
Predicting Stock Prices with Relational Learning

John Theurer
University of California, Los Angeles

theurerjohn3@gmail.com

Yugantar Prakash
University of California, Los Angeles

yugantarp@g.ucla.edu

Utsav Munendra
University of California, Los Angeles

utsavm9@g.ucla.edu

Fabrice Harel-Canada
University of California, Los Angeles

fabricehc@cs.ucla.edu

Abstract

The economy is often discussed with the two concepts central to this class -
Probability and Networks. Probability plays a foundational role in the modern
economy of debt, credit, and risk, and features prominently in our course. Buyers
and sellers, as presented in the economy, could be viewed as nodes in a directed
graph. We propose using a probabilistic programming language to model the price
of a single stock, and using a graph neural network (GNN) to model an industry.
Part 1 entails modeling a stock and/or index using ARIMA. Part 2 entails using
GNNs to predict stock prices with both historical stock data and relational data.
Lastly, we learn a new correlational embedding to describe company relations
solely from stock price movements. Our results indicate that relational data is
important for achieving gains that surpass the passive performance of holding an
index of stocks and that this relational data can be learned to a large extent only
from stock price movements. We present all project code and the data we worked
with at: https://github.com/fabriceyhc/ppl_gnn_stocks.

1 Introduction & Motivation
This paper explores using GNN’s and ARIMA models to predict price changes in the stock market.
Modeling financial data is often split into technical analysis, which focuses purely on the stock prices,
and fundamental analysis, which focuses on the actions and activities of the company. Graph neural
networks offer an opportunity to combine these two approaches. We chose this project because it
would help us understand each of these approaches.

In particular, in this paper we look at the time-series nature of stock market, and we take two
approaches to modeling and predicting stock prices for various companies: Markov Processes in the
form of Autoregressive Integrated Moving Average (ARIMA) models and using relational information
about the elements in an industry (such as supply chain relationships) through Graphical Neural
Networks (GNNs). By comparing a GNN that is trained only on stock data and correlations to one
that includes market research, we are able to examine the advantage fundamental analysis provides.

2 Background
We explore the use of Probabilistic Programming libraries to predict stocks using an AR model,
which is typically programmed purely mathematically, using known formulas. The equation of an
AR(1) model, also known as a random walk, is:

Xt+1 = ψ ·Xt + εt

where Xi is the stock’s closing price at the end of day i. [1]

34rd Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:theurerjohn3@gmail.com
mailto:yugantarp@g.ucla.edu
mailto:utsavm9@g.ucla.edu
mailto:fabricehc@cs.ucla.edu
https://github.com/fabriceyhc/ppl_gnn_stocks

We then employ GNNs to understand relationships between elements of industries. We believe that
stock prices of individual companies in an industry are dependent on each other to the point that the
aggregate movement of their stock prices mimic the trends that the industry as a whole follows due to
external factors. At the same time, ceteris paribus, the stock prices should have a negative correlation
with each other as, internally, the elements of the industries try to compete for the same, finite market.
In particular, by using the stock prices of various companies of an industry and learning the graphical
relationship between them, we hope to better understand the connections between these elements and
the nature of stock prices in reference to these two opposing forces.

For this analysis, we use data from the New York Stock Exchange, or NYSE and the Nasdaq Stock
Market, or NASDAQ. These are the two largest stock markets by total market capitalization, and are
the the standard bearers of the American financial world. Additionally, we gather market fundamentals
from Wikidata, a Wikimedia run open source knowledge base that gives information about buyers
and sellers. Market fundamentals are also gathered from similar sources about the sector and industry
of the company.

3 Related Work
3.1 Random Walks
Autoregressive (AR) models, also known as random walks, cover a large variety of datasets, modeling
random walks is an important tool in any time series toolbox [1]. To achieve this, we decided to
model the data of a specific stock or index over a short period of time. It is widely believed that
the daily behavior of stock prices can be modeled as a random walk [2], and a number of statistical
analyses have supported that conclusion[3]. Analyzing this dataset is both interesting to us, as we
want to be more financially aware, and serves the purpose of analyzing random walks.

3.2 Graphical Neural Networks
Graph Neural Networks (GNNs), initially proposed by Sperduti et al. [4] in 1997, have shown
remarkable results in modeling relationships between elements by learning their graphical repre-
sentation. Spurred on by the success of convolutional neural networks (CNNs) [5] in the computer
vision domain [6], a large number of methods that redefine the notion of convolution for graph data
have yielded new convolutional GNNs, sometimes known as ConvGNNs or Graph Convolutional
Networks (GCNs) [7, 8, 9, 10, 11]. In this work, we use GCNs, but refer to them interchangably as
GNNs and we refer interested readers to an excellent survey of various GNN types in [12].

Stock predictions using GNN’s often use known facts about the real world fundamentals of the
company to produce a graph, which the neural network than uses to make predictions from [13,
14, 15, 16]. These graphs are produced from information such as companies industry, their buyers
and sellers, and their investor relations. This enables the methodology to combine technical and
fundamental analysis.

4 Technical Contributions
4.1 Random Walks
In this section, we seek to answer one primary research question:

RQ1. Can Autoregressive models be written in a probabilistic programming language?

We will use NumPyro, a probabilistic programming package for Python, to estimate the distribution
of εt using a Markov Chain Monte Carlo (MCMC) algorithm.

The dataset used were the stocks listed in the NASDAQ. To evaluate the success of the model, we
will apply the following trading strategy:

1. Each day, we will invest $100 in each stock estimated to rise in value, and sell that stock at
the end of each day.

2. This will be compared to investing the same sum total quantity of money each day in the
Vangaurd Total Stock Market index fund, VTI, and selling it at the end of the day.

4.2 Graphical Neural Networks
For this portion of the project we expect to address two primary research questions:

RQ2. Can we use GNNs to predict stock prices using relational data?

2

RQ3. Can we approximate company relations purely from stock price movements using GNNs?

4.2.1 Replication Effort Experience with GNNs

We plan to address RQ2. similarly to the approach taken by Matsunaga et al. in [13] using the stock
and relational data collected by [14]. Namely, we plan to use both the stock rolling window analysis
upon stocks in the NASDAQ index to ensure that the relational model we are learning performs well
across all a wide variety of time slices. This is essentially a replication work where we implement a
similar GNN in Pytorch [17] using the DGL framework [18]. We describe our approach as follows:

1. Replicate the GNN from [14] in Pytorch using the temporal rolling window analysis in [13].
2. Train two separate instances of the GNN, both on NASDAQ stock data (including the 5-day,

10-day, 20-day, and 30-day moving average features) but differing on the relational data:
one with Wikidata and the other with sector-industry relations. This is intended to establish
some baselines for which set of relational data performs better while fixing the stock data.

3. Predict stock prices to identify the top k performing stocks. At the beginning of each
timestep, invest a fixed amount of money (e.g. $100) according to some strategy (i.e. put all
our money on the top performer, or diversify by selecting a distribution across the top k in
some manner to be determined). Sell at the end of the time step to realize the return.

4. Evaluate how well these two GNNs are able predict stock prices based on their Mean Square
Error (MSE) and the cumulative investment return ratio (IRR).
(a) IRR can be compared against two metrics:

i. The total return had we just invested in the full NASDAQ index.
ii. The optimal return for the index as computed by greedily picking the best perform-

ing constituent stock from the index and investing entirely in that stock.
(b) NOTE: we normalize the IRR by dividing the earned return by the optimal returns

possible (i.e. investing in the best performing stock at each time step) to (1) make the
results between NASDAQ and NYSE comparable and (2) remove the affect of selecting
a particular daily investment amount.

4.2.2 Relational Learning Contribution

We observe that one of the major limitations of previous work using relational information for stock
prediction is that the matrix tracking the relationships between companies is based on data from a
particular point in time. Therefore, a hypothetical matrix of N companies has dimension N ×N
company-to-company relationships when we ideally want an N ×N × T tensor for predictions at
each time step T . This need motivates RQ3 where we plan to approximate the target N ×N × T
relational matrix R from stock information alone. We describe our approach as follows:

1. Initialize target relational tensor R:
(a) In lieu of using one of the popular initialization techniques [19, 20], we intend to

incorporate prior knowledge of the likely relationships based on 30-step rolling correla-
tions of stock price movements. Specifically, for each time step T , generate a Pearson
correlation matrix from the previous five time steps. Note: the first five time step
correlations will necessarily be truncated due to a lack of preceding data.

(b) Stack all correlations to yield initialized tensor R0 ∈ RN×N×T .
2. Update R:

(a) Using the gradients obtained from the training loss, update R to minimize further loss.
(b) Rt+1 ← Rt + β · ∇wJ(w), where w are the learnable weights of the GNN, J(w) is

the training loss, and β is the learning rate for R updates. Note: let α be the standard
learning rate for graph training, then we propose to set β < α to reflect the observation
that company relationships change more slowly than stock prices.

3. Evaluation:
(a) Constructing the ground truth GT matrix for comparison:

[14] uses anN×N×K tensor forK different kinds of relationships. For our purposes,
relationship type is not as important as the net effect of the relationship’s influence.
Therefore, we will average over the K dimension to acquire a N ×N target matrix,
which represents the influence of all companies on one another at time T .

(b) We propose to slice the final time step T from our R tensor to get our final relational
matrix RT to compare against GT via the Frobenius norm: ||GT −RT ||F .

3

5 Findings
5.1 ARIMA Evaluation
We invest 100 dollars each day in the company predicted by AR(1) model to have the highest percent
increase in stock. We compare the returns accumulated from the above strategy to the returns we
would have gained by investing in the company that actually had the highest percent increase in
closing price of its stock.

We used a window of 200 training days, followed by predicting the next 1 day, which we call the
200/1 split. After this, the training period is moved to the end of the last training period, and the
process repeated until the end of the dataset. Using this rolling window, we averaged a loss of 60
cents per training window.

(a) MSE (b) % of Optimal Return

Figure 1: (a) Mean squared error of AR(1) model as a function of days since last data. (b) Return of
AR(1) model in each window.

The AR model is not particularly good at selecting stocks with positive returns, as we did worse than
break even half the time.

We switched our methodology to 500 training days and 50 testing days to evaluate how the model did
as time passed. Our loss went from a total of $.57 in the first window to a total of $ 16.01 in the
second window.

The mean squared error rose from 0.85% of the stocks value to 16% of the stocks value over the 50
day period in the AR(1) model applied to the NASDAQ stock prices in the 500/50 window structure.

RQ1. Probabilistic programing langauges can perform the same analysis as traditional
approaches. However, our implementation in NumPyro was slower as compared to a conven-
tional implementation.

5.2 GNN Evaluation
This section discusses the results of the GNN evaluation with respect to our two evaluation metrics —
MSE and IRR expressed as a percent of the optimal return – for each of our relational data types.
Each evaluation was conducted with various parameters, for which the most important are shown in
Table 1 of the Appendix. Note that, the # of windows is dynamically sized depending on the selection
of training size (i.e. bNo. of steps/Training Sizec = b1215/200c = 6. Windows slide by a length
equivalent to “training size” so that no temporal correlations are adjusted for gradients in more than
one window.

Lastly, as a kind of sanity check for our novel correlational approach, we decomposed the evaluation
to consider pre-training and post-training performance. This approach trained a model as usual —
which includes updating the temporal correlational tensors, which we view as a kind of external
model parameter — and then when it came time for evaluating the performance, we used the trained
correlational tensors to report “Trained Correlations” and then reverted back to the original tensors to
compute the performance for “Untrained Correlations.” Since the training was confirmed to work

4

for NASDAQ, ultimately demonstrating the viability of our approach, we did not conduct the same
experiment for the NYSE market and only report the “Trained Correlations.”

5.2.1 Can we use GNNs to predict stock prices using relational data?
Table 2 shows the total MSE loss across all windows of testing and shows “Sector Industry” as having
the lowest error for NASDAQ and “Wikidata” having the lowest error for the NYSE. This result
aligns with the performance seen in Figure 3 and Tables 2 and 4 in the Appendix which also shows
that overall, using a GNN with relational information sourced from “Sector Industry” and “Wikidata”,
respectively, yields the highest returns of all relations considered.

Relation MSE
Untrained Correlations 0.00168
Trained Correlations 0.00133
Wikidata 0.00050
Sector Industry 0.00046

(a) NASDAQ

Relation MSE
Trained Correlations 0.00012
Wikidata 0.00009
Sector Industry 0.00019

(b) NYSE

Figure 2: Total MSE Loss for relational data on (a) NASDAQ and (b) NYSE stock predictions.

The earned returns for each relation type shown in the aforementioned tables is computed by investing
$100.00 into the top k = 1 stock at each of 114 selected time steps for testing. More specifically,
the model predicts stock prices for each day and we pick the company’s stock that does best on that
day. Then we lookup the true performance of that company and multiply the return by the daily
investment amount of $100.00. Tables 3 and 5 in the Appendix shows the raw results and includes
the baseline “Mean Return”, which is what an investor would have earned had they invested in the
full index evenly. A return at or below the mean return would indicate a complete failure for any
stock prediction project because a passive holding of the full index does better. Our testing interval
happened to have a negative mean return and all approaches managed to make positive gains. This
result is encouraging for our particular approach as well the entire enterprise of stock prediction using
relational data.

(a) NASDAQ (b) NYSE

Figure 3: Comparison of relational data on NASDAQ stock predictions. 1

RQ2. Yes, GNNs are an effective way of predicting stock prices because they always do
significantly better than the baseline buy-hold strategy (i.e. “mean return”).

5.2.2 Can we approximate company relations from stock price movements using GNNs?
In this section, we address RQ3 by comparing the Frobenius norms of the difference between each
pairing of relational datasets in a given market. By averaging over the temporal dimension T of the

1Unfortunately, the Sector Industry model only completed training on the first two rolling windows.

5

correlational tensor, we obtain a matrix in RN×N . By averaging over the relational type dimension
K of the Wikidata and Sector Industry tensors, we obtain matrices of the same dimension as above.
Then we can compare the Frobenius norm between Wikidata and Sector Industry to find a baseline of
closeness. If the ‖ · ‖F between our correlational tensor and the other relational tensors is comparable
(i.e. within a small ε distance), then we can answer the RQ in the affirmative.

NASDAQ Correlational Wikidata Sector Industry
Correlational — 239.84 239.16
Wikidata 239.84 — 2.62
Sector Industry 239.16 2.62 —

(a) NASDAQ

NYSE Correlational Wikidata Sector Industry
Correlational — 309.16 308.13
Wikidata 309.16 — 5.70
Sector Industry 308.13 5.70 —

(b) NYSE

Figure 4: Frobenius Norms between all relational datasets for (a) NASDAQ and (b) NYSE.

Unfortunately, Figure 4 shows the difference between our relational tensors is significant. The
correlational tensors are much different (i.e. range [-1, +1]) from the relational tensors created froms
craping web data on known company relationships (i.e. either {0, 1}). However, our results from
RQ2 suggest that we have actually learned some aspect of the relationships because we could leverage
our tensors with comparably close performance. This suggests that we may have learned a different
representation of the company-to-company relationships after all.

RQ3. It depends. The Frobenius norms between our new temporal tensors and the standard
relational tensors are large, but the relationships we did learn were still useful for stock
prediction. We demonstrated this by using gradient adjusted stock correlations over a sliding
30-day window. Ultimately, our approach may represent another valid viewpoint from which
company relations can be evaluated.

6 Conclusion
We found that probabilistic programming languages were able to model AR(1) processes as
well as traditional mathematical approaches. However the GNNs were much better predic-
tors of stock price movements and they always did better than the baseline strategy of buy-
and-hold of the entire index. The implementations of all of our models is available at
https://github.com/fabriceyhc/ppl_gnn_stocks.

The GNNs provided a far more fascinating set of results. While the Frobenius norms indicate
that our correctional tensor does not replicate the same kind of relational embedding as either
the sector industry or the Wikidata matrix, we do demonstrate that it is a successful usage for
accurately predicting stock prices within a reasonable degree of optimality. While the MSE for the
correlation matrix was rather poor for NASDAQ, approximately 3 times that of the sector industry and
Wikidata MSE’s, the correlation GNN performed very well on the NYSE. Importantly, the correlation
matrix consistently outperformed the mean return, indicating that the selected stock was consistently
better than the market. Ultimately, the relationships learned were useful for the stock prediction as
demonstrated from gradient adjusted stock correlations and we believe our results represented another
viewpoint from which company relations can be seen.

6

https://github.com/fabriceyhc/ppl_gnn_stocks

7 Appendix
7.1 GNN Evauation Parameters

Parameters Values
Market NASDAQ, NYSE
Relation sector_industry, wikidata, correlational
Learning rate (model) α 0.001
Learning rate (correlations)∗ β 0.0001
of epochs 100
Training size 200
Validation size 20
Testing size 20
of windows 6

Table 1: Highlighting important experimental parameters. For parameters with more than one value,
every combination is evaluated (e.g. NASDAQ is paired with each relation using the remaining default
parameter values). ∗“Learning rate (correlations)” does not apply to wikidata or sector_industry.

7.2 NASDAQ Results

Window Untrained Corr. Trained Corr. Sector Industry Wikidata
Earned % Optimal Earned % Optimal Earned % Optimal Earned % Optimal

1 $72.23 25.95% $63.60 22.84% $120.01 43.11% $103.71 37.25%
2 $27.95 10.85% $58.51 22.71% $73.83 28.66% $55.07 21.38%
3 $35.40 16.26% $35.58 16.34% $53.05 24.37% $39.07 17.95%
4 $79.31 30.36% $102.43 39.21% $96.57 36.96% $89.86 34.39%
5 $110.77 36.67% $115.70 38.30% $151.92 50.29% $148.70 49.22%
6 $114.49 48.66% $125.86 53.49% $158.56 67.39% $160.72 68.31%

all $440.16 28.35% $501.68 32.32% $653.94 42.12% $597.14 38.47%
Table 2: Comparison of relational data on NASDAQ stock predictions. Using the relations contained
within “Sector Industry” usually results in the highest performance.

Relation Window MSE Earned Return Optimal Return Mean Return % of Optimal
corr_untrained 1 2.2E-3 72.23 278.41 -0.09 25.95%
corr_untrained 2 2.8E-3 27.95 257.59 -0.49 10.85%
corr_untrained 3 1.4E-3 35.40 217.72 -0.45 16.26%
corr_untrained 4 2.2E-3 79.31 261.26 0.22 30.36%
corr_untrained 5 588.0E-6 110.77 302.09 0.55 36.67%
corr_untrained 6 595.0E-6 114.49 235.30 -0.18 48.66%
corr_untrained all 1.7E-3 440.16 1552.38 -0.09 28.35%
corr_trained 1 683.0E-6 63.60 278.41 -0.09 22.84%
corr_trained 2 429.0E-6 58.51 257.59 -0.49 22.71%
corr_trained 3 1.0E-3 35.58 217.72 -0.45 16.34%
corr_trained 4 740.0E-6 102.43 261.26 0.22 39.21%
corr_trained 5 1.9E-3 115.70 302.09 0.55 38.30%
corr_trained 6 4.0E-3 125.86 235.30 -0.18 53.49%
corr_trained all 1.3E-3 501.68 1552.38 -0.09 32.32%
wikidata 1 530.0E-6 103.71 278.41 -0.09 37.25%
wikidata 2 355.0E-6 55.07 257.59 -0.49 21.38%
wikidata 3 614.0E-6 39.07 217.72 -0.45 17.95%
wikidata 4 564.0E-6 89.86 261.26 0.22 34.39%
wikidata 5 464.0E-6 148.70 302.09 0.55 49.22%
wikidata 6 422.0E-6 160.72 235.30 -0.18 68.31%
wikidata all 495.0E-6 597.14 1552.38 -0.09 38.47%
sector_industry 1 515.0E-6 120.01 278.41 -0.09 43.11%
sector_industry 2 313.0E-6 73.83 257.59 -0.49 28.66%
sector_industry 3 550.0E-6 53.05 217.72 -0.45 24.37%
sector_industry 4 522.0E-6 96.57 261.26 0.22 36.96%
sector_industry 5 436.0E-6 151.92 302.09 0.55 50.29%
sector_industry 6 396.0E-6 158.56 235.30 -0.18 67.39%
sector_industry all 458.0E-6 653.94 1552.38 -0.09 42.12%

Table 3: Comparison of relational data on NASDAQ stock predictions.

7

7.3 NYSE Results

Window Trained Corr. Sector Industry Wikidata
Earned % Optimal Earned % Optimal Earned % Optimal

1 $238.49 85.10% $210.05 74.95% $267.69 95.52%
2 $172.59 90.22% $142.35 74.41% $179.81 93.99%
3 $204.37 62.74% $169.45 52.02% $219.50 67.38%
4 $84.08 35.70% $33.74 14.32% $135.80 57.66%
5 $129.93 47.17% $112.03 40.66% $149.83 54.39%
6 $326.75 91.00% $114.74 31.96% $341.16 95.02%

all $1,156.21 69.34% $782.36 46.92% $1,293.80 77.59%
Table 4: Comparison of relational data on NYSE stock predictions. Using the relations contained
within “Wikidata” always resulted in the highest performance.

Relation Window MSE Earned Return Optimal Return Mean Return % of Optimal
corr_trained 1 7.00E-05 238.49 280.25 -0.36 az 85.10%
corr_trained 3 1.07E-04 204.37 325.76 -0.42 62.74%
corr_trained 4 2.27E-04 84.08 235.54 0.01 35.70%
corr_trained 5 1.27E-04 129.93 275.49 0.76 47.17%
corr_trained 6 1.07E-04 326.75 359.06 -0.03 91.00%
corr_trained all 1.16E-04 1156.21 1667.40 -0.36 69.34%
wikidata 1 5.70E-05 267.69 280.25 -0.36 95.52%
wikidata 2 4.40E-05 179.81 191.31 -0.03 93.99%
wikidata 3 9.00E-05 219.50 325.76 -0.42 67.38%
wikidata 4 1.32E-04 135.80 235.54 0.01 57.66%
wikidata 5 1.11E-04 149.83 275.49 0.76 54.39%
wikidata 6 8.80E-05 341.16 359.06 -0.03 95.02%
wikidata all 8.70E-05 1293.80 1667.40 -0.36 77.59%
sector_industry 1 1.21E-04 210.05 280.25 -0.36 74.95%
sector_industry 2 1.42E-04 142.35 191.31 -0.03 74.41%
sector_industry 3 1.83E-04 169.45 325.76 -0.42 52.02%
sector_industry 4 3.02E-04 33.74 235.54 0.01 14.32%
sector_industry 5 1.94E-04 112.03 275.49 0.76 40.66%
sector_industry 6 1.96E-04 114.74 359.06 -0.03 31.96%
sector_industry all 1.89E-04 782.36 1667.40 -0.36 46.92%

Table 5: Comparison of relational data on NASDAQ stock predictions.

7.4 Feedback
With regards to the GNN experiments, we knew ahead of time that our correlational tensor would
have dimensions RN×N×T , but did not anticipate how unwieldy it would be to generate, store, and
use. For the NASDAQ market, it took ∼ 8hrs to initialize the tensor and ∼ 5GB to store 1.28 billion
correlations while NYSE took ∼ 24hrs to initialize and was ∼ 16GB to store 3.67 billion correlations.
These figures required us to take on the additional task of splitting the tensor by time step, loading
up each one on demand, and ultimately retrofitting the code to exploit GPU computation so that
training over 6 windows for 100 epochs each could complete in approximately 5hrs per combination
of market ∈ {NASDAQ, NYSE} and relational data ∈ {correlational, wikidata, sector_industry}.
The final GPU run time comes to a total of approximately 30hrs but many, many more were required
for troubleshooting and miscellaneous restarts caused by issues like running out of memory mid-run.
Next time, we’ll know how difficult large tensor manipulation is and focus on research directions
with more tractable components.

NOTE: the GitHub repository is several GB in size so we’re not going to be able to submit the data to
CCLE. Please use the GitHub.

8

References
[1] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Applications (Springer

Texts in Statistics). Springer-Verlag, Berlin, Heidelberg, 2005.

[2] Paul H. Cootner. The random character of stock market prices. MIT Press, 1964.

[3] Louis Bachelier. Théorie de la spéculation. Annales Scientifiques de L’Ecole Normale
Supérieure, 17:21–88, 1900. Reprinted in P. H. Cootner (ed), 1964, The Random Charac-
ter of Stock Market Prices, Cambridge, Mass. MIT Press.

[4] A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. Trans.
Neur. Netw., 8(3):714–735, May 1997.

[5] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202,
1980.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[7] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. CoRR, abs/1506.05163, 2015.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
3844–3852. Curran Associates, Inc., 2016.

[9] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of the 5th International Conference on Learning Representations,
ICLR ’17, 2017.

[10] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph
convolutional neural networks with complex rational spectral filters. CoRR, abs/1705.07664,
2017.

[11] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009.

[12] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. CoRR, abs/1901.00596, 2019.

[13] Daiki Matsunaga, Toyotaro Suzumura, and Toshihiro Takahashi. Exploring graph neural
networks for stock market predictions with rolling window analysis. ArXiv, abs/1909.10660,
2019.

[14] Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and Tat-Seng Chua. Temporal
relational ranking for stock prediction. ACM Transactions on Information Systems (TOIS),
37(2):27, 2019.

[15] Yingmei Chen, Zhongyu Wei, and Xuanjing Huang. Incorporating corporation relationship
via graph convolutional neural networks for stock price prediction. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, CIKM ’18, page
1655–1658, New York, NY, USA, 2018. Association for Computing Machinery.

[16] Yiying Yang, Zhongyu Wei, Qin Chen, and Libo Wu. Using external knowledge for financial
event prediction based on graph neural networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, CIKM ’19, page 2161–2164, New
York, NY, USA, 2019. Association for Computing Machinery.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

9

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alche-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[18] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable
deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[19] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034, 2015.

10

	Introduction & Motivation
	Background
	Related Work
	Random Walks
	Graphical Neural Networks

	Technical Contributions
	Random Walks
	Graphical Neural Networks
	Replication Effort Experience with GNNs
	Relational Learning Contribution

	Findings
	ARIMA Evaluation
	GNN Evaluation
	Can we use GNNs to predict stock prices using relational data?
	Can we approximate company relations from stock price movements using GNNs?

	Conclusion
	Appendix
	GNN Evauation Parameters
	NASDAQ Results
	NYSE Results
	Feedback

