

IS-ENES2 - Contract Number: 312979

Abstract

 Reporting period: 01/10/2014 – 31/03/2016

Project co-funded by the European Commission’s Seventh Framework Programme (FP7; 2007-2013) under the grant

agreement n°312979

Dissemination Level

PU Public PU

PP Restricted to other programme participants including the Commission Services

RE Restricted to a group specified by the partners of the IS-ENES2 project
CO Confidential, only for partners of the IS-ENES2 project

Revision table

Version Date Name Comments

0.1 21/03/2016 Domingo Manubens-Gil Original version for review

0.2 29/03/2016 Domingo Manubens-Gil Including review comments from Pavan

0.3 30/03/2016 Domingo Manubens-Gil Including review comments from Stéphane

0.4 30/03/2016 Domingo Manubens-Gil Including review comments from Sébastien

1.0 31/03/2016 Domingo Manubens-Gil Final version

IS-ENES2 DELIVERABLE (D-N°: 9.3)

Assessment report on Autosubmit, Cylc and ecFlow

{Original title: Assessment report on Autosubmit and Cylc}

File name: IS-ENES2_D9_3.pdf

Final date of issue: 31/03/2016

D-9.3, “Assessment report on Autosubmit, Cylc and ecFlow”, is a deliverable due in month 36,

ahead of the deliverable D-9.6 “Multi-model multi-member (M4) high resolution (HR) Earth

System Model (ESM) ensemble performance analysis”. In the context of work package 9,

IC3/BSC in collaboration with the Met Office, have set up three tools to design workflows and

monitor experiments: Autosubmit, Cylc and ecFlow. The three scheduling and submission

systems have been tested and evaluated with regard to the suitability for M4 HR experiments.

GloSea5 operational seasonal forecast system and EC-Earth3 decadal hindcast have been

prototyped with several workflow configurations in order to compare the differences and

assess the suitability of the three tools for M4 HR experiments.

Author(s): Domingo Manubens-Gil,

Javier Vegas-Regidor

Contributor(s): David Matthews,

Matthew Shin

Reviewer(s): Sébastien Denvil, Stéphane

Senesi, Pavan Kumar Siligam

Release date for review: 21/03/2016

2

Table of contents

1. Executive summary ... 4

2. Background ... 5

2.1 Studied submission tools .. 5

3. Comparison ... 6

3.1 Portability ... 6

3.2 Task communication .. 7

3.3 Support for remote platforms ... 9

3.4 Support for different workload managers .. 10

3.5 Fault tolerance .. 12

3.6 Support for automated error recovery .. 13

3.7 Support for date/time cycling ... 14

3.8 Monitoring and intervention tools ... 14

3.9 Support for generated workflows ... 19

3.10 Scalability .. 20

4. Complex workflow evaluation .. 21

4.1 Operational seasonal forecasting system GloSea5 .. 21

a) Autosubmit ... 21

b) Cylc .. 22

c) ecFlow .. 23

4.2 Decadal hindcast with EC-Earth .. 24

a) Autosubmit ... 25

b) Cylc .. 25

c) ecFlow .. 25

4.3 Synthesis .. 26

5. Perspectives ... 27

5.1 Assessment report relevance .. 27

5.2 M4 HR ESM ensemble performance analysis ... 27

6. References ... 28

7. APPENDIX ... 29

7.1 APPENDIX A - GloSea5 workflow code in Autosubmit .. 29

3

a) Experiment ... 29

b) Jobs .. 29

7.2 APPENDIX B - GloSea5 workflow code in Cylc ... 31

7.3 APPENDIX C - GloSea5 workflow code in ecFlow ... 34

7.4 APPENDIX D - EC-Earth workflow code in Autosubmit .. 37

a) Experiment ... 37

b) Jobs .. 37

7.5 APPENDIX E - EC-Earth workflow code in Cylc .. 38

a) Control suite ... 38

b) Sub-suites ... 38

7.6 APPENDIX F - EC-Earth workflow code in ecFlow .. 39

4

1. Executive summary

The main objective of WP9/JRA1 is to define, set up, and run a multi-model multi-member

high-resolution (M4 HR) earth system model (ESM) ensemble experiment.

Before adapting M4 HR workflow to the job submission tool under consideration, this

deliverable (D9.3) aims at reporting on the development status of the suitability of submission

tools for M4 HR runs and on their respective computational performance in an operational

environment.

Given the strong dependence of job scheduling and submission systems on ESM and HPC

particularities, three options are retained for assessment in this study: Autosubmit, Cylc and

ecFlow. For multi-member experiments, Autosubmit has already been evaluated on two HPC

systems: ECMWF IBM Power 7 and MareNostrum 3 (see M9.1 [6] and M9.2 [7]).

IC3/BSC in collaboration with the Met Office, have set up Autosubmit, Cylc and ecFlow. An

environment with access to several remote HPC systems, with and without security

constraints have been used for the evaluation. Thereafter, the support for remote platforms,

workload managers and task communication methods, among others, has been assessed.

The three scheduling and submission systems have been tested and evaluated with regard to

the suitability for M4 HR experiments. GloSea5 operational seasonal forecast system and EC-

Earth3 decadal hindcast have been prototyped with several workflow configurations in order

to compare the differences and assess the suitability of the three tools.

5

2. Background

2.1 Studied submission tools

Autosubmit is a solution created at IC3‟s Climate Forecasting Unit (CFU) to manage and run

the research group‟s experiments. Lack of in house HPC facilities led to a software design

with very minimal requirements on the HPC that will run the jobs. Autosubmit provides a

simple workflow definition capacity that allows running weather, air quality and climate

multi-member experiments in more than one supercomputing platform. Autosubmit is

currently being developed at BSC Computational Earth Sciences group.

http://www.bsc.es/projects/earthscience/autosubmit/

The Cylc suite engine is a workflow engine and meta-scheduler for weather forecasting and

climate modelling. It is designed to run operational suites with complex date-time cycling

requirement. Cylc was created by Hilary Oliver at NIWA. Its core team now includes Hilary

as well as members in the Modelling Infrastructure Support Systems Team at the Met Office.

Cylc is used to run time critical operational weather forecasts at NIWA and Met Office, as

well as for research. It is also installed and used by research partners of NIWA and Met

Office, and beyond.

http://cylc.github.io/cylc/

ecFlow is a workflow package that enables users to run a large number of programs (with

dependencies on each other and on time) in a controlled environment. It is used at ECMWF to

manage around half their operational suites across a range of platforms.

https://software.ecmwf.int/wiki/display/ECFLOW/

Criteria Autosubmit Cylc ecFlow

Seniority 2011 2010 2011

Original

authors/sponsors

IC3, BSC NIWA, Met Office ECMWF

License GNU GPL v3 GNU GPL v3 Apache License v2.0

http://www.bsc.es/projects/earthscience/autosubmit/
http://cylc.github.io/cylc/
https://software.ecmwf.int/wiki/display/ECFLOW/

6

3. Comparison

In this chapter we agreed a set of features which we intend to compare: portability (ease of

installation), task communication (how the tool knows the state of tasks), support for remote

platforms, support for different workload managers (SLURM, PBS, etc.), support for

automated error recovery (e.g. on submission failure, task failure, etc.), support for date/time

cycling, scalability (ability to cope with large, complicated workflows + ability to cope with

large numbers of users), monitoring & intervention tools (ability to interact with & modify

running suites), fault tolerance (ability to recover if server goes down whilst running a suite)

and support for generated workflows (i.e. defined via some sort of programming language).

3.1 Portability

Autosubmit is a Python package available on the Python Package Index repository (PyPi), so

it can be installed using the pip install instruction on a terminal where no administrator

privileges are needed.

To start using Autosubmit, configure and install commands need to be run by following the

Autosubmit user guide. It creates a self-contained SQLite database that allows registering

experiments uniquely identified. After that, the database can be shared with other installations

through NFS, for example.

No installation is needed on the machines that will run the jobs.

Cylc is an application implemented mainly in Python and Bash. Installation is as simple as

downloading a release tarball from Github, and editing the environment to ensure that the

“bin/” directory of the distribution is in “PATH”. Cylc has a compulsory dependency on

Pyro3 on hosts running suite daemons. Pyro will be included as part of Cylc‟s distribution in

the next release, so there will no longer be a dependency.

On hosts running task jobs, a copy of Cylc should also be available, but it has no compulsory

dependencies.

On hosts running suite daemons, optional dependencies are Jinja2 (if used with suites with

Jinja2 in their configuration), Pygraphviz (if graphing and/or full validation of suite

configurations are required), and PyGTK (if GUIs are required). All of these dependencies are

readily available from PyPi and/or from standard repositories of popular Linux distributions.

Cylc has been installed on many sites around the world. For personal use, it can normally

work without any global site configuration. For site installation, it is normally desirable to

modify the global site configuration file to tailor for the site. The settings in the global

configuration file are well documented in the Cylc user guide.

ecFlow is a C++ application and features a client-server model. Installation for server and

clients is the same. ecFlow does not provide distribution packages; instead it is usually

installed from the source code. Instructions are well documented and can be found on ecFlow

7

wiki page [4]. The required software dependencies need to be installed with administrator

privileges, following the instructions (cmake, g++, Python, Xlib, X11, XMotif).

ecFlow functionality is provided by following executables and shared libraries:

 ecflow_client: This executable is a command line program: it is used for all

communication with the server. It needs to be installed on the target platforms.

 ecflowview: This is a specialised GUI client that monitors and visualises a tree-like

hierarchy corresponding to the tasks.

 ecflow_server: this executable is the server. It is responsible for scheduling the jobs

and responding to the ecflow_client requests.

 ecflow.so, libboost_python.so: these shared libraries provide the Python API for

creating the suite definition and communication with the server.

Submission of tasks to remote queueing systems from ecFlow is possible, although it is based

on quite rudimentary features (see section 3.3). Site administrators are required to provide job

submission scripts and install elements of ecFlow (mentioned above) to enable task

communications.

3.2 Task communication

Autosubmit is built on top of Simple API for Grid Applications (SAGA) [10]. SAGA-Python

is a light-weight Python package that implements the Open Grid Forum (OGF) GFD.90

SAGA [13] interface specification and provides the access layer for distributed computing

infrastructure. Autosubmit uses this access layer to control the submission of available jobs

when the dependencies are satisfied and to monitor the status of the active ones.

SAGA-Python provides several plugins (called adaptors) that interface with middleware that

doesn't support remote submission. These plugins are used in conjunction with other type of

adaptors that provide machine communication, e.g. tunnelling calls via SSH:

saga.job.Service('pbs+ssh://my.remote.cluster')

This functionality requires a working SSH set-up on both, the submit host (the machine that

runs Autosubmit) and the machine that is specified as saga.job.Service (the machine that

executes the jobs). In order to use plugins that allow SSH-tunneling (xyz_+ssh_://), it is

necessary to set-up password-less SSH-keychain access to the remote hosts one wants to use.

SAGA performs different kinds of interactions with remote systems. Many of those systems

are only accessible via shell-like tools, such as SSH, GSISSH, FTP, GSIFTP etc. 'Shell-like'

means that those tools are mostly designed for interactive use: after connection setup they

present a prompt and wait for commands on stdin, and then respond to those commands via

stdout/stderr.

The PTY layer in SAGA [11] consists of several components which handle interaction with

those tools: pty_process, pty_shell and pty_shell_factory. The pty_process is a fork/exec'ed

https://www.ogf.org/documents/GFD.90.pdf

8

process which provides low level process management (is_alive, kill, wait, ...) and process I/O

(read, write, find). The pty_shell_factory basically creates a suitable command line and hands

it to pty_shell. The pty_shell applies various heuristics to ensure that a spawned shell is

bootstrapping correctly, and to get the two-way communication channel initialized. Once a

prompt is detected and a new prompt is set, the pty_shell performs reliably, fast and stably.

A job as returned by job.Service.create(jd) is in NEW state – it is not yet submitted to the job

submission backend. Once it is submitted, via run(), it will enter the PENDING state, where it

waits to get actually executed by the backend (e.g. waiting in a queue). Once the job is

actually executed, it enters the RUNNING state – only in that state is the job actually

consuming resources (CPU, memory, etc.). Jobs can leave the RUNNING state in three

different ways: they finish successfully on their own (DONE), they finish unsuccessfully on

their own, or get cancelled by the job management backend (FAILED), or they get actively

cancelled by the user or the application (CANCELLED).

Autosubmit checks regularly the status of the jobs by reading the SAGA job state.

saga_status = self.service.get_job(jobid).state

Cylc can submit jobs on the suite host and/or on remote job hosts via SSH. A task submits a

job when all prerequisites are satisfied. On job submission, Cylc generates a job script for

each task, which it then submits to the relevant queueing system on the job host.

Cylc has two ways to track progress of submitted jobs. This can be configured per job host in

the site/user global configuration. These methods can be used on different job hosts within the

same suite if necessary.

1. Job-to-suite messaging.

o Job-to-suite messaging via Pyro (default). This is the most direct and efficient

communication method. The job script calls a Cylc command to send a message

back to the suite via Pyro on given events, e.g. on job start, success and failure.

(Custom events can also be defined with custom messages.) The job script also

writes to a status file to ensure that the event is recorded in case of network outage.

o Job-to-suite messaging via SSH+Pyro. This is similar to the above, but the job host

will connect to the suite host via non-interactive SSH before connecting to the

suite via Pyro. This method is useful if the job host does not have access to the

Pyro network port.

2. Polling. This is the least efficient method for monitoring the progress of a job, but can be

used on job hosts that cannot route back to the suite host via Pyro or SSH. Cylc polls for

the progress of the job at regular intervals by inspecting the status file written by the job

script and/or by querying the queueing system. Users can also manually tell the suite to

poll its jobs at any time while the jobs are in the submitted or running state.

ecFlow submits jobs and receives acknowledgements from jobs when they change status and

when they send events. It does this using child commands embedded in the ecFlow scripts.

9

The ecFlow script refers to an '.ecf' file. The script file is transformed into the job file by the

job creation process. The creation is initiated by the ecflow_server during scheduling when a

task (and all of its parent nodes) is free of its dependencies. The script must include calls to

the init and complete child commands so that the ecflow_server is aware when the job starts

(i.e. changes state to active) and finishes (i.e. changes state to complete).

An ecf script is converted to a job file that can be submitted by performing variable

substitution on the ECF_JOB_CMD variable and invoking the command (typically):

/bin/sh %ECF_JOB% &

The running jobs will communicate back to the ecflow_server by calling child commands:

 ecflow_client –init Sets the task to the active status

 ecflow_client –event Raises an event

 ecflow_client –meter Change a meter

 ecflow_client –label Change a label

 ecflow_client –wait wait for an expression to evaluate.

 ecflow_client –abort Sets the task to the aborted status

 ecflow_client –complete Sets the task to the complete status

The ecflow_server is responsible for scheduling the jobs and responding to ecflow_client

requests. ecFlow stores the relationship between tasks and is able to submit tasks depending

on triggers. For any communication with the server, the client needs to know the machine

where the server is running and the port on the server. Communication is based on TCP/IP.

Multiple servers can be run on the same machine/host provided they are assigned a unique

port number. The server records all requests in the log file. The server will periodically write

out a check point file.

3.3 Support for remote platforms

Autosubmit is capable to run experiments on remote clusters or supercomputers and on any

GNU/Linux or Unix host. The interaction with the machines is done through SAGA-Python

adaptor, allowing the user to add adaptors if needed.

The Autosubmit default method for accessing remote platforms through SAGA requires a

working interactive SSH set-up on both the machine that runs Autosubmit and the machine

that executes the jobs. For transferring files it uses SFTP.

The SAGA adaptors mechanism can add support for other communication methods, such as

ECaccess Tools [5]. The ECaccess Tools gives ECMWF users batch access to the ECMWF

computing and archiving facilities for the management of files, file transfers and jobs. Access

is available via the Internet as well as via RMDCN. A SAGA ECaccess adaptor has been

developed for the latest version of Autosubmit.

10

Due to the fact that developers of Autosubmit had no in house HPC facilities, the software

was designed to work with very minimal requirements on the HPCs that will run the jobs:

only a bash console with the usual commands is required. To run Python or R jobs, no

additional packages are needed.

Cylc can run jobs on remote Unix/Linux job hosts that are able to receive SSH (and SCP)

connections. For fully automated job submission, non-interactive SSH is required. On the job

host, Cylc requires bash, a small subset of GNU coreutils and Python (for running a small set

of Cylc commands). Optionally, job hosts can be configured to take advantage of efficient

task messaging via Pyro.

ecFlow can run tasks on remote systems. To start a job, the ecflow_server uses the content of

the ECF_JOB_CMD variable. By modifying this variable, it is possible to control where and

how a job file will run. Having a variable called HOST defined as the name of the host and

assuming that all the files are visible on all the hosts, e.g. using NFS, a remote job can be

submitted:

edit ECF_JOB_CMD "ssh %HOST% '%ECF_JOB% > %ECF_JOBOUT% 2>&1 &'"

When using SSH, requires ones public key to be available on the destination machine.

However, the communication back from running jobs on diverse supercomputing platforms to

ecflow_server may not be possible due to restricted traffic and firewalls in the network.

ecflow_client must have access to the ecflow_server network port.

Since ecflow_server cannot poll for job status (the alternate method implemented in the other

two submission tools assessed in this report) support for certain remote platforms is not

possible in ecFlow.

3.4 Support for different workload managers

Within Autosubmit, SAGA provides a homogeneous programming interface to the majority

of production HPC queuing systems:

 Fork (run job as a background process)

 Condor and Condor-G

 LoadLeveler

 LSF

 PBS and Torque

 Sun/Oracle Grid Engine

 SLURM

All queuing system adaptors can also access clusters remotely by tunnelling commands

through SSH or GSISSH.

Behind the API facade, SAGA implements flexible adaptor architecture. Adaptors are plugins

that binds API calls to the respective queuing system. Most application developers use the

11

adaptors that are already part of SAGA but implementation of adaptors not yet supported is

possible by following the „Writing SAGA-Python Adaptors‟ guide [14].

Cylc supports a number of commonly used job submission methods:

 Background (run job as a background process with “nohup”)

 at

 LoadLeveler

 LSF

 PBS and Torque

 MOAB

 Sun/Oracle Grid Engine

 SLURM

Users can also provide their own methods in case they need to interact with a scheduler that is

not supported out of the box for Cylc. The process to implement and use a new submission

method is well-documented on Cylc documentation.

ecFlow can submit tasks directly to the relevant queuing system on the target machine.

ECMWF provides a submission script (ecf_submit) that allows submission to multiple

systems and multiple queuing systems:

 LoadLeveler

 PBS

 Sun/Oracle Grid Engine

 SLURM

An example ecf_submit is included in the ecFlow release. The ECF_JOB_CMD can be

defined as:

edit ECF_JOB_CMD "ecf_submit %USER% %HOST% %ECF_JOB% %ECF_JOBOUT%"

A generic script header is included alongside the ecf_submit script. It contains typical queuing

commands, such as wall clock time and priority. The ecf_submit script can replace the generic

queuing commands with the relevant commands for the host to which the task is submitted

and submit the task the relevant way. For example, for a PBS system it replaces the QSUB

commands with the equivalent PBS commands.

Similarly to running a task remotely, to kill a task remotely one need to either send a signal to

the task or issue the relevant queueing system command. Latest releases of ecFlow include

example scripts for including other information: ecf_kill to issue the correct command

depending on the host, ecf_status to show status of tasks and ecf_url to open a web link for a

task. ecFlow variables can be defined as:

edit ECF_KILL_CMD 'ecf_kill %USER% %HOST% %ECF_RID% %ECF_JOB%

edit ECF_STATUS_CMD 'ecf_status %USER% %HOST% %ECF_RID% %ECF_JOB%

12

3.5 Fault tolerance

Autosubmit is able to deal with faults at different levels. It creates a COMPLETED file to

deal with inconsistencies when the queue scheduler does not respond properly. It also

automatically saves the job list each time that it is updated. This way, if Autosubmit process is

killed, it can restart the experiment at the same point with no data loss.

Autosubmit also has a mechanism that can be used in case of a critical failure that makes the

job list file unreadable. In this case, the user can run the create command to recreate the job

list at the initial state and then run the recovery command to look for the COMPLETED files

and update the job's status accordingly.

In the case that the fault is due to the jobs templates, Autosubmit has two features that allow

the user to easily continue with the experiment. The first one is that the scripts for the jobs are

prepared immediately before sending them to the platform. This allows the users to modify

the templates after the experiment has started. Autosubmit also reads the project parameters at

this time to allow the users to change them in the middle of the experiment in case that the

failure is due to a configuration error.

A Cylc suite dumps out state files and writes information to SQLite databases on state

changes. If a suite is terminated due to the process being terminated, e.g. a power failure, the

user can easily recover by restarting the suite when the machine is back up again. On restart,

the suite will automatically poll all its submitted and running jobs for their latest states, by

looking at their status files and by querying the queueing systems.

ecFlow could stop working for a number of reasons such as the server crashes, the computer

ecFlow is running on crashes, etc. The ecFlow checkpoint file allows ecFlow to restart at the

point of the last checkpoint before a failure. This gives reasonable tolerance against failures.

When the server starts, if the checkpoint file exists and is readable and is complete, ecFlow

server recovers from that file. Once recovered the status of server may not exactly reflect the

real status of the suite, it could be up to a few minutes old. Tasks that were running may have

now completed so the task status should be checked for consistency.

The checkpoint files can be read by any ecFlow running on any operating system. There are

two separate checkpoint files.

ECF_CHECK ecf.check

ECF_CHECKOLD ecf.check.b

When ecFlow needs to write a checkpoint file it first moves (renames) the previous file

ECF_CHECK to ECF_CHECKOLD and then creates a new file with the name

ECF_CHECK. This means that one should always have a file that is good. In the event of a

crash, while writing ECF_CHECK, one can still recover from ECF_CHECKOLD (by copying

its contents to ECF_CHECK), although that version is not quite as up to date. One can copy

the checkpoint files between systems. Another ecFlow server can be started with the original

13

server's checkpoint file and take over from the original ecFlow server host in case of a

catastrophic systems failure.

3.6 Support for automated error recovery

Autosubmit has a RETRIAL variable defined for each experiment. Additionally each job

type can have a different RETRIAL number. If a job gets the FAILED status from the queue

scheduler it automatically retries that number of times.

Sometimes the queue scheduler does not respond properly and it could easily lead to wrong

status. For this, Autosubmit adds a final operation to the end of the job which creates a

completed file. When Autosubmit gets an answer from the scheduler, it will put the job on a

COMPLETED, FAILED or UNKNOWN state, it checks the existence of the completed file

and updates the status if needed, i.e., if the scheduler returns an UNKNOWN status and

Autosubmit finds the completed file, the final status of the job will be COMPLETED.

Autosubmit also has a recovery command that can be used when the experiment jobs list has

not an accurate representation of the current state. In this case, this command can search for

the completed files of all the jobs at every platform and update job status accordingly.

Cylc tasks can be configured to retry a number of times on runtime failure as well as on

submission failure. An environment variable $CYLC_TASK_TRY_NUMBER increments

from 1 on each successive try, and is passed to the task to allow different behaviour on the

retry. When a task with configured retries fails, its Cylc task proxy goes into the retrying state

until the next retry delay is up, then it resubmits. It only enters the FAILED state on a final

failure.

Cylc also has the capability to add triggers on failure, which allows implementing recovery

tasks. It also has support for suicide triggers that take tasks out of the suite. This can be used

for automated failure recovery, defining a chain of failure recovery tasks that trigger if they‟re

needed but otherwise remove themselves from the suite.

ecFlow allows setting ECF_TRIES to a number greater than one in the definition file of a

suite, the task will automatically rerun on an abort. Then the ecFlow variable ECF_TRYNO

can be used to modify the behaviour of the task depending on the try number.

Additionally, ecFlow allows error checking and handling of zombies. A zombie is a running

job that fails authentication when communicating with the ecflow_server. The default

behaviour of ecFlow server is to block the job. The child command continues attempting to

contact the ecFlow server. This is done during 24 hours. This duration is configurable on

ecflow_client through ECF_TIMEOUT variable. The jobs can also be configured, so that if

the server denies the communication, then the child command can be set to fail immediately

(ECF_DENIED). ECF_TIMEOUT is the maximum time in seconds for the client to try to

deliver a message. ECF_DENIED, if is set to 1 and ecFlow denies access, the client will exit

with failure.

14

3.7 Support for date/time cycling

Autosubmit does not have built-in triggers that run at a given real date/time as it was no

designed for running operational suites.

The extent of an experiment can be defined in three aggregations or families: number of start-

dates, number of members within a start date and number of chunks within a member. Chunk

length can be defined in years, months, days or hours. The experiment can cycle as many

chunks, members and start-dates as needed. Autosubmit supports standard and no-leap

calendar modes.

Cylc can work in two modes:

1. Integer cycling. Each cycle point corresponds to an integer in a sequence. Non-

cycling suite is a special case, where we have a single cycle point == 1.

2. Date-time cycling: Each cycle point corresponds to a given date-time. Cylc

supports various calendar modes including Gregorian, 360day, 365day and

366day. Date time cycling syntax can be expressed using the full grammar of

ISO8601 notations for date-time, duration and recurrence.

The cycling period is not fixed: one can have jobs cycling at different frequencies without any

problem. Cylc has also support for clock-triggered jobs, which is important for operational

suites.

The user can also use Jinja2 script language on suite definition, allowing the creation of

cycling-like suites even when using Cylc in non-cycling mode.

ecFlow has two ways for defining workflows: a text-based custom format and a Python API.

In this document we will only refer to the Python API as it‟s the most powerful method.

ecFlow does not have an internal cycle, but allows repeating the same task or family several

times, looping on a specific value. It can iterate over sequences of strings, integers or dates

(standard calendar). It has the possibility to define clock-triggered task, allowing ecFlow to be

used on operational suites.

3.8 Monitoring and intervention tools

Autosubmit has a very basic monitoring tool that shows the experiment graph. Autosubmit

monitor command creates a directed acyclic graph with jobs as nodes and its dependencies as

arrows. Each node is shown with the job identifier and it is coloured with the current status

(e.g. WAITING, RUNNING, COMPLETED, FAILED, etc.).

15

Figure 1: Autosubmit monitor screenshot

A typical user monitors his/her Autosubmit experiment by launching the monitoring tool

regularly. Autosubmit has the capability to export the plot on vectorial format (SVG). This

allows zooming in and out larger plots without losing clarity, which is a problem with the

default pdf format. However, monitoring large experiments with only static images can be a

burden.

Autosubmit allows the user to manually set the status of jobs using the setstatus command.

This command is normally used to suspend some parts of the experiment while keeping others

running or to relaunch failed jobs that have reached maximum retrials.

Autosubmit also collects statistics during experiment‟s execution (number of retrials,

queueing and execution time, etc.) and allows the user to generate plots to monitor the

resources consumption.

Figure 2: Detail of a statistics plot from Autosubmit

16

Cylc has many facilities to interact with a running suite, including the following:

 Hold/release whole suite and/or individual tasks.

 Poll/kill any submitted or running tasks.

 Insert/remove tasks at a range of cycles.

 Manually reset state of tasks.

 Trigger (manually submit) tasks.

o Edit the task's job file, and trigger it.

 Broadcast (i.e. override) configuration settings to a running suite to tasks matching a

cycle/name pattern.

 Reload the suite definition to a running suite.

 Restart a suite.

 Tail-follow STDOUT/STDERR of job logs while the job is running.

 View dependency graph and/or satisfied/unsatisfied task prerequisites.

 Scan and display states of all running suites.

All these can be controlled using the command line interface (CLI). Most functionality is also

available via graphical user interfaces (GUI). Cylc has two GUI applications used to monitor

and control the runs: a very minimal interface that shows the basic state of all the Cylc suites

within a system (gscan) and a more detailed interface (gcylc) to monitor and control one suite

at a time.

gscan (Figure 3) is the most convenient interface to keep track of the status of all existing

simulations. It provides an interface that shows all the registered suites on the system along

with a summary state. This way the user can detect easily if a suite has failed jobs or has

stopped running and launch gcylc to act accordingly.

gcylc can be used to monitor and control one suite at a time. It has different views: a graph

view that shows tasks and dependencies, a dot view that shows a summary state for the tasks

(Figure 4) and a text-tree view that shows more details than the other two. In all these views,

the user can control if all tasks are shown or if they are grouped by families (a family on Cylc

is a group of tasks that derive from a common ancestor).

This GUI can also be used to start, pause and stop suites; to change task‟s status, to relaunch

failed tasks, to see logs from executed tasks and many other control functionalities. The

interface is intuitive and easy to use.

17

Figure 3: Cylc gsummary screenshot

Figure 4: gcylc graph and dots view screenshot

18

Figure 5: gcylc text view screenshot

ecFlow offers a Command Line Interface (CLI) and a client Graphical User Interface (GUI)

(ecflowview) that can be used to monitor and control suites. ecflowview can control suites

running on different ecFlow servers. It shows all the registered suites collapsed at start-up and

the user can expand them as needed. It uses a tree-like display where the root nodes

correspond to the suite, the intermediate to families (a group of tasks or other families that

share parts of the configuration) and leafs correspond to the tasks.

The user can use the tool to change task status, launch, pause or stop suites, relaunch failed

tasks, see logs and many other control functionalities. The interface is intuitive and easy to

use.

19

Figure 6: ecFlow Graphical User Interface (ecflowview)

3.9 Support for generated workflows

Autosubmit experiment‟s workflow is defined in INI style configuration files. Very simple

workflows can be defined as sequences of jobs with one triggering at the end of the previous

one. References are evaluated within a job-defined DEPENDENCIES attribute. It is important

to note that DEPENDENCIES on Autosubmit always refer to jobs that must be finished

before launching the job that has the DEPENDENCIES attribute. Further, a job defined

RUNNING attribute is used to set the level where job runs. It has four possible values: once,

date, member and chunk corresponding to running once, once per startdate, once per member

or once per chunk respectively. Thereafter, Autosubmit can manage dependencies between

jobs that are part of different chunks, members or startdates. The higher level job will wait for

ALL the lower level jobs to be finished.

Cylc suites are defined in INI style configuration files. For complex workflow, Cylc supports

the use of the Jinja2 template language to generate suite configuration files with loops,

conditional statements, data structure, etc.

ecFlow suites are typically written in Python, so complex workflow can be defined using

normal Python. This method has increased functionality over the text based format. The

Python API allows complete specification of the suite definition, including trigger and time

dependencies. Since the full power of Python is available to specify the suite definition, there

is considerable flexibility. The API is documented using the Python __doc__ facility.

20

3.10 Scalability

Autosubmit was designed with multi-startdate multi-member experiments in mind. It has a

built-in option to avoid overflowing platforms by limiting the number of jobs queueing and

running at a time at any given platform. These limits are set at 3 and 6 jobs by default

respectively, but can be tweaked by the user.

Autosubmit is used to run large experiments of a total of around 1000 jobs. The consumption

of resources of the Python-based command line monitor and control tool is in the order of a

few MB per experiment. The SAGA performance is evaluated in this study [12]. The

saturation of the pty_shell and pty_process infrastructure (mentioned in the Task

communication section) for a remote backend is reached above 1000 jobs per second. In the

study, three options for further scaling are explored: (a) concurrent job service instances, (b)

asynchronous operations, and (c) bulk operations. Normal Autosubmit usage within the limits

mentioned before, does not lead to reach such a situation. However it would be worth

implementing bulk operations in Autosubmit to reduce roundtrip overhead.

Cylc is used to run large (>1000 tasks per cycle point) time critical operational weather

forecast suites at Met Office, so performance and scalability are key design elements.

It has efficient logic for job submission:

 Submissions of jobs are typically grouped together by job hosts.

o Similar logic for job monitoring commands, e.g. poll and kill.

 Process pool limits the number of child processes the suite uses on its own host.

To avoid overflowing a job host, users can:

 Design the suite with explicit dependencies, including inter-cycle dependencies.

 Set the cycle runahead limit.

 Define internal queues to limit the number of jobs that can be submitted for any

groups of tasks.

The GUI performance could be affected when having a high number of active cycle points. A

limit on active cycle point could be a problem when used on an experiment with multiple

startdates, although it can be overcome by using a sub-suite for each startdate.

ecFlow provide methods to check the status of an ecflow_server. Invoking “ecflow_client –

stats” will display some standard information regarding the ecflow_server including the

version number, node information, status, security information, usage, load, setup and up

time. The load on the ecflow_server can be checked invoking “ecflow_client --server_load”.

The fact that ecflow_server was built from the ground up in C++, and that provides inter-

server cooperation leads to good scalability. It is even possible to maintain work load during

server and network outages and to share load between ecflow_server(s).

21

4. Complex workflow evaluation

In this chapter we analyse two real-life workflows:

 The GloSea5 operational suite.

 A hindcast EC-Earth experiment.

We implemented a simplified version of those two workflows with Autosubmit, Cylc and

ecFlow to exemplify real-life applications. The simplification only affects job scripting and

parameters definition.

4.1 Operational seasonal forecasting system GloSea5

a) Autosubmit

Autosubmit cannot reproduce the workflow used on GloSea5 due to two missing features.

The first one is that Autosubmit does not have real time dependencies, as it is not designed to

support operational runs. It also does not have support to trigger tasks on failed jobs, so the

model_failed and housekeep jobs that the original workflow triggers on failure cannot be

added.

The configuration of the experiment section on the expdef.conf file that defines the workflow

can be seen in APPENDIX A - GloSea5 workflow code in Autosubmit.

The jobs.conf file for this workflow is available in APPENDIX A - GloSea5 workflow code

in Autosubmit section Jobs (options for wallclock, processors, queues and other machine-

related configurations have been removed).

22

Figure 7: Example of GloSea5 workflow generated with Autosubmit

b) Cylc

The GloSea5 operational suite is managed by Cylc using Rose [9]. Since it is a fully

operational suite, the original suite definition file is quite complex. Hence, in this document,

we present a simplified version of the suite definition file: APPENDIX B - GloSea5 workflow

code in Cylc. It only includes the graph definition for the suite, the most important part.

Thereafter the comparison of different methods to generate complex workflows is easier to

understand.

23

Figure 8: Example of GloSea5 workflow generated with Cylc

c) ecFlow

To define the GloSea5 workflow in ecFlow we have used the Python API. In this case we

have been able to reproduce the behavior of the original suite created using Cylc. The Python

code used to generate the workflow can be seen in APPENDIX C - GloSea5 workflow code

in ecFlow.

ecflowview uses a tree view that can be collapsed to any level. Figure 9 shows the suite

collapsed to the first level and successive pictures show the families expanded one at each

time (see Figure 10 - Figure 11 - Figure 12).

Figure 9: GloSea5 ecFlow suite with all families collapsed

24

Figure 10: GloSea5 ecFlow suite with the setup family expanded

Figure 11: GloSea5 ecFlow suite with the gsfc family expanded

Figure 12: GloSea5 ecFlow suite with the gshc family expanded

4.2 Decadal hindcast with EC-Earth

A decadal hindcast experiment with EC-Earth usually consists of several model runs for

different startdates and members. The workflow that will be used as a model is the one used at

BSC-Earth sciences department, which has seven types of jobs.

As the complexity of this workflow for the managers is due to the high number of model runs

required and the long time that this models need to run, we use a configuration with three

startdates of five members each that will run for ten years in chunks of three months.

25

a) Autosubmit

In the case of the hindcast workflow, the experiment section on the expdef.conf file is

configured below in APPENDIX D - EC-Earth workflow code in Autosubmit.

The jobs.conf file for this workflow can be seen in APPENDIX D - EC-Earth workflow code

in Autosubmit, section Jobs.

Figure 13: Example of EC-Earth experiment generated with Autosubmit

b) Cylc

To define a hindcast experiment with Cylc we choose to use a multiple suite approach. In this

case, the experiment has two suite definitions available in the APPENDIX. Note that these are

simplified versions with a lot of parameters definition removed for clarity.

The main suite definition is shown in Control suite section. The control suite contains

common tasks relative to model deployment and data transfer and also contains a task that

will register, run and unregister a suite for each member that will run the proper simulation.

The simulation suite definition is shown in Sub-suites section. This definition is quite simple,

and keeps the simulation of each member separated from the main ensemble workflow.

c) ecFlow

To define a hindcast experiment with ecFlow we choose to create a family composed by

families for each member. Each member family is also composed by chunk families. This

kind of definition makes the experiment easier to monitor using the tree view that ecflowview

provides.

The use of Python functions while keeping as much as possible the dependencies relative to

families, allows this workflow to be easily extended with new tasks at any point. The Python

code used to create the workflow is available in the APPENDIX F - EC-Earth workflow code

in ecFlow.

26

Figure 14: EC-Earth ecFlow suite

Figure 15: EC-Earth ecFlow suite with some chunk families expanded

4.3 Synthesis

The first use case evaluated, the operational seasonal forecasting system GloSea5, has been

prototyped with Autosubmit, Cylc and ecFlow. The original version created with Cylc and

Rose includes the full potential of an operational suite. The ecFlow equivalent includes all the

potential, similarly. However, the Autosubmit equivalent has been simplified since launching

triggers on failed tasks and defining real time dependencies is not supported.

27

The second use case evaluated, a decadal hindcast with EC-Earth has been successfully

prototyped with Autosubmit, Cylc and ecFlow.

5. Perspectives

5.1 Assessment report relevance

The present assessment report and in particular the case evaluated in the previous chapter

Operational seasonal forecasting system GloSea5, is relevant to understand how a multi-

model multi-member ensemble experiment can be defined. The assessment demonstrates that

Autosubmit, Cylc and/or ecFlow are suitable options to define, set-up and run such an

experiment.

5.2 M4 HR ESM ensemble performance analysis

Contributing groups to WP9/JRA1 have been testing and evaluating common multi-member

HR simulations, running an ensemble of HR ESM simulations (more than five members), in

parallel on a given machine. A new set of computational performance metrics for ESMs, and

the results of an initial analysis of the participating ESMs using these metrics are reported in

D9.1 [8].

The final deliverable in the context of WP9/JRA1 is testing and evaluating a Multi-model

multi-member (M4) high resolution (HR) Earth System Model (ESM) ensemble on a single

HPC system: several groups will bring together three HR ESMs, with a minimum of 10

ensemble members per ESM, to be run in parallel as a single M4 HR ensemble, on a single

system through a single submission step. Based on the computational costs of this initial test

set, this task may be extended to multiple start-dates. The computational performance will be

analysed (utilizing improved methods and/or tools described in D9.1 [8]) and D9.6 report will

be written: “Multi-model multi-member high resolution Earth System Model ensemble

performance analysis”.

Helped by BSC, 4 groups (CERFACS, CMCC, Met.no, SMHI) decided to join their efforts,

developing an integrated multi model, based on ocean-atmosphere (CAM-NEMO, ARPEGE-

NEMO or IFS-NEMO) or atmosphere only (CAM) models. To address it by means of a

demonstrator an Autosubmit demonstrator is being designed that could be easily ported to

Cylc and/or ecFlow. The demonstrator aims at showing that it is technically feasible to run

HR models side-by-side on a machine. Technically speaking, the 3x2+1 executables are

launched together, in the same MPMD MPI command. In addition to the MPI parallelism of

each component, a “model” level parallelism increases the number of computing resources

used at the same time.

28

6. References

1. Autosubmit documentation, [online], (accessed March 2016),

http://www.bsc.es/projects/earthscience/autosubmit/

2. Autosubmit and EC-Earth Configuration Management, [online], (accessed March

2016), https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-

ec-earth-configuration-management/view

3. Cylc documentation, [online], (accessed March 2016), http://cylc.github.io/cylc/

4. ecFlow documentation, [online], (accessed March 2016),

https://software.ecmwf.int/wiki/display/ECFLOW/

5. ECaccess documentation, [online], (accessed March 2016),

https://software.ecmwf.int/wiki/display/ECAC/ecaccess

6. IS-ENES2_MS9.1_Multi-member HR prediction experiment using Autosubmit on

Tier-1, [online], (accessed March 2016), https://is.enes.org/documents/milestones/is-

enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-

1/view

7. IS-ENES2_MS9.2_Further developments of Autosubmit, [online], (accessed March

2016), https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-

developments-of-autosubmit/view

8. IS-ENES2_D9.1_HR ESM Initial performance analysis_Submitted Version, [online],

(accessed March 2016), https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-

esm-initial-performance-analysis/view

9. Rose documentation, [online], (accessed March 2016),

https://github.com/metomi/rose/

10. Merzky, Andre; Weidner, Ole; Jha, Shantenu. SAGA: A standardized access layer to

heterogeneous Distributed Computing Infrastructure, SoftwareX, 1:3-8, 2015.

11. SAGA wiki - PTY Layer, [online], (accessed March 2016), https://github.com/radical-

cybertools/saga-python/wiki/PTY-Layer

12. SAGA wiki - Performance, [online], (accessed March 2016),

https://github.com/radical-cybertools/saga-python/wiki/Performance-of-saga-python

13. SAGA GFD.90, [online], (accessed March 2016),

https://www.ogf.org/documents/GFD.90.pdf

14. SAGA developer documentation - Writing SAGA-Python Adaptors, [online],

(accessed March 2016), http://saga-

python.readthedocs.org/en/latest/developers/adaptorwriting.html

http://www.bsc.es/projects/earthscience/autosubmit/
https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-ec-earth-configuration-management/view
https://is.enes.org/documents/na3-documents/cm-documents/autosubmit-and-ec-earth-configuration-management/view
http://cylc.github.io/cylc/
https://software.ecmwf.int/wiki/display/ECFLOW/
https://software.ecmwf.int/wiki/display/ECAC/ecaccess
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-1_multi-member-hr-prediction-experiment-using-autosubmit-on-tier-1/view
https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-developments-of-autosubmit/view
https://is.enes.org/documents/milestones/is-enes2_ms9-2_further-developments-of-autosubmit/view
https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-esm-initial-performance-analysis/view
https://is.enes.org/documents/deliverables/is-enes2_d9-1_hr-esm-initial-performance-analysis/view
https://github.com/metomi/rose/
https://github.com/radical-cybertools/saga-python/wiki/PTY-Layer
https://github.com/radical-cybertools/saga-python/wiki/PTY-Layer
https://github.com/radical-cybertools/saga-python/wiki/Performance-of-saga-python
https://www.ogf.org/documents/GFD.90.pdf
http://saga-python.readthedocs.org/en/latest/developers/adaptorwriting.html
http://saga-python.readthedocs.org/en/latest/developers/adaptorwriting.html

29

7. APPENDIX

7.1 APPENDIX A - GloSea5 workflow code in Autosubmit

a) Experiment

[experiment]

DATELIST = 20000101

MEMBERS = fc0

CHUNKSIZEUNIT = month

CHUNKSIZE = 1

NUMCHUNKS = 6

CALENDAR = standard

b) Jobs

[fcm_make_ocean]

FILE = fcm_make_ocean.sh

[fcm_make2_ocean]

FILE = fcm_make2_ocean.sh

DEPENDENCIES = fcm_make_ocean

[fcm_make_rebuild]

FILE = fcm_make_rebuild.sh

[fcm_make2_rebuild]

FILE = fcm_make2_rebuild.sh

DEPENDENCIES = fcm_make_rebuild

[fcm_make_redate]

FILE = fcm_make_redate.sh

[fcm_make2_redate]

FILE = fcm_make2_redate.sh

DEPENDENCIES = fcm_make_redate

[fcm_make_um]

FILE = fcm_make_um.sh

[fcm_make2_um]

FILE = fcm_make2_um.sh

DEPENDENCIES = fcm_make_um

[install_cold]

FILE = fcm_make_ocean.sh

DEPENDENCIES = fcm_make2_ocean fcm_make2_rebuild fcm_make2_redate

fcm_make2_um

[gsfc_start]

FILE = gsfc_start.sh

DEPENDENCIES = install_cold

[gsfc_get_analysis]

FILE = gsfc_get_analysis.sh

DEPENDENCIES = gsfc_start

30

[gsfc_redate_cice]

FILE = gsfc_redate_cice.sh

DEPENDENCIES = gsfc_get_analysis

[gsfc_recon]

FILE = gsfc_recon.sh

DEPENDENCIES = gsfc_redate_cice

[gsfc_model]

FILE = gsfc_model.sh

RUNNING = chunk

DEPENDENCIES = gsfc_recon gsfc_model-1

[gsfc_ncdf_proc]

FILE = gsfc_ncdf_proc.sh

RUNNING = chunk

DEPENDENCIES = gsfc_model gsfc_ncdf_proc-1

[gsfc_prod_filter]

FILE = gsfc_prod_filter.sh

RUNNING = chunk

DEPENDENCIES = gsfc_ncdf_proc gsfc_prod_filter-1

[gsfc_process]

FILE = gsfc_process.sh

RUNNING = chunk

DEPENDENCIES = gsfc_prod_filter gsfc_process-1

[gsfc_archive]

FILE = gsfc_archive.sh

RUNNING = chunk

DEPENDENCIES = gsfc_process gsfc_archive-1

[gsfc_prod_join]

FILE = gsfc_prod_join.sh

RUNNING = member

DEPENDENCIES = gsfc_prod_filter

[gsfc_transfer]

FILE = gsfc_transfer.sh

RUNNING = member

DEPENDENCIES = gsfc_prod_join

[gshc_start]

FILE = gshc_start.sh

DEPENDENCIES = install_cold

[gshc_init_control_file]

FILE = gshc_init_control_file.sh

DEPENDENCIES = gshc_start

[gshc_register_member]

FILE = gshc_redate_cice.sh

DEPENDENCIES = gshc_init_control_file

RUNNING = member

31

[gshc_get_analysis]

FILE = gshc_get_analysis.sh

DEPENDENCIES = gshc_register_member

RUNNING = member

[gshc_recon]

FILE = gshc_recon.sh

DEPENDENCIES = gshc_get_analysis

RUNNING = member

[gshc_model]

FILE = gshc_model.sh

RUNNING = chunk

DEPENDENCIES = gshc_recon gshc_model-1

[gshc_ncdf_proc]

FILE = gshc_ncdf_proc.sh

RUNNING = chunk

DEPENDENCIES = gshc_model gshc_ncdf_proc-1

[gshc_prod_filter]

FILE = gshc_prod_filter.sh

RUNNING = chunk

DEPENDENCIES = gshc_ncdf_proc gshc_prod_filter-1

[gshc_process]

FILE = gshc_process.sh

RUNNING = chunk

DEPENDENCIES = gshc_prod_filter gshc_process-1

[gshc_archive]

FILE = gshc_archive.sh

RUNNING = chunk

DEPENDENCIES = gshc_process gshc_archive-1

[gshc_prod_join]

FILE = gshc_prod_join.sh

RUNNING = member

DEPENDENCIES = gshc_prod_filter

[gshc_transfer]

FILE = gshc_transfer.sh

RUNNING = member

DEPENDENCIES = gshc_prod_join

[archive_logs]

FILE = archive_logs.sh

DEPENDENCIES = gsfc_archive gsfc_transfer gshc_archive gshc_transfer

7.2 APPENDIX B - GloSea5 workflow code in Cylc

#!jinja2

{% set START_CYCLE="20151120T00" %}

{% set N_GSHC_MEMBERS=1 %}

{% set N_GSHC_STEPS=6 %}

{% set N_GSFC_MEMBERS=1 %}

{% set N_GSFC_STEPS=6 %}

32

title = "GloSea Suite"

description="Global monthly forecast, seasonal forecast and seasonal

hindcast suite"

[cylc]

 UTC mode = True

[scheduling]

 initial cycle point = {{ START_CYCLE }}

 max active cycle points = 1

 [[special tasks]]

 sequential = gshc_start, gsfc_start, archive_logs, housekeep

 clock-triggered = gshc_start(PT12H15M),gsfc_start(PT12H15M)

 [[dependencies]]

 [[[R1]]]

 graph = """

 fcm_make_ocean => fcm_make2_ocean

 fcm_make_um => fcm_make2_um

 fcm_make_rebuild => fcm_make2_rebuild

 fcm_make_redate => fcm_make2_redate

 fcm_make2_ocean & fcm_make2_um & fcm_make2_rebuild &

fcm_make2_redate => install_cold

 install_cold => gshc_start

 install_cold => gsfc_start

 """

 [[[T00]]]

 graph = """

 gshc_start => gshc_init_control_file => REGISTER_MEMBERS

 {% for MEMBER in range(1, N_GSHC_MEMBERS + 1) %}

 {% if MEMBER > 1 %}

 gshc_register_member_m{{ MEMBER - 1 }}:finish => \

 {% endif %}

 gshc_register_member_m{{ MEMBER }} => gshc_get_analysis_m{{

MEMBER }} => gshc_recon_m{{ MEMBER }} => \

 gshc_model_m{{ MEMBER }}_s01 => gshc_ncdf_proc_m{{

MEMBER }}_s01 => gshc_process_m{{ MEMBER }}_s01 => \

 gshc_archive_m{{ MEMBER }}_s01

 gshc_ncdf_proc_m{{ MEMBER }}_s01 => gshc_prod_filter_m{{ MEMBER

}}_s01 => gshc_process_m{{ MEMBER }}_s01

 gshc_prod_filter_m{{ MEMBER }}_s01 => gshc_prod_join_m{{ MEMBER

}}

 {% for STEP in range(2, N_GSHC_STEPS + 1) %}

 {% set MEM_PREV_STEP = "m%d_s%02d" % (MEMBER, STEP-1) %}

 {% set MEM_STEP = "m%d_s%02d" % (MEMBER, STEP) %}

 gshc_model_{{ MEM_PREV_STEP }} => gshc_model_{{ MEM_STEP }}

=> gshc_ncdf_proc_{{ MEM_STEP }} => gshc_process_{{ MEM_STEP }} =>

gshc_archive_{{ MEM_STEP }}

 gshc_ncdf_proc_{{ MEM_PREV_STEP }} => gshc_ncdf_proc_{{

MEM_STEP }}

 gshc_process_{{ MEM_PREV_STEP }} => gshc_process_{{

MEM_STEP }}

33

 gshc_archive_{{ MEM_PREV_STEP }} => gshc_archive_{{

MEM_STEP }}

 gshc_ncdf_proc_{{ MEM_STEP }} => gshc_prod_filter_{{

MEM_STEP }} => gshc_process_{{ MEM_STEP }}

 gshc_prod_filter_{{ MEM_PREV_STEP }} => gshc_prod_filter_{{

MEM_STEP }}

 gshc_prod_filter_{{ MEM_STEP }} => gshc_prod_join_m{{

MEMBER }}

 {% endfor %}

 {% set MEM_LAST_STEP = "m%d_s%02d" % (MEMBER, N_GSHC_STEPS) %}

 {% for STEP in range(1, N_GSHC_STEPS) %}

 {% set MEM_STEP = "m%d_s%02d" % (MEMBER, STEP) %}

 gshc_model_{{ MEM_STEP }}:fail | \

 {% endfor %}

 gshc_model_{{ MEM_LAST_STEP }}:fail | \

 gshc_register_member_m{{ MEMBER }}:fail => \

 gshc_model_m{{ MEMBER }}_failed & !gshc_register_member_m{{

MEMBER }}

 gshc_model_{{ MEM_LAST_STEP }} => !gshc_model_m{{ MEMBER

}}_failed

 gshc_model_m{{ MEMBER }}_failed => !GSHC_M{{ MEMBER }}

 (gshc_model_{{ MEM_LAST_STEP }} & gshc_archive_{{ MEM_LAST_STEP

}}) | \

 gshc_model_m{{ MEMBER }}_failed => housekeep

 gshc_prod_filter_{{ MEM_LAST_STEP }} => \

 gshc_prod_join_m{{ MEMBER }} => gshc_transfer_m{{ MEMBER }}

 gshc_transfer_m{{ MEMBER }} | gshc_model_m{{ MEMBER }}_failed

=> \

 housekeep

 {% endfor %}

 gsfc_start => gsfc_get_analysis => gsfc_redate_cice => gsfc_recon

 {% for MEMBER in range(1, N_GSFC_MEMBERS + 1) %}

 gsfc_start & gsfc_recon => gsfc_model_m{{ MEMBER }}_s01 =>

gsfc_ncdf_proc_m{{ MEMBER }}_s01 => \

 gsfc_process_m{{ MEMBER }}_s01 => gsfc_archive_m{{ MEMBER

}}_s01

 gsfc_ncdf_proc_m{{ MEMBER }}_s01 => gsfc_prod_filter_m{{ MEMBER

}}_s01 => gsfc_process_m{{ MEMBER }}_s01

 gsfc_prod_filter_m{{ MEMBER }}_s01 => gsfc_prod_join_m{{ MEMBER

}}

 {% for STEP in range(2, N_GSFC_STEPS + 1) %}

 {% set MEM_PREV_STEP = "m%d_s%02d" % (MEMBER, STEP - 1) %}

 {% set MEM_STEP = "m%d_s%02d" % (MEMBER, STEP) %}

 gsfc_model_{{ MEM_PREV_STEP }} => gsfc_model_{{ MEM_STEP }}

=> gsfc_ncdf_proc_{{ MEM_STEP }} => \

 gsfc_process_{{ MEM_STEP }} => gsfc_archive_{{ MEM_STEP

}}

34

 gsfc_ncdf_proc_{{ MEM_PREV_STEP }} => gsfc_ncdf_proc_{{

MEM_STEP }}

 gsfc_process_{{ MEM_PREV_STEP }} => gsfc_process_{{

MEM_STEP }}

 gsfc_archive_{{ MEM_PREV_STEP }} => gsfc_archive_{{

MEM_STEP }}

 gsfc_ncdf_proc_{{ MEM_STEP }} => gsfc_prod_filter_{{

MEM_STEP }} => gsfc_process_{{ MEM_STEP }}

 gsfc_prod_filter_{{ MEM_PREV_STEP }} => gsfc_prod_filter_{{

MEM_STEP }}

 gsfc_prod_filter_{{ MEM_STEP }} => gsfc_prod_join_m{{

MEMBER }}

 {% endfor %}

 {% set MEM_LAST_STEP = "m%d_s%02d" % (MEMBER, N_GSFC_STEPS) %}

 {% for STEP in range(1, N_GSFC_STEPS) %}

 {% set MEM_STEP = "m%d_s%02d" % (MEMBER, STEP) %}

 gsfc_model_{{ MEM_STEP }}:fail | \

 {% endfor %}

 gsfc_model_{{ MEM_LAST_STEP }}:fail => gsfc_model_m{{ MEMBER

}}_failed

 gsfc_model_{{ MEM_LAST_STEP }} => !gsfc_model_m{{ MEMBER

}}_failed

 gsfc_model_m{{ MEMBER }}_failed => !GSFC_M{{ MEMBER }}

 (gsfc_model_{{ MEM_LAST_STEP }} & gsfc_archive_{{ MEM_LAST_STEP

}}) | gsfc_model_m{{ MEMBER }}_failed => housekeep

 gsfc_prod_filter_{{ MEM_LAST_STEP }} => gsfc_prod_join_m{{

MEMBER }} => gsfc_transfer_m{{ MEMBER }}

 gsfc_transfer_m{{ MEMBER }} | gsfc_model_m{{ MEMBER }}_failed

=> housekeep

 {% endfor %}

 housekeep => archive_logs

 """

7.3 APPENDIX C - GloSea5 workflow code in ecFlow

import ecflow

MEMBERS = 1

CHUNKS = 6

def create_setup():

 f=ecflow.Family("setup")

 f.add_variable('ECF_FILES',

'/home/jvegas/ecflow/GloSea5/GloSea5/setup')

 f.add_task('fcm_make_ocean')

 f.add_task('fcm_make2_ocean').add_trigger('fcm_make_ocean == complete')

 f.add_task('fcm_make_rebuild')

 f.add_task('fcm_make2_rebuild').add_trigger('fcm_make_rebuild ==

complete')

 f.add_task('fcm_make_redate')

 f.add_task('fcm_make2_redate').add_trigger('fcm_make_redate ==

complete')

 f.add_task('fcm_make_um')

35

 f.add_task('fcm_make2_um').add_trigger('fcm_make_um == complete')

 install_cold = f.add_task('install_cold')

 install_cold.add_part_trigger('fcm_make2_ocean == complete')

 install_cold.add_part_trigger('fcm_make2_rebuild == complete', True)

 install_cold.add_part_trigger('fcm_make2_redate == complete', True)

 install_cold.add_part_trigger('fcm_make2_um == complete', True)

 return f

def create_gsfc(hk):

 f = ecflow.Family('gsfc')

 cron = ecflow.Cron()

 cron.set_time_series(17,15)

 f.add_cron(cron)

 f.add_date(0,0,2016)

 f.add_trigger('setup == complete')

 f.add_task('start')

 f.add_task('get_analysis').add_trigger('start == complete')

 f.add_task('redate_cice').add_trigger('get_analysis == complete')

 f.add_task('recon').add_trigger('redate_cice == complete')

 for member in range(1, MEMBERS+1):

 fm = f.add_family('m{0}'.format(member))

 fm.add_variable('ECF_FILES',

'/home/jvegas/ecflow/GloSea5/GloSea5/gsfc')

 fm.add_trigger('recon == complete')

 failed = ecflow.Task('failed')

 for chunk in range (1, CHUNKS+1):

 fm.add_family(create_chunk_family(chunk))

 if chunk == 1:

 failed.add_part_trigger('{0}/model ==

aborted'.format(chunk))

 else:

 failed.add_part_trigger('{0}/model ==

aborted'.format(chunk), False)

 failed.add_part_complete('{0} == complete'.format(CHUNKS))

 failed.add_part_complete('transfer == complete', True)

 hk.add_part_trigger('gsfc/m{0}/failed == complete'.format(member))

 fm.add_task('prod_join').add_trigger('{0}/prod_filter ==

complete'.format(CHUNKS))

 fm.add_task('transfer').add_trigger('prod_join == complete')

 fm.add_task(failed)

 return f

def create_chunk_family(chunk):

 fc=ecflow.Family('{0}'.format(chunk))

 sim=fc.add_task('model')

 if chunk > 1:

 sim.add_part_trigger('../{0}/model == complete'.format(chunk -1))

 temp=fc.add_task('ncdf_proc')

 temp.add_part_trigger('model == complete')

 if chunk > 1:

36

 temp.add_part_trigger('../{0}/ncdf_proc == complete'.format(chunk -

1),True)

 temp=fc.add_task('prod_filter')

 temp.add_part_trigger('ncdf_proc == complete')

 if chunk > 1:

 temp.add_part_trigger('../{0}/prod_filter == complete'.format(chunk

-1), True)

 temp=fc.add_task('process')

 temp.add_part_trigger('prod_filter == complete')

 if chunk > 1:

 temp.add_part_trigger('../{0}/process == complete'.format(chunk -

1), True)

 temp=fc.add_task('archive')

 temp.add_part_trigger('process == complete')

 if chunk > 1:

 temp.add_part_trigger('../{0}/archive == complete'.format(chunk -

1), True)

 return fc

def create_gshc(hk):

 f = ecflow.Family('gshc')

 cron = ecflow.Cron()

 cron.set_time_series(17,15)

 f.add_cron(cron)

 f.add_date(0,0,2016)

 f.add_trigger('setup == complete')

 f.add_task('start')

 f.add_task('init_control_file').add_trigger('start== complete')

 for member in range(1, MEMBERS+1):

 fm = f.add_family('m{0}'.format(member))

 fm.add_variable('ECF_FILES',

'/home/jvegas/ecflow/GloSea5/GloSea5/gshc')

 fm.add_trigger('init_control_file == complete')

 fm.add_task('register_member')

 fm.add_task('get_analysis').add_trigger('register_member ==

complete')

 fm.add_task('recon').add_trigger('get_analysis == complete')

 failed = ecflow.Task('failed')

 failed.add_part_trigger('register_member == aborted')

 for chunk in range (1, CHUNKS+1):

 fm.add_family(create_chunk_family(chunk))

 failed.add_part_trigger('{0}/model == aborted'.format(chunk),

False)

 fm.add_task('prod_join').add_trigger('{0}/prod_filter ==

complete'.format(CHUNKS))

 fm.add_task('transfer').add_trigger('prod_join == complete')

 failed.add_part_complete('{0} == complete'.format(CHUNKS))

 failed.add_part_complete('transfer == complete', True)

 fm.add_task(failed)

 hk.add_part_trigger('gshc/m{0}/failed == complete'.format(member),

True)

37

 return f

print "Creating suite definition"

defs = ecflow.Defs()

suite = defs.add_suite("GloSea5")

suite.add_variable('ECF_INCLUDE','/home/jvegas/ecflow/GloSea5')

suite.add_variable('ECF_HOME','/home/jvegas/ecflow/GloSea5')

suite.add_family(create_setup())

hk = ecflow.Task('housekeep')

suite.add_family(create_gsfc(hk))

suite.add_family(create_gshc(hk))

suite.add_task(hk)

suite.add_task('archive_logs').add_trigger('housekeep == complete')

7.4 APPENDIX D - EC-Earth workflow code in Autosubmit

a) Experiment

[experiment]

DATELIST = 2000 2001 2002

MEMBERS = fc0 fc1 fc2 fc3 fc4

CHUNKSIZEUNIT = month

CHUNKSIZE = 3

NUMCHUNKS = 20

CALENDAR = standard

b) Jobs

[LOCAL_SETUP]

FILE = LOCAL_SETUP.sh

PLATFORM = LOCAL

[REMOTE_SETUP]

FILE = REMOTE_SETUP.sh

DEPENDENCIES = LOCAL_SETUP

[INI]

FILE = INI.sh

DEPENDENCIES = REMOTE_SETUP

RUNNING = member

[SIM]

FILE = SIM.sh

DEPENDENCIES = INI SIM-1 CLEAN-2

RUNNING = chunk

[POST]

FILE = POST.sh

DEPENDENCIES = SIM

RUNNING = chunk

[CLEAN]

FILE = CLEAN.sh

DEPENDENCIES = POST

[TRANSFER]

FILE = TRANSFER.sh

38

PLATFORM = LOCAL

DEPENDENCIES = CLEAN

RUNNING = member

7.5 APPENDIX E - EC-Earth workflow code in Cylc

a) Control suite

#!Jinja2

{% set DATES = {

 "2000-01":"2004-10",

 "2001-01":"2005-10",

 "2002-01":"2006-10"} %}

{% set MEMBERS = ["fc0", "fc1", "fc2", "fc3", "fc4"] %}

[scheduling]

 [[dependencies]]

 graph="""local => remote

 {% for ICP, FCP in DATES.iteritems() %}

 {% for MEMBER in MEMBERS %}

 remote => {{ ICP }}_{{ MEMBER }}

 {% endfor %}

 {% endfor %}

 """

[runtime]

 {% for MEMBER in MEMBERS %}

 [[{{ ICP }}_{{ MEMBER }}]]

 inherit={{ ICP }}

 command scripting = """

 set -xuve

 cylc register suite_{{ ICP }}_{{ MEMBER }} /home/jvegas/mem_suite

 cylc run --no-detach --set ICP={{ ICP }} --set FCP={{ FCP }} --set

MEMBER={{ MEMBER }} suite_{{ ICP }}_{{ MEMBER }}

 cylc unregister suite_{{ ICP }}_{{ MEMBER}}"""

 {% endfor %}

 {% endfor %}

b) Sub-suites

#!Jinja2

[cylc]

 cycle point format = %Y-%m

 [[environment]]

 MEMBER = {{ MEMBER }}

[scheduling]

 initial cycle point = {{ICP}}

 final cycle point = {{FCP}}

 max active cycle points = 2

 [[dependencies]]

 [[[R1]]]

 graph="ini => sim"

 [[[P3M]]]

39

 graph="""

 sim[-P3M] => sim => post => clean

 clean[-P6M] => sim

 """

 [[[R1//+P0D]]]

 graph="""

 CHUNK:succeed-all => transfer

 """

[runtime]

 [[CHUNK]]

 [[ini, post, clean]]

 inherit = CHUNK

 command scripting = "sleep 2"

 [[sim]]

 inherit = CHUNK

 command scripting = "sleep 6"

 [[transfer]]

 command scripting = "sleep 4"

7.6 APPENDIX F - EC-Earth workflow code in ecFlow

#!/usr/bin/env python

import os

from dateutil.relativedelta import relativedelta

import ecflow

from datetime import date

START_DATE = date(2000,1,1)

END_DATE = date(2002,1,1)

SDATE_SEPARATION = 1

MEMBERS = 5

SIM_LENGTH= 5

CHUNK_SIZE = 3

def format_date(date):

 return date.strftime("%Y%m%d")

def create_family(name, path=""):

 f=ecflow.Family(name)

 f.add_variable('ECF_FILES', ROOT_PATH + path)

 return f

def create_setup():

 f=create_family("setup","common")

 f.add_task('localsetup')

 f.add_task('remotesetup').add_trigger('localsetup == complete')

 return f

def create_chunk_family(chunk, chunkdate, end_date):

 chunk_end = chunkdate + relativedelta(months=CHUNK_SIZE)

 fc=create_family(str(chunk),'ecearth3')

 sim=fc.add_task('sim')

40

 if chunk == 1:

 ini=fc.add_task('ini').add_trigger('/ecearth/setup == complete')

 sim.add_part_trigger('ini == complete')

 else:

 sim.add_part_trigger('../'+str(chunk-1)+'/sim == complete')

 if chunk > 2:

 sim.add_part_trigger('../'+str(chunk-2)+' == complete', True)

 fc.add_task('post').add_trigger('sim == complete')

 fc.add_task('clean').add_trigger('post == complete')

 return fc

def create_simulation(suite):

 startdate = START_DATE

 while startdate <= END_DATE:

 sdate = format_date(startdate)

 fsd=create_family(sdate)

 fsd.add_variable("SDATE", sdate)

 end_date=startdate + relativedelta(years=SIM_LENGTH)

 for nummember in range(0, MEMBERS):

 member = 'fc'+str(nummember)

 f=create_family(member, 'ecearth3')

 f.add_variable('MEMBER', member)

 date = startdate

 chunk=1

 while date < end_date:

 f.add_family(create_chunk_family(chunk, date, end_date))

 chunk += 1

 date = date + relativedelta(months=CHUNK_SIZE)

 transfer = fsd.add_task('transfer_'+member)

 transfer.add_trigger(member +' == complete')

 transfer.add_variable('ECF_FILES', ROOT_PATH + 'common')

 fsd.add_family(f)

 suite.add_family(fsd)

 startdate = startdate + relativedelta(years=SDATE_SEPARATION)

print "Creating suite definition"

defs = ecflow.Defs()

suite = defs.add_suite("ecearth")

suite.add_variable('ECF_INCLUDE', '/home/jvegas/ecflow/ecearth')

suite.add_variable("ECF_HOME", "/home/jvegas/ecflow/ecearth")

suite.add_family(create_setup())

create_simulation(suite)

