A Climate Analytics Hub for multi-model analysis

IS-ENES3/ESGF Virtual Workshop on Compute and Analytics 2nd December, 2019

D. Elia^{1,2}, P. Nassisi¹, C. Palazzo¹, F. Antonio¹, S. Fiore¹, G. Aloisio^{1,2}

¹ Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy

² University of Salento, Lecce, Italy

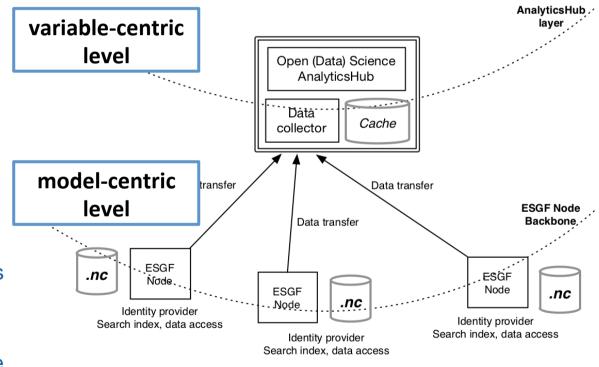
Multi-model climate analysis challenges & issues

Multi-model data analysis requires

- ✓ access to data produced by large-scale simulations for multiple climate models
- ✓ running workflows with hundreds of data analytics operators

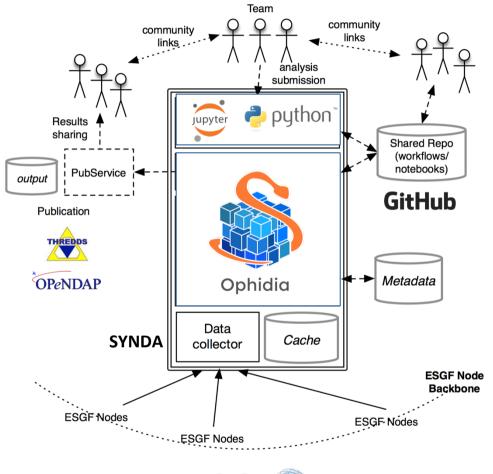
Several **key challenges** and practical **issues** related to large-scale climate analysis

- ✓ Input data from multiple models needed
- ✓ Data download is a big barrier for climate scientists
- ✓ Data analysis mainly performed using client-side & sequential approaches
- Installation and update of data analysis tools and libraries needed
- Strong requirements in terms of computational and storage resources


Climate Analytics-Hub

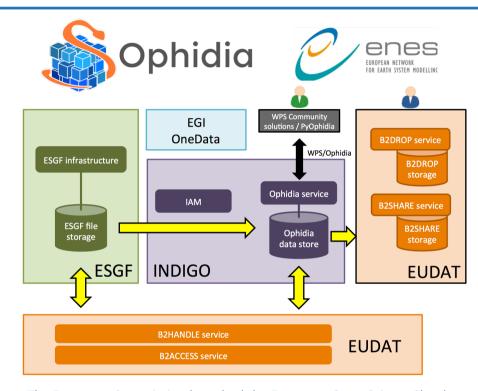
The **Climate Analytics-Hub** builds on top of the ESGF data nodes to allow the execution of multi-model climate analyses on a single location.

The Analytics-Hub provides Open Data Science oriented computing and analytics capabilities.


The data collector layer

- pre-stages and caches data
 relevant to the analyses from
 the different ESGF data nodes
- synchronizes the local copy of the data with the ESGF remote repositories

The CMCC Analytics Hub



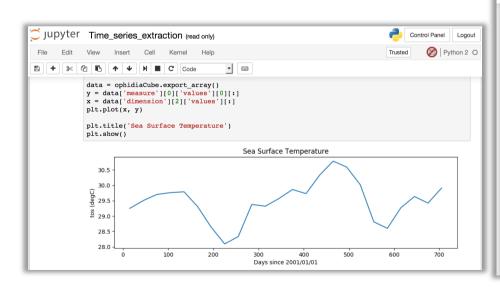
The **Analytics-Hub** consists of several components:

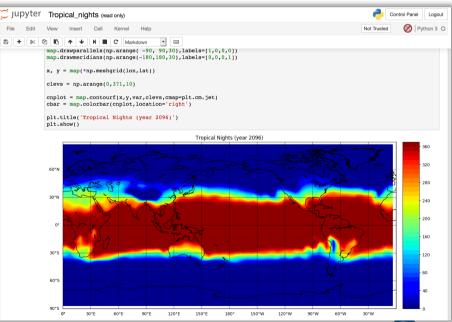
- ✓ A graphical virtual environment for (open) data science (e.g. JupyterHub)
- A wide set of high-level (Python) scientific libraries for analysis and plotting
- ✓ Data Analytics and Machine Learning (HPDA) frameworks for data science
- ✓ A user-oriented monitoring system to track application execution
- The data collector (Synda) and the local storage to gather relevant datasets from ESGF

ENES Climate Analytics Service (ECAS)

- The Analytics-Hub is a paradigm joining data and computing able to provide a multi-model environment for CMIPbased analytics experiments in ESGF
- ✓ The ENES Climate Analytics Service
 (ECAS), proposed by CMCC & DKRZ in
 EOSC-hub supports climate data analysis
- It is one of the EOSC-Hub Thematic Services
- ✓ ECAS builds on top of the Ophidia big data analytics framework with components from INDIGO-DataCloud, EUDAT and EGI

The European Commission launched the European Open ScienceCloud Initiative to capitalise on the data revolution. EOSC will provide European science, industry and public authorities with world-class digital infrastructure that bring state of the art computing and data storage capacity to the fingertips of any scientists and engineer in the EU.

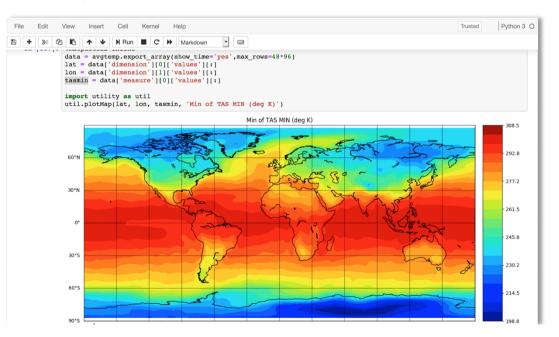



ECASLab: Python environment for Data Science

ECASLab provides a ready-to-use environment based on JupyterHub, Ophidia and other services from EUDAT and EGI, bundled with a wide set of well-known Python scientific and data management modules, some examples:

- NumPy, SciPy, Pandas
- NetCDF, PyOphidia, Scikit-learn
- Matplotlib, basemap, Cartopy

Programmatic access to ECAS through the PyOphidia class

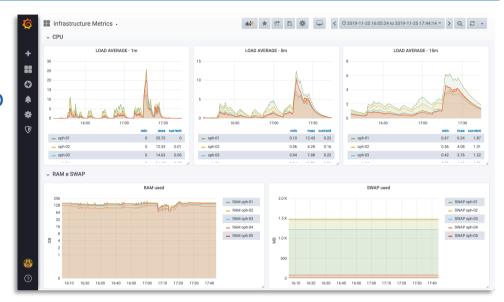

- ✓ PyOphidia provides a Python interface to submit commands to ECAS and to retrieve/deserialize the results (e.g. in Jupyter Notebooks)
- ✓ Two modules implemented:
 - ✓ Client: supports the submissions of Ophidia commands and workflows, as well as the management of session from Python code (similar to the Ophidia Terminal)
 - ✓ Cube class: provides the datacube type abstraction and the methods to manipulate, process and get information on cubes objects

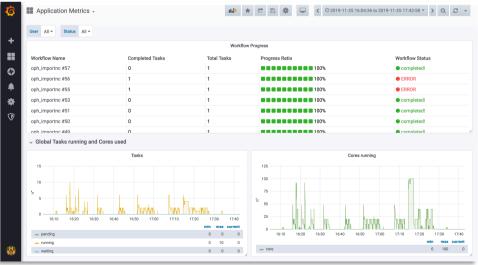
```
from PyOphidia import cube, client
cube.Cube.setclient(read_env=True)

mycube =
cube.Cube.importnc(src_path='/public/data/ecas_training
/file.nc', measure='tos', imp_dim='time',
import_metadata='yes', ncores=5)
mycube2 = mycube.reduce(operation='max',ncores=5)
mycube3 = mycube2.rollup(ncores=5)
data = mycube3.export_array()

mycube3.exportnc2(output_path='/home/test',
export_metadata='yes')
```

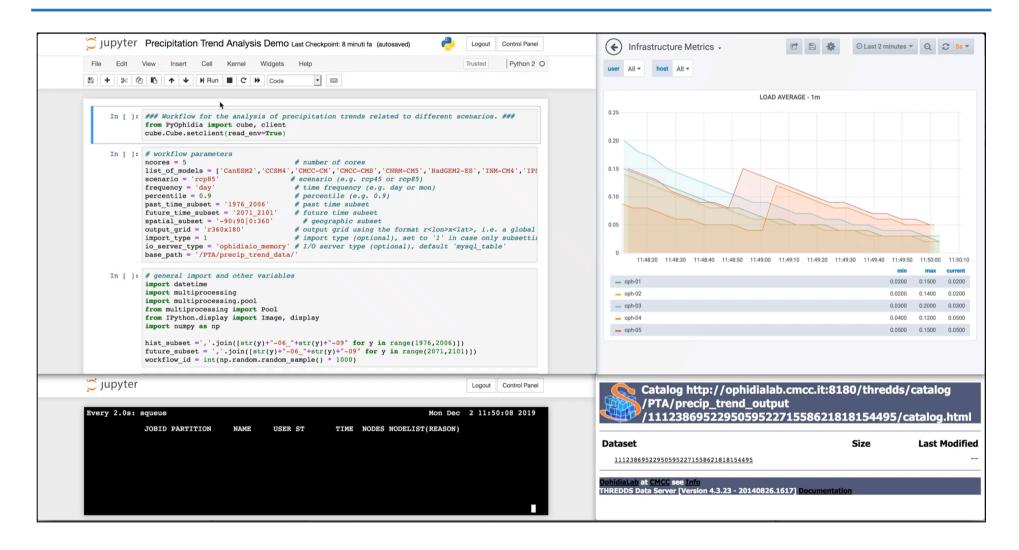
https://github.com/OphidiaBigData/PyOphidiahttps://pypi.org/project/PyOphidia/https://anaconda.org/conda-forge/pyophidia




Real-time monitoring of applications

A **Grafana**-based system is used for real-time monitoring of the analytics-hub environment and the applications being executed.

Custom dashboards have been designed to track:


- ✓ Infrastructure metrics:
 - resource usage on the environment nodes (CPU, memory, disk)
- ✓ Application metrics:
 - status of each operators and number of workflows/operator running

Multi-model experiment demo

Conclusions & next steps

Recap:

- ✓ The Analytics-Hub
 - defines a variable-centric environment for data analysis
 - reduces time-to-solution by removing the download barrier and providing server-side and high performance data analytics
 - provides a user-friendly environment for development, testing and execution of data analytics experiments

Next steps include:

- ✓ Implementation of multi-model experiments with CMIP6 data
- ✓ Deployment of the Analytics-Hub on CMCC new supercomputer
- ✓ Integration of additional data analytics tools to target a wider set of climate applications

Thanks

Useful links:

- ✓ CMCC ECASLab instance: https://ecaslab.cmcc.it/
- Ophidia Website: http://ophidia.cmcc.it
- ✓ Ophidia Doc: http://ophidia.cmcc.it/documentation
- ✔ PyOphidia repository: https://github.com/OphidiaBigData/PyOphidia
- ✓ Contact us at: ophidia-info@cmcc.it