3ZXkqFllvzKicAAA9tuqUQcAAMCBqaoHVdV7qurLVXVDVf1kVT24qq6oqhu75yNHHScAAAAAwyEBCACw/P1Jko+01v5Vkh9LckOSlye5srV2QpIru2UAAAAAVgAJQACAZayqDk/yhCRvTZLW2g9ba99JcmaSi7tqFyf5hVHEBwAAAMDwSQACACxvD0+yLclfVdU/VdVfVtWhSY5prU0lSfd89FwbV9W5VXV1VV29bdu24UUNAAAAwMBIAAIALG+rkzwuyVtaa49N8v0sYLrP1tqm1trG1trGtWvXDipGAAAAAIZo9agDAADggGxJsqW19ulu+T3pJQBvq6qJ1tpUVU0kuX1kEQIAAEvWiY86KZOTW/uuv+OuHQOMBoDFIgEIALCMtdb+uapurapHtta+kuTJSb7UPc5J8rru+QMjDBMAAFiiJie35owLLu+7/qUveOIAowFgsQw9AVhVj0xyyYyihyf5/SQPSvLr6d3DJkle0Vr78HCjAwBYll6c5K+r6v5Jbkry3PSmer+0qp6X5JYkzxphfAAAAAAM0dATgN2V6ScnSVUdlGRrkveld6Lqja21Px52TAAAy1lr7dokG+dY9eQhhwIAAADAErBqxO//5CRfa619Y8RxAAAAAAAAwFgYdQLw7CTvnLH8oqr6QlVdVFVHzrVBVZ1bVVdX1dXbtm2bqwoAAAAAAACsWCNLAHb3qHl6knd3RW9J8qPpTQ86leT1c23XWtvUWtvYWtu4du3aYYQKAAAAAAAAy8YoRwA+Lck1rbXbkqS1dltrbVdrbTrJXyQ5ZYSxAQAAAAAAwLI0ygTgczJj+s+qmpix7hlJrht6RAAAAAAAALDMrR7Fm1bVIUlOT3LejOI/qqqTk7QkN89aBwAAAAAAAPRhJAnA1tpdSY6aVfYro4iF4di+fXuOOmZi3xVn1AcAAAAAAGDhRpIAZOWZnp7O6a+5rO/6737xkwYYDQAAAAAAwPga5T0AAQAAAAAAgEUmAQgAAAAAAABjRAIQAAAAAAAAxoh7AAIAAAAAjIkTH3VSJie39l1/x107BhgNAKMiAQgAAAAAMCYmJ7fmjAsu77v+pS944gCjAWBUTAEKAAAAi2XV6lTVgh/r1m8YdeQAAMAYMQIQAAAAFsv0zpx14VUL3uyS804dQDAAAMBKZQQgAAAAAAAAjBEJQAAAAAAAABgjEoAAAAAAAAAwRiQAAQAAAAAAYIysHnUAsBi2b9+eo46Z6KvuxMRErrv2mgFHBAAAAAAAMBoSgIyF6enpnP6ay/qqe8UrnzngaAAAAAAAAEbHFKAAAAAAAAAwRowABAAAAIAkVXVzku8m2ZVkZ2ttY1U9OMklSY5PcnOSZ7fWvj2qGAEA+mEEIAAAAADc66dbaye31jZ2yy9PcmVr7YQkV3bLAABLmgQgAAAAAMzvzCQXd68vTvILowsFAKA/pgAFAAAAgJ6W5GNV1ZJc2FrblOSY1tpUkrTWpqrq6Lk2rKpzk5ybJBs2bBhWvABLyomPOimTk1v7rn/ssevy1RuuH2BEsHJJAAIAAMCorVqdqlrQJscetz5bb71lQAHBivX41tpkl+S7oqq+3O+GXbJwU5Js3LixDSpAgKVscnJrzrjg8r7rf+ilTxtgNLCySQACAADAqE3vzFkXXrWgTS4579QBBQMrV2ttsnu+varel+SUJLdV1UQ3+m8iye0jDRIAoA/uAQgAsMxV1UFV9U9V9aFu+cFVdUVV3dg9HznqGAEAlrqqOrSqHrj7dZKfTXJdkg8mOaerdk6SD4wmQgCA/kkAAgAsf7+V5IYZyy9PcmVr7YQkV3bLAADs3TFJ/qGqPp/kM0n+prX2kSSvS3J6Vd2Y5PRuGQBgSTMFKADAMlZVxyX5+SSvTfI7XfGZSU7rXl+c5ONJXjbs2AAAlpPW2k1JfmyO8m8mefLwIwIA2H9GAAIALG9vSvKfk0zPKDumtTaVJN3z0fNtXFXnVtXVVXX1tm3bBhooAAAAAMMhAQgAsExV1RlJbm+tfW5/99Fa29Ra29ha27h27dpFjA4AAACAURnJFKBVdXOS7ybZlWRna21jVT04ySVJjk9yc5Jnt9a+PYr4AACWiccneXpV/VySg5McXlX/K8ltVTXRWpuqqokkt480SgAAAACGapQjAH+6tXZya21jt/zyJFe21k5IcmW3DADAPFpr57fWjmutHZ/k7CR/11r75SQfTHJOV+2cJB8YUYgAAAAAjMBIRgDO48wkp3WvL07y8SQvG1UwsL8ec/LjMjU11VfdiYmJXHftNQOOCIAV6HVJLq2q5yW5JcmzRhwPAAAAAEM0qgRgS/KxqmpJLmytbUpyTGttKkm66aqOnmvDqjo3yblJsmHDhmHFC32bmprK6a+5rK+6V7zymQOOBoCVorX28fQuoEpr7ZtJnjzKeAAAAFj+duy4O4cd8aD+69+1Y3DBAAsyqgTg41trk12S74qq+nK/G3bJwk1JsnHjxjaoAAEAgOVh3foNmdxy66jDAACAsdOmd+WMCy7vu/6lL3jiAKMBFmIkCcDW2mT3fHtVvS/JKUluq6qJbvTfRJLbRxEbAACwvExuuTVnXXjVgra55LxTBxQNAAAAjN6qYb9hVR1aVQ/c/TrJzya5LskHk5zTVTsnyQeGHRsAAAAAAAAsd0NPACY5Jsk/VNXnk3wmyd+01j6S5HVJTq+qG5Oc3i0DAADLzLr1G1JVC36sW+8e37Agq1b7XQMAAOY09ClAW2s3JfmxOcq/meTJw44HAABYXPszJWdiWk5YsOmdftcAAIA5jWIEIAAAAAAAADAgEoAAAAAAAAAwRoY+BSgAAMCcuvuZAQAAAAdGAhAAAFga3M8MAAAAFoUpQAEAAAAAAGCMSAACAAAAAADAGJEABAAAgJWku9/mQh/r1m8YdeQAAECf3AMQAAAAVhL32wQAlogdO+7OYUc8aEHbHHvsunz1husHExCMEQlAAAAAAABg6Nr0rpxxweUL2uZDL33agKKB8SIByIqzffv2HHXMRN/1JyYmct211wwwIgAAAAAAgMUjAciKMz09ndNfc1nf9a945TMHGA0AAAAAAMDiWjXqAAAAAAAAAIDFYwQg7MNCpwzdvn37AKMBAAAAYCU58VEnZXJya9/1d9y1Y4DRALBcSADCPix0ytB3v/hJA4wGAAAAgJVkcnJrzrjg8r7rX/qCJw4wGgCWC1OAAgAAAAAAwBiRAAQAAAAAAIAxIgEIAAAAAAAAY0QCEAAAAAAAAMbI6lEHACvZ9u3bc9QxE33Xn5iYyHXXXjPAiAAAAAAAgOVOAhBGaHp6Oqe/5rK+61/xymcOMBoAAAAAgKVtx467c9gRD+q7/rHHrstXb7h+cAHBEiUBCAAAAMCKV1Xrk7w9yUOSTCfZ1Fr7k6p6dZJfT7Ktq/qK1tqHRxMlAG16V8644PK+63/opU8bYDSwdEkAAgAA81q3fkMmt9w66jAAYBh2Jvnd1to1VfXAJJ+rqiu6dW9srf3xCGMDAFgQCUAAAGBek1tuzVkXXrWgbS4579QBRQMAg9Nam0oy1b3+blXdkGTdaKMCANg/q0YdAAAA+6+q1lfV31fVDVV1fVX9Vlf+4Kq6oqpu7J6PHHWsAADLRVUdn+SxST7dFb2oqr5QVRfN16+qqnOr6uqqunrbtm1zVQEAGBoJQACA5W33VFWPSvITSV5YVY9O8vIkV7bWTkhyZbcMAMA+VNVhSd6b5Ldba9uTvCXJjyY5Ob0Rgq+fa7vW2qbW2sbW2sa1a9cOK1wAgDmZAhSWke3bt+eoYyb6rj8xMZHrrr1mgBEBMGp7marqzCSnddUuTvLxJC8bQYgAAMtGVd0vveTfX7fWLkuS1tptM9b/RZIPjSg8xsCJjzopk5NbF7TNjrt2DCgaAMbZ0BOAVbU+yduTPCTJdJJNrbU/qapXJ/n1JLvnSHhFa+3Dw44PlrLp6emc/prL+q5/xSufOcBoAFhqZk1VdUyXHExrbaqqjp5nm3OTnJskGzZsGFKkAABLT1VVkrcmuaG19oYZ5RO7+1VJnpHkulHEx3iYnNyaMy64fEHbXPqCJw4oGgDG2ShGAO6epuqaqnpgks9V1RXduje21v54BDEBACxrs6eq6p2/2rfW2qYkm5Jk48aNbXARAgAseY9P8itJvlhV13Zlr0jynKo6OUlLcnOS80YRHADAQgw9AbiXaaoAANgPc01VleS23VerV9VEkttHFyEAwNLXWvuHJHNdRWWGKgBg2Vk1yjefNU1Vkryoqr5QVRdV1ZHzbHNuVV1dVVdv27ZtrioAACvGfFNVJflgknO61+ck+cCwYwMAAABgNEaWAJw9TVWStyT50SQnpzdC8PVzbdda29Ra29ha27h27dphhQsAsFTtnqrqSVV1bff4uSSvS3J6Vd2Y5PRuGQAAAIAVYBT3AJxzmqrW2m0z1v9Fkg+NIjYAgOVkL1NVJcmThxkLAAAAAEvD0BOA801TtfseNd3iM5JcN+zYYNxs3749Rx0z0Xf9iYmJXHftNQOMCAAAWLZWrU7vX/r+HXvc+my99ZYBBQQAAMxnFCMAd09T9cWqurYre0WS51TVyUlakpuTnDeC2GCsTE9P5/TXXNZ3/Ste+cwBRgMAACxr0ztz1oVXLWiTS847dUDBACwNJz7qpExObu27/o67dgwwGmAuO3bcncOOeFDf9Y89dl2+esP1gwsIhmToCcC9TFP14WHHAgAAAACwvyYnt+aMCy7vu/6lL3jiAKMB5tKmdy3o9/RDL33aAKOB4Vk16gAAAAAAAACAxSMBCAAAAAAAAGNEAhAAAJaRdes3pKoW/Fi3fsOoQwcAAACGZOj3AAQAAPbf5JZbc9aFVy14u0vOO3UA0QAAAABLkRGAAAAAAAAAMEYkAAEAAAAAAGCMSAACAAAAAADAGJEABAAAAAAAgDGyetQBAMvTY05+XKampvquPzExkeuuvWZJxDPoWAAAAAAAYJQkAIF7bN++PUcdM9F33X//J3/b977f+1s/0/e+k4Un6aampnL6ay7rq+4Vr3xm3/sFAAAAANibEx91UiYnt/Zd/9hj1+WrN1w/wIhAAhCYYXp6uu8k2rtf/KSB7TuRpAMAAAAAlofJya0544LL+67/oZc+bYDRQI97AAIAAAAAAMAYkQAEAAAABmPV6lTVgh/r1m8YdeQAALCsmQIUAAAAGIzpnTnrwqsWvNkl5506gGAAAGDlkAAEAICVoBuFAwAAAIw/CUAAADhA69ZvyOSWWxe83bHHrc/WW28ZQERzMAoHAAAAVgwJQAAAOECTW26VXAMAGLATH3VSJie39l3/2GPX5as3XD/AiAD2z44dd+ewIx7Ud33fZ+wPCUAAAABgadnPaYuHOrIaOGALTejtuGtHnvXmj/dd/0MvfdpQYgLGy0KTc8nCvwva9K6cccHlfdffn+8zkAAEAAAAlhbTFsOKMDm5dUEnwC99wRMHGE3PUowJGK6FJucS3wUsTRKAwIqzffv2HHXMRN/1JyYmct211wwwIgAAAAAAWDwSgMCStNAk3fbt2/uuOz09ndNfc1nf9a945TP7rgsAAAAsDcOYxg8AlioJQGBJWmiS7t0vftIAowEAALivdes3ZHLLrQvebn/uUzjM94JxYho/AFYyCUAAAACABZrccuvQ7lM4zPcCAGA8rBp1AAAArAzr1m9IVS34sfr+B+/XduvWbxhajPtt1erhvRcAc/LdDwDAODICEACAoTiQ0QtjO8JieueC389oDoDF5bsfAIBxtOQSgFX11CR/kuSgJH/ZWnvdiEMCAFiWVny/qhthAcAK4rv/vvazPdw7cE8rvl8FwEjt2HF3DjviQX3X/5d/2Zn73W9h6Z9jj12Xr95w/QIjG6wTH3VSJie39l1/GJ9hKcY0nyWVAKyqg5K8OcnpSbYk+WxVfbC19qXRRgasZNu3b89Rx0z0XX9iYiLXXXvNACMC2Df9qhhhAbAS+e6/r/1oj2TM22Q/6FcBMGptelfOuODyvutf+oIn5hlvumJB7/Ghlz5toWEN3OTk1gV97mF8hqUY03yWVAIwySlJNrfWbkqSqnpXkjOT6FABIzM9PZ3TX3NZ3/Xf+1s/03fCULKQleQxJz8uU1NTfde/664dOeSQH+m7vt+nPehXAQAsjiXXr1ro6INk8CMQ9iemHXftGFA0AAzachoJt1IttQTguiS3zljekuTfjigWgP2ykIThFa985oCjgaVjampqQcn0d7/4STnz9f1fUeX3aQ/6VQAAi2PJ9asWOvogGfwIhP2J6dIXPHFA0QAwaMtpJNxKVa21Ucdwj6p6VpKntNb+U7f8K0lOaa29eEadc5Oc2y0+MslX9vPt1iS54wDCZX7adnC07eBo28HRtoOjbQdnrrZ9aGtt7SiC2R/99Ku68sXqW+2NY3XvtM/eaZ9900Z7p332Tvvsmzbau/1pH/2qpc9xv3DabP9ot4XTZvtHu+0f7bZwo2izOftWS20E4JYk62csH5dkcmaF1tqmJJsO9I2q6urW2sYD3Q970raDo20HR9sOjrYdHG07OGPStvvsVyWL17famzFpz4HRPnunffZNG+2d9tk77bNv2mjvVkj7LJl+1bCskJ/rotJm+0e7LZw22z/abf9ot4VbSm22atQBzPLZJCdU1cOq6v5Jzk7ywRHHBACwHOlXAQAsDv0qAGDZWVIjAFtrO6vqRUk+muSgJBe11twVEgBggfSrAAAWh34VALAcLakEYJK01j6c5MNDeKuxmJJhidK2g6NtB0fbDo62HRxtOzhj0bZD7Ffty1i05wBpn73TPvumjfZO++yd9tk3bbR3K6J9llC/alhWxM91kWmz/aPdFk6b7R/ttn+028ItmTar1tqoYwAAAAAAAAAWyVK7ByAAAAAAAABwAFZcArCqnlpVX6mqzVX18lHHs9xV1c1V9cWquraqru7KHlxVV1TVjd3zkaOOczmoqouq6vaqum5G2bxtWVXnd8fxV6rqKaOJenmYp21fXVVbu2P32qr6uRnrtG2fqmp9Vf19Vd1QVddX1W915Y7dA7SXtnXsHqCqOriqPlNVn+/a9g+6csdtH/bVl6qqI6vqfVX1ha6dHzNj3W9V1XVdu//2jPKx6TsMqH0uqKovd9u8r6oeNJxPMxiDaKMZ619SVa2q1gz4YwzMoNqnql7c7ff6qvqjIXyUgRjQ79jJVfWp7u/q1VV1ypA+zqKrOfq9s9ZXVf0/Xft9oaoeN2PdnG07Zt/Rg2ifcfuOXvQ2mrF+2X9Hj5Oa5/+NWXWOqKr/Xff2m587iliXkprnf4lZdeb9PVmp+my3X+ra6wtVdVVV/dgoYl0q+mmzGXV/vKp2VdUvDjPGpajfdquq07q+3/VV9Ylhx7mU9Pn76e/BPKrqoKr6p6r60BzrRv/3oLW2Yh7p3aj5a0kenuT+ST6f5NGjjms5P5LcnGTNrLI/SvLy7vXLk/z3Uce5HB5JnpDkcUmu21dbJnl0d/w+IMnDuuP6oFF/hqX6mKdtX53kJXPU1bYLa9uJJI/rXj8wyVe7NnTsDq5tHbsH3raV5LDu9f2SfDrJTzhu+2q7ffalklyQ5FXd63+V5Mru9WOSXJfkkPTuQ/23SU7o1o1F32GA7fOzSVZ3r//7cm2fQbZRt359ko8m+UZm9U+Xy2OAx9BPd8sP6JaPHvVnXWLt87EkT+te/1ySj4/6sx5AG+3R7521/ueSXJ7e38KfSPLpfbXtuHxHD7B9xuY7elBt1K1f9t/R4/bIPP9vzKrzitzbJ16b5FtJ7j/q2EfcbnP+LzGrzpy/Jyv50We7nZrkyO7101Z6u/XTZt26g5L8XXr3KP3FUcc96kefx9qDknwpyYZueVn2jYfcZv4ezN9+v5PkHUk+NMe6kf89WGkjAE9Jsrm1dlNr7YdJ3pXkzBHHNI7OTHJx9/riJL8wulCWj9baJ9P78pxpvrY8M8m7Wmt3t9a+nmRzesc3c5inbeejbRegtTbVWrume/3dJDckWRfH7gHbS9vOR9v2qfV8r1u8X/docdz2o5++1KOTXJkkrbUvJzm+qo5J8qgkn2qt3dVa25nkE0me0W0zLn2HgbRPa+1jXVmSfCrJcYP/KAMzqGMoSd6Y5D+n9/u8XA2qfX4jyetaa3d3290++I8yEINqn5bk8O71EUkmB/sxBqePfu+ZSd7e/S38VJIHVdVE9t624/IdPZD2GbPv6EEdQ8l4fEePlT7/32hJHlhVleSw9I6NnVnB9vK/xEzz/Z6sWP20W2vtqtbat7vFZf99eqD6PNaS5MVJ3ptkufbvFlWf7fYfklzWWrul22ZFt12fbebvwRyq6rgkP5/kL+epMvK/BystAbguya0zlrdk7ydT2beW5GNV9bmqOrcrO6a1NpX0OpRJjh5ZdMvffG3pWF4cL+qGX19U905lpG33U1Udn+Sx6V0p5NhdRLPaNnHsHrBuioZr0/sn6YrWmuO2P/20xeeTPDNJqjeN3kPT++f9uiRPqKqjquqQ9K6EW99tMy59h0G1z0y/lt4VhMvVQNqoqp6eZGtr7fODDX/gBnUMnZjkp6rq/2/v3uMkq+p773++MIoa9QgykHGYCaMHTcQnopmgQqIgUcB4BI3cNIiGCBowmvgkip6gYniOJ/GSnHgDBcETuYwXLjFG5RCNxyhyMQS5ysggjDMyI2AwkqADv+ePvVuLnu6e6pm6ddXn/Xr1q2qvvfaqX62u3r1q//Ze+xtJ/inJr/fxPfRTv/rnDcBfJrkdeDdwUr/ewAiYrQ/n6ttx2Ud3Y2v6p9NC30d3Y959NEb76LE1w/eNKe+nOYFiHfAt4PVV9cBgoxs9s3yX6OT3hxl00W+djmX896dbtKU+S7KU5oSmDw8hvJHVxWfticCOSb7cHtN+xcCDHDFd9Jn/D2b2VzQnOM3WF0P/fzBpCcDMUObZZ9tm36p6Os2l+SckefawA5oQfpa33YeAJwB7AeuB97Tl9u1WSPJImjPO3lBV98xVdYYy+3cOM/Stn90eqKr7q2ovmoPCe6fjHlEzsG9/rpu+eBfNl6mrac5G/RdgU1XdQDM12iXA52kO0o/bGYN97Z8kb23LPtHbsAeq533UJnPeCpzcr6AHqF+foUXAjjTTzvwJsKo9e3eh6Vf/vBb4o6paBvwRcEbvQx8Zs/Wh/+saW90/Y7KP7sa8+mjM9tFjaQvf5Q4ErgYeR/P94/1JHs2E6+K7hPvUGXT7HSzJ/jQJwDcNMLyR1EWf/RXwpqq6f9CxjbIu+m0R8Gs0V24dCPxZkicONsrR0kWf+f9gmiQvBDZU1VVzVZuhbKD/DyYtAbiWB59JvRsLeHqXUVBV69rHDcAFNNN+3DF1KWv7ONGXUW+j2frSz/I2qqo72n9uDwAf4efT+dm385TkITRfGD9RVZ9pi/3s9sBMfetnt7eq6ofAl4GD8HPbjS32RVXdU1Wvar88vILm/gBr2nVnVNXTq+rZNFOG3NxuNi5jh371D0mOAV4IvLyqFvIBpH700RNo7s/5r0lubdv8ZpJf7PN76Yd+fYbW0kxzVFV1Oc0Zqjv39Z30R7/65xhgagzzScZ7mufZ+nCuvh2XfXQ3tqZ/xmkf3Y359tE47aPHzizf5Tq9ip///1hNsz/95UHGOMqmfZfo5PeHOczRbyT5VZqp9A6pqjsHG9nomqPPVgLntfvXlwIfTHLoIGMbZVv4G/18Vf24qn4AfAV46mCjG01z9Jn/Dza3L/Ci9u/vPOC5Sf52Wp2h/z+YtATgFcAeSVYkeShwJHDxkGNasJL8QpJHTT2nufn5tTR9ekxb7RjgouFEOBZm68uLgSOT7JBkBbAHcPkQ4luwps23/GKazy7Yt/PSXj1wBnBDVb23Y5Wf3W00W9/62d12SRYneUz7/OHAbwE34ue2G1scSyV5TLsO4PeBr0ydTZ5kl/ZxOc0Ufee29cZl7NCX/klyEM0Z0C+qqnsH8k76p+d9VFXfqqpdqmr3qtqd5kvW06vq+4N5Sz3Vr7+xC4HntuueCDwU+EF/30pf9Kt/1gHPaZ8/l47k+xi6GHhFGs8E/q2d1nOuvh2XfXQ35t0/Y7aP7sa8+mjM9tFjZY7vcp1uAw5o6+8KPAm4ZTARjqY5vkt0mu3vZGJ102/t/+fPAEdX1bcHHuSI6abPqmpFx/71U8AfVNWFAw51pHT5N3oRzfT4i9Jcqf4MmvugTqQu+8z/B9NU1UlVtVv793ck8I9V9bvTqg39/8GiQb7YsFXVpiQnAl8AtgfOrKrrhhzWQrYrcEEzZmQRcE5VfT7JFTTTCh1Ls3M4bIgxLhhJzgX2A3ZOshZ4G80URpv1ZVVdl2QVcD3NNDMneLn/7Gbp2/2S7EVz2fWtwPFg326FfYGjgW+lmWoL4C342e2F2fr2KD+722wJcHaS7WlOhlpVVZ9N8nX83M5ptrFUkte06z9Mc1+Ajye5n6bPju1o4tNJHgv8lKYf727LZ9xnLDR97J/3AzsAl7Tjrsuq6jUDeVM91sc+Ggt97J8zgTOTXAv8BDhmIV6l1Mf+eTXw10kWAf8JHMcCNcu49yHws/75HM39D1cD99Kczb2l78pjsY+GvvXP2OyjoW99pNE02/eN5fCz3/c7gbOSfItmGrM3tVfLTLLZvkt0/i+a8e9kwnXTbycDj6W5ig2aKbxXDivgEdBNn2lzW+y3qrohyeeBa2hmxvhoVV07e5Njr5vPmv8PujRq/w+yAL/3SZIkSZIkSZIkSZrFpE0BKkmSJEmSJEmSJI01E4CSJEmSJEmSJEnSGDEBKEmSJEmSJEmSJI0RE4CSJEmSJEmSJEnSGDEBKEmSJEmSJEmSJI0RE4DSmEtyeJJXbuW2z0/yhq3c9pVJKskjt2b7eb5WJTmxY3m7JB9Icke77u39jqHjtU9MUh3L+7UxPKXHr9NV/yb5VJIv9/K1JUnSwpXkKe0YYr8Bv+6DxkRJHprk7Un2GmQckiRJoyzJrUnePcu6Bx3/kqQtMQEojb/DgVdu5bbPB97Qs0gG5yXAHwAnAc8CPjrEWL7ZxvCdHrf792279/a4XUmSpH6YPiZ6KPA2YK9hBSRJkiRJ42zRsAOQpD74ZeDuqjpzWxtK8vCq+o+t3b6q7gEu29Y4Zmh3I7Cx1+1KkiT1Q7/GRJIkSZKkmXkFoDTGkpwF/A7wnHaagAdNh9lOV3lzkvuSrE7yRx3r3g68Efiljm3Patc9K8nFSdYl+XGSq5O8fCvie0ySj7bt/GeS25J8pDP+JFdO22b3NpYXztLml4F3Ajt2xL17O8XUD2aoP3360FuTvCfJnyVZC9wzR/w7JHl/kh8muSvJ+4CHTKuz2RSgSR6R5H8l+X77vq9I8vyO9R9IsjHJLh1lv9O287x2ebMpQJMsS/K5JP/Rvo/fnyXupyT5+yQ/an8+meQXZ3ufkiRp4UryB0lub8dsfwcsmbZ+uyRvbseC9yX5dpJjptX5cjut+Mvaevck+Ycku02rd1K7/j/bqdg/PzXGmGFM9KP28WPTxmxXJPnYDO/j7CTf7FnHSJIkDdjUca4khya5sR0zfTXJk4cdm6Tx5BWA0nh7J7AceAzNlJgAawGSvBr4G+C9wBeA/YH3JNmhqt5FM23mHsBzgRe3205dcfZLwD8DHwb+E9iX5uDNA1V17jziey+wD/BHwPeBZcCz5/0uH+wPgD8GXgoc1Jatn2cbLwOua9uaaz/5LuD3gbcC1wOvBg7rov2PAC8C3gKsbrf7+yT7V9VXgT8FDgROA17cJgI/BHy4qi6ZqcEkAS4CdgaOpfm9vAPYCbi5o95/pfndXQkcDWxP8zn5uyR7V1UhSZLGQpJDgA/QjNkuBJ4DTJ8h4W+AY4BTaKbpfB5wZpI7q+qzHfWeATyO5gSxhwN/DZwOvKB9rVfQjG3eRDOOeizNOPIXZgnvucA/An9OM7U5NGO2j9KMSV9XVf/etv1ImpPaTppvH0iSJI2YX6I5HvZnwH/QHLv5QpI9quo/2zpJ4nF7SdvMHYk0xqrqO0nuArarqp9NuZRkO+DtwFlV9ca2+ItJ/gtwUpK/qqq1SdYD93Vu27Z7XkdbAb4C7EaTyJpPAnBv4ANVdX5H2d/OY/vNVNX17ZV7m6a95/k29cKOgddmkjwWeA3wtqp6T1v2BZpE4KyS/ApwFPCqqjq7Y7traAZ/B1bVj9sz77+S5GjgUJqz5P9kjqYPBp4GPLOqvtG2exXNfXZu7qj3Nppk68FV9ZO23jXAjTQH8P4eSZI0Lt4KfL6qXtsufyHJYpoTmKZODHotHeMS4P8kWUIzZuhMAD4a+O2qurvd9heB9+Xn06XvDXyxqj7Ysc1n5ojtivbxO9PGbOfSHBQ7DJi6EvBwmlkWzun+rUuSJI2knYFDqupr8KBjN6+kOWkLmhPb/3go0UkaK04BKk2m3WjO4P7ktPLzaQ7u/D9zbZxkx3YKy+8CP21/jgOeOM84rgb+pJ2aar7b9tOlcyX/Wv8P8DCaq+4AqKoHOpdn8etA6Oj7drtPAr/RUfbPNAe/PkKTAHzl1Fnws9gbuGMq+de28V3gqmn1fgu4AHggyaL2jLI1wK3Ayi3ELkmSFogk29OcHDR9bNKZlDsAeAC4YGpc0I4NLgX2atuYcsVU8q81ddLT0vbxauAFSd6RZO9p23atvVfgp2gOgk15JXBxVd25NW1KkiSNkA1TyT940LGbvTvq/C3N8aPpP5I0LyYApck0de+XO6aVTy3vtIXtzwKOAP4SeD7NIORMmoTYfJxIMx3VycBNae5HeOQ82+iH6f0yk6l75m2YVj59ebolwL9X1b0zvOYjkuzQUXYusANwbVX93y7imem1p5ftTDM110+n/TyeZgpWSZI0HhbTzPgy11hlZ5rpwP+NB48Lzmq37bxf4A+ntfOT9nFq/HcmzRSghwPfAO5I8s6tTASeAfxmkickeQLwm2w+dakkSdJCNNuxm85x1x1VdeX0nwHFJ2mMOAWoNJmm7om3y7TyXdvHu2bbMMnDgN8GTqyqD3eUz/uEgqr6IfCHwB8m+VWae999Isk1VXU9zX3sHjptsy0lJ2ezWVtJdpwttC7a+377uAsP7q/pfTrdeuCRSR4xLQm4K3BvVd3XxraI5r463wL2THJcVZ2+hXhmeu1daOaUn3IXzRWAH52h7g+2ELskSVo4NgKb2Hx80Ll8V1tnX5orAafb0olNP9POaPA+mmlBlwEvB04FvsfPp7Pqtq2vJLmZ5t6EAdYBX5xPG5IkSSNqtmM31w06EEnjzysApfH3Eza/Mm8tzYGUw6aVHw7cQ5N0mm3bHWjOFL9vqiDJo4AXbUuQVXUNzT3utgN+uSPO3duk45TnbeVLrAUelWRpR9nzt7ItaProP4FDpgraJOghs27RuIImwfjSju3SLn+1o95bgCe17f1P4N1Jdt9Cu7smeUZHu8uBp0+rdynwFOCqGc4mu3ULsUuSpAWiqu6nmZZz+tjkJR3P/5FmXPdfZjrLfOp+wVvx2rdX1buA1cCTZ6k2/QrC6c6kSQC+Avh4+34kSZIWul2S7DO10HHs5vLhhSRpXHkFoDT+bgQOSXIobeKvqtYleTtwWpI7gUuA5wCvBd7Scf+7G2mSSq8ErgV+UFW3JrkCODnJPTRni7+ZZuqoR88nsCRfpbka7VqapNirgR/z80HPhcApwEeTnEVzH5tXzfP9T/k8zZVwZyZ5D7ACeM1WtkVV3ZnkdOAdSTbRnKn1auCRW9juhiTnAu9P8miaA2Ovpkl6vhYgydOA/w68rqrWJHkH8MI29gOqaqYrFD8H/CvwySRvoklOnsLmZ+6/naZ//z7JmTRX/S2lSayeVVVfnl9PSJKkEfb/AZ9J8iGaMddzgIOmVlbVTUk+DJyX5C+AK2kScnsCT6yq3+/2hZKcRnNF4WU048L9gT1oph7fTFX9JMka4PAk19KMXa7pSDqeDfw5zXfWs7p+x5IkSaPtB8D/TvJnNMeppo7dnDXMoCSNJ68AlMbfB2mmTDqT5iqx4wCq6iM002++GPgscBTwxvZs7SmraAYgf9Fu+/a2/GXAGuDjwF8Dn26fz9fXgVcCn2pfa2fg4Kpa28Z4LfB7wLOAi2kOWv3eVrwOVfUD4HeA3WgSi7/bvo9t8ac0/Xoyzf361gHv7WK7V9Mc1Poz4CLgl4AXVtVXkzy0Xfelqjqtjf0nNGfA/wbNfRM30yYFXwRc38b0V8D7afq4s963gWcC99JMMfoPwDtoruhc3d3bliRJC0FVXQC8DvhvNOOfpwHHTqt2AvBOmivtPkcz9vtt4CvzfLmvA88GPta282Lg1VV14RzbvIZm/Pd/aMaaj+uI/fs09xL856q6aZ6xSJIkjarv0syA9XbgPJqZuA7sOBlfknomM19IIkmSJEnScCTZieb+gSdW1RnDjkeSJGlbtbNbPaWqVg47FkmTwSlAJUmSJEkjob239JOB1wM/opllQZIkSZI0TyYAJUmSJEmj4teAL9FMj/WKqrp3yPFIkiRJ0oLkFKCSJEmSJEmSJEnSGNlu2AFIkiRJkiRJkiRJ6h0TgJIkSZIkSZIkSdIYMQEoSZIkSZIkSZIkjRETgJIkSZIkSZIkSdIYMQEoSZIkSZIkSZIkjRETgJIkSZIkSZIkSdIYMQEoSZIkSZIkSZIkjRETgJIkSZIkSZIkSdIYMQEoSZIkSZIkSZIkjZFFww5gW+y88861++67DzsMSZI0Aa666qofVNXiYcfRT46tJEnSIDiukiRJ6p3ZxlYLOgG4++67c+WVVw47DEmSNAGSfHfYMfSbYytJkjQIjqskSZJ6Z7axlVOASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkaSIkeVKSqzt+7knyhiQ7Jbkkyc3t444d25yUZHWSm5IcOMz4JUmSumUCUJIkSZIkSROhqm6qqr2qai/g14B7gQuANwOXVtUewKXtMkmeDBwJ7AkcBHwwyfbDiF2SJGk+TABKkiRJkiRpEh0AfKeqvgscApzdlp8NHNo+PwQ4r6ruq6o1wGpg70EHKkmSNF8mACVJkiRJkjSJjgTObZ/vWlXrAdrHXdrypcDtHdusbcs2k+S4JFcmuXLjxo19ClmSJKk7JgAlSZIkSZI0UZI8FHgR8MktVZ2hrGaqWFWnV9XKqlq5ePHibQ1RkiRpm5gAlCRJkiRJ0qQ5GPhmVd3RLt+RZAlA+7ihLV8LLOvYbjdg3cCilCRJ2komACVJkiRJkjRpjuLn038CXAwc0z4/Brioo/zIJDskWQHsAVw+sCglSZK20qJhByBJkiRJkiQNSpJHAM8Dju8ofhewKsmxwG3AYQBVdV2SVcD1wCbghKq6f8AhS5IkzZsJQEmSJEmSJE2MqroXeOy0sjuBA2apfypw6gBCkyRJ6hmnAJUkSZIkSZIkSZLGiAlASZIkSZIkSZIkaYw4Bai2yaGHv4z1G++es86SxTty4apzBhSRJEnSeFu6bDnr1t7e0zYft9syvnf7bT1tU5IkSRqUXoyRHRNLGjcmALVN1m+8mxVHnTxnnTXnnjKgaCRJksbfurW3c8RpX+tpm+cfv09P25MkSZIGqRdjZMfEksaNU4BKkiRJkiRJkiRJY8QEoCRJ0ohLsizJl5LckOS6JK9vy9+e5HtJrm5/XtCxzUlJVie5KcmBw4tekiRJkiRJg+YUoJIkSaNvE/DGqvpmkkcBVyW5pF33vqp6d2flJE8GjgT2BB4H/J8kT6yq+wcatSRJkiRJkobCKwAlSZJGXFWtr6pvts9/BNwALJ1jk0OA86rqvqpaA6wG9u5/pJIkSZIkSRoFJgAlSZIWkCS7A08DvtEWnZjkmiRnJtmxLVsK3N6x2VpmSRgmOS7JlUmu3LhxY7/CliRJkiRJ0gCZAJQkSVogkjwS+DTwhqq6B/gQ8ARgL2A98J6pqjNsXjO1WVWnV9XKqlq5ePHi3gctSZIkSZKkgTMBKEmStAAkeQhN8u8TVfUZgKq6o6rur6oHgI/w82k+1wLLOjbfDVg3yHglSZIkSZI0PCYAJUmSRlySAGcAN1TVezvKl3RUezFwbfv8YuDIJDskWQHsAVw+qHglSZIkSZI0XIuGHYAkSZK2aF/gaOBbSa5uy94CHJVkL5rpPW8FjgeoquuSrAKuBzYBJ1TV/QOOWZIkSZIkSUNiAlCSJGnEVdVXmfm+fp+bY5tTgVP7FpQkSZIkSZJGllOASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkSZIkSWOkbwnAJGcm2ZDk2o6y85Nc3f7cmuTqtnz3JP/Rse7D/YpLkiRJkiRJkiRJGmeL+tj2WcD7gY9PFVTVEVPPk7wH+LeO+t+pqr36GI8kSZIkSZIkSZI09vp2BWBVfQW4a6Z1SQIcDpzbr9eXJEmSJEmSJEmDs3TZcpJs9c/SZcuH/RaksdHPKwDn8pvAHVV1c0fZiiT/AtwD/Peq+r/DCU2SJEmSJEmSJM3XurW3c8RpX9vq7c8/fp8eRiNNtmElAI/iwVf/rQeWV9WdSX4NuDDJnlV1z/QNkxwHHAewfLlnA0iSJEmSJEmSJEmd+jYF6GySLAJeApw/VVZV91XVne3zq4DvAE+cafuqOr2qVlbVysWLFw8iZEmSJEmSJEmSJGnBGHgCEPgt4MaqWjtVkGRxku3b548H9gBuGUJskiRJkiRJkiRJ0oLWtwRgknOBrwNPSrI2ybHtqiN58PSfAM8Grknyr8CngNdU1V39ik2SJEmSJEmSJEkaV327B2BVHTVL+StnKPs08Ol+xSJJkiRJkiRJkiRNimFMASpJkiRJkiRJkiSpT0wASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkSZIkSWPEBKAkSZIkSZImRpLHJPlUkhuT3JDkWUl2SnJJkpvbxx076p+UZHWSm5IcOMzYJUmSumUCUJIkSZIkSZPkr4HPV9UvA08FbgDeDFxaVXsAl7bLJHkycCSwJ3AQ8MEk2w8lakmSpHkwAShJkiRJkqSJkOTRwLOBMwCq6idV9UPgEODsttrZwKHt80OA86rqvqpaA6wG9h5kzJIkSVtj0bAD0HAcevjLWL/x7jnrLFm8IxeuOmdAEUmSJEmSJPXd44GNwMeSPBW4Cng9sGtVrQeoqvVJdmnrLwUu69h+bVu2mSTHAccBLF++vD/RS5IkdckE4IRav/FuVhx18px1Ljnld3nG/gfPWec7t6xhRS8DkyRJkiRJ6p9FwNOB11XVN5L8Ne10n7PIDGU1U8WqOh04HWDlypUz1pEkSRoUE4Ca1abKFpOEN77j6AFFI0mSJEmStM3WAmur6hvt8qdoEoB3JFnSXv23BNjQUX9Zx/a7AesGFq0kSdJW8h6AkiRJkiRJmghV9X3g9iRPaosOAK4HLgaOacuOAS5qn18MHJlkhyQrgD2AywcYsiRJ0lbxCkBJkiRJkiRNktcBn0jyUOAW4FU0J8mvSnIscBtwGEBVXZdkFU2ScBNwQlXdP5ywJUmSumcCUJIkSZIkSROjqq4GVs6w6oBZ6p8KnNrPmCRJknrNKUAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMbJo2AFo/K2++ds8Y/+D56yzZPGOXLjqnAFFJEmSJEmSJEmSNL5MAKrvNlVYcdTJc9ZZc+4pA4pGkiRJkiRJkiRpvDkFqCRJkiRJkiRJkjRG+pYATHJmkg1Jru0oe3uS7yW5uv15Qce6k5KsTnJTkgP7FZckSZIkSZIkSZI0zvp5BeBZwEEzlL+vqvZqfz4HkOTJwJHAnu02H0yyfR9jkyRJkiRJkiRJksZS3xKAVfUV4K4uqx8CnFdV91XVGmA1sHe/YpMkSZIkSZIkSZLG1TDuAXhikmvaKUJ3bMuWArd31Fnblm0myXFJrkxy5caNG/sdqyRJkiRJkiRJkrSgDDoB+CHgCcBewHrgPW15ZqhbMzVQVadX1cqqWrl48eK+BClJkjRKkixL8qUkNyS5Lsnr2/KdklyS5Ob2cceObby/siRJkiRJ0oQaaAKwqu6oqvur6gHgI/x8ms+1wLKOqrsB6wYZmyRJ0gjbBLyxqn4FeCZwQnsP5TcDl1bVHsCl7bL3V5YkSZIkSZpwA00AJlnSsfhi4Nr2+cXAkUl2SLIC2AO4fJCxSZIkjaqqWl9V32yf/wi4gWa69EOAs9tqZwOHts+9v7IkSZIkSdIEW9SvhpOcC+wH7JxkLfA2YL8ke9FM73krcDxAVV2XZBVwPc0Z7idU1f39ik2SJGmhSrI78DTgG8CuVbUemiRhkl3aakuByzo2m/P+ysBxAMuXL+9T1JIkSZIkSRqkviUAq+qoGYrPmKP+qcCp/YpHkiRpoUvySODTwBuq6p5kptsoN1VnKJv1/srA6QArV66csY4kSZIkSZIWloFOASpJkqStk+QhNMm/T1TVZ9riO6amWG8fN7Tl3l9ZkiRJkiRpgpkAlCRJGnFpLvU7A7ihqt7bsepi4Jj2+THARR3l3l9ZkiRJkiRpQvVtClBJkiT1zL7A0cC3klzdlr0FeBewKsmxwG3AYeD9lSVJkiRJkiadCUBJkqQRV1VfZeb7+gEcMMs23l9ZkiRJkiRpQjkFqCRJkjTptltEkp79LF22fNjvSJIkSZKkieYVgJIkSdKke2ATR5z2tZ41d/7x+/SsLUmSJEmSNH9eAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJmhhJbk3yrSRXJ7myLdspySVJbm4fd+yof1KS1UluSnLg8CKXJEnqnglASZIkSZIkTZr9q2qvqlrZLr8ZuLSq9gAubZdJ8mTgSGBP4CDgg0m2H0bAkiRJ82ECUJIkSZIkSZPuEODs9vnZwKEd5edV1X1VtQZYDew9+PAkSZLmxwSgJEmSJEmSJkkBX0xyVZLj2rJdq2o9QPu4S1u+FLi9Y9u1bZkkSdJIWzTsACRJkiRJkqQB2req1iXZBbgkyY1z1M0MZTVjxSaZeBzA8uXLtz1KSZKkbeAVgJIkSZIkSZoYVbWufdwAXEAzpecdSZYAtI8b2uprgWUdm+8GrJul3dOramVVrVy8eHG/wpckSeqKCUBJkiRJkiRNhCS/kORRU8+B5wPXAhcDx7TVjgEuap9fDByZZIckK4A9gMsHG7UkSdL8OQWoJEmSJEmSJsWuwAVJoDkudk5VfT7JFcCqJMcCtwGHAVTVdUlWAdcDm4ATqur+4YQuSZLUPROAkiRJkiRJmghVdQvw1BnK7wQOmGWbU4FT+xyaJElSTzkFqCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGFg07AAlg9c3f5hn7Hzzr+iWLd+TCVecMMCJJkiRJkiRJkqSFyQSgRsKmCiuOOnnW9WvOPWWA0UiSJEmSJEmSJC1cTgEqSZIkSZIkSZIkjZG+JQCTnJlkQ5JrO8r+MsmNSa5JckGSx7Tluyf5jyRXtz8f7ldckiRJkiRJkiRJ0jjr5xWAZwEHTSu7BHhKVf0q8G3gpI5136mqvdqf1/QxLkmSJEmSJEmSJGls9S0BWFVfAe6aVvbFqtrULl4G7Nav15ckSZIkSZIkSZIm0TDvAfh7wD90LK9I8i9J/inJb862UZLjklyZ5MqNGzf2P0pJkiRJkiRJkiRpARlKAjDJW4FNwCfaovXA8qp6GvDHwDlJHj3TtlV1elWtrKqVixcvHkzAkiRJkiRJkiRJ0gIx8ARgkmOAFwIvr6oCqKr7qurO9vlVwHeAJw46NkmSJEmSJEmSJGmhG2gCMMlBwJuAF1XVvR3li5Ns3z5/PLAHcMsgY5MkSZIkSZIkSZLGwaJ+NZzkXGA/YOcka4G3AScBOwCXJAG4rKpeAzwbOCXJJuB+4DVVdVe/YpMkSZIkSZIkSZLGVd8SgFV11AzFZ8xS99PAp/sViyRJkiRJkiRJkjQpBn4PQEmSJEmSJEmSJEn9YwJQkiRJ6qOly5aTpGc/kiRJkiRJW9K3KUAlSZIkwbq1t3PEaV/rWXvnH79Pz9qSJEmSJEnjySsAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJGkBSHJmkg1Jru0oe3uS7yW5uv15Qce6k5KsTnJTkgOHE7UkSdJoSrJ9kn9J8tl2eacklyS5uX3csaOu4ypJkrTgmACUJElaGM4CDpqh/H1VtVf78zmAJE8GjgT2bLf5YJLtBxapJEnS6Hs9cEPH8puBS6tqD+DSdtlxlSRJWrBMAEqSJC0AVfUV4K4uqx8CnFdV91XVGmA1sHffgpMkSVpAkuwG/Dbw0Y7iQ4Cz2+dnA4d2lDuukiRJC44JQEmSpIXtxCTXtFOETk1VtRS4vaPO2rZsM0mOS3Jlkis3btzY71glSZJGwV8Bfwo80FG2a1WtB2gfd2nLHVdJkqQFyQSgJEnSwvUh4AnAXsB64D1teWaoWzM1UFWnV9XKqlq5ePHivgQpSZI0KpK8ENhQVVd1u8kMZY6rJEnSyFs07AAkSZK0darqjqnnST4CfLZdXAss66i6G7BugKFJkiSNqn2BFyV5AfAw4NFJ/ha4I8mSqlqfZAmwoa3vuEqSJC1IXgEoSZK0QLUHp6a8GLi2fX4xcGSSHZKsAPYALh90fJIkSaOmqk6qqt2qanfgSOAfq+p3acZPx7TVjgEuap87rpIkSQuSVwBKkiQtAEnOBfYDdk6yFngbsF+SvWimoboVOB6gqq5Lsgq4HtgEnFBV9w8hbEmSpIXiXcCqJMcCtwGHgeMqSZK0cJkAlCRJWgCq6qgZis+Yo/6pwKn9i0iSJGlhq6ovA19un98JHDBLPcdVkiRpwelqCtAk+3ZTJkmSpLk5rpIkSeoNx1WSJEmz6/YegH/TZZkkSZLm5rhKkiSpNxxXSZIkzWLOKUCTPAvYB1ic5I87Vj0a2L6fgUmSJI0Tx1XStlm6bDnr1t7es/Yet9syvnf7bT1rT5I0OI6rJEmStmxL9wB8KPDItt6jOsrvAV7ar6AkSZLGkOMqaRusW3s7R5z2tZ61d/7x+/SsLUnSwDmukiRJ2oI5E4BV9U/APyU5q6q+O6CYJEmSxo7jKkmSpN5wXCVJkrRlW7oCcMoOSU4Hdu/cpqqe24+gJEmSxpjjKkmSpN5wXCVJkjSLbhOAnwQ+DHwUuL9/4UiSJI09x1WSJEm94bhKkiRpFt0mADdV1Yfm03CSM4EXAhuq6ilt2U7A+TRnZt0KHF5Vd7frTgKOpRmw/WFVfWE+rydJkrRAzHtcJUmSpBk5rpIkSZrFdl3W+7skf5BkSZKdpn62sM1ZwEHTyt4MXFpVewCXtsskeTJwJLBnu80Hk2zf7ZuQJElaQLZmXCVJkqTNOa6SJEmaRbdXAB7TPv5JR1kBj59tg6r6SpLdpxUfAuzXPj8b+DLwprb8vKq6D1iTZDWwN/D1LuOTJElaKOY9rpIkSdKMHFdJkiTNoqsEYFWt6NHr7VpV69s21yfZpS1fClzWUW9tWyZJkjRWejiukjRili5bzrq1t/esvcfttozv3X5bz9qTpHHjuEqSJGl2XSUAk7xipvKq+niP4shMzc8Sy3HAcQDLly/v0ctLkiQNxgDGVZKGZN3a2znitK/1rL3zj9+nZ21J0jhyXCVJkjS7bqcA/fWO5w8DDgC+Ccx3QHVHkiXt1X9LgA1t+VpgWUe93YB1MzVQVacDpwOsXLlyxiShJEnSCOvVuEqSJGnSOa6SJEmaRbdTgL6ucznJfwH+91a83sU087O/q328qKP8nCTvBR4H7AFcvhXtS5IkjbQejqskSZImmuMqSZKk2XV7BeB099Ik6WaV5FxgP2DnJGuBt9Ek/lYlORa4DTgMoKquS7IKuB7YBJxQVfdvZWySJEkLyRbHVZIkSeqK4ypJkqRWt/cA/Dt+fk++7YFfAVbNtU1VHTXLqgNmqX8qcGo38UiSJC1UWzOukiRJ0uYcV0mSJM2u2ysA393xfBPw3apa24d4JEmSxp3jKkmSpN5wXCVJkjSL7bqpVFX/BNwIPArYEfhJP4OSJEkaV46rJEmSesNxlSRJ0uy6SgAmORy4nOaefYcD30jy0n4GJkmSNI4cV0mSJPWG4ypJkqTZdTsF6FuBX6+qDQBJFgP/B/hUvwKTJEkaU46rJEmSesNxlSRJ0iy6TQBuNzWYat1Jl1cPSr2w+uZv84z9D56zzpLFO3LhqnMGFJEkSVvNcZUkSVJvOK6SJEmaRbcJwM8n+QJwbrt8BPC5/oQkbW5ThRVHnTxnnTXnnjKgaCRJ2iaOqyRJknrDcZUkSdIs5kwAJvmvwK5V9SdJXgL8BhDg68AnBhCfJEnSWHBctTAsXbacdWtvH3YYkiRpDo6rJEmStmxLVwD+FfAWgKr6DPAZgCQr23X/rY+xSZIkjZO/wnHVyFu39naOOO1rPW3z/OP36Wl7kiTJcZUkSdKWbGle9N2r6prphVV1JbB7XyKSJEkaT46rJEmSesNxlSRJ0hZsKQH4sDnWPbyXgUiSJI05x1WSJEm94bhKkiRpC7aUALwiyaunFyY5FriqPyFJkiSNJcdVkiRJveG4SpIkaQu2dA/ANwAXJHk5Px9ArQQeCry4j3FJkiSNmzfguEqSJKkX3oDjKkmSpDnNmQCsqjuAfZLsDzylLf77qvrHvkcmSZI0RhxXSZIk9YbjKkmSpC3b0hWAAFTVl4Av9TkWSZKksee4SpIkqTccV0mSJM1uS/cAlCRJkiRJkiRJkrSAdHUFoLQQrL752zxj/4PnrLNk8Y5cuOqcAUUkSZIkSZIkSZI0eCYANTY2VVhx1Mlz1llz7ikDikaSJEmSJEmSJGk4nAJUkiRJkiRJkiRJGiMmACVJkiRJkjQRkjwsyeVJ/jXJdUne0ZbvlOSSJDe3jzt2bHNSktVJbkpy4PCilyRJ6p4JQEmSJEmSJE2K+4DnVtVTgb2Ag5I8E3gzcGlV7QFc2i6T5MnAkcCewEHAB5NsP4zAJUmS5sN7AI6hQw9/Ges33j1nne/csoYVA4pHkiRJkiRpFFRVAf/eLj6k/SngEGC/tvxs4MvAm9ry86rqPmBNktXA3sDXBxe1JEnS/JkAHEPrN97NiqNOnrPOje84ekDRSJIkSZIkjY72Cr6rgP8KfKCqvpFk16paD1BV65Ps0lZfClzWsfnatkySJGmkOQWoJEmSJEmSJkZV3V9VewG7AXsnecoc1TNTEzNWTI5LcmWSKzdu3NiDSCVJkraeCUBJkiRJkiRNnKr6Ic1UnwcBdyRZAtA+bmirrQWWdWy2G7BulvZOr6qVVbVy8eLF/QpbkiSpKyYAJUmSJEmSNBGSLE7ymPb5w4HfAm4ELgaOaasdA1zUPr8YODLJDklWAHsAlw80aEmSpK3gPQAlSZIkSZI0KZYAZ7f3AdwOWFVVn03ydWBVkmOB24DDAKrquiSrgOuBTcAJVXX/kGKXJEnqmglASZIkSZIkTYSqugZ42gzldwIHzLLNqcCpfQ5NkiSpp5wCVJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMWICUJIkSZIkSZIkSRojJgAlSZIkSZIkSZKkMbJo0C+Y5EnA+R1FjwdOBh4DvBrY2Ja/pao+N9joJEmSJEmSJEmSpIVt4AnAqroJ2AsgyfbA94ALgFcB76uqdw86JkmSJEmSJEmSJGlcDHsK0AOA71TVd4cchyRJ0khLcmaSDUmu7SjbKcklSW5uH3fsWHdSktVJbkpy4HCiliRJkiRJ0jAMOwF4JHBux/KJSa5pD3DtONMGSY5LcmWSKzdu3DhTFUmSpHF0FnDQtLI3A5dW1R7Ape0ySZ5MM87as93mg+3MC5IkSZIkSZoAA58CdEqShwIvAk5qiz4EvBOo9vE9wO9N366qTgdOB1i5cmUNJFhNlEMPfxnrN949Z50li3fkwlXnDCgiSZKgqr6SZPdpxYcA+7XPzwa+DLypLT+vqu4D1iRZDewNfH0gwUqSJEmSJGmohpYABA4GvllVdwBMPQIk+Qjw2WEFpsm2fuPdrDjq5DnrrDn3lAFFI0nSnHatqvUAVbU+yS5t+VLgso56a9uyzSQ5DjgOYPny5X0MVZIkSZIkSYMyzClAj6Jj+s8kSzrWvRi4drMtJEmS1I3MUDbjzAlVdXpVrayqlYsXL+5zWJIkSZIkSRqEoVwBmOQRwPOA4zuK/yLJXjQHp26dtk6SJEmbuyPJkvbqvyXAhrZ8LbCso95uwLqBRyeNsu0WkcyUK5ckSZIkaeEbSgKwqu4FHjut7OhhxKLJsvrmb/OM/Q+es853blnDigHFI0nSNroYOAZ4V/t4UUf5OUneCzwO2AO4fCgRSqPqgU0ccdrXetrk+cfv09P2JEmSJEnaWsO8B6A0cJsqW7y/343vMBctSRo9Sc4F9gN2TrIWeBtN4m9VkmOB24DDAKrquiSrgOuBTcAJVXX/UAKXJEmSJEnSwJkAlCRJWgCq6qhZVh0wS/1TgVP7F5EkSZIkSZJGlQlASZIkSb3l/fUkSZIkSRoqE4CSJEmSesv760mSJEmSNFTbDTsASZIkSZIkSZIkSb1jAlCSJEmSJEmSJEkaIyYAJUmSJEmSJEmSpDFiAlCSJEmSJEmSJEkaI4uGHYDm59DDX8b6jXfPWec7t6xhxYDikSRJkiRJkiRJ0mgxAbjArN94NyuOOnnOOje+4+gBRSNJkiRJkiRJkqRR4xSgkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJkiRJ0hgxAShJkiRJkiRJkiSNEROAkiRJkiRJmghJliX5UpIbklyX5PVt+U5JLklyc/u4Y8c2JyVZneSmJAcOL3pJkqTumQCUJEmSpAmxdNlykvTsZ+my5cN+S5I0X5uAN1bVrwDPBE5I8mTgzcClVbUHcGm7TLvuSGBP4CDgg0m2H0rkkiRJ87Bo2AFIkiRJkgZj3drbOeK0r/WsvfOP36dnbUnSIFTVemB9+/xHSW4AlgKHAPu11c4Gvgy8qS0/r6ruA9YkWQ3sDXx9sJFLkiTNj1cASpIkSZIkaeIk2R14GvANYNc2OTiVJNylrbYUuL1js7Vt2UztHZfkyiRXbty4sW9xS5K0Jb2Y+cPZPhY+rwCUJEmSJEnSREnySODTwBuq6p4ks1adoaxmqlhVpwOnA6xcuXLGOpIkDUIvZv5wto+FzysAJUmSJEmSNDGSPIQm+feJqvpMW3xHkiXt+iXAhrZ8LbCsY/PdgHWDilWSJGlrmQCUJEmSJG2d7RZt89RCTjUkaZDSXOp3BnBDVb23Y9XFwDHt82OAizrKj0yyQ5IVwB7A5YOKV5IkaWs5BagkSZIkaes8sGmbpxaazqmGJPXZvsDRwLeSXN2WvQV4F7AqybHAbcBhAFV1XZJVwPXAJuCEqrp/4FFLkiTN01ASgEluBX4E3A9sqqqVSXYCzgd2B24FDq+qu4cRn7Qlq2/+Ns/Y/+A56yxZvCMXrjpnQBFJkiRJkqQtqaqvMvN9/QAOmGWbU4FT+xaUJElSHwzzCsD9q+oHHctvBi6tqncleXO7/KbhhCbNbVOFFUedPGedNeeeMqBoJEmSJEmSJEmSfm6U7gF4CHB2+/xs4NDhhSJJkiRJkiRJkiQtTMO6ArCALyYp4LSqOh3YtarWA1TV+iS7zLRhkuOA4wCWL/fm8BpdThMqSZKkbbLdIpLZZqmTJEmSJGl2w0oA7ltV69ok3yVJbux2wzZZeDrAypUrq18BStvKaUIlSZK0TR7YxBGnfa2nTZ5//D49bU+SJEmSNJqGMgVoVa1rHzcAFwB7A3ckWQLQPm4YRmySJEmSJEmSJEnSQjbwBGCSX0jyqKnnwPOBa4GLgWPaascAFw06NkmSJEmSJEmSJGmhG8YUoLsCF7T3slgEnFNVn09yBbAqybHAbcBhQ4hNkiRJkiRJkiRJWtAGngCsqluAp85QfidwwKDjkSRJkiRJkiRJksbJUO4BKEmSJEmSJEmSJKk/TABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY8QEoCRJkiRJkiRJkjRGTABKkiRJkiRJkiRJY2TRsAOQJtnqm7/NM/Y/eM46SxbvyIWrzhlQRJIkSZIkSZIkaaEzASgN0aYKK446ec46a849ZUDRSJIkSZIkSZKkcWACUJIkaYFLcivwI+B+YFNVrUyyE3A+sDtwK3B4Vd09rBglSZIkSZI0ON4DUJIkaTzsX1V7VdXKdvnNwKVVtQdwabssSZIkSZKkCWACUJIkaTwdApzdPj8bOHR4oUiSJEmSJGmQTABKkiQtfAV8MclVSY5ry3atqvUA7eMuM22Y5LgkVya5cuPGjQMKV5IkSZIkSf3kPQBHyKGHv4z1G+e+Nc93blnDigHFI0mSFox9q2pdkl2AS5Lc2O2GVXU6cDrAypUrq18BSpIkSZIkaXBMAI6Q9RvvZsVRJ89ZEOy8MgAAHKhJREFU58Z3HD2gaCRJ0kJRVevaxw1JLgD2Bu5IsqSq1idZAmwYapCSJEmSJEkaGKcAlSRJWsCS/EKSR009B54PXAtcDBzTVjsGuGg4EUqSJEmSJGnQvAJQkiRpYdsVuCAJNGO7c6rq80muAFYlORa4DThsiDFKkiRJkiRpgEwASpIkLWBVdQvw1BnK7wQOGHxEkiRJkiRJGjanAJUkSZIkSZIkSZLGiAlASZIkSZIkSZIkaYyYAJQkSZIkSZIkSZLGiAlASZIkSZIkSZIkaYyYAJQkSZIkSZIkSZLGiAlASZIkSZIkTYwkZybZkOTajrKdklyS5Ob2cceOdSclWZ3kpiQHDidqSZKk+TEBKEmSJEmSpElyFnDQtLI3A5dW1R7Ape0ySZ4MHAns2W7zwSTbDy5USZKkrWMCUJIkSZIkSROjqr4C3DWt+BDg7Pb52cChHeXnVdV9VbUGWA3sPYg4JUmStoUJQEmSJEmSJE26XatqPUD7uEtbvhS4vaPe2rZsM0mOS3Jlkis3btzY12AlSZK2ZOAJwCTLknwpyQ1Jrkvy+rb87Um+l+Tq9ucFg45NkiRJkjR+li5bTpKe/SxdtnzYb0nS4GSGspqpYlWdXlUrq2rl4sWL+xyWJEnS3BYN4TU3AW+sqm8meRRwVZJL2nXvq6p3DyEmSZIkSdKYWrf2do447Ws9a+/81z6bZKacwNZ73G7L+N7tt/W0TUnzckeSJVW1PskSYENbvhZY1lFvN2DdwKOTJEmap4EnANtpFKamVPhRkhuYZeoESZIkSdKE2W5Rz5NrPffApp4mFAHOP36fnrYnad4uBo4B3tU+XtRRfk6S9wKPA/YALh9KhJIkSfMwjCsAfybJ7sDTgG8A+wInJnkFcCXNVYJ3z7DNccBxAMuXO+2KJEmSJI0Vk2uS+izJucB+wM5J1gJvo0n8rUpyLHAbcBhAVV2XZBVwPc2sVidU1f1DCVySJGkehpYATPJI4NPAG6rqniQfAt5JM4/6O4H3AL83fbuqOh04HWDlypUzzrkuSZIkSZIkzaSqjppl1QGz1D8VOLV/EUmSJPXedsN40SQPoUn+faKqPgNQVXdU1f1V9QDwEWDvYcQmSZIkSZIkSZIkLWQDTwCmuZnDGcANVfXejvIlHdVeDFw76NgkSZIkSRqK9t6HvfpZusxbZkiSJEmTbBhTgO4LHA18K8nVbdlbgKOS7EUzBeitwPFDiE1akA49/GWs37jZLTMfZMniHblw1TkDikiSJEnSvPT43ofe91CSJEmabANPAFbVV4HMsOpzg45FWghW3/xtnrH/wXPW+c4ta/itt35szjprzj2ll2FJkiRJkiRJkqQRNYwrACXNw6YKK446ec46N77j6AFFI0mSJEmSJEmSRt3A7wEoSZIkSZIkSZIkqX9MAEqSJEmSJEmSJEljxASgJEmSJEmSJEmSNEZMAEqSJEmSJEmSJEljxASgJEmSJEmSJEmSNEZMAEqSJEmSJEmSJEljxASgJEmSJEmSJEmSNEZMAEqSJEmSJEmSJEljxASgJEmSJEmSJEmSNEZMAEqSJEmSJEmSJEljxASgJEmSJEmSJG2FpcuWk2Srf5YuWz7styBJGlOLhh2AJEmSJEmSJC1E69bezhGnfW2rtz//+H16GI0kST/nFYCSJEmSJEmSJEnSGDEBKEmSJEmSJEmSJI0RE4CSJEmSJEmSJEnSGPEegJJ+5tDDX8b6jXfPWWfJ4h25cNU5A4pIkiRJkiRJkiTNlwlAST+zfuPdrDjq5DnrrDn3lAFFI0mSJEmSJEmStoYJQEljzysbJUmSJEmSJEmTxASgpLHnlY2SJEmSJEmSpEliAnBAurkC6Tu3rGHFgOLR5Fl987d5xv4Hz1lnkJ9Br8qTJEmSJEmSJKk/TAD2QLfJvd9668fmrHPjO47uZVjSg2yqbPEquEF+Br0qT5IkSZIkSZKk/jAB2APdJDJM7kmSJEmSJEmSJGkQTABK6jmnvJUkSZIkSZIkaXhMAErqOa+KlSRJkiRJkiRpeLYbdgCSJEmSJEmSJEmSescrACXNy+qbv80z9j94zjqDnN7T6UYlSZKkwVi6bDnr1t7es/Yet9syvnf7bT1rDxZGjJIkSVo4tnV8OczxpAlASfOyqTJS03s63agkSZI0GOvW3s4Rp32tZ+2df/w+PWtrykKIUZIkSQvHto4vhzmeNAEoaWSN2tWGo2ZLVz8uWbwjF646Z4ARSZIkSfOw3SKSDDsKSZIkaSyZAJQ0skbtasNRs6WrH9ece8oAo5Gk4ej1VG+SpAF6YFNPr9YDr9jT5OjFGMgpbiVJGm8mACVJkjQQ/UrWOdWbJM3Aq+uksdaL6W4d90iSNN5GLgGY5CDgr4HtgY9W1buGHJIk9dSWpu4EuP22NSxbPvfkppM8/WkvdPN7cBrVwejV34S/r82N2riq1/dlAg9cSdKsvLpO6qlRG1dJkiRtyUglAJNsD3wAeB6wFrgiycVVdf2wYurmoKQH4aWFr5v7DXaTgOg2cfdbb/3YnHVufMfRTn86i14mULf0e3Aa1cHY0nS20N3fhL+vBxvFcZUkSdJC5LhKkiQtRCOVAAT2BlZX1S0ASc4DDgGGNqDq9qCkpIWt2/sN9qqOtl6vkkX+HjQBRm5cJUmSeq8fU2x7b7jNOK6SJEkLTqpq2DH8TJKXAgdV1e+3y0cDz6iqEzvqHAcc1y4+CbgT+MGgY12AdsZ+6ob91B37acvso+7YT92xn7rT7376papa3Mf2e6qbcVVbPn1sddNAA10Y/Bvsnn01P/bX/Nhf82N/zY/91b1e9JXjqm3nZ3Z0+LsYDf4eRoe/i9Hg72F0DOJ3MePYatSuAJzpDuUPylBW1enA6T/bILmyqlb2O7CFzn7qjv3UHftpy+yj7thP3bGfumM/bWaL4yrYfGylzfnZ6p59NT/21/zYX/Njf82P/dW9Ce2rkRtXTejvYST5uxgN/h5Gh7+L0eDvYXQM83ex3TBedA5rgWUdy7sB64YUiyRJ0kLmuEqSJKk3HFdJkqQFZ9QSgFcAeyRZkeShwJHAxUOOSZIkaSFyXCVJktQbjqskSdKCM1JTgFbVpiQnAl8AtgfOrKrrtrCZU1Z1x37qjv3UHftpy+yj7thP3bGfumM/ddjKcZVm5mere/bV/Nhf82N/zY/9NT/2V/cmrq9GdFw1cb+HEebvYjT4exgd/i5Gg7+H0TG030WqNpuyXJIkSZIkSZIkSdICNWpTgEqSJEmSJEmSJEnaBiYAJUmSJEmSJEmSpDEy0gnAJAcluSnJ6iRvnmH9y5Nc0/58LclTO9bdmuRbSa5OcuVgIx+sLvppvyT/1vbF1UlO7nbbcdFFH/1JR/9cm+T+JDu16ybps3Rmkg1Jrp1lfZL8r7Yfr0ny9I51k/JZ2lIfuV+iq36a+P0SdNVPE79vSrIsyZeS3JDkuiSvn6HOxO+b1B9JXt/+7V2X5A3DjmfUzLQPS7JTkkuS3Nw+7jjMGEfJLP11WPv5eiDJymHGN2pm6a+/THJju6+/IMljhhjiSJmlv97Z9tXVSb6Y5HHDjHFUzDX+SvL/JqkkOw8jtlE0y2fr7Um+1zFOfcEwY5w0SR6W5PIk/9r+D3nHsGOaZEm2T/IvST477Fgm2aR8Px51SR6T5FPteO2GJM8adkyTKMmTOv5HX53kHr/PDkeSP2r/V1+b5NwkDxt0DCObAEyyPfAB4GDgycBRSZ48rdoa4DlV9avAO9n8Zor7V9VeVTW2X6a77CeA/9v2xV5Vdco8t13QunmfVfWXU/0DnAT8U1Xd1VFl7D9LrbOAg+ZYfzCwR/tzHPAhmJzPUuss5u6jid8vtc5i7n6CCd4vdTiLOfrJfRMAm4A3VtWvAM8ETpjhM+G+ST2X5CnAq4G9gacCL0yyx3CjGjlnsfk+7M3ApVW1B3Bpu6zGWWzeX9cCLwG+MvBoRt9ZbN5flwBPacdZ36b536jGWWzeX39ZVb/ajiM+C5w8faMJdRYzjL+SLAOeB9w26IBG3FnMPF59X8dY/nMDjmnS3Qc8t6qeCuwFHJTkmcMNaaK9Hrhh2EEImIzvx6Pur4HPV9Uv03yH8m9jCKrqpo5jSb8G3AtcMNyoJk+SpcAfAiur6inA9sCRg45jZBOANAdbVlfVLVX1E+A84JDOClX1taq6u128DNhtwDGOgi32U5+2XUjm+z6PAs4dSGQjpqq+Atw1R5VDgI9X4zLgMUmWMDmfpS32kfulRhefpdlMzGcJ5t1PE7lvqqr1VfXN9vmPaL5ALJ1WbeL3TeqLXwEuq6p7q2oT8E/Ai4cc00iZZR92CHB2+/xs4NBBxjTKZuqvqrqhqm4aUkgjbZb++mL79wgTPM6aySz9dU/H4i8ANdCgRtQc46/3AX+K/fQg2zCuV5+0Y95/bxcf0v74uR2CJLsBvw18dNixSMOW5NHAs4EzAKrqJ1X1w6EGJYADgO9U1XeHHciEWgQ8PMki4BHAukEHMMoJwKXA7R3La9n8gF+nY4F/6Fgu4ItJrkpyXB/iGxXd9tOz2ukh/iHJnvPcdqHr+n0meQTN2Y2f7iielM9SN2bry0n5LM3XpO6XujXJ+6V5cd/USLI78DTgG9NWuW9SP1wLPDvJY9u/wRcAy4Yc00Kwa1WthyaBD+wy5Hg0vn6PB4+zNIMkpya5HXg5XgE4qyQvAr5XVf867FgWkBPbKWbPdLrnwWunnbwa2ABcUlXTx8cajL+iOXHggSHHoQn8fjyCHg9sBD7WTov70SS/MOygxJFM4Mnko6Cqvge8m2Z2ifXAv1XVFwcdxygnADND2YxnNCXZn+ZA+5s6ivetqqfTTPt1QpJn9z7EkdBNP30T+KV2eoi/AS6cx7bjYD7v878B/zxtir1J+Sx1Y7a+nJTPUtcmfL/UjUnfL83XxO+bkjySJgH6hmlXNID7JvVBVd0A/E+aKQc/D/wrzZS0koYsyVtp/h4/MexYRl1VvbWqltH01YnDjmcUtSd5vBUTpPPxIeAJNNNPrgfeM9RoJlBV3d9O7bYbsHc7dbkGKMkLgQ1VddWwYxEwYd+PR9Qi4OnAh6rqacCP8XYAQ5XkocCLgE8OO5ZJ1J4gdQiwAngc8AtJfnfQcYxyAnAtDz7LejdmuEQyya/SXGp/SFXdOVVeVevaxw00c9zu3ddoh2eL/VRV90xND9HOzf+Q9qbmXfXxGJjP+9zsrIgJ+ix1Y7a+nJTPUlfcL22Z+6V5m+h9U5KH0CT/PlFVn5mhivsm9UVVnVFVT6+qZ9NMf3bzsGNaAO5op+Clfdww5Hg0ZpIcA7wQeHlVeVJH984BfmfYQYyoJ9AcmPnXJLfSjBe+meQXhxrVCKuqO9oE1APARxjjceioa6fX+zJbvv+6em9f4EXtfuM84LlJ/na4IU2uSfp+PMLWAms7rkj+FE1CUMNzMPDNqrpj2IFMqN8C1lTVxqr6KfAZYJ9BBzHKCcArgD2SrGiz1UcCF3dWSLKcpuOOrqpvd5T/QpJHTT0Hnk8zjdM46qaffjFJ2ud70/ze7+xm2zHR1ftM8l+A5wAXdZRN0mepGxcDr0jjmTSXLq9ncj5LW+R+qTvul7o36fum9nNyBnBDVb13lmrum9QXSXZpH5cDL8GpU7pxMXBM+/wYOvZd0rZKchDN7Aovqqp7hx3PqEuyR8fii4AbhxXLKKuqb1XVLlW1e1XtTnMA8+lV9f0hhzaypk70aL2YMR2Hjqoki5M8pn3+cJoDjP59D1hVnVRVu7X7jSOBf6yqgV/Zocn6fjzK2v+btyd5Ult0AHD9EEMSHIXfYYfpNuCZSR7RHts6ALhh0EEsGvQLdquqNiU5EfgCsD1wZlVdl+Q17foP00zR8Vjgg+1x5E1VtRLYFbigLVsEnFNVnx/C2+i7LvvppcBrk2wC/gM4sj1bdsZth/JG+qjLPoLmi8sXq+rHHZtPzGcJIMm5wH7AzknWAm+juaH4VD99juYeSKuBe4FXtesm4rMEXfXRxO+XoKt+muj90pQu+gncN+0LHA18K819TgDeAiwH903qu08neSzwU+CEqrp72AGNkln2Ye8CViU5luYLz2HDi3C0zNJfd9FMhb0Y+PskV1fVgcOLcnTM0l8nATsAl7T/Ay+rqtcMLcgRMkt/vaA9CPcA8F3AvmLmvqqqM4Yb1eia5bO1X5K9aKZWvxU4fljxTaglwNlJtqc5kXJVVX12yDFJwzRJ349H3euAT7Qn4N5C+91cg5dmivPn4f/ooamqbyT5FM1tkDYB/wKcPug44qwpkiRJkiRJkiRJ0vgY5SlAJUmSJEmSJEmSJM2TCUBJkiRJkiRJkiRpjJgAlCRJkiRJkiRJksaICUBJkiRJkiRJkiRpjJgAlCRJkiRJkiRJksaICUBJC0aS/ZJUkqfMc7tXtts9sgcxPD/JG7a1HUmSpGHr5RhpWrtnJbmyR219OcmnetGWJEnSQjLTcbB2+cSO5eOSHDqUACWNPBOAkjQ/zwfeMOwgJEmSJEmSNHGeBXyyY/k44NDhhCJp1C0adgCSJEmSJEmSJGluVXXZsGOQtHB4BaCkgUmyZ5LPJ7kryY+T3JDkhHbdrUnePa3+Fqelatf/cZK/btv9YZK/SfLQGaqvSHJJ+9o3JnnJtLZ+u12/Ick9SS5L8vyO9W8H3gj8Uvu6leSsjvW/keSfktyb5M4kH0nyqI71j0ny0STrkvxnktuSfGSe3ShJktSVJM9KcnE79vhxkquTvHwL2zw8yV8k+W6S+5KsSfI/OtZvn+Tt7TjmviTXJXnZLG09L8k17Wt/Ncme09Y/Isn/SvL9dmx0RefYS5IkaRQl+YMkt7djnL9rxzzVTtm5e/v8hdO2edAU6Ul+Ocl5bTv3tmOqNySZ83h95xSgSb4M/BpwTMdxqlcm+csktyTJtG1fleQnSXbuWWdIGmleAShpkC4GbgR+F7gPeBLw6B60+0bgMuDlwJ7AqcB/An8yrd45wOnAXwKvA85L8viqWtuuXwH8HfBu4AHgYOAfkjy7qv4Z+CiwB/Bc4MXtNhsBkuwLXApcCLwUeCzwLmDHdhngvcA+wB8B3weWAc/uwfuXJEmayS8B/wx8mGZstC/wsSQPVNW50yu3B4kuopla6p3AVcBS4Dc7qp0C/CnwDuAK4HeATySpaW0upxlznQr8B834alWSp1RVtXU+ArwIeAuwGng18PdJ9q+qr/bg/UuSJPVUkkOAD9CMry4EngOcuRVNLQVuAj4B/AjYi2Z89XDgf8y+2YP8AfBp4BaasRvAd4CvA/9vG9uXO+q/Evi7qvrBVsQraQEyAShpINqzix4PHFpV32qLL+1R8z8CDquqB2gSdjsAb03yP6rqro5676uqM9t4rgLuAF5IM2ijqt7fEe92wJdoEorHAv9cVWuTrAfum2HKhXcBX6uqIzra+B5waXug61pgb+ADVXV+x3Z/24sOkCRJmq6qzpt63ib3vgLsRpNo2ywBSHOv4+cBh1TVxR3lH2/b2InmXsh/XlV/3q77QpLdgLdPa3MnYN+qurnddjvgApoTwG5M8ivAUcCrqursts4XgGuAPwMO3Oo3LkmS1D9vBT5fVa9tl7+QZDHw+/NppKoupT0u1o7Tvgo8gmac1lUCsKquT/JjYOO041Qbk/wz8CraBGCSx9Oc1PWi+cQpaWFzClBJg3IXcDvw4SRHJNmlh21f1Cb/pnyG5oypp0yr98WpJ1V1J7CB5iAYAEl2S3J2m7jbBPyU5kDYE+d68SSPoDlTflWSRVM/NIO3n9JMxwBwNfAn7VQRc7YpSZK0rZLs2E6x+V2aMclPgeOYfWzzXOCuacm/Tk+hOTD1yWnl5wNPnDa+u3Uq+de6vn2cGnv9OpDOttrx3CeB35jzjUmSJA1Bku2Bp9HMmNDpM1vR1sOSvCPJappZsn5KM3PCivaY0rY6A/id/Py2Oq+kORH+8z1oW9ICYQJQ0kC0B3SeTzP15ZnA95P83yRP60HzG2ZZXjKt/IfTln8CPAx+dlb6xTRTdJ4M7E9zYOofpurMYUdge+CD/Pzg2k9pBnAPoZnqE+BEmukhTgZuSnJzkiO30LYkSdLWOgs4gmYqzufTjG3OZPaxzWOB9XO0NzW2umNa+dTyjh1lP5xW5yft49RrLwH+varunaGtR7QzOkiSJI2SxTQz6s12HGo+/ifNNJ2nAy+gGadNzbCwpeNQ3VhFc3ubw9srDF8BfLyqNvWgbUkLhFOAShqYqrqR5uyjh9BMO/A/ae7zshvNfWkeOm2TnbpsevrVhFPLcx3Amu6/0pzFdXBV/exsqCQP72LbHwJFM/XV52ZYvw6gqn4I/CHwh0l+leb+OZ9Ick1VXT/DdpIkSVslycOA3wZOrKoPd5TPdRLonWx+AlWnqbHVLm3dKbu2j3fRvfXAI5M8YloScFfg3qq6bx5tSZIkDcJGmhmjZjsOBc3xLdjyMa7DgL+pqr+YKkjy270IEqCqfpzkPJor/75Lc2/os3rVvqSFwSsAJQ1cVf20qv4ReC/NQabHAGuBX5lW9XldNnnItINZLwH+A7h2HmFNJfp+drApyS8B+06r97OrBqdU1Y+By4AnVdWVM/ysm/5iVXUN8Cc0++FfnkeckiRJ3diBZoaCzrHNo5j7vi+XAjsleeEs668F7qU5YNXpcODbVbVxHvFdQXMC1Us74ku7/NV5tCNJkjQQVXU/ze1dDpm26iUdzzfQzAr1s2Nc7TScz5q2zcN58Dhte2BrZona7DhVhzNoTsB/O3BZVd2wFe1LWsC8AlDSQLRXvL2b5h4xt9BMEfUm4F+r6q4kFwB/k+QtNAeEXgLs2WXzjwI+meQj7TYnA++vqvmchX4jTRLyPUn+rG3zHcD3Zqi3a5JX0hwE+0FV3UpzNd+lSR4APgX8CFhOc+b9W6vq20m+ClzQblc0N3b+MXD5POKUJEnaoqr6tyRXACcnuYdmCqg3A/8GPHqWzS4BvgCck+QU4Js0J2s9u6qOb8dsfwX89ySbgCtpxmwvAI6aZ3w3JDkXeH+SRwOracZGvwy8dn7vVpIkaWD+P+AzST5Ec4znOcBBUyur6oEkFwF/1N6H+YfAG2lOVO90CXBCew/Au4ATaE7gmq8bgQOTHEgzQ8OaqrqzjeUbSa6jub/y8VvRtqQFzgSgpEH5Ps09Xd4KPI5mAPQlmiQgNHOeP4FmiswdgI/TzH1+Whdtvwd4PHAuzRV1HwXeMp/gquq+JC8BPkCTwFtLc/Pl/YCndFRdRXN/wL+gmfv9bOCVVfXVJM+mSRr+b5oz7r9Lc3PlqfvifJ1m6oXdgfuBf6GZcnTtfGKVJEnq0stoxlgfpzkg9H7gETT3Jd5MVVWSFwPvBN5AM9ZZB5zTUe1kmqmvXkszXedq4Her6rytiO/VNFPC/xnNjBDfAl5YVV4BKEmSRlJVXZDkdTQnVh0DfBk4luYkqikn0ozBPgjcTXN8aR8efHzpdcCHaY5D/QfN8aUL2u3m489pTkBfRXOS16t48FSfF9IcM9uasZqkBS5VNewYJGmrJSngdVX1/mHHIkmSJEmSpMmS5Ck0JzLtX1VfHnI4D5LkcuCmqjp62LFIGjyvAJQkSZIkSZIkaUwkWQk8F/h1mulFJU0gE4CSJEmSJEmSJI2PK2huv3NSVV0x5FgkDYlTgEqSJEmSJEmSJEljZLthByBJkiRJkiRJkiSpd0wASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0RkwASpIkSZIkSZIkSWPEBKAkSZIkSZIkSZI0Rv5/Htm1BzGDdYsAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 1800x1440 with 12 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Set the figure size\n", "plt.figure(figsize=(25, 20))\n", "\n", "# Initialize plot counter\n", "plotnumber = 1\n", "\n", "# Iterate over the columns of the dataframe\n", "for col in data.columns:\n", " \n", " # Limit the number of subplots to 12\n", " if plotnumber <= 12:\n", " \n", " # Create a new subplot\n", " ax = plt.subplot(4, 3, plotnumber)\n", " \n", " # Plot the histogram using seaborn\n", " sns.histplot(data[col], ax=ax)\n", " \n", " # Label the x-axis with the column name\n", " plt.xlabel(col, fontsize=15)\n", " \n", " # Increment the plot counter\n", " plotnumber += 1\n", " \n", "# Adjust the layout of the subplots\n", "plt.tight_layout()\n", "\n", "# Display the plot\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<AxesSubplot:>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABWoAAARiCAYAAAA9as6rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbH8d+eFNJDEgJJ6FUs9CKiIB3Efu0F7O1a0AvYUCyo2K9dxHJtCLbXjoBItaD03jskIZAQkpA+s98/ZgxJJmBUyCHk+3mePGRm1jmz9snhzJk1e9Yx1loBAAAAAAAAAJzjcjoBAAAAAAAAAKjpKNQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAICPMeYdY0yaMWbFQR43xpiXjDEbjDHLjDEdD8fzUqgFAAAAAAAAgAPelTToEI+fIaml7+dGSa8fjielUAsAAAAAAAAAPtbaOZIyDhFyrqT3rdc8SbWNMYn/9Hkp1AIAAAAAAABA5dWXtL3U7R2++/6RwH+6AlStoj2brNM51DQ3db7b6RRqnFcfaeF0CjXO/Hs2Op1CjVNk+ay0qs0MDXA6hRonnP28yt35cJLTKdQ4kTdNcDqFGmdBYienU6hxfvJEOZ1CjdOuKN/pFGqcHqmfGadzOBodq3Wo4PjmN8nbsuAP46214//CKiraX/7xtqJQCwAAAAAAAKDG8BVl/0phtrwdkhqWut1AUvI/Skq0PgAAAAAAAACAv+JrSUONVzdJ+6y1Kf90pcyoBQAAAAAAAAAfY8xESb0k1THG7JD0kKQgSbLWjpM0WdJgSRsk5Uq65nA8L4VaAAAAAAAAAP48bqczcIS19rI/edxKuvVwPy+tDwAAAAAAAADAYRRqAQAAAAAAAMBhFGoBAAAAAAAAwGH0qAUAAAAAAADgz3qczqBGYUYtAAAAAAAAADiMQi0AAAAAAAAAOIxCLQAAAAAAAAA4jB61AAAAAAAAAPx56FFblZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNQCwAAAAAAAAAO42JiAAAAAAAAAPxYy8XEqhIzagEAAAAAAADAYRRqAQAAAAAAAMBhFGoBAAAAAAAAwGH0qAUAAAAAAADgz0OP2qrEjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYPWoBAAAAAAAA+LP0qK1KzKgFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACH0aMWAAAAAAAAgD+P2+kMahRm1AIAAAAAAACAwyjUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAw7iYGAAAAAAAAAB/1uN0BjUKM2oBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBh9KgFAAAAAAAA4M9Dj9qqxIxaAAAAAAAAAHAYhVoAAAAAAAAAcFi1aH1gjLlD0i2SFkn6WNIJ1ton/+E6e0kaYa096x+u51FJc6y10w+2fmPMOfLlbIw5T9I6a+2qf/K81ckDTzyvOT//rtiY2vryw3FOp3PMuPyha9WmdwcV5hXq7RGvaNvKzX4xN7wwTE3bNFNxsVubl27Q+/e/IXexW5J0XLcTddnoqxUQGKicvVl66pKHqnoI1crPG3fp6R+WyWOtzm/XWNd2P84vZv7W3Xrmh+Uq9ngUExqst4f01Jb0bN39xfySmJ2Z+3VLz+N1ZdcWVZl+tRTTu72aj7lGJsCl1Ak/avsrX5Z5PLRFko574VZFtGmqLU9O1I7Xvyl5rNV/b1Fs/04q2rNPC3sNr+LMq5fY3u3U6rGrZQJcSp4wQ1tf/sovptXjVyuubwe58wq0+o7Xlb3ce7xpeMMZSrqyryQpecIMbR8/ucxyjW45Sy0fHqI5x1+voozsIz+YaurMh4aqVe/2Ksor1Ocjxill5Ra/mJOHDlD3awcprkmCnuhwk3L3erdn027H64rxw7V3R5okadWU+Zr50hdVmX611P/hIWreu72K8gr07Yjx2rVii19Mp6v6q8u1gxTTpJ5eaH+z8vbmSJJimyfqrGdvVL0Tm2j2s5/q93L7Pfz9vGmXnp6+XB6PdH67Rrr2lFZ+MfO37tEzPy5Xscd6X0OvOM37GvrVgpKYnZm5uqVHa13ZpXlVpl9t/ff5R3XGoD7KzcvTddfdpcVLVlQYN+bRe3TBBWfJ7XbrjTfe1yuvvqOoqEi9/97LatiwvgIDA/T88+P03vufVPEIqpfI0zuq/kPXywQEKH3SNKW9/nmZx2s1r69Gzw5T6InNlfLsB9o9/suSx+KvO0exlw6QrFX+mq3aNvJF2YKiKh5B9dHjkSFq3Ke9ivMK9ON/xmt3BcfwyIbxGvjqrQqpHaHdK7boh2Gvy1PkfR9Uv9vxOu3hK+UKDFD+3mx9cdHjikiMVb8XblZYfLSsx2rlRzO17J2pVTyyo19M7/ZqVur8fEcF5+etXrhVEW2aacuTE7Xz9a8lScFJcTru5dsVHF9b1lqlfvCDkt/i9ROoSLUo1Er6t6QzrLV/VKK+djKZ0qy1oysR87UO5HyepG8l1ZhC7XmD++vyC87R/WOedTqVY0abXh1Ur2mi7ut1u5p1aKmhj9+ox867zy9u3pdz9OadL0qSbnrpTvW4tK9mfThNoVFhGjLmej1/1ePKSN6jyLioqh5CteL2WI2dulTjLjtV9aJCdcX/Zur0lolqHn9gu2XlF2rslKV69dLuSowOU8b+AklSk7hIfXJ9n5L1DHj5e/U5LsmRcVQrLpdajL1Oyy8eo4KUDHWYMlbp0xYod92OkpDizBxteOAd1RnU1W/xXR/PUvI7U3Tcy7dVZdbVj8vouCev1eKLH1dBcrq6TB2rPVMXaP+6nSUhcX3bK7Rpgn7tNkxRnVrquKev04IzHlB464ZKurKv5g+6X7awWO0n3a89PyxS3uZUSVKtpDjFnt5Wedt3OzW6aqFVr/aKa5qg//b6jxp0aKFzHr9Wb5znf2qxbeFarZ2xSNdNetDvsS3z1+jD63iNrazmvdsppmmCxp0+XEkdmmvQY1frvfMe9ovbsWCdNvy4WJdPGlXm/vzM/frhoQ/UcmCnKsq4enN7rMZOW6Zxl3ZXvchQXfHubJ3eMkHN65R+DS3S2GlL9erFp/i/hl7bu2Q9A16dqj6tEh0ZR3VzxqA+atmiqVqfcJpO7tpRr74yVt1PO9sv7qqhF6tBgySdeFJPWWsVHx8nSfr3LVdr9ep1Ou/8q1WnTqxWrZijjyZ+oaIiiocVcrnUYMxN2njFaBWlpqvV189p3/TfVbB+e0mIOzNHOx4ar+iB3cosGlQvVnWuOVtr+t4qW1Coxq/erZizeyjjsxlVPYpqoXHvdqrdNEEf9hiueh2a6/QnrtZn5zzsF9f9vku19K0pWv/1PPV64hqdcGkvrfjgRwVHhen0x6/W10OeVk5yukJ974M8bo9+HvORdq/YoqDwEF0yeYy2z12uveuTq3iERzGXS83HXq8VFz+qgpQMtZ/ypDIqOD/f+MA7iit3fm6L3dr08Hvav3yzAsJD1H7a08qcs6zMsjh6WUuP2qp01Lc+MMaMk9RM0tfGmLuMMVcbY17xPfaVMWao7/ebjDETfL8PMMb8aoxZZIz51BgT4bt/kDFmjTHmJ0n/OsjzNTHGzPUtu8gY073UY3cbY5YbY5YaY5703feuMebCQ63/j5x96zpH0jPGmCXGmObGmEWl4loaYxYezu13NOjcvo2ioyKdTuOY0mFAF/3yf7MkSZsWr1dYZJii42v7xS2ftbjk901LNyg2wXvy3e2cHlo45TdlJO+RJGWnZx3xnKuzFckZahgTrgYx4QoKcGngCQ00a31KmZjvV+5Qn+OSlBgdJkmKDa/lt57ftqSpQUy4knwxOLjIDi2UtzlV+dvSZIuKtfvLnxU3sHOZmKI9WcpZslG2uNhv+X3zVqsoM6eq0q22ojq2UN7mXcrfmiZb5NauL39RnUFdysTED+qi1E/nSJKyFq5XYFS4guvWVnjL+tq3cL08eYWybo/2/rJK8YMPnJS3enSoNjw6QbK2SsdU3Rw/oJOW/N9cSdKOxRsUEhmmiAqO5ykrtypzx54qzu7Y1LJ/J634/CdJUvLijaoVFa7wurX94nat3Kp9FWzz3PQspSzbVDIzC4e2ImWv9zW09h+vofU1a31qmZjvV1XiNXTrbjWozWtoZZ199kB9MOEzSdJvvy9SdO1oJSTU9Yu7+aaheuzx/8r6jtW7d6dLkqy1ioiIkCRFRIQrIyNTxRW83sIrrH1LFWxJUeH2XbJFxdr7zVxF9z+5TExx+j7lLdsgVXDsMAEuuUKCpQCXXKG1VLQro6pSr3aaDuikNb5j+C7fMTysgmN4g1NP0Ibvfpckrflsrpr5PlxrdV53bZwyXznJ3n09z/c+KDcts2RmbtH+fGVsSFZEQuwRHk31EtmhhfLLnZ/HDix73njg/Lzsfl6Ulqn9vm9kuffnK2/9TgWzfYEKHfWFWmvtzZKSJfW21v633MM3ShptjOkhabik240xdSQ9IKmftbajpAWS/mOMCZH0pqSzJfWQlHCQp0yT1N+37CWSXpIkY8wZ8s6GPdla207S06UXqsz6rbW/yDuzdqS1tr21dqOkfcaY9r6QayS9W4nNghoupl6cMnwnF5KUkZqhGF8RtiIBgQHqfn5PLZ+9RJKU0CxR4dERunvSIxr9zVPq/q/Tj3TK1Vpadr4SokJLbteLDFVadn6ZmK0ZOcrKL9R1H87VZe/M1DfLt/mtZ+qqHTrjhAZHPN9jQa3EWBWU2scLUjIUnHjwfRx/T0hCrPJLb+fkdNVKiCkTUysxRvk7S/8t0lUrMVY5a7YrpltrBcZEyBUarDr9OiikvvdvVGdgJxWkZihn1daqGUg1FlkvRvuSD7whz0rNUFS5v8GfadSxpW79fqyGvnu36rasf7hTPOZEJsQoq9R+n52aoch6f22bo/LSsvOVEFnJ19AJP+my/806yGvoTp1xAvt3ZdVPStCO7QdmAu7ckaL6Sf5vf5o1a6KLLzpH836drG+//kAtWjSVJL362v90fOuW2r51kZYs+lH/Gf5QSTEX/oIS4lSUcuCDnaKUPQo6xLl5aUW7MpQ2/kud8OvbOmn+e3Jn71f23CVHKNPqLyIhpqTIKkk5KRmKKPe6GRIToYKsXFm3pyQm3BdTu2mCakWH6/xPRuni78bouAtO83uOyAZ1FH9iY6Uu3ngER1L9eM/PD+znhb5zwr+8nobxCj+pibIXrT+c6QHHjKO+UHso1tpdkkZLmilpuLU2Q1I3SSdI+tkYs0TSVZIaS2otabO1dr31nmV8eJDVBkl60xizXNKnvnVJUj9J/7PW5vqeu/zHnJVdf3lvSbrGGBMgb2H4o/IBxpgbjTELjDEL3np/YiVXi2Oa8b/rUCfPV465Qet+X6X181dLklwBAWrcppleuOYJPT/0MZ19+4Wq15SvEh5MRVu2/J/A7bFanZqpVy4+Ra9d2l3jf1qjrekHenIWuT2avT5V/VvzJrNSKtjHmZl5BJiKNrRfkP9d1ip3/U5teeVrdfjkAbWfeL+yV26VLXbLFRqsJneer41P0cuwMkxFf4O/sKsnr9iiZ0+9Q6+ecZ/mvTtNl4+nJ/OfqnCbc3w5UmwFO3TFr6H79MpF3fTaJado/C/rtDXjwLciitwezd6Qqv6taR1UWRUdWyo6V6xVK1j5+QXqdspgvfXOR3pr/HOSpAEDemnp0pVq2LijOnUZoBdfeEyRkRFHPO/q6+8fVwKiwhU94GStOu0Greh6tQJCQxRzfq/Dmt0xpTL79iFeW12BLtVt01TfXPWsvr7yKXUZdp5qNz3wIUZQWC2d8cYwzX34QxXl5B3OzKu/w/D66QoL0fFvjdCm0e/KzfYFKlRdetQeShtJ6ZL+OHMzkn6w1l5WOsg3a7UyR5G7JO2S1E7eQvYfH/mbSiz/d87yP5f0kKQZkhZaa9PLB1hrx0saL0lFezbxTqKG6jNkkHpe5r1oz+alGxWbdOBT+tiEWGUe5CtS5wy7SJFxUXr1pjdK7tubmq6cvdkqzCtQYV6B1v2+Sg2Pb6Jdm1MqXEdNVy8yRKlZB04kdmXnKT4yxC+mdmg9hQYHKjQ4UJ0a1dHatCw1jvO2/fhpY6paJ9RWXETZ5VCxguQM1Sq1j9dKjFVhKl8DPNzyU9IVUno7J8WpIHVvmZiClAyF1I/Tvj9iEg/EpHw0UykfzZQkNb//UuUnZyi0ST2FNqqrk2c8XbLOrj88qfmD7lfh7n2CdPKQ/up8mbfv5s6lmxSddGA2SlRCrLJ27T3Yon4KSr3JWTdric5+7BqFxUSWXGwMXh2H9lP7S73bPGXZJkWV2u8jE2KVnZbpUGbHvnqRoUrNrsxraN0Dr6EN47Q2bZ8ax3oLgz9t3KXW9aIVF85r6KHccvNVuu66KyRJCxYsUYOGBwrb9RskKjlll98yO3am6P+++E6S9OWX3+vtN5+XJF099BI9/cwrkqSNG7doy5btan1cC81fsOQIj6J6Kkrdo6DEOiW3gxLrVLp9QcRp7VW4fZfcGd6v4GdO+VXhnVpr7xezjkSq1VKbq/rpBN/rZtrSTYoodQyPSIzV/l2ZZeLzM7JVKypMJsAl6/b4YryvrTkpe5WfsUzFeQUqzitQ8m9rFHdCI2VuTpUrMEBnjB+mdV/+ok1TFghlFSSnq1bSgf08ONH/vPFQTGCATnh7hHb/31ylT/7tSKSII8VDj9qqVK1n1Bpjuko6Q1IHSSOMMU0lzZN0qjGmhS8mzBjTStIaSU2NMX9cJvayitYpKVpSivV2Sx4iKcB3/zRJ1xpjwnzrLT/Hv7Lrz5ZU0rDVWpsvaaqk1yX9789HjZpqxgdT9PDgkXp48Egtnva7uv+rlySpWYeWys3O1b7dmX7L9Likr07q2V5v3P5CmU+aF0+br5ZdjpcrwKXgkGA1bd9SKRto5H4wJybFaNveHO3M3K8it0dTV+3Q6S3LzkDu1SpRi7enq9jjUV5RsZbvzFCzuAO9maes3KFBtD2otOwlGxTaLFEhjerKBAUq/rxTlT6NE+bDLXvxRoU1S1BIo3iZoADVO6+79kwtu513T12ghIt6SpKiOrVUcXauCn1FrSDfxYBq1Y9T/OCu2vXFz9q/ervmnnijfulyu37pcrsKktP1e/97KdKW8tsHP+jVwffr1cH3a9W0BWr/rx6SpAYdWqggO085FRzPDyYiPrrk9/rtmssYQ5G2Aoven653Bo/SO4NHad20hTrJ91XXpA7NVZCdq/0Uao+YExNra1vG/lKvoTt1eouyX8Hv1TJRi3eUeg1N3lv2NXT1Tg2i7cGfen3ce+rcZYA6dxmgr7+eqiFXXChJOrlrR2Xty1JqaprfMl9/PUW9e50qSTq95ylat36TJGnb9p3q08f7/6Ru3Tpq1aqZNm2mnc3B5C5dr1pNkxTcsJ5MUKBizu6hrB8qV4gqSt6tsA7HyYQES5IiT22n/A3b/2SpmmX5e9P18aBR+njQKG2aulCtfcfweh2aqzA7V7kVHMN3/rJKLc709s5vfWEPbZrmvTTM5mkLldj1OJkAlwJDglWvQ3Pt3eBtE9LnmeuVsT5ZS978vmoGVs1kL9mgkGaJqlXq/Dxj2vxKL9/yv/9W7vod2vnGt0cwS6D6q7Yzao0xteTtCXuNtTbZGDNc0juS+ki6WtJEX4wkPWCtXWeMuVHSd8aYPZJ+knRSBat+TdLnxpiL5G2psF+SrLVTfLNyFxhjCiVNlnT/HwtZa/Mruf5J8rZWuEPShb4+tRPkvfjYtL+/RY5eIx96UvMXL1NmZpb6nnel/n3dEF1w9kCn06rWls1cpLa9O+rJ2a+oMK9A74x8reSxO/93v96953Vlpu3V0MdvVPrO3Rr1xeOSpIVTftM3L32mlI07tWL2Yj065Tl5PFZzP/5RO9dxQngwgS6X7h3QTrdM+lkej3Ruu8ZqER+lTxd5G+Jf1LGpmtWJUvfmdXXxmzNkjHR++yZqUddbxMorKta8LWl64IwOTg6jenF7tOH+t3XSxFEyAS6lTpyp3LU7lDi0vyQp5f0fFBRfWx2nPqmAyFDJY1X/hjO1oOddcufkqfXrwxTd/UQFxUbq5EXjtPWZT5Q6kasnl2fdHq297x11mHS/FOBSysRZ2r92h+oP7SdJ2vn+dKVPX6w6fTvolN9elCevUKuGvV6yfNu3/6OgmEh5it1ae987Kt6336mhVFvrZi5Rq97t9Z/Z/1VhXoH+b+SBbz8M+d/d+vKe8cpOy1S3qweqx01nKSK+tm6b8qTWzVyiL+99UyeecbK6XtlPHrdbxfmF+vj2lx0cTfWwccYSNe/dTjfPeU5FeYX6bsT4kscufneEJt/9lnLSMtX56gE6+eazFBEfreumjtXGmUv1/T1vKTw+Wld/M0a1IkJlPR51uXaQ3ux3jwr5CmeFvK+hbXXLx7/KY63ObdvI+xq62Pca2qGpmtWJVPdmdXXx2zNljNH5vtdZyfcaujlNDwxs5+Qwqp3J3/+oQYP6aO3qn5Wbl6frr/9PyWPffPW+brx5pFJSdumpp1/VB++9omHDbtD+nFzddPNISdLjT7ygd976rxYvmi5jjO4b9YTS0ys/c67GcXu0Y/Qbavb+wzIBLmV8Ml3567cr7opBkqT0CVMUGF9brb55XgERYZLHo/hrz9Gafrcqd8k67Zv8s4777gVZt1t5Kzcp/aOpzo7nKLZ1xhI17tNOQ356TsV5hfpx+IFj+FnvjdDMu9/S/l2Z+mXsJA189TadPPIi7VmxRasmzZIk7d2QrG2zlumyaWNlrUerJs5SxtodSuzSSq0v7KE9q7fpkine907znvpEW2cudWKYRye3Rxvvf0snTXxAJsClXRNnKHftDiUMHSBJSn1/moLia6vD1KfKnJ8v7Hmnwk9orHoXna79q7aqw/RnJElbxn6kvT8uPtQzAjWSoSm884wxIyRFW2sf/LNYWh9UvZs63+10CjXOq4+0cDqFGmf+PVwsoaoV2Wr9pZZqaWZowJ8H4bAKZz+vcnc+TB/XqhZ50wSnU6hxFiR2cjqFGucnT5TTKdQ47Yry/zwIh1WP1M8qcwGHGqdg/S/HZB2qVsvuR+Xfu9rOqD1WGGO+kNRc3pnAAAAAAAAAAGogCrUOs9ae73QOAAAAAAAAgB/LxcSqEt9HAwAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh9GjFgAAAAAAAIA/j9vpDGoUZtQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAIDD6FELAAAAAAAAwJ/1OJ1BjcKMWgAAAAAAAABwGIVaAAAAAAAAAHAYhVoAAAAAAAAAcBg9agEAAAAAAAD489CjtioxoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGoRYAAAAAAAAAHMbFxAAAAAAAAAD4s1xMrCoxoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGj1oAAAAAAAAA/jz0qK1KzKgFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACH0aMWAAAAAAAAgB9r3U6nUKMwoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGj1oAAAAAAAAA/qzH6QxqFGbUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAIDDuJgYAAAAAAAAAH8eLiZWlZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNHLQAAAAAAAAB/lh61VYlCbTVzU+e7nU6hxnljwdNOp1DjNG91rtMp1DhjQ9o5nUKNU9vtdjqFGqdVEV8kqmp1i4udTqHG+fb+nU6nUOOsat7G6RRqnCfzgp1OocaJDuB4XtW+sFlOp1Dj/Oh0AoBofQAAAAAAAAAAjqNQCwAAAAAAAAAOo/UBAAAAAAAAAH8eWrZVJWbUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAw+hRCwAAAAAAAMCf9TidQY3CjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYhVoAAAAAAAAAcBgXEwMAAAAAAADgz8PFxKoSM2oBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBh9KgFAAAAAAAA4M/So7YqMaMWAAAAAAAAABxGoRYAAAAAAAAAHEahFgAAAAAAAAAcRo9aAAAAAAAAAP489KitSsyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh9GjFgAAAAAAAIA/etRWKWbUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAIDDuJgYAAAAAAAAAD/Wup1OoUZhRi0AAAAAAAAAOIxCLQAAAAAAAAA4jEItAAAAAAAAADiMHrUAAAAAAAAA/Hk8TmdQozCjFgAAAAAAAAAcRqEWAAAAAAAAAEoxxgwyxqw1xmwwxtxbwePRxphvjDFLjTErjTHX/NPnpFALAAAAAAAAAD7GmABJr0o6Q9IJki4zxpxQLuxWSauste0k9ZL0nDEm+J88Lz1qAQAAAAAAAPizNbZHbVdJG6y1myTJGDNJ0rmSVpWKsZIijTFGUoSkDEnF/+RJmVELAAAAAAAAAAfUl7S91O0dvvtKe0XS8ZKSJS2XNMzaf1bZplALAAAAAAAAoMYwxtxojFlQ6ufG8iEVLGbL3R4oaYmkJEntJb1ijIn6J3nR+gAAAAAAAABAjWGtHS9p/CFCdkhqWOp2A3lnzpZ2jaQnrbVW0gZjzGZJrSX9/nfzOuoLtcaYJpK+tdae9Ccx3a21H/lud5Y01Fp7hzHmakmdrbW3HaH8HpU0x1o7vdz9vSSNsNaeZYw5R9IJ1tonjTHnSVpnrV3lt7Jq7PKHrlWb3h1UmFeot0e8om0rN/vF3PDCMDVt00zFxW5tXrpB79//htzFbknScd1O1GWjr1ZAYKBy9mbpqUsequohHFMeeOJ5zfn5d8XG1NaXH45zOp1jxiNj71Xv/j2Ul5ev4bc+oBXLVvvFPPfKYzr51E7KzsqRJA2/9QGtWrFW3U7trLcmvKTtW3dKkqZ8+6NefIa/jSQl9mqrzmOGyLhc2jBxlla98o1fTKcxQ1S/T3sV5xXo17vGa+/yLYdcttFZXdVm+L8U3TJJUwY/pIxl3mOSKyhAXZ++TnFtm8p6PFow+kOl/er/d6xJ4nu30wmPDZUJcGn7hJna+PLXfjEnPH6V6vZtL3deoZbe8bqyfNs/MCpMbZ+/UZGtG0hWWnrXG8pcsF4JZ5+sViMuVESrJP086EHtW7qpikd19OvyqHefducV6Oe7xitjxRa/mIiG8erx2q2qFROhjOVb9NMdr8tT5FZU80Sd+t8bFXtSEy1+6lOtemNyyTLdn7tB9fu1V/6eLH3T974qHNHRrU7vdjr+saukAJd2TJihzRXs58c/fpXq9O0gT16Blvv28/DmiWo3flhJTFjjulr/9KfaOv57SVKj6waq8bUD5Sl2a/f0xVo35qMqG9PRrl7vturw6BCZAJc2fTRLays4trcfM1SJfdupOK9Q8+98Q5nLtyg0KVZdX7pFIXWjZT1Wmz6coQ1vTZUktX3wMiUO6ChPYbH2b92l+XeOV1FWblUPrVoIO62T6t5/i+Ryad9nU7T3rU/KPB55Vm/FXn+xJMmTm6ddj7yswrWbZYKD1PCDZ2WCg6TAAOVMnav0Vz50YgjVEu+JnHX+Q1fp+N4dVJRXoIkjXteOlVv8Yq584TY1bNNM7mK3ti3doE/uf0se3/ZH5dz66L91cp8uKsgr0NN3Pav1Kzb4xYx49j9q1baljDHasWmnnrrrGeXn5isiOkIjnxuupMaJKiwo1DPDn9eWtVuqfhD4azw1tkftfEktjTFNJe2UdKmky8vFbJPUV9JcY0w9ScdJ+kdvfo6V1gdNVGpjWWsXWGvvqIonttaOLl+krSDma2vtk76b58l7tbhjRpteHVSvaaLu63W73rt/nIY+Xn62uNe8L+fo/r7DNHrgfxQcEqwel/aVJIVGhWnImOv10vVP6cEBd+m1fz9Xlekfk84b3F/jnn/M6TSOKb379VCT5o3Vs/OZuveuR/T4cw8cNPaJh57XGadfpDNOv0irVqwtuX/+r4tK7qdI62VcRl2euEozr3ha3/a6W03O7aaolkllYpL6tFNU0wR9fepw/Xb32+o69uo/XTZzzQ7Nuf5Fpc1bW2ZdLa7oLUn6ru99+vHSp9TxocslU9E3WmoIl9GJT16j3y9/SrN7jFDS+d0V0aps26X4vu0V3jRBs7rdpeUj3tRJT19X8tiJj12l3TOXavZpIzSnzz3KWef9ICJnzXYtvPZ5Zfy6pkqHU13U9+3TX542XL/e87ZO9u3T5XUcdalWvzlFX542QgX79qvFZb0kSYWZ+/X7gx9oZakC7R82fDJHP17xzBHMvhpyGZ3w5LVacPmT+qnHcCWef6rCy+3ndfq2V1jTRM3tdqdWjHhTJzx9vSRp/8YU/dL3Xu9P//vkzivUrsnzJUmxp56guoM666fed+vn00dqy+vfVvnQjlouo45PXK25VzytKaffrUbnnaLIcts8oU87RTRL0Pfdh2vhyLfV8clrJEm22KOlj0zQ1J53a8aZD6nF1f1Llt01Z4Wm9bpHP/S9T9kbU9X69nOqfGjVgsulug/eqp03PqAtZ9+oqDN7Kbh5ozIhRTtStX3oSG097xalv/6R6j3i/UDCFhZp+zX3aOv5/9bW8/+tsNM6K6RdaydGUe3wnshZx/dqr/imiXqi15365P43deHj11cYt/DLnzS273/09MCRCgoJVrdL+1RxptVb1z5d1KBpfQ097Ro9f88LGja24rLLaw+P040DbtEN/W9W2s40nXfNuZKky2+/TBtWbtQN/W/Wk8Oe0a2P3FKV6QN/ibW2WNJtkqZKWi3pE2vtSmPMzcaYm31hYyR1N8Ysl/SjpHustXv+yfNWeaHWGPOUMebfpW4/bIwZbryeMcasMMYsN8ZcUsGyTYwxc40xi3w/3X0PPSmphzFmiTHmLmNML2OM39myMSbeGPO5MWa+7+fUv/AcMsbc7cttqTHmSd997xpjLvT9PsgYs8YY85Okf5Va7mpjzCu+dZ0j6Rlfrs2NMYtKxbU0xiz8G5vVUR0GdNEv/zdLkrRp8XqFRYYpOr62X9zyWYtLft+0dINiE+IkSd3O6aGFU35TRrJ3X85OzzriOR/rOrdvo+ioSKfTOKYMGNxbn0/yzsBavGCZoqIiVbdeHYezqv7iOjRX9pZdytm2W54it7Z+NU8NB3YqE9NgYCdt+uwnSVL6oo0Kjg5XSN3ah1w2a0Oysjem+D1fdKv6Sp27UpJUkJ6lon25imvX9AiP8uhVu2ML5W5OVd7WNNkit5K//FX1BnUuE1NvUCft/HSuJClz4QYFRYWpVt3aCowIVewprbV9wkxJki1yq9g3sy1nfbL2V7D94dVwYCdt9O3Te3z7dGjd2n5xCaeeoK3feb81tfHTuWrk27/z07OUvnSTbJH/DKC039aqIDPnyCVfDZXfz1O//KWC/byzkj+dI0naV2o/Ly2uRxvlbtml/B3e85WGV/XX5pe/ki30Xti3cA/nL3+I7dBcOVt2af+23bJFbm3/ap7qlzu2Jw3qpK2+Y0vGog0KjgpTSN3ayk/LVKZv1n7x/nxlrU9WaEKMJGnX7OWybu+snvRFGxSaFFt1g6pGQtoep6JtKSrakSoVFStr8myF9zmlTEz+ktXy+L79k790jYISDpzT2Nx8SZIJDJQJCpRs+XZ8qAjviZx10oDOmv9/3uP41sUbFBoZpqgKtv/qWUtKft+2dKNqJ3Ac+StOHdBd0z77QZK0etEaRUSFK7au/zbMzTnwbYfgkOCS40jjlo20+Cfv/4HtG7croUE9xdSpfeQTB/4ma+1ka20ra21za+3jvvvGWWvH+X5PttYOsNa2sdaeZK39x19DcWJG7SRJpYuwF0v6VN7CZntJ7ST1k7eYmVhu2TRJ/a21HX3reMl3/72S5lpr21tr/3uI535R0n+ttV0kXSDprQpiKnwOY8wZ8s6GPdla207S06UXMsaESHpT0tmSekhKKL9ia+0vkr6WNNKX60ZJ+4wx7X0h10h69xD5H5Vi6sUpIzm95HZGaoZifCccFQkIDFD383tq+ewlkqSEZokKj47Q3ZMe0ehvnlL3f51+pFMG/rKExLpK2Zlacjs1eZcSEutWGDty1O2aOvdzjX78bgUHB5Xc37FLO02Z85ne++R1tWrd/IjnXB2EJsQoNzmj5HZuSoZCE2PKxIQlxCi31DEmNzlDYQkxlVq2vL0rt6nBwI4yAS6FN4xXbNsmCks6+PHqWBeSEKO8Uts2PzldIQllt2FIYqzydpaKSclQSGKswhrXVWF6ltq+eLNOmz5WbZ6/QQFhtaos9+rMb59O8e7TpdWKiVDhvtySolRuSkZJsQp/Ta2E2HL7eYZqlXtjXquC/bxWYtmYxPNPUcoXv5TcDm+eqJiTW6vb94+p6xejFdW+2REaQfUTmhCr3J1l9/Hy+29oQqzf/wO/43+DOopp01gZizb6PUfTS09X6oylhznzY0Ng3TgVp+4uuV28a4+C6h38tS76goHaP3fBgTtcLjX6v1fV/KdJyv1lkfKXrT3osjiA90TOiq4Xq8xS2z8zNUPRhyjCugID1Pn8Hlozm+PIX1EnIU67kw8cX3an7FGdg+znI58brs8Wf6xGLRrqi3e+kiRtWrVJPc44TZJ0XPvjVK9BPdVJjD/yiQPVSJUXaq21iyXVNcYkGWPaSdprrd0m6TRJE621bmvtLkmzJXUpt3iQpDd9U4o/1V9vIdBP3iuwLZG3YBpljCk/7fBgz9FP0v+stbm+cWSUW661pM3W2vW+JsKVraK/JekaY0yAvIVhv+Zmpa9Etzb7KOzzV8G3hu0hPnm/cswNWvf7Kq2f7+0L6QoIUOM2zfTCNU/o+aGP6ezbL1S9puVr9IDDKvh6fEW7+VNjXlDvk8/R2X0vVe3aUbplmPdr4iuWrdYp7QZoUM8L9e74j/TmBy8e6YyrBVNR24Hy27XCGFu5ZcvZOGm2clMyNGjKGHV69ErtXrBe1l2D+5JVou2DqeAgb62VCQxQVJum2vbeD/qp331y5xaoOV9DrpwKjyf2T2P+bP/GQVS4m1diY5b6m5igANUd0Emp38w7cF9ggIJqh2veGQ9o7aMT1P7NO/9xqseKig/b9i/FBITVUve379SS0R+oOCevTFzrYefKut3a9vnPhyXfY05ljjE+oV3bKuqCgdr93NsH7vR4tO1ft2pT7ysV0uY4BbdsfKQyPbbwnshRlTnulHbhmGu18ffV2jSfNk1/SSXfE0nSM8Of08WdLtPW9dvV6xzvBw8TX/1YEdERemPq6zr/mnO1fsWGkh7NOIpZz7H5c5Ry6mJin0m6UN5Zp5N891WmSeBdknbJO+vWJSn/Lz6vS9Ip1tq8Q8Qc7DmM/vys/u+8hfpc0kOSZkhaaK1NLx9Q+kp01za58Kh4m9ZnyCD1vMzbT2nz0o2KLTUjLTYhVpm7ytexvc4ZdpEi46L06k1vlNy3NzVdOXuzVZhXoMK8Aq37fZUaHt9EuzbztVk4a+h1l+qyoRdIkpYtXqHE+gcmyick1dOu1DS/ZdJ2eb+uVlhYpE8++lI33Xa1JCkne39JzMzpc/XYs6MUE1tbezMyj9wAqoHclAyFlfrqalhirPJS91YQc+AYE5YUq9xdmXIFB/7psuVZt0eLHp5QcnvA16OVtSn1EEsc2/JTMhRaatuGJMUpv9w2zEtJV2j9OP1xb0hirApS90rWKj85Q5m+mW4p3/ymFrefW1WpVzvHXdVPLX09ktOXbCq7TyfGKm9XZpn4goxsBUeHyQS4ZN0eX8yh929UrMBvP/ftw+Vj6scp84+YxLIx8X3bK2v5FhXu3ldyX35yunZ95+1Xu2/xRsljFRQXqaL07CM2luoiNyVDYfXL7uP55fbxP47t6aVjUr0xJjBA3d++U1v/72ftnLygzHKNL+qhpH4dNPviJ47gCKq34l17FJhwYIZaYL06Kk7zPzcPbtVU9cbcqZ03PShPpv9+68ner9zflyn8tM4qXL/1iOZcXfGeyFmnDhmgUy7z9pjdtnSjapfa/rUTYpV1kNfNgcMuUERclP530/NVkmd1d+5VZ2vw5YMlSWuXrlV80oHjS3xiHaXv8ithlPB4PJr1zSxdcvNFmvrJNOXm5OqZ4Qf6L0/49X2lbq+55+JARZy6mNgkea+WdqG8RVtJmiPpEmNMgDEmXlJPSb+XWy5aUoq11iNpiKQA3/3ZkirTkHOavI2AJUmlWg5U5jmmSbrWGBPmW7b89yjWSGpqjPnj+8yXHSSHMrlaa/PlbUz8uqT/VWIMR4UZH0zRw4NH6uHBI7V42u/q/q9ekqRmHVoqNztX+3Zn+i3T45K+Oqlne71x+wtlPt1cPG2+WnY5Xq4Al4JDgtW0fUulbNhRRSMBDu79tyeVXPxr6nczdMGl3tmCHTq3VXZWTklRtrTSfWsHntlHa1d7r4IaX/fAiWO7jifJ5XLV+CKt5C1YRTZNUHjDeLmCAtT43G7aMW1RmZgd0xap2YXer0jFdWyuwqxc5adlVmrZ8gJCgxUQ6v16fkLPk2SLPcpan3xkBlcN7Fu8UeHNEhTaKF4mKEBJ552iXVPLtkpPm7pI9S/qIUmq3amFirNzVZCWqYLd+5SfnK7w5t7ZPnV6nKTsdRy7D2bte9P17YBR+nbAKG2bulDNfft0nY7NVZSVq7y0TL9lUn9ZpcZndpUkNb+oh7b/yf6Niu1bvFFhpfbzhPO6K81vP1+opIt6SpKiO7VQkW8//0Pi+acq5YuyszfTvl+g2NNOlCSFNUuUCQqkSOuzd8kmRTRNUFhD7zZveG43JZfb5slTF6mx79gS27GFirLzlO/b5p2fv0FZ63dq/Rvfl1mmXu+2an3b2frp6ufkziuskrFUR/nL1yqocZIC69eTggIVNfh07Z85r0xMYGK8kl56UKn3PKOiLTtL7g+IiZYrMlySZGoFK+yUDircvL1K869OeE/krJ8/mKZnB9+rZwffqxXTFqjLv7zH8cYdWigvO1dZFWz/ky/preN6ttMHt790yBm3OOCr977RTQNv0U0Db9HPU37RgAv7S5KO79ha+7P3K6OCD4KSmhy4OPAp/bpp2wbvcSQ8KlyBQd75goMvP0PLfltepp8tAIdm1PqukhYpaae19o+PCL+QdIqkpfLOTL3bWptqjGlSatHXJH1ujLlI0kxJf0xRWyap2BizVN4er4tVsTskvWqMWSbv2OdIurlcTIXPYa2d4ivsLjDGFEqaLOn+UmPKN8bcKOk7Y8weST9JOqmCHCbJ21rhDkkX+vrUTpC3R++0g+R9VFs2c5Ha9u6oJ2e/osK8Ar0z8rWSx+783/16957XlZm2V0Mfv1HpO3dr1BePS5IWTvlN37z0mVI27tSK2Yv16JTn5PFYzf34R+1cxwnhPzHyoSc1f/EyZWZmqe95V+rf1w3RBWcPdDqtam3GD3PVu39PzV04WXl5+Rpx2wMlj7378Wu6Z9hD2pW6Wy++8aTi6sTKGGnl8rW6f/ijkqTB5wzQkGsvVnGxW/n5+brt+pFODeWoYt0eLRj1nvp8dLdMgEsbJ83WvnU71XKId3bE+g9mKPnHJarft53O+cX7xvzXu8YfcllJajCos7o8NlS14iLV64MR2rtyq2Ze/rRC4qLUZ+I9sh6PclP36pfbX3ds7EcD6/ZoxX3vquuk+2QCXNoxcZZy1u5Qo6H9JEnb3p+utOmLFd+3vXr99oLceQVaNuzA7J+V97+r9q/dJldwoHK37tJS32P1zuisE5+4WsFxUeoy4W5lrdii3y990pExHo12/rhE9fu00/k/P6fivEL98p/xJY/1eX+Efh35lvJ2ZWrR45PU87Xb1P7ui5SxcovWT5wlSQqJj9aZ349RUESo5PHo+BsG6ete96goJ089Xr1V9U45XiGxEbpgwUta+uzn2jBptkMjPTpYt0er7vufOk+637efz1TO2h1q6NvPt78/XbunL1advu3V87cX5c4r0PJh40qWd4UGK65nG60c8WaZ9e6YOFNtXrhZp85+Rp7CYi2/4zXBy7o9Wnz/u+o58R6ZAJc2T5qtrHU71Wyod+bhpvd/VOqPS5TYt73O+PV5ufMKNf8u7/EjrmsrNbmohzJXbVP/H7yzZpeP/VipM5aq4+NXyRUcpNMn3SfJe0GxRfe848wgj2Zuj3Y/9poavPW45HIp6/+mqXDDVkVf4p0Rt+/jyYr79xUKqB2puqN9c1jcbm276A4FxMcqYexwmYAAyWWUPWWO9s8qP3cGFeE9kbNWzVys43u316jZL6owr0CTRh44jt/wv3v08T3jlZW2Vxc9fr327tyjYV+MkSQtm/K7pr30f06lXe38NuN3ndynqz746V3l5xfomf88W/LYE+8/pudGPq+MtL26578jFRYZJiOjjas36cX7vJcXatyike558W553B5tXb9Vz45gVjNQnuFTJOcZY0ZIirbWPvhnsUdL64Oa5I0FT/95EA6r5q34+nRVGxvSzukUapzaNbk3rkPSAwP+PAiHVd3iYqdTqHGyXeznVa1d7YN/7RdHxpN5EU6nUONEO9Y1seZaVlxx6wwcOT/umFaZlpw1Tt70ccdkHSq0381H5d+bo63DjDFfSGouqY/TuQAAAAAAAAAlPEfvhbeORRRqHWatPd/pHAAAAAAAAAA4y6mLiQEAAAAAAAAAfCjUAgAAAAAAAIDDaH0AAAAAAAAAwJ+lR21VYkYtAAAAAAAAADiMQi0AAAAAAAAAOIxCLQAAAAAAAAA4jB61AAAAAAAAAPx56FFblZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNHLQAAAAAAAAB/9KitUsyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACHcTExAAAAAAAAAP4sFxOrSsyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh9GjFgAAAAAAAIA/Dz1qqxIzagEAAAAAAADAYRRqAQAAAAAAAMBhFGoBAAAAAAAAwGH0qAUAAAAAAADgz9KjtioxoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGj1oAAAAAAAAA/jz0qK1KzKgFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACHUagFAAAAAAAAAIdxMTEAAAAAAAAA/iwXE6tKzKgFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACH0aMWAAAAAAAAgD8PPWqrEjNqAQAAAAAAAMBhFGoBAAAAAAAAwGG0PqhmXn2khdMp1DjNW53rdAo1zsZ1XzmdQo2zsO0Ip1OocSLCC51OocbZXFTb6RRqnAjDnICq1qfjDqdTqHE6z8t0OoUa55fjY51OocZZu76O0ynUODfHBDidAgAHUKgFAAAAAAAA4I8etVWKaQ4AAAAAAAAA4DAKtQAAAAAAAADgMAq1AAAAAAAAAOAwetQCAAAAAAAA8Get0xnUKMyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACHcTExAAAAAAAAAP48HqczqFGYUQsAAAAAAAAADqNQCwAAAAAAAAAOo1ALAAAAAAAAAA6jRy0AAAAAAAAAf/SorVLMqAUAAAAAAAAAh1GoBQAAAAAAAACHUagFAAAAAAAAAIfRoxYAAAAAAACAP0uP2qrEjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYPWoBAAAAAAAA+PPQo7YqMaMWAAAAAAAAABxGoRYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABzGxcQAAAAAAAAA+LPW6QxqFGbUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAw+hRCwAAAAAAAMCfx+N0BjUKM2oBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBh9KgFAAAAAAAA4I8etVWKGbUAAAAAAAAA4DAKtQAAAAAAAADgMAq1AAAAAAAAAOAwetQCAAAAAAAA8GfpUVuVmFELAAAAAAAAAA6rMTNqjTE3S8q11r5vjLla0jRrbfJBYh+VNMdaO/1I5lHu/iaSvrXWnnS4n/NI+3njLj39wzJ5rNX57Rrr2u7H+cXM37pbz/ywXMUej2JCg/X2kJ7akp6tu7+YXxKzM3O/bul5vK7s2qIq06+2Hhl7r3r376G8vHwNv/UBrVi22i/muVce08mndlJ2Vo4kafitD2jVirXqdmpnvTXhJW3fulOSNOXbH/XiM+OqNP9jzQNPPK85P/+u2Jja+vJDtuXhEN2rg5qMuVbG5VLaxOlKfuWLMo+HtKiv5s/fpvA2zbT9qY+UMu6rsitwudRmytMqTMnQ2queqMLMjw0RPTsqcfSNksulvZ9M055xn5V5PPrcXoq/6QJJkmd/vpIffE35azY7kWq11OORIWrcp72K8wr043/Ga/eKLX4xkQ3jNfDVWxVSO0K7V2zRD8Nel6fILUmq3+14nfbwlXIFBih/b7a+uOhxSVKfZ29Qk77tlZeepYn97qvKIR3V6vVuq7ZjhsoEuLRlwkyte+Ubv5i2jw1VQt/2cucVauGwccpcvkWuWkHq+eVouYID5QoM0M5vf9PqZz4vWabZdQPU/JoBsm6PUqcv1ooxE6tyWNVGUKeuCr/xdsnlUv6075T/6UdlH+92qsKuvM47Y8ft1v7xr6h41XJJkgmPUPgdIxXYuKmspP0vPKXiNSsdGEX189DYe9Sr32nKz8vXiNse1Mpla/xinnnlUZ3cvbOys7IlSSNuG63VK9aWPN62w4n6v6kf6Pbr7tb33xz2t0bHlFond1HUsNskV4Byv/1O+z8sezyoddqpirz+GslaWbdbWS+9oqJlKyRJ0ffdrVrdu8mzN1N7hl7rRPrVUmzv9mrx2DUyAS6lTPhR217+sszjYS2SdNyLtyqyTVNtHjtR218/cOw/7oVbFNe/k4r27NP804dXcebVV9hpnVRv1M2Sy6V9n01Rxpuflnk88qzeirvhIkmSJzdPux5+RQVrN8sEB6nhh8/IBAfJBAQoe9pPSn/5QyeGABz1akyh1lpbunJytaQVkvwKtcaYAGvt6CrKo9pze6zGTl2qcZedqnpRobrifzN1estENY+PKonJyi/U2ClL9eql3ZUYHaaM/QWSpCZxkfrk+j4l6xnw8vfqc1ySI+Oobnr366EmzRurZ+cz1aFzWz3+3AM6t/8VFcY+8dDzmvz1D373z/91ka657LYjnWqNcd7g/rr8gnN0/5hnnU7l2OByqekTN2j1pY+oMCVdJ01+Wnunzlfe+h0lIcV7c7TlwbcVO6hrhatIuP5M5a3foYCIsKrK+tjhcinpkVu0eegDKk5NV7Mv/6vs6b+pYMP2kpDC7anadOm98mTtV8TpnZT0xG3a9C/e6FRG497tVLtpgj7sMVz1OjTX6U9crc/Oedgvrvt9l2rpW1O0/ut56vXENTrh0l5a8cGPCo4K0+mPX62vhzytnOR0hcYdeM1d8+kcLX/3B/V74aYqHNFRzmXUbuw1+uniscpLSVfvKY8pZdoiZa/bWRJSr297RTRL0LRT/qOYji3U/qlrNWvwaHkKijT3gsfkzi2QCQzQ6V8/pNQfl2rvog2qc+oJShrYWT/2uVeewmLVqhN1iCRqMJdL4bfcqawHhsuzZ7ei//uGiub9LPf2rSUhRUsWad+8nyVJAU2aKfLeh5V581BJUtiNt6to4e/KGfuQFBgoUyvEkWFUN736naYmzRqpd5ez1b5zGz327AM6f8CVFcaOfej5CouwLpdL9zx0p+bM+OVIp1v9uVyK+s8wZdw1Uu603arz1jgV/PSLircc2M8LFy7Unp+8+3lg82aKefQh7b7iKklS3uQp2v/5F6r9AB+wVZrLpZZPXqelF49RQXKGOk0dqz1TFyh33YFzxaLMHG0Y9Y7qnOF/rpg6aZZ2vj1Fx7/C+6FKc7lUb/St2nHt/SratUeNP31ROTN+U+HGbSUhRTtTtW3I3fJk5Si8R2fVe/QObbvkLtnCIm2/+l7Z3HwpMECNJjyr/XMWKH+p/wdIQE13TLY+MMYMNcYsM8YsNcZ84LvvYWPMCGPMhZI6S5pgjFlijAk1xmwxxow2xvwk6SJjzLu+OBljuhhjfvGt63djTGS554owxvxojFlkjFlujDm3Mnn4fu/ke+xXSbdWzdY5vFYkZ6hhTLgaxIQrKMClgSc00Kz1KWVivl+5Q32OS1JitLdYEhtey289v21JU4OYcCVFU1CpjAGDe+vzSV9LkhYvWKaoqEjVrVfH4axqts7t2yg6KvLPA1EpER1aKH9Ligq27ZItKlb6Vz8pZmDZk+zi9H3av3SDbLHbb/ngxDjF9O2ktI+Y/fN3hLZrpYKtKSra7t3++76do8j+3crE5C1aI0/WfklS7uI1CkrgGFRZTQd00prPf5Ik7Vq8UbWiwhVWt7ZfXINTT9CG736XJK35bK6aDewkSWp1XndtnDJfOcnpkqS89KySZZJ/W6v8zJwjPILqJbZDC+3fvEu529Jki9za8eWvSvRtyz8kDeykbZ/MlSTtXbRBQVFhCvH9Tdy53g+YXUEBcgUGSNZKkppd1U9rX/5ansJiSVLBnizBX2Cr4+VO3ilPaopUXKyCOTMU1O20skH5eSW/mpBQ2T9+Dw1T0EntVDDtO+8dxcWy+9m/K6P/Gb31fx97Zw8uWbBcUdGRiv+L54pX3XCZpnwzXel7Mo5EiseUoONby70jWe5k736eN32Gap12apkYm5df8rsJCSk5lkhS4dJlslkcQ/6KqI4tlLc5Vflb02SLipX25c+qM6hzmZiiPVnKXrJRtqjYb/l981armNfLvySkbSsVbUtW0Y5UqahY2ZNnK6Jv2fPD/MWr5fF9mzNv6RoFljo/tLne/wMmMFAmMLDM/wEABxxzhVpjzImSRknqY61tJ2lY6cettZ9JWiDpCmtte2vtH2eG+dba06y1k0qtK1jSx5KG+dbVT1KeysqXdL61tqOk3pKeM16HzMPnf5LusNae8g+H7Zi07HwlRIWW3K4XGaq07PwyMVszcpSVX6jrPpyry96ZqW+Wbyu/Gk1dtUNnnNDgiOd7rEhIrKuUnaklt1OTdykhsW6FsSNH3a6pcz/X6MfvVnBwUMn9Hbu005Q5n+m9T15Xq9bNj3jOwF8RnBCnQl8RSpIKU9IVnBhb6eUbP3Kttj32vuThBPDvCEqIU1HK7pLbxSl7FFQv7qDxMRcPUPbsBVWR2jEhIiGmpMgqSTkpGYpIiCkTExIToYKsXFm3pyQm3BdTu2mCakWH6/xPRuni78bouAvKFb1QRkhijPJKbe+8lAyFljueeGMyysSEJPr+Ji6jPtOf0JkrxmnXnOXau3ijJCmiWYLqdDtOvSY/qh5fPKiY9s2O/GCqIVdcHXn2pJXc9uzZrYA4/4Jh8Ck9VHvc+4p8+Entf+Ep77KJSbL7MhV+172Kfukthd8xUmJGbaXUS6yrlJ27Sm6nHOJcccQDt+v7OZ/qgcdGlJwr1kusq4Fn9tGE/31a4TIoKyC+jtxppfbz3bsVEO+/n9fqeZriJ7yn2GfGKnPs01WZ4jGnVkKsCkod2wuSM1Qr4eDnKvjnAuvVKXt+mLpHgYc4P4y+cKD2zyl1fuhyqfEXr6jFzxO1/5fFyl+29qDL4uhiPfaY/DlaHXOFWkl9JH1mrd0jSdbayn4E/HEF9x0nKcVaO9+3rixrbfmP44ykJ4wxyyRNl1RfUr0/y8MYEy2ptrV2tu+uDw6WmDHmRmPMAmPMgrdnLankcKpGRbu2KXfb7bFanZqpVy4+Ra9d2l3jf1qjrenZJY8XuT2avT5V/VvXP6K5HlNM+a1c8QeST415Qb1PPkdn971UtWtH6ZZh10mSVixbrVPaDdCgnhfq3fEf6c0PXjzSGQN/jf8uXvEBpwK1+3n7je1fvumwplTjHWTWQ3i3Noq5eIB2PfVu1eZTnVV4DLd/GvPH/wFXoEt12zTVN1c9q6+vfEpdhp2n2k0TjkCixwZT4ba0lYjx/euxmtHvfn3f4TbFdmiuqNbeD5ZNYICCosM1a/BorXj0I3Udf8dhzvwYUdH+XkFY4a9zlXnzUGWPGaXQIb4ena4ABbRoqYLJX2nfHdfL5ucr9KLLj2y+x4iKd3v/Lf/0mJfU9+RzdW6/y1U7Jlo33eHd9qMfH6knH31BHg9X+q6UShxnJKlgzk/afcVV2nvfg4q8gV60/0iFh+2jt/ByzDrIJg89ua2iLxig3c+9c+BOj0dbz79NG3sNUWjbVgpu2bhqcgSqmWOxR61Rpd/Ol7H/b67rCknxkjpZa4uMMVskhVRi2Urnaa0dL2m8JOW9d+9R9epTLzJEqVkHJhnvys5TfGSIX0zt0HoKDQ5UaHCgOjWqo7VpWWoc5/2a+E8bU9U6obbiIpghcShDr7tUlw31Xrhn2eIVSqx/4E15QlI97UpN81smbdceSVJhYZE++ehL3XTb1ZKknOwDu/vM6XP12LOjFBNbW3szMo/cAIC/oDAlXcFJBz6hD06MU2Fq5T53i+zSWjEDuiimb0eZWkEKiAxT85eHaePtfCBRWUWp6QpKjC+5HZhYR0Vp/tu/Vusmqj/2Dm259iG5M7P9HscBba7qpxMu6y1JSlu6SRGl9u+IxFjt35VZJj4/I1u1osJkAlyybo8vZq8kKSdlr/Izlqk4r0DFeQVK/m2N4k5opMzNqYK/vOQMhZba3qGJscpL3VtBTGyZmPxyMUVZudr9y2rV691OWWt2KD85Q8mTvRdF3bt4o6zHKjguUoXp/F8ozbNnt1x1DszkdNWJlyd9z0Hji1cuU0BCfZmoaHnSd8uzZ7eK13ovmFr482wKtYcw5LpLdOmQf0mSli1eqcT69UoeS0yqp12pu/2W2V3qXPHTj77SDbd6e6a2aX+iXn7TO7M5JjZGvfr1ULHbrR8mzzzSw6iW3Gm7FVC31H4eHy/3nvSDxhcuXaaApCSZ6CjZfbQ8+DsKUjJUq9SxvVZSbKXPFfH3FO/aU/b8MKGOitP89/NarZooYcyd2nHjg/JUcH7oyd6v3N+XKbxHZxWu3+r3OFDTHYszan+UdLExJk6SjDEVfVc2W1JlmkmukZRkjOniW1ekMaZ8cTtaUpqvSNtb0h8fCx0yD2ttpqR9xpg/vq9Y8ZWgjnInJsVo294c7czcryK3R1NX7dDpLRPLxPRqlajF29NV7PEor6hYy3dmqFncgc0/ZeUODaLtwZ96/+1JOuP0i3TG6Rdp6nczdMGl50iSOnRuq+ysnJKibGml+9YOPLOP1q7eIEmKr3vgpKZdx5Pkcrko0uKokrNkg0KaJqpWw7oyQYGKO/c07Z02v1LLbh87QYs736DFJ9+sDbc8r6yfllOk/Yvylq1TrSZJCmpQTyYoUNFn9VT29N/KxAQlxavRa/dr+/DnVLjZ79qcKGf5e9P18aBR+njQKG2aulCtfe0K6nVorsLsXOWmZfots/OXVWpxprc3c+sLe2jTtEWSpM3TFiqx63EyAS4FhgSrXofm2ruBv8HB7F2yURHNEhTWKF4mKEANzjtFKdMWlolJmbZQjS7uIUmK6dhCRdl5yk/LVHBcpIKivP3zXSFBqtvjJGX7tnXylAWKP+1ESd42CK6gQIq0FShet0YB9RvIVS9BCgxUrZ59VPTbz2ViXIkHvlUV0LylTGCgbNY+2b0Z8uzeLVf9hpKkoHYd5d62pSrTr1Y+ePtjndnrEp3Z6xJNmzxT/7rkbElS+85tlJ2VU1KULa1039oBg3tr3RrvuWLPjoPVo4P35/tvftDokY9TpD2EojVrFNCwvgISvft5aL8+Kvi57EXYAuofuGhyYKuWMkGBFGn/gezFGxTaLFEhjbzninXPO1V7ptKG6UjKX75OQY2TFFS/nhQUqMjBpytnxrwyMYGJ8Up6+UGl3POMirYcuGhnQEy0XJHhkiRTK1hhp3RQ4abtAuDvmJtRa61daYx5XNJsY4xb0mJJV5cLe1fSOGNMnqSD9oe11hYaYy6R9LIxJlTe/rT9JJXuOj5B0jfGmAWSlshb3K1sHtdIescYkytp6l8frfMCXS7dO6Cdbpn0szwe6dx2jdUiPkqfLtosSbqoY1M1qxOl7s3r6uI3Z8gY6fz2TdSirvfKyHlFxZq3JU0PnNHByWFUOzN+mKve/Xtq7sLJysvL14jbHih57N2PX9M9wx7SrtTdevGNJxVXJ1bGSCuXr9X9wx+VJA0+Z4CGXHuxiovdys/P123Xj3RqKMeMkQ89qfmLlykzM0t9z7tS/75uiC44e6DTaVVfbo+2jHpLrT8aLRPgUtqkH5W3brvqDhkgSUr7YJqC4mvrpO+fUUBkqOSxSrj+LC3rdYfcOeVbieMvc3uU/PA4NXnvURmXS3s//UEF67cp5vIzJEl7P/pe8bdfqsCYKCU9+m/fMm5tPPcuB5OuPrbOWKLGfdppyE/PqTivUD8OH1/y2FnvjdDMu9/S/l2Z+mXsJA189TadPPIi7VmxRasmzZIk7d2QrG2zlumyaWNlrUerJs5SxlrvVa4HvHKr6nc7XiGxEbr695f023Ofa/XHsytKo8awbo+W3P+uTp14r0yAS1snzlL22p1qOrSvJGnz+z8qdfoS1evbXgPm/VfuvAItvPMNSVJI3drq/NItMgEuyWW08+t5Sv1hsSRpy8RZ6vTfm9R31lOyhcVaeMfrjo3xqOZxa//rLyhqzLOSy6WCHybLvW2Lap3h/cC54PuvFXxqT9XqM1ByF8sWFCr7qUdKFt//xouKHPmAFBgkT2qycl540qmRVCszf5ir3v1P06wF3yovL1933z665LF3Jr2ie+98RGmpu/XCG2MVGxcjY4xWr1irUcPHOJh1Neb2KOv5lxT7/NOSy6W8775X8eYtCjvXWyzP/eobhfTqqdBBA70XxSso0N6HHi1ZvPbDDyi4fXu5aker7v99ouy331Xed5OdGk21YN0erb/vbbWdNEomwKWUiTOVu3aHkob2lyQlv/+DguNrq9O0J0vOFRvceKZ+73GX3Dl5On7cMNXufqKCYiN1yuJx2vzMJ0r9aIbDozrKuT1KG/O6Grz9mOQK0L7Pp6lwwzZFXzJYkrTv48mK+/flCqgdqXqjfddKd7u19cJhCoyPUcKTI7yvp8Yoe8pc7Z/1u4ODwV9CG5wqZSrqVYSj19HW+qAmOO6u75xOocbZuO4rp1OocRa2HeF0CjVOREih0ynUOLOKajudQo2TVMSJfVU7vdPOPw/CYdV5XqbTKdQ4vxxf+QuM4vBYu97/4mg4shJjcv48CIfVcWu+r+hKGTVe7rhhx2QdKuzmF4/Kv/ex2PoAAAAAAAAAAKoVCrUAAAAAAAAA4LBjrkctAAAAAAAAgMPA0sqqKjGjFgAAAAAAAAAcRqEWAAAAAAAAABxGoRYAAAAAAAAAHEaPWgAAAAAAAAD+PNbpDGoUZtQCAAAAAAAAgMMo1AIAAAAAAACAwyjUAgAAAAAAAIDDKNQCAAAAAAAAgMO4mBgAAAAAAAAAfx6P0xnUKMyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh9GjFgAAAAAAAIA/etRWKWbUAgAAAAAAAIDDKNQCAAAAAAAAgMMo1AIAAAAAAACAw+hRCwAAAAAAAMCftU5nUKMwoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGj1oAAAAAAAAA/jwepzOoUZhRCwAAAAAAAAClGGMGGWPWGmM2GGPuPUhML2PMEmPMSmPM7H/6nMyoBQAAAAAAAAAfY0yApFcl9Ze0Q9J8Y8zX1tpVpWJqS3pN0iBr7TZjTN1/+rzMqAUAAAAAAACAA7pK2mCt3WStLZQ0SdK55WIul/R/1tptkmStTfunT0qhFgAAAAAAAECNYYy50RizoNTPjeVC6kvaXur2Dt99pbWSFGOMmWWMWWiMGfpP86L1AQAAAAAAAAB/Hut0BkeEtXa8pPGHCDEVLVbudqCkTpL6SgqV9KsxZp61dt3fzYtCLQAAAAAAAAAcsENSw1K3G0hKriBmj7V2v6T9xpg5ktpJ+tuFWlofAAAAAAAAAMAB8yW1NMY0NcYES7pU0tflYr6S1MMYE2iMCZN0sqTV/+RJmVELAAAAAAAAAD7W2mJjzG2SpkoKkPSOtXalMeZm3+PjrLWrjTFTJC2T5JH0lrV2xT95Xgq1AAAAAAAAAPxZj9MZOMZaO1nS5HL3jSt3+xlJzxyu56T1AQAAAAAAAAA4jEItAAAAAAAAADiMQi0AAAAAAAAAOIwetQAAAAAAAAD8eazTGdQozKgFAAAAAAAAAIdRqAUAAAAAAAAAh1GoBQAAAAAAAACH0aO2mpl/z0anU6hxxoa0czqFGmdh2xFOp1DjdFr2rNMp1DhTThrldAo1Ts+QfU6nUOO4guhpVtVssdMZ1Dy3hbdxOoUaZ8YmpzOoecKNx+kUapyUrFinU6hxjnM6gaOU9fD/vyoxoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGoRYAAAAAAAAAHMbFxAAAAAAAAAD483Bx2KrEjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYPWoBAAAAAAAA+LMepzOoUZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNHLQAAAAAAAAB/Hut0BjUKM2oBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBh9KgFAAAAAAAA4M/jcTqDGoUZtQAAAAAAAADgMAq1AAAAAAAAAOAwCrUAAAAAAAAA4DAKtQAAAAAAAADgMC4mBgAAAAAAAMCfxzqdQY3CjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYPWoBAAAAAAAA+LMepzOoUZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNHLQAAAAAAAAB/Hut0BjUKM2oBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBh9KgFAAAAAAAA4Md6PE6nUKMwoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGoRYAAAAAAAAAHMbFxAAAAAAAAAD481inM6hRmFELAAAAAAAAAA6rtjNqjTFvSXreWruq3P1XS+psrb3tb643x1obcRhSrDFierdX8zHXyAS4lDrhR21/5csyj4e2SNJxL9yqiDZNteXJidrx+jclj7X67y2K7d9JRXv2aWGv4VWc+dEvsVdbdR4zRMbl0oaJs7TqlW/8YjqNGaL6fdqrOK9Av941XnuXbznkso3O6qo2w/+l6JZJmjL4IWUs2yxJcgUFqOvT1ymubVNZj0cLRn+otF9XV9lYj3bRvTqoyZhrZVwupU2cruRXvijzeEiL+mr+/G0Kb9NM25/6SCnjviq7ApdLbaY8rcKUDK296okqzPzY9cATz2vOz78rNqa2vvxwnNPpVFvxvdvppDFDZQJc2jZhpja88rVfzImPXaV6fdvLnVeoJcNe1z7fcabv/JdUnJMn6/bIuj2aO3BUyTJNrhuoptcMkHV7tGv6Yq0e81FVDalaiTi9o+qPvkEKcCnj4x+0+/XPyjxeq3kDNXhmmEJPbK7UZz/QnjcPHHvirjlbcZcOlIxRxqSp2vOO/98OhxbRs6MSR98ouVza+8k07RlXdvtHn9tL8TddIEny7M9X8oOvKX/NZidSrdaCOndV+M23ywS4lP/9d8r7pOzxIPiUUxU29DrJemTdbu0f94qKVy6XJJnwCEXcNVIBTZpKVsp5/ikVr17pxDCqhd6PDFHT3t7zwinDxyttxRa/mKiG8TrrlVsVUjtCaSu2aPKdr8tT5FZwZKgGv3iLIpPi5AoM0II3Jmvlp3MkSbWiwjTg6etVp1UDWWs1deSbSlm0oYpHd3Q4EufnbYb/Sy0u76X8jGxJ0tKxnyh5xlKFN6ijs2Y/raxNKZKk9IUb9Pu9/6uagR6l6vZuqza+85atE2ZqfQXbv81jQ0vOWxYNG1dy3iJJchn1mvq48lMzNG/Is5KkE0dfroT+HeUpKtb+Lbu0+M43VJSVW0UjOvol9mqrjr79duPEWVpdwTbvOGaokvq0kzuvUPPueqNknz/5+RuU1K+D8vdk6fs+9/ot1/rmweow+gp9ftJNKszIOdJDAaqFo6JQa4wxkoy11lPZZay11x/BlBxljAmw1rqdzqNSXC61GHudll88RgUpGeowZazSpy1Q7rodJSHFmTna8MA7qjOoq9/iuz6epeR3pui4l/9WXf2YZlxGXZ64SjMufVK5KRkaNPlR7Zi6UFnrk0tikvq0U1TTBH196nDFdWyurmOv1tSzHj7ksplrdmjO9S/q5KeuLfN8La7oLUn6ru99qhUXpd4TRmrKGaMly9cc5HKp6RM3aPWlj6gwJV0nTX5ae6fOV976Uvv53hxtefBtxVawn0tSwvVnKm/9DgVEhFVV1se88wb31+UXnKP7xzzrdCrVl8uozdhrNO/iJ5SXkq4eUx5X6rSFylm3sySkbt/2imiWoBmn3KXaHVuozVPX6afBD5Y8/usFj6nQ98byD3GnnqCEgZ00u8898hQWK7hOVJUNqVpxuVT/0Zu1+coHVZSarhZfP6+sH35TwYbtJSHFmdlKfni8ogZ0K7NorVaNFHfpQK0/d7hsUZGavveIsmbMV+GWlKoeRfXlcinpkVu0eegDKk5NV7Mv/6vs6WW3f+H2VG269F55svYr4vROSnriNm36Fx8s/yUulyJuvVP77hsuz57dqv3yGyqc97Pc27aWhBQuXqTCX3+WJAU0babIUQ8r8/qhkqTwW25X4YLfVfDYQ1JgoEytEEeGUR007d1OMU0S9E7P4Urs0Fz9Hr9aH537sF9cz/su1cK3pmjtN/PU74lr1OaSXlr64Y9qP7S/0tfv1JfXPq/Q2EhdM+sZrf7yZ3mK3Or98BBtmbVM39z8klxBAQoKrVX1AzwKHKnzc0la8+YUrR432e85c7bu0vf9R/ndXyO5jNqNvUY/XzxWeSnp6jXlMaVOW6TsUuct9XznLdNP+Y9iOrZQu6eu1ZzBo0seb37DGcpev1NBkaEl96XNXq5Vj0+SdXt0wgOXquUd52jVY5OqdGhHK+My6vTE1Zp56VjlpWRowOQx2jl1kbLWH9jmiX3aKbJpgr49dbjiOrZQ57HX6IezHpIkbfp4rtb97wd1e/Fmv3WHJcUqoWcb7d+xp8rGA1QHjrU+MMY0McasNsa8JmmRpIbGmJHGmPnGmGXGmEd8ceHGmO+MMUuNMSuMMZf47p9ljOns+/0aY8w6Y8xsSaeWeo53jTEXlrqd4/s3whjzozFmkTFmuTHm3D/J9WA5bDHG1PH93tkYM8v3e7wx5gff+t8wxmwtFfelMWahMWalMebG0rkZYx41xvwm6ZR/vIGrSGSHFsrbnKr8bWmyRcXa/eXPihvYuUxM0Z4s5SzZKFtc7Lf8vnmrVZTJJ2cVievQXNlbdiln2255itza+tU8NRzYqUxMg4GdtOmznyRJ6Ys2Kjg6XCF1ax9y2awNycre6P9GPrpVfaXO9c5QKUjPUtG+XMW1a3qER1k9RHRoofwtKSrYtku2qFjpX/2kmIFlC7LF6fu0f+kG2WL/z1iCE+MU07eT0j6aXlUp1wid27dRdFSk02lUazEdWmj/5lTlbkuTLXIr+ctflVDuGJ4wsJO2fzJXkpS5aIOCosJUq27tQ663yVX9teHlr+Up9B73C/dkHZH8q7uw9i1VuDVFhdu9x5bMb+YoasDJZWLc6fuUt2y9VO41NKRFQ+UuXiubXyC5Pdr/2wpFD6w2pw9HhdB2rVSwNUVFvu2/79s5iuxftiCet2iNPFn7JUm5i9coKKGOE6lWa4HHHS938k55UlOk4mIVzJqh4FNOKxuUn1fyqwkJlXyfEZuwMAW1aaeCKd957ygult3PeePBNB/QSas+954XpizeqFpR4Qqv4HjdqPsJWjf5d0nSys/mqkXJ+aVVcLi3eBUUHqL8zP3yFHsUHBGqBl2P0/JJsyRJniK3CmrobMMjdX6Oyonp0EI5m3eVnLfs+PJXJZTbhgkDO2mb77xlb7nzlpDEWCX0a6+tE2aWWWb37OWybu+csb0LNyg0Me7ID6aaiO3QXDlbdmm/b7/d9tU8Nahgn9/ymXebpy/aoODoMIX4tvnu39aocG/Fx+0ODw/RkscmyjIx6Ojnscfmz1HK6R61x0l631rbwfd7S0ldJbWX1MkY01PSIEnJ1tp21tqTJE0pvQJjTKKkR+Qt0PaXdEIlnjdf0vnW2o6Sekt6zjer92AOmUMFHpI0w7f+LyQ1KvXYtdbaTpI6S7rDGPPHq0C4pBXW2pOttT9VYgxHhVqJsSpITi+5XZCSoWBe2A6L0IQY5SZnlNzOTclQaGJMmZiwhBjlltr+uckZCkuIqdSy5e1duU0NBnaUCXApvGG8Yts2UVgSf0tJCk6IU2Gp7VyYkq7gxNhKL9/4kWu17bH3j+oXA9RMIYkxyiu1b+enpCuk3LEiJDFW+aVi8lIyFPLH/m+tuk26Tz2mPq5GV/YpiQlvlqDYbq112uQx6v7FaEW3b3ZkB1JNBdWLU1HygVkkRSnpCqpXueNu/tqtCu96ogJqR8qE1FJk784KSqSI+FcEJcSpKGV3ye3ilD2H3P4xFw9Q9uwFVZHaMcUVV0ee3Wkltz17dstVx39fDe7eQ7Xfel9RY55UzvNPeZdNSJJnX6Yiht+r2q++pYg7R0rMqD2oiIQYZaccOF5np2YoIqHsMT00JkL5WbklRamclAMxi9/9QbEtknTTgld01bSxmvnwB5K1im4Ur9yMbA187kYNmfyYBjx1vQJr6IzaI3l+3uqa/ho8/Ql1e/4GBUcf+AZWRKN4nTHtMfX7fJTiux53JIZVbYT6nbdkKLTcObk3JqNcjHc7txkzRCvGTDzkNwYbX9ZLu2YsObyJV2NhCbFl9+cK9vnQhFjtr2CfP5T6AzoqLzVDmau2Hd6EgWOA04Xardbaeb7fB/h+Fss7w7a1vIXb5ZL6GWOeMsb0sNbuK7eOkyXNstbuttYWSvq4Es9rJD1hjFkmabqk+pLqHSL+z3Io7zRJkyTJWjtF0t5Sj91hjFkqaZ6khr4xSpJb0ueVyP3oUlF5m0/EDosKPzsov2krjLGVW7acjZNme7+GNWWMOj16pXYvWC/rrh4dOI64Cvfzyi1au5+3B/P+5ZsOa0rAYfEPjjOS9NPZD2vOgPv12xVPqck1AxTbrbV3kcAABUWH66fBD2rVoxPUefyww5z4MeIQ2/bPFGzcobRxn6vZh2PU9L2Hlb96c0nhBf/AQbZ/eLc2irl4gHY99W7V5nMsqOQ5SeEvc5V5/VBlPTxKYVd52zOZgAAFtmip/G+/Uuat18vm5yvsksuPcMLVl6nghMVvploFf48/Qpqc3ka7V23VG51v0weDRqnvo0MVHBEqV2CA6p3UREs/+FEfDH5ARXkF6vrvs4/EEI56R+r8fP170/X1Kf/R5P6jlLcrUx0fukKSlJeWqS+63KnvBzygRQ9P0Kmv/VuBEaH+66kpKvO6eZB9vF7/DirYk6V9yw7eZ7zVsHPlKXZrx+c//9NMjx2Veb9f4Z/l4OczAaHBOuGOc7X8mc8OGgPUZE73qN1f6ncjaay19o3yQcaYTpIGSxprjJlmrX20XMjBjgLF8hWjfTNmg333XyEpXlIna22RMWaLpIN+PG+tXXeQHErWX275CmfnGmN6Seon6RRrba6vVcIfy+UfrC+tr0XCjZI0PLKjzgk7emYmFSRnqFapWZe1EmNVmJpxiCVQWbkpGQpLOvAJcVhirPJS91YQc2D7hyXFKndXplzBgX+6bHnW7dGihyeU3B7w9WhlbUr9p8M4JhSmpCu41HYOToyr9H4e2aW1YgZ0UUzfjjK1ghQQGabmLw/TxttfPFLpApWWn5yh0FL7dkhinPLLHSvyk9MVUiomNDG2JKZgl/ffwj1ZSv1+vmp3aK6MeWuUn5yhVN/XajMXb5T1WAXHRaowvWwv25quKHWPgpIOzCwMSoxTUVrlX0P3fvKD9n7ygyQpYeQQFZWaSYc/V5SarqDE+JLbgYl1Ktz+tVo3Uf2xd2jLtQ/Jnck+/Fd59uyWK75uyW1XnXh50g/ej7B4xTIFJNaXiYqWe89ueXbvVvFa78VNC36arbCLKdSW1n5oP7W5zHudgdRlmxRZ6pttkQmx2r8rs0x8Xka2QqLCZAJcsm6PIhJjtd93LD/potP1u++iv5lbd2nf9t2KbZ6orOR0ZadkKHXJRknSusm/q+stNbNQe6TOz/NLtQjaMGGmer3v7YXtKSxWYaH3a+MZy7coZ0uaopollFwMuKbJ8ztv8d/+3pjYMjH5qXtV/6yuShzQUQl928tVK0iBEaHq9Mq/tfC21yRJDS/uoYT+HfXzRY9XzWCqCb/9OTFWeamZZWLyUjIUnhSnP47sYUmxyit37CktonE9RTSK16DpY0vWOWjq45o2eLTyd//ZnDjg2Of0jNrSpkq61hgTIUnGmPrGmLrGmCRJudbaDyU9K6ljueV+k9TLGBNnjAmSdFGpx7ZI+qOByrmSgny/R0tK8xVpe0tqfKjEDpFD6fVfUGqRnyRd7Ft2gKQ/5v1HS9rrK9K2llS2EdpBWGvHW2s7W2s7H01FWknKXrJBoc0SFdKorkxQoOLPO1Xp0/ha4OGQvmSTIpsmKLxhvFxBAWp8bjftmLaoTMyOaYvU7EJvn7e4js1VmJWr/LTMSi1bXkBosAJ8X2NL6HmSbLGnzIURarKcJRsU0jRRtRp69/O4c0/T3mnzK7Xs9rETtLjzDVp88s3acMvzyvppOUVaHDUyl2xUeLMEhTaKlwkKUNJ5pyh12sIyManTFqnhxT0kSbU7tlBRdq4K0jIVEFZLAeHezxoDwmop/vS2yl7jvcBe6pQFqnPaiZK8bRBcQYEUaSuQu3S9gpskKahBPZmgQNU+u6eyfvi90ssHxEVLkoKS4hU1qLsyv559pFI9JuUtW6dapbZ/9Fk9lT39tzIxQUnxavTa/do+/DkVbuY18e8oXrtGAfUbyFUvQQoMVK1efVQ4r+xsNVdS/ZLfA1q0lAIDZbP2ye7NkGfPbgU0aChJCm7fUcXbtlRl+ke9Je9P1wdnjNIHZ4zShqkLdcIF3vPCxA7NVZCdq/1pmX7LbPt1lVoN9vbaP/HCHtrgO0fMSt6jRqd6j91hdaIU0zxR+7alKXf3PmWnZCimWaIkqdGpJyq91IWEapIjdX4eUqqXcMMzOitzrff1tFZspIzLOwcoolG8IpvWU862NNVUmUs2KqJZgsJ85y0NKjxvWahGvvOWmI4tVJydp4K0TK164mNN7Xi7pnUZpgU3v6w9P68sKdLW7d1WLW87W/OuelbuvMIqH9fRLKPcftvo3G7aUW6b75y2SE0u9G7zuI4tVJSVp/wKjj1/2Ldmu75o+299c/Kd+ubkO5WbkqEpA0dRpD2aWc+x+XOUcnpGbQlr7TRjzPGSfvV9LSRH0pWSWkh6xhjjkVQk6ZZyy6UYYx6W9KukFHnbJgT4Hn5T0lfGmN8l/agDM3gnSPrGGLNA0hJJa/4kvTYHyeERSW8bY+6Xt2CsUvdP9F10bLYvr2x5e9ve7Gu5sFbe9gfVm9ujDfe/rZMmjpIJcCl14kzlrt2hxKH9JUkp7/+goPja6jj1SQVEhkoeq/o3nKkFPe+SOydPrV8fpujuJyooNlInLxqnrc98otSJMxwe1NHBuj1aMOo99fnobpkAlzZOmq1963aq5RBvH8j1H8xQ8o9LVL9vO53zy3Ny5xXq17vGH3JZSWowqLO6PDZUteIi1euDEdq7cqtmXv60QuKi1GfiPbIej3JT9+qX2193bOxHHbdHW0a9pdYfjZYJcClt0o/KW7dddYcMkCSlfTBNQfG1ddL3z5Ts5wnXn6Vlve6QOyfvT1aOv2vkQ09q/uJlyszMUt/zrtS/rxuiC84e6HRa1Yp1e7Ti/nfVbeJ9MgEubZ84Szlrd6jx0H6SpK3vT1fa9MWq27e9+sx7Qe68Ai250/vFl1p1otX5f/+RJLkCA7Tz/37W7plLJUnbJs5U+//erNNnPS1bWKzFd3A8qZDbo+TR49Ts/UekAJf2fjJdBeu3KfaKQZKkjAlTFBhfWy2+/q8CIsIk61Gda8/Ruv7/licnT01ev08BMZGyxW4lP/i63Fn7/+QJUYbbo+SHx6nJe4/KuFza++kPKli/TTGXnyFJ2vvR94q//VIFxkQp6dF/+5Zxa+O5dzmYdDXkcSvn1RcU/cSzksul/GmT5d66RSFnniNJyv/ua9U6radq9RvovVhYQaGyn3ikZPGcV19UxD0PyAQGyZ2arJznnnRqJEe9zTOWqFnvdrpu7nMqyivU1BHjSx47/90RmnbPW9q/K1Nzx07Sma/cplNHXqS0lVu04uNZkqR5L32pQc/dpKHTxsoYae7Yj5XnuwjQjNHvafBLtyggKFD7tqVpSql11yRH6vy84wOXKubExrLWav+OPfrt7nckSXW7tVbbkRfIFrtlPVa/3/s/FWbW3GO9dXu07P531X3ivTIBLm2dOEvZa3eqydC+kqQt7/+oXdOXqF7f9uo/778qzivQ4jv9vrDrp+0TV8sVHKRTP75PkpSxcIOW3vPOER1LdeHdb99Vr4/ukQlwadOk2cpat1Mthni3+YYPflTyj0uU2Le9zvrlebnzCvXbXQe2effXblXdU45XrdhInbvgZS1/7jNtmsgHy8ChGK6wd/gZY2pJcltri40xp0h63Vrb/nCse07CRfzBqth2V828WIKTmqtmXknYSZ2WPet0CjXOlJNGOZ1CjdM4hKvFVzWXi9OWqpbQktnrVe291Q2dTqHGSSh2OoOaJ9xz9M4+O1bluQ51vXMcCZclT2CjVyBnxLnH5AldxLNfHZV/76NmRu0xppGkT4wxLkmFkm5wOB8AAAAAAAAARzEKtUeAtXa9pA5O5wEAAAAAAAD8bZ5jckLtUetoupgYAAAAAAAAANRIFGoBAAAAAAAAwGEUagEAAAAAAADAYRRqAQAAAAAAAMBhXEwMAAAAAAAAgB/LxcSqFDNqAQAAAAAAAMBhFGoBAAAAAAAAwGEUagEAAAAAAADAYfSoBQAAAAAAAOCPHrVVihm1AAAAAAAAAOAwCrUAAAAAAAAA4DAKtQAAAAAAAADgMHrUAgAAAAAAAPDn8TidQY3CjFoAAAAAAAAAcBiFWgAAAAAAAABwGIVaAAAAAAAAAHAYPWoBAAAAAAAA+PNYpzOoUZhRCwAAAAAAAAAOo1ALAAAAAAAAAA6jUAsAAAAAAAAADqNQCwAAAAAAAAAO42JiAAAAAAAAAPxxMbEqxYxaAAAAAAAAAHAYhVoAAAAAAAAAcBiFWgAAAAAAAABwGD1qAQAAAAAAAPixlh61VYkZtQAAAAAAAADgMAq1AAAAAAAAAOAwCrUAAAAAAAAA4DB61AIAAAAAAADw56FHbVViRi0AAAAAAAAAOIxCLQAAAAAAAAA4jEItAAAAAAAAADiMHrUAAAAAAAAA/NGjtkoxoxYAAAAAAAAAHEahFgAAAAAAAAAcRqEWAAAAAAAAABxGoRYAAAAAAAAAHMbFxAAAAAAAAAD4sVxMrEpRqK1miiyToKtabbfb6RRqnIjwQqdTqHGmnDTK6RRqnEErHnc6hRrnk7ajnU6hxonweJxOoeZZ73QCNc8KV57TKdQ4V3fa43QKNc5DyxOcTqHGqWcp1wA1EVU/AAAAAAAAAHAYhVoAAAAAAAAAcBhz6QEAAAAAAAD4o0dtlWJGLQAAAAAAAAA4jEItAAAAAAAAADiMQi0AAAAAAAAAOIwetQAAAAAAAAD8eZxOoGZhRi0AAAAAAAAAOIxCLQAAAAAAAAA4jEItAAAAAAAAADiMHrUAAAAAAAAA/FiPdTqFGoUZtQAAAAAAAADgMAq1AAAAAAAAAOAwCrUAAAAAAAAA4DAKtQAAAAAAAADgMC4mBgAAAAAAAMAfFxOrUsyoBQAAAAAAAACHUagFAAAAAAAAAIdRqAUAAAAAAAAAh9GjFgAAAAAAAIA/j9MJ1CzMqAUAAAAAAAAAh1GoBQAAAAAAAIBSjDGDjDFrjTEbjDH3HiKuizHGbYy58J8+J4VaAAAAAAAAAPAxxgRIelXSGZJOkHSZMeaEg8Q9JWnq4XheetQCAAAAAAAA8GM91ukUnNJV0gZr7SZJMsZMknSupFXl4m6X9LmkLofjSZlRCwAAAAAAAKDGMMbcaIxZUOrnxnIh9SVtL3V7h+++0uuoL+l8SeMOV17MqAUAAAAAAABQY1hrx0saf4gQU9Fi5W6/IOkea63bmIrC/zoKtQAAAAAAAABwwA5JDUvdbiApuVxMZ0mTfEXaOpIGG2OKrbVf/t0npVALAAAAAAAAwJ/H6QQcM19SS2NMU0k7JV0q6fLSAdbapn/8box5V9K3/6RIK1GoBQAAAAAAAIAS1tpiY8xtkqZKCpD0jrV2pTHmZt/jh60vbWkUagEAAAAAAACgFGvtZEmTy91XYYHWWnv14XhO1+FYCQAAAAAAAADg76NQCwAAAAAAAAAOo/UBAAAAAAAAAD/WY51OoUZhRi0AAAAAAAAAOIxCLQAAAAAAAAA4jEItAAAAAAAAADiMHrUAAAAAAAAA/HmcTqBmYUYtAAAAAAAAADiMQi0AAAAAAAAAOIxCLQAAAAAAAAA4rEb2qDXGvCvpW2vtZ+Xub+K7/6S/sK4kSS9Zay+s4LFZkkZYaxf8o4SPQrG926nVY1fLBLiUPGGGtr78lV9Mq8evVlzfDnLnFWj1Ha8re/lmSVLDG85Q0pV9JUnJE2Zo+/jJZZZrdMtZavnwEM05/noVZWQf+cFUE/G92+mEx4bKBLi0fcJMbXz5a7+YEx6/SnX7tpc7r1BL73hdWcu3SJICo8LU9vkbFdm6gWSlpXe9ocwF65Vw9slqNeJCRbRK0s+DHtS+pZuqeFTVU0TPjkocfaPkcmnvJ9O0Z1yZQ4miz+2l+JsukCR59ucr+cHXlL9msxOpVjvxvdvppDHe/XzbhJna8Ir/fn7iY1epnm8/XzLsde3z7ed957+k4pw8WbdH1u3R3IGjSpZpct1ANb1mgKzbo13TF2v1mI+qakjHlAeeeF5zfv5dsTG19eWH45xOp1pJ7NVWnccMkXG5tGHiLK165Ru/mE5jhqh+n/YqzivQr3eN117fvn2wZdsM/5daXN5L+b7XyqVjP1HyjKWSpNrHN1TXp65VUGSo5LH6fvBoeQqKqmawR6G6vduqzZihku/Ysr6C7d/msaElr6GLh40rObZIklxGp099XPmpGfptyLOSpM5v3K6I5omSpKDocBXt269Z/e6viuFUa7yGVp3LH7pWbXt3VGFeod4e8bK2rvTfjje+MExN2jSXu9itzUvX673735C72K1BN56rU87rIUlyBQQoqUV93dHxWu3fl1PVw6g2gjp2VfgNt0sul/J/+E75n5U91wg6+VT9P3v3HR5F1fZx/Hc2hXRSCCn0KqJAKCIgvcNjfWxYKGKvWLAhKoqAvRfELirYFX1o0kUE6b1DaClAQkhCenbeP3YJSTYUXyVDyPdzXVwms/fs3nMynjl779kzATfcLFlOqbBQRz58WwUb1spRo5aCH3m6KM4RHavsLz9WzpTvSr8EynDV00N0XreWysvO1cTh72lvGef54NfvVe1m9VVYUKhdq7dp0ogP5CwoVJvLOqrXHZdKknKzcvT1yI+0b+Ou8j6ECqfPqEFq2K2F8rPzNGX4+0paF+8R02ZwL104tK/C60br5bjblX3I1Xc07tVaXR+6SpbTkrOwUDOfmag9y7aU8xHg77JYo7ZcVcpC7b/FGONtWVaCJI8i7VnNYXTO80O18poxyk1I0QUzxungjGU6smVfUUhEjzj514vWn+2GKaR1I53z4s1a1m+kApvUUuyNPbS07whZeQWKmzxCB39boeydSZKkKrERCu/SXNl7Dth1dGcmh9F5z9+kJdeMVU5CijrOGKPkGcuVWazNI3vEKbBetOa1e0ChrRvq/Bdv1qJ+T0pyFbYOzF2tFbe8LuPjJS//KpKkzE17tHzoq2r20i22HFaF5HAo9pk7tXPQSBUkpaj+T68pY9YS5W7bUxSStydJOwY8Jmf6EQV1aa3Ysfdox38fsjHpCsJh1GzcTVp8zVhlJ6ao0/QxSppZ8jyv3iNOQfWjNaf9Awpt1VDNXrhZC/s/WfT4n1c+p7xSH/BEXNRU0X1aa373R+XMK5BvtZByO6SzzeX9e+n6Ky/ViNEv251KhWIcRheMHaw5A55XVmKq+k59VntnLFf61oSimNjuLRRSL1pTLnpIEa0aqO24IZpx8aiT7rvpg+naOL7kB57Gy6EOb92pRfeNV9qG3fINC5KVX1Cux3xGcRg1H3eTFl0zTtmJKeoy/TklzVyhjFJ9S2D9aM1u/6DCWjVUixeGakH/p4oeb3BrP2Vu3SfvYP+ibctuf6vo5/NG3aD89KzyOZ6KjGtouWnetZWi6sXosa73qH7LRho45jY9d/njHnGLf/pdE+5/Q5J0+5sPqPOAnpr7xQxNn/Czpk9wTcRo0aON+tx8MUXaE3E4FHjH/Up/8iE5Uw6o6qvvK3/JHyrcc6zol796hQ4v+UOS5FW3voIfHaW0OwfJuW+PDg+7peh5wj79Tnl//m7HUVQ4TbvGKbJetJ7pOkx1WzbSgDE36+XLR3rELf3pd312v6vPHvLmfeowoLsWfvGbUvbs1+vXPqPs9CNq2jVO1427tcz9cUzDbi0UXi9a73R5SDVaNlT/527Sx5c/7RG3d9kWbZ29UoMml2zPnX+s05bflkuSqjeppSvfuU/v9Xi4XHIHKopKsfSBMWaQMWaNMWa1MWaie3NnY8wiY8wOY0xZs2H9jDGfGGPWGmNWGmO6ubcPMcZ8a4z5RdJMY0xdY8w692P+xpjJ7tf6WpJ/sefrbYz50xizwr1/kHv788aYDe59KsQ735BWDZW9M1k5u/bLyi9U8k+LVK3vBSViIvteoKRvF0iS0pdvlXdIoHyrhyqwUQ0dXr5Vzuw8WYVOHVq0QZH92xbt1/jZQdr27JeSZZXrMZ3pQls1VNbOJGW72zzhpz8V1bdNiZiovq2171vXoC5t+Tb5hASoSvVQeQf5K7x9E+35cq4kycovVIH7zWTm1gQd2Z5YvgdTwfm3aKzcXYnK35MsK79Ah39doOBe7UrEZK/YJGf6EUlS1spN8omuZkeqFU5Yy4Y6sjNJWbuPnefRfUqe59F9WmvPN+7zfMWx8/xE6g7upW1vTZEzz1WoyjuYflryrwzaxDVT1ZBgu9OocCJaNlBGfLIydx+QM79Qu35erFp9WpeIqdmntXZ8t1CSlLJiu3yrBsqveugp7VtaTJdmStu4R2kbdkuS8g5lynJW3uuqq29JLupb9v30p6JLtWFMsb7lUKm+xS8mXFE947TLfR0tS41L2mnfj3+etmM4W3ANLT8te1+gRT/MlyTtWLlVAcGBqhoZ6hG3Zt6Kop93rt6qsOgIj5h2l3bU4ikLT1uuZwPvRueqMHGfnMmJUkGBchfMkc+FHUsG5WQX/Wiq+Jf5dsenRSsVJibIeSD5NGd8dmje+wL99YPrPWf8yq3yDw5USBnn+YZ5q4p+3rV6m8KiwyVJO1dsUba7v9m5YqtCyzj/UVLjXq215nvX9XLfym3yCwlQUBlj8aT1u3R470GP7flZuUU/+wRUkVR5xyfA8Zz1hVpjzHmSnpDU3bKsFpKGuR+KkdRR0sWSni9j17slybKsZpKuk/SZMcbP/Vh7SYMty+peap87JWVZltVc0hhJrd05VJM0UlJPy7JaSVom6UFjTLikKySd597nuX/hkE87v+hw5SSkFP2em5CiKtFhJWKqxIQpZ1+xmMQUVYkJV+amPQpr10TeYUFy+PuqWs+W8qvhuiBW69NauUmpytzA101K84sOU3axNs9JSJFfqTb3iwlXdrE2z0lMlV9MuALqVFdeSrqav3GHOs4ap2av3iqvgCrllvvZxic6QvmJx2Z8FyQelE/U8Qd1Ydf0Vsb8s271k9PCL6bUeZ6YIr8Yz/O8eP+T7T7PJUmWpXaTH1enGWNU+8Zj3XNg/WiFt2uijlNHq8OPT6lqXP3TeyBAKf7RYcpKSC36PSsxVf6lzu2A6DBlFTu3sxJSFRAddtJ9G9/US/1njVW7V2+Vb9UASVJw/WjJstTtq0fUb8ZzanrXf07XoVUIpfuWEv1GiZjUEjFH27nZ6IFaP3qSrON8iBzRrolyDx7WEfe3g3B8XEPLT2hUuFITjhVJDiWllFmEPcrL20sdruiitfNXltju6+er87vEafm0xact17OBI6KanAf3F/3uTDkgrwjPDxl823VS6HufK/jp53XkjRc8H+/UQ3kLZp/WXM8moVFhOlSsf09LSlFodPhx4x3eXmp7RWdtmL/a47EO13YrUdBF2YKjw5VerM3Tk1IVHBV2gj08ndOnje6c/ZKu++RhTXl4wr+dIlDhnfWFWkndJX1nWdZBSbIs6+go/CfLspyWZW2QFFXGfh0lTXTvs0nSLkmN3Y/9Vux5iuss6Qv3PmskrXFvbyepqaQ/jDGrJA2WVEdSuqQcSR8aY/4rqczvzBljbjPGLDPGLPs1e/spH/hpY8ypBHlusixlbd2n+LenqOU3IxU3aYQy1u+SVVAoh7+v6t5/hba/8M2/nu5Z4RTa3JTR5pZlyXh7KaRZPe3+7Dct7Pm4CrNy1eDeS09HlpXXcd68B7ZrprBreiv5hU/LN5+KqqzzvHTTlhnjClp4ySgt6D1CS254QXVv6q3wdk1cu3h7yadqoBb2f1Ibnv1SbSYM83wO4DQy/+DcPtG+Wz+bpSntH9TUXk8oOzlNrZ6+QZLrjWhk28ZadM+7mnn5s6rZt42iOp73zw6iAiu7Da3SQWWGRPVqqdyD6Tq85vhrpNa4ooP2/rjon6ZZeXENPS3KOu+P92GDJA0cfas2/7VBW5duLLE9rmcbbVu2mWUPTuY4fUhpeYt/V9qdg5Qx5gn53zi05IPe3vK9sINy/5h3enI8G/3N8/za0Tdr218btX3pphLbG7U/T+2v7a6fn//yX0/xbFP2JfXvzYrdPGOZ3uvxsL659TV1fejqfykznFbOs/TfGaoyrFFrVPZ8+txSMWXtdzxHTvBYWa9l5CruXufxgDFtJfWQNEDSPXIVlks+oWVNkDRBkmZHXWv7dwNyElPkF3vsE/kqsRHKTTpUIiY3MVV+NSJ0+GhMzLGYxK/mKvEr19cHG4wYoJyEVPnXjZJ/7eq6cM6LRc/Z9rfntbTvCOUdOKzKLicxVf7F2twvNkI5pdo8OzFF/jUidHSrX0y4q80tSzkJqUpb4SryJ/6yRA3vvay8Uj/r5CelyCcmsuh375hqyt/v+blNlSZ1VWPcfYof+rQK07gp3qnISSh1nsd4nuc5CSX7H/+Y8KKY3GTXf/MOpitp2lKFtmyg1MWblJOQqqSpf0mS0lZul+W05BsRrLwU/i4oH1mJqQqIPTbDJyAmXNmlzm1XzLFzOyA2XFnJaXL4eh9335xiy3hs+3Kuun7+UNFzJf+5SbmprsJKwpzVCm9WV8kL1//7B1cBZJfqW4r3G0e5+p9wj5jYi9squncrRfWIk6OKj7yD/NXq7bu04p53JbnWA47pf4Hm935CODmuoadX94F91eW6npKknau3KTz22IzOsOgIpSWXNc9EumzY1QqOqKrPbn/R47G2l3TUkimsl3oyzoMH5KhWveh3R0SknKmeX/s+qmD9GnnF1JAJqSor3fVex6f1hSrYvlVW2qHj7gep88De6nCd68bUu1ZvV1ix/j00OkKHk8tuv37DrlJQRIg+vP2VEttjm9TW9c/fpveGPK8jaXwgUZY2g3qp5YBukqSENTsUUqzNQ6LDlbk/7f/1vLv/2qSwOtXlHxZUdLMxAJVjRu1sSdcYYyIkyb3cwKlYIOkG9z6NJdWWtPlv7HO+pObu7YslXWSMaeh+LMAY09i9Tm1Vy7KmSrpfUtwp5marjJXbFVA/Wn61I2V8vBR1eQcdnFHya2kHZixT9NWdJUkhrRupICNLee4O3Md9I58qNSIU2b+tkn/8Q0c27tHv592mRRfcq0UX3KvchBT91esxirRuh1duV2D9aPm72zz28vZKnrG8RMz+GStU42rX3XlDWzdUQUaWcvenKffAYeUkpCjQfWfqap3OV8aWveV+DGeL7DVbVKVurHxqRsn4eKvqxZ2VMWtJiRif2EjVfneE9jz0ivJ2JhznmVBa2irP8zxpZsnzPGnmCtW6xn2et2qofPd57hVQRV6BrtVpvAKqKLJLc2Vscp3nSdOXqZp7NmFg/Wg5fLwp0qJcpazaoeB60QqsFSmHj5fqXNZOe2euKBGzd+YK1b/KtZ5hRKsGykvPUs7+tBPu61dsTbha/doobbPrnE+ct0ZhTWvLy99Xxsuh6u2b6HCxG2dVNkf7lgB331KjzL5leVHfEtaqofIzspW7P00bx36tma3u1W8XDNOyO97SwT/WFxVpJSmy8/nK3JagnMSyC2AoiWvo6TVn4nQ93X+4nu4/XCtm/qUO/+0iSarfspGyM7J0+ECaxz6dr+2h8zvHafy9r3nMivMPDtA5FzbVit+Wlkf6FVrB1k3yiq0pR1S05O2tKp27K/+vP0rEOGJqFP3s1aCRjLd3UZFWkqp07qG8+Sx7cDILJs7U8/0f1fP9H9WamUvV9r+u95x13ed5ehnneftru+vczs316b1vlDjPw2IjdOv4h/T5A+9o/07u23E8yz7/TR/0H6EP+o/Q5pnL1PxK1/WyRsuGysnI/luF2rA6x77MHH1+XXn5eFOkBUo562fUWpa13hgzRtJ8Y0yhpJUn28ftXUnjjTFrJRVIGmJZVm6ZX5875j1Jnxhj1khaJekvdw4HjDFDJE0yxhxdHHSkpAxJP7vXvjWSHvhbB2cTq9CpzY9/rJaTR0heDiVOmqcjm/eqxiDXJ/j7Pp+llFkrVa1HS7Vf8oac2XnaMOy9ov2bf/SgfMKC5Swo1ObHP1bB4RNNUIbkavN1j3+qtpMfl/FyaO+kecrcvFe13W2++/NZ2j9rpSJ7xKnrktdVmJ2rNcPeL9p//YhPFffuPXL4eitrV7JWux+L6tdG540dIt+IEF3w5SNKXxevvwaUtWQzihQ6lTBqvOp+9qyMw6FD3/6m3K27FXZ9P0nSoa+mKfLeAfIOC1Hss3e59ynU9ssqxP/etrIKnVo34lO1m+Q6z/e4z/M67vN8l/s8r94jTt0Xu87zVfe7zuUq1aqqzScPSnJ97XvfD3/owFzX+mO7J81V3Gt3qMu8F2XlFWjlfe+VnQBO6uGnn9fSlWuUlpauHpffqLtuHqgrL+ljd1pnPKvQqWVPfKbuXz0i4+XQ9snzdXjLPjUa6PoSzdaJc5Qwe5Vq9GihSxe9osLsPP35wIQT7itJrUYOUNh5dWRZlo7sPaglj3wsSco7nKWN709T36nPSpalhDmrlTB7lS3HfiawCp1aM+JTtZ/0mIyXQ7snzVPG5n2qO8g1Iyv+89lKnrVKUT3i1HPxayrMztXK+98/ybO61Li8vfax7MGp4xpabtbMXaHm3VrphfnvKC87Vx89/E7RYw988oQ+efRdpe0/pEFjblfKvgMa+eNYSdLy6Us05c1vJUmt+lyo9b+vVl52bpmvgWKchToy/nWFPPOy5HAod9ZUFe6OV5W+ruXGcqdPkW+HzqrSvY9UUCArL08ZLz5zbP8qVeQT10ZH3nnlOC+Asqyfu1LndWupp+e/ofzsPH3x8LEx3p2fPKavHn1fh/cf0oAxtyh13wE99KPrljCrpv+l6W9+r373XaXAsCBd+9zNkiRnQaFevHSELcdSUWybs0oNu8Xp7gWvqiA7T1OGH7teDvj0Yf36yAfK3J+mC4b0UYc7LlZQZFXdPuN5bZu7Sr8++qHO7XeBml/ZSYX5hSrIzdMPd79l49EAZybzd9cTgb3OhKUPKpucSjHx/MxSJ5DZjuVtZ1aw3SlUOn3XjbE7hUrnm+ZP2Z1CpRPkPIMXADtLNQhIP3kQ/lWvOLlJa3l7udnxlxXA6fH02mi7U6h0oqyzfl7dGefJXV+eyg15Kp2U/3Q5K+tQEf+bf0b+vfk/HwAAAAAAAIAHi8/dyxVTBQEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGasUQsAAAAAAADAE2vUlitm1AIAAAAAAACAzSjUAgAAAAAAAIDNKNQCAAAAAAAAgM1YoxYAAAAAAACAB4s1assVM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmrFELAAAAAAAAwANr1JYvZtQCAAAAAAAAgM0o1AIAAAAAAACAzSjUAgAAAAAAAIDNKNQCAAAAAAAAgM24mRgAAAAAAAAAD9xMrHwxoxYAAAAAAAAAbEahFgAAAAAAAABsRqEWAAAAAAAAAGzGGrUAAAAAAAAAPFnG7gwqFWbUAgAAAAAAAIDNKNQCAAAAAAAAgM0o1AIAAAAAAACAzVijFgAAAAAAAIAHy2l3BpULM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmrFELAAAAAAAAwIPlNHanUKkwoxYAAAAAAAAAbEahFgAAAAAAAABsRqEWAAAAAAAAAGxGoRYAAAAAAAAAbMbNxAAAAAAAAAB4sJx2Z1C5MKMWAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxhq1AAAAAAAAADxYlrE7hUqFGbUAAAAAAAAAYDMKtQAAAAAAAABgM5Y+qGDm+nvZnUKl0zifzzPK2878ULtTqHQ6+x22O4VK55vmT9mdQqVzzZpn7U6h0in4ZbzdKVQ6k0cm2J1CpXN1QYHdKVQ6C5fWsDuFSuccH94TlTcfuxMAYAsKtQAAAAAAAAA8WE67M6hc+FgMAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxhq1AAAAAAAAADxYTmN3CpUKM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGbcTAwAAAAAAACAB8uyO4PKhRm1AAAAAAAAAGAzCrUAAAAAAAAAYDMKtQAAAAAAAABgM9aoBQAAAAAAAODBchq7U6hUmFELAAAAAAAAADajUAsAAAAAAAAANqNQCwAAAAAAAAA2Y41aAAAAAAAAAB5Yo7Z8MaMWAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxhq1AAAAAAAAADxYlt0ZVC7MqAUAAAAAAAAAm1GoBQAAAAAAAACbUagFAAAAAAAAAJuxRi0AAAAAAAAAD5bT2J1CpcKMWgAAAAAAAACwGYVaAAAAAAAAALAZhVoAAAAAAAAAsBmFWgAAAAAAAACwGTcTAwAAAAAAAODBsriZWHliRi0AAAAAAAAA2IxCLQAAAAAAAADYjEItAAAAAAAAANiMNWoBAAAAAAAAeLCcdmdQuTCjFgAAAAAAAABsRqEWAAAAAAAAAGxGoRYAAAAAAAAAbMYatQAAAAAAAAA8OC1jdwqVCjNqAQAAAAAAAMBmf2tGrTHmPkl3SlphWdYNpyelU8pjlKRMy7JeNsY0kTRZkiXpKsuytv8Lzx8vqY1lWQeNMYssy+rw/3iOOyRlWZb1eantdSX9alnW+f80zzPJf54epMbd4pSfnafvh49X4vp4j5gLB/VWh6F9FVE3WmNb3q6sQxmSpHrtztUNEx7Sob37JUkbpi/V3Dd/LM/0K4wLnh2oGt3jVJidqz8emKDUdfEeMUG1ItXp3btVJSxIqWvjtfC+9+TML1RIgxhd9NptCj+/rla+8K02vD+1aJ8Or9yqGj3jlHMwXb/0eLwcj+jM1+mZgarTPU4F2bma/eAEHSijzYNrRarPO3fLLzRIB9bF67dhrjaXpBrtzlXHUTfK4e2lnEMZ+vHqMZKk7i/fqro94pSdkq5JPWnzsgR1aaUaT90qeTmU+vVvOvDedyUer9Kgpmq+NEz+5zVQ0ssTdfCDY/1GxE2XKGJAH8kYpU6eoYMfTynv9M9oMV2bq83ogTIOh7ZNmqcNb//iEdN6tKu/KcjO1Z8PTNChtfEn3LfZQ/9Vw+u7KifV1bevHveNEuasliSFnltLbV8YKp9gf8lpaVr/p+TMzS+fg63gRo59VQv++EvhYaH66YvxdqdzVvhjR7JenLVWTqd0RYvaGtq+sUfM0l0H9dLstSpwWgrz99VHN3RUfEqGHvl5WVHMvrQs3dmpiW68oEF5pl+hXPjsQNV09yMLH5iglOOMW7q6xy0pa+O1wD1uqX9FBzW762JJUkFWjhY9/qkObditwNhwdXrjDvlHVpXltLTly7na8NGMcj6yM1+1bi3U9LnBMl4O7flyjna85XkdbDpmsCJ7tFRhdq7W3Pee0tfGK7BBjFpOGFYU41+nura++K3iJ0wrz/QrjOrdmqvZ6EGSl0O7v5yrrWVcT5s9N0jVe8SpMDtPK4eN12H39bTX0jdUkJktq9Apq9Cp+X1GSpKaPnW9onu1kjO/QFnxyVpx//sqSM8qz8M643UuNj6fdZzxeUip8fnMUuPzTsXG5z+4x+cthvbRedd3lWS0ftJcraZvKXLRMwNV293mcx+coIPHeU/Us1ibz3G3eWy7c9XnoweUseeAJGnntKVa/sZPkqSuL9+qOu73RN/wngiQ9PeXPrhLUj/LsnYW32iM8bYsq+DfS+tvuVzSz5ZlPX2qO/ydfP8/RVr3fpXm3VTjrnGKqBet17o+qJotG+rSMUP1/uVPecTtXr5Zm+es0M2Tn/R4LH7pJn1x88vlkW6FVaN7C4XUi9ZPHR9StVYNdOG4IZp2ySiPuFZPDNDGD6YrfspiXfj8TWp4XVdt+Xy28tKO6K8nJ6pW39Ye+2z7ZoE2ffKbLnrj9nI4koqjTrcWCq0XrS86PaSolg3UZewQfXfpKI+4Do8P0OoPp2vrlMXqOvYmNR3QVesmzpZvSIC6jBmiKQNfVGZCivwjQor22fTtAq399Df1fJ02L5PDoRrP3qGdNz6p/KQUNZzyqtJ/W6LcbXuKQgrSMpQwaoJCercrsWuVxrUVMaCPtl72kKz8fNX77Bmlz1mqvPjE8j6KM5JxGF0wdrDmDHheWYmp6jv1We2dsVzpWxOKYmLd/c2Uix5SRKsGajtuiGZcPOqk+276YLo2jp9a8vW8HOrw1p1adN94pW3YLd+wIFn5dg0ZKp7L+/fS9VdeqhGjuUb+GwqdlsbNXKPxAzooKthfN3w6X10aRatBtWP9c3pOvsbNXK13rmmvmKoBSj2SK0mqGxGsb4Z2K3qe3u/MUPfGMbYcR0VQ092PfN/xIUW2aqD244bo1zLGLW2eGKD1H0zXzimL1f75m9Touq7a/PlsZe45oGlXPae8w1mq0a25LnphqH69ZJScBU4tfeYrpayLl3egny6dPlr7FqzV4WJ9WKXnMDrv+aH665oxyklI0UUzxmr/jOXK3LKvKCSyR5wC6sVofrv7Fdq6oc5/8RYt6jdSR7YnamGPx4qep8fq95Q0dalNB3KGcxg1H3eTFl0zTtmJKeoy/TklzVyhjGLtXL1HnALrR2t2+wcV1qqhWrwwVAv6H3uf9MeVY5Tn/oDzqAPz12rjmMmyCp1qOnKAGt93qTY8N7ncDutMd3R8PtE9Pu86doi+Pc74fNVxxuddxwzRz6XG5+Hn1NR513fVNxc/rcL8Al028RHFz16lw/HJ5XyEZ57a3Vqoar1oTer0kKq3bKBOY4foxzLavN3jA7Tmw+naPmWxOo29SU0GdNWGibMlSUl/bda0m17x2Gfztwu07tPf1J33RECRU176wBgzXlJ9SVOMMQ8YY0YZYyYYY2ZK+twYE2mM+d4Ys9T97yL3foHGmI/d21YaYy4r47ljjDELjDGrjDHrjDGd3Nszi8VcZYz5tNR+/SXdL+kWY8xcY0xdY8y6Yo8Pd8++lTFmnjFmrDFmvqRhpZ4nwhgz053f+5JMsccy3f81xpiX3PmtNcZc697+pjHmKffPfdzH4XC3z3D39tbGmNXGmD8l3V3sub3cz7nUGLPGGFMhe6dze7fWqh9+lyTtXblNfsEBCooM9YhLXL9LaXsPlnN2Z49afVpr+3cLJUkHV2yXb9VA+VcP9YiLvqipdv3vL0nS9m9/V+0+rsJsTkq6UlbvkOX+JLm4/Us2Kzct02N7ZVevd2tt+t7V5skrt6tKSKACymjzmhc11TZ3m2/67nfVd7d548s7aPv0pcpMSJEkZaekF+2TsGSzcmjz4wqIa6S8XYnK25MsK79Aab8sUEjvC0vEFKYcVvaarVJByaKfX8Naylq5WVZOrlTo1JEl61S1T/vyTP+MFtGygTLik5W5+4Cc+YXa9fNi1epT8gOcmn1aa4e7v0lx9zd+1UNPad/SYro0U9rGPUrbsFuSlHcoU5bTOj0HdxZqE9dMVUOC7U7jrLEu8ZBqhQWqZmigfLwc6tO0huZtTSoRM23DXnU/J1YxVQMkSeGBVTyeZ8muA6oZGqhYdww81e7TWtvc/ciBE4xbYi5qqnj3NXTbt7+rjrtP2b9sq/IOZ7n336aAmHBJUvb+tKKZuQVHcnR4a4ICo8NP89FULKGtGiprZ5Kyd+2XlV+oxJ8WKapvmxIxUX3baN+3CyRJacu3yTskQFVK/X2qdWqmI/HJymH8Xqawlg11ZGeysna72nnfT38qutQ1MaZPa+35xvU+6dCKbfIpo51LOzB/raxCp2uf5dvkFxNxWvKvqOr3bq2N/2B8fs5xxufhDWOVtGK7CnLyZBU6tW/JJjUo9f9NZVW3d2ttcbf5/hO0eexFTbXD3eZbvvtd9U4yRpSkRN6HVgiWZc7Kf2eqUy7UWpZ1h6QESd0sy3rNvbm1pMssy7pe0huSXrMs6wJJV0r60B3zhKQ57u3dJL1kjAks9fTXS5phWVacpBaSVp1iTlMljXe/brdT2CXUsqwulmWV/ijnaUkLLctqKWmKpNpl7PtfSUfz6+k+jhhJj0m61hjTTdKbkm6yLMtZat9PJN1nWVbpSsHNkg672+YCSbcaY+qdwnGcUYKjwnQ4IbXo9/SkVIVEh/2t56jdqpHunjZOgz59RNUb1fi3UzwrBESHKcs9oJCkrMRUBZRq5yphQco7nFU0uMtKTJX/3/xb4Jig6LCiQZwkZSamKqhUe/qFBSk3/VibZyamKtAdE1ovWlWqBuqKb57QNf8brXOu7Fh+yVdwPlERyk849sYwPzFFPlGn9kYlZ/MuBbY9T16hwTJ+VRTcrY18YqqdrlQrHP/oMGUV67OzElPlH1PyvPbobxJc/c3J9m18Uy/1nzVW7V69Vb7uAlZw/WjJstTtq0fUb8ZzanrXf07XoQEntT8jR9HB/kW/RwX7a39GTomYXamZSs/J081fLtR1n8zTL2t3ezzPjA371K8p45UTCYgO05Fi/ciRUxy3lI6RpMYDumrf3DUe24NqVlP4+XV0YOU/XvnsrOIXHa6cYm2fnZCqKqWK2X4x4crZdywmJzFVfjElY2KuaK/EHxed3mQrML+YMGUXb+cy2tAVk1oi5uh107IstZ/8mLrMGKM6N3Yv8zVqX9dV++es+veTr8AC/5/j86AyxufX/m+0mrjH5ymb9yr2wnPkFxokbz9f1enWQkGxFMmlsts8sIw2zzvOeyJJimrdUFfNGKP+nz+ssMZcP4ET+btLH5Q2xbKsbPfPPSU1NaaoKh1ijAmW1FvSpUdnl0ryk6sQurHY8yyV9LExxkfST5ZlrfqHeR3P18fZ3lmuQqwsy/qfMeZQGTEdJU2yLKtQUrJ7Zu4FlmVNMcbcKmmBpAdKr5FrjKkqV4F4vnvTREn93D/3ltTcGHOV+/eqkhpJKr20xG2SbpOkfuEXqFVww1M+4PJQ7G9+zN+YLJWwLl4vX3Sf8rJy1bhrnK6f8JBe7/bgv5fg2aKMdrYs66Qxf+dvgVL+YZs7vB2q3qyefhowTt5+Prrq51FKXrFNaTuTPPdBSWW266mdzLnb92r/+O9V/4vRKjySrZyNO4sGjTjFPvs47X+ifbd+NkvrXvtRliW1eOQqtXr6Bi1+8AM5vL0U2baxpvd/SgXZeerx9eNKWROv5IXr//GxAH+XVcZFsfRZXei0tDHpsCYM6KCcgkINmvi7mtcIV53wIElSfqFT87cl6b6u55ZDxhXYqfTjp9AfRXc4V42u66KpV4wusd07oIq6fTBMfz39hfIzs4ViypwkdPJraPExjvHxUlTv1to8hq/cH0/Z18STn+NHQxZeMko5yWnyrRaiDl8/rsxtCUpZvKkorvGwy2QVFGrv93/8m2lXeGW1+6mMz61S4/Mf3ePzq38epaQV23RoW4JWvPurLvvqMeVn5ejght1yFnp+E7FS+odtfmBdvL5od78KsnJVu1sL9f3wAU3qPNwjHoDLPy3UHin2s0NS+2KFW0muJQMkXWlZ1ubjPYllWQuMMZ0l/UfSRGPMS+6bcBX/v9/vFPIpUMlZwqX3OaLjO9no5UTzoptJSpEUe5z9jvfcRtK9lmWdcJVyy7ImSJogSSPrXn9GlN0uHNhLba5zTWLet3qHqsYe+/Q4JDpc6cll1brLlltscL1l3ipd8txNCggLLrrZWGV2zuCeanSDq51TVu1QQLFPdQNiwpWdnFYiPjc1Q75VA2S8HLIKne6YU/9bQGo2uKeaus/t/at3lPgkPSgmXEdKtXlOaoaqhBxrc1eMq80zEw8pJ3WNCrJzVZCdq4QlmxTRtDaF2lOQn3RQPrHHZsH6xEQof3/qCfYo6dA3v+nQN79JkqIfHqj8xJST7FF5ZCWmKqBYnx0QE67spENlxBTrb2LDlZWcJoev93H3zTl4bGmPbV/OVdfPHyp6ruQ/Nyk31fW1toQ5qxXerC6FWtgiKthfSRnHxh3JGdmKDPYrFeOnUP/q8vf1lr+vt1rXitDm/YeLCrULtyerSVRVRQSeytC0cmkyuKcau8ctB1ftUGCxfiQwxtWPFFfWuCWr2Lgl7NxauuilW/TbwJeUe+jYV2ONt5e6fzBMO35cpF3Tlgkl5SSmyq9Y2/vHhiu3VD+fk5gqvxrHYvxiSsZE9ojT4bXxyjtw+PQnXEFlJ6TKv3g7x4Qrp3Q7J6TKv9h1s3hMjvv/h7yD6UqctkyhLRsUFWprXdNJUb1aaZH7JleVXbPBPXXevzg+zy42Pt+3ZJOqucfnG76erw1fu+ZXtX/0GmUmnvrY82xz3uCeOtfd5gfKaPPS/XlOaoZ8S7X50f68+Idpu+euVqcxQ+QXFqScQyx5AJTllJc+OAUzJd1z9BdjTJz7xxmS7nUXbGWMaVl6R2NMHUn7Lcv6QNJHklq5H0o2xpxrjHFIuuIUckiWVN295mwVSRefYu4LJN3gzqWfpLK+K75AriUOvIwxkXLNwv3LnftDklpK6meMKbGIomVZaZIOG2OOfuf5hmIPz5B0p3smsYwxjctYFuKMtGTib3qn/wi903+ENsxcprj/dpIk1WzZULkZ2co8kHbKzxUUWbXo5xotGsgYQ5HWbfNns/Rr7yf0a+8ntHvGcjW4ynUaVWvVQPnpWcren+axT9KiDarzn7aSpAZXd9KemSvKM+UKb+1ns/R13yf0dd8ntGPG8qKvQ0W1bKC8jCxlldHm+xZtUEN3mze5qpN2uNt858zliml7joyXQ95+vopq2UCHtnGzk1ORtXqrfOvGyqdmlIyPt0Iv6az03/465f29Ilz9ik9spEL6dlDalPkn2aPySFm1Q8H1ohVYK1IOHy/Vuayd9pbqJ/bOXKH67v4molUD5aVnKWd/2gn39Su2Vlmtfm2UtnmvJClx3hqFNa0tL39fGS+HqrdvosPFbrQClKfzYkK1O/WI9qUdUX6hUzM27FOXhtElYro2itHKvSkqcDqVnV+gtQmHVD/i2DrB0zfuU1+WPSjTps9maUrvJzTFPW5p6O5HIt39SFnjlsRFG1TXfQ1teHUn7Xb3KYGxEer+wf36fdh4pe8o+QFnx1duUdq2BK2fMO30HlAFdXjldgXWj5Z/7UgZHy/FXN5ByTOWl4hJnrFcNa7uLEkKbd1QBRlZyi3294m94iIl/shMzhNJW+Vq5wB3O9e4vL2SZpZs56SZy1XrGtf7pLBWDZWfka3c/WnyCqgib/eHPV4BVVS9SzNlbHLdMLV6t+ZqdM8lWjL4ZRVm55XvQZ2h1n42S5P7PqHJ7vH5uacwPt9bany+09237Ji5XLHFxufRLRso1T0+P3pjsaDYCDXo20Zbfq68S3+s/2yWvuv7hL7r+4R2zliuxu42r36CNk9YtEH13W3e+KpOine3uX+x9/vV4+pLDkORFjiBfzqjtrj7JL1jjFnjft4Fku6QNFrS65LWuIu18fIsoHaV9LAxJl9SpqRB7u2PSfpV0h5J6yQFnSgBy7LyjTHPSloi1/IBm04UX8wzkiYZY1ZImi/JczEy6UdJ7SWtlmuG7CNyFYZ/kzTcsqwEY8zNkj41xlxQat+b5FraIUuu4uxRH0qqK2mFu20OSLr8FHM+Y2yZu0qNu8XpwfmvKS87Vz88/H7RYwM/eUQ/PTpBGfvT1G5IH3W6/WIFRYbqnunPa8vcVfrpsQ90Xr8L1fbGnnIWFqogJ09f3/uWjUdz5to3e5VqdG+hK/54RQXZeVr04ISix7p/Plx/PvyhspPTtGLMZHV+9x7FPXK1UtfHa+ukeZIkv8iq+s+00fIJ8pecTp17a19N6fqo8jOz1emduxXV/lz5hQfpymVvavXL32vbZApbu+asUp3uLTRwoavNZz90rM0v/my45j7yoY4kp2nRuMnq8849uvDhq3VwXbw2TJ4nSTq0LUG7563RdTPHybKc2jBpnlLdxaveb9+tGu1cbT7krze15JXvtfFr2rxIoVMJT41X/c+fkbwcOvTNLOVu3a3wG/pKklK/nC7vyFA1nPKavIICJMupakMv1ZZed8mZma267z0ur7BgWQWFSnjyPRWmn+gLFZWLVejUsic+U/evHpHxcmj75Pk6vGWfGg10rY+3deIcJcxepRo9WujSRa+oMDtPfz4w4YT7SlKrkQMUdl4dWZalI3sPaskjH0uS8g5naeP709R36rOSZSlhzmolzF5ly7FXRA8//byWrlyjtLR09bj8Rt1180BdeUkfu9OqsLwdDj3Wu7nu/PpPOS1LlzWvrYaRIfp2pWvVqatb1lP9asHqUL+6rvlorowxuqJFHTWMdL15z84v0OKd+zWyTws7D6NC2Dt7lWp2b6Er/3D1I78XG7f0+ny4FrrHLcvGTFbXd+9Rq0euVsr6eG1xj1viHrhCVcKC1G7sEEmSVVCoX/o/peoXNFbDqzopdcNuXTrTNdtwxfPfaO+c1eV9iGcsq9Cp9Y9/oraTR0heDu2dNFeZm/eq9qCekqTdn8/SgVkrVb1HnLoseUPO7FytGTa+aH+Hv6+qdW6mdcM/sOsQKgSr0Kk1Iz5V+0mPyXg5tHvSPGVs3qe6g3pIkuI/n63kWasU1SNOPRe/psLsXK283/U+qUq1qmr7yQOSXDPE9/3wh/a712FuNnaIvHx91OHrxyVJqcu3ac2jH9twhGemePf4fNDCV5Rfanx+yWfDNafY+LzvO/eo3cNX68C6eK0vNj7fNW+NrnePz9cXG5/3nzBMfqFBchYUaN7Iz5TrvqFhZbd7zirV7t5C17nfE80r1ub9PxuueY98qKzkNC0eN1m93rlHbd3viTa627x+/7Y6b2APOQsLVZiTr1l3v1O0f4+371as+z3RjX+9qWWvfK9NvCc641jOM/fGW2cj47G2CM5oZ8rSB5VJ4/x/c+I5TkU6TV7uOnvx1cbytjav6smD8K+6Zs2zdqdQ6RT8Mv7kQfhXTR7JNzfKW1RBgd0pVDr5hsFiedvtQ5uXNx+7E6iE7tjzBRXJMmxq3P+srEM12TL1jPx709sCAAAAAAAAgM0o1AIAAAAAAACAzf7NNWoBAAAAAAAAnCVYMbV8MaMWAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxhq1AAAAAAAAADxYTmN3CpUKM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmrFELAAAAAAAAwIPTqrxr1Bpj+kp6Q5KXpA8ty3q+1OM3SHrU/WumpDsty1r9T16TGbUAAAAAAAAA4GaM8ZL0jqR+kppKus4Y07RU2E5JXSzLai5ptKQJ//R1KdQCAAAAAAAAwDFtJW2zLGuHZVl5kiZLuqx4gGVZiyzLOuT+dbGkmv/0RSnUAgAAAAAAAKg0jDG3GWOWFft3W6mQGpL2FPt9r3vb8dwsado/zYs1agEAAAAAAABUGpZlTdCJlyooa3Feq8xAY7rJVajt+E/zolALAAAAAAAAwINVeW8mtldSrWK/15SUUDrIGNNc0oeS+lmWlfJPX5SlDwAAAAAAAADgmKWSGhlj6hljfCUNkDSleIAxprakHyQNtCxry7/xosyoBQAAAAAAAAA3y7IKjDH3SJohyUvSx5ZlrTfG3OF+fLykpyRFSHrXGCNJBZZltfknr0uhFgAAAAAAAACKsSxrqqSppbaNL/bzLZJu+Tdfk0ItAAAAAAAAAA9WmbfPwunCGrUAAAAAAAAAYDMKtQAAAAAAAABgMwq1AAAAAAAAAGAz1qgFAAAAAAAA4MFpGbtTqFSYUQsAAAAAAAAANqNQCwAAAAAAAAA2o1ALAAAAAAAAADZjjVoAAAAAAAAAHizWqC1XzKgFAAAAAAAAAJtRqAUAAAAAAAAAm1GoBQAAAAAAAACbUagFAAAAAAAAAJtxMzEAAAAAAAAAHizL7gwqF2bUAgAAAAAAAIDNKNQCAAAAAAAAgM0o1AIAAAAAAACAzVijFgAAAAAAAIAHp2XsTqFSYUYtAAAAAAAAANiMQi0AAAAAAAAA2IxCLQAAAAAAAADYjDVqK5hAi9p6eateUGB3CpVOkOE8L28OH8vuFCqdIKfT7hQqnYJfxtudQqXjfckddqdQ6UQ9NsLuFCqd7b68pSpvtfK5hpa3bV68JypvPmJdUJwZLNaoLVdUQwAAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGYsqAQAAAAAAADAg5M1assVM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGbcTAwAAAAAAACAB8vuBCoZZtQCAAAAAAAAgM0o1AIAAAAAAACAzSjUAgAAAAAAAIDNWKMWAAAAAAAAgAenZexOoVJhRi0AAAAAAAAA2IxCLQAAAAAAAADYjEItAAAAAAAAANiMNWoBAAAAAAAAeLBYo7ZcMaMWAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxhq1AAAAAAAAADw47U6gkmFGLQAAAAAAAADYjEItAAAAAAAAANiMQi0AAAAAAAAA2IxCLQAAAAAAAADYjJuJAQAAAAAAAPBgydidQqXCjFoAAAAAAAAAsBmFWgAAAAAAAACwGYVaAAAAAAAAALAZa9QCAAAAAAAA8OC07M6gcmFGLQAAAAAAAADYjEItAAAAAAAAANiMQi0AAAAAAAAA2Iw1agEAAAAAAAB4cMrYnUKlwoxaAAAAAAAAALAZhVoAAAAAAAAAsBmFWgAAAAAAAACwGWvUAgAAAAAAAPBgsUZtuWJGLQAAAAAAAADYjEItAAAAAAAAANjshEsfGGNCJV1vWda7J4mrK6mDZVlfnULcr5Zlnf/30vR4nlGSMi3LetkY00TSZEmWpKssy9r+T57b/fzxktpYlnXQGLPIsqwO/4/nuENSlmVZn5faXlf/QhucaXqNGqgG3eKUn52rX4dPUPK6eI+Y1oN76YKhfRVWN0qvx92h7EOZkqTwBjG6+OXbFHVeXc1/+Vv9NWFqOWdfMVTr1kLnPjdY8nJo75dztPOtKR4x544ZrGo9WsqZnau1972n9LXxCmwQoxYThhXFBNSprq0vfqtdE6ZJkmrf3Ed1hvaRs6BQB2at1JbRJ/zfuFKJ6tZczUcPkvFyKP7Ludry9i8eMc2fG6ToHnEqzM7T8mHjlbY2Xo4qPur801Ny+HrL4e2lfb8u0caXvi/ap/7NvdXgpt6yCp1KmrVS60ZPKs/DqpCCOrdSzFO3SQ6HDn0zUwfHf1fi8aqXdVXk7VdKkpxHcpTw5LvK2bTTjlQrnOrdmqvZ6EGSl0O7v5yrrWWc582eG6Tq7vN85bDxOrw2/tiDDqMuM8YoJylVSwa+LElq8/69CmoQI0nyqRqo/MNHNK/niPI4nArnjx3JenHWWjmd0hUtamto+8YeMUt3HdRLs9eqwGkpzN9XH93QUfEpGXrk52VFMfvSsnRnpya68YIG5Zn+WWnk2Fe14I+/FB4Wqp++GG93OhVWtW4t1PS5wTJeDu35co52lDFuaTpmsCJ7tFRhdq7WFBu3tCw2bvF3j1viJ0xT9CUXqtHwqxTUuIYW9R2pw6t3lOchVQidnxmoOt3jVJCdq1kPTtCBMsbkIbUi1eedu+UXGqQD6+I1c9h7cuYXSpJqtDtXnUbdKIe3l3IOZeiHq8dIknxDAtTjxVsUcU5NWZal2cM/UNKKbeV5aGeko9dQ4+XQrhNcQ6Pc19AVZVxDu7qvoYvd19BzH7la0X1bS06ncg+ma8Ww8cpJTiufA6qA/vv0YDXt1lL52bn6cvh72rs+3iNm4Ov3qFaz+nIWFGrX6m36esSHchYUqnqDWF3/0h2qdV49/fry15r7wa/lfwAV0GVPD9a53eKUl52nr4e/p31ltPlFg3qr09B+qlY3Wk+1vE1ZhzIkSf4hgbrmpdsVUTtKBbl5+uaR95W0ZW85HwFwZjvZGrWhku6SdMJCraS6kq6XZEeF53JJP1uW9fSp7mCM8bYsq+BUYv8/RVr3fpVmZN+gWwuF1YvW+C4PKbZlA/V9bog+u3yUR9zeZVu0bfZKXT/5iRLbc9KO6LenJ6pRn9bllHEF5DBq+vxQLb1mjHISUtR+xljtn7FcR7bsKwqp1iNOAfVi9Hu7+1W1dUM1ffEWLe43Uke2J2pRj8eKnqfb6veUPHWpJCn8oqaq3reNFnZ7RFZegXyrhdhxdGcmh1GLcTdp4TXjlJ2Yom7Tn1PizBXKKNbmUT3iFFQ/WjPbP6iwVg0V98JQzev/lJy5+fr9yudUmJUr4+2lLlOeVtLs1Tq0YpuqXdRUsX3aaHb3x+TMK1AV2vzkHA7FPnOndg4aqYKkFNX/6TVlzFqi3G17ikLy9iRpx4DH5Ew/oqAurRU79h7t+O9DNiZdQTiMmo+7SYvc53mX6c8pqdR5Xr1HnALrR2u2+zxv8cJQLej/VNHjDW7tp8yt++Qd7F+0bdntbxX9fN6oG5SfnlU+x1PBFDotjZu5RuMHdFBUsL9u+HS+ujSKVoNi/UJ6Tr7GzVytd65pr5iqAUo9kitJqhsRrG+Gdit6nt7vzFD3xjG2HMfZ5vL+vXT9lZdqxOiX7U6l4nIYnff8UP3lHrdc5B63ZBbrWyLd45b57e5XaOuGOv/FW7TIPW5ZWGzc0mP1e0pyj1syNu3RiqGv6vyXbrXjqM54dbq1UGi9aE3s9JCiWjZQ17FD9O2lozziOjw+QKs+nK6tUxar69ib1HRAV62bOFu+IQHqOmaIfh74ojITUuQfcawv6jxqoHbNW6Npd7wph4+XvP2rlOORnaHcY8U/3NfQrmVcQ4+OFWed4BqasXWffIpdQ7e++6s2vvitJKn+zX10zoP/1epHPy6/46pAmnaNU2S9GD3X9X7VadlQV4+5Ra9dPtIjbvlPCzXx/rclSYPevFftB3TXH1/8pqy0TP0w6lM1631BeadeYTXpGqfIetF6vusDqt2yoa4cc7PevPxJj7idy7dow5wVunPyUyW297j7MiVs2KXPbn9VkQ1i9d9nb9L7N4wpr/SBCuFkSx88L6mBMWaVMeYl4/KSMWadMWatMebaYnGd3HEPGGPqGmN+N8ascP87YbHTGBNjjFng3n+dMaaTe3tmsZirjDGfltqvv6T7Jd1ijJnrft11xR4f7p59K2PMPGPMWGPMfEnDSj1PhDFmpjFmpTHmfenYSslHczjesRtj3jTGPOX+uY/7OBzGmFHGmOHu7a2NMauNMX9KurvYc3u5n3OpMWaNMeb2k/w9zkiNerXWuu8XSpISVm5XlZBABVYP9YhLXr9Lh/ce9NielZKuxDU7ij7Jh6fQVg2VtTNJ2bv2y8ovVNJPixTVt02JmKi+bZTw7QJJ0uHl2+QTEqAqpf4OEZ2aKSs+WTnuv0Otwb20862fZeW5PrfIO5h++g+mgghv2VBHdiYra7erzff+9KdiSn2YENuntXZ/87sk6dAKV5v7udu8MMtVTHH4eMnh7SVZliSp/uCe2vzWFDndbZ5Lm5+Uf4vGyt2VqPw9ybLyC3T41wUK7tWuREz2ik1yph+RJGWt3CSf6Gp2pFrhhJU6z/f99KeiS53nMX1aa0+p8/xo3+IXE66onnHa9eXc475GjUvaad+Pf562Y6jI1iUeUq2wQNUMDZSPl0N9mtbQvK1JJWKmbdir7ufEKqZqgCQpPNCzOLJk1wHVDA1UrDsG/0ybuGaqGhJsdxoVWulxS+Jxxi373OOWtOXb5F3GuKVap2Y6UmzccmRrgo5sTyyXY6iI6vdurY3uMXmye0weUMaYvOZFTbXtf39JkjZ997vqu/v9cy7voO3TlyozIUWSlJ3iGqP4BPkr9sJztGHyPEmSM79QeXwAp7CWDZVZaqxY+hoaXcZYsfg1NLqMa2hBZnbRz14BFMRP5PzebbT0B1c/smvlNvkHBygkMtQjbsO8VUU/7169XaHR4ZKkzJR07V6zQ4UFvA89Vef1bq1lP7jO6d0rt8kvOEDBZbR5wvp4HSrjvX9Uo5ra+oerZHNge4LCakYqqFrV05oz/jnnWfrvTHWyQu1jkrZblhVnWdbDkv4rKU5SC0k9Jb1kjIlxx/3ujntN0n5JvSzLaiXpWklvnuR1rpc0w7Kso8+96lSStyxrqqTxkl6zLKvbKewSallWF8uyXim1/WlJCy3LailpiqTaZex7omO/1hjTTa7jvMmyrNJ/808k3WdZVvtS22+WdNiyrAskXSDpVmNMvVM4jjNKcHSY0t0DOknKSEpVcFSYjRmdfapEhyu7WBvnJKSqinuAURQTE67sfcViElNVJaZkTMwV7ZX446Ki3wMbxCjswiZqN+05tf3xKYXE1T9NR1Dx+MWElWjz7MRU+ZdqT1dMaokYvxj3ue8w6j5rrP6zbrySF6zVoZWuVVmC6kerWrtz1HXqs+r045MKo81Pyic6QvmJB4p+L0g8KJ+oiOPGh13TWxnzlx33cRxT1nnudwrnub/7PG82eqDWj54ky/1BRGkR7Zoo9+BhHdmZVObjld3+jBxFF5tFFRXsr/0ZOSVidqVmKj0nTzd/uVDXfTJPv6zd7fE8MzbsU7+mNU57vsCp8osOV07xvqWMcYtfTLhySo1bSvc/pcctOLHA6LCiIqskZSamKii65JjcLyxIuelZsgqdHjGh9aJVpWqgrvjmCV37v9FqcmVHSVLV2pHKSc1Qz1dv04Bpz6n7i7cwo1aSf6lraE4ZY0X/UtfQnFLX0HWjJxV9mF/cuY9do97L31KtKy8qml0LT6FR4Uor9jc4nJSqqqX6muIc3l5qc0UnbZy/ujzSOytV/ZttXlrCxl1q1tc1g7lWiwYKq1Htb+0PVAZ/92ZiHSVNsiyr0LKsZEnz5SowluYj6QNjzFpJ30pqepLnXSrpJvfs12aWZWX8zbxO1dfH2d5Z0heSZFnW/yQdKiOmzGO3LCtL0q2SfpP0duk1co0xVeUqEM93b5pY7OHekgYZY1ZJWiIpQlKj0i9sjLnNGLPMGLPsr8ytp3ak5ckYz23HedOO/6cymti1LPNJFPs7GB8vVe/dWkm/LD62zdtLPqGBWtxvpDY/+6XiPrj/H6d6tjCncF6XHeP+r9PSnJ4jNK3lPQpv2UAhTWq69vH2kk/VQM3r/5TWPfuV2k6471/OvJI4Th8T2K6Zwq7preQXPi3ffCqoUznPy+rjLUuK6tVSuQfTdXjN8dcCrnFFB+2lyHJcVhn9eOnWLnRa2ph0WG9f3U7vXtteExZt0a7Uoi8cKb/QqfnbktSrSexpzhb4G/6f4xar1LglqndrJRYbt+DEyurTPT5IO06fLkkOb4eqN6unXwa/rJ9vfEEXDLtcofWi5fD2UuT5dbX289ma3G+k8rNy1fruS07HIVQsp/EauvH5bzSz9b3a8/0fqj+097+R7dmpzD/B8fuaq0cP1fa/NmrH0k2nMamz2yn1Mycw570pCqgaqAemjlPHwX2UsD5ezkJmNAPFnWyN2tLKHHaV4QFJyXLNPnVIyjlRsGVZC4wxnSX9R9JEY8xL7ptwFf8/3u8UXrdAJYvPpfc5cqI0TvLcJzr2ZpJSJJX1Lsmc4LmNpHsty5pxohe2LGuCpAmSNK7OjWdEBbTVoJ6KG+CaxJy4ZodCYo/NbguODlfG/jSbMjs75Samyr9YG/vFhis36ZBnTI0IpR2NiSkZE9kjTulr45V34HDRtpyEFCX/z7Xu2+GV2yWnJZ+IYOWnnK7PSiqO7ISSbe4fE67sUm3uigkvEZNTKiY/PUsHFm1UVLcWSt+0VzkJqUpwr7V3aOV2WU5LvhHByqPNjys/KUU+MZFFv3vHVFP+/lSPuCpN6qrGuPsUP/RpFabRnqeirPO89Dmcc5zzPPbitoru3UpRPeLkqOIj7yB/tXr7Lq24x7WsvfFyKKb/BZrfu+S65DgmKthfSRnHvuKanJGtyGC/UjF+CvWvLn9fb/n7eqt1rQht3n9YdcKDJEkLtyerSVRVRQSeyjAJKB85ianyK963lDFuyUlMlV+NYmObMsYth0uNW+Cp2eCeOu8615h8/+odCirW7kEx4TpS6iZUOakZqhISIOPlkFXodMe42j0z8ZCyU9eoIDtXBdm52rdkk6o1ra2EvzYrMzFVyatc81G2T/1Lre+iUFv6Gup3CmNFP/c1tMbFbRXTu5Wii11DW799l5bfU/LWMHt/XKT2XzysTcVuSlvZdRzYW+2v6y7JvYxBsb9B1ehwpSeXNedK6jvsSgVFhOjj218tlzzPJh0G9tKF7jbfs3rHKbd5WXIzs/X1w+8X/T5i4ZtK3XPgBHsAlc/JZtRmSCq+SNcCub7m72WMiZRrJupfZcRVlZToXgJgoCSvE72IMaaOpP2WZX0g6SNJrdwPJRtjzjXGOCRdcQrHkyypunvN2SqSLj6FfY4e1w3uXPpJKut7+2Ueuzv3hyS1lNTPGHNh8Z0sy0qTdNgY09G96YZiD8+QdKcxxsf92o2NMYGnmLOtVnw+Sx/3f0If939CW2Yu1/nur0bFtmyg3IwsHaFQ+686vHK7AupHy792pIyPl6Iv76D9M5aXiNk/Y7lir+4sSarauqHyM7KUW+zvEHPFRUr88Y+S+0xbpvCO50mSAurHyPh4U6R1O7Rqu4LqRyvA3eY1L2+vxJkl2zxx5nLVvqaTJCmsVUPlZ2QrZ3+afCOC5RPiWivS4eej6p3OV8a2BElSwvRlinS3eVD9aDl8vCnSnkT2mi2qUjdWPjWjZHy8VfXizsqYtaREjE9spGq/O0J7HnpFeTsTbMq04klbtV2Bxc7zGpe3V1Kp8zxp5nLVKnWe5+5P08axX2tmq3v12wXDtOyOt3Twj/VFRVpJiux8vjK3JSgn0bOoDpfzYkK1O/WI9qUdUX6hUzM27FOXhtElYro2itHKvSkqcDqVnV+gtQmHVD/i2JBr+sZ96suyBzjDHF7p6luOjltiLu+g5FLjluQZy1XDPW4Jbd1QBaXGLbFljFvgae1nszS57xOa3PcJ7ZixXOe6x+RRLRsoLyNLWWWMyfcu2qCG/2krSWpyVSftnLlCkrRj5nLFtj1Hxsshbz9fRbdsoNRtCco6cFiZiakKre+6YWHNi85T6tZ9Hs9b2aSVMVYs6xpafKxY4L6Gbhj7tWa0ulczi11DjxZpA+sduw7E9GlVNIaEy8KJM/VS/8f0Uv/HtHbmMl3wX1c/UqdlQ+VkZCn9QJrHPu2u7aYmnVvo83vf/FuzP+GyaOJveq3/43qt/+NaP3OZ2vzXdU7Xdrd5Rhltfjx+IQHy8nGVhy4c0F07lmxUbrF1mXFmsmTOyn9nqhPOqLUsK8UY84f7Bl3TJD0iqb2k1XLNEn3EsqwkY0yKpAJjzGpJn0p6V9L3xpirJc3ViWeySlJXSQ8bY/IlZUoa5N7+mKRfJe2RtE5S0EnyzTfGPCvXMgI7JZ3qdxqekTTJGLNCriUNPBeAk35UqWOXqzD8m6ThlmUlGGNulvSpMab0chA3SfrYGJMlV3H2qA8l1ZW0wri+Q3BA0uWnmPMZY/ucVWrQrYXuWPCK8rPz9L/hE4oeu+bT4Zr6yIfK3J+mNkN668I7LlZQZFXdPGOcts9drWmPfqjAyKoa8stoVQnyl+V06oKhffVBz0eVR4ddxCp0asPjn6jN5BEyXg7tnTRXmZv3qtagnpKkPZ/P0oFZK1WtR5w6L3lDhdm5WjtsfNH+Dn9fRXRupvXDPyjxvHsnzVWz1+/QRfNfkjOvQGvvK/kpfmVmFTq1asSnumjSYzJeDu2aNE8Zm/ep3qAekqSdn89W0qxViuoRp96LX1Nhdq6W3+/6dNiveqjavHmnjJdDchjtm7JYSb+tlCTFT5qn1q/drh7zXpCVV6Dl971n2zFWGIVOJYwar7qfPSvjcOjQt78pd+tuhV3fT5J06Ktpirx3gLzDQhT77F3ufQq1/bIHbEy6YrAKnVoz4lO1d5/nu93neV33eR7/+Wwlu8/znu7zfOX975/kWV1qXN5e+1j24IS8HQ491ru57vz6TzktS5c1r62GkSH6dqXrq7BXt6yn+tWC1aF+dV3z0VwZY3RFizpqGOm6E3t2foEW79yvkX1a2HkYZ52Hn35eS1euUVpaunpcfqPuunmgrrykj91pVShWoVPrH/9EbSePkIqNW2q7xy273eOW6j3i1GXJG3Jm52pNqXFLtc7NtK7UuCWq3wVqOnaIfCNC1ObLR5S+bpeWDhhXrsd2Joufs0p1urfQoIWuMfnsh46NyS/5bLjmPPKhjiSnadG4yer7zj1q9/DVOrAuXuvdNwk7tC1Bu+at0fUzx8mynFo/aZ5SN++VJM1/8jP1futOefl4K333fs0q9tyV1dFraIdSY8WyrqG9Fr+mglO8hp73xAAFNYyR5bSUvfegVj3y0ek+lAprw9yVatotTk/Of0N52bn66uFj/cjtnzyqSY9OUPr+Q7pmzC06tO+g7v9xtCRpzfS/NOPNHxQcWVXDp4yVX5C/nJalrkP7aWyv4RQOT2Dj3JVq0i1Oj81/XfnZuSVmx978ySP69tEPlL7/kDoO6aOut1+i4MhQPTT9BW2au1LfPvaBohrW0IBX7pTldCp56z598wh9CVCa4ROliuVMWfqgMmmZU2B3CpVOlvm7y2fjn2ockG53CpXO9qwQu1OodHqPq2l3CpWO9yV32J1CpfPbeSPsTqHS2e77d1eTwz9VK/9Mvl/32WmuH21e3nzO4Bl/Z6uX4yfR6GWYGTXgrKxD9U6efEb+vamGAAAAAAAAAIDN+PgXAAAAAAAAgAfm05cvZtQCAAAAAAAAgM0o1AIAAAAAAACAzSjUAgAAAAAAAIDNWKMWAAAAAAAAgAfWqC1fzKgFAAAAAAAAAJtRqAUAAAAAAAAAm1GoBQAAAAAAAACbUagFAAAAAAAAAJtxMzEAAAAAAAAAHiwZu1OoVJhRCwAAAAAAAAA2o1ALAAAAAAAAADajUAsAAAAAAAAANmONWgAAAAAAAAAenCxRW66YUQsAAAAAAAAANqNQCwAAAAAAAAA2o1ALAAAAAAAAADZjjVoAAAAAAAAAHpxikdryxIxaAAAAAAAAALAZhVoAAAAAAAAAsBmFWgAAAAAAAACwGWvUAgAAAAAAAPBg2Z1AJcOMWgAAAAAAAACwGYVaAAAAAAAAALAZhVoAAAAAAAAAsBmFWgAAAAAAAACwGTcTAwAAAAAAAODBaXcClQwzagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGasUQsAAAAAAADAg9MYu1OoVJhRCwAAAAAAAAA2o1ALAAAAAAAAADajUAsAAAAAAAAANmONWgAAAAAAAAAeLLsTqGSYUQsAAAAAAAAANqNQCwAAAAAAAAA2o1ALAAAAAAAAADZjjVoAAAAAAAAAHpx2J1DJMKMWAAAAAAAAAGzGjNoK5v5RsXanUOn8OmKf3SlUOt1b7bU7hUrHKrA7g0poq90JVD6TRybYnUKlE/XYCLtTqHR6rR9rdwqVznut7rM7hUpnpMPX7hQqnVnZvCcqbxf717c7BQA2YEYtAAAAAAAAANiMQi0AAAAAAAAA2IylDwAAAAAAAAB4cBq7M6hcmFELAAAAAAAAADajUAsAAAAAAAAANqNQCwAAAAAAAAA2Y41aAAAAAAAAAB6cYpHa8sSMWgAAAAAAAAAoxhjT1xiz2RizzRjzWBmPG2PMm+7H1xhjWv3T16RQCwAAAAAAAABuxhgvSe9I6iepqaTrjDFNS4X1k9TI/e82Se/909elUAsAAAAAAAAAx7SVtM2yrB2WZeVJmizpslIxl0n63HJZLCnUGBPzT16UQi0AAAAAAAAAD9ZZ+u8U1JC0p9jve93b/m7M30KhFgAAAAAAAEClYYy5zRizrNi/20qHlLFb6RrvqcT8Ld7/ZGcAAAAAAAAAqEgsy5ogacIJQvZKqlXs95qSEv4fMX8LM2oBAAAAAAAA4JilkhoZY+oZY3wlDZA0pVTMFEmDjEs7SYcty0r8Jy/KjFoAAAAAAAAAHpxlfbm/ErAsq8AYc4+kGZK8JH1sWdZ6Y8wd7sfHS5oqqb+kbZKyJN30T1+XQi0AAAAAAAAAFGNZ1lS5irHFt40v9rMl6e5/8zVZ+gAAAAAAAAAAbEahFgAAAAAAAABsRqEWAAAAAAAAAGzGGrUAAAAAAAAAPDjtTqCSYUYtAAAAAAAAANiMQi0AAAAAAAAA2IxCLQAAAAAAAADYjDVqAQAAAAAAAHiw7E6gkmFGLQAAAAAAAADYjEItAAAAAAAAANiMQi0AAAAAAAAA2Iw1agEAAAAAAAB4cBq7M6hcmFELAAAAAAAAADajUAsAAAAAAAAANqNQCwAAAAAAAAA2Y41aAAAAAAAAAB6cdidQyTCjFgAAAAAAAABsRqEWAAAAAAAAAGxGoRYAAAAAAAAAbEahFgAAAAAAAABsxs3EAAAAAAAAAHjgZmLlixm1AAAAAAAAAGAzCrUAAAAAAAAAYDMKtQAAAAAAAABgM9aoLYMxZpSkTMuyXv6Xnm+qpOvdv15vWda7/8bznin+2JGsF2etldMpXdGitoa2b+wRs3TXQb00e60KnJbC/H310Q0dFZ+SoUd+XlYUsy8tS3d2aqIbL2hQnulXGFHdmqvlswNlvBza8dU8bX77F4+YuNGDFNOjhQqy87T0/veVtjZe/rHhavvmnfKrXlWW09KOL+Zo24czJEnNn7xOMb1byZlXoCO7krX0/gnKT88q70OrEHxat1XgbfdKDodyZv5POd9+VfLxdhcp4MabJcspFRbqyIS3VbBhrSTJBAYp8L6H5V2nnixJR15/QQWb1ttwFBWLT5u2CrzjXhkvh3Km/U/Z35Rsc9/2FylgkKvNrcJCHRn/tgrWH2vzoAcellfdepIlZb76ggo20uZ/R1DnVop56jbJ4dChb2bq4PjvSjxe9bKuirz9SkmS80iOEp58VzmbdtqRaoV04bMDVbN7nAqyc7XwgQlKWRfvERNUK1Jd371bVcKClLI2Xgvue0/O/ELVv6KDmt11sSSpICtHix7/VIc27FZgbLg6vXGH/CNd/f2WL+dqw0czyvnIzkzVurVQ0+cGy3g5tOfLOdrx1hSPmKZjBiuyR0sVZudqzX3vKX1tvAIbxKjlhGFFMf51qmvri98qfsI0RV9yoRoNv0pBjWtoUd+ROrx6R3ke0lll5NhXteCPvxQeFqqfvhhvdzpnjdueuU2tu7VRbnau3njodW1ft90j5t4X71Oj5o0kIyXsTNDrD76mnKycoscbNW+kl35+WS/e/aIWTf2jPNOvcKp2bak6o4fKOBzaP2mWEt/+scTjfg1rqP6r9yiwWX3teeErJY3/ueixuCXjVZiZLcvplFVQqPX9Hinv9M8Kj495UJ17dFB2do6euG+0Nq7d7BEz5o0n1aZDK2WmZ0qSnrjvWW1av7W8U63QLn16sM7pFqf87Dx9M/w9JayP94hpP6i3Og7tp2p1o/VMy9uUdShDktT5tovV8vKLJEkOLy9Vb1hDz7a6TdmHj5TnIeBvsozdGVQuFGrLgWVZ/SXJGFNX0l2SzppCbaHT0riZazR+QAdFBfvrhk/nq0ujaDWoFlIUk56Tr3EzV+uda9orpmqAUo/kSpLqRgTrm6Hdip6n9zsz1L1xjC3HccZzGLUaO0QLrh2nrMRU9Zw2WgkzVyhjy76ikOjuLRRUP1rTOjyk8FYN1er5mzTnP0/LKnBq9TNfKm1tvLwD/dRzxnNKXrBOGVv2KXnBOq0d+7WsQqeaPTFATe69VGvHTLbxQM9QDocC77xf6SMfkvPgAVV97X3lL/5DhXt2FYXkr1qhw4tdb2C86tZX8GOjlHbHIElSwG33Kn/5X8oc97Tk7S1Txc+Ww6hQHA4F3X2/Dj/uavPQt95X3uI/VLj7WJvnrVyhvD/dbV6vvoKfGKW0W1xtHnjnvcpb9pdyn6PN/18cDsU+c6d2DhqpgqQU1f/pNWXMWqLcbXuKQvL2JGnHgMfkTD+ioC6tFTv2Hu3470M2Jl1x1OzeQiH1ovV9x4cU2aqB2o8bol8vGeUR1+aJAVr/wXTtnLJY7Z+/SY2u66rNn89W5p4DmnbVc8o7nKUa3ZrroheG6tdLRslZ4NTSZ75SyjpXf3/p9NHat2CtDm9NKP+DPJM4jM57fqj+umaMchJSdNGMsdo/Y7kyi11DI3vEKaBejOa3u1+hrRvq/Bdv0aJ+I3Vke6IW9nis6Hl6rH5PSVOXSpIyNu3RiqGv6vyXbrXjqM4ql/fvpeuvvFQjRv8rcyQgqXW3NoqtG6vbO9+mc1qeozvH3KXhl3n20R8++4GyM7MlSTc/eYsuHnKxvnvX9cGcw+HQ4MeHaOX8leWae4XkcKju2Fu1acAzyktM0XlTX1TajKXK3rq3KKTgUKZ2PfmRwvq2LfMpNl79lApSM8or47NOpx4dVKdeLfVrd5Watz5fT734iK7rd3OZsa8885Zm/jqnnDM8O5zTNU7V6kXrpa4PqHbLhrpizM165/InPeJ2Ld+iTXNW6LbJT5XYvmDCr1ow4VdJ0rk9Wqnjzf0p0gKlsPSBmzHmCWPMZmPMLEnnuLc1MMZMN8YsN8b8boxp4t7+qTHmTWPMImPMDmPMVe7tMcaYBcaYVcaYdcaYTu7t8caYapKel9TA/fhLxpiJxpjLiuXwpTHm0nI/+H9gXeIh1QoLVM3QQPl4OdSnaQ3N25pUImbahr3qfk6sYqoGSJLCA6t4PM+SXQdUMzRQse4YlBTesoEy45N1ZPcBWfmF2vPzYtXo07pETGzf1tr17e+SpNQV2+QbEiC/6qHK2Z+mtLXxkqSCIzlK35og/+gwSVLy/LWyCl33cExZsU3+seHld1AViHfjc1WYsE/OpESpoEC5C+bIp13HkkE52UU/Gj9/WUd/9g+Qz/ktlDvzf64NBQWyjmSWT+IVmPc5pdp83hz5tj9xmx9tdBMQIJ9mLZQ7nTb///Jv0Vi5uxKVvydZVn6BDv+6QMG92pWIyV6xSc5018A6a+Um+URXsyPVCql2n9ba9t1CSdKBFdvlWzVQ/tVDPeJiLmqq+P/9JUna9u3vquPu9/cv26q8w1nu/bcpIMbVd2fvTyuamVtwJEeHtyYoMJp+PbRVQ2XtTFL2rv2y8guV+NMiRfVtUyImqm8b7ft2gSQpbfk2eYcEqEqpv0m1Ts10JD5ZOXsPSpKObE3Qke2J5XIMZ7s2cc1UNSTY7jTOKu16X6g537sKUZtXblZgSKDCqod5xB0t0kqSr5+vLMsq+v3imy7WommLdDgl7bTnW9EFtWyonPhE5e52XTdTf16osD4lC7IFKYd1ZPU2WQWFNmV5duvet7OmfDtNkrRm+ToFhwSrWvUIm7M6+5zXu7WW/+B6z7l75Tb5BwcoODLUIy5hfbwOua+Xx9Pi0g5aPWXR6UgTqNAo1EoyxrSWNEBSS0n/lXSB+6EJku61LKu1pOEqORM2RlJHSRfLVYCVXMsbzLAsK05SC0mrSr3UY5K2W5YVZ1nWw5I+lHSTO4eqkjpImvpvHtvptj8jR9HB/kW/RwX7a39GTomYXamZSs/J081fLtR1n8zTL2t3ezzPjA371K9pjdOeb0XlHx2urH0pRb9nJaYWFVtLxCSUiokpGRNQs5rCmtVR6grPr77VG9BFSXNW/8uZnx0cEdXkPLi/6HfnwQPyivAsSvm276TQ8Z8reNTzOvL6C659Y2JlHU5T4AOPqeqbHyrwvoclZneelCOimpwHSra5o1oZbd6hk0I//Fwho59X5qvuNo+OlfNwmoIeekyh73yooPtp87/LJzpC+YkHin4vSDwon6jjv9kJu6a3MuYvO+7jKCkgOkxHivXXRxJTFVCqT68SFqS8w1lFH6ZllREjSY0HdNW+uWs8tgfVrKbw8+vowErP/r6y8YsOV06x9s5OSFWVUgVsv5hw5RS7zuYkpsovpmRMzBXtlfgjbyhRMURER+hg4rEiSUpSiiKiy+7Hh708TJ8vn6iaDWrq109cM93CoyLUvk97Tf9iWrnkW9H5Rkcor1g/k5eYIp+YU/+gzLIsNZn0tM6f/pIib+h1OlI861WPiVTSvuSi35MT9ysqJrLM2Psev0M/zP1Cjz57v3x8fcorxbNCSFS4Dhc71w8npSrk//GhsI+fr87p0kJrpy35N9MDzgoUal06SfrRsqwsy7LSJU2R5CdX4fRbY8wqSe/LVZw96ifLspyWZW2QFOXetlTSTe41bptZlnXC765YljVfUkNjTHVJ10n63rKsgtJxxpjbjDHLjDHLPpp3ZhXSLFke20ovX1LotLQx6bDevrqd3r22vSYs2qJdqcdmt+UXOjV/W5J6NYk9zdlWXKaMNWGKz3g4lRivgCrq8NH9WvXURBUUmz0hSU2GXSarsFC7v2ftsTKV0bieZ76U9+fvSrtjkDJGPyH/gUNdGx1e8mrYSLlTf9bh+26RlZMj/6uvL2NvlFDmCe25KW/R70q7ZZDSRz2hgMGuNjdeXvJu2Eg5v/6stLtdbR5wLW3+j1llnfVSYLtmCrumt5Jf+LR886nIyu6wTyGm5K/RHc5Vo+u6aNnYkkvWeAdUUbcPhumvp79Qfqn+vlIqc121ss/nEhHF/ibGx0tRvVsr8ZfF/15ewGlVxtjlOP34G8Pf0JALBmvvtj3qeEknSdKto27Vp+M+ldPpPK1ZnjXK6mdO3s0U2XDZCK3rM1ybbnhOUUP6KfjCpv9aapWFKfOc94x7bcy7uviia3Rtn5tUNTREt9wzqByyO4ucyhjmFJzbs5Xil21m2YMKwnmW/jtTsUbtMaV7F4ekNPfs2LLkFvvZSJJlWQuMMZ0l/UfSRGPMS5ZlfX6S150o6Qa5ZvQOLTMxy5og1+xeZX/yyN/vBU+jqGB/JWUcexOYnJGtyGC/UjF+CvWvLn9fb/n7eqt1rQht3n9YdcKDJEkLtyerSVRVRQQy4+14shJTFVDj2CyIgJhw5SSnecbERiileEySK8Z4e6nDR/dr1w9/aN/UkrPe6lzdSbE9W2r+NWNP4xFUbK7ZnNWLfndUi5Qz5fhf5SlYv0Ze0TVkQqrKmXJAzoMHVLB5oyQp74/5FGpPgfPgATki/0abr1sjrxhXmxcePCDngWNtnrtwvgKuoc3/jvykFPkUm4XiHVNN+ftTPeKqNKmrGuPuU/zQp1WYxrp6J9JkcE81vsG1LvvBVTsUGHusTw+MCVdWqT49NzVDvlUDZLwcsgqdCogJV1byoaLHw86tpYteukW/DXxJuYeOffhpvL3U/YNh2vHjIu2axixnyT07tlh7+8eGKzfpkGdMseusX0zJmMgecTq8Nl55Bw6f/oSB/6f+g/6jPtf1kSRtXbNV1WKOfRMlIjpCqcme/fhRTqdTv//yu/57x381+9tZatSsoR5+23VDq5DwELXu1kbOgkItnsmHFWXJS0yRb7F+xjcmQvlJx2/v0vLd/XtBymEdmr5EgS0bKWPJhn89z7PNdTddpatudK0kuG7VBkXXiCp6LCqmuvYnHfDY5+B+17ul/Lx8/Tj5Vw2564bySbYCaz+wl9pe112StHf1DlUtdq5XjQ5XevKh4+16XC0uYdkD4HiYUeuyQNIVxhh/Y0ywpEskZUnaaYy5WpKMS4sTPYkxpo6k/ZZlfSDpI0mtSoVkSCq9ANenku6XJMuyKtwtyc+LCdXu1CPal3ZE+YVOzdiwT10aRpeI6dooRiv3pqjA6VR2foHWJhxS/YhjzTB94z71ZdmDEzq0aoeC6kUroFakjI+Xal3WTgkzlpeISZixQnWuds2CCG/VUPkZ2crZnyZJavPqrUrfuk9b3y/59bWobs3V5J5LtHDIKyrMziuXY6mICrZskleNmnJERUve3qrSubvyl5ScfeyIOXYOezVoJOPtLSv9sKxDqXIeOCBHjVqSJJ8WrVS4O74806+QCjaXavOu3ZW3uFSbxxZr84aNpOJtfvCAvGq62tw3rpUKaPO/JXvNFlWpGyufmlEyPt6qenFnZcwq+dU0n9hI1X53hPY89Irydlbym1Wdgk2fzdKU3k9oSu8ntHvGcjW8yrXmcmSrBspLz1K2u78uLnHRBtX9j2uNw4ZXd9LumSskSYGxEer+wf36fdh4pe8ouS58x1duUdq2BK2fwNeVjzq8crsC60fLv7brGhpzeQcll7qGJs9YrhpXd5YkhbZuqIKMLOUW+5vEXnGREn/kWyc4s039/H8a1u8+Det3nxbP+FPdr3QVVs5peY6yMrJ0aL9nMSWmzrEvDLbt2VZ7t7lufnVLx1t0y0U365aLbtaiqX/ovZHvUaQ9gcxV2+RXL0ZValWX8fFW+GUddWjm0lPa1+FfRQ73hBWHfxVV7dJC2Zs8l4qDp0mffKcrewzUlT0Gava0Bbr06n6SpOatz1dmRmZRUba44uvW9ujXRds2sUTQyfw58Te90f9xvdH/ca2fuUyt/+t6z1m7ZUPlZGQp40Da33o+v2B/1b/wXK3/bfnJg4FKiBm1kizLWmGM+VquNWV3Sfrd/dANkt4zxoyU5CNpsqQTrT3QVdLDxph8SZmSSnyPwrKsFGPMH8aYdZKmWZb1sGVZycaYjZJ++hcPqdx4Oxx6rHdz3fn1n3Jali5rXlsNI0P07cqdkqSrW9ZT/WrB6lC/uq75aK6MMbqiRR01jAyRJGXnF2jxzv0a2eeENfBKzyp0auWIT9V50qMyXg7tnDxf6Vv2qf6gHpKkHZ/PVtLsVYrpEad+f76qwuw8LX3gfUlSRNvGqnt1J6Vt2K1ev7lmza4d97WS5qxWqzGD5fD1UZfJj0ty3VBsxaMf23OQZzJnoY6897pCRr8sORzK/W2qCnfHq0o/173/cqdNke9FnVWlex+psEBWbp4yXnimaPcj77+h4IdHSt4+ciYlKPP154/3SjjKWajMd15X1bGuNs+ZOVWFu+Ll9x9Xm+f8b4qqdOysKj37uG4WlpunjLHH2jzznTcU9OhIGW8fFSYlKPMV2vxvKXQqYdR41f3sWRmHQ4e+/U25W3cr7HrXG6BDX01T5L0D5B0Wothn73LvU6jtlz1gY9IVx97Zq1Szewtd+YfrQ7LfH5xQ9Fivz4dr4cMfKjs5TcvGTFbXd+9Rq0euVsr6eG2ZNE+SFPfAFaoSFqR2Y4dIkqyCQv3S/ylVv6CxGl7VSakbduvSmWMkSSue/0Z7K/n641ahU+sf/0RtJ4+QvBzaO2muMjfvVe1BPSVJuz+fpQOzVqp6jzh1WfKGnNm5WjNsfNH+Dn9fVevcTOuGf1DieaP6XaCmY4fINyJEbb58ROnrdmnpgHHlemxni4effl5LV65RWlq6elx+o+66eaCuvKSP3WlVaMvmLFObbm004fcPlJudqzeGv1702NOfjtJbj76pQ/sP6f7XHlBAUICMMdq5YafefeId+5KuyAqdin/iQ53z1VMyXg4dmDxb2Vv2qPrA3pKk/RNnyicyVOdPe0lewf6ynJZibrlYa7reJ+/wEDX66FFJkvF2KOXH33V43ko7j6ZCWjDrD3Xu0UHTlnyvnOwcjRw2uuix9758TU89OEYHkg/qxfeeVVhEqIwx2rRui559+AUbs654Ns1dqXO6xemR+a8rLztX3z78ftFjN33yiL579ANl7D+kDkP6qOvtlygoMlQPTH9Bm+au1PePua6j5/W5QFt/X6P87NzjvQxQqZnjrVWE8mGMCZC0VlIry7JO+n26M23pg8rg1xH77E6h0uneaq/dKVQ6nqtj43RL2sodzsvb0txQu1OodKIK6FzKW6/1LGVU3v7b6j67U6h0Rhb42p1CpTO0kPdE5e1i//p2p1DpvBA/qcyV7Su7t2vdeFbWoe7Z88UZ+fdm6QMbGWN6Stok6a1TKdICAAAAAAAAODux9IGNLMuaJam23XkAAAAAAAAAsBczagEAAAAAAADAZhRqAQAAAAAAAMBmLH0AAAAAAAAAwMNZeSexMxgzagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGasUQsAAAAAAADAg9PYnUHlwoxaAAAAAAAAALAZhVoAAAAAAAAAsBmFWgAAAAAAAACwGWvUAgAAAAAAAPDgtDuBSoYZtQAAAAAAAABgMwq1AAAAAAAAAGAzCrUAAAAAAAAAYDPWqAUAAAAAAADggTVqyxczagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGYUagEAAAAAAADAZtxMDAAAAAAAAIAHy+4EKhlm1AIAAAAAAACAzSjUAgAAAAAAAIDNKNQCAAAAAAAAgM1YoxYAAAAAAACAB6exO4PKhRm1AAAAAAAAAGAzCrUAAAAAAAAAYDMKtQAAAAAAAABgM9aoBQAAAAAAAODBaXcClQwzagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGasUQsAAAAAAADAg2V3ApUMM2oBAAAAAAAAwGYUagEAAAAAAADAZhRqAQAAAAAAAMBmFGoBAAAAAAAAwGbcTAwAAAAAAACABye3EytXzKgFAAAAAAAAAJsxo7aCCb79S7tTqHQ2NGhmdwqVTpvFaXanUOncE8h5Xt7WObLtTqHSubqgwO4UKp3tvgw1y9t7re6zO4VK54cVb9qdQqXzSJsRdqdQ6XzrVc3uFCqdeXledqcAwAbMqAUAAAAAAAAAmzHNAQAAAAAAAIAHp90JVDLMqAUAAAAAAAAAm1GoBQAAAAAAAACbUagFAAAAAAAAAJuxRi0AAAAAAAAAD5bdCVQyzKgFAAAAAAAAAJtRqAUAAAAAAAAAm1GoBQAAAAAAAACbsUYtAAAAAAAAAA9OuxOoZJhRCwAAAAAAAAA2o1ALAAAAAAAAADajUAsAAAAAAAAANqNQCwAAAAAAAAA242ZiAAAAAAAAADw4jd0ZVC7MqAUAAAAAAAAAm1GoBQAAAAAAAACbUagFAAAAAAAAAJuxRi0AAAAAAAAAD05ZdqdQqTCjFgAAAAAAAABsRqEWAAAAAAAAAGxGoRYAAAAAAAAAbMYatQAAAAAAAAA8sEJt+WJGLQAAAAAAAADYjEItAAAAAAAAANiMQi0AAAAAAAAA2Iw1agEAAAAAAAB4cNqdQCXDjFoAAAAAAAAAsBmFWgAAAAAAAACwGYVaAAAAAAAAALAZhVoAAAAAAAAAsBk3EwMAAAAAAADgwSnL7hQqFWbUAgAAAAAAAIDNKNQCAAAAAAAAgM0o1AIAAAAAAACAzVijFgAAAAAAAIAHVqgtX8yoBQAAAAAAAACbUagFAAAAAAAAAJtRqAUAAAAAAAAAm7FGLQAAAAAAAAAPTrsTqGQo1NrEGDNP0nDLspa5f68r6VfLss63M6//r9defVb9+nZXVna2br75Aa1cta7MuNHPPqorr7xYhYWFev/9z/X2Ox8rJCRYn3/2lmrVqiFvby+9+up4ffb5N+V8BBVLQMfWqj7iTsnh0OHvpuvQhyXbK/jibgq/5RpJkjMrW8nPvKW8zTtlfH1Ua+LLMr4+kreXMmf8rpS3v7DjECqkp8c9qq49OyonO0fD73lS69ds8oh56e1ndWGHNspIz5AkDb/nKW1ct7no8eYtz9MPMybq3psf0bRfZpVb7hVJt2cGql63OBVk52r6QxO0f128R0xIrUhd/Pbd8gsN0v518Zp6/3ty5hfKN9hf/d+4U8GxEXJ4e2nZ+1O1/tsFkqQqIQHq/eItqta4pizL0oyHP1Diim3lfHRnvuufHqrm3VopLztPHw1/S7vW7/SIue31YarbrIEKCwq1c/VWfTbifRUWFKrvbZep/eWdJEkOLy/FNqyh+1oN1ZHDmeV9GBVGtW4t1PS5wTJeDu35co52vDXFI6bpmMGK7NFShdm5WnPfe0pfG6/ABjFqOWFYUYx/nera+uK3ip8wrTzTr1A6PzNQdbq7+pZZD07QgeP0LX3ecfUtB9bFa+YwV98iSTXanatOo26Uw9tLOYcy9MPVYyRJviEB6vHiLYo4x9W3zB7+gZLoWzzc9sxtat2tjXKzc/XGQ69r+7rtHjH3vnifGjVvJBkpYWeCXn/wNeVk5RQ93qh5I73088t68e4XtWjqH+WZ/lln5NhXteCPvxQeFqqfvhhvdzpnpSueHqxzu7VUfnauJg1/T3vXx3vE3Pj6ParVrL4KCwq1e/U2fTPiQzkLCss/2QoqsHNrRT95m4yXQ4e+nqmU978t8XjIpV1V7farJEnOrBwlPvmOcje5xjUxzw9TcPe2KkhJ045+d5d77hVNx2LX0NkPTtDBMq6hwbUi1fudu1UlNEgH18VrlvsaGtvuXPX76AFl7DkgSdoxbamWvfGTJKn5LX3VdEBXWbKUummv5jw0QYW5+eV4ZMCZh0It/rF+fburUcN6atK0oy5s20rvvD1OHTpe4hE3eNA1qlkzVued31mWZSkyMkKSdNedQ7Rx4xZdfsUQVasWrg3rFuirST8qP58OukwOh6o/ebf23TxC+ckHVeebN3Vk7mLlbd9dFJK/N0l7Bj0sZ3qmAjq1UdQzw7RnwP2y8vK156ZHZWXlSN5eqvXFKzry+zLlrPYsOKKkrj07qm792up2wSWKa9NMz708Ulf0vrHM2HFPv1pmEdbhcOjRp+/XgjmLTne6FVa9bi0UVjdaH3d+SDEtG6jnmCH66rJRHnGdHx+g5R9O1+ZfFqvn2JvU7NquWv3FbMUN6qWUrfv009BX5R8erJvmvaSNP/0hZ36huo0aqPh5a/TLHW/K4eMlH/8q5X+AZ7jmXVspql6MHut6j+q3bKSBY27Tc5c/7hG3+KffNeH+NyRJt7/5gDoP6Km5X8zQ9Ak/a/qEnyVJLXq0UZ+bL6ZIeyIOo/OeH6q/rhmjnIQUXTRjrPbPWK7MLfuKQiJ7xCmgXozmt7tfoa0b6vwXb9GifiN1ZHuiFvZ4rOh5eqx+T0lTl9p0IGe+Ot1aKLRetCZ2ekhRLRuo69gh+vbSUR5xHR4foFUfTtfWKYvVdexNajqgq9ZNnC3fkAB1HTNEPw98UZkJKfKPCCnap/Oogdo1b42mufsWb/oWD627tVFs3Vjd3vk2ndPyHN055i4Nv+whj7gPn/1A2ZnZkqSbn7xFFw+5WN+9+50k1zV08ONDtHL+ynLN/Wx1ef9euv7KSzVi9Mt2p3JWOrdrnCLrxWhs1/tVp2VDXTXmFr1++UiPuOU/LdQX978tSRr45r1qN6C7Fn3xW3mnWzE5HIoZdad2DR6p/KSDqv/ja8qYvVh52/YUheTvTVb8dY/JmZ6poC6tFTvmXu288kFJ0uHvZ+nQxF8V+/KDdh1BhVG7WwtVrRetL93X0C5jh+j7Mq6h7R8foNUfTte2KYvVZexNOndAV62fOFuSlPjXZk296ZUS8YHRYWp+U29N6vGoCnPy1fvde9Xw0nba/O3v5XFYwBmLNWpPM2NMXWPMJmPMZ8aYNcaY74wxAXbn9W+65JI+mvilaxC95K8VqhpaVdHR1T3i7rh9kJ4b85osy5IkHTiQIkmyLEtBQUGSpKCgQKWmpqmgoKCcsq94/Jqfo/zdicrfmyTlFyh96nwFdm9fIiZn1UY5013FkZzVm+QTXa3oMcs9M8V4e8v4eEvuvwdOrFe/bvrh618kSauWrVVI1WBFRlU7yV4lDb71Ok3/ZZZSDqaejhTPCg16t9aG7xdKkhJXbleVkEAFVg/1iKvdoam2TP1LkrT+u9/VsE9r9yOWfAP9JUk+gX7KSTsiZ4FTvkH+qtn2HK2dPE+S5MwvVG561uk+nAqnZe8LtOiH+ZKkHSu3KiA4UFUjQz3i1sxbUfTzztVbFRYd4RHT7tKOWjxl4WnL9WwQ2qqhsnYmKXvXfln5hUr8aZGi+rYpERPVt432uWeFpy3fJu+QAFUp9f9EtU7NdCQ+WTl7D5ZX6hVO/d6ttdHdtyS7+5aAMvqWmhc11bb/ufqWTd/9rvruvuWcyzto+/SlykxwjV2yU9IlST5B/oq98BxtKNa35NG3eGjX+0LN+X6OJGnzys0KDAlUWPUwj7ijRVpJ8vXzLRozStLFN12sRdMW6XBK2mnPtzJoE9dMVUOC7U7jrHV+7zZa+oOr7961cpv8gwMUUsb1dOO8VUU/7169XaHR4eWUYcXn36Kx8nYlKH+P6z3R4V8XKLhnuxIx2SuOvSfKWrlZ3sXGK1lL16swLaNcc66o6vVurc3FrqG+x7mG1rioqbYXu4bWKxqfH5/D20vefr4yXg55+/sqK/nQv5o7UBFRqC0f50iaYFlWc0npku5yb//SGLPKGLNK0lS7kvunasRGa++ehKLf9+1NVI3YaI+4+vXr6pqrL9XiP6fq1ykT1bBhPUnSO+9+onObNNKeXSu0asVsPfjQ0yUG5ijJu3qECpIOFP1ekHxQPlGeRZKjql7ZR0d+X3Zsg8Oh2j+8owYLJytr0QrlrNl83H1xTFRMdSXuSy76PTEhWdExnh9ISNLwkfdq2oJvNfK54fL19Snav89/uuvLT74tcx+4BEWHKSMxpej3jKRUBUWXfDPvHxaknPQsWYWu1ZIyE4/FrPz0N4U3jNXty97W4JnjNHfURMmyVLV2pLJSM9Tnlds0cOpz6v3CLcx6K0NoVLhSE44V+w4lpZRZhD3Ky9tLHa7oorWlZrj5+vnq/C5xWj5t8WnL9WzgFx2unIRj53t2QqqqlHqT7hcTrpx9x2JyElPlF1MyJuaK9kr8kZn6JxIYHVZUZJVK9htH+YUFKfc4fUtovWhVqRqoK755Qtf+b7SaXNlRklS1dqRyUjPU89XbNGDac+r+In1LWSKiI3Qw8VjfkpKUoojj9C3DXh6mz5dPVM0GNfXrJ79KksKjItS+T3tN/4KlPVAxVI0KV1qxPictKVVVT1CEdXh7qc0VnbRp/urySO+s4B0Vofxi/UpB0onfE4Vd01uZ85eXR2pnndLX0COJqQos4xqaV+waWjomunVDXTNjjP7z+cMKa1zDFZN0SKven6pBi9/QkOVvKy8jS3sWlL2EIuzllHVW/jtTUagtH3ssyzq6kNYXkjq6f77Bsqw4y7LiJPW3JbN/gTHGY1tZhdYqVXyVk5Ordu3768OPv9KHE1xffejdu6tWr16vWnVaqfUFvfXG688pODjotOddYZ1ie0uSf9vmCrmyjw688tGxjU6ndv/3bu3odqP8mp0j30Z1TlemZ5Uymr3Mdn9x9JvqceFluqzn9QoNq6rb7xsqSXpqzMN6/tnX5XSyFPuJGJ3C+V3m/wOu/9bt0kwHNuzS+23u0cS+T6jHs4PkG+Qvh7eXos6vq9UTZ2ti/5HKz85V27s8l2ip7E61Pz9q4OhbtfmvDdq6dGOJ7XE922jbss0se3AyZfQrOoVBY/G/ifHxUlTv1kr8haL4iZzSuX2CvsXh7VD1ZvX0y+CX9fONL+iCYZcrtF60HN5eijy/rtZ+PluT+41UflauWt9N3+Lp1PuWN4a/oSEXDNbebXvU8RLXmte3jrpVn477lGsoKoxTHTceddXoodr+10btWMpyZKesrEY+joB2zRV6dW/tf/GT05jQ2ausa6jHtzLLjHH958C6eH3e7n590+cJrf1kpvp9+IAkqUrVgP9r777joyj+P46/51JI6AkEEpDeVKSDBaR37Ap2sPeCfqWo+BP8IsLX3lHsFexdAakqqEjvSG8plBAIpOfm98ct4ZJcICjcEvJ6Ph55ZG93dm92bm9m93Ozs6rbq7U+aH+/3mt7j0LLllHjSzoc49wDJQ9j1AZHwVb5qEL3xphbJd0qSSakkjyecscqX//YHbdfp5tuukaSNH/+Yp1Sq0bespqnxCk+IanQOtu2J+jLr36QJH399U96641nJUnXD7pCTz7lG5tp/fpN2rRpq05t0lB/zV98nPeiZMpJ2qXQ2Ji816HVqypnR+Fb6cMb11P10fdp+23/J2+A23q8qQeUNm+pyp3bVllrNx/XPJdUA2+6QlcOvFSStHTRCsXVrJ63LK5GdSX59Ww+aGeS75f9rKxsffbxN7rlruskSc1aNtVLb/xPkhQVHaUuPToqJzdXP/8483jvxgmv5aAeanZVV0lS4tINqhB3qDdEhdhoHUhKyZc+PTlVERXLyoR4ZHO9Kh8XrQPObVJnDOiseeN9Q1SkbE7S3q07Fd0gTvvidys1IVmJi30Pr/n7x3k68w6CKZLUbWAfdb6qhyRp45J1iq5xaEiPqNgqSkkKPFTHRYMHqEKVSnrvticLLTvzgnP157eML3YkGQnJiqhx6HiPrBGtzMQ9hdPUPJQmIi5/mpjuLbV32SZl7dx7/DNcwjS7roeaOnXLjiUbVN6vrH31Rkq+9BnJqSpTRN2yP2GP0pOXKic9Uznpmdr+52pVPb224uet0f6EZCU5dcv6H+epDT8CSZL6DTpPva/qLUlau3StqsYdqluqxFZRchF1iyR5vV79+t2vuvT2SzX9s2lq1Kyhhr48TJJUMbqi2nRtK29Orv6Yyg8UOHF0GNhL51zVTZIzjIFfnVM5Nlr7irilu/fgy1S+SkW9c9uzQcnnySIncZfC/OqV0Niqyk7aXShdmSZ1VeOJe7XlxkcZ6uAonHFdD51eRBtarog2NNyvDS3n14Zm+w1rs2XmEnnGXK+IqPKq2f50pW7dqYxk3+ey8af5im3bSH9/xcMiUbrRozY4ahtjDg4iepWkoxq0z1o7wVrb1lrb9kQI0krS+NfeU9t2vdS2XS99++0UDbzG9zTNs85srX179ykxcUehdb79drK6dvH9Qta50zn6e+0GSdKWrdvVrZuvk3G1alXVuHF9bdhI4LAoGcvWKKxODYXWrC6Fhapiv846MDP/hUpoXIxqvPh/Shz+lLI3HXooTUhUJXkq+I4hUyZcZc9ppayNW4XAPnjrE53X5Qqd1+UKTf1xpi69wnfx3bJtM6Xu258XlPXnP25tr35d9fdq35O/O7Xup46tfH8/ffezHh06hiCtY/H70/RB3xH6oO8IrZuyQKc7txTHtWqgzNQ0HdiRUmidLb+vVON+Z0qSmvbvqHVTfWOm7ovfpdodmkqSylatqKgGcdq7ZYfSdu5VakKyourHSZJqd2iq3Wu3F9puaTTjg8ka2W+IRvYbooVT56n9pZ0lSfVbNVJ6apr27kwptE6nK7rrjE4t9do9zxXqIRRZoayanHW6Fv7Mg62OZO+i9SpXP1aRtWNkwkIUd3F7JU3Jf1tm0pQFqjmgkySpcpuGyklNU6bfd6LGJR2UwAVNQMvem6ZJfUZoUp8R2jBlgU5z6pbqrRooKzVNaQHqlm1zV6rheb665dT+HbXRqVs2TF2gGmc28Y2hFxGu2FYNlLwuXmk792p/QrIqO3XLKR2aKpm6RZL04/s/aHDfezW47736Y8rv6naZL4DVpFUTpaWmac+OwkGruDpxedNn9jhT29ZtkyTdfO7NurnDTbq5w02a++McjX9kPEFanHDmfDBVT/d7UE/3e1DLp85Xu0t9dXedVg2VnpqmfQHa07Ou6KomnVrog3teZOi3o5S+9G+F162psFN810SVzu+k/dP/zJcmNC5GtcaP0PYhzyhrU3wRW0Igy9+bpk/7jNCnfUZo45QFalKMNnT73JVqEKANjYyplJemWsv6Mh6jjD37lbp9t6q3aqjQiHBJUs0OTbWHNhQlhDEm2hjzszFmrfO/0OD7xphaxpiZxphVxpgVxpjBxdk2PWqDY5Wk64wxr0taK2m8pJOmu8WPP01Xnz7dtGbVHKWlp+vmmw89OfO7b97XrbcPVUJCkv735Cv64L2XNXjwLTqwP0233T5UkjTmief19pvPadHCaTLG6KERT2j3bgYRL1KuVzsff1WnvDlG8ni078upylq3WZWu8I2esfeTH1XlzmsUUrmCqj16t7NOrrYMuFchMdGKHfuATEiI5DFKnfyLDsya5+LOlBwzf/5VXXueq1nzv1d6eoaG3fNo3rK3J72sB+97TDsSd+r518cqukqUjDFatXyNRjww2sVclzwbZyxW/a4tdNOvzyg7PUtThkzIW3bJu0M0dfibOpCUol/HTtJ5L9+tDkMHaMeKTVr+ySxJ0h8vfq0+z9ymQVPHyhjp17GfKH2P7/b7GY++p34v3qGQsFDt3bJDk/22DZ+lMxeqedfW+t/sV5SVnqm3hr6St+z+d0boneGvKmXHHg0ac5t2b9+pR756QpK0YPKf+vZF3/jLrXufpRW/LlFWeqYr+1CS2FyvVjz0js6c9LAU4tG2iTO1f8021R7k6+G85f1p2jltkap1b6nOf74gb3qmlg5+LW99T2S4qnZqpuVD3nBrF0qMTTMWq063Fhr0m69umf7Aoe//Be8N0Yxhvrpl7thJ6vPK3Tp76ADtXL5JK5yHhO1ZF6/Ns5bq6qljZa1XKybOUvIaXxBx9v+9p14v+eqWfVt2aNoD1C0FzZ8xX227ttWEX99QZnqmXhjyfN6yke+O0kvDX9SeHXt033P3q2z5sjLGaOPKjXp1xCtFbxT/ytCR4/TXoqVKSdmn7hdfqztvGqjLLujtdrZOGitnLtJpXVtqxOwXlJWeqUlDD9Xdt7wzXJ8Mn6B9O/ZowJibtWf7Lg3+yne+uHTyPE198Uu3sl2y5HqV+Nh41X53tIzHo5TPf1bm2i2KuqqvJGnPxJ8Uc89VCqlcUXGP+R4RY3NztfHi+yRJNZ8fprJnNVNoVEU1+u097XzhI6V8NtWtvTmhbZ6xWLW7tdA1vz2jnPQszfBr5857b4hmDntTaUkp+mPsJPV85W6d5bShq5w2tEG/M3XGwO7y5uYqJyNbP9/lq9t3LF6v9T/O04CfHpc3N1e7lm/Wio/pyIIS40FJ062144wxDzqvhxdIkyPpAWvtQmNMBUkLjDE/W2tXHm7Dhl/uji9jTF1J31trzzgW2wsNr8kHFmQrGzRzOwulTu8dCW5nodS5uxzHebAt96QfORGOqQHpYW5nodRZH06fgGCbalLczkKp8+XCF93OQqkzrO3Dbmeh1LklhGEDgm1WVqEOejjO7tz6YfEHPy5F7q975UkZh3pu06R//HkbY9ZI6mKtTTDGxEmaZa1tcoR1vpH0srX258OlY+gDAAAAAAAAACie6tbaBEly/lc7XGKnE2crSX8eLp3E0AfHnbV2k6Rj0psWAAAAAAAAwL9jjLlV0q1+syZYayf4LZ8mKTbAqiOO8n3KS/pC0n3W2n1HSk+gFgAAAAAAAECp4QRli3y4gLW2R1HLjDFJxpg4v6EPdhSRLky+IO1H1tpiDULO0AcAAAAAAAAACvGepH//0reSrnOmr5P0TcEExhgj6S1Jq6y1zxZ3wwRqAQAAAAAAAKB4xknqaYxZK6mn81rGmBrGmB+dNB0kDZTUzRiz2Pnrd6QNM/QBAAAAAAAAABSDtXa3pO4B5sdL6udM/ybJHO226VELAAAAAAAAAC6jRy0AAAAAAACAQqys21koVehRCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALmOMWgAAAAAAAACFeN3OQClDj1oAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZgVoAAAAAAAAAcBkPEwMAAAAAAABQiFfW7SyUKvSoBQAAAAAAAACXEagFAAAAAAAAAJcRqAUAAAAAAAAAlzFGLQAAAAAAAIBCGKE2uOhRCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALmOMWgAAAAAAAACFeBmlNqjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC5jjFoAAAAAAAAAhXjdzkApQ49aAAAAAAAAAHAZgVoAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZDxMDAAAAAAAAUIiVdTsLpQo9agEAAAAAAADAZQRqAQAAAAAAAMBlBGoBAAAAAAAAwGWMUQsAAAAAAACgEK/bGShl6FELAAAAAAAAAC4jUAsAAAAAAAAALiNQCwAAAAAAAAAuY4zaEmZ+XBu3s1DqjEsPdzsLpc7c06LdzkKpM2OD2zkofa5vs8vtLJQ6v/1V0+0slDq1shnVLNge8XDeEmzD2j7sdhZKnSfnP+F2FkqdX5o+5HYWSp0+1Xa4nQVAkmRl3c5CqUKPWgAAAAAAAABwGYFaAAAAAAAAAHAZgVoAAAAAAAAAcBlj1AIAAAAAAAAohCcOBBc9agEAAAAAAADAZQRqAQAAAAAAAMBlBGoBAAAAAAAAwGWMUQsAAAAAAACgEK+1bmehVKFHLQAAAAAAAAC4jEAtAAAAAAAAALiMQC0AAAAAAAAAuIxALQAAAAAAAAC4jIeJAQAAAAAAACiER4kFFz1qAQAAAAAAAMBlBGoBAAAAAAAAwGUEagEAAAAAAADAZYxRCwAAAAAAAKAQL6PUBhU9agEAAAAAAADAZQRqAQAAAAAAAMBlBGoBAAAAAAAAwGWMUQsAAAAAAACgEMsYtUFFj1oAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZY9QCAAAAAAAAKMTrdgZKGXrUAgAAAAAAAIDLCNQCAAAAAAAAgMsI1AIAAAAAAACAywjUAgAAAAAAAIDLeJgYAAAAAAAAgEK8sm5noVShRy0AAAAAAAAAuIxALQAAAAAAAAC4jEAtAAAAAAAAALiMMWoBAAAAAAAAFGIZozao6FELAAAAAAAAAC4jUAsAAAAAAAAALiNQCwAAAAAAAAAuY4xaAAAAAAAAAIV43c5AKUOPWgAAAAAAAABwGYFaAAAAAAAAAHBZqR/6wBhzvaS21tq7/02aAOvcJ2mCtTbt3+bxRFehc2vVHHmzTEiIdk+aqh3jv8i3vEyDmqr99GBFNm2ghKc/0M4JX+cti7npQkVf2UuyVhmrN2vL0BdkM7ODvAcl09Ujb1Szrq2UlZ6lt4a8rC0rNhZKc8vzg1WvWX3l5ORq45J1ev/h15WbkytJanJ2U1316PUKCQ3V/j379L8rRgZ7F0qUMme1U8XBd0ueEKV9/4MOfDgx//JzO6jCzTdI1srm5mrfiy8re+lySVKlh4apTPuz5d2Tol2DbnQj+ye0uC7N1Xb0QBmPR+smztLKl78rlKbN6IGq2a2lctIz9fv9E7Rn2abDrtvsgUvV8OouykhOlSQtGfup4mcsUblTqur82U9q34YESdLuBes078F3grOjJUBY6zNV7pZ7JI9HGT//oIzPP86//KwOKnvNTZL1Srm5OvDmy8pZuUyemrVUYdihOsQTW0PpH72tjG8/D/YulAjVujZXs9GDpBCPtnw0U2sDHPPNHh+kat1bKjc9S4sGv6a9zjHf868XlLM/XTbXK5vr1ezej0iSTn/0asX2bC1vdo7SNiVp4X2vK2ffSX8KUmwHy9yEeLT5MGVe3SnzhX5lLknyGHWZMkYZicn6Y+DTkqTThg1QbJ82kterzF37tHDwa8pISgnODpUwlbq0Up3RN8p4PNoxcZoSXv4q3/KIhjVV/9m7Va5ZfW3938dKfO2bvGUt/3xNufvTZb1e2Zxcreg7LNjZPylcMvI6nda1lbLTMzVxyHhtW7GpUJprn79btZrVV25OrrYsWadPH35TXue8Ef/eI088q1/mzFN0VGV9/eFrbmenxIru2kKNH79eJsSj+I9maPNL3xRK03jM9arSvZVy0zO16t7xSl3mu06qdUtf1bi2uyQp/qMZ2jrhx3zr1b7jfDUaNVC/nHazsp1zSOQX2aGtqgy/QybEo31fTtbetz7Jt7z8ed1U6cbLJUk2LV27Rr+krL83SJJqTX5fNs13DqPcXG2/stjhFaBUKfWB2uPoPkkfSjq5r5I8Hp0y+jatv+ZRZSfuVuNvn9HeafOUuXZrXpLclP3aNnKCKvU+O9+qYdWjVfWGC7S6+12ymVmq88owRV3QUcmfzwj2XpQ4zbq0UvV6cXqoyz2q36qRBo25VY9f/FChdH98/YveuO8FSdJtL96njld216wPpyqyYlkNHH2znr1ujJLjd6lClYrB3oWSxeNRxf8MVvL9Q5W7Y6eqvvmaMn+bq5xNm/OSZC1YoF2/zZEkhTaor6j/jtTOa66TJKX/OFkHvvhKlR8p/BmVdsZj1O6J6zTjiR2CggAAW39JREFUynFKS0hWnx//q21TFmjf2vi8NDW6tVDFerH6tsMDqtK6gc4ce72mnD/qiOuufmOyVr32Y6H33L85ST/1HBG0fSwxPB6Vu/0+7fu/B+TdvVOVnn1d2X/OUe7WQ8d59pKF2vun7zgPqVtfFYaPUsodg+TdvlV7B9+ct52odz9X1u+/urEXJz6PUfOxN2ju5WOVnrBbnSc/rsSpC5X69/a8JNW6t1S5+rGafs5/FNW6oVr870b90u/RvOVzLhujrAIXkDtnL9OqMZNkc706/ZEr1fjeC7Xy8UlB260TmseoxdgbNMcp8y4Byrx695YqXz9W04oo8wa39FXq2u0KqxCZN2/tq99r1ZOfSZLq39RbTf5zqZYMfzt4+1VSeDyq+8QtWn3lY8pK2K2mPz6plCl/KX3ttrwkOXv2a/P/vaWoPmcG3MSqAY8qh6DJP3Zal5aKqRenJ7rcpzqtGqr/mJv1/MWPFEq34Ovf9OF9L0uSBr54j86+spvmfvhzsLN70rq4X09dfdmFenj0025npeTyGDUZd6MWXT5GmfG71W7KWO2aMl8H/OrzKt1bKrJerH4/e7AqtmmkJk/epPl9H1G5U2upxrXd9Vefh2WzctRy0sPa9fNCpW9MlCSVqVFF0Z2bK33rTrf27sTn8ajqiLuVcOuDykncpZqTXlLazN+VvWFLXpLsbYlKuGGIvPv2K/Lcdqo68j7FX3Nv3vL4G4fKm7LPjdzjX7DWup2FUuWkHPrAGFPOGPODMWaJMWa5MeYKY8wmY0xVZ3lbY8ysAOu9a4x5zRjzqzHmb2PM+X6LaxhjJhtj1hpjnvRbZ7wxZr4xZoUx5jFn3r2SakiaaYyZ6czrZYz53Riz0BjzmTGmvDN/nDFmpTFmqTGmxLXaZVs2UuamBGVtTZLNztGe735VpZ5n5UuTs3uv0peuk7IL/yJvQjzyRIRLIR55IssoOyk5WFkv0Vr1aqe5X86SJG1YtFZlK5RVpZjKhdItm7Uob3rDknWKjq0iSTr7wo5aMPlPJcfvkiSl7qaxPJyw005V7rZ45cYnSDk5Sp82Q2XO7ZAvjU3PyJs2ERGSX2OWtWSp7D7KOJAqrRoodVOS9m/ZKW92rjZ/84dq9W6TL80pvdtow+e/SZJ2L1yv8ErlFFGtcrHWRfGFNjpNuQnb5U3yHeeZv8xQ2Fnn5k+UkZ43acpEKtA5W1iL1spNiJd3Z9JxznHJFNWqoQ5sTFLalh2y2bna/vXvii1w3Mb1bqOtn/oC3XsWrlNYxbIqU63yYbe7c/YyXw8VSXsWrFNEXJXjkv+SKKpVQ+33K/NtAco8tncbbSmizCPiohXbo6U2fzQz3zo5+w99H0LKljm+O1GClW/VUBmbEpS5xXeumPzNb4rqnT8gm7N7rw4sWSdL783j4oxebfXXl79IkjYvWqfICmVVMcB546pZi/OmtyxZr8qx0UHKYenQtmUzVapYwe1slGgVWzdU+sYkZWz21edJX89V1T7t8qWJ6dNOiZ/5jvd9C9YqtGI5hVerrHKNamrvgrXypmfJ5nq1Z+5KxfQ7VBc1/u8grfvvRwp4cgNJUplmTZS9JV452xKlnBwd+Gm2ynVtny9N5pKV8u7b75teukqh1au6kVWgRDspA7WS+kiKt9a2sNaeIWnyUaxbV1JnSedJes0YE+HMbynpCknNJF1hjKnlzB9hrW0rqbmkzsaY5tbaFyXFS+pqre3qBIgfkdTDWtta0nxJ/zHGREu6RFJTa21zSY//8112R1hsFWUn7Mp7nZ2wS2Gxxbs4zE5K1o4JX+v039/SGX+9p9zUA0r9dfFxyunJJap6FSXH7857nZyYrKjDlHtIaIjaX9JJy2YvliTF1o9TuUrlNWzSY3r0u/+p/aWdj3eWS7SQmKrK3bEj77V3506FxBQ+6SjT6VzFfPSeop8aq5SxTxZajsIiY6OUFn/oB5q0hGRFxkXlS1M2Nkppfsd7WnyyysZGHXHdxjf0VL9pT+jsZ29ReKWyefPL145R36mPq8cXIxRzZpPjsVslkqdKVXl3+R3nu3cqpErh4zz87I6qPP59VRg5Tgde+F/h5R27K+uX6cc1ryVZRFyU0v2O5/SEZEXERQdIk5wvzcFj21qrcyY9qM5TxqjOtd0Cvkftq7pox4zFxz7zJVRkgTLPSEhWZIEyjyxQ5hl+Zd5s9EAtHz0x4MX7aQ9erl4LXlKtyzrk9a5FfuGxVZTlV/5ZCbsVFlf8AKC1VqdOHKkzJj+lmGt6Ho8snvQqVY9Wit9nkJKYrEqHCcJ6QkPU9pKOWj17STCyBxRbRGy0MvyO5cz43SoTm/+8sUxclDK2+6VJ2K0ycdHav3qros4+VaFR5eWJDFfVHq0UUdN3/VS1dxtlJiZr/8rNQtFCq1VVTuKhHsc5STsVUr3oa9AKl/RR2m9/HZphpbjXx6rmJ6+oQv9+xzOrQIl2sg59sEzS08aY/0n63lr7qzGmuOt+aq31SlprjNkg6VRn/nRr7V5JMsaslFRH0lZJlxtjbpWvLOMknS5paYFtnu3Mn+PkI1zS75L2ScqQ9KYx5gdJ3wfKkLP9WyXpkejmuqx8neLuSxAEKNdi/goZUrGcKvU6SyvPvUW5+w6o3qvDFXVJF+35atYxzeFJKWCxF13u146+RX/PW6m1f62SJHlCQlSnWX09dfVjCo8I14gvn9D6RX8raWPC8cpxyRao/ghQ3pm//Kadv/ym8BbNVeGWG5V835AgZK5kC1g3FyzaIsr/cOuufW+alj/3layVWgzrr9Yjr9Ef/3lD6TtS9FW7+5S1Z7+im9VVp3fu1/ddHszXM67UClCegaqVrD9+VdYfvyq0aXNFXnujUv/vgUMLQ0MVflZ7pbw/4ThmtGQLfNzagomKTPLbBaOUkZSi8KoV1f6Th7R/Xbx2/7E6L13jwRfJ5uRq2xdzjmW2S7Z/UebVe7ZS5q592rt0o6q2P61QmlXjPtWqcZ+q0T0Xqv6NvbT6qS8KpSn1Ap2CH0WHtZUXPazspD0KrVJJp04aqYx125X658pjlr3SIPBXoOgPof/oG7V+3ipt+Gt1kWkAVxTrmj5wnZ+2drs2vfytWn36iHIPZCh1xWbZnFx5IsNV975LtOjyMcc8uyedgPV54Lokol0LVbi0j+IH3Z83L37QfcrdmSxPdGXFTRir7I1blbFg2XHKLFBynZQ9aq21f0tqI1/Adqwx5lFJOTq0vxFFravCp44HX2f6zcuVFGqMqSdpiKTuTo/YH4rYtpH0s7W2pfN3urX2JmttjqQzJX0h6WIV0fPXWjvBWtvWWtv2xArSStmJuxQWd6jHVVhc1WIPX1D+3JbK2pqk3OR9Uk6uUib/rnJtTj3yiqVUt4F9NOrHpzTqx6eUkrRH0TUO/XoZHRutlCLK/cLBA1ShSkVNGv1e3rw9ibu1fPZiZaVnav+eVP09b6VqnVb3eO9CiZW7Y6dCqlXLe+2JiVHurt1Fps9aslQhNWrIVGLs3yNJS0hW2RqHevWUjYtWeuKeAGkOHe9la0QrLSnlsOtm7Non67WStVr30UxVaVlfkuTNylHWHt/tWMnLNmn/ph2qWD/2uO1fSeLdtVOeqn7HeZUYeZN3FZk+Z8VShcTVlKlYKW9eWJuzlLN+rWzKniLXK+3S45MV6Xc8R8ZFK6PAMZ8Rn6xIv2PbP83Bh1Vl7dqnhJ/mq3KrBnnpal3eUdV7ttaCu145jntQ8hQs84gA9Ux6gTKPcMq8SrvGiuvVWr3+ekFtX7tHVTs0VZuX7yz0Htu+mqsa5wUeX7W0y0rYrXC/8g+Pq6LsxOIPdZWd5Puscnbv1Z7Jf6pcq0bHPI8now4De2nIj+M05Mdx2pu0R5X9PoPKsdHalxS4nu49+DKVr1JR34z+IFhZBYotI2G3IvyO5TI1qiizQH2emZCc11NWksrEHUqT8PFM/dXzQS28eJRyUvYrbUOiIutWV2TtajprxpNq/9dLKlOjis78eZzCYyoJ+eUk7VJobEze69DqMcrdUbg+D29cTzGP3a+ke0fKu/fQ+OK5O31pvckpSps+V2XO4M42IJCTMlBrjKkhKc1a+6GkpyW1lrRJvuCtJF12mNUHGGM8xpgGkupLWnOYtBUlHZC01xhTXVJfv2Wpkg4OQvSHpA7GmIZO/soaYxo749RWstb+KN/Dx1oWeydPEGlL1qpMvRoKr1VdJixUURd01L6f/yzWutnxO1W2VROZiHBJUoUOLZSxbusR1iq9ZnwwWaP6DdWofkO1aOo8tb+0iySpfqtGSktN096dKYXW6XhFd53RqaVev+f5fD0nFk39S43anSZPiEfhEeGq17KREtZtK7Q+fLJXr1ZIrZoKiYuVQkMV2aObMufMzZcmpGaNvOnQxo1kwkJl9zIu7ZHsXrxBFerFqlytGHnCQlTnorO1berCfGm2TV2o+v19Y6VWad1AWfvSlLEj5bDrRviN51mrb1ulrPEd32WiK8h4fN0ByteOUYV61bV/yw5Bylm7WiE1TpGnuu84L9Opm7Ln5e+V6YmrmTcd0qCRTGio7L69efPKdOqurNkMe3A4KYvXq1z9WJWtHSMTFqKaF5+jxKkL8qVJnLpAtS7vKEmKat1Q2anpytyRopCyZRRazvd7cEjZMqrWuZlSV/vazWpdm6vR3Rfoz+ueVm56VnB36gSXsni9yvuV+SlFlHltvzLPccp85ROfaErrezS13WDNv/0l7ZqzQgvuflWSVK7eoR954nq3Vuq6eKGw/YvXKaJenMrUqiYTFqroi87Vnql/HXlFSZ7IMvI4x7wnsowqdW6h9NVbjrAWJGnOB1P1dL8H9XS/B7V86ny1u7STJKlOq4ZKT03TvgDnjWdd0VVNOrXQB/e8yINjcEJKXbReZevHKsKpz6tf3F67pszPl2bnlPmKHeA73iu2aaSc1DRl7UiRJIVV9XWiKFOzimL6namkr+bowKqt+rXprZrb7h7NbXePMuN3a17PB5W1c6+QX+byNQqrU1OhNX3niuX6dtaBWb/nSxMSG6Pqzz2qHQ89qezNhx7yZiIjZMpG5k1Htm+trHWbgpl9/Ate2ZPy70R1sg590EzSU8YYr6RsSXdIipT0ljHmYUmHiySukTRbUnVJt1trM4oaNsFau8QYs0jSCkkbJPlf0U6Q9JMxJsEZp/Z6SRONMQefNvGIfMHcb5xxcI2k+1XS5Hq17dHXVf/9UTIhHiV/Ok0Za7eqyjV9JEm7P5qs0JjKavzdswopX1byehVz44Va3eMupS3+W3t/nKMmPzwvm5ur9BUbtPvjKe7uTwmxdOZCNe/aWuNmv6ys9Ey9PfTVvGX3vfOw3h0+Xik79mjQmFu1e/tOjfjKdyvPgsl/6rsXP1fC+u1aPnuR/jv5GXm9Vr9+Ml3b/yZIXqRcr/Y9+6Kin31S8niU/sNPytm4SWUvukCSlPbNd4ro0kmRfXpLOTmymZnaM/K/eatXHvWIwlu2lKdyJVX78lOlvvWu0n/40a29OaHYXK/mj3hP3T4eJhPi0fpJs7X37+1qNNA39ubaD2Yofvpi1ezeQhfOfUa56Vn6/f4Jh11Xklo/cqWimtaRtVYHtu3Sn8N8T2Kvdvapaj70MtmcXFmv1bwH31FWygF3dv5E483VgdeeV8XHnpY8HmVO+1G5WzapTJ8LJUmZk79VePtOKtPNOc6zspT65GOH1i9TRmEt2+rAK8+4tAMlg831aunD7+qciQ/KhHi0ZeIspa7ZrrqDukuSNr0/XUnTFqt695bq8cdzyk3P1KL7XpcklalaSWe+4ztVMKEh2v7lHO2Y6RttqdkT1yskPEztP3lIkpS8YJ2WDn/bhT088Rws8/ZOmW8+TJn3/OM55fiV+eE0HXGlyjeMk/VapW/bpcXD3jreu1Iy5Xq1acSbavLxozIhHu2cNF3pf29VtYG9JEk7PpiqsJjKOuOnpxRSIVLWaxV38/la2uVehUZXVKO3hkuSTKhHu7/6VXv9HpSK4lk5c5FO69pSI2a/oKz0TE0a+lreslveGa5Phk/Qvh17NGDMzdqzfZcGfzVakrR08jxNffFLt7J90hk6cpz+WrRUKSn71P3ia3XnTQN12QW93c5WiWJzvVrz0NtqNelhKcSjhImzdGDNNtUc1EOStP39ado9bZGqdm+lc/58Qd70LK0cPD5v/eZv/UdhURXkzcnVmofeVs5ezgGPSq5Xu554WbGvPSET4lHqV1OUvX6zKgw4T5KU+tkPirr9WnkqV1TVR+5x1snV9ivvVkiVyqr+/EhJkgkJ0f4fZyp9zvyi3gko1Qy/lh5ijHlXvjFtP3c7L0VZXOdCPrAge9GEu52FUmfMKUUPK4DjY8aGmkdOhGOqTxt+HAm23/7iOA82TlqCL86T4XYWSp1J4ZwrBtuT859wOwulzi9NH3I7C6VOvWoMJRVs9ZdNLfbDjUqTi2qff1Ke0n2z5fsT8vM+KYc+AAAAAAAAAICS5GQd+uAfsdZe73YeAAAAAAAAgBOB1+0MlDL0qAUAAAAAAAAAlxGoBQAAAAAAAACXEagFAAAAAAAAAJcxRi0AAAAAAACAQqys21koVehRCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALmOMWgAAAAAAAACFeBmjNqjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALuNhYgAAAAAAAAAKsZaHiQUTPWoBAAAAAAAAwGUEagEAAAAAAADAZQRqAQAAAAAAAMBljFELAAAAAAAAoBCv2xkoZehRCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALmOMWgAAAAAAAACFWFm3s1Cq0KMWAAAAAAAAAFxGoBYAAAAAAAAAXEagFgAAAAAAAABcxhi1AAAAAAAAAArxMkZtUNGjFgAAAAAAAABcRqAWAAAAAAAAAFxGoBYAAAAAAAAAXEagFgAAAAAAAABcxsPEAAAAAAAAABRiLQ8TCyZ61AIAAAAAAACAywjUAgAAAAAAAIDLCNQCAAAAAAAAgMsYoxYAAAAAAABAIV4xRm0w0aMWAAAAAAAAAIrBGBNtjPnZGLPW+R91mLQhxphFxpjvi7NtArUAAAAAAAAAUDwPSppurW0kabrzuiiDJa0q7oYJ1AIAAAAAAABA8Vwk6T1n+j1JFwdKZIw5RdJ5kt4s7oYZoxYAAAAAAABAIfYkHaPWGHOrpFv9Zk2w1k4o5urVrbUJkmStTTDGVCsi3fOShkmqUNx8EagFAAAAAAAAUGo4QdkiA7PGmGmSYgMsGlGc7Rtjzpe0w1q7wBjTpbj5IlBbwvzmreh2FkqdSiE5bmeh1FmztqrbWSh1yhmv21kodUYuC9Tm43hqEsaIT8G2jjY06Kalb3c7C6XOZyGctwTbL00fcjsLpU6nFWPdzkKpkzHqbrezAJRq1toeRS0zxiQZY+Kc3rRxknYESNZB0oXGmH6SIiRVNMZ8aK299nDvyxULAAAAAAAAABTPt5Kuc6avk/RNwQTW2oestadYa+tKulLSjCMFaSV61AIAAAAAAAAIwGtPzjFq/6Vxkj41xtwkaYukAZJkjKkh6U1rbb9/umECtQAAAAAAAABQDNba3ZK6B5gfL6lQkNZaO0vSrOJsm6EPAAAAAAAAAMBlBGoBAAAAAAAAwGUEagEAAAAAAADAZYxRCwAAAAAAAKAQHiUWXPSoBQAAAAAAAACXEagFAAAAAAAAAJcRqAUAAAAAAAAAlzFGLQAAAAAAAIBCvIxSG1T0qAUAAAAAAAAAlxGoBQAAAAAAAACXEagFAAAAAAAAAJcxRi0AAAAAAACAQhijNrjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC5jjFoAAAAAAAAAhVjLGLXBRI9aAAAAAAAAAHAZgVoAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZDxMDAAAAAAAAUIhXPEwsmOhRCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALmOMWgAAAAAAAACFWMaoDSp61AIAAAAAAACAywjUAgAAAAAAAIDLCNQCAAAAAAAAgMsYoxYAAAAAAABAIdYyRm0w0aMWAAAAAAAAAFxGoBYAAAAAAAAAXEagFgAAAAAAAABcxhi1AAAAAAAAAArxijFqg4ketQAAAAAAAADgMgK1AAAAAAAAAOAyArUAAAAAAAAA4DICtQAAAAAAAADgMh4mdgTGmE2S2lprdx3leu9K+t5a+3kx09d10p9xtHl0S8fHBqpOt5bKSc/U9P9M0M7lmwqlqVArRr1fuUsRlctr5/JN+nnweHmzcyVJNc8+TeeOulae0BBl7EnVVwPGqHxctHo8f7vKxlSS9Vqt+Himlr49Jch7VvJcMvI6nda1lbLTMzVxyHhtW7GpUJprn79btZrVV25OrrYsWadPH35T3pzc4Ge2hIru2lINH79BJsSjhI+ma8tLX+dbXrZhDTV54S5VaFZPG8dO1Nbx3+Uta/L8HarSs42yd+3VX50fCHLOS5ZqXZur2ehBMiEebf5opta+/F2hNM0eH6Tq3VsqNz1LCwe/pr3LNh1a6DHqMmWMMhKT9cfApyVJTR+9WrE9W8ubnaMDm5K06L7Xlb0vLUh7VPL0H3m9mnZtpaz0TH0wZLy2rdhYKM11z9+j2k59snnJOk18+A15c3LV9qJz1fP2CyVJmWkZ+uSRt7R91eZg70KJ0MmvDZ1WRBtasUAbOrVAG9rRrw39csAYSVKLG3ur6dVdJBmtmDhTS96iDQ3k0pHX6XSn3fyoiHZzoNNuep3j/BOn3azWoIaufup21WpaT98//YlmvvF98HeghHtozH/UqXt7padnaMS9o7Vq2ZpCaca88H9q27619u/bL0kace9/tXrF2mBntcQq16mNYv/vVpkQj/Z8MlW7X/8s3/KKF3ZR1dv6S5K8aRlK+L9XlLnaV9/HjRusCt3OVM7uFG3oe1fQ816SRHdtocaPXy8T4lH8RzO0+aVvCqVpPOZ6VeneSrnpmVp173ilLvOVc61b+qrGtd0lSfEfzdDWCT/mW6/2Heer0aiB+uW0m5WdnHr8d+Yk9MgTz+qXOfMUHVVZX3/4mtvZOSmEnNZGEf1vkzweZc+doqyfPwuYzlO7kcoOeVYZb49TzuI5kqSwrhcrrH1vyVp54zcp48PnpJzsYGYf/5C1PEwsmOhRi3+kTtcWqlwvVh92fEAzh7+lzk9cHzBd+4eu1JI3J+vDTkOUmXJAp1/ZRZIUXrGsOo+5Xj/c+Kwm9nhQk29/SZLkzfVqzuiP9XG34fr8olFqfl0PRTWqEaS9KplO69JSMfXi9ESX+/Tpw2+o/5ibA6Zb8PVvGtv9P3qy91CFRYTr7Cu7BTmnJZjHo0bjbtLSq8doXsf7Ve2SDirb+JR8SbJT9mvdiLfzBWgPSpw0S0uvHBOs3JZcHqMWY2/Q71c/qemdhuqUS9qrQuOa+ZJU795S5evHato5/9HiIW+qxf9uzLe8wS19lbp2e755O2Yv04wuwzSz24PavyFBje698LjvSkl1epeWiqkXq8e6DNbEh9/QlWNuCpjur69/1eju9+uJ3kMUFhGu9k59snvrDj1/xWMa23eYJr/0pa4ae0sws19iHGxDP+j4gGYMf0tdDtOGLn5zsj7oNEQZBdrQLmOu1/c3PquPezyon5w2NLrJKWp6dRd9ev5ITez9sOp1b6VKdasHaa9KjtOddvPxLvdp0sNvaMBh2s0nuv9H45x28xznOE9L2a8vR72rGQRo/5GO3durTr1a6nt2f40aMk6PPjmsyLTPPPaSLus+UJd1H0iQ9mh4PIobdYe23DhS63rfoUoXdFJ4w1r5kmRvS9Kmqx7UhvPu1q6XJ6rGmHvylu39Ypq23PBosHNd8niMmoy7UYuvHqs/Ov5H1S/poHIFzluqdG+pyHqx+v3swVo95A01edLXrpY7tZZqXNtdf/V5WPO6DVPVnq0VWS82b70yNaoounNzpW/dGdRdOtlc3K+nXnv2cbezcfIwHkVcfqfSXn1UBx6/XaFtOssTWytgujIX3ajcVQsPzapUReGdL1Tak4OV9sSdkidEoW06BzHzQMlBoNaPMeZrY8wCY8wKY8ytAZYPMsYsNcYsMcZ84MyrY4yZ7syfboyp7bdKJ2PMXGPMBmNMfye9McY8ZYxZboxZZoy5Iki7d0zV69VGq7/4TZKUtGi9ylQsp7LVKhdKd0qH07Xuh3mSpNWf/6r6vdtIkhpf3F7rJ/+l/fG7JUnpu/dJktJ2pOT1Kso+kKHkdfEqHxt9nPemZDujV1v99eUvkqTNi9YpskJZVYypXCjdqlmL86a3LFmvypRrsVVs3VDpGxOVsXmHbHaOdnw9R1X7tM2XJnvXPqUuXi+bnVNo/b1/rFJOyv5gZbfEimrVUPs3Jiltyw7Z7Fxt+/p3xTp1xkGxvdtoy6e/SpL2LFynsIplVcapeyLiohXbo6U2fzQz3zo7Zy+TzfX61lmwTpFxVY7/zpRQzXu10zynPtm0aK0iK5QLWJ+s9KtPNi9ZpyinPtm48G+l7zvgTK9V5VjKOpD6vdpo1b9oQ5sU0YZGN6yhxIXrlZORJZvr1fY/V6tBgboKxW83VxbRbu7fvU9blm5QLnel/CPd+nTSt5/9JElaumC5KlSsoKrVqCuOpcgWjZW1OV7ZWxOl7Bzt/f4XVehxdr406QtXyev0Vk5btEahfvV12l8rlJtCD84j8Z0fJjnnh7lK+nquqvZply9NTJ92SvzMV9/sW7BWoRXLKbxaZZVrVFN7F6yVN91XX++Zu1Ix/c7MW6/xfwdp3X8/kujF9q+0bdlMlSpWcDsbJw1P3cby7oqX3Z0o5eYoZ+EvCm1+TqF0YZ0vUM6SObKpKfkXhIRIYeGSxyMTXkZ27+7gZBwoYQjU5nejtbaNpLaS7jXG5J2xGGOaShohqZu1toWkwc6ilyW9b61tLukjSS/6bS9O0rmSzpc0zpl3qaSWklpI6iHpKWNM3HHbo+OkfGxU3gWiJO1PSFb52Kh8aSKiyitzX1pegGR/QrLKOWkq14tVmUrldMmnI3T5D6PV5LJzC71HhVOqKqZpHSUuWn8c96Tkq1Q9Wil+n0VKYrIqHSYI6wkNUdtLOmr17CXByN5JoUxstDL9yjgzPlllCEAdc5FxUUr3K+eMhGRFxkUHSJNcII2vXmk2eqCWj5542IuaOld1UdKMxcc24yeRytWjtCdffbL7sD/qeEJDdOYlnbQyQH3S/oqu+QJdOKTcP2xDywdoQ6/4YbROddrQ3Wu2qcZZTRRRubxCI8JVp2sLla9BXVVQ5QLt5t5itpuraDePiWpxMUrcnpT3Oilhh6rHxQRMe+9Dt+vLmR9q+H/vU1h4WLCyWOKFVq+i7IRDo7blJO5SWPWi64Koy3tp/+wFwcjaSSUiNloZ+c4Pd6tMgbq8TFyUMrb7pUnYrTJx0dq/equizj5VoVHl5YkMV9UerRRR0/cZVe3dRpmJydq/kqGDcGLxVKoi755DdYt3zy6ZSvnrFlOpikJbtFf2r/mH8rB7dytr+pcqP/o9lRvzkWz6AeWuXhSUfAMlDWPU5nevMeYSZ7qWpEZ+y7pJ+vzgWLXW2oORgnPkC75K0geSnvRb52trrVfSSmPMwXsPz5U00VqbKynJGDNbUjtJS4vKlNO791ZJurLymepQvlFRSYPHmEKzCo1bEiCNnCSeUI+qNaunr68cq9CIMPX/ZpSSFq5TysZESVJY2TLq+/pg/TrqQ2XvTz/WuT+pBCzmwwSq+o++UevnrdKGv1Yfx1ydZAIeyvRwOOYCH8xHTGOtVL1nK2Xu2qe9SzeqavvTAm6+8eCL5M3J1bYv5hyL3J6cilO3+7li9E1aN2+V1heoTxqd01TnXNFNz/Xn1tlAzD9sQ22BNvQrpw0d8M0oJS5cpz3r4rXw1e910ccPKjstQ7tWbpE3l16fhRxluzmAdvOYMgE+gEDF/9yYV7Vrx26FhYfpsacf0s13D9L4Z98KQg5PAoHa0yKUPbu5Kg/opU1XDD2OGTpJFaucA5/bpK3drk0vf6tWnz6i3AMZSl2xWTYnV57IcNW97xItupwhs3ACCnjM56/Ay1x2qzK/eVuy3vzJIssrtNnZOjDyBtm0A4q46WGFtuuqnL/y3wmHE5OXa9+gIlDrMMZ0ka+H6znW2jRjzCxJEf5JVLAWCsw/TWaB9f3/F5u1doKkCZL0cq1rXfuGNLuuh06/qqskaceSDfl66ZSPi9aBpJR86TOSU1WmYlmZEI9srtdJs0eStD9hjzKSlyonPVM56ZmK/3O1qpxeWykbE+UJDVHfCYP199dztWHy/KDtX0nSYWAvnXOVb6y8LUvWq7LfZ1E5Nlr7nHIuqPfgy1S+SkW9c9uzQcnnySIzIVll/Mq4TI1oZSUmH2YN/BPp8cmK9CvniLhopSfuCZAmOl+ajMQ9qnn+mYrr1Vqx3VvKUyZMoeUj1eblO7Xg7lclSbUu76jYnq01ZwAXPgV1GthL7a/yPcxk85L1ispXn1TR3iLqk76D+6t8lYp687Zn8s2vcWptXT3uVo2/fpwOMORHnmbX9VDTY9iGpvu1odv/XK2qThu68pPZWvnJbEnSOcMv1/4E6ipJOvcw7Walw7SbfZx2823azX/lqhv6q/+1F0mSli9eqdiah8ZOrh5XTTsSC4/DuWuHrxdidla2vpr0va6/85rgZPYkkJO4S2FxVfNeh8ZWVXZS4VuMyzSpqxpP3KstNz7KUAf/QEbCbkXkOz+soswC5y2ZCcmKqFlFew+miTuUJuHjmUr42BekavDwlcqIT1Zk3eqKrF1NZ814Mm+bZ/48Tn/1eVhZO/cKcJM3ZZfCog7VLZ6oqrJ7859nhNRupMgbHpQkmfIVFdK0neT1SiEh8u5OlN3vG64pZ8kchdQ7jUAtEABDHxxSSdIeJ0h7qqSzCyyfLunyg8MhGGMORgrmSrrSmb5G0m9HeJ9fJF1hjAkxxsRI6iRp3rHYgeNt2XvT9EmfEfqkzwhtmLIg71bL6q0aKCs1TWk7Ugqts33uSjU8zzfe0qn9O2rDVN+A4hunLlDcmU1kQjwKjQhX9VYNtGddvCSp21M3K3ltvBa/8VNwdqwEmvPBVD3d70E93e9BLZ86X+0u7SRJqtOqodJT07RvZ0qhdc66oquadGqhD+55kac2HqXUResUWT9OEbWryYSFqtrFHbRrCj8iHGspi9erfP1Yla0dIxMWolMuPkeJU/Pfipk4dYFqX95RkhTVuqFyUtOVuSNFK5/4RFNa36Op7QZr/u0vadecFXlB2mpdm6vR3Rfoj+ueVm56VtD360T3ywdTNa7fcI3rN1xLp/6lM536pG6rRkXWJ+dc0U2ndWqud+95IV99ElWjim557QG9f/8r2rExIVi7UCIse2+aJvUZoUlOG3paMdrQbQXa0I1OG7ph6gLV8GtDY1s1ULLThkZWqShJKl+jihr0aau/v5kbhL078f32wVQ91e9BPdXvQS0r0G5mFHGcn31FV53aqYXep9381ya+83neQ8Gm//SLLhzQV5LUvM0Z2p+6Py8o689/3NrufTtr3WqGwiqu9KV/K7xuTYWdUl0KC1Wl8ztp//Q/86UJjYtRrfEjtH3IM8raFO9STku21EXrVbZ+rCKc85bqF7cvdH64c8p8xQ7w1TcV2zRSTmqaspz6Pqyqr74uU7OKYvqdqaSv5ujAqq36temtmtvuHs1td48y43drXs8HCdLihODd/Lc8MTVkqlSXQkIV2rqTcpb+kS/NgVE36sDIG3Rg5A3KWfSbMj95RTlLf5c3eadC6p0qhZWRJIU2aSlv0lY3dgM44dGj9pDJkm43xiyVtEZSvhrHWrvCGDNG0mxjTK6kRZKul3SvpLeNMUMl7ZR0wxHe5yv5hktYIl/v22HW2kRjTN1juC/H3eYZi1WnWwsN/O0Z5aRnafoDE/KWnf/eEM0c9qYOJKVo7thJ6v3K3Tpr6ADtWr5JKyfNkiTtWRevLbOW6qqpY2WtVysnzlLymm2Ka9dYp/bvqF2rtuiKyb6eb3/871Ntnsm4cEVZOXORTuvaUiNmv6Cs9ExNGvpa3rJb3hmuT4ZP0L4dezRgzM3as32XBn81WpK0dPI8TX3xS7eyXaLYXK/WPvSWmk8aIRPiUcLEmUpbs001BvWUJMW//7PCYyqrzdRxCqkQKXmtTrn1PM3reL9y96frtNcGq3L7pgqLrqBzFr2mjU99qsSPZ7i8Vycem+vV0offVfuJD8qEeLR54iylrtmuuoN8vT03vT9dSdMWq3r3lur5x3PKSc/UovteP+J2mz9xvTzhYerwyUOSpOQF67Rk+NvHdV9KqhUzF6lp11YaOfsFZadn6cOh4/OW3fHOg/p4+Ovau2OPrhxzs5K379QDX/mepLx48jxNfvEL9b23v8pFldcVj/ueau3NydWTFz7syr6cyDY5beig355RdoE29IL3hmiGXxva55W7dfbQAdq5fJNW+LWhm2ct1dVOG7rCaUMlqd+EwYqoXF7enBzNeuQ9Ze5Nc2MXT2grZy7S6V1b6v+cdvNjv3bztneGa6LTbl7utJv3+bWbU178UhViKmnIt08oonykvNaqy4199UTPIcpkqKZi+WXaHHXq3l4//fmFMtIz9Mjg0XnLxn/0nB79zxjtTNqlJ8f/V1FVKssYo9XL/9Z/h/7PxVyXMLleJT42XrXfHS3j8Sjl85+VuXaLoq7yBcj3TPxJMfdcpZDKFRX32J2SJJubq40X3ydJqvn8MJU9q5lCoyqq0W/vaecLHynls6lu7c0Jy+Z6teaht9Vq0sNSiEcJE2fpwJptqjmohyRp+/vTtHvaIlXt3krn/PmCvOlZWjn4ULva/K3/KCyqgrw5uVrz0NvK2XvArV05aQ0dOU5/LVqqlJR96n7xtbrzpoG67ILebmer5PJ6lfHpeJW963HJeJT9x1R5E7co7Nx+kqTs334setXNa5Sz6DeVHf6i5M2Vd9sGZc+hYxYQiKGHQMni5tAHpdX6kBy3s1DqXJTOmIrBlmJ4SEuwTYvgOA+2Jrkc58G2jjY06Kalb3Q7C6XOZ+WrHjkRjqmE/eXdzkKp02nFWLezUOpkjLrb7SyUOhVe/vGoh6osDZrHnnNSxqGWJv5+Qn7eDH0AAAAAAAAAAC4jUAsAAAAAAAAALiNQCwAAAAAAAAAu42FiAAAAAAAAAArx8myroKJHLQAAAAAAAAC4jEAtAAAAAAAAALiMQC0AAAAAAAAAuIxALQAAAAAAAAC4jIeJAQAAAAAAACjEioeJBRM9agEAAAAAAADAZQRqAQAAAAAAAMBlBGoBAAAAAAAAwGWMUQsAAAAAAACgEK9ljNpgokctAAAAAAAAALiMQC0AAAAAAAAAuIxALQAAAAAAAAC4jDFqAQAAAAAAABRixRi1wUSPWgAAAAAAAABwGYFaAAAAAAAAAHAZgVoAAAAAAAAAcBlj1AIAAAAAAAAoxGsZozaY6FELAAAAAAAAAC4jUAsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC7jYWIAAAAAAAAACrHiYWLBRI9aAAAAAAAAAHAZgVoAAAAAAAAAcBmBWgAAAAAAAABwGWPUAgAAAAAAACjEaxmjNpjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC5jjFoAAAAAAAAAhVgxRm0w0aMWAAAAAAAAAFxGoBYAAAAAAAAAXEagFgAAAAAAAABcxhi1AAAAAAAAAAqx1ut2FkoVetQCAAAAAAAAgMsI1AIAAAAAAACAyxj6oIRpkZ3hdhZKna/sPrezUOrcHhXidhZKnYR90W5nodSpbmmCgy3M7QyUQmEybmeh1Dk/sr7bWSh1ZmVx3hJsfartcDsLpU7GqLvdzkKpEzHqZbezAMAF9KgFAAAAAAAAAJfRnQcAAAAAAABAIV5Zt7NQqtCjFgAAAAAAAABcRqAWAAAAAAAAAFxGoBYAAAAAAAAAXMYYtQAAAAAAAAAKsZYxaoOJHrUAAAAAAAAA4DICtQAAAAAAAADgMgK1AAAAAAAAAOAyxqgFAAAAAAAAUIhXjFEbTPSoBQAAAAAAAACXEagFAAAAAAAAAJcRqAUAAAAAAAAAlzFGLQAAAAAAAIBCrGWM2mCiRy0AAAAAAAAAuIxALQAAAAAAAAC4jEAtAAAAAAAAALiMQC0AAAAAAAAAuIyHiQEAAAAAAAAoxMvDxIKKHrUAAAAAAAAA4DICtQAAAAAAAADgMgK1AAAAAAAAAOAyxqgFAAAAAAAAUIgVY9QGEz1qAQAAAAAAAMBlBGoBAAAAAAAAwGUEagEAAAAAAADAZYxRCwAAAAAAAKAQaxmjNpjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC5jjFoAAAAAAAAAhXjFGLXBRI9aAAAAAAAAAHAZgVoAAAAAAAAAcBmBWgAAAAAAAAAoBmNMtDHmZ2PMWud/VBHpKhtjPjfGrDbGrDLGnHOkbROoBQAAAAAAAIDieVDSdGttI0nTndeBvCBpsrX2VEktJK060oZ5mBgAAAAAAACAQqzlYWIBXCSpizP9nqRZkob7JzDGVJTUSdL1kmStzZKUdaQN06MWAAAAAAAAQKlhjLnVGDPf7+/Wo1i9urU2QZKc/9UCpKkvaaekd4wxi4wxbxpjyh1pw/SoBQAAAAAAAFBqWGsnSJpQ1HJjzDRJsQEWjSjmW4RKai3pHmvtn8aYF+QbIuH/jrQSAAAAAAAAAECStbZHUcuMMUnGmDhrbYIxJk7SjgDJtknaZq3903n9uYoeyzYPgVoAAAAAAAAAhXgZozaQbyVdJ2mc8/+bggmstYnGmK3GmCbW2jWSuktaeaQNE6g9DowxdSV9b609wxjTVtIga+29xpgukrKstXPdzN+xFtW1peqPvkEmxKPEj6Zr28tf51se2bCGGj9/l8o3q69N4yZq+/hvJUnhNaqoyUv3KDymsqy1SvzgZ8W/+aMLe1Ay3fXfO3VWt3bKTM/Uk/c/rbXL1xVKM+Tp/6hx80Yyxmjbhu363/1PKSMtQ+UrldfQZx5QjTpxysrM0lMPPKtNazYFfydKkLLntlH1EbdLHo/2fj5ZyW98lm95hfO7qsotAyRJ3rR0JY16WZlrNsqEh6nWh0/JhIfJhIQodepv2v3Sh27sQokQ16W5Wo8eKOPxaP3EWVr18neF0rQePUg1urVQbnqW/rj/de1ZtkmSdNazt6hGj1bK2LVPP3Ur/EPlqbf3U6tHr9EXZ9ymrOT9x3tXSqzeowapYdcWyk7P0rdDXlfi8k2F0rS9rqfOurGPouvG6umWtyl9j688G/dsoy4P9Jf1WnlzczX1sQ+0df7fQd6DkqHDYwNVu1tL5aRnauZ/JmhXgHKuUCtGPV65SxGVy2vn8k2aMXi8vNm5qnH2aer91v1K3bpTkrTxp7+04IWvJUldnr5Fdbq3VPruffq0x0NB3KOS5aKR1+m0ri2VlZ6lT4aM1/YVmwql6TColzre2FdV68bq0Va3Km1PqiQpsmI5Xf7UbapSu7pyMrP06bDXlfj3tiDvQclz4cjr1KRrS2WnZ+nTIeMVH6DMzxnUS+c6Zf6YX5l3uvV8tbq4gyTJExKiag1r6r+tb1X63gPB3IUS4dzHBqqOU7dMP0zd0uuVu1SmcnntWr5J0/zqlr5+dcuGn/7SfKduaX5zH51+ZRdZWSWv3qYZD0xQbmZ2EPfsxBfZoa2qDL9DJsSjfV9O1t63Psm3vPx53VTpxsslSTYtXbtGv6SsvzdIkmpNfl82LV021yvl5mr7lXcHPf8lUchpbRTR/zbJ41H23CnK+vmzgOk8tRup7JBnlfH2OOUsniNJCut6scLa95aslTd+kzI+fE7K4Zj+tx554ln9MmeeoqMq6+sPX3M7O8DxNE7Sp8aYmyRtkTRAkowxNSS9aa3t56S7R9JHxphwSRsk3XCkDfMwsePMWjvfWnuv87KLpPYuZufY83jUYOzNWnH1GC3odL9iLjlXZRufki9JTsp+rX/kbW1zArQH2ZxcbRj1nhZ0uk9L+j2kuBv6FFoXgZ3ZrZ1OqVdTg869Qc8Of16Dx94bMN2ro17Trb3u0C09b9eO7Tt08Q0XSZKuvucqrVuxXrf0vF3jBj+lux67I5jZL3k8HlV/9C5tu+X/tPH821ThvC4Kb1A7X5Ls7YnaMnCYNl10p3a/OlHV/+v7TGxWtrZe/6A2X3yXNl1yl8qd20YRLU51Yy9OeMZj1OaJ6zXrmif1Y5dhqnPROarYqGa+NHHdWqhCvVh93+EBzRv2ltqOPdTObfjkV8265smA2y5bI1qxnZrpwLZdx3UfSrqGXVsoul6sXun8gH546C31ezzwecS2+X/rw2vGKsW5mD9o45zlmtDnIb3R72F9N3SCzv/fLcHIdolTu2sLVaoXq4kdH9Ds4W+p4xPXB0x39kNXaumbkzWx0xBlphzQqVd2yVuWOG+NPu8zQp/3GZEXpJWkNZ/9oh8GPnV8d6CEO7VLS8XUi9W4Lvfr84ff0GVjbgqYbuOCv/X6tWOUvC3/cd79rosUv3Kznu07XBMfGK+LRl4XjGyXaE26tFTVerF6qsv9+vLhN3RJEWW+ecHfejNAmf8y4Xu90O8hvdDvIU1+cpI2/LmKIG0AB+uWjzo+oFnD31LnIuqWcx66UkvenKyPnbrlNL+6JWHeGn3aZ4Q+7TMiL0hbLjZKzW/opc/O/z990uMhGY9HDS88+/jvUEni8ajqiLuVeOcIbb3oFpXv20Vh9QucK25LVMINQ7T9stu15/WPVXXkffmWx984VNsH3EGQtriMRxGX36m0Vx/VgcdvV2ibzvLE1gqYrsxFNyp31cJDsypVUXjnC5X25GClPXGn5AlRaJvOQcz8yevifj312rOPu50N4Liz1u621na31jZy/ic78+P9grSy1i621ra11ja31l5srd1zpG0TqC3AGDPCGLPGGDPNGDPRGDPEGDPL6RkrY0xVY8wmZ7quMeZXY8xC569QENYY08UY873Ty/Z2SfcbYxYbYzoaYzYaY8KcdBWNMZsOvi4pKrRqqIyNicrYskM2O0c7v56j6N7t8qXJ3rVP+xevl83JzT9/R4oOLNsoSco9kKH0tdsVHhsdtLyXZB16tdfUz3+WJK1auFrlK5ZTdLXCZZe2Py1vOjwiXHJuWajTqLYW/bZIkrR1/VbFnlJdUVUrH/+Ml1ARzRsre0u8srclStk5Sv1xtsp3z3+BkrFolbz7fL0K05esVmhs1bxlNi1DkmRCQ2VCQ/M+B+QX3aqB9m9K0oEtO+XNztWWb/7QKb3b5EtzSu822vT5r5Kk3QvXKbxSWUVUqyxJ2vnnamXtCdxTttWogVr8+ERZyv6wGvdso6Vf+Mp3+6J1iqhYVuWd8vWXuGKz9gYIemenZeZNh5UtI4nyDqRurzb6+4vfJEk7Fq1XmYrlVDZAOdfocLo2/DBPkvT357+qXoHvQyAJf65RZgo9xg+naa82mv+l7zjfsmidIiqUVYWYyoXSxa/YpD0BjvPqjU7R2jnLJUk718cr6pQYla9a6bjmuaRr2quNFviVeeRRlrm/Fhe215JvT6qb046Zer3aaI1TtyQtWq/wIuqWmh1O13qnblldzLrFExqi0IhwmRCPQiPDlZZ0xOvMUqVMsybK3hKvnG2JUk6ODvw0W+W65r80zFyyMu9cMXPpKoVWrxpoUygmT93G8u6Kl92dKOXmKGfhLwptfk6hdGGdL1DOkjmyqSn5F4SESGHhkscjE15Gdu/u4GT8JNe2ZTNVqljB7WwAJRqBWj/GmDaSrpTUStKlktodfg3tkNTTWtta0hWSXiwqobV2k6TXJD1nrW1prf1V0ixJ5zlJrpT0hbW2RN1vUSYuWpnxh06osxJ2q0zc0Qdby9SKUbkz6ip14dpjmb2TVtXYKtoZf6i3yc6EXaoaWyVg2qHPPKDPF32i2g1r6au3fcOmbFi5QR37nitJatKyiaqfUl1V42KOf8ZLqNDqVZWdcKi8cxJ3KbR64PKWpEr9e+vAL/MPzfB4VOerl9VwzkQdmLtIGUvXHM/sllhlY6OVFn/oJDktIVmRcVH50kTGRuuAf5r4ZJWNzZ+moJq9Wis9MVkpK7cc2wyfhCrERmufX/nuS0xWheqHL9+CmvRuqzumP6Wr3hmqb4cW+RDVUq1cbJT2+5Xz/oRklStwHEdElVfWvjTfbbAB0lRv01D9p4xRv/eHKqpx/p7nOLxK1aOV4lf+exOTVekofiiOX7VZzfr4ThFrtWigqJpVj2r90qhi9WjtLVDmFf9BmYVFhKtJ5xZa9tOfR05cChWsWw4Uo24pmCa2TUNdPmWMzvOrWw4k7tHi13/UoD9e0PULXlZWapq2/rI8CHtUcoRWq6qcRL9zxaSdCjnMuWKFS/oo7be/Ds2wUtzrY1Xzk1dUoX+/ItfDIZ5KVeTdc+g61Ltnl0yl/GVuKlVRaIv2yv41//B6du9uZU3/UuVHv6dyYz6STT+g3NWLgpJvoCSy1p6UfycqArX5dZT0lbU2zVq7T77BgQ8nTNIbxphlkj6TdPpRvt+bOjQ+xQ2S3gmUyBhzqzFmvjFm/rdpG47yLY4zYwrPO8oD3lM2Qqe9OUQbHn1XufvTj1HGTnIByr2oYn/qgWd0eZurtHntVnW50HdLz8RXPlH5SuX1+pTxuuSGi7R2+TrlFujxjCMoorwjz2quSpf10s5n3j400+vV5kvu1vouAxXZvLHCG9UJTh5LmgDVSaEDO2CVU3SdExIZrtPvvUjLnvr83+WtlAhcpR9dnb5mynyN7z5Un97ynLo8MOAY5ewkE7AOL3isF13P71y+SR+efZ8+7z1Cy9+Zqj5v3n88cnnSMsUp/8OYMf5bla1UTvf/OFbnXtdb8Ss2yZtLG3pYx+B8UZJO69Fam+avYdiDIgQ6tgu3o4HS+P7tXL5J7599nz7tPULL3pmqvk7dUqZSWdXt1VoftL9f77W9R6Fly6jxJR2Oce5LuOKcwzgi2rVQhUv7KPm5N/PmxQ+6T9uvuEsJd4xQxSsvUESbZscpoyeRQMdygRP0Mpfdqsxv3pasN3+yyPIKbXa2Doy8QQdGXCuFRyi0Xdfjl1cAOAo8TKywQC1qjg4FtSP85t8vKUlSC2d5xlG9kbVznOETOksKsdYG/GnaWjtB0gRJ+jW2/wkV9s+M360yNQ7dthMeV0WZicW/FcqEhuj0t4Zo55e/aveP9I44nIuuu0D9rvb9wr5myRrF1DjUAzYmrqp2JxV9u47X69Ws72bpitsHaMqnU5W2P01PPfBM3vKPfn9fiVsTj1veS7qcpF0K8+txHBpbVTk7Cpd3mcZ1FTv6Pm279f/kTUkttNybekBp85aqXMe2ylq7+bjmuSRKS0hW2RqHekKUjYtWemJKvjTpCckqV6OKDvafKFsjWulJ+dP4K1+nusrXjlGfaWPzttlnyhhN7feoMnbuPcZ7UDK1HdRTra70XZzEL92gin6fQcXYaO3fkfKPtrtl3mpF1ammyKjyeQ8bK82aXtdDp13lK+edSzaovF85l4+LVlqB4zgjOVXhFcvKhHhkc71OGl/7mu33o+aWmUvUccz1iogqrwzKuUjtB/bUWVd1kyRtXbJBlf3Kv1JstPYdxW3cmfvT9cnQ1/NeP/zbi0ouMF4zpHMG9tSZTplvW7JBlf5FmR/U4gKGPSjojOt66HSnbtlRoG4pFxetA0eoW3xpAtctHqduqdn+dKVu3amMZN+5zcaf5iu2bSP9/dWc47x3JUdO0i6FxvqdK1aPUe6O5ELpwhvXU8xj9yvxjhHy7j10rpi705fWm5yitOlzVeaMJspYsOz4Z7wE86bsUljUoetQT1RV2b35yzykdiNF3uB7wKwpX1EhTdtJXq8UEiLv7kTZ/fskSTlL5iik3mnK+Wtm8HYAAIpAj9r8fpF0iTEm0hhTQdIFzvxNkg4O3tTfL30lSQnWWq+kgZJCjrD9VEkFB2x5X9JEFdGb9kSXunidIurHqUztajJhoYq5uIOSp/515BUdjZ67U2lrt2n7698fx1yeHL557zvd1vsO3db7Ds2ZPFe9+veUJJ3W+lQdSD2g5AAngzXq1sibPqfH2dqybqskqVzFcgoN8/1O0+/qvlr657J849kiv4xlfyusTg2F1awuhYWqQr/O2j/jj3xpQuNiVOOl/1PC8KeUvWl73vyQqEryVCgnSTJlwlX2nFbK2rA1qPkvKZIXb1CFerEqVytGnrAQ1b7obG2buiBfmu1TF6pu/46SpCqtGyp7X7oyDhNI3Lt6q75qfqe+O+s+fXfWfUpLSNbk3iMI0vqZ//7PeqPfw3qj38NaM3W+ml/mK9+arRoqIzX9qAK1UXWq503HnlFXIWGhBGkdK96blvfwr41TFqjxZb7hZ6q1aqCs1DSlBSjn+LkrVf+8MyVJjft31KapvgehRMYcGg+1Wsv6kscQpD2CuR/8rOf6PaTn+j2kFVPnq+2lvuO8dquGykhNU+rOlGJvK6JiWYWE+U75zrqymzb8uUqZ3BFUyO8f/Jz3ALAVU+erzb8oc0mKqBCp+medphU/Lzhy4lJk+XvT8h7+tXHKAjVx6pbqh6lbts9dqQZO3XJq/47aWETdYpy6JXX7blVv1VChEeGSpJodmmrP2u2FtluaZS5fo7A6NRVaM1YKDVW5vp11YNbv+dKExMao+nOPasdDTyp786HyM5ERMmUj86Yj27dW1rpNwcx+ieTd/Lc8MTVkqlSXQkIV2rqTcpbmPz8/MOpGX6/ZkTcoZ9FvyvzkFeUs/V3e5J0KqXeqFFZGkhTapKW8SZyfAzgx0KPWj7V2oTHmE0mLJW2W9Kuz6GlJnxpjBkqa4bfKq5K+MMYMkDRT0pHuw/pO0ufGmIsk3eOMU/uRpMflC9aWPLlerX/4TZ0x8RGZEI+SJs5Q2pptih3US5KU+P5UhcVUVqsp/1NIhUjJa1XzlvO0oNN9Knd6HVUf0FkHVm5Wq2m+J1RvGvux9kxnfKAj+XPGPJ3V7Ux98Nu7ysjI1FP/eTpv2RPvP65nhj6r5B17NPy5oSpboayMjNav2qAXHvINo1ynYW0Nf2GYvLlebV67WU8PedatXSkZcr3aMXq8TnnrcckTor1fTFXWui2qdIWvh/PeT35UlTuvVkjlCqr+6F3OOrna3H+wQmOiFDtuiEyIRzJGqZN/1YFZ81zcmROXzfVq/oh31eXj4TIhHm2YNFv7/t6uhgO7S5LWfTBd8dMXK657S50/91nlpmfpz/sP9Wpr/+pdqnbOaSoTXUEXzX9Jy575XBsmznZrd0qkdTMWq2HXlrrrl2eVk56lb4ccKt8r3x2q74e9of07UtTu+t5qf/v5Kh9TSbdNGad1Mxfr++Fv6rS+7dT8so7Kzc5VTmaWvrzrJRf35sS1ZcZi1e7WQlf99oxy0rM064FDY/n2e2+IZg17U2lJKfpj7CT1fOVunTl0gHYt36RVk2ZJkur3O1NNB3aXNzdXuRnZmnbXK3nrd3/5LtU4+zRFRJfXtfNe1PxnvtDqT/ge+Fs1c5FO7dpSD85+Xtnpmfl6x970zjB9NvwN7duxR+de31tdbrtAFWIq64HJ/9PqmYv02YNvqHrDmrrymTtkvV4lrd2uT4cxFvORrJ65SE26ttSw2c8rKz1Tn/mV+Q3vDNPnw99Q6o49au+UefmYyrrfKfMvHnxDktS0dzut/XWpstMzi3qbUm+zU7dc49QtM/zqlvPeG6KZBeqWs4YO0E6/uqVBvzN1hlO35GRk62enbtmxeL3W/zhPA356XN7cXO1avlkrPqbnYT65Xu164mXFvvaETIhHqV9NUfb6zaowwPc4ktTPflDU7dfKU7miqj5yj7NOrrZfebdCqlRW9edHSpJMSIj2/zhT6XPmF/VOOMjrVcan41X2rscl41H2H1PlTdyisHN95+fZv/1Y9Kqb1yhn0W8qO/xFyZsr77YNyp7zU7ByflIbOnKc/lq0VCkp+9T94mt1500DddkFvd3OFv4lLw8IDipzIg+g6zZjzChJ+621Tx8p7b94j/6SLrLWDixO+hNt6IPSYFToPrezUOq8Wv5IndNxrC3cx4Nwgm1dmNs5KH1ivIHGs8PxtC6EsVuDjRY0+OrkUurB1qfyDrezUOrEdKaPV7BFjHrZ7SyUOmFV63OyGECl8g1OyjjU3v3rT8jPm9rWRcaYlyT1lcSjPQEAAAAAAIBSjEDtYVhrRx3n7d9zPLcPAAAAAAAAoGTgYWIAAAAAAAAA4DJ61AIAAAAAAAAohGdbBRc9agEAAAAAAADAZQRqAQAAAAAAAMBlBGoBAAAAAAAAwGWMUQsAAAAAAACgEC9j1AYVPWoBAAAAAAAAwGUEagEAAAAAAADAZQRqAQAAAAAAAMBljFELAAAAAAAAoBArxqgNJnrUAgAAAAAAAIDLCNQCAAAAAAAAgMsI1AIAAAAAAACAyxijFgAAAAAAAEAhXssYtcFEj1oAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZgVoAAAAAAAAAcBkPEwMAAAAAAABQiOVhYkFFj1oAAAAAAAAAcBmBWgAAAAAAAABwGYFaAAAAAAAAAHAZY9QCAAAAAAAAKMSKMWqDiR61AAAAAAAAAOAyArUAAAAAAAAA4DICtQAAAAAAAADgMsaoBQAAAAAAAFCItYxRG0z0qAUAAAAAAAAAlxGoBQAAAAAAAACXEagFAAAAAAAAAJcxRi0AAAAAAACAQhijNrjoUQsAAAAAAAAALiNQCwAAAAAAAAAuI1ALAAAAAAAAAC4jUAsAAAAAAAAALuNhYgAAAAAAAAAK4VFiwUWPWgAAAAAAAABwGYFaAAAAAAAAAHAZgVoAAAAAAAAAcJmxltEmEBzGmFuttRPczkdpQpkHH2UefJR58FHmwUeZBx9lHnyUefBR5sFHmQcfZR58lDnwz9GjFsF0q9sZKIUo8+CjzIOPMg8+yjz4KPPgo8yDjzIPPso8+Cjz4KPMg48yB/4hArUAAAAAAAAA4DICtQAAAAAAAADgMgK1CCbGqAk+yjz4KPPgo8yDjzIPPso8+Cjz4KPMg48yDz7KPPgo8+CjzIF/iIeJAQAAAAAAAIDL6FELAAAAAAAAAC4jUFsKGWPuNcasMsZ8ZIy50Bjz4DHYZhdjzPfHYDv/Ncb0ONz2/fNsjLnYGHP6v31fNxhj6hpjlhcjzdV+r9saY150pq83xrx8HPNXmj6L240xg5zp640xNQ6TNmC5HOt8FJh/xGOlJDHGvBnoWPm3x7QxZv+/y9nJzxjzrjGmf4D5R32MGWNqGGM+L2LZLGNM23+az+PNvx10OR+jjDFDnOlTjTGLjTGLjDENjtH2NxljqjrTc//hNv5VvWSMqWyMubMY6fK1d0dI96/rw9JQ9m7yL99jtL0fnWOpWMcTiq9gfV0Sjq8TSXHOXf7J+Y0x5j5jTNl/l7uTl38de5TrBTwPOkx6vg//gn/5FbiO7WKMae9u7oATV6jbGYAr7pTU11q70Xn9rZuZ8WetfbQYab7VoTxfLOl7SSuPY7bcVFfS1ZI+liRr7XxJ84PxxqXps7DWvub38npJyyXFF0xnjAkpTrkco3yUCMYYI98wOt7irmOtvfk4ZslVzjGS63Y+jjdjTKi1Nl5SsS92TjAF20FJefuV41KeLpb0jbV2ZHFXOJr8Wmv/0QXRMaiXKstX3q8eIV1d+bV3QXaxTs6yP2lYa/tJvot+Fe94Akq6+yR9KCnN5XwAx0SB69gukvZL+kc/ZAInO3rUljLGmNck1Zf0rTHmfv9feI0x3/j1KrztYE8jY0wvY8zvxpiFxpjPjDHlnfl9jDGrjTG/Sbq0iPera4z51Vl3of8vZ8aYYcaYZcaYJcaYcc68vF85i9r+wTw727pQ0lNOT5gGxpiFfukaGWMWHMvyOxxjzP/8e3k4vUkeMD5PGWOWO/t7RYB1iyqncZI6Ovt3vymi57IxJsYY84Ux5i/nr8NRvMdJ91kcjjFmkDFmqbOvHzjzRhljhjj721bSR85+RDq/2D/q7PuAAuXSzhgz19nWPGNMhQLvVd4YM90p72XGmIuKkw9nuo2z7HdJdwWndIrHOZZWGWNelbRQUi1jzFDn2FtqjHnMSVfOGPODsx/LDx77xq/3jjHmBmPM38aY2ZI6+L1Hvh4Pxukte7gyLSKvReXBv7dbW2PMLGc6xhjzs7P9140xm/3SfW2MWWCMWWGMudU/b8bX0/pPSef86wI+hgIdZ5I6OcftBhO4d22EMeYdp3wXGWO6OvOvN7424DtJU03+XhKRxphJznt9IinSb3tFtSHjjDErnXWePu6FcSg/BdvBUcaYCcaYqZLeN0XUp86x9LYzb1GgY88YE2eM+cX46o/lxpiOzvz9fmn6G2PeLbBeP/kuym82xsw0BXrwGF/9NMqZnmWMecL5zgwusJ0qxpipTv5el2T8lh38DhkToE0yxrxojHnUme7t7IfHFKNeMsaEONs8WAfc5petcZIaOGXyVFHvr8LtXZFtVhGfK2VfuOyDyhgzwhizxhgzTVITZ14DY8xk46s7fzXGnOrMf9fZ73x10WE+x4N1dsHj6QOTv239yBhzYdB3vgRwju3Vxpj3nGPlc0OPzYBMgHMHU8R5Q4H13jXGvOYc638bY873W1zD+S6sNcY86bfOeGPMfOM7tzh4/nSvpBqSZhpjZjrzTqi2NJhMEedffssDnVPXMb7zxaXO/9p+qxQ6Dyqqfi7N/Ot0Y8xE42sP/c/hqxpjNjnTR2yzjXMda3w/uN0u6X6nLu9ojNlojAlz0lV0vm9hwdtb4ARjreWvlP1J2iSpqjN9vaSXnenqktZJ6ijpb0nRkqpK+kVSOSfNcEmPSoqQtFVSI/kuRj6V9H2A9yorKcKZbiRpvjPdV75f0Mo6r6Od/+/K10OryO0XyPO7kvr7vd9MSS2d6Sck3RPEcm0labbf65WSaku6TNLPkkKcMt4iKU6+3kPLj1BOXfzL1f91gXL4WNK5znRtSatK82dxmM+oqaQ1OnT8H9zXUZKGONOzJLUt8H0Z5vf6YLmES9ogqZ0zv6Kk0ALvFyqpojNdVb7vlylmPpZK6uxMP3XwWDkR/pxj1yvpbOd1L/me7Grk+wHwe0md5Dv23/Bbr5J/Gcv3PdgiKcYpzzmHOZ72H65M/dMUyGtRedjkV/5tJc1ypl+W9JAz3UeSDfA5RcrX67qK89pKutztz6U4x7tTrp85n9Ppktb5faYH66MHJL3jTJ/qfEYR8n3ft/mVg/86/5H0tjPdXFKOU65FtSHRTt4OfnaVg1w2/p//KEkLJEU6rwPWp/LVY9cezK987WS5Att9QNIIZzpEUoWCx6Z89ce7fu89JMB0Xtk6r4dIGuX3/Xm1iP16UdKjzvR5BY7fg9+hotqkspJWSOrqfDYNAuQrYL0k6VZJjzjTZeTrMVOviH0p6v27KH97V1SblW97lH3RZR/k71QbScucfakoX908RNJ0SY2cNGdJmuFMv6vAdVFRn+Mm+eqTgp9PZ0lfO9OVJG1UgbaYv7yyqusclx2c1287n9Es57hb7PytDPQdK01/CnDuoKLPG65X/nOXyc5x3Ui+NvNg+7nB2U6EpM2SajnrHGxTQ5zPornz2v/9Tsi2NIifR6HzL786oahz6u8kXedM3+hXTxRV9xzxeq00/anoOn2WnOskp/w3OdNHbLOV/zp2lJz2zXn9jqSLnelbJT3jdhnwx5+bf/SoRR5rbZJ8jf5MSQ9Ya5MlnS1fIzbHGLNY0nWS6sh38b7RWrvWWmvluzUnkDBJbxhjlsnXKB4cl7KHfIGANOe9kwusV9ztF/SmpBuMMSGSrlAQb6G01i6SVM34xm1sIWmPtXaLpHMlTbTW5jplPFtSuwKrF1VOxdVD0svOZ/StpIqmQO/Ow7zHSfdZHEY3SZ9ba3dJAfe1KJ8EmNdEUoK19i9nW/ts4dtgjaQnjDFLJU2TVFO+k7/D5sMYU0m+k+3ZzqwPdOLZbK39w5nu5fwtkq+H7anynaQtk9TD+Hqbd7TW7i2wjbPku9DZaa3NUuByLqioMi3KkfJQ0LmSJkmStXaypD1+y+41xiyR9IekWs4+SlKupC+KkfdgK+o4+9pa67XWrlTgsjtXzjFnrV0t3wVlY2fZz0V8bzrJqRustUvlCypJRbch+yRlSHrTGHOp3L+181trbbozXVR92kvSg878WfJdbNcusJ2/5Kv3RklqZq1NPU75Leq74v85/KD8x+9BAdskpw24Rb4L1Zettev9VzpCvdRL0iCnbP6U7yK6kQIrTpsoHX27SNkfueyPp46SvrLWpllr98n33YmQ1F7SZ07+Xpcv8HFQoLroqD5Hp0waGmOqSbpK0hcB2mIcstVaO8eZ/lC+Y1KSrrHWtrTWtpTUz5WcnViO9tzB36fOcb1WvuDsqc786dbavdbaDPmC4XWc+Zcb311oi+QLOgaq60pKW3q8FHX+JRV9rnOODl17fKBDx7oUuO4pbttUWgSq0w/n317LvinpBmf6BvkCt0CpxRi1KKiZpN3y3W4j+YIiP1trr/JPZIxpKd+v8kdyv6QkSS3k++Uyw2+7R1q/ONsv6AtJIyXNkLTAWrv7H2zj3/hcvh47sXKCPfK7/fEwiiqn4vJIOscv0HA073GyfhaBFGdfAznwD7d1jXy9RdtYa7Od24MiirHuP81nMPmXiZE01lr7esFExpg28l30jTXGTLXW/rdAkqL2M0fO8DzGGCNfj1up6DINyFr7dxF5yNt+gfUDfl+NMV3kC+CdY61NM75bHg+ul2FPzHFpizqOMgukCbReUQJ9Fw4K9F4B2xBJMsacKam7pCsl3S3fxZZb/PcrYH3qHIeXWWvXFLURa+0vxphO8vWo/MAY85S19n3lL5sij1c//sdnoHWO9nPwd7jPt+A5QMH1itq2ke+uiSlHeO8jvb+/o2oXKftilf3xVjCPHkkpTvAvkEJ10WE+x8P5QL624Ur5es6haAU/oxP9XMMVgc4dVPR5Q6HVi3jtf7znSgo1xtSTr5diO2vtHuMbmiXQtktKW3rMHeH8Syr+ObN/mkDnQcVtm0qTQOVa1PfgX13LWmvnOMMndJYUYq3lAW4o1ehRizxOQ99Xvlv4hzgnD39I6mCMaeikKWuMaSxptaR65tDTkQudODgqydfr0CtpoHy3k0jSVEk3GmdsLGNMdIH1irv9VEl5PUedX6mnSBovd36JmyTfiVJ/+YK2ku9WpSuMbxy5GPl63cwrsF5R5ZRv/w5jqnwnZ5LyAukFlbbPIpDp8vVcqCIF3Fep+GW+Wr7xxto526pgjCn441clSTucgGJXHeo9cdh8WGtTJO01xuT1dClGftw0Rb5j6OB4aTWNMdWMMTUkpVlrP5T0tKTWBdb7U1IX4xvbMUzSAL9lm+S77UqSLpLvl3qp6DIN6DB58N/+ZX6r/CbpcmfdXpKi/N53j3ORcKp8vVtOdMU53gP5Rc4x59T3teW7rbC465wh3/AHUhFtiHOsVLLW/ijf+KAti5m3YCiqPp0i6R4nYCtjTKuCKxpj6sh3fL4h6S0dOt6SjDGnGWM8ki4pRh6S5LtDo4oxpoyk84+0gsP/c+irQ8dvwTSF2iQn7w/Idw7Q1xhzlv9KR6iXpki6wxwaX66xMaacs6xgnVpUm1gwXVFtVkCUfcCyD6ZfJF1ifONVV5B0gXy9+zYaYwY4eTPGd8dRkQ7zOR4UqI1+V756RNbaFf9yP052tY0xB8dSv0q+Ng8FFHHusEmBzxsKGmB8Y0w3kG889MO1nxXl+/FnrzGmunzXYQf5H+slsS09Vo50/lXUuc5c+a7JJF+deaRjvTjXa6VJoDpdyv898H/OwVG12Qpcl78vaaJOnOtGwDUEaiFJci5G3pB0o/U9yfsB+cau2iXfuEoTje9W4z8kneoE4W6V9IPxPWRpcxGbflXSdcaYP+S7dfaAlHdL8beS5hvfLTxD/Fc6iu1PkjTU+B7ecTCQ+JF8vwBOPapCOAacC4QKkrZbaxOc2V/JdxvwEvl6lw6z1iYWWDVgOTnr5Rjf4Pj3H+at75XU1vgGzF8p3wDtBZWqzyIQ5/MZI2m28d1C9WyAZO9Kes04DxM7zLay5BvS4SVnWz+rcC+Ij+T7XObLd5K4+ijycYOkV4zvwTGH6yntOmvtVPluL/vd+G55+ly+70Ez+YIQiyWNkPR4gfUS5Buj6nf5hjFY6Lf4DUmdjTHz5Bsi4eB3ImCZHkZReXhM0gvGmF/l69kiv/m9jO82xL6SEuQ7mZwsX++XpZJGy1cXntCKeZwF8qqkEOez/ETS9dbazCOsM15Sead8hsm5uLHW7lSANkS+4+N7Z95s+XpinCiKqk9Hy/eDwVLje9jU6ADrdpG02BizSL4L+Rec+Q/KN3bzDPmOqcOy1mZL+q98P2Z8ryMf5wc9Jt9DUhbKd0v8lgBpCrVJ8gUn35JvvLh4STfJdyttwTqtqHrpTflu5V3olM3rcu7acu6mmGN8D2h5KtD7O21iwfauqHaxKF1E2ecr+2Cy1i6Ur75YLN8dNb86i66RdJNTB62Q74e3w+miwJ/jwfcpeDwdHLprlbi4L45V8n2vlso3vul4l/Nzogp07lDUeUNBa+Rr136SdLtzHh2QtXaJfEMerJDvumuO3+IJkn4yxswsoW3psXLY86/DnOvcK98wKkvlCxwOPsL7FOd6rdQ4TJ3+tHw/Ds6Vb4zag462zf5OvkDwYuM8NFK+c/wo+YK1QKl2cOBx4KRhfE9IrmSt/T+381La8VmgpHF+tMq11uY4vY7GH+a2XQCAy4zvjqBlklof5ViipYrxPWn9e2vtGW7n5WRlfEMXfG+t/fxIaYGSxPjGDd9vrX36OL5Hf0kXWWsHHq/3AEoKxqjFScUY85WkBjrJxmcqifgsUELVlvSp8d0mnSXfA34AACcgY0wP+XoiPkuQFgBKJmPMS/LdycbDDAHRoxYAAAAAAAAAXMcYtQAAAAAAAADgMgK1AAAAAAAAAOAyArUAAAAAAAAA4DICtQAAAAAAAADgMgK1AAAAAAAAAOAyArUAAAAAAAAA4LL/B43aneYYiaTUAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1800x1440 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Pearson Correlation\n", "plt.figure(figsize=(25, 20))\n", "sns.heatmap(data.corr(), annot=True)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Findings from Data Analysis\n", "* Based on the data analysis performed, it was found that certain columns contained outliers which could negatively impact the accuracy of the model. To address this issue, min-max scaling will be used as a normalization technique. By squeezing the data values between 0 and 1, this method effectively removes the impact of outliers and allowes for uniformity of scales across all features. This is important because the different value ranges of the features could lead to problems during model training.\n", "\n", "* Additionally, the Pearson Correlation plot was used to investigate the presence of highly correlated features. It was observed that none of the features were highly correlated (using a threshold value of 0.8), indicating that each feature provided unique and valuable information that should be retained in the model.\n", "\n", "* Also, since some features have low correlation (< 0.3), it is reasonable not to use PCA, as it is generally used to reduce dimensionality when there are too many features or when there is high correlation between them." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# 3. Preprocessing" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "good 855\n", "bad 744\n", "Name: quality, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Convert continuous output to categorical output:\n", "# Bad: 3-5\n", "# Good: 6-8\n", "data[\"quality\"] = pd.cut( data[\"quality\"], bins = [2, 5, 8], labels = [\"bad\", \"good\"])\n", "# Show output frequency\n", "data[\"quality\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "lb = LabelEncoder()\n", "data[\"quality\"] = lb.fit_transform(data[\"quality\"])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Seperate the dataset as features and output variable\n", "X = data.drop(\"quality\", axis = 1)\n", "y = data[\"quality\"]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# Split the dataset into training and testing dataset\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({1: 676, 0: 603})\n" ] } ], "source": [ "print(Counter(y_train))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "As we see, we have imbalances classes. Since the class imbalance is not very high (855 vs 744), undersampling may not be the best option, as it may lead to a significant loss of information. However, oversampling or SMOTE can be used to increase the number of samples in the minority class. Therefore, we will try both oversampling and SMOTE techniques, and compare their performance." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Models with Oversampling" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# Concatenate the training data back together\n", "X_resample = pd.concat([X_train, y_train], axis = 1)\n", "good_quality = X_resample[X_resample[\"quality\"] == 1]\n", "bad_quality = X_resample[X_resample[\"quality\"] == 0]\n", "\n", "# Upsample minority\n", "bad_quality_oversampled = resample(bad_quality, replace=True, n_samples=len(good_quality), random_state=42)\n", "oversampled_data = pd.concat([good_quality, bad_quality_oversampled])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 676\n", "0 676\n", "Name: quality, dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# See class counts\n", "oversampled_data.quality.value_counts()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Now we have balanced classes!" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# Separate the oversampled data into features and output variable\n", "X_train_oversampled = oversampled_data.drop(\"quality\", axis = 1)\n", "y_train_oversampled = oversampled_data[\"quality\"]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# Scale the data\n", "scaler = MinMaxScaler()\n", "X_train_oversampled = scaler.fit_transform(X_train_oversampled)\n", "X_test = scaler.transform(X_test)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 4.1 Random Forest Classifier (on oversampled data)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "rfc_oversampled = RandomForestClassifier(n_estimators=100)\n", "rfc_oversampled.fit(X_train_oversampled, y_train_oversampled)\n", "rfc_y_hat = rfc_oversampled.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.83 0.68 0.75 141\n", " 1 0.78 0.89 0.83 179\n", "\n", " accuracy 0.80 320\n", " macro avg 0.80 0.78 0.79 320\n", "weighted avg 0.80 0.80 0.79 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, rfc_y_hat))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 96 45]\n", " [ 20 159]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, rfc_y_hat))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 4.2 Decision Tree (on oversampled data)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "dt_oversampled = DecisionTreeClassifier()\n", "dt_oversampled.fit(X_train_oversampled, y_train_oversampled)\n", "y_hat = dt_oversampled.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.73 0.68 0.71 141\n", " 1 0.76 0.80 0.78 179\n", "\n", " accuracy 0.75 320\n", " macro avg 0.75 0.74 0.74 320\n", "weighted avg 0.75 0.75 0.75 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, y_hat))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 96 45]\n", " [ 35 144]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, y_hat))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 4.3 Logistic Regression (on oversampled data)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "lr_oversampled = SGDClassifier(loss=\"log\")\n", "lr_oversampled.fit(X_train_oversampled, y_train_oversampled)\n", "lr_y_hat = lr_oversampled.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.60 0.89 0.71 141\n", " 1 0.86 0.53 0.66 179\n", "\n", " accuracy 0.69 320\n", " macro avg 0.73 0.71 0.68 320\n", "weighted avg 0.74 0.69 0.68 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, lr_y_hat))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[125 16]\n", " [ 84 95]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, lr_y_hat))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 5 Models with SMOTE" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original dataset shape Counter({1: 676, 0: 603})\n", "Resampled dataset shape Counter({1: 676, 0: 676})\n" ] } ], "source": [ "# Now, apply SMOTE to balance the classes\n", "sm = SMOTE(random_state=42)\n", "X_train_sm, y_train_sm = sm.fit_resample(X_train, y_train)\n", "print(\"Original dataset shape %s\" % Counter(y_train))\n", "print(\"Resampled dataset shape %s\" % Counter(y_train_sm))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "# Scale the data\n", "X_train_sm = scaler.fit_transform(X_train_sm)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 5.1 Random Forest Classifier (using SMOTE)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "smote_rfc = RandomForestClassifier(n_estimators=100)\n", "smote_rfc.fit(X_train_sm, y_train_sm)\n", "smote_pred = smote_rfc.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.73 0.79 0.76 141\n", " 1 0.82 0.77 0.79 179\n", "\n", " accuracy 0.78 320\n", " macro avg 0.77 0.78 0.77 320\n", "weighted avg 0.78 0.78 0.78 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, smote_pred))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[111 30]\n", " [ 42 137]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, smote_pred))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 5.2 Decision Tree (using SMOTE)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "dt_smote = DecisionTreeClassifier()\n", "dt_smote.fit(X_train_sm, y_train_sm)\n", "dt_smote_y_hat = dt_smote.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.59 0.66 0.62 141\n", " 1 0.70 0.64 0.67 179\n", "\n", " accuracy 0.65 320\n", " macro avg 0.65 0.65 0.65 320\n", "weighted avg 0.65 0.65 0.65 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, dt_smote_y_hat))" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 93 48]\n", " [ 65 114]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, dt_smote_y_hat))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## 5.3 Logistic Regression (using SMOTE)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "lr_smote = SGDClassifier(loss=\"log\")\n", "lr_smote.fit(X_train_sm, y_train_sm)\n", "lr_smote_y_hat = lr_smote.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.71 0.68 0.70 141\n", " 1 0.76 0.78 0.77 179\n", "\n", " accuracy 0.74 320\n", " macro avg 0.73 0.73 0.73 320\n", "weighted avg 0.74 0.74 0.74 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, lr_smote_y_hat))" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 96 45]\n", " [ 39 140]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, lr_smote_y_hat))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Selecting the optimal model and conducting additional fine-tuning" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The comparison of the models using oversampling and SMOTE techniques suggests that Random Forest Classifier model appears to be the most promising to fine-tune further.\n", "\n", "Comparing the oversampling and SMOTE results for RFC, the f1-score for the class (1) is higher when using oversampling (0.83) compared to using SMOTE (0.79). Additionally, the recall for the class (1) is also higher for the oversampling results compared to SMOTE results. The confusion matrix also indicates a better performance for the RFC model when using oversampling. When we compare the class (0), there is almost no difference between the RFC models.\n", "\n", "Similarly, the Decision Tree model appears to perform better when using oversampling. The f1-score for the class (1) is higher when using oversampling (0.78) compared to using SMOTE (0.67). The confusion matrix also indicates a better performance for the Decision Tree model when using oversampling.\n", "\n", "The Logistic Regression model does not appear to perform as well as the RFC or Decision Tree models, regardless of the oversampling or SMOTE techniques used.\n", "\n", "In summary, RFC with oversampling method appears to be the most promising model to fine-tune further as it consistently outperformed the other models when using oversampling and SMOTE techniques." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Parameter search for Random Forest Classifier" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'criterion': 'entropy', 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 300}\n" ] } ], "source": [ "rfc_oversamp = RandomForestClassifier(n_estimators=50)\n", "param_grid = {\n", " 'n_estimators': [50, 100, 150, 200, 250, 300],\n", " 'max_features': ['sqrt', 'log2', 0.2, 0.5, 0.8],\n", " 'criterion': ['gini', 'entropy'],\n", " 'min_samples_split': [2, 5, 10],\n", " 'min_samples_leaf': [1, 2, 4],\n", "}\n", "\n", "CV_rfc = GridSearchCV(estimator=rfc_oversampled, param_grid=param_grid, cv= 5, verbose=3)\n", "CV_rfc.fit(X_train_oversampled, y_train_oversampled)\n", "print(CV_rfc.best_params_)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "# Use the best parameters to train the Random Forest\n", "rfc_finetuned = RandomForestClassifier(n_estimators=300, max_features='sqrt', criterion='entropy')\n", "# Train the model\n", "rfc_finetuned.fit(X_train_oversampled, y_train_oversampled)\n", "# Make predictions\n", "y_hat_finetuned = rfc_finetuned.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 0.84 0.73 0.78 141\n", " 1 0.81 0.89 0.85 179\n", "\n", " accuracy 0.82 320\n", " macro avg 0.82 0.81 0.81 320\n", "weighted avg 0.82 0.82 0.82 320\n", "\n" ] } ], "source": [ "print(classification_report(y_test, y_hat_finetuned))" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[103 38]\n", " [ 20 159]]\n" ] } ], "source": [ "print(confusion_matrix(y_test, y_hat_finetuned))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Conclusion" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Upon comparing two Random Forest Classifier (RFC) models, it was observed that the fine-tuned RFC model outperformed the default RFC model in terms of accuracy, precision, recall and f1-score. The fine-tuned RFC model achieved an accuracy of **82%** compared to the default RFC model's accuracy of **80%**. The precision and recall scores for both classes were also improved in the fine-tuned RFC model, leading to higher f1-scores in comparison to the default RFC model. The confusion matrices of both models indicated that the fine-tuned RFC model had 38 false positives and 20 false negatives, while the RFC model without tuning had 45 false positives and 20 false negatives. In conclusion, the fine-tuned RFC model proved to be a better choice for this classification task, achieving an accuracy of 82%." ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "09944cd23dd739ba6f6c31cd41b3684992398c178299213d9243e0654fbe5fc6" } } }, "nbformat": 4, "nbformat_minor": 2 }