EUROPEAN
COMMISSION

.
INFRASTRUCTURE FOR THE EUROPEAN NETWORK
FOR EARTH SYSTEM MODELLING

Q

IS-ENES2 DELIVERABLE (D-N°: 9.3)
Assessment report on Autosubmit, Cylc and ecFlow

{Original title: Assessment report on Autosubmit and Cylc}
File name: IS-ENES2_D9 3.pdf

Author(s): Domingo Manubens-Gil, Reviewer(s): Sébastien Denvil, Stéphane
Javier Vegas-Regidor Senesi, Pavan Kumar Siligam

Contributor(s): David Matthews,
Matthew Shin

Reporting period: 01/10/2014 — 31/03/2016

Release date for review: 21/03/2016 Final date of issue: 31/03/2016

Revision table

Version Date Name Comments

0.1 21/03/2016 Domingo Manubens-Gil | Original version for review

0.2 29/03/2016 Domingo Manubens-Gil | Including review comments from Pavan
0.3 30/03/2016 Domingo Manubens-Gil | Including review comments from Stéphane
0.4 30/03/2016 Domingo Manubens-Gil | Including review comments from Sébastien
1.0 31/03/2016 Domingo Manubens-Gil | Final version

Abstract

D-9.3, “Assessment report on Autosubmit, Cylc and ecFlow”, is a deliverable due in month 36,
ahead of the deliverable D-9.6 “Multi-model multi-member (M4) high resolution (HR) Earth
System Model (ESM) ensemble performance analysis”. In the context of work package 9,
IC3/BSC in collaboration with the Met Office, have set up three tools to design workflows and
monitor experiments: Autosubmit, Cylc and ecFlow. The three scheduling and submission
systems have been tested and evaluated with regard to the suitability for M4 HR experiments.
GloSea5 operational seasonal forecast system and EC-Earth3 decadal hindcast have been
prototyped with several workflow configurations in order to compare the differences and
assess the suitability of the three tools for M4 HR experiments.

Project co-funded by the European Commission’s Seventh Framework Programme (FP7; 2007-2013) under the grant
agreement n°312979

Dissemination Level

PU | Public PU

PP | Restricted to other programme participants including the Commission Services

RE | Restricted to a group specified by the partners of the IS-ENES2 project
CO | Confidential, only for partners of the IS-ENES2 project

IS-ENES2 - Contract Number: 312979 “CAPACITIES

senes O

Table of contents

1. EXECULIVE SUMIMAIY ...viiiiiiiieiieiieiiee ettt etttk b et e et b e bbbt 4
2. BACKGIOUNG ... bbbt 5
2.1 Studied SUDMISSION TO0IS........cviiiiiiiiiier e 5
I ©70 4] o= <o o ISP 6
T8 A oo o o | [Y2 SR 6
3.2 TaSK COMMUNICALIONuiiiiiiiiiieieieie sttt nb bbbt 7
3.3 Support for remote Platforms...........ccooeiiei i 9
3.4 Support for different workload Managerscccveveiieiieieiiesie e 10
3.5 FAUIL TOIEIANCE.t 12
3.6 Support for automated Error FECOVEIYccvcveiieeiieereseesieereeseeseete e sra e e sraesreeeesrees 13
3.7 Support for date/time CYCHNG........ccviieiieie e nres 14
3.8 Monitoring and intervention tOOIScoveiiiieiiee e 14
3.9 Support for generated WOrKFIOWS...........ccoiiiiiiiiieec e 19
310 SCAIADTIILY ...t 20
4. Complex WOrKfloW eVAlUALIONccoiiiiiiiiic e 21
4.1 Operational seasonal forecasting system Gl0SeaSccccovviiriiiiiencienseeeeeen 21
Q) AUTOSUDIMIT. ...ttt bbbttt bbbttt 21

o) I O] [OOSR 22

C) BCRIOW ...ttt 23

4.2 Decadal hindcast With EC-Earth.........cccccoiioiiieiieeee e 24
Q) AUTOSUDIMIT. ...t bbbttt ettt bbbt 25

0) T 3 [PPSR 25

C) ECFIOW ...t 25

4.3 SYNTNESIS ...ttt e ba e aeara e 26
ST -1 6] 1T £ LY=L PSPPSR 27
5.1 ASSESSMENL rEPOIt FRIEVANCE.......c.ueiiiiieiie ettt 27
5.2 M4 HR ESM ensemble performance analysis..........cccevviiiiiiieiiiciic e 27
B, RETEIENCES ... ettt b e b e reenne e 28
7. APPENDIX ...ttt bbbttt ettt re it naens 29

7.1

APPENDIX A - GloSea5 workflow code in AutoSUBMIL..........ueeeeee e 29

IS-enes /

b)
7.2
7.3
7.4

b)
75

b)
7.6

EXPEIIMENT ...t te et et e e e n e e re e te e e raere e 29
JODS bbbt 29
APPENDIX B - GloSea5 workflow code in CYICccccovevveeiieirccseeseee e 31
APPENDIX C - GloSea5 workflow code in eCFIOWccoovviiiiiineniineeee, 34
APPENDIX D - EC-Earth workflow code in Autosubmitccccooeviiiiiiiiiiicenen, 37
EXPEIIMENT ... te et e et e et e e e re e re e na e re e 37
JODS bbbt 37
APPENDIX E - EC-Earth workflow code in CyIC.........coeeveiiiiciiceccceee e 38
(O00] 011 (0] IS0 | (- OSSR 38
SUD=SUITES ...ttt ettt e e st et e et e e st e s teene e e s e e be e st e ereenreeneeaneere e 38
APPENDIX F - EC-Earth workflow code in eCFIOWcccooviiiiiiiiece e 39

sgnes Oy

1. Executive summary

The main objective of WP9/JRAL is to define, set up, and run a multi-model multi-member
high-resolution (M4 HR) earth system model (ESM) ensemble experiment.

Before adapting M4 HR workflow to the job submission tool under consideration, this
deliverable (D9.3) aims at reporting on the development status of the suitability of submission
tools for M4 HR runs and on their respective computational performance in an operational
environment.

Given the strong dependence of job scheduling and submission systems on ESM and HPC
particularities, three options are retained for assessment in this study: Autosubmit, Cylc and
ecFlow. For multi-member experiments, Autosubmit has already been evaluated on two HPC
systems: ECMWF IBM Power 7 and MareNostrum 3 (see M9.1 [6] and M9.2 [7]).

IC3/BSC in collaboration with the Met Office, have set up Autosubmit, Cylc and ecFlow. An
environment with access to several remote HPC systems, with and without security
constraints have been used for the evaluation. Thereafter, the support for remote platforms,
workload managers and task communication methods, among others, has been assessed.

The three scheduling and submission systems have been tested and evaluated with regard to
the suitability for M4 HR experiments. GloSea5 operational seasonal forecast system and EC-
Earth3 decadal hindcast have been prototyped with several workflow configurations in order
to compare the differences and assess the suitability of the three tools.

sgnes Oy

2. Background

2.1 Studied submission tools

Autosubmit is a solution created at IC3’s Climate Forecasting Unit (CFU) to manage and run
the research group’s experiments. Lack of in house HPC facilities led to a software design
with very minimal requirements on the HPC that will run the jobs. Autosubmit provides a
simple workflow definition capacity that allows running weather, air quality and climate
multi-member experiments in more than one supercomputing platform. Autosubmit is
currently being developed at BSC Computational Earth Sciences group.

http://www.bsc.es/projects/earthscience/autosubmit/

The Cylc suite engine is a workflow engine and meta-scheduler for weather forecasting and
climate modelling. It is designed to run operational suites with complex date-time cycling
requirement. Cylc was created by Hilary Oliver at NIWA. Its core team now includes Hilary
as well as members in the Modelling Infrastructure Support Systems Team at the Met Office.
Cylc is used to run time critical operational weather forecasts at NIWA and Met Office, as
well as for research. It is also installed and used by research partners of NIWA and Met
Office, and beyond.

http://cylc.github.io/cylc/

ecFlow is a workflow package that enables users to run a large number of programs (with
dependencies on each other and on time) in a controlled environment. It is used at ECMWF to
manage around half their operational suites across a range of platforms.

https://software.ecmwf.int/wiki/display/ECFLOW/

Criteria Autosubmit Cylc ecFlow

Seniority 2011 2010 2011

Original IC3, BSC NIWA, Met Office ECMWF
authors/sponsors

License GNU GPL v3 GNU GPL v3 Apache License v2.0

http://www.bsc.es/projects/earthscience/autosubmit/
http://cylc.github.io/cylc/
https://software.ecmwf.int/wiki/display/ECFLOW/

sgnes Oy

3. Comparison

In this chapter we agreed a set of features which we intend to compare: portability (ease of
installation), task communication (how the tool knows the state of tasks), support for remote
platforms, support for different workload managers (SLURM, PBS, etc.), support for
automated error recovery (e.g. on submission failure, task failure, etc.), support for date/time
cycling, scalability (ability to cope with large, complicated workflows + ability to cope with
large numbers of users), monitoring & intervention tools (ability to interact with & modify
running suites), fault tolerance (ability to recover if server goes down whilst running a suite)
and support for generated workflows (i.e. defined via some sort of programming language).

3.1 Portability

Autosubmit is a Python package available on the Python Package Index repository (PyPi), so
it can be installed using the pip install instruction on a terminal where no administrator
privileges are needed.

To start using Autosubmit, configure and install commands need to be run by following the
Autosubmit user guide. It creates a self-contained SQLite database that allows registering
experiments uniquely identified. After that, the database can be shared with other installations
through NFS, for example.

No installation is needed on the machines that will run the jobs.

Cylc is an application implemented mainly in Python and Bash. Installation is as simple as
downloading a release tarball from Github, and editing the environment to ensure that the
“bin/” directory of the distribution is in “PATH”. Cylc has a compulsory dependency on
Pyro3 on hosts running suite daemons. Pyro will be included as part of Cylc’s distribution in
the next release, so there will no longer be a dependency.

On hosts running task jobs, a copy of Cylc should also be available, but it has no compulsory
dependencies.

On hosts running suite daemons, optional dependencies are Jinja2 (if used with suites with
Jinja2 in their configuration), Pygraphviz (if graphing and/or full validation of suite
configurations are required), and PyGTK (if GUIs are required). All of these dependencies are
readily available from PyPi and/or from standard repositories of popular Linux distributions.

Cylc has been installed on many sites around the world. For personal use, it can normally
work without any global site configuration. For site installation, it is normally desirable to
modify the global site configuration file to tailor for the site. The settings in the global
configuration file are well documented in the Cylc user guide.

ecFlow is a C++ application and features a client-server model. Installation for server and
clients is the same. ecFlow does not provide distribution packages; instead it is usually
installed from the source code. Instructions are well documented and can be found on ecFlow

sgnes Oy

wiki page [4]. The required software dependencies need to be installed with administrator
privileges, following the instructions (cmake, g++, Python, Xlib, X11, XMotif).

ecFlow functionality is provided by following executables and shared libraries:

e ecflow_client: This executable is a command line program: it is used for all
communication with the server. It needs to be installed on the target platforms.

o ecflowview: This is a specialised GUI client that monitors and visualises a tree-like
hierarchy corresponding to the tasks.

o ecflow_server: this executable is the server. It is responsible for scheduling the jobs
and responding to the ecflow_client requests.

e ecflow.so, libboost python.so: these shared libraries provide the Python API for
creating the suite definition and communication with the server.

Submission of tasks to remote queueing systems from ecFlow is possible, although it is based
on quite rudimentary features (see section 3.3). Site administrators are required to provide job
submission scripts and install elements of ecFlow (mentioned above) to enable task
communications.

3.2 Task communication

Autosubmit is built on top of Simple API for Grid Applications (SAGA) [10]. SAGA-Python
is a light-weight Python package that implements the Open Grid Forum (OGF) GFD.90
SAGA [13] interface specification and provides the access layer for distributed computing
infrastructure. Autosubmit uses this access layer to control the submission of available jobs
when the dependencies are satisfied and to monitor the status of the active ones.

SAGA-Python provides several plugins (called adaptors) that interface with middleware that
doesn't support remote submission. These plugins are used in conjunction with other type of
adaptors that provide machine communication, e.g. tunnelling calls via SSH:

saga.job.Service ('pbs+ssh://my.remote.cluster")

This functionality requires a working SSH set-up on both, the submit host (the machine that
runs Autosubmit) and the machine that is specified as saga.job.Service (the machine that
executes the jobs). In order to use plugins that allow SSH-tunneling (xyz_+ssh_://), it is
necessary to set-up password-less SSH-keychain access to the remote hosts one wants to use.

SAGA performs different kinds of interactions with remote systems. Many of those systems
are only accessible via shell-like tools, such as SSH, GSISSH, FTP, GSIFTP etc. 'Shell-like'
means that those tools are mostly designed for interactive use: after connection setup they
present a prompt and wait for commands on stdin, and then respond to those commands via
stdout/stderr.

The PTY layer in SAGA [11] consists of several components which handle interaction with
those tools: pty_process, pty_shell and pty shell factory. The pty process is a fork/exec'ed

https://www.ogf.org/documents/GFD.90.pdf

sgnes Oy

process which provides low level process management (is_alive, kill, wait, ...) and process 1/0
(read, write, find). The pty_shell_factory basically creates a suitable command line and hands
it to pty_shell. The pty_shell applies various heuristics to ensure that a spawned shell is
bootstrapping correctly, and to get the two-way communication channel initialized. Once a
prompt is detected and a new prompt is set, the pty_shell performs reliably, fast and stably.

A job as returned by job.Service.create(jd) is in NEW state — it is not yet submitted to the job
submission backend. Once it is submitted, via run(), it will enter the PENDING state, where it
waits to get actually executed by the backend (e.g. waiting in a queue). Once the job is
actually executed, it enters the RUNNING state — only in that state is the job actually
consuming resources (CPU, memory, etc.). Jobs can leave the RUNNING state in three
different ways: they finish successfully on their own (DONE), they finish unsuccessfully on
their own, or get cancelled by the job management backend (FAILED), or they get actively
cancelled by the user or the application (CANCELLED).

Autosubmit checks regularly the status of the jobs by reading the SAGA job state.
saga_status = self.service.get job(jobid).state

Cylc can submit jobs on the suite host and/or on remote job hosts via SSH. A task submits a
job when all prerequisites are satisfied. On job submission, Cylc generates a job script for
each task, which it then submits to the relevant queueing system on the job host.

Cylc has two ways to track progress of submitted jobs. This can be configured per job host in
the site/user global configuration. These methods can be used on different job hosts within the
same suite if necessary.

1. Job-to-suite messaging.

o Job-to-suite messaging via Pyro (default). This is the most direct and efficient
communication method. The job script calls a Cylc command to send a message
back to the suite via Pyro on given events, e.g. on job start, success and failure.
(Custom events can also be defined with custom messages.) The job script also
writes to a status file to ensure that the event is recorded in case of network outage.

o Job-to-suite messaging via SSH+Pyro. This is similar to the above, but the job host
will connect to the suite host via non-interactive SSH before connecting to the
suite via Pyro. This method is useful if the job host does not have access to the
Pyro network port.

2. Polling. This is the least efficient method for monitoring the progress of a job, but can be
used on job hosts that cannot route back to the suite host via Pyro or SSH. Cylc polls for
the progress of the job at regular intervals by inspecting the status file written by the job
script and/or by querying the queueing system. Users can also manually tell the suite to
poll its jobs at any time while the jobs are in the submitted or running state.

ecFlow submits jobs and receives acknowledgements from jobs when they change status and
when they send events. It does this using child commands embedded in the ecFlow scripts.

sgnes Oy

The ecFlow script refers to an ".ecf' file. The script file is transformed into the job file by the
job creation process. The creation is initiated by the ecflow_server during scheduling when a
task (and all of its parent nodes) is free of its dependencies. The script must include calls to
the init and complete child commands so that the ecflow_server is aware when the job starts
(i.e. changes state to active) and finishes (i.e. changes state to complete).

An ecf script is converted to a job file that can be submitted by performing variable
substitution on the ECF_JOB_CMD variable and invoking the command (typically):

/bin/sh $ECF_JOB% &

The running jobs will communicate back to the ecflow_server by calling child commands:

e ecflow _client—init Sets the task to the active status

e ecflow_client —event Raises an event

e ecflow_client —meter Change a meter

e ecflow_client —label Change a label

e ecflow_client —wait wait for an expression to evaluate.

e ecflow _client —abort Sets the task to the aborted status

e ecflow_client —complete Sets the task to the complete status

The ecflow_server is responsible for scheduling the jobs and responding to ecflow_client
requests. ecFlow stores the relationship between tasks and is able to submit tasks depending
on triggers. For any communication with the server, the client needs to know the machine
where the server is running and the port on the server. Communication is based on TCP/IP.
Multiple servers can be run on the same machine/host provided they are assigned a unique
port number. The server records all requests in the log file. The server will periodically write
out a check point file.

3.3 Support for remote platforms

Autosubmit is capable to run experiments on remote clusters or supercomputers and on any
GNU/Linux or Unix host. The interaction with the machines is done through SAGA-Python
adaptor, allowing the user to add adaptors if needed.

The Autosubmit default method for accessing remote platforms through SAGA requires a
working interactive SSH set-up on both the machine that runs Autosubmit and the machine
that executes the jobs. For transferring files it uses SFTP.

The SAGA adaptors mechanism can add support for other communication methods, such as
ECaccess Tools [5]. The ECaccess Tools gives ECMWEF users batch access to the ECMWF
computing and archiving facilities for the management of files, file transfers and jobs. Access
is available via the Internet as well as via RMDCN. A SAGA ECaccess adaptor has been
developed for the latest version of Autosubmit.

sgnes Oy

Due to the fact that developers of Autosubmit had no in house HPC facilities, the software
was designed to work with very minimal requirements on the HPCs that will run the jobs:
only a bash console with the usual commands is required. To run Python or R jobs, no
additional packages are needed.

Cylc can run jobs on remote Unix/Linux job hosts that are able to receive SSH (and SCP)
connections. For fully automated job submission, non-interactive SSH is required. On the job
host, Cylc requires bash, a small subset of GNU coreutils and Python (for running a small set
of Cylc commands). Optionally, job hosts can be configured to take advantage of efficient
task messaging via Pyro.

ecFlow can run tasks on remote systems. To start a job, the ecflow_server uses the content of
the ECF_JOB_CMD variable. By modifying this variable, it is possible to control where and
how a job file will run. Having a variable called HOST defined as the name of the host and
assuming that all the files are visible on all the hosts, e.g. using NFS, a remote job can be
submitted:

edit ECF _JOB CMD "ssh $HOST% 'SECF JOB% > 3ECF_JOBOUT% 2>&1 &'"

When using SSH, requires ones public key to be available on the destination machine.

However, the communication back from running jobs on diverse supercomputing platforms to
ecflow_server may not be possible due to restricted traffic and firewalls in the network.
ecflow_client must have access to the ecflow_server network port.

Since ecflow_server cannot poll for job status (the alternate method implemented in the other
two submission tools assessed in this report) support for certain remote platforms is not
possible in ecFlow.

3.4 Support for different workload managers

Within Autosubmit, SAGA provides a homogeneous programming interface to the majority
of production HPC queuing systems:

e Fork (run job as a background process)
e Condor and Condor-G

e LoadLeveler

e LSF

e PBSand Torque

e Sun/Oracle Grid Engine

e SLURM

All queuing system adaptors can also access clusters remotely by tunnelling commands
through SSH or GSISSH.

Behind the API facade, SAGA implements flexible adaptor architecture. Adaptors are plugins
that binds API calls to the respective queuing system. Most application developers use the

sgnes Oy

adaptors that are already part of SAGA but implementation of adaptors not yet supported is
possible by following the ‘Writing SAGA-Python Adaptors’ guide [14].

Cylc supports a number of commonly used job submission methods:

e Background (run job as a background process with “nohup”)

e at

e LoadLeveler

e LSF

e PBS and Torque

¢ MOAB

e Sun/Oracle Grid Engine
e SLURM

Users can also provide their own methods in case they need to interact with a scheduler that is
not supported out of the box for Cylc. The process to implement and use a new submission
method is well-documented on Cylc documentation.

ecFlow can submit tasks directly to the relevant queuing system on the target machine.
ECMWEF provides a submission script (ecf_submit) that allows submission to multiple
systems and multiple queuing systems:

e LoadLeveler

e PBS

Sun/Oracle Grid Engine
e SLURM

An example ecf_submit is included in the ecFlow release. The ECF_JOB_CMD can be
defined as:

edit ECF_JOB CMD "ecf submit $USER% $HOST% $ECF JOB% $ECF JOBOUTS%"

A generic script header is included alongside the ecf_submit script. It contains typical queuing
commands, such as wall clock time and priority. The ecf_submit script can replace the generic
queuing commands with the relevant commands for the host to which the task is submitted
and submit the task the relevant way. For example, for a PBS system it replaces the QSUB
commands with the equivalent PBS commands.

Similarly to running a task remotely, to kill a task remotely one need to either send a signal to
the task or issue the relevant queueing system command. Latest releases of ecFlow include
example scripts for including other information: ecf kill to issue the correct command
depending on the host, ecf_status to show status of tasks and ecf_url to open a web link for a
task. ecFlow variables can be defined as:

edit ECF KILL CMD 'ecf kill %USER$ SHOST% SECEF RID% %ECF _JOB%
edit ECF _STATUS CMD 'ecf status %USER% $HOST% %ECF RID% SECF JOB%

sgnes Oy

3.5 Fault tolerance

Autosubmit is able to deal with faults at different levels. It creates a COMPLETED file to
deal with inconsistencies when the queue scheduler does not respond properly. It also
automatically saves the job list each time that it is updated. This way, if Autosubmit process is
killed, it can restart the experiment at the same point with no data loss.

Autosubmit also has a mechanism that can be used in case of a critical failure that makes the
job list file unreadable. In this case, the user can run the create command to recreate the job
list at the initial state and then run the recovery command to look for the COMPLETED files
and update the job's status accordingly.

In the case that the fault is due to the jobs templates, Autosubmit has two features that allow
the user to easily continue with the experiment. The first one is that the scripts for the jobs are
prepared immediately before sending them to the platform. This allows the users to modify
the templates after the experiment has started. Autosubmit also reads the project parameters at
this time to allow the users to change them in the middle of the experiment in case that the
failure is due to a configuration error.

A Cylc suite dumps out state files and writes information to SQLite databases on state
changes. If a suite is terminated due to the process being terminated, e.g. a power failure, the
user can easily recover by restarting the suite when the machine is back up again. On restart,
the suite will automatically poll all its submitted and running jobs for their latest states, by
looking at their status files and by querying the queueing systems.

ecFlow could stop working for a number of reasons such as the server crashes, the computer
ecFlow is running on crashes, etc. The ecFlow checkpoint file allows ecFlow to restart at the
point of the last checkpoint before a failure. This gives reasonable tolerance against failures.

When the server starts, if the checkpoint file exists and is readable and is complete, ecFlow
server recovers from that file. Once recovered the status of server may not exactly reflect the
real status of the suite, it could be up to a few minutes old. Tasks that were running may have
now completed so the task status should be checked for consistency.

The checkpoint files can be read by any ecFlow running on any operating system. There are
two separate checkpoint files.

ECF_CHECK ecf.check

ECF_CHECKOLD ecf.check.b
When ecFlow needs to write a checkpoint file it first moves (renames) the previous file
ECF_CHECK to ECF CHECKOLD and then creates a new file with the name
ECF_CHECK. This means that one should always have a file that is good. In the event of a
crash, while writing ECF_CHECK, one can still recover from ECF_CHECKOLD (by copying
its contents to ECF_CHECK), although that version is not quite as up to date. One can copy
the checkpoint files between systems. Another ecFlow server can be started with the original

sgnes Oy

server's checkpoint file and take over from the original ecFlow server host in case of a
catastrophic systems failure.

3.6 Support for automated error recovery

Autosubmit has a RETRIAL variable defined for each experiment. Additionally each job
type can have a different RETRIAL number. If a job gets the FAILED status from the queue
scheduler it automatically retries that number of times.

Sometimes the queue scheduler does not respond properly and it could easily lead to wrong
status. For this, Autosubmit adds a final operation to the end of the job which creates a
completed file. When Autosubmit gets an answer from the scheduler, it will put the job on a
COMPLETED, FAILED or UNKNOWN state, it checks the existence of the completed file
and updates the status if needed, i.e., if the scheduler returns an UNKNOWN status and
Autosubmit finds the completed file, the final status of the job will be COMPLETED.

Autosubmit also has a recovery command that can be used when the experiment jobs list has
not an accurate representation of the current state. In this case, this command can search for
the completed files of all the jobs at every platform and update job status accordingly.

Cylc tasks can be configured to retry a number of times on runtime failure as well as on
submission failure. An environment variable $CYLC _TASK_TRY_NUMBER increments
from 1 on each successive try, and is passed to the task to allow different behaviour on the
retry. When a task with configured retries fails, its Cylc task proxy goes into the retrying state
until the next retry delay is up, then it resubmits. It only enters the FAILED state on a final
failure.

Cylc also has the capability to add triggers on failure, which allows implementing recovery
tasks. It also has support for suicide triggers that take tasks out of the suite. This can be used
for automated failure recovery, defining a chain of failure recovery tasks that trigger if they’re
needed but otherwise remove themselves from the suite.

ecFlow allows setting ECF_TRIES to a number greater than one in the definition file of a
suite, the task will automatically rerun on an abort. Then the ecFlow variable ECF_TRYNO
can be used to modify the behaviour of the task depending on the try number.

Additionally, ecFlow allows error checking and handling of zombies. A zombie is a running
job that fails authentication when communicating with the ecflow_server. The default
behaviour of ecFlow server is to block the job. The child command continues attempting to
contact the ecFlow server. This is done during 24 hours. This duration is configurable on
ecflow_client through ECF_TIMEOUT variable. The jobs can also be configured, so that if
the server denies the communication, then the child command can be set to fail immediately
(ECF_DENIED). ECF_TIMEOUT is the maximum time in seconds for the client to try to
deliver a message. ECF_DENIED, if is set to 1 and ecFlow denies access, the client will exit
with failure.

sgnes Oy

3.7 Support for date/time cycling

Autosubmit does not have built-in triggers that run at a given real date/time as it was no
designed for running operational suites.

The extent of an experiment can be defined in three aggregations or families: number of start-
dates, number of members within a start date and number of chunks within a member. Chunk
length can be defined in years, months, days or hours. The experiment can cycle as many
chunks, members and start-dates as needed. Autosubmit supports standard and no-leap
calendar modes.

Cylc can work in two modes:

1. Integer cycling. Each cycle point corresponds to an integer in a sequence. Non-
cycling suite is a special case, where we have a single cycle point == 1.

2. Date-time cycling: Each cycle point corresponds to a given date-time. Cylc
supports various calendar modes including Gregorian, 360day, 365day and
366day. Date time cycling syntax can be expressed using the full grammar of
ISO8601 notations for date-time, duration and recurrence.

The cycling period is not fixed: one can have jobs cycling at different frequencies without any
problem. Cylc has also support for clock-triggered jobs, which is important for operational
suites.

The user can also use Jinja2 script language on suite definition, allowing the creation of
cycling-like suites even when using Cylc in non-cycling mode.

ecFlow has two ways for defining workflows: a text-based custom format and a Python API.
In this document we will only refer to the Python API as it’s the most powerful method.

ecFlow does not have an internal cycle, but allows repeating the same task or family several
times, looping on a specific value. It can iterate over sequences of strings, integers or dates
(standard calendar). It has the possibility to define clock-triggered task, allowing ecFlow to be
used on operational suites.

3.8 Monitoring and intervention tools

Autosubmit has a very basic monitoring tool that shows the experiment graph. Autosubmit
monitor command creates a directed acyclic graph with jobs as nodes and its dependencies as
arrows. Each node is shown with the job identifier and it is coloured with the current status
(e.g. WAITING, RUNNING, COMPLETED, FAILED, etc.).

is-enes ‘/’ y

| WAITING | | READY ‘ | SUBMITTED | ‘ QUEUING | - COMPLETED - SUSPENDED

a006_geogrid

a006_20120101_1_1_ungrib a006_20120101_1_2_ungrib a006_20120101_1_3_ungrib

' ! '

a006_20120101_1_1_metgrib a006_20120101_1_2_metgrib a006_20120101_1_3_metgrib

l l l

a006_20120101_1_1_real a006_20120101_1_2_real a006_20120101_1_3_real

| | l

a006_20120101_1_1_wrf ‘ a006_20120101_1_2_wrf ‘ a006_20120101_1_3_wrf ‘

Figure 1: Autosubmit monitor screenshot

A typical user monitors his/her Autosubmit experiment by launching the monitoring tool
regularly. Autosubmit has the capability to export the plot on vectorial format (SVG). This
allows zooming in and out larger plots without losing clarity, which is a problem with the
default pdf format. However, monitoring large experiments with only static images can be a

burden.

Autosubmit allows the user to manually set the status of jobs using the setstatus command.
This command is normally used to suspend some parts of the experiment while keeping others
running or to relaunch failed jobs that have reached maximum retrials.

Autosubmit also collects statistics during experiment’s execution (number of retrials,
queueing and execution time, etc.) and allows the user to generate plots to monitor the

resources consumption.

m04p

Queued (h)
Run (h)

Excess (h)
Failed jobs (#)
Fail Queued (h)
Fail Run (h)

wna

Figure 2: Detail of a statistics plot from Autosubmit

o]
T

=2}

BRI

hours

.|:.

N

(=}

199711 2_1s}
199711 3 _1s}
199711 4_1s}
199805 0 _1s}
199805 1_1s}
199805 _2_1s}
199805 3 _1s}
199805 4 _1s}
199805 5_1s}
199805 _6_1s}
199805 7_1s}
199805 8 _1s}

sgnes Oy

Cylc has many facilities to interact with a running suite, including the following:

e Hold/release whole suite and/or individual tasks.
e Poll/kill any submitted or running tasks.
e Insert/remove tasks at a range of cycles.
e Manually reset state of tasks.
e Trigger (manually submit) tasks.
o Edit the task’s job file, and trigger it.
e Broadcast (i.e. override) configuration settings to a running suite to tasks matching a
cycle/name pattern.
e Reload the suite definition to a running suite.
e Restart a suite.
e Tail-follow STDOUT/STDERR of job logs while the job is running.
e View dependency graph and/or satisfied/unsatisfied task prerequisites.
e Scan and display states of all running suites.

All these can be controlled using the command line interface (CLI). Most functionality is also
available via graphical user interfaces (GUI). Cylc has two GUI applications used to monitor
and control the runs: a very minimal interface that shows the basic state of all the Cylc suites
within a system (gscan) and a more detailed interface (gcylc) to monitor and control one suite
at a time.

gscan (Figure 3) is the most convenient interface to keep track of the status of all existing
simulations. It provides an interface that shows all the registered suites on the system along
with a summary state. This way the user can detect easily if a suite has failed jobs or has
stopped running and launch gcylc to act accordingly.

gcylc can be used to monitor and control one suite at a time. It has different views: a graph
view that shows tasks and dependencies, a dot view that shows a summary state for the tasks
(Figure 4) and a text-tree view that shows more details than the other two. In all these views,
the user can control if all tasks are shown or if they are grouped by families (a family on Cylc
is a group of tasks that derive from a common ancestor).

This GUI can also be used to start, pause and stop suites; to change task’s status, to relaunch
failed tasks, to see logs from executed tasks and many other control functionalities. The
interface is intuitive and easy to use.

is-enes ‘0 y

cylc gsummary

Suite Status
battery-24834.tests. QuickStart.h mO
battery-24834.tests.QuickStart.c OomO
battery-24834.1ests broadcast]
battery-24834.tests.combined [|
battery-24834.1ests.events.suite 1]
battery-24834.tests.events.task EEE
battery-24834.1ests host-select]

battery-24834.tests.intercycle.one

battery-24834.testsinternal-outputs]
battery-24834.tests jobscript]
battery-24834.tests. modes.simulation]
O T U A B Y RO S B

Figure 3: Cylc gsummary screenshot

states - geyle
Fde View Control Suite Help

= e

View 1: 5% v
Stop Group Ungroup

Q..
e &
e 9
<

012080900
2012081000

Q
o
©
o
2
o
~
-
o
~

running to 2012081200 live 2014-09-10722:02:11+12 &

Figure 4: gcylc graph and dots view screenshot

sgnes Oy

+ - 8
Expand Collapse Group

30701

ost 30230

succeeded at 22:02:02+12
t 29968 22:00:45412 22:00:50412 22:01:04412 145 succeeded at 22:01:04412

22:01:06+12 22:01:11+12 22:01:16412 TGS sceeded at 22:01:1

unning

LU walhe 11067 2202:36412 220281412 27202504127 P19
|V held v queued BV ready W'V submitted

¥ submit-retrying BV running BV succeeded WV failed BV retrying

running to 2012081200

Figure 5: geylc text view screenshot

ecFlow offers a Command Line Interface (CLI) and a client Graphical User Interface (GUI)
(ecflowview) that can be used to monitor and control suites. ecflowview can control suites
running on different ecFlow servers. It shows all the registered suites collapsed at start-up and
the user can expand them as needed. It uses a tree-like display where the root nodes
correspond to the suite, the intermediate to families (a group of tasks or other families that
share parts of the configuration) and leafs correspond to the tasks.

The user can use the tool to change task status, launch, pause or stop suites, relaunch failed
tasks, see logs and many other control functionalities. The interface is intuitive and easy to
use.

R

File Edit Show Servers Windous Help
using SNAPSHOT ; press button SIMEE =2 /8= a &
turing |- GloSeas |2 | s fem__make_ocean A

fcm__make2_ocean| fcm_make_ocean == complete|

fem__make_rebuild

fem__make2_rebuild| fem_make_rebuild == complete|

fcm__make2_redate| fem_make_redate == complete|

fem_make_um

fem__make2_um|[— fem_make_um == complete|

install_cold|— fem_make2_ocean == complete AND fcm_make2_rebuild == complete AND fem_make2_redate == complete AND fem_make2_

gsfc O setup —— complete]

date ¥.¥.2016

cron 1T:15

start
get_analysis| start ——
redate_cicel get_ana

gshe OO
housekeep|— gsfe/m1/failed —— complete AND gshc/m1/failed —— complete

archive_logs| housekeep == complete|

H T

Figure 6: ecFlow Graphical User Interface (ecflowview)

3.9 Support for generated workflows

Autosubmit experiment’s workflow is defined in INI style configuration files. Very simple
workflows can be defined as sequences of jobs with one triggering at the end of the previous
one. References are evaluated within a job-defined DEPENDENCIES attribute. It is important
to note that DEPENDENCIES on Autosubmit always refer to jobs that must be finished
before launching the job that has the DEPENDENCIES attribute. Further, a job defined
RUNNING attribute is used to set the level where job runs. It has four possible values: once,
date, member and chunk corresponding to running once, once per startdate, once per member
or once per chunk respectively. Thereafter, Autosubmit can manage dependencies between
jobs that are part of different chunks, members or startdates. The higher level job will wait for
ALL the lower level jobs to be finished.

Cylc suites are defined in INI style configuration files. For complex workflow, Cylc supports
the use of the Jinja2 template language to generate suite configuration files with loops,
conditional statements, data structure, etc.

ecFlow suites are typically written in Python, so complex workflow can be defined using
normal Python. This method has increased functionality over the text based format. The
Python API allows complete specification of the suite definition, including trigger and time
dependencies. Since the full power of Python is available to specify the suite definition, there
is considerable flexibility. The API is documented using the Python __doc__ facility.

sgnes Oy

3.10 Scalability

Autosubmit was designed with multi-startdate multi-member experiments in mind. It has a
built-in option to avoid overflowing platforms by limiting the number of jobs queueing and
running at a time at any given platform. These limits are set at 3 and 6 jobs by default
respectively, but can be tweaked by the user.

Autosubmit is used to run large experiments of a total of around 1000 jobs. The consumption
of resources of the Python-based command line monitor and control tool is in the order of a
few MB per experiment. The SAGA performance is evaluated in this study [12]. The
saturation of the pty shell and pty process infrastructure (mentioned in the Task
communication section) for a remote backend is reached above 1000 jobs per second. In the
study, three options for further scaling are explored: (a) concurrent job service instances, (b)
asynchronous operations, and (c) bulk operations. Normal Autosubmit usage within the limits
mentioned before, does not lead to reach such a situation. However it would be worth
implementing bulk operations in Autosubmit to reduce roundtrip overhead.

Cylc is used to run large (>1000 tasks per cycle point) time critical operational weather
forecast suites at Met Office, so performance and scalability are key design elements.

It has efficient logic for job submission:

e Submissions of jobs are typically grouped together by job hosts.
o Similar logic for job monitoring commands, e.g. poll and kill.
e Process pool limits the number of child processes the suite uses on its own host.

To avoid overflowing a job host, users can:

e Design the suite with explicit dependencies, including inter-cycle dependencies.

e Set the cycle runahead limit.

e Define internal queues to limit the number of jobs that can be submitted for any
groups of tasks.

The GUI performance could be affected when having a high number of active cycle points. A
limit on active cycle point could be a problem when used on an experiment with multiple
startdates, although it can be overcome by using a sub-suite for each startdate.

ecFlow provide methods to check the status of an ecflow_server. Invoking “ecflow_client —
stats” will display some standard information regarding the ecflow server including the
version number, node information, status, security information, usage, load, setup and up
time. The load on the ecflow_server can be checked invoking “ecflow_client --server load”.

The fact that ecflow_server was built from the ground up in C++, and that provides inter-
server cooperation leads to good scalability. It is even possible to maintain work load during
server and network outages and to share load between ecflow_server(s).

sgnes Oy

4, Complex workflow evaluation
In this chapter we analyse two real-life workflows:

e The GloSea5 operational suite.
e A hindcast EC-Earth experiment.

We implemented a simplified version of those two workflows with Autosubmit, Cylc and
ecFlow to exemplify real-life applications. The simplification only affects job scripting and
parameters definition.

4.1 Operational seasonal forecasting system GloSea5

a) Autosubmit

Autosubmit cannot reproduce the workflow used on GloSea5 due to two missing features.
The first one is that Autosubmit does not have real time dependencies, as it is not designed to
support operational runs. It also does not have support to trigger tasks on failed jobs, so the
model_failed and housekeep jobs that the original workflow triggers on failure cannot be
added.

The configuration of the experiment section on the expdef.conf file that defines the workflow
can be seen in APPENDIX A - GloSea5 workflow code in Autosubmit.

The jobs.conf file for this workflow is available in APPENDIX A - GloSea5 workflow code
in Autosubmit section Jobs (options for wallclock, processors, queues and other machine-
related configurations have been removed).

|s enes /’I y

(][] [[eoere] D (-] N S

[mmtrn]| [t [mienie] [et

1]
‘m_ﬂq_mur_ocﬂl ‘mﬂuw‘ ‘chumﬂ.raﬂnl |Jﬂn_mlkﬂ_-‘

][]
\
A\

s e
1

— i

(oie] ([Commcm]

[] [e]

‘m.zm‘mmmm;.;ﬂ |-m1_nmr-m.:n.m_m-zl‘ |mlmmm\mﬂ‘ [Mw‘

|mmum.m..\ \mmmmm| |m.muu,.,u\ [] |;.mam,m\ [S]

: . '
\-mw.mmmuw.pam\ |mu«mn|_kmnn.pu.m| \m_mmmu-u.pﬁmu\ |nn.zmnt.:w.u-unau\ \mmmmwﬂ \m_mmmun.mm-\ \M_ammmlmw\ |numm-muw|
I

L] — — J i
(v s e [o] e] [el |m}mmjw}.mm| e | S 0 e | | mmm| \ s | [S 5|

|memJ=U4-ﬁ_nhn‘ |-mummo|_ku_pky—| ‘.m_nmmum_m_nuu‘ |mummm.ku.;i.—ni!.w| |-nm_1nnmm_m_uﬁ.-nd-| ‘mimmm‘ |ml_zmlm_p=u_-u;u-‘ |m_anmmmuwt-| ‘m\muﬂmﬂ |-nm_1mlm_m_un_-ml‘

|mmmmm\ Eanrs] (o st [am Sttt | [s e | \mmu.m.q |mmmm.u.\ [rmzmm st o]

l
‘-ﬂljm\m_}mlm‘ ‘mﬂmmlﬁh}_ﬁm‘ |mlmuu_-km-\ |mumlfu¢:.uk_-a-| \mmwmy--| |mwnuﬂud:_mun-\

Y)
\mmqu ‘mmmeﬁm—‘ || ‘mequm‘ |dlw‘mlm.kmﬁ.lm—‘ [0. sc_pse. e o |

e e e] [t v |

7-7-7_7_7'__:“»&-.»-’ —

Figure 7: Example of GloSea5 workflow generated with Autosubmit

b) Cylc

The GloSea5 operational suite is managed by Cylc using Rose [9]. Since it is a fully
operational suite, the original suite definition file is quite complex. Hence, in this document,
we present a simplified version of the suite definition file: APPENDIX B - GloSea5 workflow
code in Cylc. It only includes the graph definition for the suite, the most important part.
Thereafter the comparison of different methods to generate complex workflows is easier to
understand.

IS- ene

T
o EANTR

1E 500, TH IN K
STEN NODELL;

mmmmm fom_make_rebuild | [fem_make,_redate m_make_um
SnEnioTonmoz | | soliniacTootoz | |smrisciamot | | 2oisiavoratan

fom_make2_ocean | [fam_meked_rsbuid | | fom_makel_redats | | _fom_makez_um
2015112000007 | | 20151120700007 | | 2018112070000z | | 2005112060002

inseail_eaid
2015112600002

she_start
20151170700002

‘gsihe_init_cantrol_fia
| 20i51220700062
r_member_mi

o
msuzommmz

H_gat_analysis
2015112070002 -
he_get_anatyss_ml |+ %,
Troinizomeoiz | b
Gaherecon i | |
2015112070602 | /

he_metal_mi_s01
20151120700002

gshe_model_ml_failed | |
Z0istizdtod0z |

aie_nedl_pree_m1_so1 U W ame meteLmi_oz et proc_ma_sal
20151120760082 + | 2ois1120700002 20151120705002

}

asfe_pred_filer_s muol| ‘ ofe_pcaf_pror_ml. m‘ |

ml_s03 _cll_proc_m1_s02 ashe_prod_fiter_m1_s01
0151120760002 2015112070006

1 [she_model_m1_s ashe.
1 | 2015112070000z 2015112076000Z 2015112000002

i

)
‘gifc_processmL_s01 | [gafe_prod filtar_ml =02 | [[oshe_medel_mL_s04 g nedf_proc_ml 303 she_prod filter_ml 502 | [gahe_process_ ml_s01
2015112000602 20151120765002 4| 2e1s1120700802 2015112070062 SostizoTioi 20151120706502

9o md-i mis05 |} i
“oisi20700802

ihe_mogel_mi_505 | [gahe_ncd proc_mL gahe_prod fiter_mL =03 | [gahe_process_mi. gahe_srchive_m1_s0:
20151120700602 2615112060062 281511 20Td0062 26151120700002 2015112070060

gahe_modsl_mi_s06 | [gah_nect_proc_m1_s08
20181120T00002 2m151 120790002

gahe_prod_fiter_m1_s04 | | gahe_peocazs_mi_203

‘gehe_archive_m1_s03
zzzzzzzzzzzzz 2015112070002

gahe_prod_fitar_wl_s06
2015120700307

gshe_procass_mi_ws
20151120700002

20 Toogoz 76000
‘‘‘‘‘‘‘‘‘ Gafe_prod_fiter_m1_s06 gshe_sechiva_rml_04
“eitnaaTaa0r isiia070007 20151120T0085Z 26151120T0000Z

nfe_prod_join_m) = gohe_prod_join_m1
e maemE 2151126100002

‘gshe_archive_m1_s5
20151120700002

gshe_process_m1_s08
2015112070092

ehe_archivem1_s06
2015120700502

o p
tanaoTOE

gifc_archive_ml_sl6
20151120700502

ot

gsfe_transfer_m1
20181120T0600Z

" houseksep |
2015120700002

Glasans

Figure 8: Example of GloSea5 workflow generated with Cylc
c) ecFlow

To define the GloSea5 workflow in ecFlow we have used the Python API. In this case we
have been able to reproduce the behavior of the original suite created using Cylc. The Python
code used to generate the workflow can be seen in APPENDIX C - GloSea5 workflow code
in ecFlow.

ecflowview uses a tree view that can be collapsed to any level. Figure 9 shows the suite
collapsed to the first level and successive pictures show the families expanded one at each
time (see Figure 10 - Figure 11 - Figure 12).

turing|3J- GloSeab |[D1 setup |

gsfc @@'“:l
gshe O]

housekeep |— gsfc /m1/failed == complete AND gshc/ml/failed == complete

archive_ logs |—housekeep == complete|

Figure 9: GloSea5 ecFlow suite with all families collapsed

sgnes Oy

turing|7- GloBeab|D | setup fem_make_ocean

fem make2 ocean|—fem maks ocean —— complete)
fem_make rebuild

fem_make2_rebuild| fem_make_rebuild == complete)|
fem_make_redate
fem_make2 redate| fem make redate =— complete|
fem_make_um

fem_make2 um| — fem_make_um == complete]

install_coldl——fom_ make2 ocean —— complete AND fem_make2_rebuild == complete AND fsm_make2_redate = complete AND fom_make2_

ésfﬂ: @ E]

#&shc (@l -
housekeep| — gsfc/m1/failed == complete AND gshc/m1/failed =— complete]
archive_logs| housekeep —— complete|

Figure 10: GloSea5 ecFlow suite with the setup family expanded

turing|lJ- GloSea5 [} satup | -

sfc O] setup == complete)
date *.%.2018
cron 17:15
‘start|
get_analysis| start == complete|
redate_cice| get_analysis =— complete|
racon| — redate_cice == complete]
milf—— recon == complete
—2 ‘medell——../1/model == complete
nedf proc/-model —— complete AND ../1/ncdf proc —— completa|
prod_filter| nedf proc == complete AND ../1/prod_filler == complete|
process|— prod_filter == complete AND ../1/process == complete|
archive| — process == complete AND ../1/archive == complete|
L a
T
L 5
L 5
prod_join| 6/prod_filter = complete
transfer|—prod_join —— complete)
faiﬂ'—[ﬁ == complete AND transfer == complete|
1/model == aborted OR 2/model == aborted OR 8/model == aborted OR 4/model = aborted OR 5/model == aborted OR &/
(gshe /@~
housekeep|—gsfe/m1/falled == complete AND gshe/m1/failed == complete|
archive_logs| housekeep == complete|

Figure 11: GloSea5 ecFlow suite with the gsfc family expanded

turing|D- GloSeab D | setup|
- gshe|[D 0 setup == complete
date *.*.2016
cron 17:15
start|
init_control_file| start—= complete|

T

init_control file == complete|

register_member

— get_analysis| — register_member == complete]

recon|— get_analysis =—— complete)

H,,

ﬁ,,

ﬂ,,

B ‘modell—../4/model == complete
ncdf_proc| model == complete AND ../4/ncdf_proc == complete|
prod_filter| ncdf proc == complete AND ../4/prod_filler == complete]
prosess|— prod_filter == complete AND ../4/process == complete|

archive| — process —— complete AND ../4/archive == complete|

=
prod_join|—6/prod_filter == complete|
transfer|— prod_join == complete

%s == complete AND transfer == complete|

register_member == aborted OR 1/model == ahorted OR 2/model == aborted OR 3/model == aborted OR 4/mod
housekeep| — gsfc/m1/failed == complete AND gshc/m1/failed == complete|

archive_logs| housekeep == complete|

Figure 12: GloSea5 ecFlow suite with the gshc family expanded
4.2 Decadal hindcast with EC-Earth

A decadal hindcast experiment with EC-Earth usually consists of several model runs for
different startdates and members. The workflow that will be used as a model is the one used at
BSC-Earth sciences department, which has seven types of jobs.

As the complexity of this workflow for the managers is due to the high number of model runs
required and the long time that this models need to run, we use a configuration with three
startdates of five members each that will run for ten years in chunks of three months.

sgnes Oy

a) Autosubmit

In the case of the hindcast workflow, the experiment section on the expdef.conf file is
configured below in APPENDIX D - EC-Earth workflow code in Autosubmit.

The jobs.conf file for this workflow can be seen in APPENDIX D - EC-Earth workflow code
in Autosubmit, section Jobs.

Figure 13: Example of EC-Earth experiment generated with Autosubmit

b) Cylc

To define a hindcast experiment with Cylc we choose to use a multiple suite approach. In this
case, the experiment has two suite definitions available in the APPENDIX. Note that these are
simplified versions with a lot of parameters definition removed for clarity.

The main suite definition is shown in Control suite section. The control suite contains
common tasks relative to model deployment and data transfer and also contains a task that
will register, run and unregister a suite for each member that will run the proper simulation.

The simulation suite definition is shown in Sub-suites section. This definition is quite simple,
and keeps the simulation of each member separated from the main ensemble workflow.

c) ecFlow

To define a hindcast experiment with ecFlow we choose to create a family composed by
families for each member. Each member family is also composed by chunk families. This
kind of definition makes the experiment easier to monitor using the tree view that ecflowview
provides.

The use of Python functions while keeping as much as possible the dependencies relative to
families, allows this workflow to be easily extended with new tasks at any point. The Python
code used to create the workflow is available in the APPENDIX F - EC-Earth workflow code
in ecFlow.

=

local == complete

—-—/ieswseiup compleie\

..{/ini == complete AND ../3/sim == complete AND ../2/clean == compleie

sim eq complete
post eq complete

Figure 14: EC-Earth ecFlow suite

furing|> - fest); setup| | locall
L remote [local == compleie|
Iisu0101} feu
--——m—!tesﬂseiup == complete|
o
~ 1} sim|—../ini == complete AND ../0/
kposﬂ—sim eq complete
cleqn|~post eq compleie|

—g—{i_mi—..fini == complete AND ../1/

post I— sim eq complete

clean |‘ post eq com ple|e|

Figure 15: EC-Earth ecFlow suite with some chunk families expanded

4.3 Synthesis

The first use case evaluated, the operational seasonal forecasting system GloSea5, has been
prototyped with Autosubmit, Cylc and ecFlow. The original version created with Cylc and
Rose includes the full potential of an operational suite. The ecFlow equivalent includes all the
potential, similarly. However, the Autosubmit equivalent has been simplified since launching
triggers on failed tasks and defining real time dependencies is not supported.

sgnes Oy

The second use case evaluated, a decadal hindcast with EC-Earth has been successfully
prototyped with Autosubmit, Cylc and ecFlow.

5. Perspectives

5.1 Assessment report relevance

The present assessment report and in particular the case evaluated in the previous chapter
Operational seasonal forecasting system GloSea5, is relevant to understand how a multi-
model multi-member ensemble experiment can be defined. The assessment demonstrates that
Autosubmit, Cylc and/or ecFlow are suitable options to define, set-up and run such an
experiment.

5.2 M4 HR ESM ensemble performance analysis

Contributing groups to WP9/JRAL have been testing and evaluating common multi-member
HR simulations, running an ensemble of HR ESM simulations (more than five members), in
parallel on a given machine. A new set of computational performance metrics for ESMs, and
the results of an initial analysis of the participating ESMs using these metrics are reported in
D9.1[8].

The final deliverable in the context of WP9/JRAL is testing and evaluating a Multi-model
multi-member (M4) high resolution (HR) Earth System Model (ESM) ensemble on a single
HPC system: several groups will bring together three HR ESMs, with a minimum of 10
ensemble members per ESM, to be run in parallel as a single M4 HR ensemble, on a single
system through a single submission step. Based on the computational costs of this initial test
set, this task may be extended to multiple start-dates. The computational performance will be
analysed (utilizing improved methods and/or tools described in D9.1 [8]) and D9.6 report will
be written: “Multi-model multi-member high resolution Earth System Model ensemble
performance analysis”.

Helped by BSC, 4 groups (CERFACS, CMCC, Met.no, SMHI) decided to join their efforts,
developing an integrated multi model, based on ocean-atmosphere (CAM-NEMO, ARPEGE-
NEMO or IFS-NEMO) or atmosphere only (CAM) models. To address it by means of a
demonstrator an Autosubmit demonstrator is being designed that could be easily ported to
Cylc and/or ecFlow. The demonstrator aims at showing that it is technically feasible to run
HR models side-by-side on a machine. Technically speaking, the 3x2+1 executables are
launched together, in the same MPMD MPI command. In addition to the MPI parallelism of
each component, a “model” level parallelism increases the number of computing resources
used at the same time.

IS-enes

o

10.

11.

12.

13.

14.

e

v

References

Autosubmit documentation, [online], (accessed March 2016),
http://www.bsc.es/projects/earthscience/autosubmit/

Autosubmit and EC-Earth Configuration Management, [online], (accessed March
2016), https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-
ec-earth-configuration-management/view

Cylc documentation, [online], (accessed March 2016), http://cylc.github.io/cylc/
ecFlow documentation, [online], (accessed March 2016),
https://software.ecmwf.int/wiki/display/ECFLOW/

ECaccess documentation, [online], (accessed March 2016),
https://software.ecmwf.int/wiki/display/ECAC/ecaccess
IS-ENES2_MS9.1_Multi-member HR prediction experiment using Autosubmit on
Tier-1, [online], (accessed March 2016), https://is.enes.org/documents/milestones/is-
enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-
1iview

IS-ENES2_MS9.2_Further developments of Autosubmit, [online], (accessed March
2016), https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-
developments-of-autosubmit/view

IS-ENES2_D9.1 HR ESM Initial performance analysis_Submitted Version, [online],
(accessed March 2016), https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-
esm-initial-performance-analysis/view

Rose documentation, [online], (accessed March 2016),
https://github.com/metomi/rose/

Merzky, Andre; Weidner, Ole; Jha, Shantenu. SAGA: A standardized access layer to
heterogeneous Distributed Computing Infrastructure, SoftwareX, 1:3-8, 2015.
SAGA wiki - PTY Layer, [online], (accessed March 2016), https://github.com/radical-
cybertools/saga-python/wiki/PTY-Layer

SAGA wiki - Performance, [online], (accessed March 2016),
https://github.com/radical-cybertools/saga-python/wiki/Performance-of-saga-python
SAGA GFD.90, [online], (accessed March 2016),
https://www.ogf.org/documents/GFD.90.pdf

SAGA developer documentation - Writing SAGA-Python Adaptors, [online],
(accessed March 2016), http://saga-
python.readthedocs.org/en/latest/developers/adaptorwriting.htmi

http://www.bsc.es/projects/earthscience/autosubmit/
https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-ec-earth-configuration-management/view
https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-ec-earth-configuration-management/view
http://cylc.github.io/cylc/
https://software.ecmwf.int/wiki/display/ECFLOW/
https://software.ecmwf.int/wiki/display/ECAC/ecaccess
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-developments-of-autosubmit/view
https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-developments-of-autosubmit/view
https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-esm-initial-performance-analysis/view
https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-esm-initial-performance-analysis/view
https://github.com/metomi/rose/
https://github.com/radical-cybertools/saga-python/wiki/PTY-Layer
https://github.com/radical-cybertools/saga-python/wiki/PTY-Layer
https://github.com/radical-cybertools/saga-python/wiki/Performance-of-saga-python
https://www.ogf.org/documents/GFD.90.pdf
http://saga-python.readthedocs.org/en/latest/developers/adaptorwriting.html
http://saga-python.readthedocs.org/en/latest/developers/adaptorwriting.html

s:enes O

7. APPENDIX

7.1 APPENDIX A - GloSea5 workflow code in Autosubmit

a) Experiment

[experiment]

DATELIST = 20000101
MEMBERS = fc0
CHUNKSIZEUNIT = month

CHUNKSIZE = 1
NUMCHUNKS = 6
CALENDAR = standard
b) Jobs
[fcm make ocean]
FILE = fcm make ocean.sh

[fcm make2 ocean]
FILE = fcm make2 ocean.sh
DEPENDENCIES = fcm make ocean

[fcm make rebuild]
FILE = fcm make rebuild.sh

[fcm make2 rebuild]
FILE = fcm make2 rebuild.sh
DEPENDENCIES = fcm make rebuild

[fcm make redate]
FILE = fcm make redate.sh

[fcm make2Z redate]
FILE = fcm make2 redate.sh
DEPENDENCIES = fcm make redate

[fcm make um]
FILE = fcm make um.sh

[fcm make2 um]
FILE = fcm makeZ um.sh
DEPENDENCIES = fcm make um

[install cold]

FILE = fcm make ocean.sh

DEPENDENCIES = fcm make2 ocean fcm make2 rebuild fcm make2 redate
fcm make2 um

[gsfc_start]
FILE = gsfc start.sh
DEPENDENCIES = install_cold

[gsfc_get analysis]
FILE = gsfc _get analysis.sh
DEPENDENCIES = gsfc_ start

is-enes ‘/’ y

[gsfc_redate cice]
FILE = gsfc _redate cice.sh
DEPENDENCIES = gsfc get analysis

[gsfc_recon]
FILE = gsfc recon.sh
DEPENDENCIES = gsfc redate cice

[gsfc model]

FILE = gsfc model.sh

RUNNING = chunk

DEPENDENCIES = gsfc recon gsfc model-1

[gsfc _ncdf proc]

FILE = gsfc ncdf proc.sh

RUNNING = chunk

DEPENDENCIES = gsfc model gsfc ncdf proc-1

[gsfc _prod filter]

FILE = gsfc prod filter.sh

RUNNING = chunk

DEPENDENCIES = gsfc _ncdf proc gsfc prod filter-1

[gsfc_process]

FILE = gsfc process.sh

RUNNING = chunk

DEPENDENCIES = gsfc prod filter gsfc process-1

[gsfc_archive]

FILE = gsfc _archive.sh

RUNNING = chunk

DEPENDENCIES = gsfc process gsfc archive-1

[gsfc_prod join]

FILE = gsfc prod join.sh
RUNNING = member

DEPENDENCIES = gsfc prod filter

[gsfc_transfer]

FILE = gsfc transfer.sh
RUNNING = member

DEPENDENCIES = gsfc prod join

[gshc_start]
FILE = gshc_start.sh
DEPENDENCIES = installicold

[gshc_init control file]
FILE = gshc_init control file.sh
DEPENDENCIES = gshc start

[gshc register member]

FILE = gshc_redate cice.sh
DEPENDENCIES = gshc _init control file
RUNNING = member

is-enes f’ y

[gshc _get analysis]

FILE = gshc _get analysis.sh
DEPENDENCIES = gshc register member
RUNNING = member

[gshc_recon]

FILE = gshc recon.sh
DEPENDENCIES = gshc_get analysis
RUNNING = member

[gshc_model]

FILE = gshc model.sh

RUNNING = chunk

DEPENDENCIES = gshc recon gshc model-1

[gshc_ncdf proc]

FILE = gshc ncdf proc.sh

RUNNING = chunk

DEPENDENCIES = gshc model gshc ncdf proc-1

[gshc_prod filter]

FILE = gshc prod filter.sh

RUNNING = chunk

DEPENDENCIES = gshc ncdf proc gshc prod filter-1

[gshc_process]

FILE = gshc process.sh

RUNNING = chunk

DEPENDENCIES = gshc prod filter gshc process-1

[gshc_archive]

FILE = gshc _archive.sh

RUNNING = chunk

DEPENDENCIES = gshc process gshc archive-1

[gshc_prod join]

FILE = gshc prod join.sh
RUNNING = member

DEPENDENCIES = gshc prod filter

[gshc_transfer]

FILE = gshc transfer.sh
RUNNING = member

DEPENDENCIES = gshc prod join

[archive logs]
FILE = archive logs.sh
DEPENDENCIES = gsfc archive gsfc transfer gshc archive gshc transfer

7.2 APPENDIX B - GloSea5 workflow code in Cylc

#!jinja2

{% set START CYCLE="20151120T00" %}
% set N GSHC MEMBERS=1 %)

{% set N _GSHC STEPS=6 %}

{% set N_GSFC_MEMBERS=1 %)}

{% set N GSFC STEPS=6 %}

is-enes ‘/’ y

title = "GloSea Suite"
description="Global monthly forecast, seasonal forecast and seasonal
hindcast suite"

[cylc]
UTC mode = True

[scheduling]
initial cycle point = {{ START CYCLE }}
max active cycle points = 1
[[special tasks]]
sequential = gshc start, gsfc start, archive logs, housekeep
clock-triggered = gshc start (PT12H15M),gsfc start (PT12H15M)
[[dependencies]]
([l RL 111
graph = """
fcm make ocean => fcm make2 ocean
fcm make um => fcm make2 um

fcm make rebuild => fcm make2 rebuild

fcm make redate => fcm make2 redate

fcm make2 ocean & fcm make2 um & fcm make2 rebuild &
fcm make2 redate => install cold

install cold => gshc_start
install cold => gsfc start

win

[[[TOO 111
graph = mmn
gshc_start => gshc init control file => REGISTER MEMBERS
{% for MEMBER in range(1, N GSHC MEMBERS + 1) %}
{%$ if MEMBER > 1 %}
gshc_register member m{{ MEMBER - 1 }}:finish => \
{% endif %}
gshc_register member m{{ MEMBER }} => gshc get analysis m{{
MEMBER }} => gshc recon m{{ MEMBER }} => \
gshc_model m{{ MEMBER }} s01 => gshc ncdf proc mf{{
MEMBER }} s0l1 => gshc process m{{ MEMBER }} s01 => \
gshc_archive m{{ MEMBER }} s01

gshc_ncdf proc m{{ MEMBER }} s01 => gshc prod filter m{{ MEMBER
}} s01 => gshc process m{{ MEMBER }} sO1

gshc_prod filter m{{ MEMBER }} s0l1 => gshc prod join m{{ MEMBER
b}

{$ for STEP in range(2, N GSHC STEPS + 1) %}

{% set MEM PREV STEP = "m%d s%02d" % (MEMBER, STEP-1) %}
{% set MEM STEP = "m%d s%02d" % (MEMBER, STEP) %}

gshc model {{ MEM PREV STEP }} => gshc model {{ MEM STEP }}
=> gshc ncdf proc {{ MEM STEP }} => gshc process {{ MEM STEP }} =>
gshc _archive {{ MEM STEP }}

gshc _ncdf proc {{ MEM PREV_STEP }} => gshc ncdf proc {{
MEM STEP }}

gshc process {{ MEM PREV STEP }} => gshc process {({
MEM STEP }}

is-enes ‘/’ y

gshc_archive {{ MEM PREV_STEP }} => gshc_archive {{
MEM STEP }}

gshc_ncdf proc {{ MEM STEP }} => gshc prod filter {{
MEM STEP }} => gshc process {{ MEM STEP }}

gshc _prod filter {{ MEM PREV_STEP }} => gshc prod filter ({{
MEM STEP }}

gshc_prod filter {{ MEM STEP }} => gshc prod join m{{

MEMBER }}

{% endfor %}

{% set MEM LAST STEP = "m%d s%02d" % (MEMBER, N GSHC STEPS) %}

{% for STEP in range(1, N _GSHC_ STEPS) %}

{% set MEM STEP = "m%d_s%OZd" % (MEMBER, STEP) %}
gshc_model {{ MEM STEP }}:fail | \

{% endfor %}

gshc model {{ MEM LAST STEP }}:fail | \

gshc register member m{{ MEMBER }}:fail => \

gshc_model m{{ MEMBER }} failed & !gshc register member m{{
MEMBER }}

gshc_model {{ MEM LAST STEP }} => !gshc model m{{ MEMBER
}} failed

gshc_model m{{ MEMBER }} failed => !GSHC M{{ MEMBER }}

(gshc_model {{ MEM LAST STEP }} & gshc archive {{ MEM LAST STEP
Py AN

gshc_model m{{ MEMBER }} failed => housekeep

gshc prod filter {{ MEM LAST STEP }} => \

gshc_prod join m{{ MEMBER }} => gshc transfer m{{ MEMBER }}

gshc_transfer m{{ MEMBER }} | gshc model m{{ MEMBER }} failed

=> \
housekeep

{% endfor %}
gsfc_start => gsfc get analysis => gsfc redate cice => gsfc recon

{% for MEMBER in range(1, N GSFC MEMBERS + 1) %}
gsfc_start & gsfc recon => gsfc model m{{ MEMBER }} s01 =>
gsfc_ncdf proc m{{ MEMBER }} s01 => \
gsfc process m{{ MEMBER }} s01 => gsfc archive m{{ MEMBER
}} s01

gsfc_ncdf proc m{{ MEMBER }} s01 => gsfc prod filter m{{ MEMBER
}} s01 => gsfc process m{{ MEMBER }} s01

gsfc prod filter m{{ MEMBER }} s0l1 => gsfc prod join m{{ MEMBER
H}

{% for STEP in range(2, N GSFC_STEPS + 1) %}

{%$ set MEM PREV_STEP = "m%d:s%OZd" % (MEMBER, STEP - 1) %}
{% set MEM STEP = "m%d s%02d" % (MEMBER, STEP) %}

gsfc model {{ MEM PREV STEP }} => gsfc model {{ MEM STEP }}
=> gsfc_ncdf proc {{ MEM STEP }} => \
gsfc_process_ {{ MEM STEP }} => gsfc archive {{ MEM STEP
H}

is-enes ‘/’ /

gsfc _ncdf proc {{ MEM PREV _STEP }} => gsfc ncdf proc {{
MEM STEP }}

gsfc process {{ MEM PREV STEP }} => gsfc process {{
MEM STEP 1}

gsfc_archive {{ MEM PREV STEP }} => gsfc archive {{
MEM STEP }}

gsfc_ncdf proc {{ MEM STEP }} => gsfc prod filter {{
MEM STEP }} => gsfc process {{ MEM STEP }}

gsfc prod filter {{ MEM PREV _STEP }} => gsfc prod filter ({{
MEM STEP 1}

gsfc _prod filter {{ MEM STEP }} => gsfc prod join m{{

MEMBER }}
{% endfor %}
{% set MEM LAST STEP = "m%d s%02d" % (MEMBER, N GSFC STEPS) %}
{% for STEP in range(1, N _GSFC_STEPS) %}
{% set MEM STEP = "m%d_s%OZd" % (MEMBER, STEP) %}
gsfc model {{ MEM STEP }}:fail | \
{% endfor %}
gsfc _model {{ MEM LAST STEP }}:fail => gsfc model m{{ MEMBER
}} failed
gsfc model {{ MEM LAST STEP }} => !gsfc model m{{ MEMBER
}} failed

gsfc model m{{ MEMBER }} failed => !GSFC M{{ MEMBER }}

(gsfc_model {{ MEM LAST STEP }} & gsfc archive {{ MEM LAST STEP
}}) | gsfc_model m{{ MEMBER }} failed => housekeep

gsfc _prod filter {{ MEM LAST STEP }} => gsfc prod join mf{{
MEMBER }} => gsfc transfer m{{ MEMBER }}

gsfc_transfer m{{ MEMBER }} | gsfc model m{{ MEMBER }} failed
=> housekeep

{% endfor %}
housekeep => archive logs

7.3 APPENDIX C - GloSea5 workflow code in ecFlow

import ecflow
MEMBERS = 1
CHUNKS = 6

def create setup():

f=ecflow.Family ("setup")

f.add variable('ECF FILES',
'/home/jvegas/ecflow/GloSea5/GloSea5/setup')

f.add task('fcm make ocean')

f.add task('fcm make2 ocean').add trigger ('fcm make ocean == complete')

f.add task('fcm make rebuild')
f.add task('fcm make2 rebuild').add trigger ('fcm make rebuild ==
complete')

f.add task('fcm make redate')
f.add task('fcm make2 redate').add trigger ('fcm make redate ==
complete')

f.add task('fcm make um')

is-enes ‘/’ y

f.add task('fcm make2 um').add trigger('fcm make um == complete')

install cold = f.add task('install cold')

install cold.add part trigger('fcm makeZ ocean == complete')

install cold.add part trigger ('fcm make2 rebuild == complete', True)
install cold.add part trigger('fcm make2 redate == complete', True)
install cold.add part trigger('fcm make2 um == complete', True)

return f

def create gsfc(hk):
f = ecflow.Family('gsfc')
cron = ecflow.Cron()
cron.set time series(17,15)
f.add cron(cron)

f.add date(0,0,2016)

f.add trigger('setup == complete')

f.add task('start')

f.add task('get analysis').add trigger('start == complete')

f.add task('redate cice').add trigger('get analysis == complete')
f.add task('recon').add trigger ('redate cice == complete')

for member in range(l, MEMBERS+1) :
fm = f.add family('m{0}'.format (member))
fm.add variable ('ECF FILES',
'/home/jvegas/ecflow/GloSea5/GloSea5/gsfc')
fm.add trigger ('recon == complete')
failed = ecflow.Task('failed')
for chunk in range (1, CHUNKS+1):
fm.add family(create chunk family (chunk))
if chunk == 1:
failed.add part trigger('{0}/model ==
aborted'. format (chunk))
else:
failed.add part trigger('{0}/model ==
aborted'.format (chunk), False)

failed.add part complete('{0} == complete'.format (CHUNKS))
failed.add part complete('transfer == complete', True)
hk.add part trigger('gsfc/m{0}/failed == complete'.format (member))

fm.add task('prod join').add trigger('{0}/prod filter ==
complete'.format (CHUNKS))
fm.add task('transfer').add trigger ('prod join == complete')
fm.add task(failed)
return f

def create chunk family (chunk) :
fc=ecflow.Family ('{0}"'.format (chunk))

sim=fc.add task('model')
if chunk > 1:
sim.add part trigger('../{0}/model == complete'.format (chunk -1))

temp=fc.add task('ncdf proc')
temp.add part trigger('model == complete')
if chunk > 1:

is-enes ‘/’ y

temp.add part trigger('../{0}/ncdf proc == complete'.format (chunk -

1), True)

def

temp=fc.add task('prod filter')

temp.add part trigger('ncdf proc == complete')
if chunk > 1:
temp.add part trigger('../{0}/prod filter == complete'.format (chunk
True)

temp=fc.add task('process')

temp.add part trigger('prod filter == complete')
if chunk > 1:

temp.add part trigger('../{0}/process == complete'.format (chunk -
True)

temp=fc.add task('archive')

temp.add part trigger ('process == complete')
if chunk > 1:

temp.add part trigger('../{0}/archive == complete'.format (chunk -
True)

return fc

create gshc (hk) :

f = ecflow.Family ('gshc')

cron = ecflow.Cron()

cron.set time series(17,15)

f.add cron(cron)

.add_date(0,0,2016)

.add_trigger ('setup == complete')

.add_task('start')
.add_task('init control file').add trigger('start== complete')

Fhoh Hh Fh

for member in range(l, MEMBERS+1) :
fm = f.add family ('m{0}'.format (member))
fm.add variable ('ECF FILES',

'/home/jvegas/ecflow/GloSea5/GloSea5/gshc')

complete')

fm.add trigger('init control file == complete')

fm.add task('register member')

fm.add task('get analysis').add trigger('register member ==
fm.add task('recon').add trigger('get analysis == complete')
failed = ecflow.Task('failed"')

failed.add part trigger ('register member == aborted')

for chunk in range (1, CHUNKS+1):
fm.add family(create chunk family (chunk))
failed.add part trigger('{0}/model == aborted'.format (chunk),

False)

fm.add task('prod join').add trigger('{0}/prod filter ==

complete'.format (CHUNKS))

fm.add task('transfer').add trigger ('prod join == complete')
failed.add part complete('{0} == complete'.format (CHUNKS))
failed.add part complete('transfer == complete', True)

fm.add task(failed)
hk.add part trigger('gshc/m{0}/failed == complete'.format (member),

True)

Is-enes ‘/’ s

return f

print "Creating suite definition"

defs = ecflow.Defs ()

suite = defs.add suite("GloSeab")

suite.add variable ('ECF_INCLUDE', '/home/jvegas/ecflow/GloSea5")
suite.add variable ('ECF _HOME','/home/jvegas/ecflow/GloSea5")
suite.add family(create setup())

hk = ecflow.Task ('housekeep')

suite.add family(create gsfc (hk))

suite.add family(create gshc (hk))

suite.add task (hk)

suite.add task('archive logs').add trigger ('housekeep == complete')

7.4 APPENDIX D - EC-Earth workflow code in Autosubmit

a) Experiment

[experiment]

DATELIST = 2000 2001 2002
MEMBERS = fc0 fcl fc2 fc3 fc4
CHUNKSIZEUNIT = month
CHUNKSIZE = 3

NUMCHUNKS = 20

CALENDAR = standard

b) Jobs

[LOCAL SETUP]
FILE = LOCAL_ SETUP.sh
PLATFORM = LOCAL

[REMOTE SETUP]
FILE = REMOTE SETUP.sh
DEPENDENCIES = LOCAL SETUP

[INI]

FILE = INI.sh

DEPENDENCIES = REMOTE SETUP
RUNNING = member

[SIM]

FILE = SIM.sh

DEPENDENCIES = INI SIM-1 CLEAN-2
RUNNING = chunk

[POST]

FILE = POST.sh
DEPENDENCIES = SIM
RUNNING = chunk

[CLEAN]
FILE = CLEAN.sh
DEPENDENCIES = POST

[TRANSFER]
FILE = TRANSFER.sh

snes O/

PLATFORM = LOCAL
DEPENDENCIES = CLEAN
RUNNING = member

7.5 APPENDIX E - EC-Earth workflow code in Cylc

a) Control suite
#!Jinja2

{% set DATES = {
"2000-01":"2004-10",
"2001-01":"2005-10",
"2002-01":"2006-10"} %}

{% set MEMBERS = ["fcO", "fcl", "fc2", "fc3", "fc4d"] %}
[scheduling]
[[dependencies]]
graph="""local => remote

{% for ICP, FCP in DATES.iteritems () %}
{% for MEMBER in MEMBERS %}
remote => {{ ICP }} {{ MEMBER }}
{% endfor %}
{% endfor %}

[runtime]
{% for MEMBER in MEMBERS %}
[[{{ ICP }}_{{ MEMBER }}]]
inherit={{ ICP }}
command scripting = """
set -xuve
cylc register suite {{ ICP }} {{ MEMBER }} /home/jvegas/mem suite
cylc run --no-detach --set ICP={{ ICP }} --set FCP={{ FCP }} --set
MEMBER={{ MEMBER }} suite {{ ICP }} {{ MEMBER }}
cylc unregister suite {{ ICP }} {{ MEMBER}}"""
{% endfor %}
{% endfor %}

b) Sub-suites
#!Jinja2

[cylc]
cycle point format = $Y-%m
[[environment]]
MEMBER = {{ MEMBER }}

[scheduling]
initial cycle point = {{ICP}}
final cycle point = {{FCP}}
max active cycle points = 2
[[dependencies]]
[[IR1]]]
graph="ini => sim"
[[[P3M]]]

is-enes f’ y

graph="""
sim[-P3M] => sim => post => clean
clean[-P6M] => sim
[[[R1//+POD]]1]
graph="""
CHUNK:succeed-all => transfer

win

[runtime]
[[CHUNK]]

[[ini, post, clean]]
inherit = CHUNK

command scripting = "sleep 2"
[[sim]]

inherit = CHUNK

command scripting = "sleep 6"
[[transfer]]

command scripting = "sleep 4"

7.6 APPENDIX F - EC-Earth workflow code in ecFlow

#!/usr/bin/env python

import os
from dateutil.relativedelta import relativedelta
import ecflow

from datetime import date

START DATE = date (2000,1,1)
END DATE = date(2002,1,1)
SDATE_SEPARATION = 1
MEMBERS = 5

SIM LENGTH= 5

CHUNK SIZE = 3

def format date (date):
return date.strftime ("$Y%m%d")

def create family(name, path=""):
f=ecflow.Family (name)
f.add variable ('ECF FILES', ROOT PATH + path)
return f

def create setup():
f=create family ("setup", "common")
f.add task('localsetup')
f.add task('remotesetup').add trigger('localsetup == complete')
return f

def create chunk family(chunk, chunkdate, end date):
chunk end chunkdate + relativedelta (months=CHUNK SIZE)
fc=create family(str (chunk), 'ecearth3")

sim=fc.add task('sim')

is-enes ‘/’ y

def

if chunk ==
ini=fc.add task('ini').add trigger('/ecearth/setup == complete')
sim.add part trigger('ini == complete')

else:
sim.add part trigger('../'+str(chunk-1)+'/sim == complete')

if chunk > 2:

sim.add part trigger('../'+str(chunk-2)+' == complete', True)
fc.add task('post').add trigger('sim == complete')
fc.add task('clean').add trigger('post == complete')

return fc

create simulation (suite):
startdate = START DATE

while startdate <= END DATE:
sdate = format date(startdate)
fsd=create family (sdate)
fsd.add variable ("SDATE", sdate)
end date=startdate + relativedelta (years=SIM LENGTH)
for nummember in range (0, MEMBERS) :
member = 'fc'+str (nummember)
f=create family (member, 'ecearth3')
f.add variable ('MEMBER', member)
date = startdate
chunk=1
while date < end date:
f.add family(create chunk family(chunk, date, end date))
chunk += 1
date = date + relativedelta(months=CHUNK SIZE)

transfer = fsd.add task('transfer '+member)

transfer.add trigger (member +' == complete')
transfer.add variable ('ECF _FILES', ROOT PATH + 'common')
fsd.add family (f)

suite.add family (fsd)

startdate = startdate + relativedelta (years=SDATE SEPARATION)

print "Creating suite definition"
defs = ecflow.Defs ()

suite = defs.add suite("ecearth")
suite.add variable ('ECF INCLUDE', '/home/jvegas/ecflow/ecearth')
suite.add variable ("ECF _HOME", "/home/jvegas/ecflow/ecearth")

suite.add family(create setup())
create_ simulation (suite)

