{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Normal Distribution and 3 Sigma Rule\n",
    "![normal.png](normal.png)\n",
    "\n",
    "\n",
    "## Anomaly/Outlier\n",
    "If a test_point is $3\\sigma$ away from the mean $\\mu$, it can be classified as an anomaly\n",
    "\n",
    "## Is there an anomaly?\n",
    "![war.png](war.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "data = np.array([2, 3, 4,2,3,2,2,2,3,486])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(50.9, 145.03478893010464)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "m , s = data.mean(), data.std()\n",
    "m , s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def anomalyDetector(data, test_point):\n",
    "    m , s = data.mean(), data.std()\n",
    "    return np.abs(test_point - m) > 3 * s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "anomalyDetector(data, test_point = 486)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "485.9"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "50.9 + 3 *  145"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## A better way of doing anomaly detection\n",
    " - Remove the max %5 of data points\n",
    " - Remove the min %5 of data points\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>486</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0\n",
       "0    2\n",
       "1    3\n",
       "2    4\n",
       "3    2\n",
       "4    3\n",
       "5    2\n",
       "6    2\n",
       "7    2\n",
       "8    3\n",
       "9  486"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "df = pd.DataFrame(data)\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>count</th>\n",
       "      <td>10.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mean</th>\n",
       "      <td>50.900000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>std</th>\n",
       "      <td>152.880091</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>2.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25%</th>\n",
       "      <td>2.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50%</th>\n",
       "      <td>2.500000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>75%</th>\n",
       "      <td>3.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>486.000000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                0\n",
       "count   10.000000\n",
       "mean    50.900000\n",
       "std    152.880091\n",
       "min      2.000000\n",
       "25%      2.000000\n",
       "50%      2.500000\n",
       "75%      3.000000\n",
       "max    486.000000"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2.0, 269.0999999999995)"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "qmin, qmax = float(df.quantile(.05)), float(df.quantile(.95))\n",
    "qmin, qmax"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([2, 3, 4, 2, 3, 2, 2, 2, 3])"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[(data >= qmin) & (data <= qmax)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "def anomalyDetector(data, test_point):\n",
    "    # Remove the max %5 of data points\n",
    "    # Remove the min %5 of data points\n",
    "    df = pd.DataFrame(data)\n",
    "    qmin, qmax = float(df.quantile(.05)), float(df.quantile(.95))\n",
    "    data = data[(data >= qmin) & (data <= qmax)]\n",
    "    \n",
    "    m , s = data.mean(), data.std()\n",
    "    return np.abs(test_point - m) > 3 * s"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([  2,   3,   4,   2,   3,   2,   2,   2,   3, 486])"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "anomalyDetector(data, test_point = 486)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>486</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     0\n",
       "0    2\n",
       "1    3\n",
       "2    4\n",
       "3    2\n",
       "4    3\n",
       "5    2\n",
       "6    2\n",
       "7    2\n",
       "8    3\n",
       "9  486"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [],
   "source": [
    "def anomalyDetector(data, test_point = None):\n",
    "    df = pd.DataFrame(data)\n",
    "    qmin, qmax = float(df.quantile(.05)), float(df.quantile(.95))\n",
    "    \n",
    "    # Remove the max %5 and min %5 of data points\n",
    "    data = data[(data >= qmin) & (data <= qmax)]\n",
    "    m , s = data.mean(), data.std()\n",
    "    \n",
    "    if test_point:\n",
    "        return np.abs(test_point - m) > 3 * s\n",
    "    else:\n",
    "        anomalies = df.apply(lambda x: np.abs(x - m) > 3 * s)\n",
    "        idx = anomalies.values.reshape(-1)\n",
    "        return idx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([False, False, False, False, False, False, False, False, False,\n",
       "        True])"
      ]
     },
     "execution_count": 69,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "idx = anomalyDetector(data)\n",
    "idx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([486])"
      ]
     },
     "execution_count": 70,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[idx]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 75,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "anomalyDetector(data, test_point = 5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}