

 Page 1 of 65

Project Number GA: 228203
Project Acronym: IS-ENES
Project Title: Infrastructure for the European Network for Earth

System Modelling
Programme: SEVENTH FRAMEWORK PROGRAMME

Capacities Specific Programme
Research Infrastructures

D8.2 - Report on the Description of the
Evaluation Suite and Base-case Results

WP8/JRA2: European ESM: Performance Enhancement

Due Date: M18

Submission Date: -

Start Date of Project: 01/03/2009

Duration of Project: 48 months

Organisation Responsible for the Deliverable: BSC (16)

Version: 1

Status Final

O. Jorba – M. Val – F. Martínez – D. Vicente BSC (16)

G. Riley UNIMAN (6)

C. Basu LIU (15)

A. Caubel CNRS-IPSL (1)

E. Maisonnave CERFACS (3)

I. Epicoco University of
Salento

S. Mocavero CMCC

Author(s):

G. Aloisio CMCC - University
of Salento

 Page 2 of 65

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 16/06/2010 First draft: definition of the outline O. Jorba, G. Riley

0.2 26/07/2010 Second draft: report compilation C. Basu, A. Caubel, O. Jorba,
E. Maisonnave, F. Martínez,
M. Val, D. Vicente

0.3 01/08/2010 Third draft: report compilation, including
the CMCC contribution

C. Basu, A. Caubel, O. Jorba,
E. Maisonnave, F. Martínez,
M. Val, D. Vicente, I.
Epicoco, S. Mocavero, G.
Aloisio

0.4 16/08/2010 Fourth draft: report with complete
CMCC contribution and CERFACS
comments

G. Aloisio, C. Basu, A.
Caubel, I. Epicoco, O. Jorba,
E. Maisonnave, F. Martínez,
S. Mocavero, M. Val, D.
Vicente

0.5 24/08/2010 Fifth draft: report including comments
by Sophie Valcke

G. Aloisio, C. Basu, A.
Caubel, I. Epicoco, O. Jorba,
E. Maisonnave, F. Martínez,
S. Mocavero, M. Val, S.
Valcke, D. Vicente

1 14/09/2010 Final report, including addressed
comments made by Giovanni Aloisio

G. Aloisio, C. Basu, A.
Caubel, I. Epicoco, O. Jorba,
E. Maisonnave, F. Martínez,
S. Mocavero, M. Val, S.
Valcke, D. Vicente, G. Riley

 Page 3 of 65

Table of Contents

PART I: Overview

1. EXECUTIVE SUMMARY 6
2. INTRODUCTION 7
2.1 Purpose 7
2.2 Glossary of Acronyms 7
3. LIST OF ACTIVITIES 8

PART II: Base Case Results

1. NEMO PORTING, BENCHMARKING AND TUNING ON LINUX CLUSTER 10
1.1 Introduction 10
1.2 Scaling of NEMO for ORCA1 benchmark 11
1.3 Tuning of NEMO runs 12
1.4 Profiling of NEMO 15
1.5 Conclusions 16
2. IPSL (LMDZOR-NEMO-OASIS3) EARTH SYSTEM MODEL AND LMDZOR
AND ARPEGE MODELS PORTING AND PERFORMANCE TESTS 17
2.1 Introduction 17
2.2 BSC MareNostrum IBM JS21 17

2.2.1 Machine description 17
2.2.2 Achievements for the whole IPSL coupled system 18
2.2.3 Problems encountered 19
2.2.4 Performances of atmospheric components LMDZOR and ARPEGE 20

2.3 CINES ALTIX ICE 22
2.3.1 Description of the machine 22
2.3.2 Achievements 22

2.4 Conclusions 23
3. DEVELOPMENT OF A HIGH RESOLUTION VERSION OF ARPEGE-NEMO
CLIMATE MODEL 24
3.1 Model and machine description 24
3.2 Experimental design 24
3.3 Optimizations and results 25
4. ARPEGE-NEMO PORTING AND PERFORMANCE TESTS ON DEISA-
PRACE-GENCI PLATFORMS 28
4.1 Introduction 28
4.2 Porting 28

4.2.1 CINES SGI Altix 28
4.2.2 BSC MareNostrum IBM JS21 30
4.2.3 IDRIS IBM Blue Gene/P 30

4.3 Performances of ARPEGE atmospheric component 31
5. PORTING AND PERFORMANCE ANALYSIS OF EC-EARTH SYSTEM ON
MARENOSTRUM SUPERCOMPUTER 36
5.1 Introduction 36

5.1.1 EC-Earth System Model and BSC MareNostrum Supercomputer 36
5.2 Objectives 37
5.3 Description of execution and evaluation tests 37

5.3.1 Porting 37
5.3.2 Execution 38
5.3.3 Optimization 39
5.3.4 Scalability 39

 Page 4 of 65

5.3.5 Traces 41
5.4 Summary and Conclusions 45
6. PERFORMANCE ANALYSIS AND PORTING OF THE CMCC-MED
MODEL 46
6.1 CMCC-MED model description 46

6.1.1 Configuration 46
6.1.2 Computing environment 48

6.2 Portability on IBM Power6 architecture 49
6.3 Performance analysis 49

6.3.1 Stage 1: scalability evaluation of the component models 50
6.3.1.1 ECHAM5 component 51
6.3.1.2 NEMO component 52
6.3.1.3 OASIS3 coupler 53

6.3.2 Stage 2: definition of the performance model 55
6.3.3 Stage 3: definition of the best configurations 55

6.3.3.1 Best configurations on NEC-SX9 56
6.3.3.2 Best configurations on IBM Power6 57

6.3.4 Stage 4: scalability trend of CMCC-MED model 58

Part III: Concluding remarks

1. SUMMARY OF THE BASE-CASE RESULTS 61
2. RECOMMENDATIONS FOR FUTURE WORK 63
REFERENCES 65

 Page 5 of 65

PART I: Overview

 Page 6 of 65

1. Executive summary

The W8/JRA2 work package undertakes research into the performance aspects of
configuring, deploying and running Earth System Models (ESMs). In deliverable WP8/JRA2
D8.1 “Definition of the Evaluation Suite”, a set of ESMs and stand-alone models available in
the IS-ENES consortium were documented. This deliverable reports on work in which
selected models from the evaluation suite have been ported and tested on a number of HPC
infrastructures available to the IS-ENES partners, along with some additional activities. A
collaborative effort between application owners and computer specialists has led to the
identification of numerous current strengths and limitations of ESMs.

The IS-ENES evaluation suite consists of five coupled models: CMCC-MED, ARPEGE-
NEMO, IPSL-ESM, HadGEM2 and EC-Earth, in addition to four stand-alone models:
ARPEGE, NEMO, LMDZOR and ECHAM5. Detailed technical information on these models
can be found in D8.1. Specific details of the models reported in this document are given in
the associated technical reports in Part II.

The report is organized in three main parts: Part I (this section) gives an overview and
introduces the report, presents its purpose and summarises the activities undertaken; Part II
is a compendium of reports presenting the base-case results and consists of a set of
technical reports on each activity undertaken, and Part III draws conclusions and discusses
future work that aims to improve the performance of the models on current and future
computing resources.

 Page 7 of 65

2. Introduction
The performance analysis of current Earth System Models (ESMs) on state-of-the-art
computing systems is undertaken in work package WP8/JRA2. The increase in
computational resources associated with the ongoing work done in DEISA, DEISA2 and
PRACE projects stresses the need to improve the current performance of ESMs on HPC
systems. Climate science has made major steps in modelling the evolution of the climate
through complex coupled models. However, current coupled models appear not to be suited
to exploit fully the HPC resources that are planned to be deployed in next few years. For
example, Moore’s law suggests that the first exascale computer will be available in 2018 and
this is likely to consist of ‘billions’ of cores. In the IS-ENES project, Task 8.2, “Portability,
performance analysis and improvement”, seeks to understand and improve the performance
of ESM models for current and future HPC systems. This task focuses on the performance
aspects of both individual component models and ESMs constructed from them with the
purpose of ensuring the ESMs can execute efficiently on existing large-scale computing
facilities and also that the plans to prepare the models for execution on future facilities are
developed. Particular attention is given to ensuring models will be able to take advantage of
the PRACE initiative and DEISA2.

2.1 Purpose
The purpose of the present report is to summarize the work undertaken to understand the
performance of the ESMs of the evaluation suite on current HPC infrastructures. The
evaluation suite is defined in report “D8.1: Definition of the Evaluation Suite” of work package
WP8/JRA2. Several activities have been undertaken to port, test and evaluate, using profiling
and trace analysis, for example, ESM model performance on current state-of-the-art
computing systems. The works aims to document:

• The current performance of the models on existing parallel architectures,

• critical aspects that climate models stress in current HPC architectures,

• bottlenecks, and strengths and weaknesses of each of the models in order to guide the
design and development of future optimized ESMs for the upcoming peta- and exascale
architectures.

2.2 Glossary of Acronyms

Acronym Definition
ESM Earth System Model

DEISA Distributed European Infrastructure for Supercomputing Applications

PRACE Partnership for Advanced Computing in Europe

HPC High Performance Computing

Table 1: Glossary of Acronyms

 Page 8 of 65

3. List of activities
The activities undertaken in JRA2 during the first part of the project IS-ENES have had as
main objective to evaluate the current status of performance of several Earth System
Models. The following list summarises the reports describing the work done to characterize
such performance in current HPC infrastructures:

• LIU: NEMO Porting, Benchmarking and Tuning on Linux Cluster. C. Basu

• IPSL, BSC, CERFACS: IPSL-ESM (LMDZOR-NEMO-OASIS3) porting and
performance tests. A.Caubel, O.Jorba, E. Maisonnave

• CERFACS: Development of a high resolution version of ARPEGE-NEMO climate
model. E. Maisonnave

• CERFACS, IPSL, BSC: ARPEGE-NEMO porting and performance tests on DEISA-
PRACE-GENCI platforms. E.Maisonnave, A.Caubel, O.Jorba

• BSC: Porting and performance analysis of the EC-EARTH model on MareNostrum
Supercomputer. F. Martínez, D.Vicente, O.Jorba, M.Val

• CMCC: Performance analysis and porting of the CMCC-MED model. I.Epicoco,
S.Mocavero, G.Aloisio

The second part of the present document compiles the documents that report the work done
and the main conclusions of each initiative. Results of the work will help to define the future
work to undertake to improve the model performance in future HPC environments.

 Page 9 of 65

PART II: Base-case results

 Page 10 of 65

1. NEMO Porting, benchmarking and tuning on Linux
Cluster

Author: Chandan Basu1

1 National Supercomputer Centre, Linköping University, Sweden (LIU)

1.1 Introduction
At NSC we are working on porting, optimization and tuning of NEMO program on linux - X86-
64 - infiniband clusters. As many of the modern day clusters fall in this category our
benchmarking will be indicative of NEMO performance on these types of clusters. The
performance of any MPI program may depend on various components, e.g., compilers, MPI
libraries, network, filesystem, processor technologies etc. As NEMO is a large and complex
program its performance needs to be tested against these variables. In the first phase of our
optimization work we are looking into these factors for an optimized run. We are also carrying
out scaling test and profiling of the codes. The goal is to figure out the bottlenecks and to
look at suitable strategies to improve the timing of the code. We have used ORCA1
configuration available from NOCS website (http://www.noc.soton.ac.uk/nemo/) for our
scaling / benchmark studies. The ORCA1 configuration is bigger than default ORCA2
configuration that comes with NEMO. So it is more suitable for benchmarking studies on
large number of nodes. Therefore, this benchmark will give us a fair idea about scaling
behaviour of NEMO. Also it seemed to us that ORCA1 resolution is reasonable for many
practical situations.

Test systems: We use two systems for our benchmarking. The details of these systems are
given in Table 1.1.

System Ekman Kappa

Processor Quad-Core AMD Opteron 2374 HE @
2.19 GHz

Quad core Intel(R) Xeon(R)
CPU E5520 @ 2.27GHz,
code named Nehalem

Interconnect DDR Infiniband, full bisection
bandwidth

DDR infiniband, reduced
bisection bandwidth

Node 2 processor, 8 core 2 processor, 8 core

No. of nodes 1268 364

MPI processes / node 8 8

global filesystem Lustre over infiniband GPFS over gigabit ethernet

Compiler ifort - 11.0.074, pgf90 - 10.3 ifort - 11.1.059

MPI Open MPI - 1.4.1, Scali MPI - 5.6.6 Open MPI - 1.4.1

Table 1.1: Description of systems used for benchmarking

 Page 11 of 65

1.2 Scaling of NEMO for ORCA1 benchmark
We have run NEMO for 1 year period on different number of processors to see its scaling
behaviour for ORCA1 configuration. The results are given in Table 1.2 and Figures 1.1 and
1.2. We see that ORCA1 run scales up to 16 nodes (128 cores) on both Ekman and Kappa
systems. However on Kappa the runs are faster than on Ekman. This is owing to the fact that
Kappa has latest Intel Nehalem processors compared to Ekman which has AMD Opteron
processor. The memory performance of Nehalem system is better than Opteron.

Figure 1.1: ORCA1 runs on Ekman

Figure 1.2: ORCA1 runs on Kappa

 Page 12 of 65

System Grid No. of ranks MPI time (s)

Ekman 8X8 64 Scali MPI 3478

Ekman 8X16 128 Scali MPI 2548

Ekman 12X16 192 Scali MPI 2049

Ekman 16X16 256 Scali MPI 2274

Ekman 8X8 64 Open MPI 3301

Ekman 8X16 128 Open MPI 2101

Ekman 12X16 192 Open MPI 2397

Ekman 16X16 256 Open MPI 1674

Kappa 8X8 64 Open MPI 2162

Kappa 8X16 128 Open MPI 1384

Kappa 12X16 192 Open MPI 1403

Kappa 16X16 256 Open MPI 1771

Table 1.2 Scaling studies of ORCA1 benchmark

1.3 Tuning of NEMO runs
We have looked into various factors for optimized NEMO runs. These are described below.

Effect of different compilers: We have compiled NEMO 3.2 with Intel compiler and PGI
compiler on Ekman system (see Table 1.1 for details of system and compilers). We generally
observed that Intel compiled binaries work faster than PGI compiled binaries on Ekman
system. On Kappa system we do not have PGI compilers installed. So we have done all our
runs using Intel compiled binaries.

Effect of process binding: MPI process running on a node can be swapped between
available cores by Linux OS scheduler. This generally degrades performance. It is however
possible to force each MPI processes to run on specified core. This is termed as process
binding. Process binding can result in optimized cache performance resulting in better
performance. We have tested processor binding effects by binding the processes and then
comparing timing for runs without binding. We see that in general processor binding gives 1 -
2 % better run-time (See Table 1.3) for almost all runs. The processor binding can be
achieved through mpirun by passing suitable flags to it. However we have observed that for
different MPIs the processor binding through mpirun does not work always. We have also
seen that in some cases mpirun binds processes wrongly (e.g., more than two processes
bound to same core!). So we do not use mpirun to bind processes. Instead we fire jobs
normally without binding and then use Linux command taskset to explicitly bind each process
to a distinct core.

 Page 13 of 65

Time (s)

System Grid no. of ranks MPI Proc.
binding
disabled

Proc.
binding
enabled

Ekman 8X8 64 Scali MPI 3478 3391

Ekman 8X16 128 Scali MPI 2448 2357

Ekman 12X16 192 Scali MPI 2049 2001

Ekman 16X16 256 Scali MPI 2274 2265

Ekman 8X8 64 Open MPI 3301 3231

Ekman 8X16 128 Open MPI 2101 2069

Ekman 12X16 192 Open MPI 2397 2304

Ekman 16X16 256 Open MPI 1674 1642

Kappa 8X8 64 Open MPI 2162 2125

Kappa 8X16 128 Open MPI 1384 1360

Kappa 12X16 192 Open MPI 1403 1400

Kappa 16X16 256 Open MPI 1771 1760

Table 1.3 Scaling studies of ORCA1 benchmark with processor binding

Effects of changing MPI libraries: Scaling of parallel programs depends on MPI
communication routines. So changing from one MPI implementation to another might have
some impact on the overall performance of NEMO. We have compared NEMO runs with
Open MPI & Scali MPI (see Table 1.4). We see that there is 5 - 15 % change in runtime of
NEMO by changing MPI library. We also see that for 8, 16 and 32 node jobs Open MPI runs
are faster but for 24 node job Scali MPI runs are faster.

t_scali = Scali MPI run time

t_ompi = Open MPI run time

dt = (t_scali - t_ompi) / t_ompi

System Grid no. of ranks % dt

Ekman 8X8 64 5.36

Ekman 8X16 128 14.67

Ekman 12X16 192 -14.56

Ekman 16X16 256 35.05

Table 1.4 Effect of different MPI libraries on ORCA1 runtime

 Page 14 of 65

Effects of filesystem: NEMO ORCA1 configuration does frequent of i/o while running.
Normally MPI jobs are fired from global file systems. The files in these filesystems are visible
from all the compute nodes. As all the nodes try to read / write data via some network this
can be a performance bottleneck for jobs which does lots of i/o. Also in a large cluster where
many jobs are running file i/o throughput of global filesystems can be impacted by the overall
i/o and network congestion. We have done some testing with firing jobs from local disks. In
this case we copy all the input data to the local hard disk of every node. The jobs are fired
from local disk. While running the jobs do i/o to local disks. Thus the i/o becomes parallel.
Also i/o speed is not dependent on the network. At the end of the job all the output files
written on local disks are copied back to some global filesystem. In this case the significant
time is mpirun time + data copy time. Our general observation is that for Ekman system the
jobs fired from local filesystem takes almost the same time as the jobs fired from global
filesystem. But on Kappa system the local runs are considerably faster than the runs from
global filesystem (see Table 1.5).

del t = (tg - tl) / tl

tg = run time from global

tl = run time from local + data scatter, gather time

System Grid No. of ranks MPI % del t

Ekman 8X8 64 Scali MPI 1.9

Ekman 8X16 128 Scali MPI 1.5

Ekman 12X16 192 Scali MPI 2.0

Ekman 16X16 256 Scali MPI 2.3

Kappa 8X8 64 Open MPI 23.4

Kappa 8X16 128 Open MPI 25.1

Kappa 12X16 192 Open MPI 20.1

Kappa 16X16 256 Open MPI 10.5

Table 1.5 Impact of using local vs global file system on ORCA1 runtime

The difference in behaviour between Ekman and Kappa system could be due to relative
speed of local and global filesystem. We can see that running from local filesystem in general
gives better timing. Also sometimes global filesystem can be slow depending on the load on
the file system. On the other hand it is bit complicated to move data back forth to and from
local filesystem. But this can be achieved through some script which will copy the data to
node local file system and after the job is over will copy back relevant output files. If the
system has parallel shell commands, e.g., pdcp, pdsh etc. available then the file copying can
be done quite efficiently.

Static linking vs dynamic linking: Static linking of MPI libraries generally leads to
improvement in the run time. This is shown in the Table 1.6

t_dyn = run time for dynamic linking

 Page 15 of 65

t_stat = run time for static linking

del t = (t_dyn – t_stat) / t_stat

System Grid No. of ranks MPI % del t

Ekman 8X8 64 Open MPI 10.5

Ekman 8X16 128 Open MPI 6.3

Ekman 16X16 256 Open MPI 3.1

Table 1.6 Impact of using static vs dynamic linking on ORCA1 runtime

1.4 Profiling of NEMO
As we have seen above NEMO run with the ORCA1 benchmark does not scale well beyond
16 nodes (128 cores). We believe that profiling of the code will give us more insights about
how scaling is lost when we increase the no of ranks. We have profiled the MPI calls in
NEMO using Scali MPI’s profiling feature. We start the profiling after initialization is over. We
profile the code when it is in the main time loop. The Table 1.7 below shows average time
spent in significant MPI calls for several 2 minute window of run-time. As we can see for 64
rank run time spent in MPI calls is 44 %, for 128 rank run the time spent in MPI calls is 66 %
and for 256 rank run 82 % of time is spent in MPI calls within the main time loop of NEMO
run. This is because the number of MPI calls for each rank increases for wider NEMO runs.
Consequently the delays associated with data transfer increases. Another factor which may
lead to increase in MPI times is load imbalance between different ranks.

64 rank 128 rank 256 rank

MPI call No. of
calls

Time
(s)

delta
(%)

No. of
calls

Time
(s)

delta
(%)

No. of
calls

Time
(s)

delta
(%)

MPI_Allreduce 97970 7.2 162030 17.1 173724 19.5

MPI_Isend 517320 0.9 853223 1.5 921234 1.3

MPI_Recv 517320 36.0 853223 47.5 921234 61.4

MPI_Wait 517320 0.05 853223 0.1 921234 0.1

Sum 1649930 44.0

~10

2721700 66.2

~12

2937426 82.3

~15

Table 1.7 Profiling of MPI calls in Nemo

The delta parameter in the Table 1.7 refers to the deviation in MPI time between ranks. This
difference in MPI times could be due to load imbalance in different ranks. As we can see that
the delta value increases with increasing number of ranks. This may also lead to increase the
waiting time for MPI calls to finish.

 Page 16 of 65

1.5 Conclusions
We have run NEMO on Ekman and Kappa system under various conditions. We see that
NEMO compiles with both Intel as well as PGI Fortran. It can be linked with Open MPI or
Scali MPI. We have observed that on Ekman system Intel compiled NEMO works faster than
PGI compiled NEMO.

The ORCA1 benchmark scales to around 16 nodes (128 cores) on both Ekman as well as
Kappa system. Although on Ekman there is some scaling up to 32 nodes (256 cores). The
better scaling in Ekman may be due to the fact that single node performance of Ekman is
slower than Kappa. Normally slower nodes scale better than faster nodes if the interconnect
speed remains same. For higher number of node count large amount of the time is spent in
MPI calls. So the scaling is gradually lost. For a bigger configuration NEMO will probably
scale to more number of nodes.

For an optimized run it is better to bind MPI processes to cores as we have seen in our
results (Table 1.3). But the improvements are marginal and default scheduler of Linux
operating system seems to work quiet efficiently. Also processor binding should be done
carefully to avoid wrong processor binding.

Choice of MPI library seems to have some impact on run time of NEMO. In our runs Open
MPI runs are consistently better than Scali MPI runs (Table 1.4) except in the case when
number of cores are 192. The behaviour may be due to change of some MPI internal
algorithm at certain sizes. Also for ORCA1 configuration the good scaling is up to 128 cores.
Beyond 128 cores the code is running inefficiently and the difference in runtime may not be
indicative of just MPI performance.

Statically binding MPI library gives better performance than dynamic binding (Table 1.6). This
has been verified for Open MPI.

Firing NEMO from local filesystem gives better timing than firing from global filesystem
(Table 1.5). However, the extent of difference in timing seems to depend on the relative
speed of local vs global filesystem. As we can see that in Kappa system there is substantial
improvement in runtime but in Ekman system there is only marginal time improvement.

We have described above some strategies for optimized NEMO runs which should be
applicable for similar systems. There may be further scope of improving the timing and
scaling. But for this we have to look inside the code.

We have already done some profiling of MPI calls in NEMO and we would like to continue
profiling of NEMO including MPI calls as well as other functions and subroutines. We will use
different available tools for profiling. We also plan to put some light weight timers in the code
to analyze its behaviour. The correct profiling will tell us accurately about load imbalance if
any and other bottlenecks..

 Page 17 of 65

2. IPSL (LMDZOR-NEMO-OASIS3) Earth System Model and
LMDZOR and ARPEGE models porting and performance
tests

Authors: A. Caubel1, O. Jorba2, E. Maisonnave3
1 Institut Pierre Simon Laplace, France (IPSL)
2 Barcelona Supercomputing Center, Spain (BSC)
3 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France
(CERFACS)

2.1 Introduction
The present IPSL (Institut Pierre Simon Laplace) model couples four components of the
Earth System: LMDZ for atmospheric dynamics and physics, ORCA for ocean dynamics, LIM
for sea-ice dynamics and thermodynamics, and ORCHIDEE as the land surface component.
It can include a full carbon cycle component, as well as a model of the atmospheric
chemistry and aerosols. The OASIS coupler is used to synchronize, interpolate and
exchange fields between atmospheric and oceanic components.

Actual IPSL scientific production is done on vector machines (with weak parallelism). That’s
why studying the behavior of IPSL models at higher resolution than the current one on
DEISA-PRACE-GENCI-like machines (SMP and MPP scalar machines) could be a good
indicator of both work done recently at IPSL on parallelization aspects and porting to
massively parallel supercomputers and current performance of IPSL models.

The set up of high resolution configuration of IPSL climate model started at BSC. A test
configuration has run and allowed us to evaluate the performance but also the problems
encountered when the resolution of each component is increased and the components
coupled together. The configuration was atmosphere-land surface LMDZOR 280x280x19 on
72 CPUs (MPI parallelization) coupled to ocean-sea ice NEMO ½ degree (511x722x31) on
20 cores (MPI parallelization). This was a preliminary experimentation. We are now working
at GENCI-CINES centre, on setting up a configuration at higher resolution: ¼ degree for
oceanic model (1442x1021x75) and 1/3 degree for atmospheric model (768x768x39) using
MPI-OPenMP parallelization.

This report describes the encountered difficulties during the model porting phase on
MareNostrum IBM JS21 (BSC) and SGI Altix ICE (CINES) and some details scalar/vector
compared performances.

2.2 BSC MareNostrum IBM JS21
2.2.1 Machine description
The Barcelona Supercomputing Center (BSC) hosts MareNostrum, one of the most powerful
supercomputer in Europe and the number 87 in the world [Top500 list, June 2010].
MareNostrum was built in March 2004 as a result of an agreement between the Spanish
government and IBM. MareNostrum is a node of DEISA2 consortium and BSC is currently a
partner in the PRACE project. In this sense, MareNostrum is targeted as one of the first
DEISA2 HPC facilities to test ESMs.

The MareNostrum supercomputer is based on processors PowerPC, architecture
BladeCenter, Linux operating system and Myrinet interconnection. MareNostrum has 10240

 Page 18 of 65

IBM Power PC 970MP processors, 20 TB of main memory and 280 + 90 TB of disk storage.
It uses two interconnection networks: Myrinet and Gigabit Ethernet. It is the first
supercomputer that runs under a Linux operating system, a SuSe Distribution. The Peak
Performance of the system is 94.21 Teraflops.

Marenostrum has 44 racks, 31 of them dedicated to computing tasks. The computing racks
have a total of 10240 processors. Each rack is formed by 6 Blade Centers. In total, each rack
has 336 processors and 672 Gb of memory; each one has a rough peak performance of 3.1
Tflops.

Each Blade Center has 14 server blades type JS21. Each of these nodes has 2 processors
PowerPC 970MP at 2.3 GHz, 8 Gb of shared memory between both processors and a local
SAS disk of 36 Gb. Each node has a network card Myrinet type M3S-PCIXD-2-I for its
connection to the high speed interconnection and the two connections to the network Gigabit.
Each node has a local disk of 36 Gb and works diskless, i.e., the operating system is in the
storage racks instead of the local disk and it is loaded through a Gigabit network when each
node is initialized.

In addition to the local disk of each node, MareNostrum has 20 storage servers arranged in 7
racks. These servers have a total of 560 disks of 512GB and each one provides a total
capacity of 280TB external storage. These disks are working with Global Parallel File System
(GPFS), which offers a global vision of the file system and also allows a parallel access.

Default compilers in Marenostrum are IBM XL C/C++, and IBM XL FORTRAN. In addition,
the GNU C and FORTRAN compilers are available.

Several numerical libraries and several application packages are installed in MareNostrum
(http://www.bsc.es/plantillaC.php?cat_id=472).

2.2.2 Achievements for the whole IPSL coupled system
To better understand the behaviour of IPSL models on a machine MareNostrum-like, several
tests have been done. Two significant configurations were created and tested on this
machine and thanks to the timer implemented in Oasis3 by Eric Maisonnave, CERFACS
(see Chapter 4: ARPEGE-NEMO porting and performance tests on DEISA-PRACE-GENCI
platforms), we obtained the following performances:

A high resolution coupled configuration:

This version has been set up to evaluate the performance but also the problems encountered
when the resolution of each component is increased and the component coupled together.
This configuration is based on the following components and resolutions:

- atmosphere-land surface LMDZOR 280x280x19 on 72 CPUs

- ocean-sea ice NEMO ORCA05 (511x722x31) on 20 CPUs

Using a “pseudo-parallel” version of the OASIS3 coupler on 2 processors, we obtained the
following performances: 5-day simulation in 21 min 10s (i.e., 10-year simulation in 10 days).

More details and results:

Real time for LMDZOR configuration (forced mode) to run a coupling period (i.e., 1 day) is
220s by using 72CPUs.

 Page 19 of 65

Real time for NEMO component (1-day simulation) at ORCA05 resolution:

Number of CPUs 5 10 20 27 32

Real Time NEMO 760s 382s 201s 141s 125s

Table 2.1: Real time of NEMO (1- day simulation) at ORCA05 resolution on MareNostrum

An Earth system model configuration:

This version has been set up to evaluate, by running a long simulation of an Earth system
model on this type of architecture, the feasibility of a realistic climate simulation. This
configuration is based on the following components and resolutions:

- atmosphere-land surface-atmospheric chemistry LMDZOR-INCA 96x71x19 on 24 CPUs

- ocean-seaice NEMO ORCA05 (511x722x31) on 50 CPUs

Using a “pseudo-parallel” version of the OASIS3 coupler on 2 processors, we obtained the
following performances: 4-month simulation in 3h 22min. (i.e., 10-year simulation in 4 days)

More details and results:

Real time for NEMO (in forced mode) to run a coupling period (i.e., 1 day) is 95s by using 50
CPUs.

Real time for LMDZOR-INCA component (1-day simulation) at 96x71x19 resolution:

Nº of CPUs 10 14 16 24

Real Time LMDZOR-INCA 235s 197s 146s 116s

Table 2.2: Real time for LMDZOR-INCA component (1-day simulation) at 96x71x19
resolution on MareNostrum

2.2.3 Problems encountered
1) Software environment: Default versions of compiler and MPI libraries installed on

MareNostrum do not allow running our current model versions. So, it is needed to
use more recent compiler version and MPICH2 as MPI version.

2) Heterogeneous codes: we would like to run hybrid parallelization MPI-OpenMP for
atmospheric component only and so, to have different specification (concerning
parallel environment) for each executable, as follows:

 • Ocean (MPI parallelization)

 • Atmosphere (MPI-OpenMP parallelization)

But, specifications are global on MareNostrum and it is not possible to specify
requests depending on each component.

3) Memory size: Memory size problems occur when the resolution is increased,
280x280x19, for atmospheric component. An 8Gb (memory available per node) is
not sufficient for more than 4 MPI processors. It is a problem both because the
current version of LMDZ is not scalable in terms of memory and the LMDZ MPI-

 Page 20 of 65

parallelisation is limited by 3 bands of latitudes per MPI process.

LMDZOR resolution 96x72 144x143 192x192 280x280

Memory needed for 4 MPI
process

2Gb 3.5Gb 6.7Gb > 8Gb

Table 2.3: Memory size used by 4 LMDZOR MPI process on MareNostrum

2.2.4 Performances of atmospheric components LMDZOR and ARPEGE
Here is a comparison of performances on different kind of supercomputers. Since
atmospheric component is the component which leads performances of the whole coupled
model, we focused our analysis (i.e scalability, speedup) on the atmospheric model.
Scalability of the whole coupled model is similar to the scalability of the forced atmospheric
configuration.

The configuration used here is LMDZOR forced configuration (MPI parallelization) on the
following machines:

- MareNostrum PowerPC (2,3 Ghz, 4 CPus/node, 8Gb/node)

- Vargas Power6 (4,7 Ghz, 32 CPus/node, 128-256Gb/node)

- Mercure SX8R (vector processors, 8 CPUs/node, 64Gb/node)

Figure 2.1: Comparison of Real Time inter-machine for LMDZOR at 96x72x19 resolution.

 Page 21 of 65

Figure 2.2: Comparison of Real Time inter-machine for LMDZOR at 192x192x19 resolution

Figure 2.3: Comparison of speedup inter-machine for LMDZOR at 192x192x19 resolution

We can see, with the same number of MPI processes, that the real time is twice greater on
the MareNostrum rather than on the Power6 Vargas. We can also note that the speedup is
lower for PowerPC than for Power6. Different reasons can explain such differences
regarding the performances: different architectures, frequency calculation of each processor
(2,3Ghz for PowerPC processors and 4,7Ghz for Power6 processors), number of CPUs per
node greater on Power6 (32 CPUs/node) than PowerPC (4 CPUs/node), etc.

Performances of LMDZOR configuration in MPI parallelisation are limited on PowerPC-like
architecture in comparison with a Power6-like architecture. Even if we increase the number
of CPUs used, real time is still greater in comparison with Power6.

We can obtain similar real time by increasing the number of CPUs on the Power6 in
comparison with 4 or 8 vector processors SX8R. However, we never manage to obtain
similar real time between PowerPC processors and Power6 processors (and of course SX8R
processors).

More results and comparisons:

On mercure SX9, we run 10-year simulation in 1 day for the coupled configuration 96x95x39-
ORCA2 on 4 CPUs.

 Page 22 of 65

On MareNostrum PPC, we run 10-year simulation in 10 days for the coupled configuration
280x280x19-ORCA05 on 94 CPUs.

 LMDZ
1 task/node

LMDZ
4 tasks/node

ARPEGE
4 tasks/node

Instructions per cycle 0.62 0.47 0.33

Parallel efficiency 0.78 0.87 0.92

Table 2.4: Common LMDZ-ARPEGE analysis performances on MareNostrum (BSC)

We applied the PARAVER (http://www.bsc.es/plantillaA.php?cat_id=485) performance and
analysis tool to compute the number of instructions per cycle and the parallel efficiency. If
ARPEGE scalability exceed LMDZ' one, ARPEGE exhibits a slower number of instructions
per cycle, which could imply a higher number of memory access conflicts. Parallel efficiency
is slightly the same. All those figures could suggest that ARPEGE's higher scalability should
be mainly originated in its smaller amount of communications (see Chapter 4: ARPEGE-
NEMO porting and performance tests on DEISA-PRACE-GENCI platforms).

2.3 CINES ALTIX ICE
We are now working at GENCI-CINES centre, through the “Grand challenge” project, on
setting up a configuration at higher resolution: ¼ degree for oceanic model (1442x1021x75)
and 1/3 degree for atmospheric model (768x768x39) using MPI-OPenMP parallelization.

2.3.1 Description of the machine
The cluster SGI Altix ICE 8200, JADE, is a scalar parallel supercomputer with a peak
performance of 147 Tflop/s. JADE is composed of 25 racks. One of these racks is used to
ensure the connection with the whole cluster (via 3 login nodes) and 24 computing racks (cf.
architecture’s description). This cluster consists of 12288 cores distributed on 1536 nodes
(each node including 2 Intel Quad-Core E5472 processors). 30 GB of useful memory can be
actually used on each node, i.e. over a total of 46 TB. The computing racks have access to a
parallel file system Lustre with a total capacity of (509 TB).

2.3.2 Achievements
The work is still in progress but a first configuration has already run. The first results are as
follows:

• Atmospheric model 0.3°x0.3°(39 vertical levels), 768x768x39 on 2048 cores by using
hybrid MPI-OpenMP parallelization : 256 MPI processes x 8 OpenMP threads

• Oceanic model 0.25°x0.25°(75 vertical levels), 1441x1021x75 on 120 MPI processes

• Oasis3 parallel version “field per field” on 24 MPI processes (each MPI process treats
one field).

⇒ 12 days are needed to run 10-year simulation on 2200 cores.

A 20-year simulation is planned to be done during next months to start to use such a

 Page 23 of 65

configuration for scientific studies.

2.4 Conclusions
The porting of the IPSL climate model to the MareNostrum was very instructive both in terms
of usability and performances. Firstly, it helped highlight the work done in recent years
around the optimization and parallelization of IPSL models. Indeed, it is now possible to run a
fully parallelized IPSL coupled model, which is essential on this type of architecture. Then,
thanks to performance and analysis tools like PARAVER, we could see that this kind of
architecture imposes some limits to our models and their performances: low memory
available per node, scalar processors with low frequency calculation, moderate MPI
scalability. Besides, the running environment seems to not be very suitable for
heterogeneous codes: this would be a very strong constraint, especially since the
parallelization hybrid MPI-OpenMP seems to be the best way to use up the resources
available on MareNostrum-like architecture.

The second step done was the porting on CINES-Jade machine: the high resolution
configuration tested on this machine was the final point of the work started at BSC-
Marenostrum. The hybrid parallelisation MPI-OpenMP allows us to run our coupled model on
around 2200 cores on this machine.

Acknowledgments:
Authors are grateful to support teams of computing centres (BSC and CINES). We would like
to thank especially José M Baldasano and Oriol Jorba for the welcome and also IPSL Global
Climate Modelling Group for the help and the common work.

 Page 24 of 65

3. Development of a high resolution version of ARPEGE-
NEMO climate model

Author: E. Maisonnave1
1 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France
(CERFACS)

3.1 Model and machine description
Taking advantage of 2009 Météo-France NEC SX9 Operation Health Check (OHC), several
configurations of ARPEGE-NEMO climate model have been set up in order to check OASIS3
capability at high end resolutions.

Tested resolutions were t359 (approximately 50Km square) with 31 vertical levels for
ARPEGE and ORCA ¼ degree with 50 vertical levels for NEMO. Those resolutions are
similar to the higher operational configurations in use at the moment in Europe (ECMWF,
MetOffice, etc).

OASIS version 3, tag prism_2-3, was using for this experiment, and particularly the Arnaud
Caubel's developments allowing parallel exchanges of coupling fields.

The new Météo-France supercomputer is composed by 6+7 vector nodes of 16 SX9
processors each of 102 Gflops peak performance and 1 Tb memory per node. Due to OHC
time constraints, no fine optimization has been implemented. In particular, during simulation,
data processing has not been done on local processor disks but through GPFS global file
system.

3.2 Experimental design
Our coupling method implies that ocean and atmosphere perform simultaneously a coupled
time step (namcouple LAG mode), each model using the coupled field averaged at the
previous coupling time step.

Moreover, we used the MPI communication library with bufferized messages (namcouple
NOBSEND option disabled), to let models continuing their calculations after sending their
coupling fields to OASIS.

ARPEGE and NEMO are parallel codes: allocating appropriate processors number to each
model, response time difference between each model could be minimized. However, due to
vector processor efficiency (a fast simulation could be processed with less than 10
processors), possible combinations in processors repartition are limited and a model still
remains significantly slower than the other. If OASIS duration (communication and
interpolation processing) stays lower than this difference, there is no coupling additional time
compared to slower stand alone simulation duration: OASIS calculations and
communications are completed during the time interval between the end of fastest model and
the end of slowest model calculations.

In order to measure those quantities, clock times are collected (thanks to light modifications
under CPP key within OASIS “psmile” library) before and after each OASIS exchanges.

Measures are done on elapsed time and not on CPU time (OASIS CPU time are supposed to
be independent of model parallelism ratio). The balance we proposed to tune here only
influences elapsed time performances. But measures on elapsed time are machine load
dependent, particularly if we share node with other users: an ensemble of 5 to 9 simulations

 Page 25 of 65

(of 4 days of climate) will be processed and uncertainty evaluated.

Two kinds of measures are done to evaluate (a) the total coupled simulation time and (b) the
calculation duration of each component of the coupled system.

A): Within OASIS, the difference between the very first “prism_get” of the whole
simulation and the very last “prism_put” represents the whole climate simulation duration,
excluding model restart read/write operations.

B): Within models, we measure the interval (at each coupling time step) between the
instant after the “prism_get” of last coupling field received at coupling time step N and the
instant before the “prism_get” of the first coupling field exchanged at time step N+1: in
this way, we evaluate duration of calculation processed by each model between two calls
to OASIS (supposing that the time for the non-blocking “prism_put” calls is negligible in
this measure).

3.3 Optimizations and results
This counter allows us to finely determine the respective number of processors which
minimizes the difference between oceanic and atmospheric coupling step durations. If 4
processors are allocated to NEMO (due to speedup optimum considerations), 6 to 7
processors for ARPEGE are most suitable. An important extra cost due to OASIS (more than
50%) incites us to optimize OASIS coupling technique.

Figure 3.1: ARPEGE and NEMO respective response time within an ARPEGE-NEMO
coupled model configuration (constant resources for NEMO -4- and varying number for

ARPEGE – from 4 to 7). Ensemble mean (line) and spread (error bars).

In a first step, the OASIS sequential exchange (namcouple SEQ mode) is preferred to the
standard one: instead of exchanging all the fields before doing any interpolation calculation,
the sequential exchange realizes field by field the sequence “get field – process oasis
computations – put field”. So, OASIS does not need to wait for the slowest model to begin to
processes the first interpolation. And interpolated fields are ready to be used by the slowest
model as soon as it needs them. This optimization reduces the total elapsed time of our
coupled simulation a 20% in the best case.

The second optimization consists on using the OASIS parallelism by field. This configuration
called “Oasis pseudo parallelism” is implemented in OASIS3 version since Arnaud Caubel –
Sébastien Masson – Jing-Jia Luo IPSL-JAMSTEC joint experiment on Earth Simulator

 Page 26 of 65

supercomputer. Within this configuration, OASIS is launched several times with different
namcouples, each namcouple describing a subset of one or several of the initial coupled
fields needed. Several OASIS executables process a subset of the initial coupling fields:
communications and interpolation calculations are done in parallel. This optimization (i.e.,
distributing OASIS on two processors, no extra gain observed with broader distribution) also
reduces the total elapsed time of our coupled simulation by 18% in the best case.

Combining those two optimizations (Sequential mode + Pseudo parallelism), the cumulated
gain compared to the non-optimized run varies between 15 and 25 %. Compared to the
slowest model on a stand alone mode, the extra cost of coupling oscillates now between 0
and 25% depending on the load balance of the models. The highest coupling extra cost is
obtained in the case of a load balanced configuration (4 processors for NEMO, 7 for
ARPEGE): the difference between model durations is lower than the cost induced by the
coupling.

Figure 3.2: Compared performances without any optimization (red), with SEQ optimization
(green, with parallelism by field (blue) and with combined SEQ+parallelism by field (pink).

Ensemble mean (line) and spread (error bars).

To be totally sure that OASIS3 could handle model resolution higher than the present
European most demanding configuration ones, we attempt to increase oceanic resolution,
using the MERCATOR state-of-the-art operational model (1/12th degree, 50 vertical levels).

At such resolution, even during an OHC period, the machine load is so important that a
limited number of tests is possible. A 9 member ensemble test of 2 simulated days has been
processed, using 44 processors for NEMO and 4 for ARPEGE (3 nodes, half of the total
amount of machine processors). Even if load balancing could not be totally reached, both
Sequential mode + Pseudo parallelism optimizations help us to reduce the total simulation
time from 8 to 4 hours, with only a 10 % additional time compared to the oceanic stand alone
simulation.

Those experiments prove the OASIS3 capability to drive high end resolution coupled
simulations on vector machines (even with experimental configurations using a 1/12th degree
ocean) with reasonable additional time. Most of the time, when balance between model
component duration cannot be reached, this additional time even could be nullified.

 Page 27 of 65

Acknowledgments:
Author is grateful to R. Bourdallé-Badie, O. Le Galloudec (MERCATOR) and M. Déqué
(CNRM) for providing their NEMO and ARPEGE configurations. We also would like to thank
S. Valcke (CERFACS) for fruitful discussions, M. Pithon (Météo-France), N. Monnier and I.
d'Ast (CERFACS) for their help in code porting.

 Page 28 of 65

4. ARPEGE-NEMO porting and performance tests on
DEISA-PRACE-GENCI platforms

Authors: E. Maisonnave1, A. Caubel2 and O. Jorba2
1 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France
(CERFACS)
2 Institut Pierre Simon Laplace, France (IPSL)
3 Barcelona Supercomputing Center, Spain (BSC)

4.1 Introduction
Built and optimized for vector platforms, could ARPEGE-NEMO climate model be used
intensively on scalar machine like DEISA-PRACE-GENCI ones? This report describes the
encountered difficulties during the model porting phase on SGI Altix ICE (CINES), IBM Blue
Gene (IDRIS) and Marenostrum IBM JS21 (BSC) and details scalar/vector compared
performances. Sensibility tests on horizontal resolution will help us to outline a first
conclusion concerning scalar machine use for climate modelling.

4.2 Porting
CERFACS/Météo-France jointly developed climate model for AR5 IPCC exercise is built on
ARPEGE-IFS atmospheric model. This model is derived from the operational version used
by Météo-France for weather forecast and by ECMWF (European Centre for Medium Range
Weather Forecast). We associate it with an ocean model (NEMO) using the OASIS coupler.

Several atmospheric model resolutions have been tested, from truncation 159 (T159, about
100km side cells) to truncation 359 (T359, about 50km side cells), with 30 vertical levels.
Ocean is ½ degree broad.

ARPEGE version 5.1 has been used, NEMO version 3.1 and OASIS version 3.2 (tag
prism_2-3).

We remind you that MPI MPMD functionality is mandatory for our OASIS coupler (for both V3
and V4). Several instances of each of three parallel executables which compose our climate
model (atmosphere, ocean and coupler) are launched simultaneously (through mpirun or
mpiexec command); OASIS addresses sub-communicators re-definition to allow concurrent
internal parallelism and model parallelism.

Let's describe the major issues which occur during model install on the three machines we
access through the French 2009 DARI supercomputing allocation and IS-ENES
collaborations.

4.2.1 CINES SGI Altix
The cluster SGI Altix ICE 8200, JADE, is a scalar parallel supercomputer with a peak
performance of 147 Tflop/s. JADE is composed of 25 racks. One of these racks is used to
ensure the connection with the whole cluster (via 3 login nodes) and 24 computing racks.

This cluster consists of 12288 cores distributed on 1536 nodes (each node including 2 Intel
Quad-Core E5472 processors). 30 GB of useful memory can be actually used on each node,

 Page 29 of 65

i.e. over a total of 46 TB. The computing racks have access to a parallel file system Lustre
with a total capacity of (509 TB).

As far as we know, before IPSL Grand Challenge experiment made with the whole IPSL
LMDZ-NEMO climate model (see Report 2: IPSL-ESM (LMDZOR-NEMO-OASIS3) porting
and performance tests) the oceanic component only was available on this platform.
Consequently, compiler optimization upper to level O2 was not yet easily available on this
machine.

For atmosphere model, several functionalities have been disabled, in particular the whole
system of tracing routines (called “Mr Hook”). For future optimizations routine by routine, it
will be necessary to identify the dysfunction and re-activate the tracing.

Problem with ARPEGE 2D parallelism in coupled mode

A greater problem appears using 2D intern parallelism on coupled mode. Actually, ARPEGE
2D parallelism improvements allow:

1. on routines where equation are solved on grid points, MPI domain decomposition is
rectangular (following latitude but also longitude) and not only on latitude stripes,
which allows, of course, a greater parallelism.

2. on routines where equation are solved on spectral mode, parallelism is done on
spherical harmonics but also on vertical levels.

Parallelism skill on both grid points and spectral mode should be the same. That implies that
decomposition is limited by the product of spectral decomposition times vertical level
number, i.e. for a T159 resolution and 30 vertical levels, 3000 domains (about 7000 for a
T359).

On coupled mode, it seems that previously implemented OASIS interface routines have not
been updated to take into account the 2D parallelism. So, our study has been bounded by
the 1D parallelism limitations. Domain decomposition won't exceed 110 for a T159 resolution,
250 for a T359. Those figures are quite far from the optimum measured with ARPEGE model
on stand alone mode.

The most efficient optimization on coupling strategy has been deployed: OASIS parallelism
by coupling field (up to 16 resources used) and sequential coupling mode. Improvements are
in accordance with the one observed (at higher resolution) on NEC SX9 vector machine (see
Report 3: Development of a high resolution version of ARPEGE-NEMO climate model): time
spent on coupling routines related to communication or interpolation does not rise above the
elapsed time difference between ocean and atmosphere model. At this resolution, it seems
unnecessary to use an OASIS version insuring a greater scalability to the coupler (OASIS4).

Slowdown of ARPEGE internal time step in coupled mode

An issue appears comparing elapsed times of two atmosphere model configurations: on
coupled mode and on stand alone mode. The difference (the coupled mode is slower) not
only occurs at coupling time step, but at each model time step as well.

On coupled mode, each instance of the different models (and of the coupler) is mapped on a
resource allocated according to an unusual algorithm (machine dependant and not
changeable). Then, we cannot ensure that atmospheric processes won't share memory on a
node with an other process (ocean or coupler), which can disturb communications between
one model instances.

To limit those interaction risks, we launched 8 instances of our coupler, hoping that they will
be mapped by the MPI launcher on 8 cores of the same node, leaving to instances of the

 Page 30 of 65

other models a divisible by 8 numbers of resources.

According to this protocol, mean elapsed times for an atmosphere model time step (without
IO, without convection calculations, without coupling), with NEMO on 64 cores (for coupled
experiments only), are the following:

 ARPEGE on 16 resources ARPEGE on 104 resources

ARPEGE stand-alone 1.05 0.195

CPL, OASIS on 1 resource 1.09 0.264

CPL, OASIS on 8 resources 1.1 0.264

Table 4.1: Elapsed time (seconds) for an ARPEGE T159 internal time step

Booking the node number of cores (8) for OASIS does not change the observed slowdown.
And the slowdown increases with the number of cores allocated to ARPEGE (5% increase in
elapse time with 16 cores, 25% with 104). But, without any information on mapping algorithm
and their location, it won't be impossible to better investigate this issue.

Nevertheless, despite this unconstrained extra cost, best time performances with the T159 -
ORCA ½ configuration approach 1.5 days to simulate 10 years, using about 400 cores, a
quite reasonable figure compared to current configuration in use on vector machines at
Météo-France (3 hours to simulate 10 years on 8 processors with a T127-ORCA1
configuration).

4.2.2 BSC MareNostrum IBM JS21
MareNostrum is a state-of-the-art High Performance Computing system held by BSC. More
detailed information on the BSC MareNostrum HPC can be found in section 2.2.1.

Météo-France's climat model deployment on MareNostrum was straightforward due to
availability of NEMO and OASIS codes (previously installed by Arnaud Caubel (IPSL) and
David Vicente (BSC)). A simple modification on OASIS code was performed to trace model
components separated performances and a script provided to collect and analyse the results.
Description of this counter is made on section 3.2 Experimental design, on Report 3
Development of a high resolution version of ARPEGE-NEMO climate model for OASIS3
testing purpose.

ARPEGE porting was neither problematic, due to previous compiling with IBM XL FORTRAN
on other IBM platforms.

4.2.3 IDRIS IBM Blue Gene/P
The IBM Blue Gene/P system of IDRIS (babel) has 10 racks, each one containing 1024
compute nodes. A compute node has 4 computing cores running at 850MHz and 2GB of
memory. The total theoretical peak performance is 139Tflops (3.4Gflops by core).

Each rack is divided in two midplanes, each one containing 512 compute nodes (2048
cores). The compute nodes are grouped by 64 (“pset”) and each group has 1 I/O node.
Therefore, it is only possible to allocate partitions (group of compute nodes) by multiple of 64

 Page 31 of 65

(256 cores).

The machine has access to parallel filesystems with a total capacity of nearly 800TB.

Previously used on IBM Blue Gene/L and JS21 Mare Nostrum machines, both ocean and
atmosphere compilations were particularly easy going.

A fatal complication happened during OASIS execution phase: Due to some characteristic of
BG/P software suite, OASIS version 3 cannot be used without major code changes.

Actually, MPI MPMD launching mode implemented on this machine has two kinds of
restrictions:

1. an executable must be launched on an integer number of “pset”

2. MPI ranks given to instances of a same executable are not contiguous.

Our 3rd version of OASIS has been late adapted to a parallel use. MPI instance number could
not actually exceed the number of coupling field (15, in our case), which was not compatible
with the first constraint (minimum of 256 instances for one executable). A recent
improvement enables now OASIS to run without coupling fields: these “dummy” OASIS
instances could be added to the useful ones to reach the mandatory figure.

Secondly, OASIS3 sub-communicator definition associated to coupled components imposes
that MPI ranks of coupler instances should begin at zero, and should increase monotonically
(rank 0,1,2,3,4,5,6,7 for 8 OASIS instances). That's not compatible either with the second
constraint.

For the first time, we reach here a limitation of our pseudo-parallel OASIS3 coupler. To
complete our study on this machine, and to have a chance to process climate simulations on
this IBM Blue Gene/P machine, it is mandatory to develop the OASIS4 version of our
coupled system. This task began during the 2009 OASIS user support at IPSL (IS-ENES
WP4), designing the new interface of NEMO model.

Generally speaking, we also might wonder about the compatibility of our approach, based on
separate executable coupling and MPI MPMD mode, with the observed standardization of
supercomputers. We noticed that, for the moment, supercomputer users of others community
poorly take advantage of this mode. This is clearly a non standard use of the MPI library.
Should this technique become problematic on standardized machine such as massively
parallel supercomputers?

4.3 Performances of ARPEGE atmospheric component
Taking advantage of LMDZ' and ARPEGE's presence on the same supercomputer, some
common analysis have been performed with “PARAVER” BSC toolkit (see Report 2: IPSL-
ESM (LMDZOR-NEMO-OASIS3) porting and performance tests).

 LMDZ
1 task/node

LMDZ
4 tasks/node

ARPEGE
4 tasks/node

Instructions per cycle 0.62 0.47 0.33

Parallel efficiency 0.78 0.87 0.92

Table 4.2: Common LMDZ-ARPEGE analysis performances on Mare Nostrum (BSC)

 Page 32 of 65

If ARPEGE scalability exceed LMDZ' one, ARPEGE exhibits a slower number of instructions
per cycle, which could imply a higher number of memory access conflicts. Parallel efficiency
is slightly the same. All those figures could suggest that ARPEGE's higher scalability should
be mainly originated in its slower amount of communications.

Scalability tests have been processed with atmospheric model using two kind of resolution:
standard (T159, used by several laboratories within AR5 IPCC exercise) and high (T359,
used for short term forecasts). The high resolution version could be used for climate research
purposes, but still on experimental experiments, requiring an elevate amount of computing
resources.

Please notice that, on every machine, I/O routines have been disabled, due to performance
reasons but also for 2D parallelism mode considerations (see section 4.2.1 CINES SGI Altix).

On IBM BG/P, « DUAL » mode has been preferred (two physical cores out of 4 are
effectively used). On SGI Altix, every 8 cores of a node are used. The same on IBM JS21,
where 4 physical cores out of 4 are effectively used.

Figure 4.1: Compared performances (elapsed time) on several platforms for ARPEGE model

(T159 resolution)

 Page 33 of 65

Figure 4.2: Compared performances (elapsed time) on several platforms for ARPEGE model

(T359 resolution)

Those results suggest that time performances of the standard resolution ARPEGE model
(without IO) on those 3 scalar platforms are compatible with a production use (for both short
term and long term experimental needs). It's the same for the “frontier” T359 resolution,
considering that a hundred year of simulation can be processed during less than 15 days
(using 500 cores on SGI Altix machine).

For a production use, those good results must be confirmed and important improvements
must be undertaken:

• additional developments for IO enabling

• NEMO scalability (done after this report writing) and IO improvements (IO server,
currently under development for MPP compatibility)

• ARPEGE coupling interface rewriting to allow 2D parallelism compatibility

This present study on compared performances of ARPEGE's different resolution
configurations on highly parallel scalar machines convinced us to suggest a choice on model
definition for years to come.

 Page 34 of 65

Figure 4.3: Compared scalabilities on several platforms for ARPEGE model (T159 resolution)

Figure 4.4: Compared scalabilities on several platforms for ARPEGE model (T359 resolution)

 Page 35 of 65

As we can see on these figures, speed-up keeps acceptable values up to 500 cores, using
high resolution version of the model, whereas it weakens over 100 cores at standard
resolution.

This result cannot be extrapolated unlimitedly but it suggests that “weak scaling” could offer a
good solution to be able to test higher decompositions (up to 10.000 to 100.000 domains)
with higher resolution and begin to investigate issues that we sooner or later will encounter
(like fault tolerance compliance).

Our model scalability increasing with resolution, this is our “frontier” configuration that might
better take advantage of future massively parallel platforms.

Acknowledgments:
Authors are grateful to support teams of computing centres (IDRIS, CINES, BSC,
CERFACS) and vendors (IBM), particularly to Isabelle Dupays, Thierry Goldman, Pascal
Vezolle, Mathieu Cloirec et Isabelle d'Ast.

 Page 36 of 65

5. Porting and performance analysis of EC-Earth system on
MareNostrum Supercomputer

Authors: F. Martínez1, D. Vicente1, O. Jorba1and M. Val Martin1

1 Barcelona Supercomputing Center (BSC)

5.1 Introduction
5.1.1 EC-Earth System Model and BSC MareNostrum Supercomputer
The European Community Earth system model (EC-Earth) is an Earth System Model (ESM)
that was developed by a number of European National Weather Services and university
groups. It is based on the seasonal prediction system of European Centre for Medium-Range
Weather Forecasts (ECMWF) [Hazelenger et al, BAMS].

EC-Earth is under current development and consists of two main components: an
atmosphere, chemistry, land and vegetation model and an ocean and sea-ice model. Each of
these two main components contains various sub-components, which represent physical
processes, and climate-related biological and geochemical processes. These models
communicate with each other through a coupler. The used programming languages are
FORTRAN and C [Brandt, 2010]. The final software architecture of EC-Earth will consist of
five main software codes:

1. Coupler: The coupler software used is OASIS3, which manages a number of
operations related with a simulation with two o more interacting models. The
interacting models are the atmosphere model together with a land and vegetation
module, an atmospheric chemistry model and an ocean and sea-ice model.

2. Atmosphere model: The atmosphere model of EC-Earth is based on cycle 31r1 of
the Integrated Forecasting System (IFS) of ECMWF. The basic configuration contains
62 levels in the vertical, with a model top at 5hPa (~37 km). The dynamical part of the
model uses a spectral transform approach, with a present horizontal resolution of
T159. The physical parametrization schemes of the model (including clouds, rain,
radiation, turbulence and land surface processes) are all calculated on a reduced N80
Gaussian grid, which corresponds to a 1.125 degrees spacing (125 km). The
atmospheric model uses a two time-level semi-Langrangian scheme for its dynamics
with a 1-hour time step.

3. Ocean and sea-ice model: The ocean and sea-ice model is based on version 2 of
NEMO (Nucleus for European Modelling of the Ocean). The ocean general circulation
model (OGCM) is OPA (Océan Parallélisé). OPA is a primitive equation model which
is numerically solved on a global ocean curvilinear grid known as ORCA. ORCA1 has
a resolution of 1 degree and the southern pole grid is refined to resolve the
circumpolar currents. The vertical grid has 31 levels (the 31st level is below the ocean
bottom) with variable layer depth and a constant 10 m step in the top 150m. The
Louvain-la-Neuve sea-Ice Model (LIM) is a thermodynamic-dynamic sea-ice model
directly coupled with OPA.

4. Atmospheric chemistry model: The global chemistry model of EC-Earth, is called
TM5. It describes the atmospheric chemistry and transport of reactive or inert tracers
It can be run on a global spatial resolution of 6x4 or 3x2 degrees, with the option to
increase the resolution to 1x1 degrees over specific regions, e.g. over Europe, the
United States or Asia. It has been included as an online module that evaluates the
transport and concentrations of reactive gases and various aerosol types for the

 Page 37 of 65

meteorological conditions simulated by IFS. The concentrations of the simulated
greenhouse gases and the concentrations and relevant optical properties of the
aerosols can be fed back to calculate the associated direct and indirect radiative
forcings in IFS. Exchange between TM5 and IFS currently takes place on a 3- or 6-
hourly basis.

5. Land and vegetation module: The land-vegetation model is the hydrological
extension of the Tiled ECMWF Surface Scheme for Exchange processes over Land
(HTESSEL) and it is part of the atmosphere model.

The EC-Earth ESM has been ported successfully over different high performance computing
platforms (e.g., IBM P6 AIX, CRAY XT-5, Intel-based Linux Clusters, SGI Altix,
MareNostrum) at different sites in Europe (e.g., KNMI, ICHEC, ECMWF). The current version
of EC-Earth consists of three models: IFS, OASIS and NEMO. The development of the
different model versions was as follows:

• Version 0: Uncoupled model IFS CY31R1

• Version 1: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2)

• Version 2: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2), with local
ECMWF modifications and EC-Earth developments for CMIP5

• Version 3: Coupled model (IFS CY33 – OASIS3 v2.5 –NEMO3/LIM3)

The MareNostrum HPC is located at the Barcelona Supercomputing Center (BSC). A more
detailed description on the BSC MareNostrum HPC can be found in section 2.2.1.

5.2 Objectives
The main objective of this work is to identify and document the issues related with the
portability and performance of the EC-Earth model on the MareNostrum supercomputer. In
order to meet the standards for future HPC architectures (e.g., within the PRACE
infrastructure), it is important to understand the current performance of ESMs on state-of-the-
art computing systems. In this sense, we focus on the porting and performance analysis of
EC-Earth model on the MareNostrum supercomputer, a DEISA2 node.

In this report, we describe the efforts done to port the coupled EC-Earth model on
MareNostrum and the preliminary optimization tasks undertaken to improve the default
performance of the modeling system. A description of the execution characteristics of the
system is presented and results from a scalability study are discussed. Finally, we present
initial analysis of raw performance traces using the Paraver analysis software tool developed
at BSC (http://www.bsc.es/plantillaA.php?cat_id=485) and conclusions for future work.

5.3 Description of execution and evaluation tests
5.3.1 Porting
Three versions of EC-Earth have been compiled and run in MareNostrum: version 2.0, 2.1
and 2.2. Detailed instructions for compiling and running the model in its version 2.0 are found
in Stefanescu, 2008.

To compile EC-Earth (versions 2.0, 2.1 and 2.2) at MareNostrum some modifications on the
code were need. First, we included the flag -qextname for the multiple configuration files and
routines that required extra underscoring. The most optimized compiler in MareNostrum is
IBM XL compilers since MareNostrum is an IBM machine with PPC970 processors. This type

 Page 38 of 65

of compilers does not include by default the underscoring in the Fortran routines, which it
was required by the C code that calls to Fortran routines in the original EC-Earth code.
Second, changes in the source code were required to adapt the program to our architecture,
so the IBM AIX structure was selected as base. This approach required some tuning to
match the architecture IBM PPC LINUX running at BSC.

In addition to the changes described above, a particular compilation for IFS was needed for
versions 2.1 and 2.2 as a result of an incompatibility of the IFS software and the compiler
XLF version 12.1. After extensive testing, a two step compilation approach was used to
compile IFS within EC-Earth using XLF version 10.1 and 12.1 compilers. Compiling all IFS
with XLF v10.1 was not feasible as other modules within EC-Earth were only available for the
new XLF v12.1 compiler.

A platform intercomparison using EC-Earth version 2.1 and a simplified 10-year simulation
run showed that EC-Earth ports and performs well in different architectures of European
supercomputing centers including MareNostrum.

5.3.2 Execution
EC-Earth is executed in parallel using MPI and the default setting of 16 CPUs for NEMO and
1 CPU for OASIS. For NEMO, a default number of 16 CPUs was established by the EC-
Earth community. For OASIS, one CPU is used as EC-Earth does not use a parallelized
version of this coupler. Table 5.1 summarizes the requirements and resources needed to
execute EC-Earth in our platform.

MareNostrum uses a batch processing support, so all jobs must be run through it. The batch
system used in MareNostrum is a combination of two softwares: 1) SLURM, developed at
Lawrence Livermore National Laboratory and designed for large clusters, which works as a
resource manager and 2) MOAB, developed at Cluster Resources company, which works as
a job scheduler. The user then needs to specify the number of CPUs allocated for each task.
This is useful for hybrid MPI+OpenMP applications, in which each process spawns a number
of threads. The number of CPUs per task must be between 1 and 4, since each node has 4
CPUs (one for each thread). It is important to note that OpenMP settings are globally defined
for a whole run. It is also possible to define the number of tasks allocated in each node.
When an application uses more than 1.7GB of memory per process, it is not possible to have
4 processes in the same node because of an 8GB memory limit. Due to this special
configuration, the submitting batch script to send an EC-Earth run to the MareNostrum
queues is different to other platforms (see Table 5.1 for details).

Platform

Execution platform MareNostrum

Requirements ksh - korn shell (ksh93)
perl - used extensively with generic Makefile to build source libraries
mpi1 - required for parallel execution
Fortran 95 - a fortran 95 compiler that supports an auto-double (or -r8)
capability. OASIS3 requires Cray pointers.
OpenMP - if OpenMP is used then the MPI implementation is required to
be thread-safe
netCDF - the netCDF library for I/O of all NEMO and OASIS3

 Libraries Oasis: netcdf
Nemo: netcdf
IFS:

 Page 39 of 65

 blas - a standard (“off the web”) blas library
 dummy - stubs for routines that are never called
 ec- a small number of ecmwf utility routines
 emos - library of data manipulation routines, like bufrdc/ bufr
 (observation l e routines), gribex/ grib (spectral/grid point
 fields) and pbio/ simple C based I/O routines
 IFS - contains the main IFS source library, has many

subdirectories
 IFSaux - contains IFS utility routines (in particular MPL * interface

to MPI)
 lapack - public domain source of LAPACK routines (see also blas)
 prepdata - data preparation routines
 surf - surface package
 trans - IFS transform routines/data distribution

CPUs Used for each
component

IFS: 64 (NPRTRW =32 and NPRTRV =2)
NPROC: Total number of CPUs (NPRTV x NPRTRW)
NPRTRW: Number of CPUs used during transform phase in wave space
(max 47)
NPRTRV: Number of CPUs used during transform phase in vertical
direction (max 62)
OASIS: 1
NEMO: 16 (NEMOPROCX=4 and NEMOPROCY=4)

Submit job command NEMO_nproc=$((NEMO_nprocX*NEMO_nprocY))
minNEMO_nproc=$((IFS_nproc+1))
maxNEMO_nproc=$((IFS_nproc+NEMO_nproc))
total_nproc=$((maxNEMO_nproc+1))
echo "0 ${OASIS3_exe}" > silly.conf
echo "1-$IFS_nproc ${IFS_exe} -v ecmwf -e $EXPVER" >> silly.conf
echo "$minNEMO_nproc-$maxNEMO_nproc ${NEMO_exe}" >> silly.conf
srun -n$total_nproc -l --multi-prog silly.conf

Table 5.1: Summary of requirements and resources needed to run EC-Earth.

5.3.3 Optimization
The optimization process mainly focused on adapting the compilation flags in order to
improve the efficiency of the code (e.g., inlining of specific functions, test different levels of
optimizations and libraries, etc). In addition, we checked the performance of the I/O in the
two filesystems available in MareNostrum: 1) /scratch/, which is the local filesystem only
accessible from each node and with 36 GB, and 2) /gpfs/, which is globally available from
any node and with more than 100 TB of storage space. We chose to run EC-Earth within
gpfs/ because the use of the local filesystem did not improve the I/O behaviour, and scratch/
was limited in space and output files were more difficult to recover.

5.3.4 Scalability
To understand the performance of EC-Earth in MareNostrum, we did a scalability test using
EC-Earth version 2.2. The experiment consisted of running 1-month simulations for different
numbers of CPUs for IFS (i.e., 4, 8, 16, 32, 36, 64, 96, 128 and 256). In this study, we kept
constant setting of 16 CPUs for NEMO and 1 CPU for OASIS. We considered the number of

 Page 40 of 65

IFS CPUs as multiple of four because MareNostrum has four CPUs per node and to avoid
performance issues due to share memory resources with other applications. A constant
number of 16 CPUs was considered for NEMO since that was the default setting established
by the EC-Earth community for the Coupled Model Intercomparison Project (CMIP-5).

Figure 5.1 shows the speedup and the scalability efficiency of EC-Earth for different number
of IFS CPUs, and Table 5.2 summarizes the execution times. Only results from 4 to 128 IFS
CPUs are shown because running EC-Earth with 256 IFS CPUs was not feasible due to MPI
communication problems (only 2 out of 10 tests were successful). The relative speedup for
each number of CPUs is calculated as the ratio of execution time of the base number of
CPUs (in this case, 4 IFS CPUs, i.e., a total of 24 CPUs) and the execution time with X
CPUs; efficiency is the relative speedup multiply by the ratio of the CPUs (i.e., 24 over X). It
is important to note that the standard metric speedup is the ratio over the run with only one
CPU. We used the metric speedup ratio in this analysis as our objective was to determine
the optimum number of IFS CPUs to efficiently run EC-Earth. These results show that the
efficiency of EC-Earth in MareNostrum decreases when a large number (> 64) of IFS CPUs
are used, and that the optimum number of IFS CPUs to run EC-Earth in MareNostrum is 64.
It is important to note that the efficiency values are above one, which indicates an issue on
the EC-Earth performance when using a low number of IFS CPUs (<16). In addition, we
tested the EC-Earth performance for different balances between NPRTRW and NPRTRV
and found no significant performance variation.

Figure 5.1: Speedup and scalability efficiency of EC-Earth runs from 24 to 148 CPUs.

Numbers reported are the average of 10 runs (excluding the lower and the upper outlier to
avoid MareNostrum instability performances).

 Page 41 of 65

Number of CPUs Execution Time
24 (1 + 16 + 4) 13:53:58
28 (1 + 16 + 8) 07:13:39

36 (1 + 16 + 16) 03:48:08
52 (1 + 16 + 32) 02:05:11
56 (1 + 16 + 36) 01:57:49
84 (1 + 16 + 64) 01:13:35
116 (1 + 16 + 96) 00:56:35

148 (1 + 16 + 128) 00:49:00

Table 5.2: Execution time for each EC-Earth run. Numbers reported are the average of 10
runs (excluding the lower and the upper outlier to avoid MareNostrum instability
performances). Total number of CPUs is rounded to the closest multiple of four.

Table 5.3 shows a summary of computation times within EC-Earth considering coupling and
no-coupling times. The computation time is the addition of the time from the log for all time
step, the time without coupling is estimated as the product of number of time steps by the
mean time of the time steps without coupling stage and the coupling percentage is the
fraction of time that the code uses for coupling, based on the coupling and non-coupling
times. We find that the coupling percentage increases with the number of CPUs due to a
decrease in computation time. From the log files (not shown), we find that there is a
significant larger time for processing every 3 hours, likely as a result of this coupling.

Number of CPUs Computation time Coupling percentage Time without
coupling

24 (1 + 16 + 4) 13:53:23 13,27% 12:02:50
28 (1 + 16 + 8) 07:11:45 13,73% 06:12:27

36 (1 + 16 + 16) 03:46:52 14,56% 03:13:51
52 (1 + 16 + 32) 02:03:46 22,01% 01:36:25
56 (1 + 16 + 36) 01:57:24 25,16% 01:27:51
84 (1 + 16 + 64) 01:11:50 29,14% 00:50:54
116 (1 + 16 + 96) 00:55:41 34,21% 00:36:38

148 (1 + 16 + 128) 00:47:22 39,20% 00:28:48

Table 5.3: Example of distribution of computing and coupling time extracted from a single
EC-Earth run. The total number of CPUs is rounded to the closest multiple of four.

5.3.5 Traces
We used Paraver to further test the performance of EC-Earth in MareNostrum. Paraver is an
open source performance visualization and analysis tool developed in BSC. Figure 5.2
shows an example of one of the Paraver visualization modes: colors indicate the CPU states
(e.g., running, waiting for communication, synchronization, group communication,
communication send, I/O), the xaxis represents time, and the yaxis represents the different
CPUs (e.g., 1 for OASIS, 4 for IFS and 16 for NEMO in our example).

 Page 42 of 65

Figure 5.2: Example of a Paraver graphical view. OASIS, IFS and NEMO are run with 1, 8
and 16 CPUs, respectively. .

In addition from visualizing the CPU behaviour, performance statistics can be extracted from
Paraver. We analyzed some of these parameters: the “load balance” is the average
percentage of time each thread is executing over the maximum of that percentage (one for
an ideal perfect balanced code and one/CPUs# for a totally unbalanced code); the
“communication factor” is the maximum of the percentages of time any thread is executing,
the “code replication” reflects the increased work the model will have to do, due to non-
parallelized code repeated over several CPUs and the cost of the computations needed to
perform the communications, i.e., the total number of instructions of that executions over the
number of instructions executed for the 24 CPUs run; the “average instruction per cycle
(IPC)” describes the internal behaviour of the code; the “speedup” is the execution time of
the base number of CPUs (in this case, 24), over the execution time with X CPUs; the
“efficiency” is the ratio of speedup over the ratio of the CPUs.

For a reference, the range obtained from load balance, communication factor, code
replication and average IPC parameters gives an idea of the parallelization performance of
the code in a specific aspect (> 0.9 well, 0.8-0.9 fairly well and <0.8 can be improved). It is
important to note that values below 0.8 do not mean that there is a problem within the code,
as this regular performance might be inherent to the model.

As a preliminary test, we created traces for 1-day simulation runs. Figure 5.3 shows results
for the tests performed with 16, 32 and 64 IFS CPUs. This test shows the existence of a load
imbalance between IFS and NEMO (see red areas in NEMO compared to IFS, i.e., NEMO is
waiting for communication while IFS is still processing). However, this load imbalance
improves as the number of IFS CPUs increases. In addition, we find that somehow there is a
serial processing at the startup and some other periods (see highlighted regions in green),
and that there is a significant larger time for processing every 3 hours due to the coupling
(not shown).

 Page 43 of 65

Figure 5.3: Trace visualization of a 24 hour EC-Earth simulation for 16 (top), 32 (middle) and
64 (bottom) IFS CPUs. NEMO and OASIS were run with 16 and 1 CPUs, respectively.
Colors indicate running (blue), waiting for communication (light red), synchronization (dark
red), group communication (orange), communication send (pink) and I/O (green). Green
vertical lines indicate the initialization part of the trace that does not scale.

Figure 5.4 shows a comparison of a 3-hour run, including one coupling step, for EC-Earth
using 16, 64 and 128 IFS CPUs (please, note the time axis scale is different in each plot).
This Paraver analysis shows clearly that OASIS acts as a bottleneck and is always an
important limiting factor independently of the number of IFS CPUs used because during
coupling both IFS and NEMO are waiting for communication. Based on the Paraver analysis,
we find that the coupling time takes about 2 seconds, confirming that the coupling time
calculated in Table 5.2 corresponds in fact to the coupling stage.

In addition, we observed the existence of an extreme load imbalance between IFS and
NEMO on the 16 IFS CPUS and a large imbalance for 64 IFS CPUs, indicating that IFS acts
as a bottleneck and another important limiting factor in EC-Earth. The load imbalance
improves with 128 IFS CPUs and IFS and NEMO can both act as limiting factor depending
on the time step.

Overall, this analysis shows that IFS spends most of the time running, whereas NEMO
spends an important fraction of time doing data transfer. This implies that, at MareNostrum,
NEMO may not scale well beyond 16 CPUs. Previous studies showed the significant
scalability of NEMO using MPI-OpenMP and recommend running NEMO using this parallel
technique. However, we use only MPI parallelization for NEMO at MareNostrum because IFS
is run with MPI. MareNostrum is a distributed memory system and does not support a hybrid
parallel execution, i.e., one software running with MPI parallelization and another with
OpenMP+MPI within the same submit job.

 Page 44 of 65

Figure 5.4: Example of a 3-hr trace visualization EC-Earth, showing a close-up view of the
coupler communication for 16 (top), 64 (middle) and 128 (bottom) IFS CPUs. NEMO and
OASIS were run with 16 and 1 CPUs, respectively. Colors indicate running (blue), waiting for
communication (light red), synchronization (dark red), group communication (orange),
communication send (pink) and I/O (green).

Table 5.3 summarizes the statistical parameters calculated from the Paraver analysis. This
table shows that load balance tends to improve as the number of IFS CPUs increases.
Communication performance decreases with the number of IFS CPUs, as a result of a
reduction on the percentage of time that is used for calculations while the amount of
communication remains the same. Similar behaviour is observed for code replication due to
an increase in the calculations needed to distribute the workload and to non-parallelization of
parts of the code. Not surprisingly, the average IPC improves as the number of IFS CPUs
increases. Based on a further analysis of the average IPC from Paraver (not shown), we find
that IFS has a significant larger IPC than NEMO and OASIS. Similarly to results found in
section 1.3.4, the Paraver analysis confirms that the efficiency of EC-Earth in MareNostrum
decreases when a large number (> 64) of IFS CPUs is used, and that the optimum number of
IFS CPUs to run EC-Earth in MareNostrum is 64.

of CPUs 24 28 36 52 56 84 116 148
Load balance 0,21 0,36 0,54 0,71 0,73 0,84 0,84 0,64
Communications 0,97 0,95 0,91 0,84 0,84 0,76 0,72 0,62
Code replication 1 0,82 0,92 0,69 0,61 0,57 0,55 0,43
Avg. IPC 0,31 0,37 0,38 0,5 0,59 0,63 0,64 0,66
Speedup 1 1,92 3,63 6,65 7,39 11,63 15,22 12,61
Efficiency 1 1,65 2,42 3,07 3,17 3,32 3,15 1,22

Table 5.3: Statistic metrics obtained with Paraver excluding the initialization stage (i.e., 21-
hour run). Total number of CPUs is reported to the closest multiple of four.

 Page 45 of 65

5.4 Summary and Conclusions
The EC-Earth ESM was successfully ported to the BSC MareNostrum supercomputer, a
system based on IBM PowerPC 970MP processors and run under a Linux Suse distribution.
We detected a compilation incompatibility of IFS in EC-Earth v 2.1 and 2.2 to the compiler
XLF version 12.1. This incompatibility was solved by a two step compilation approach using
the XLF version 10.1 and 12.1 compilers.

The EC-Earth performance was analyzed with respect to scalability and trace analysis with
the Paraver software. The performance analysis was done using the standard configuration
of EC-Earth version 2.2, which uses 1 CPU for OASIS3 and 16 CPUs for NEMO, and
modifying the number of CPUs allocated for the IFS model.

Our analysis showed that EC-Earth performs fairly well in MareNostrum, and that the efficient
number of IFS CPUs is 64. Running EC-Earth with a larger number of IFS CPUs (>128) is
not feasible at the moment since some issues exists with the IFS-NEMO balance and MPI
communications. We detected a negligible load imbalance within IFS, which is typical in
models with complex physical calculations, and an important performance loss of EC-Earth
in the coupling stage, as OASIS acts as a bottleneck since the serial version of OASIS is
used.

Acknowledgments:
We wish to thank Xavier Abellán from the BSC Operations team, and Pedro Jiménez from
Universidad de Murcia for their help porting and running EC-Earth in Marenostrum, and Judit
Giménez of Computer Sciences Department of BSC for her help on the analysis of Paraver
traces. We appreciate Simona Stefanescu from ECMWF and Tido Semmler from Met
Eireann for technical help with the EC-Earth scripts.

 Page 46 of 65

6. Performance analysis and porting of the CMCC-MED
model

Authors: I. Epicoco1, S. Mocavero2, G. Aloisio1,2,

1 University of Salento, Lecce, Italy
2 Euro-Mediterranean Center for Climate Change (CMCC)

6.1 CMCC-MED model description
The CMCC-MED model, developed under the framework of the EU CIRCE Project (Climate
Change and Impact Research: the Mediterranean Environment), provides the possibility to
accurately assess the role and feedbacks of the Mediterranean Sea in the global climate
system. CMCC-MED is a global coupled ocean-atmosphere general circulation model
(AOGCM) coupled with a high-resolution model of the Mediterranean Sea. The atmospheric
model component (ECHAM5) has a horizontal resolution of about 80 Km with 31 vertical
levels, the global ocean model (OPA8.2) has horizontal resolution of about 2° with an
equatorial refinement (0.5°) and with 31 vertical levels, the Mediterranean Sea model (NEMO
in the MFS implementation) has horizontal resolution of 1/16° (∼7 Km) and 72 vertical levels.
The communication between the atmospheric model and the ocean models is performed
through the CMCC parallel version of OASIS3 coupler, and the exchange of SST, surface
momentum, heat, and water fluxes occurs every 2h40m. The total number of fields
exchanged through OASIS3 is 35. The global ocean-Mediterranean connection occurs
through the exchange of dynamical and tracer fields via simple input/output operations. In
particular, horizontal velocities, tracers and sea level are transferred from the global ocean to
the Mediterranean model through the open boundaries in the Atlantic box. Similarly, vertical
profiles of temperature, salinity and horizontal velocities at Gibraltar Strait are transferred
from the regional Mediterranean model to the global ocean. The ocean-to-ocean exchange
occurs with a daily frequency, with the exchanged variables being averaged over the daily
time-window.

6.1.1 Configuration
In Table 6.2 the compilation keys for each component model are reported.

Model Name Compilation keys

NEMO - Mediterranean Sea key_dynspg_flt key_ldfslp key_zdfric key_dtasal key_dtatem
key_vectopt_loop key_vectopt_memory key_oasis3
key_coupled key_flx_circe key_obc key_qb5 key_mfs
key_cpl_discharge_echam5 key_cpl_ocevel key_mpp_mpi
key_cpl_rootexchg key_useexchg

ECHAM5 - Atmospheric __cpl_opa_lim __prism __CLIM_Box __grids_writing
__cpl_maskvalue __cpl_wind_stress

 Page 47 of 65

Model Name Compilation keys

OPA8.2 - Ocean Global key_coupled key_coupled_prism key_coupled_echam5
key_coupled_echam5_intB key_orca_r2 key_ice_lln
key_lim_fdd key_freesurf_cstvol key_zdftke key_flxqsr
key_trahdfiso key_trahdfcoef2d key_dynhdfcoef3d
key_trahdfeiv key_convevd key_temdta key_saldta
key_coupled_surf_current key_saldta_monthly key_diaznl
key_diahth key_monotasking

Table 6.2: Compilation keys for models

Each component model is used with the spatial and temporal resolutions shown in Table 6.3,
while the coupler OASIS3 has been configured as in Table 6.4.

 OPA8.2 ECHAM5 NEMO

time step 4800s 240s 600s

grid points 182x149 480x240 871x253

vertical levels 31 31 72

Table 6.3: Spatial and temporal resolution of the component models

OASIS3 configuration

Coupling period 9600s

Total number of fields
to be transformed 35

 Number of fields
exported to

Number of fields
imported from LAG

OPA8.2 17 6 4800s

ECHAM5 9 26 240s

NEMO 9 3 600s

Table 6.4: OASIS3 configuration

A detailed view of the transformations performed by OASIS3 on the exchanged fields is
given in Table 6.5.

 Page 48 of 65

Table 6.5: OASIS3 transformations

6.1.2 Computing environment
All of the experiments have been made on two different architectures available at the CMCC
Supercomputing Centre: a scalar cluster based on IBM Power6 processors and a vector
cluster based on NEC-SX9 processors.

The IBM cluster, named Calypso, has 30 IBM p575 nodes, each of them equipped with 16
Power6 dual-core CPUs at 4.7GHz (8MB L2/DCM, 32MB L3/DCM). With Simultaneous Multi
Threading (SMT) support enabled, each node hosts 64 virtual cores. The whole cluster
provides a computational power of 18 TFLOPS. Each node has 128GB of shared memory
(4GB per core), two local SAS disks of 146,8GB at 10k RPM and two Infiniband network
cards each one with four 4X IB galaxy-2 and four Gigabit network adapters. Some nodes are

 Page 49 of 65

used as GPFS and TSM servers and have also two fibre channel adapters at 4Gb/s FC and
two fibre channel adapters at 8Gb/s for interconnecting to the storage system. Calypso has 2
storage racks, each one equipped with 280 disks of 750GB, providing a total capacity of
210TB of raw storage. These disks are working with GPFS. Calypso interconnects also a
tape library with 1280 cartridges LTO4 at 800GB (1PB total capacity) and Tivoli TSM for
handling Hierarchical Storage Management. The default compilers are IBM XL C/C++, and
IBM XL FORTRAN. The default resource scheduler manager is LSF.

The NEC cluster, named Ulysses, has 7 nodes based on SX9 processors. Each node has 16
CPUs at 3.2GHz, 512GB of shared memory, a local SAS D3-10 disk of 3.4TB and uses IXS
Super-Switch interconnection with a bandwidth of 32GB/s per node (16GB/s for each
direction) to the high-speed interconnection and four 4Gb/s FC adapters to storage system.
The whole cluster provides a computational power of 11.2 TFLOPS. Ulysses has 3 storage
racks with three SAS D3-10 disks at 9.2TB and three SAS D3-10 disks at 6.9TB for a total
capacity of 48.3TB of raw storage. The GFS is used for handling the storage system. The
default compilers are SX C/C++ and SX FORTRAN. The default resource scheduler
manager is NQSII.

6.2 Portability on IBM Power6 architecture
The porting activity on the IBM cluster consists of the following three steps:

A1: compilation, configuration and execution of the component models as they are executed
on the vector cluster, without any code optimization.

A2: analysis of bottlenecks and definition of component models to be improved in order to
optimize the coupled model performance.

A3: optimization of coupled model as result of the previous activity, taking into consideration
the target architecture and the availability of native libraries performing better w.r.t. those
actually used.

The version of ECHAM5 included within the CMCC-MED coupled model is optimized for the
NEC-SX9 cluster and it is characterized by several physical improvements introduced by
CMCC-INGV. Moreover, a stand-alone version of the atmospheric model provided by IBM
and optimized for scalar architecture Power6, is available. In order to maintain the
optimizations of the stand-alone version, an integration of the physical changes within it has
been started. To date, the ECHAM5 stand-alone version has been coupled in the CMCC-
MED model and we are working on the integration of the physical improvements. The
Mediterranean component NEMO at 1/16° has been also developed by CMCC (IOIPSL
provides a version of NEMO from 1° to 1/12°).

The porting activity of the CMCC-MED model on IBM Power6 is currently at stage A2. During
stage A1, we used only the compiler optimization flags for tuning the model on the scalar
architecture. Moreover, to compile CMCC-MED at IBM Power6 cluster, some modifications
on the code were needed.

From a preliminary profiling analysis of ECHAM5 and NEMO component models we deduce
that NEMO performances are limited by the communication overhead when open boundaries
are activated and ECHAM5 does not scale well since we are using a version deeply
optimized for vector clusters.

6.3 Performance analysis
In the High-Performance Computing context, the performance evaluation of a parallel
algorithm is made mainly considering the elapsed time running the parallel application with

 Page 50 of 65

different number of cores and different problem sizes (for scaled speed-up). Typically,
parallel applications embed mechanisms for efficiently using the allocated resources,
guarantying for example a good load balancing and reducing the parallel overhead.
Unfortunately, this assumption is not true for coupled models. These models were born from
the coupling of stand-alone climate models. The component models are developed
independently from each other and they follow different development roadmaps. Moreover,
they are characterized by different levels of parallelization, by different requirements in terms
of workload and they have their own scalability curve. Considering a coupled model as a
single parallel application, we can note the lacking of the implementation of a policy for
balancing the computational load on the available resources.

During the scalability analysis of the CMCC-MED coupled model, we established a
methodology for studying the scalability of parallel applications composed by independent
parallel applications interacting each other with different communication mechanisms.

Coupled models are executed typically using a MPMD approach; established the total
number of cores allocated for the whole coupled model, how we have to distribute them for
each of the component models?

We have addressed this issue according to the following methodology:

1. Within the coupled model we analyzed the scalability curve of each component model and
coupler.

2. We defined an analytic performance model at coarse grain level for the whole coupled
model.

3. Using the experimental data given during the stage 1, and evaluating the model defined in
stage 2, the best configurations have been extracted for different numbers of available cores.

4. We experimentally evaluated the behaviour of the coupled model considering only the best
configuration for a given number of allocated cores.

In the next paragraphs, we will show the result from each stage of the proposed methodology
on the two different architectures available at the CMCC.

6.3.1 Stage 1: scalability evaluation of the component models
The test aims at both studying the speed-up of each component model and finding the
optimal run configuration in order to efficiently exploit the computing resources.

Several experiments have been performed to evaluate the scalability of each single
component model. For each of these, we report the elapsed time for executing one-day
simulation (it does not include the I/O time for writing the restart files).

Each model has been separately evaluated but within the coupled model. We used the
PRISM libraries for instrumenting the code and for extracting the elapsed time of the single
component models. We have considered the time elapsing between a prism_get and a
prism_put as the time spent by the model for simulating all the time steps included in a
coupling period. The coupling time has been evaluated considering the elapsed time
between a clim_Import and a clim_export.

The components we have taken into account are ECHAM5, NEMO and the OASIS3 coupler
that are the most computational intensive components. The OPA8.2 model is run in
configuration ORCA2 using the sequential version. It is not been analyzed since it did not
represent a bottleneck for any of the configurations taken into consideration.

All of the experiments have been performed using only MPI1 approach. Even if NEMO and
ECHAM5 models support a hybrid parallelization based on OpenMP/MPI, in our experiments
the number of threads for process has been set to 1.

 Page 51 of 65

In the following, we describe the analysis of scalability for each component model.

 Compilation flags Linked libraries

NEC-SX9 -pi exp=cuentr,cuadjtq,cubasmc
expin=cuentr.f90,cuadjtq.f90,cubasmc.f90
-Wf,-init heap=zero stack=zero -Popenmp
-Chopt -sx9

libsupport.a libblas.a liblapack.a
libpsmile.MPI1.a libmpp_io.a
libnetcdf.a

IBM Power6 -qsmp=omp -q64 -O5 -qstrict -qarch=pwr6
-qtune=pwr6 -qcache=auto -qfixed -
qsuppress=1518-061:1518-128 -
qMAXMEM=-1 -Q -qsuffix=cpp=f90 -
qzerosize -qessl -qnosave -qalias=nostd

libsupport.a libessl.a libmassv.a
liblapack3264.a libxlf90_r.a
libpsmile.a libmpp_io.a
libnetcdf.a

Table 6.6: Compilation flags for ECHAM5

6.3.1.1 ECHAM5 component

The ECHAM5 component has been compiled on NEC-SX9 and IBM Power6 using the
compilation flags in Table 6.6.

On NEC-SX9, ECHAM5 scales up to 28 processors (Figure 6.1a). On IBM Power6 some
problems occurred when using block domain decomposition. Using only 1D decomposition,
with a resolution of T159 (corresponding to 240x480 grid points), the maximum number of
processes is 60. Hence, the scalability of ECHAM5 on IBM Power6 has been evaluated up to
60 cores (Figure 6.1b).

 (a)

 Page 52 of 65

 (b)

Figure 6.1: Scalability of ECHAM5 component model on NEC-SX9 (a) and on IBM Power6
(b) for one-day simulation

6.3.1.2 NEMO component

The NEMO component model has been compiled on NEC-SX9 and IBM Power6 using the
compilation flags in Table 6.7.

 Compilation flags Linked libraries

NEC-SX9 -size_t64 -dw -Wf\"-A dbl4\" -sx9 -pi auto -P
stack -C vopt -Wf"-init stack=nan" -Wl"-f
nan" -Wf"-P nh" -Wf,-pvctl noassume
loopcnt=10000

liboasis3.MPI1.a
libpsmile.MPI1.a libmpp_io.a
libclim.MPI1.a libnetcdf.a

IBM Power6 -q64 -c -qfixed -qrealsize=8 -qstrict -
qarch=pwr6 -qtune=pwr6 -qcache=auto -O5

liboasis3.MPI1.a
libpsmile.MPI1.a libmpp_io.a
libclim.MPI1.a libnetcdf.a

Table 6.7: Compilation flags for NEMO

On the vector cluster, NEMO model presents a not regular trend in the scalability (Figure
6.2a). The scalability is limited to 24 vector processors. On IBM Power6, the model scales
better up to 64 scalar cores (Figure 6.2b). It is worth noting here that the elapsed time on
both machines differs of one order of magnitude.

 Page 53 of 65

 (a)

 (b)

Figure 6.2: Scalability of NEMO component model on NEC-SX9 (a) and on IBM Power6 (b)
for one-day simulation

6.3.1.3 OASIS3 coupler

The OASIS3 coupler has been compiled using the compilation flags in Table 6.8.

 Compilation flags Linked libraries

NEC-SX9 -Pstack -pi auto nest=3 line=10000
exp=iminim,rmaxim,rminim,grid_search_bilin
expin=src/,libsrc/scrip -Ep -sx9 -Wf,"-P nh" -
Wf,"-pvctl noassume loopcnt=5000000
vworksz=100M" -Wf,"-A idbl4" -Wf,"-msg o" -
Wf,"-pvctl fullmsg" -Wf,"-L fmtlist transform
map summary noinclist" -Chopt -Wf,"-ptr
byte"

libpsmile.a libanaisg.a
libanaism.a libfscint.a
libscrip.a libclim.MPI1.a
libmpp_io.a

 Page 54 of 65

 Compilation flags Linked libraries

IBM Power6 -qrealsize=8 -q64 -qalias=nostd -O0 -
qsuffix=cpp=F90

libpsmile.a libanaisg.a
libanaism.a libfscint.a
libscrip.a libclim.MPI1.a
libmpp_io.a

Table 6.8: Compilation flags for OASIS3

The parallel approach used in the CMCC version of OASIS3 follows an embarrassing parallel
algorithm. The scalability on both architectures shows that the communication overhead is
negligible. The not linear trend of the scalability, corresponding to some number of
processes, is due to the not balanced workload on different fields (Figure 6.3). The parallel
algorithm limits the scalability to the number of exchanged fields (in our case it is equal to
35).

 (a)

 (b)

Figure 6.3: Scalability of OASIS3 coupler on NEC-SX9 (a) and on IBM Power6 (b) for one-
day simulation

 Page 55 of 65

6.3.2 Stage 2: definition of the performance model
For the definition of the analytic performance model, we can consider that all the model
components are executed in parallel between two coupling steps. At each coupling step,
each model sends their fields to the coupler and waits for receiving from the coupler the
fields coming from the other models. The coupler, only after receiving all of the fields to be
exchanged, performs their transformations, sends the changed fields to the models and waits
for receiving fields at the next coupling step. During the coupling period all the models are
synchronized and waits for coupler ending transformations (coupler transformations and
models elaboration could be overlapped using the OASIS3 utility named SEQ. During the
analysis of the CMCC-MED performance, this utility has not been used). The analytic model
defines the execution time for a single coupling step as the maximum computing time spent
by the component models plus the coupling time (the last time step of NEMO, performed
between a coupling step and the next one, is overlapped with the coupling activity for
modellers chosen):

T =max tN (pN)* (nsN
−1),tE (pE)* nsE{ }+max tO (pO),tN (pN){ }

 (1)

where

tN is the computing time for executing a time step of NEMO component model

tE is the computing time for executing a time step of ECHAM5 component model

nSN is the number of time step of NEMO component model

nSE is the number of time step of ECHAM5 component model

tO is the computing time for one coupling step

pN is the number of processes allocated for NEMO component model

pE is the number of processes allocated for ECHAM5 component model

pO is the number of processes allocated for OASIS3 coupler

In order to find the best configuration we have to find the pE, pN and pO values minimizing the
execution time T. The constraint imposes that the total number of processors must be equal
to the allocated processors (K).

 pE + pN + pO +1=K (2)

6.3.3 Stage 3: definition of the best configurations
During this stage we used the experimental results obtained in the stage 1 for evaluating the
performance model of the whole coupled model. The charts have been produced setting K to
the total number of CPUs/cores to be used and evaluating the performance model for all of
the permutations of pE, pN, and pO satisfying equation 2.

Taking into account the time step intervals and the coupling period (reported on Table 6.3
and Table 6.4) we have nSN = 16 and nSE = 40

 Page 56 of 65

6.3.3.1 Best configurations on NEC-SX9

 (a)

 (b)

 (c)

 Page 57 of 65

 (d)

Figure 6.4: Estimated execution time of the CMCC-MED on NEC-SX9 for K=16 (a), K=32 (b),
K=48 (c) and K=64 (d)

The best configurations are represented in the Table 6.9.

K pE pN pO
16 10 4 1
32 20 8 3
48 22 12 13
64 26 24 13

Table 6.9: Best configurations on NEC-SX9

6.3.3.2 Best configurations on IBM Power6

 (a)

 Page 58 of 65

 (b)

 (c)

Figure 6.5: Estimated execution time of the CMCC-MED on IBM Power6 for H=64 (a),
K=104 (b) and for K=192 (c)

K pE pN pO
64 20 40 3

104 24 64 15
192 60 100 31

Table 6.10: Best configurations on IBM Power6

6.3.4 Stage 4: scalability trend of CMCC-MED model
Considering the trend of the performance model, evaluated on the NEC-SX9 (Figure 6.6), we
can make the following considerations:

1. The execution time could decrease with a greater number of processors. The actually
availability of processors on NEC-SX9 limited the analysis of scalability to 4 nodes.

2. Established the number of nodes to be used, the best performance have been
obtained when the allocated nodes are fully used.

 Page 59 of 65

Figure 6.6: Scalability of CMCC-MED on NEC-SX9

On IBM Power6 cluster (Figure 6.7) we can make the following considerations:

1. The limit of the scalability has been reached at 104 cores. Even if the cluster provides
a greater number of nodes, our analysis stopped at 3 nodes since we have reached
the minimum elapsed time.

2. Established the number of nodes to be used, the best performance have been
obtained not always when the allocated nodes are fully used, i.e. with 3 nodes it is not
necessary to use all 192 cores, being 104 enough (the elapsed time on 104 and 192
is the same).

Figure 6.7: Scalability of CMCC-MED on IBM Power6

The scalability of the coupled model has been experimentally evaluated varying the number
of nodes and using the best configurations suggested by the performance model. The
experiments take into account a 5 days simulation and include the I/O time for writing the
restart files. The results confirmed the likelihood of the performance model with the real
computational behaviour of the coupled model, as shown on Figure 6.6 and Figure 6.7.

 Page 60 of 65

PART III: Concluding remarks

 Page 61 of 65

1. Summary of the base-case results
The deliverable reports results obtained from four couple models (CMCC-MED, ARPEGE-
NEMO, IPSL-ESM and EC-Earth) and four stand-alone models (NEMO, ARPEGE, LMDZOR
and ECHAM5) tested on a number of HPC infrastructures within the IS-ENES network (e.g.,
Ekman, Kappa, MareNostrum, CINES, IDRIS, Calypso, Ulysses). The collaborative effort
among application owners and computer specialists led to the identification of numerous
strengths and limitations of these ESMs and models. The main findings are summarized
below:

• NEMO stand-alone model:

o The ORCA1 benchmark scales well to around 16 nodes (128 cores) on
Ekman (Quad-Core AMD Opteron 2374 HE @ 2.19 GHz; 8 MPI processes /
node) and Kappa (Quad core Intel(R) Xeon(R) CPU E5520 @ 2.27GHz,
code named Nehalem; 8 MPI processes / node) systems. The scaling is
gradually lost due to the large amount of the time is spent in MPI calls.

o The choice of the MPI library has some impact on run time of NEMO code.
Open MPI runs are consistently better than Scali MPI. The different behaviour
may be due to some MPI internal algorithm differences.

• LMDZOR atmosphere stand alone model:

o The stand alone atmospheric model was tested on MareNostrum (PowerPC
2,3 GHz, 4 CPU / node, 8 Gb / node), Vargas Power6 (4,7 GHz, 32 CPU /
node, 128-256 Gb / node) and Mercure SX8R (vector processors, 8 CPU /
node, 64 Gb / node). The speedup is lower for PowerPC than for Power6.
Similar behaviour can be obtained on Power6 compared with vector
processors by increasing the number of cpus used.

• ARPEGE-NEMO coupled model and OASIS3:

o Several configurations of ARPEGE-NEMO have been set up in order to check
OASIS3 capability at high end resolutions. Tests were performed on Météo-
France supercomputer (6+7 vector nodes of 16 SX9 processors each and 1
Tb memory per node).

o An internal counter allows to finely determine the number of processors which
minimizes the difference between oceanic and atmospheric coupling step
durations.

o Two optimizations on OASIS configuration (sequential mode + pseudo
parallelism) speed up the coupled standard runs between 15 and 25%. A
higher resolution is tested to analyse OASIS3 performance. Both
optimizations contribute to reduce the total simulation time from 8 to 4 hours.
Those experiments prove the OASIS3 capability to drive high end resolution
coupled simulation on vector machines.

• ARPEGE-NEMO coupled model:

o The coupled model was ported on SGI Altix ICE (CINES), IBM Blue Gene
(IDRIS) and Marenostrum IBM JS21 (BSC) to analyse if the model can
intensively be used on scalar machines. Major problems were encountered on
Blue Gene architecture. OASIS3 cannot be used without major changes on
such architecture. No relevant problems were detected on the other platforms.

• IPSL-ESM coupled model:

 Page 62 of 65

o The porting of IPSL-ESM to MareNostrum (IBM Power PC 970MP @ 2.3
GHz; 4 MPI processes / node; 8 Gb / node) supercomputer highlights some
limits of the model performance in such type of architectures: low memory
available per node, scalar processors with low frequency calculation,
moderate MPI scalability, no hybrid MPI-OpenMP runs allowed.

o A higher resolution configuration was ported on CINES-Jade (2 Intel Quad-
Core E5472 processors; 30 Gb / node). The hybrid parallelisation MPI-
OpenMP allows running the coupled model on around 2200 cores.

• EC-Earth coupled model:

o The EC-Earth ESM was successfully ported to Marenostrum (PowerPC 2,3
GHz, 4 CPU / node, 8 Gb / node) supercomputer. The atmospheric
component of the system scales well to around 64 cpus. The current
configuration of the system did not allow to run NEMO code with more than 16
cpus.

o The heterogeneous parallelisation MPI and MPI+OpenMP is not currently
allowed on the Marenostrum system. This is an important limitation on this
architecture as it prevents taking advantage of the speedup of NEMO when
run using MPI+OpenMP.

• CMCC-MED coupled model:

o The coupled model was ported and tested on Calypso (IBM Power6 dual-core
@ 4,7 GHz) scalar machine and Ulysses (NEC SX9 processors, 16 cpu /
node @ 3.2 GHz, 512 Gb of shared memory) vector machine.

o The coupled model scales well to around 32 cpus on Ulysses machine and
104 cpus on Calypso. On cluster machines, the best performance is not
always obtained when the allocated nodes are fully utilised (maximum
performance may be on fewer cores than are allocated on a node-basis).

 Page 63 of 65

2. Recommendations for future work
Several strategies are planned in LIU, IPSL, BSC, CERFACS and CMCC for future work.

At LIU, they plan continuing to profile NEMO, including MPI calls along with other functions
and subroutines using different profiling tools. In addition, they will put some light weight
timers in the code to analyze its behaviour and learn in detail about potential load imbalances
and other bottlenecks. They plan to analyze scaling of main time consuming routines and
figure out which routines are loosing scaling as the number of ranks increases. Finally, they
will investigate whether it will be possible to reduce the MPI_Recv time.

In the next months, IPSL will continue working on “Grand challenge” project at CINES centre,
in order to run 20 years simulation at high resolution (see part 1.2 of IPSL report). They plan
to continue to test their model on SMP and MPP architectures to evaluate the work to be
done to obtain good performances on such a machines, especially concerning following
points:

• Hybrid MPI-OpenMP parallelisation on MPMD code4: it is not easy to specify a
number of OpenMP threads and MPI process on most of architectures. For example,
they would like to launch easily the following configuration (especially because the
parallelization hybrid MPI-OpenMP seems to be the best way to use up the resources
available on MareNostrum-like architecture, see IPSL report).

o Atmospheric model on 2048 cores by using hybrid MPI-OpenMP
parallelization : 256 MPI process x 8 OpenMP threads

o Oceanic model on 120 MPI process

o Oasis3 parallel version “field per field” on 24 MPI process (each MPI process
treats one field).

• I/O problems: the introduction of different levels of parallelization into models has
resulted in a significant decrease in computing time. As a consequence, time spent
on I/O becomes very significant proportion of total computing time (15-20%).
Simulation performance is highly impacted by time spent in the writing model output.
They have planned to work on this problem both at IPSL and through IS-ENES
project WP7/JRA1.

At BSC, they plan to continue the trace analysis of the coupled EC-Earth run with Paraver.
They will focus on the improvement of the execution of NEMO code in MareNostrum and, if
possible, test the use of a hybrid parallelization MPI-OpenMP to reduce the communication
time detected within NEMO. Defining a higher resolution configuration within EC-Earth
community will allow them to analyze the performance of the model beyond thousands of
CPUs. For that, the implementation of a parallel version of the OASIS coupler will be critical.

With the experience with EC-Earth model and an optimized implementation of NEMO and
OASIS on MareNostrum, BSC will collaborate with other modelling groups (e.g., IPSL,
CERFACS) to test their models on higher resolutions.

In CERFACS, one of the major challenges for the upcoming months is the set up of an
OASIS4 configuration to test scalability of their different model components on a coupled
configuration. The aim of this task is to estimate OASIS4 performances in an actual MPP
configuration (with high resolution components) and validate, with a scientific study, the good
operability of a high resolution coupled model (global CGCM) on a scalar platform.

The work began with the implementation of ECHAM-NEMO coupled system on both IDRIS-
CNRS and DKRZ IBM Power6 (WP4, OASIS user support) and will follow on with the new
implementation of ARPEGE / NEMO-Mixed-Layer CGCM (also called ARPEGE-PanOPAe)
on CINES SGI Altix ICE (see IPSL prospective) and IDRIS IBM Power6.

 Page 64 of 65

A similar work is planned with EC-Earth system (high resolution) during WP4 user support
effort at SMHI. Strong interactions on this topic are expected with both LIU and BSC
partners.

At CMCC, they plan improving scalability of CMCC-MED coupled model on IBM Power6.
Performance decreases for both ECHAM5 and NEMO-Mediterranean component models
when the number of processes increases; this influences the behaviour of the coupled
model. In particular, ECHAM5 shows some problems when block domain decomposition is
used: using only 1D decomposition, with a resolution of T159, the maximum number of
processes is 60. Hence, they plan to solve decomposition problem and to evaluate scalability
of ECHAM5 on IBM Power6 beyond 60 processes. The NEMO-Mediterranean component
scales better up to 64 scalar processes due to load imbalance and communication increasing
for a higher number of processes. They plan to investigate bottlenecks to performance
improving and to perform a full scalability analysis running NEMO on more then 60
processes.

 Page 65 of 65

References

Hazeleger, W. et al., 2009. EC-Earth: A Seamless Earth System Prediction Approach in
Action, accepted, Bull. Amer. Meteor. Soc.

Martijn Brandt, EC-EARTH- the European Community Earth system model, March 2010
[http://ecearth.knmi.nl/EC-Earth_model_documentation.pdf]

Stefanescu S., Standalone environment for compiling and running the EC-EARTH system,
Technical Note, April 2008 [http://ecearth.knmi.nl/ecearth2.pdf].

