Ophidia: High Performance Data Analytics framework for Climate Change at scale

Donatello Elia^{1,2}

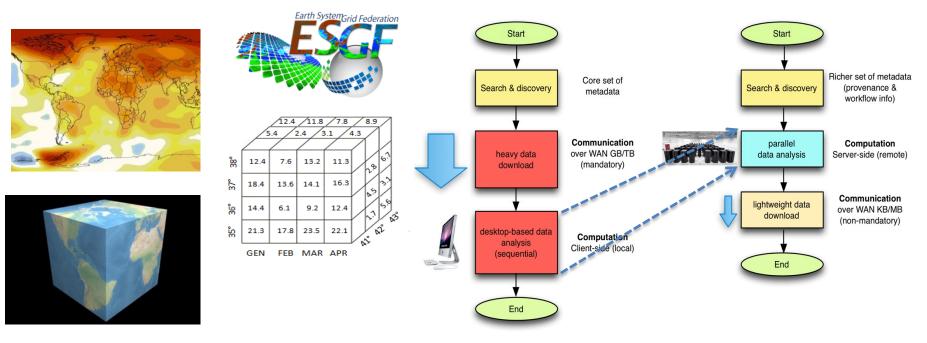
¹ Advanced Scientific Computing Division, Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy ² University of Salento, Lecce, Italy

IS-ENES3 Virtual workshop on requirements for a fast and scalable evaluation workflow

May 19, 2021

Outline

- Climate data management and analytics challenges
- > The Ophidia HPDA Framework
- > Key aspects: execution model, parallelization, HPC integration
- > Data and metadata operators
- Integration with Python
- > Experimental results
- > Summary


Climate analysis challenges & issues

Key challenges and practical issues related to large-scale climate analysis

- Setup of a data analysis experiment requires the *download of (multiple) input data*
 - Reducing data movement is essential
- The complexity of the analysis leads to the need for *workflow support*
 - Data analysis mainly relies on client-side approaches
- Large data volumes pose strong requirements in terms of computational and storage resources
 - Need for novel HPDA solutions able to scale the analysis
 - Difficulties in exploiting data analysis solutions in HPC environments

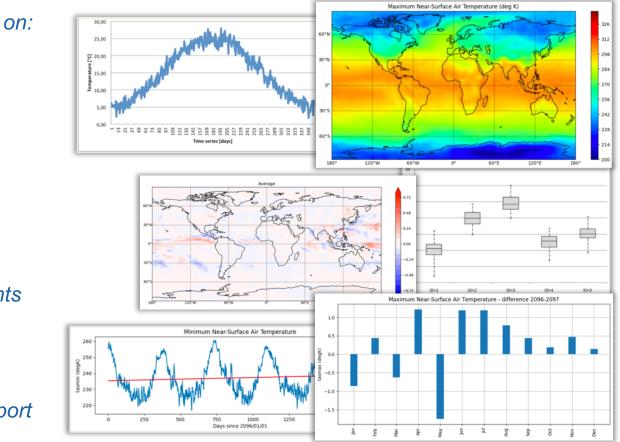
A paradigm shift

Volume, variety, velocity are key challenges for big data in general and for climate change science in particular. Client-side, sequential and disk-based workflows are three limiting factors for the current scientific data analysis tools. Current Workflow Peta/Exscale Workflow

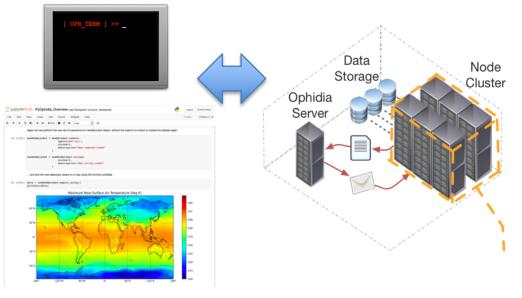
S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "Ophidia: toward bigdata analytics for eScience", ICCS2013 Conference, Procedia Elsevier, 2013

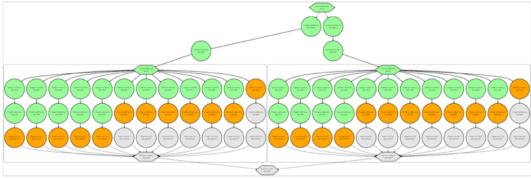
Ophidia HPDA framework

Ophidia (<u>http://ophidia.cmcc.it</u>) is a CMCC Foundation research project addressing data challenges for eScience


- A **HPDA framework** for multi-dimensional scientific data joining HPC paradigms with scientific data analytics approaches
- **In-memory** and **server-side** data analysis exploiting parallel computing techniques
- Multi-dimensional, array-based, storage model and partitioning schema for scientific data leveraging the **datacube** abstraction
- End-to-end mechanisms to support **interactive analysis, complex experiments** and **large workflows** on scientific data

S. Fiore, D. Elia, C. Palazzo, F. Antonio, A. D'Anca, I. Foster, G. Aloisio, "Towards High Performance Data Analytics for Climate Change", ISC High Performance 2019, LNCS Springer, 2019

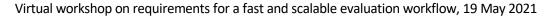

Data analytics requirements and use cases



Requirements and needs focus on:

- Time series analysis
- Data subsetting
- > Model intercomparison
- Multi-model means
- Massive data reduction
- Data transformation
- Parameter sweep experiments
- Maps generation
- Ensemble analysis
- Data analytics workflow support

Server-side paradigm and execution modes



Oph_Term: a terminal-like commands interpreter serving as a client for the Ophidia framework

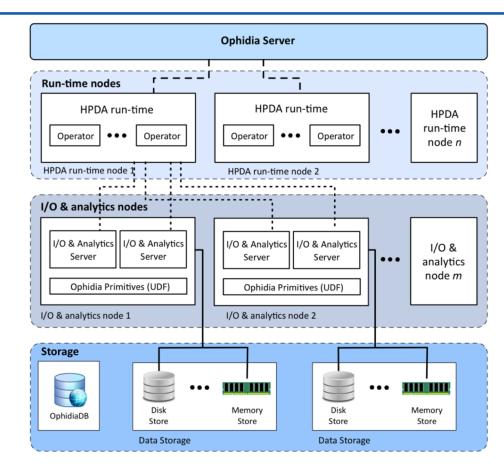
PyOphidia: a Python interface for datacube management & analytics with Ophidia

Multiple execution modes:

- Interactive data analysis
- Batch processing
- Python notebooks and applications
- Workflows of operators

Ophidia Architecture

Multi-interface interoperable front-end


Modular and extensible software stack

Multi-level parallel execution model:

- Datacube-level (HTC-based)
- Fragment-level (HPC-based: MPI+X)

Support for **in-memory analytics** through array-based primitives (UDF kernels)

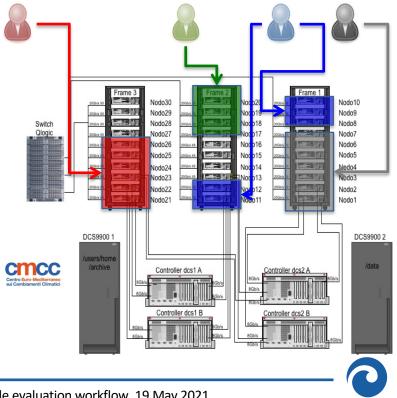
Data **partitioned** and **distributed** hierarchically over the storage and managed by the I/O & analytics nodes

D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access (Early Access), https://ieeexplore.ieee.org/document/9428012

On-demand deployment on HPC infrastructures

Target environment: *HPC cluster*

On-demand deployment of I/O & analytics servers


- oph_cluster
 action=deploy;nhost=64;cluster_name=new;
- oph_cluster action=undeploy;cluster_name=new;

Transparent interaction with scheduling systems

Zeus SuperComputer at CMCC: 1.2 PetaFlops, 348 nodes

Multiple isolated instances can be deployed simultaneously by different teams/users

Ophidia operators

CLASS	PROCESSING TYPE	OPERATOR(S)
I/O	Parallel	OPH_IMPORTNC, OPH_EXPORTNC, OPH_CONCATNC, OPH_RANDUCUBE
Time series processing	Parallel	OPH_APPLY
Datacube reduction	Parallel	OPH_REDUCE, OPH_REDUCE2, OPH_AGGREGATE
Datacube subsetting	Parallel	OPH_SUBSET
Datacube combination	Parallel	OPH_INTERCUBE, OPH_MERGECUBES
Datacube structure manipulation	Parallel	OPH_SPLIT, OPH_MERGE, OPH_ROLLUP, OPH_DRILLDOWN, OPH_PERMUTE
Datacube/file system management	Sequential	OPH_DELETE, OPH_FOLDER, OPH_FS
Metadata management	Sequential	OPH_METADATA, OPH_CUBEIO, OPH_CUBESCHEMA
Datacube exploration	Sequential	OPH_EXPLORECUBE, OPH_EXPLORENC

About 50 operators for data and metadata processing

Ophidia operators documentation: http://ophidia.cmcc.it/documentation/users/operators/index.html

"data" operators

"data" operators

[37..4416] >> oph_explorecube cube=http://127.0.0.1/ophidia/35/67;subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes;

[Request]:

operator=oph_explorecube;cube=http://127.0.0.1/ophidia/35/67;subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes;sessionid=http://127.0.0.1/ophidia/sessions/3 74383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cwd=/;

[JobID]:

http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?106#224

[Response]:

tos

+======+	-==============+	
lat	lon	tos
39.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.00000000000000000000000000000000000
39.500000	17.000000	287.3930664062, 286.8287048340, 286.5860595703, 286.9228210449, 288.5254516602, 292.3968200684, 295.8656921387, 297.2062072754, 295.7126464844
39.500000	19.000000	287.6926879883, 287.0508117676, 286.7896118164, 287.0781555176, 288.6802062988, 292.6882629395, 296.4769287109, 297.6632385254, 296.3418273926
40.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.00000000000000000000000000000000000
40.500000	17.000000	287.1098632812, 286.5683593750, 286.2949829102, 286.5216674805, 288.0316772461, 291.7698974609, 295.4139709473, 296.8489685059, 295.4132995605
40.500000	19.000000	287.4010009766, 286.7818298340, 286.4914245605, 286.7260742188, 288.3006286621, 292.1842346191, 296.0237731934, 297.2694702148, 295.9751892090
41.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.00000000000000000000000000000000000
41.500000	17.000000	286.5835876465, 286.0175781250, 285.7146911621, 285.9142761230, 287.4476623535, 291.1032104492, 294.7090454102, 296.0852355957, 294.7053222656
41.500000	19.000000	286.9717712402, 286.3946838379, 286.0617675781, 286.1446228027, 287.6101989746, 291.2955017090, 295.2700195312, 296.5146179199, 295.3194274902

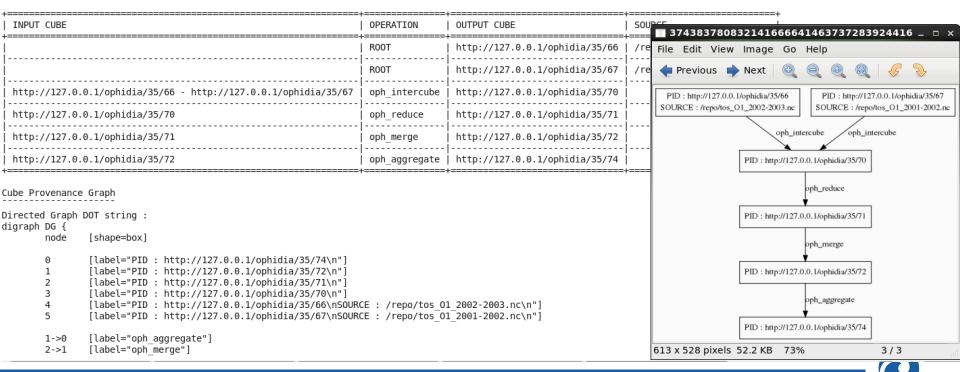
Summary

Selected 9 rows out of 9

"metadata" operators

[37..4416] >> oph cubeio

[Request]:

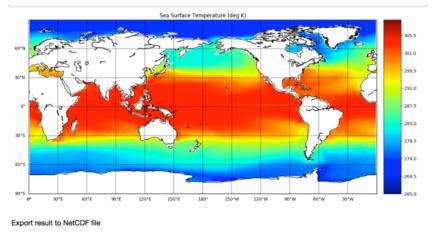

operator=oph_cubeio;sessionid=http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cube=http://127.0.0.1/ophidia/35/74;cwd=/;

[JobID]:

http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?82#176

[Response]:

Cube Provenance

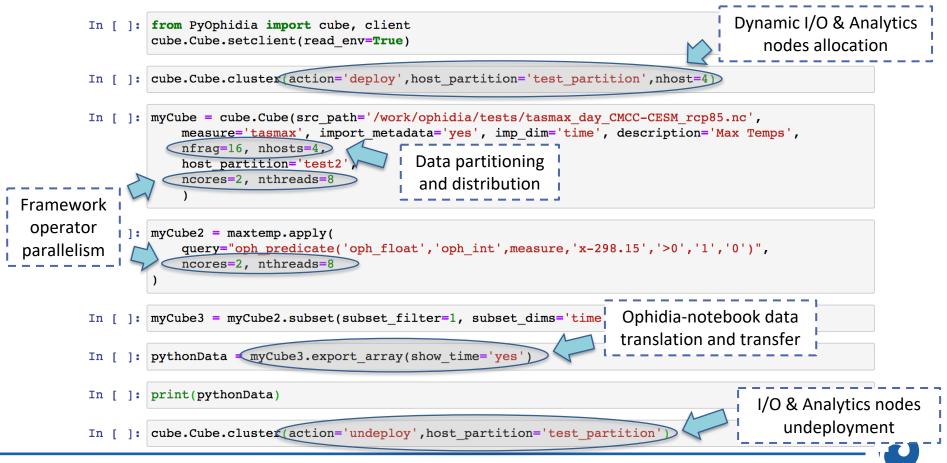

Programmatic support for data science applications

PyOphidia is a Python module to interact with the Ophidia framework.

It provides a programmatic access to Ophidia features, allowing:

- Submission of commands to the Ophidia Server and retrieval of the results
- Management of (remote) data objects in the form of datacubes
- Easy exploitation from Jupyter Notebooks and integration with other Python modules

```
from PyOphidia import cube, client
cube.Cube.setclient(read_env=True)
mycube =
cube.Cube.importnc(src_path='/public/data/ecas_training
/file.nc', measure='tos', imp_dim='time',
import_metadata='yes', ncores=5)
mycube2 = mycube.reduce(operation='max',ncores=5)
mycube3 = mycube2.rollup(ncores=5)
data = mycube3.export_array()
mycube3.exportnc2(output_path='/home/test',
export_metadata='yes')
```

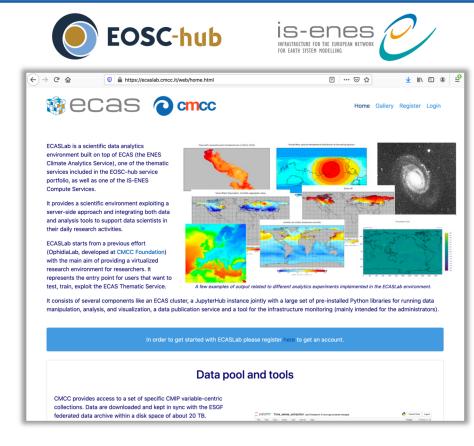


]: mycube3.exportnc2(output_path='/home/' + cube.Cube.client.username,export_metadata='yes')

https://pypi.org/project/PyOphidia/ https://anaconda.org/conda-forge/pyophidia

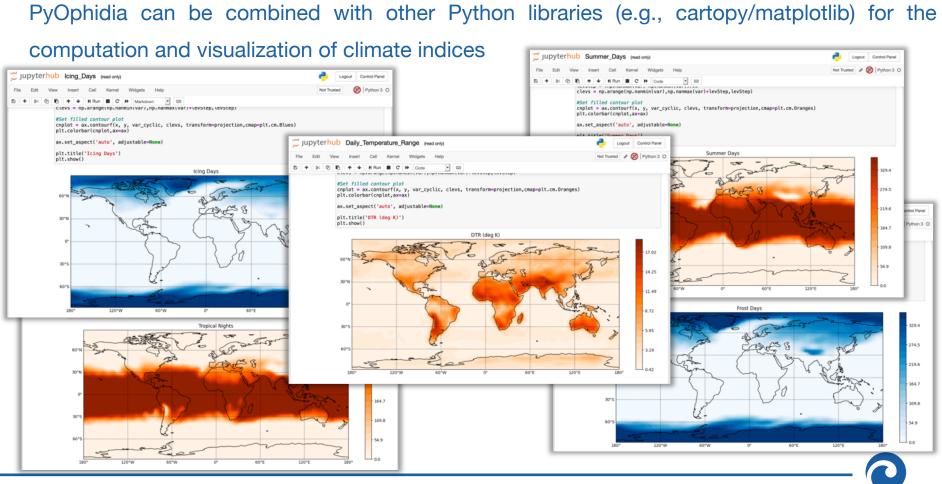
Python and HPC infrastructure transparency

PyOphidia class hides the HPC environment complexity



ENES Climate Analytics Service (ECAS)

- ECAS is one of the EOSC-Hub Thematic Services as well as one of IS-ENES3 compute services
- ECAS builds on top of the Ophidia HPDA framework, integrated with components from INDIGO-DataCloud, EUDAT and EGI
- Integrates computing resources with datasets and data analytics tools
- It provides a user-friendly environment based on Jupyter Notebooks and wellknown Python modules


EOSC Portal Catalogue: https://marketplace.eoscportal.eu/services/enes-climate-analytics-service

Climate Analytics Service: https://portal.enes.org/data/data-metadataservice/climate-analytics-service

ECAS @ CMCC https://ecaslab.cmcc.it

Computation of climate indices

Ophidia in ESiWACE2 project

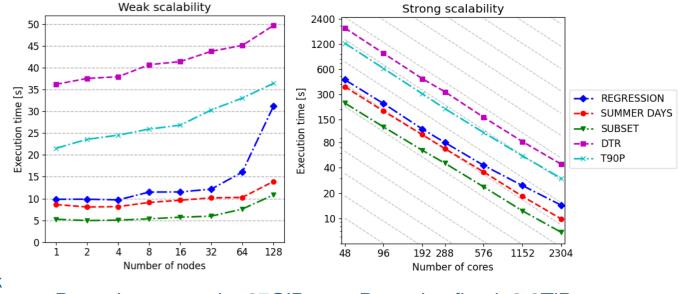
ESiWACE2 – Excellence in Simulation of Weather and Climate in Europe, Phase 2

(1) Enabling leading European weather and climate models to leverage the available performance of pre-exascale systems with regard to both compute and data capacity in 2021.

(2) Preparing the weather and climate community to be able to make use of exascale systems when they become available.

Ophidia is one of the applications considered in the frame of **ESiWACE2** (WP4, WP5):

- Integration with Earth System Data Middleware (ESDM) (<u>https://github.com/ESiWACE/esdm</u>) for I/O over heterogeneous storage systems
- One of the applications (HPDA) targeted by the ESDM-PAV
 - Extensions for **in-flight analytics** are being developed
 - Some HPDA scientific use cases defined (preliminary implementation)



Ophidia HPDA framework benchmark

Goal: benchmarking, tuning and optimisation over a large-scale HPC machine of the Ophidia HPDA framework

Evaluate the scalability of Ophidia analytics kernels on a few thousands of cores:

- various strong and weak scalability tests performed
- good scalability in the majority of cases until 3k cores

Data size per node: 67GiB

Data size fixed: 3.2TiB

We acknowledge PRACE for awarding access to MareNostrum 4 at Barcelona Supercomputing Center (BSC), Spain and the support provided by BSC (PRACE resources for CoE, in the context of ESiWACE).

D. Elia, S. Fiore and G. Aloisio, "Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale," in IEEE Access (Early Access), https://ieeexplore.ieee.org/document/9428012

Summary and future activities

Recap

- Ophidia HPDA framework address climate data challenges at scale
 - Tailored for HPC infrastructures
 - Provides (user-friendly) features for building complex analysis
 - Experimental results show scalability up to few thousand cores

Future activities

- Further benchmarks of the HPDA framework with large-scale applications/workflows
- Address portability with HPC-enabled containerization
- Full integration of Ophidia with the ESDM/ESDM-PAV (ESiWACE2 activities)

Thank you for the attention!

ESiWACE2 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823988

IS-ENES3 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 824084

Ophidia website: http://ophidia.cmcc.it

Contact: donatello.elia [at] cmcc.it

