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1. Executive summary 
 
The W8/JRA2 work package undertakes research into the performance aspects of 
configuring, deploying and running Earth System Models (ESMs). In deliverable WP8/JRA2 
D8.1 “Definition of the Evaluation Suite”, a set of ESMs and stand-alone models available in 
the IS-ENES consortium were documented. This deliverable reports on work in which 
selected models from the evaluation suite have been ported and tested on a number of HPC 
infrastructures available to the IS-ENES partners, along with some additional activities. A 
collaborative effort between application owners and computer specialists has led to the 
identification of numerous current strengths and limitations of ESMs. 

The IS-ENES evaluation suite consists of five coupled models: CMCC-MED, ARPEGE-
NEMO, IPSL-ESM, HadGEM2 and EC-Earth, in addition to four stand-alone models: 
ARPEGE, NEMO, LMDZOR and ECHAM5. Detailed technical information on these models 
can be found in D8.1. Specific details of the models reported in this document are given in 
the associated technical reports in Part II.  

The report is organized in three main parts: Part I (this section) gives an overview and 
introduces the report, presents its purpose and summarises the activities undertaken; Part II 
is a compendium of reports presenting the base-case results and consists of a set of 
technical reports on each activity undertaken, and Part III draws conclusions and discusses 
future work that aims to improve the performance of the models on current and future 
computing resources. 
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2. Introduction  
The performance analysis of current Earth System Models (ESMs) on state-of-the-art 
computing systems is undertaken in work package WP8/JRA2. The increase in 
computational resources associated with the ongoing work done in DEISA, DEISA2 and 
PRACE projects stresses the need to improve the current performance of ESMs on HPC 
systems. Climate science has made major steps in modelling the evolution of the climate 
through complex coupled models. However, current coupled models appear not to be suited 
to exploit fully the HPC resources that are planned to be deployed in next few years. For 
example, Moore’s law suggests that the first exascale computer will be available in 2018 and 
this is likely to consist of ‘billions’ of cores. In the IS-ENES project, Task 8.2, “Portability, 
performance analysis and improvement”, seeks to understand and improve the performance 
of ESM models for current and future HPC systems. This task focuses on the performance 
aspects of both individual component models and ESMs constructed from them with the 
purpose of ensuring the ESMs can execute efficiently on existing large-scale computing 
facilities and also that the plans to prepare the models for execution on future facilities are 
developed. Particular attention is given to ensuring models will be able to take advantage of 
the PRACE initiative and DEISA2. 

 

2.1 Purpose 
The purpose of the present report is to summarize the work undertaken to understand the 
performance of the ESMs of the evaluation suite on current HPC infrastructures. The 
evaluation suite is defined in report “D8.1: Definition of the Evaluation Suite” of work package 
WP8/JRA2. Several activities have been undertaken to port, test and evaluate, using profiling 
and trace analysis, for example, ESM model performance on current state-of-the-art 
computing systems. The works aims to document: 

• The current performance of the models on existing parallel architectures, 

• critical aspects that climate models stress in current HPC architectures, 

• bottlenecks, and strengths and weaknesses of each of the models in order to guide the 
design and development of future optimized ESMs for the upcoming peta- and exascale 
architectures. 

 

2.2 Glossary of Acronyms 
 

Acronym Definition 
ESM Earth System Model 

DEISA Distributed European Infrastructure for Supercomputing Applications 

PRACE Partnership for Advanced Computing in Europe 

HPC High Performance Computing 

Table 1: Glossary of Acronyms 
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3. List of activities 
The activities undertaken in JRA2 during the first part of the project IS-ENES have had as 
main objective to evaluate the current status of performance of several Earth System 
Models. The following list summarises the reports describing the work done to characterize 
such performance in current HPC infrastructures: 

 

• LIU: NEMO Porting, Benchmarking and Tuning on Linux Cluster. C. Basu 

• IPSL, BSC, CERFACS: IPSL-ESM (LMDZOR-NEMO-OASIS3) porting and 
performance tests. A.Caubel, O.Jorba, E. Maisonnave 

• CERFACS: Development of a high resolution version of ARPEGE-NEMO climate 
model. E. Maisonnave 

• CERFACS, IPSL, BSC: ARPEGE-NEMO porting and performance tests on DEISA-
PRACE-GENCI platforms. E.Maisonnave, A.Caubel, O.Jorba 

• BSC: Porting and performance analysis of the EC-EARTH model on MareNostrum 
Supercomputer. F. Martínez, D.Vicente, O.Jorba, M.Val 

• CMCC: Performance analysis and porting of the CMCC-MED model. I.Epicoco, 
S.Mocavero, G.Aloisio 

 

The second part of the present document compiles the documents that report the work done 
and the main conclusions of each initiative. Results of the work will help to define the future 
work to undertake to improve the model performance in future HPC environments. 

 

 

 

 

 

 

 

 

 



 

 Page 9 of 65 

 

 

 

 

PART II: Base-case results 
 

 

 

 

 

 

 

 



 

 Page 10 of 65 

1. NEMO Porting, benchmarking and tuning on Linux 
Cluster 
 

Author: Chandan Basu1 

1 National Supercomputer Centre, Linköping University, Sweden (LIU) 

 

1.1 Introduction 
At NSC we are working on porting, optimization and tuning of NEMO program on linux - X86-
64 - infiniband clusters. As many of the modern day clusters fall in this category our 
benchmarking will be indicative of NEMO performance on these types of clusters. The 
performance of any MPI program may depend on various components, e.g., compilers, MPI 
libraries, network, filesystem, processor technologies etc. As NEMO is a large and complex 
program its performance needs to be tested against these variables. In the first phase of our 
optimization work we are looking into these factors for an optimized run. We are also carrying 
out scaling test and profiling of the codes. The goal is to figure out the bottlenecks and to 
look at suitable strategies to improve the timing of the code. We have used ORCA1 
configuration available from NOCS website (http://www.noc.soton.ac.uk/nemo/) for our 
scaling / benchmark studies. The ORCA1 configuration is bigger than default ORCA2 
configuration that comes with NEMO. So it is more suitable for benchmarking studies on 
large number of nodes.  Therefore, this benchmark will give us a fair idea about scaling 
behaviour of NEMO. Also it seemed to us that ORCA1 resolution is reasonable for many 
practical situations.  

 
Test systems: We use two systems for our benchmarking. The details of these systems are 
given in Table 1.1. 

 

System Ekman Kappa 

Processor Quad-Core AMD Opteron 2374 HE @ 
2.19 GHz 

Quad core Intel(R) Xeon(R) 
CPU           E5520 @ 2.27GHz, 
code named Nehalem 

Interconnect DDR Infiniband, full bisection 
bandwidth 

DDR infiniband, reduced 
bisection bandwidth 

Node 2 processor, 8 core 2 processor, 8 core 

No. of nodes 1268 364 

MPI processes / node 8 8 

global filesystem Lustre over infiniband GPFS over gigabit ethernet 

Compiler  ifort - 11.0.074, pgf90 - 10.3 ifort - 11.1.059 

MPI Open MPI - 1.4.1, Scali MPI - 5.6.6 Open MPI - 1.4.1 

Table 1.1: Description of systems used for benchmarking 
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1.2 Scaling of NEMO for ORCA1 benchmark 
We have run NEMO for 1 year period on different number of processors to see its scaling 
behaviour for ORCA1 configuration.  The results are given in Table 1.2 and Figures 1.1 and 
1.2. We see that ORCA1 run scales up to 16 nodes (128 cores) on both Ekman and Kappa 
systems. However on Kappa the runs are faster than on Ekman. This is owing to the fact that 
Kappa has latest Intel Nehalem processors compared to Ekman which has AMD Opteron 
processor. The memory performance of Nehalem system is better than Opteron. 

 

 
Figure 1.1: ORCA1 runs on Ekman 

 

 
Figure 1.2: ORCA1 runs on Kappa 
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System Grid No. of ranks MPI time (s) 

Ekman 8X8 64 Scali MPI 3478 

Ekman 8X16 128 Scali MPI 2548 

Ekman 12X16 192 Scali MPI 2049 

Ekman 16X16 256 Scali MPI 2274 

Ekman 8X8 64 Open MPI 3301 

Ekman 8X16 128 Open MPI 2101 

Ekman 12X16 192 Open MPI 2397 

Ekman 16X16 256 Open MPI 1674 

Kappa 8X8 64 Open MPI 2162 

Kappa 8X16 128 Open MPI 1384 

Kappa 12X16 192 Open MPI 1403 

Kappa 16X16 256 Open MPI 1771 

Table 1.2 Scaling studies of ORCA1 benchmark 

 

1.3 Tuning of NEMO runs 
We have looked into various factors for optimized NEMO runs. These are described below. 

Effect of different compilers: We have compiled NEMO 3.2 with Intel compiler and PGI 
compiler on Ekman system (see Table 1.1 for details of system and compilers). We generally 
observed that Intel compiled binaries work faster than PGI compiled binaries on Ekman 
system. On Kappa system we do not have PGI compilers installed. So we have done all our 
runs using Intel compiled binaries. 

Effect of process binding: MPI process running on a node can be swapped between 
available cores by Linux OS scheduler. This generally degrades performance. It is however 
possible to force each MPI processes to run on specified core. This is termed as process 
binding.  Process binding can result in optimized cache performance resulting in better 
performance. We have tested processor binding effects by binding the processes and then 
comparing timing for runs without binding. We see that in general processor binding gives 1 - 
2 % better run-time (See Table 1.3) for almost all runs. The processor binding can be 
achieved through mpirun by passing suitable flags to it. However we have observed that for 
different MPIs the processor binding through mpirun does not work always. We have also 
seen that in some cases mpirun binds processes wrongly (e.g., more than two processes 
bound to same core!). So we do not use mpirun to bind processes. Instead we fire jobs 
normally without binding and then use Linux command taskset to explicitly bind each process 
to a distinct core. 
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Time (s) 

System Grid no. of ranks MPI Proc. 
binding 
disabled 

Proc. 
binding 
enabled 

Ekman 8X8 64 Scali MPI 3478 3391 

Ekman 8X16 128 Scali MPI 2448 2357 

Ekman 12X16 192 Scali MPI 2049 2001 

Ekman 16X16 256 Scali MPI 2274 2265 

Ekman 8X8 64 Open MPI 3301 3231 

Ekman 8X16 128 Open MPI 2101 2069 

Ekman 12X16 192 Open MPI 2397 2304 

Ekman 16X16 256 Open MPI 1674 1642 

Kappa 8X8 64 Open MPI 2162 2125 

Kappa 8X16 128 Open MPI 1384 1360 

Kappa 12X16 192 Open MPI 1403 1400 

Kappa 16X16 256 Open MPI 1771 1760 

Table 1.3 Scaling studies of ORCA1 benchmark with processor binding 

Effects of changing MPI libraries:  Scaling of parallel programs depends on MPI 
communication routines. So changing from one MPI implementation to another might have 
some impact on the overall performance of NEMO. We have compared NEMO runs with 
Open MPI & Scali MPI (see Table 1.4). We see that there is 5 - 15 % change in runtime of 
NEMO by changing MPI library. We also see that for 8, 16 and 32 node jobs Open MPI runs 
are faster but for 24 node job Scali MPI runs are faster.  

t_scali = Scali MPI run time 

t_ompi = Open MPI run time 

dt = (t_scali - t_ompi) / t_ompi 

System Grid no. of ranks % dt 

Ekman 8X8 64 5.36 

Ekman 8X16 128 14.67 

Ekman 12X16 192 -14.56 

Ekman 16X16 256 35.05 

Table 1.4 Effect of different MPI libraries on ORCA1 runtime 
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Effects of filesystem: NEMO ORCA1 configuration does frequent of i/o while running. 
Normally MPI jobs are fired from global file systems. The files in these filesystems are visible 
from all the compute nodes.  As all the nodes try to read / write data via some network this 
can be a performance bottleneck for jobs which does lots of i/o. Also in a large cluster where 
many jobs are running file i/o throughput of global filesystems can be impacted by the overall 
i/o and network congestion. We have done some testing with firing jobs from local disks. In 
this case we copy all the input data to the local hard disk of every node. The jobs are fired 
from local disk. While running the jobs do i/o to local disks. Thus the i/o becomes parallel. 
Also i/o speed is not dependent on the network. At the end of the job all the output files 
written on local disks are copied back to some global filesystem. In this case the significant 
time is mpirun time + data copy time. Our general observation is that for Ekman system the 
jobs fired from local filesystem takes almost the same time as the jobs fired from global 
filesystem. But on Kappa system the local runs are considerably faster than the runs from 
global filesystem (see Table 1.5).  

del t = (tg - tl) / tl 

tg = run time from global 

tl = run time from local + data scatter, gather time 

 

System Grid No. of ranks MPI % del t 

Ekman 8X8 64 Scali MPI 1.9 

Ekman 8X16 128 Scali MPI 1.5 

Ekman 12X16 192 Scali MPI 2.0 

Ekman 16X16 256 Scali MPI 2.3 

Kappa 8X8 64 Open MPI 23.4 

Kappa 8X16 128 Open MPI 25.1 

Kappa 12X16 192 Open MPI 20.1 

Kappa 16X16 256 Open MPI 10.5 

Table 1.5 Impact of using local vs global file system on ORCA1 runtime 

 

The difference in behaviour between Ekman and Kappa system could be due to relative 
speed of local and global filesystem. We can see that running from local filesystem in general 
gives better timing. Also sometimes global filesystem can be slow depending on the load on 
the file system. On the other hand it is bit complicated to move data back forth to and from 
local filesystem. But this can be achieved through some script which will copy the data to 
node local file system and after the job is over will copy back relevant output files. If the 
system has parallel shell commands, e.g., pdcp, pdsh etc. available then the file copying can 
be done quite efficiently. 

Static linking vs dynamic linking: Static linking of MPI libraries generally leads to 
improvement in the run time. This is shown in the Table 1.6 

t_dyn = run time for dynamic linking 



 

 Page 15 of 65 

t_stat = run time for static linking 

del t = (t_dyn – t_stat) / t_stat 

 

System Grid No. of ranks MPI % del t 

Ekman 8X8 64 Open MPI 10.5 

Ekman 8X16 128 Open MPI 6.3 

Ekman 16X16 256 Open MPI 3.1 

Table 1.6 Impact of using static vs dynamic linking on ORCA1 runtime 

 

1.4 Profiling of NEMO 
As we have seen above NEMO run with the ORCA1 benchmark does not scale well beyond 
16 nodes (128 cores). We believe that profiling of the code will give us more insights about 
how scaling is lost when we increase the no of ranks. We have profiled the MPI calls in 
NEMO using Scali MPI’s profiling feature. We start the profiling after initialization is over. We 
profile the code when it is in the main time loop. The Table 1.7 below shows average time 
spent in significant MPI calls for several 2 minute window of run-time. As we can see for 64 
rank run time spent in MPI calls is  44 %, for 128 rank run the time spent in MPI calls is  66 % 
and for 256 rank run  82 % of time is spent in MPI calls within the main time loop of NEMO 
run.  This is because the number of MPI calls for each rank increases for wider NEMO runs. 
Consequently the delays associated with data transfer increases. Another factor which may 
lead to increase in MPI times is load imbalance between different ranks. 

64 rank 128 rank 256 rank 

MPI call No. of 
calls 

Time 
(s) 

delta
(%) 

No. of 
calls 

Time 
(s) 

delta
(%) 

No. of 
calls 

Time 
(s) 

delta
(%) 

MPI_Allreduce 97970 7.2 162030 17.1 173724 19.5 

MPI_Isend 517320 0.9 853223 1.5 921234 1.3 

MPI_Recv 517320 36.0 853223 47.5 921234 61.4 

MPI_Wait 517320 0.05 853223 0.1 921234 0.1 

Sum 1649930 44.0 

~10  

2721700 66.2 

~12  

2937426 82.3 

~15  

Table 1.7 Profiling of MPI calls in Nemo 

 

The delta parameter in the Table 1.7 refers to the deviation in MPI time between ranks. This 
difference in MPI times could be due to load imbalance in different ranks. As we can see that 
the delta value increases with increasing number of ranks. This may also lead to increase the 
waiting time for MPI calls to finish.  
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1.5 Conclusions 
We have run NEMO on Ekman and Kappa system under various conditions. We see that 
NEMO compiles with both Intel as well as PGI Fortran. It can be linked with Open MPI or 
Scali MPI. We have observed that on Ekman system Intel compiled NEMO works faster than 
PGI compiled NEMO.  

The ORCA1 benchmark scales to around 16 nodes (128 cores) on both Ekman as well as 
Kappa system.  Although on Ekman there is some scaling up to 32 nodes (256 cores). The 
better scaling in Ekman may be due to the fact that single node performance of Ekman is 
slower than Kappa. Normally slower nodes scale better than faster nodes if the interconnect 
speed remains same. For higher number of node count large amount of the time is spent in 
MPI calls. So the scaling is gradually lost. For a bigger configuration NEMO will probably 
scale to more number of nodes. 

For an optimized run it is better to bind MPI processes to cores as we have seen in our 
results (Table 1.3). But the improvements are marginal and default scheduler of Linux 
operating system seems to work quiet efficiently. Also processor binding should be done 
carefully to avoid wrong processor binding.  

Choice of MPI library seems to have some impact on run time of NEMO. In our runs Open 
MPI runs are consistently better than Scali MPI runs (Table 1.4) except in the case when 
number of cores are 192.  The behaviour may be due to change of some MPI internal 
algorithm at certain sizes. Also for ORCA1 configuration the good scaling is up to 128 cores. 
Beyond 128 cores the code is running inefficiently and the difference in runtime may not be 
indicative of just MPI performance. 

Statically binding MPI library gives better performance than dynamic binding (Table 1.6). This 
has been verified for Open MPI. 

Firing NEMO from local filesystem gives better timing than firing from global filesystem 
(Table 1.5). However, the extent of difference in timing seems to depend on the relative 
speed of local vs global filesystem. As we can see that in Kappa system there is substantial 
improvement in runtime but in Ekman system there is only marginal time improvement.  

We have described above some strategies for optimized NEMO runs which should be 
applicable for similar systems. There may be further scope of improving the timing and 
scaling. But for this we have to look inside the code.  

We have already done some profiling of MPI calls in NEMO and we would like to continue 
profiling of NEMO including MPI calls as well as other functions and subroutines. We will use 
different available tools for profiling. We also plan to put some light weight timers in the code 
to analyze its behaviour. The correct profiling will tell us accurately about load imbalance if 
any and other bottlenecks.. 
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2. IPSL (LMDZOR-NEMO-OASIS3) Earth System Model and 
LMDZOR and ARPEGE models porting and performance 
tests 
 

Authors: A. Caubel1, O. Jorba2, E. Maisonnave3 
1 Institut Pierre Simon Laplace, France (IPSL) 
2 Barcelona Supercomputing Center, Spain (BSC) 
3 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France 
(CERFACS) 

 

2.1 Introduction 
The present IPSL (Institut Pierre Simon Laplace) model couples four components of the 
Earth System: LMDZ for atmospheric dynamics and physics, ORCA for ocean dynamics, LIM 
for sea-ice dynamics and thermodynamics, and ORCHIDEE as the land surface component. 
It can include a full carbon cycle component, as well as a model of the atmospheric 
chemistry and aerosols. The OASIS coupler is used to synchronize, interpolate and 
exchange fields between atmospheric and oceanic components. 

Actual IPSL scientific production is done on vector machines (with weak parallelism). That’s 
why studying the behavior of IPSL models at higher resolution than the current one on 
DEISA-PRACE-GENCI-like machines (SMP and MPP scalar machines) could be a good 
indicator of both work done recently at IPSL on parallelization aspects and porting to 
massively parallel supercomputers and current performance of IPSL models. 

The set up of high resolution configuration of IPSL climate model started at BSC. A test 
configuration has run and allowed us to evaluate the performance but also the problems 
encountered when the resolution of each component is increased and the components 
coupled together. The configuration was atmosphere-land surface LMDZOR 280x280x19 on 
72 CPUs (MPI parallelization) coupled to ocean-sea ice NEMO ½ degree (511x722x31) on 
20 cores (MPI parallelization). This was a preliminary experimentation. We are now working 
at GENCI-CINES centre, on setting up a configuration at higher resolution: ¼ degree for 
oceanic model (1442x1021x75) and 1/3 degree for atmospheric model (768x768x39) using 
MPI-OPenMP parallelization.  

This report describes the encountered difficulties during the model porting phase on 
MareNostrum IBM JS21 (BSC) and SGI Altix ICE (CINES) and some details scalar/vector 
compared performances. 

 

2.2 BSC MareNostrum IBM JS21  
2.2.1 Machine description 
The Barcelona Supercomputing Center (BSC) hosts MareNostrum, one of the most powerful 
supercomputer in Europe and the number 87 in the world [Top500 list, June 2010]. 
MareNostrum was built in March 2004 as a result of an agreement between the Spanish 
government and IBM. MareNostrum is a node of DEISA2 consortium and BSC is currently a 
partner in the PRACE project. In this sense, MareNostrum is targeted as one of the first 
DEISA2 HPC facilities to test ESMs. 

The MareNostrum supercomputer is based on processors PowerPC, architecture 
BladeCenter, Linux operating system and Myrinet interconnection. MareNostrum has 10240 
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IBM Power PC 970MP processors, 20 TB of main memory and 280 + 90 TB of disk storage. 
It uses two interconnection networks: Myrinet and Gigabit Ethernet. It is the first 
supercomputer that runs under a Linux operating system, a SuSe Distribution. The Peak 
Performance of the system is 94.21 Teraflops. 

Marenostrum has 44 racks, 31 of them dedicated to computing tasks. The computing racks 
have a total of 10240 processors. Each rack is formed by 6 Blade Centers. In total, each rack 
has 336 processors and 672 Gb of memory; each one has a rough peak performance of 3.1 
Tflops. 

Each Blade Center has 14 server blades type JS21. Each of these nodes has 2 processors 
PowerPC 970MP at 2.3 GHz, 8 Gb of shared memory between both processors and a local 
SAS disk of 36 Gb. Each node has a network card Myrinet type M3S-PCIXD-2-I for its 
connection to the high speed interconnection and the two connections to the network Gigabit. 
Each node has a local disk of 36 Gb and works diskless, i.e., the operating system is in the 
storage racks instead of the local disk and it is loaded through a Gigabit network when each 
node is initialized. 

In addition to the local disk of each node, MareNostrum has 20 storage servers arranged in 7 
racks. These servers have a total of 560 disks of 512GB and each one provides a total 
capacity of 280TB external storage. These disks are working with Global Parallel File System 
(GPFS), which offers a global vision of the file system and also allows a parallel access. 

Default compilers in Marenostrum are IBM XL C/C++, and IBM XL FORTRAN. In addition, 
the GNU C and FORTRAN compilers are available.  

Several numerical libraries and several application packages are installed in MareNostrum 
(http://www.bsc.es/plantillaC.php?cat_id=472). 

 

2.2.2 Achievements for the whole IPSL coupled system 
To better understand the behaviour of IPSL models on a machine MareNostrum-like, several 
tests have been done. Two significant configurations were created and tested on this 
machine and thanks to the timer implemented in Oasis3 by Eric Maisonnave, CERFACS 
(see Chapter 4: ARPEGE-NEMO porting and performance tests on DEISA-PRACE-GENCI 
platforms), we obtained the following performances: 

A high resolution coupled configuration: 

This version has been set up to evaluate the performance but also the problems encountered 
when the resolution of each component is increased and the component coupled together. 
This configuration is based on the following components and resolutions:  

- atmosphere-land surface LMDZOR 280x280x19 on 72 CPUs  

- ocean-sea ice NEMO ORCA05 (511x722x31) on 20 CPUs  

Using a “pseudo-parallel” version of the OASIS3 coupler on 2 processors, we obtained the 
following performances: 5-day simulation in 21 min 10s (i.e., 10-year simulation in 10 days).   

 

More details and results:  

Real time for LMDZOR configuration (forced mode) to run a coupling period (i.e., 1 day) is 
220s by using 72CPUs.  
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Real time for NEMO component (1-day simulation) at ORCA05 resolution: 

Number of CPUs 5 10 20 27 32 

Real Time NEMO 760s 382s 201s 141s 125s 

Table 2.1: Real time of NEMO (1- day simulation) at ORCA05 resolution on MareNostrum 

 

An Earth system model configuration:  

This version has been set up to evaluate, by running a long simulation of an Earth system 
model on this type of architecture, the feasibility of a realistic climate simulation. This 
configuration is based on the following components and resolutions:  

- atmosphere-land surface-atmospheric chemistry LMDZOR-INCA 96x71x19 on 24 CPUs  

- ocean-seaice NEMO ORCA05 (511x722x31) on 50 CPUs 

Using a “pseudo-parallel” version of the OASIS3 coupler on 2 processors, we obtained the 
following performances: 4-month simulation in 3h 22min. (i.e., 10-year simulation in 4 days) 

 

More details and results: 

Real time for NEMO (in forced mode) to run a coupling period (i.e., 1 day) is 95s by using 50 
CPUs.  

Real time for LMDZOR-INCA component (1-day simulation) at 96x71x19 resolution: 

 

Nº of CPUs 10 14 16 24 

Real Time LMDZOR-INCA 235s 197s 146s 116s 

Table 2.2: Real time for LMDZOR-INCA component (1-day simulation) at  96x71x19 
resolution on MareNostrum 

 

2.2.3 Problems encountered 
1) Software environment: Default versions of compiler and MPI libraries installed on 

MareNostrum do not allow running our current model versions. So, it is needed to 
use more recent compiler version and MPICH2 as MPI version.  

2) Heterogeneous codes: we would like to run hybrid parallelization MPI-OpenMP for 
atmospheric component only and so, to have different specification (concerning 
parallel environment) for each executable, as follows:  

  • Ocean (MPI parallelization)  

  • Atmosphere (MPI-OpenMP parallelization)  

But, specifications are global on MareNostrum and it is not possible to specify 
requests depending on each component.  

3) Memory size: Memory size problems occur when the resolution is increased, 
280x280x19, for atmospheric component. An 8Gb (memory available per node) is 
not sufficient for more than 4 MPI processors. It is a problem both because the 
current version of LMDZ is not scalable in terms of memory and the LMDZ MPI-



 

 Page 20 of 65 

parallelisation is limited by 3 bands of latitudes per MPI process. 

 

LMDZOR resolution 96x72 144x143 192x192 280x280 

Memory needed for 4 MPI 
process 

2Gb 3.5Gb 6.7Gb > 8Gb 

Table 2.3: Memory size used by 4 LMDZOR MPI process on MareNostrum 

 

2.2.4 Performances of atmospheric components LMDZOR and ARPEGE 
Here is a comparison of performances on different kind of supercomputers. Since 
atmospheric component is the component which leads performances of the whole coupled 
model, we focused our analysis (i.e scalability, speedup) on the atmospheric model. 
Scalability of the whole coupled model is similar to the scalability of the forced atmospheric 
configuration. 

The configuration used here is LMDZOR forced configuration (MPI parallelization) on the 
following machines:  

- MareNostrum PowerPC (2,3 Ghz, 4 CPus/node, 8Gb/node)  

- Vargas Power6 (4,7 Ghz, 32 CPus/node, 128-256Gb/node)  

- Mercure SX8R (vector processors, 8 CPUs/node, 64Gb/node) 

 

 
Figure 2.1: Comparison of Real Time inter-machine for LMDZOR at 96x72x19 resolution. 
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Figure 2.2: Comparison of Real Time inter-machine for LMDZOR at 192x192x19 resolution 

 

 
Figure 2.3: Comparison of speedup inter-machine for LMDZOR at 192x192x19 resolution 

 

We can see, with the same number of MPI processes, that the real time is twice greater on 
the MareNostrum rather than on the Power6 Vargas. We can also note that the speedup is 
lower for PowerPC than for Power6. Different reasons can explain such differences 
regarding the performances: different architectures, frequency calculation of each processor 
(2,3Ghz for PowerPC processors and 4,7Ghz for Power6 processors), number of CPUs per 
node greater on Power6 (32 CPUs/node) than PowerPC (4 CPUs/node), etc. 

Performances of LMDZOR configuration in MPI parallelisation are limited on PowerPC-like 
architecture in comparison with a Power6-like architecture. Even if we increase the number 
of CPUs used, real time is still greater in comparison with Power6.  

We can obtain similar real time by increasing the number of CPUs on the Power6 in 
comparison with 4 or 8 vector processors SX8R. However, we never manage to obtain 
similar real time between PowerPC processors and Power6 processors (and of course SX8R 
processors).  

More results and comparisons:  

On mercure SX9, we run 10-year simulation in 1 day for the coupled configuration 96x95x39-
ORCA2 on 4 CPUs.  
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On MareNostrum PPC, we run 10-year simulation in 10 days for the coupled configuration 
280x280x19-ORCA05 on 94 CPUs. 

 

 LMDZ 
1 task/node 

LMDZ 
4 tasks/node 

ARPEGE 
4 tasks/node 

Instructions per cycle 0.62 0.47 0.33 

Parallel efficiency 0.78 0.87 0.92 

Table 2.4: Common LMDZ-ARPEGE analysis performances on MareNostrum (BSC) 

 

We applied the PARAVER (http://www.bsc.es/plantillaA.php?cat_id=485) performance and 
analysis tool to compute the number of instructions per cycle and the parallel efficiency. If 
ARPEGE scalability exceed LMDZ' one, ARPEGE exhibits a slower number of instructions 
per cycle, which could imply a higher number of memory access conflicts. Parallel efficiency 
is slightly the same. All those figures could suggest that ARPEGE's higher scalability should 
be mainly originated in its smaller amount of communications (see Chapter 4: ARPEGE-
NEMO porting and performance tests on DEISA-PRACE-GENCI platforms). 

 

2.3 CINES ALTIX ICE 
We are now working at GENCI-CINES centre, through the “Grand challenge” project, on 
setting up a configuration at higher resolution: ¼ degree for oceanic model (1442x1021x75) 
and 1/3 degree for atmospheric model (768x768x39) using MPI-OPenMP parallelization. 

 

2.3.1 Description of the machine 
The cluster SGI Altix ICE 8200, JADE, is a scalar parallel supercomputer with a peak 
performance of 147 Tflop/s. JADE is composed of 25 racks. One of these racks is used to 
ensure the connection with the whole cluster (via 3 login nodes) and 24 computing racks (cf. 
architecture’s description). This cluster consists of 12288 cores distributed on 1536 nodes 
(each node including 2 Intel Quad-Core E5472 processors). 30 GB of useful memory can be 
actually used on each node, i.e. over a total of 46 TB. The computing racks have access to a 
parallel file system Lustre with a total capacity of (509 TB). 

 

2.3.2 Achievements 
The work is still in progress but a first configuration has already run. The first results are as 
follows: 

• Atmospheric model 0.3°x0.3°(39 vertical levels), 768x768x39 on 2048 cores by using 
hybrid MPI-OpenMP parallelization : 256 MPI processes x 8 OpenMP threads 

• Oceanic model 0.25°x0.25°(75 vertical levels), 1441x1021x75 on 120 MPI processes 

• Oasis3 parallel version “field per field” on 24 MPI processes (each MPI process treats 
one field). 

⇒ 12 days are needed to run 10-year simulation on 2200 cores. 

A 20-year simulation is planned to be done during next months to start to use such a 



 

 Page 23 of 65 

configuration for scientific studies. 

 

2.4 Conclusions 
The porting of the IPSL climate model to the MareNostrum was very instructive both in terms 
of usability and performances. Firstly, it helped highlight the work done in recent years 
around the optimization and parallelization of IPSL models. Indeed, it is now possible to run a 
fully parallelized IPSL coupled model, which is essential on this type of architecture. Then, 
thanks to performance and analysis tools like PARAVER, we could see that this kind of 
architecture imposes some limits to our models and their performances: low memory 
available per node, scalar processors with low frequency calculation, moderate MPI 
scalability. Besides, the running environment seems to not be very suitable for 
heterogeneous codes: this would be a very strong constraint, especially since the 
parallelization hybrid MPI-OpenMP seems to be the best way to use up the resources 
available on MareNostrum-like architecture. 

The second step done was the porting on CINES-Jade machine: the high resolution 
configuration tested on this machine was the final point of the work started at BSC-
Marenostrum. The hybrid parallelisation MPI-OpenMP allows us to run our coupled model on 
around 2200 cores on this machine. 
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3. Development of a high resolution version of ARPEGE-
NEMO climate model 
 

Author: E. Maisonnave1 
1 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France 
(CERFACS) 

 

3.1 Model and machine description 
Taking advantage of 2009 Météo-France NEC SX9 Operation Health Check (OHC), several 
configurations of ARPEGE-NEMO climate model have been set up in order to check OASIS3 
capability at high end resolutions. 

Tested resolutions were t359 (approximately 50Km square) with 31 vertical levels for 
ARPEGE and ORCA ¼ degree with 50 vertical levels for NEMO. Those resolutions are 
similar to the higher operational configurations in use at the moment in Europe (ECMWF, 
MetOffice, etc). 

OASIS version 3, tag prism_2-3, was using for this experiment, and particularly the Arnaud 
Caubel's developments allowing parallel exchanges of coupling fields. 

The new Météo-France supercomputer is composed by 6+7 vector nodes of 16 SX9 
processors each of 102 Gflops peak performance and 1 Tb memory per node. Due to OHC 
time constraints, no fine optimization has been implemented. In particular, during simulation, 
data processing has not been done on local processor disks but through GPFS global file 
system.  

 

3.2 Experimental design 
Our coupling method implies that ocean and atmosphere perform simultaneously a coupled 
time step (namcouple LAG mode), each model using the coupled field averaged at the 
previous coupling time step. 

Moreover, we used the MPI communication library with bufferized messages (namcouple 
NOBSEND option disabled), to let models continuing their calculations after sending their 
coupling fields to OASIS. 

ARPEGE and NEMO are parallel codes: allocating appropriate processors number to each 
model, response time difference between each model could be minimized. However, due to 
vector processor efficiency (a fast simulation could be processed with less than 10 
processors), possible combinations in processors repartition are limited and a model still 
remains significantly slower than the other. If OASIS duration (communication and 
interpolation processing) stays lower than this difference, there is no coupling additional time 
compared to slower stand alone simulation duration: OASIS calculations and 
communications are completed during the time interval between the end of fastest model and 
the end of slowest model calculations. 

In order to measure those quantities, clock times are collected (thanks to light modifications 
under CPP key within OASIS “psmile” library) before and after each OASIS exchanges.  

Measures are done on elapsed time and not on CPU time (OASIS CPU time are supposed to 
be independent of model parallelism ratio). The balance we proposed to tune here only 
influences elapsed time performances. But measures on elapsed time are machine load 
dependent, particularly if we share node with other users: an ensemble of 5 to 9 simulations 
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(of 4 days of climate) will be processed and uncertainty evaluated.  

Two kinds of measures are done to evaluate (a) the total coupled simulation time and (b) the 
calculation duration of each component of the coupled system. 

A): Within OASIS, the difference between the very first “prism_get” of the whole 
simulation and the very last “prism_put” represents the whole climate simulation duration, 
excluding model restart read/write operations. 

B): Within models, we measure the interval (at each coupling time step) between the 
instant after the “prism_get” of last coupling field received at coupling time step N and the 
instant before the “prism_get” of the first coupling field exchanged at time step N+1: in 
this way, we evaluate duration of calculation processed by each model between two calls 
to OASIS (supposing that the time for the non-blocking “prism_put” calls is negligible in 
this measure). 

 

3.3 Optimizations and results 
This counter allows us to finely determine the respective number of processors which 
minimizes the difference between oceanic and atmospheric coupling step durations. If 4 
processors are allocated to NEMO (due to speedup optimum considerations), 6 to 7 
processors for ARPEGE are most suitable. An important extra cost due to OASIS (more than 
50%) incites us to optimize OASIS coupling technique. 

 

Figure 3.1: ARPEGE and NEMO respective response time within an ARPEGE-NEMO 
coupled model configuration (constant resources for NEMO -4- and varying number for 

ARPEGE – from 4 to 7). Ensemble mean (line) and spread (error bars). 

 

In a first step, the OASIS sequential exchange (namcouple SEQ mode) is preferred to the 
standard one: instead of exchanging all the fields before doing any interpolation calculation, 
the sequential exchange realizes field by field the sequence “get field – process oasis 
computations – put field”. So, OASIS does not need to wait for the slowest model to begin to 
processes the first interpolation. And interpolated fields are ready to be used by the slowest 
model as soon as it needs them. This optimization reduces the total elapsed time of our 
coupled simulation a 20% in the best case. 

The second optimization consists on using the OASIS parallelism by field. This configuration 
called “Oasis pseudo parallelism” is implemented in OASIS3 version since Arnaud Caubel – 
Sébastien Masson – Jing-Jia Luo IPSL-JAMSTEC joint experiment on Earth Simulator 
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supercomputer. Within this configuration, OASIS is launched several times with different 
namcouples, each namcouple describing a subset of one or several of the initial coupled 
fields needed. Several OASIS executables process a subset of the initial coupling fields: 
communications and interpolation calculations are done in parallel. This optimization (i.e., 
distributing OASIS on two processors, no extra gain observed with broader distribution) also 
reduces the total elapsed time of our coupled simulation by 18% in the best case. 

Combining those two optimizations (Sequential mode + Pseudo parallelism), the cumulated 
gain compared to the non-optimized run varies between 15 and 25 %. Compared to the 
slowest model on a stand alone mode, the extra cost of coupling oscillates now between 0 
and 25% depending on the load balance of the models. The highest coupling extra cost is 
obtained in the case of a load balanced configuration (4 processors for NEMO, 7 for 
ARPEGE): the difference between model durations is lower than the cost induced by the 
coupling. 

 

Figure 3.2: Compared performances without any optimization (red), with SEQ optimization 
(green, with parallelism by field (blue) and with combined SEQ+parallelism by field (pink). 

Ensemble mean (line) and spread (error bars). 

 

To be totally sure that OASIS3 could handle model resolution higher than the present 
European most demanding configuration ones, we attempt to increase oceanic resolution, 
using the MERCATOR state-of-the-art operational model (1/12th degree, 50 vertical levels).  

At such resolution, even during an OHC period, the machine load is so important that a 
limited number of tests is possible. A 9 member ensemble test of 2 simulated days has been 
processed, using 44 processors for NEMO and 4 for ARPEGE (3 nodes, half of the total 
amount of machine processors). Even if load balancing could not be totally reached, both 
Sequential mode + Pseudo parallelism optimizations help us to reduce the total simulation 
time from 8 to 4 hours, with only a 10 % additional time compared to the oceanic stand alone 
simulation. 

Those experiments prove the OASIS3 capability to drive high end resolution coupled 
simulations on vector machines (even with experimental configurations using a 1/12th degree 
ocean) with reasonable additional time. Most of the time, when balance between model 
component duration cannot be reached, this additional time even could be nullified. 
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4. ARPEGE-NEMO porting and performance tests on 
DEISA-PRACE-GENCI platforms 
 

Authors:  E. Maisonnave1, A. Caubel2 and O. Jorba2 
1 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France 
(CERFACS) 
2 Institut Pierre Simon Laplace, France (IPSL) 
3 Barcelona Supercomputing Center, Spain (BSC) 

 

4.1 Introduction 
Built and optimized for vector platforms, could ARPEGE-NEMO climate model be used 
intensively on scalar machine like DEISA-PRACE-GENCI ones? This report describes the 
encountered difficulties during the model porting phase on SGI Altix ICE (CINES), IBM Blue 
Gene (IDRIS) and Marenostrum IBM JS21 (BSC) and details scalar/vector compared 
performances. Sensibility tests on horizontal resolution will help us to outline a first 
conclusion concerning scalar machine use for climate modelling. 

 

4.2 Porting 
CERFACS/Météo-France jointly developed climate model for AR5 IPCC exercise is built on 
ARPEGE-IFS atmospheric model. This model is derived from the operational version used 
by Météo-France for weather forecast and by ECMWF (European Centre for Medium Range 
Weather Forecast). We associate it with an ocean model (NEMO) using the OASIS coupler. 

Several atmospheric model resolutions have been tested, from truncation 159 (T159, about 
100km side cells) to truncation 359 (T359, about 50km side cells), with 30 vertical levels. 
Ocean is ½ degree broad. 

ARPEGE version 5.1 has been used, NEMO version 3.1 and OASIS version 3.2 (tag 
prism_2-3). 

We remind you that MPI MPMD functionality is mandatory for our OASIS coupler (for both V3 
and V4). Several instances of each of three parallel executables which compose our climate 
model (atmosphere, ocean and coupler) are launched simultaneously (through mpirun or 
mpiexec command); OASIS addresses sub-communicators re-definition to allow concurrent 
internal parallelism and model parallelism. 

Let's describe the major issues which occur during model install on the three machines we 
access through the French 2009 DARI supercomputing allocation and IS-ENES 
collaborations. 

 

4.2.1 CINES SGI Altix 
The cluster SGI Altix ICE 8200, JADE, is a scalar parallel supercomputer with a peak 
performance of 147 Tflop/s. JADE is composed of 25 racks. One of these racks is used to 
ensure the connection with the whole cluster (via 3 login nodes) and 24 computing racks. 

 

This cluster consists of 12288 cores distributed on 1536 nodes (each node including 2 Intel 
Quad-Core E5472 processors). 30 GB of useful memory can be actually used on each node, 
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i.e. over a total of 46 TB. The computing racks have access to a parallel file system Lustre 
with a total capacity of (509 TB). 

As far as we know, before IPSL Grand Challenge experiment made with the whole IPSL 
LMDZ-NEMO climate model (see Report 2: IPSL-ESM (LMDZOR-NEMO-OASIS3) porting 
and performance tests) the oceanic component only was available on this platform. 
Consequently, compiler optimization upper to level O2 was not yet easily available on this 
machine. 

For atmosphere model, several functionalities have been disabled, in particular the whole 
system of tracing routines (called “Mr Hook”). For future optimizations routine by routine, it 
will be necessary to identify the dysfunction and re-activate the tracing. 

 
Problem with ARPEGE 2D parallelism in coupled mode 

A greater problem appears using 2D intern parallelism on coupled mode. Actually, ARPEGE 
2D parallelism improvements allow:  

1. on routines where equation are solved on grid points, MPI domain decomposition is 
rectangular (following latitude but also longitude) and not only on latitude stripes, 
which allows, of course, a greater parallelism. 

2. on routines where equation are solved on spectral mode, parallelism is done on 
spherical harmonics but also on vertical levels. 

Parallelism skill on both grid points and spectral mode should be the same. That implies that 
decomposition is limited by the product of spectral decomposition times vertical level 
number, i.e. for a T159 resolution and 30 vertical levels, 3000 domains (about 7000 for a 
T359). 

On coupled mode, it seems that previously implemented OASIS interface routines have not 
been updated to take into account the 2D parallelism. So, our study has been bounded by 
the 1D parallelism limitations. Domain decomposition won't exceed 110 for a T159 resolution, 
250 for a T359. Those figures are quite far from the optimum measured with ARPEGE model 
on stand alone mode. 

The most efficient optimization on coupling strategy has been deployed: OASIS parallelism 
by coupling field (up to 16 resources used) and sequential coupling mode. Improvements are 
in accordance with the one observed (at higher resolution) on NEC SX9 vector machine (see 
Report 3: Development of a high resolution version of ARPEGE-NEMO climate model): time 
spent on coupling routines related to communication or interpolation does not rise above the 
elapsed time difference between ocean and atmosphere model. At this resolution, it seems 
unnecessary to use an OASIS version insuring a greater scalability to the coupler (OASIS4). 

 
Slowdown of ARPEGE internal time step in coupled mode 

An issue appears comparing elapsed times of two atmosphere model configurations: on 
coupled mode and on stand alone mode. The difference (the coupled mode is slower) not 
only occurs at coupling time step, but at each model time step as well. 

On coupled mode, each instance of the different models (and of the coupler) is mapped on a 
resource allocated according to an unusual algorithm (machine dependant and not 
changeable). Then, we cannot ensure that atmospheric processes won't share memory on a 
node with an other process (ocean or coupler), which can disturb communications between 
one model instances. 

To limit those interaction risks, we launched 8 instances of our coupler, hoping that they will 
be mapped by the MPI launcher on 8 cores of the same node, leaving to instances of the 



 

 Page 30 of 65 

other models a divisible by 8 numbers of resources. 

 

According to this protocol, mean elapsed times for an atmosphere model time step (without 
IO, without convection calculations, without coupling), with NEMO on 64 cores (for coupled 
experiments only), are the following: 

 

 ARPEGE on 16 resources ARPEGE on 104 resources 

ARPEGE stand-alone 1.05 0.195 

CPL, OASIS on 1 resource 1.09 0.264 

CPL, OASIS on 8 resources 1.1 0.264 

Table 4.1: Elapsed time (seconds) for an ARPEGE T159 internal time step 

 

Booking the node number of cores (8) for OASIS does not change the observed slowdown. 
And the slowdown increases with the number of cores allocated to ARPEGE (5% increase in 
elapse time with 16 cores, 25% with 104). But, without any information on mapping algorithm 
and their location, it won't be impossible to better investigate this issue. 

Nevertheless, despite this unconstrained extra cost, best time performances with the T159 - 
ORCA ½  configuration approach 1.5 days to simulate 10 years, using about 400 cores, a 
quite reasonable figure compared to current configuration in use on vector machines at 
Météo-France (3 hours to simulate 10 years on 8 processors with a T127-ORCA1 
configuration). 

 

4.2.2 BSC MareNostrum IBM JS21 
MareNostrum is a state-of-the-art High Performance Computing system held by BSC. More 
detailed information on the BSC MareNostrum HPC can be found in section 2.2.1.  

Météo-France's climat model deployment on MareNostrum was straightforward due to 
availability of NEMO and OASIS codes (previously installed by Arnaud Caubel (IPSL) and 
David Vicente (BSC)). A simple modification on OASIS code was performed to trace model 
components separated performances and a script provided to collect and analyse the results. 
Description of this counter is made on section 3.2 Experimental design, on Report 3 
Development of a high resolution version of ARPEGE-NEMO climate model for OASIS3 
testing purpose.  

ARPEGE porting was neither problematic, due to previous compiling with IBM XL FORTRAN 
on other IBM platforms. 

 

4.2.3 IDRIS IBM Blue Gene/P 
The IBM Blue Gene/P system of IDRIS (babel) has 10 racks, each one containing 1024 
compute nodes. A compute node has 4 computing cores running at 850MHz and 2GB of 
memory. The total theoretical peak performance is 139Tflops (3.4Gflops by core). 

Each rack is divided in two midplanes, each one containing 512 compute nodes (2048 
cores). The compute nodes are grouped by 64 (“pset”) and each group has 1 I/O node. 
Therefore, it is only possible to allocate partitions (group of compute nodes) by multiple of 64 
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(256 cores). 

The machine has access to parallel filesystems with a total capacity of nearly 800TB. 

Previously used on IBM Blue Gene/L and JS21 Mare Nostrum machines, both ocean and 
atmosphere compilations were particularly easy going. 

A fatal complication happened during OASIS execution phase: Due to some characteristic of 
BG/P software suite, OASIS version 3 cannot be used without major code changes. 

Actually, MPI MPMD launching mode implemented on this machine has two kinds of 
restrictions: 

1. an executable must be launched on an integer number of “pset” 

2. MPI ranks given to instances of a same executable are not contiguous. 

 

Our 3rd version of OASIS has been late adapted to a parallel use. MPI instance number could 
not actually exceed the number of coupling field (15, in our case), which was not compatible 
with the first constraint (minimum of 256 instances for one executable). A recent 
improvement enables now OASIS to run without coupling fields: these “dummy” OASIS 
instances could be added to the useful ones to reach the mandatory figure. 

Secondly, OASIS3 sub-communicator definition associated to coupled components imposes 
that MPI ranks of coupler instances should begin at zero, and should increase monotonically 
(rank 0,1,2,3,4,5,6,7 for 8 OASIS instances). That's not compatible either with the second 
constraint. 

For the first time, we reach here a limitation of our pseudo-parallel OASIS3 coupler. To 
complete our study on this machine, and to have a chance to process climate simulations on 
this IBM Blue Gene/P machine, it is mandatory to develop the OASIS4 version of our 
coupled system. This task began during the 2009 OASIS user support at IPSL (IS-ENES 
WP4), designing the new interface of NEMO model. 

Generally speaking, we also might wonder about the compatibility of our approach, based on 
separate executable coupling and MPI MPMD mode, with the observed standardization of 
supercomputers. We noticed that, for the moment, supercomputer users of others community 
poorly take advantage of this mode. This is clearly a non standard use of the MPI library. 
Should this technique become problematic on standardized machine such as massively 
parallel supercomputers? 

 

4.3 Performances of ARPEGE atmospheric component 
Taking advantage of LMDZ' and ARPEGE's presence on the same supercomputer, some 
common analysis have been performed with “PARAVER” BSC toolkit (see Report 2: IPSL-
ESM (LMDZOR-NEMO-OASIS3) porting and performance tests). 

 

 LMDZ 
1 task/node 

LMDZ 
4 tasks/node 

ARPEGE 
4 tasks/node 

Instructions per cycle 0.62 0.47 0.33 

Parallel efficiency 0.78 0.87 0.92 

Table 4.2: Common LMDZ-ARPEGE analysis performances on Mare Nostrum (BSC) 
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If ARPEGE scalability exceed LMDZ' one, ARPEGE exhibits a slower number of instructions 
per cycle, which could imply a higher number of memory access conflicts. Parallel efficiency 
is slightly the same. All those figures could suggest that ARPEGE's higher scalability should 
be mainly originated in its slower amount of communications. 

Scalability tests have been processed with atmospheric model using two kind of resolution: 
standard (T159, used by several laboratories within AR5 IPCC exercise) and high (T359, 
used for short term forecasts). The high resolution version could be used for climate research 
purposes, but still on experimental experiments, requiring an elevate amount of computing 
resources. 

Please notice that, on every machine, I/O routines have been disabled, due to performance 
reasons but also for 2D parallelism mode considerations (see section 4.2.1 CINES SGI Altix). 

On IBM BG/P, « DUAL » mode has been preferred (two physical cores out of 4 are 
effectively used). On SGI Altix, every 8 cores of a node are used. The same on IBM JS21, 
where 4 physical cores out of 4 are effectively used. 

 

 
Figure 4.1: Compared performances (elapsed time) on several platforms for ARPEGE model 

(T159 resolution) 
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Figure 4.2: Compared performances (elapsed time) on several platforms for ARPEGE model 

(T359 resolution) 

 

Those results suggest that time performances of the standard resolution ARPEGE model 
(without IO) on those 3 scalar platforms are compatible with a production use (for both short 
term and long term experimental needs). It's the same for the “frontier” T359 resolution, 
considering that a hundred year of simulation can be processed during less than 15 days 
(using 500 cores on SGI Altix machine). 

For a production use, those good results must be confirmed and important improvements 
must be undertaken: 

• additional developments for IO enabling 

• NEMO scalability (done after this report writing) and IO improvements (IO server, 
currently under development for MPP compatibility) 

• ARPEGE coupling interface rewriting to allow 2D parallelism compatibility 

 

This present study on compared performances of ARPEGE's different resolution 
configurations on highly parallel scalar machines convinced us to suggest a choice on model 
definition for years to come. 
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Figure 4.3: Compared scalabilities on several platforms for ARPEGE model (T159 resolution) 

 

 
Figure 4.4: Compared scalabilities on several platforms for ARPEGE model (T359 resolution) 
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As we can see on these figures, speed-up keeps acceptable values up to 500 cores, using 
high resolution version of the model, whereas it weakens over 100 cores at standard 
resolution. 

This result cannot be extrapolated unlimitedly but it suggests that “weak scaling” could offer a 
good solution to be able to test higher decompositions (up to 10.000 to 100.000 domains) 
with higher resolution and begin to investigate issues that we sooner or later will encounter 
(like fault tolerance compliance). 

Our model scalability increasing with resolution, this is our “frontier” configuration that might 
better take advantage of future massively parallel platforms. 
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5.1 Introduction 
5.1.1 EC-Earth System Model and BSC MareNostrum Supercomputer 
The European Community Earth system model (EC-Earth) is an Earth System Model (ESM) 
that was developed by a number of European National Weather Services and university 
groups. It is based on the seasonal prediction system of European Centre for Medium-Range 
Weather Forecasts (ECMWF) [Hazelenger et al, BAMS]. 

EC-Earth is under current development and consists of two main components: an 
atmosphere, chemistry, land and vegetation model and an ocean and sea-ice model. Each of 
these two main components contains various sub-components, which represent physical 
processes, and climate-related biological and geochemical processes. These models 
communicate with each other through a coupler. The used programming languages are 
FORTRAN and C [Brandt, 2010]. The final software architecture of EC-Earth will consist of 
five main software codes: 

1. Coupler: The coupler software used is OASIS3, which manages a number of 
operations related with a simulation with two o more interacting models. The 
interacting models are the atmosphere model together with a land and vegetation 
module, an atmospheric chemistry model and an ocean and sea-ice model.  

2. Atmosphere model: The atmosphere model of EC-Earth is based on cycle 31r1 of 
the Integrated Forecasting System (IFS) of ECMWF. The basic configuration contains 
62 levels in the vertical, with a model top at 5hPa (~37 km). The dynamical part of the 
model uses a spectral transform approach, with a present horizontal resolution of 
T159. The physical parametrization schemes of the model (including clouds, rain, 
radiation, turbulence and land surface processes) are all calculated on a reduced N80 
Gaussian grid, which corresponds to a 1.125 degrees spacing (125 km). The 
atmospheric model uses a two time-level semi-Langrangian scheme for its dynamics 
with a 1-hour time step.  

3. Ocean and sea-ice model: The ocean and sea-ice model is based on version 2 of 
NEMO (Nucleus for European Modelling of the Ocean). The ocean general circulation 
model (OGCM) is OPA (Océan Parallélisé). OPA is a primitive equation model which 
is numerically solved on a global ocean curvilinear grid known as ORCA. ORCA1 has 
a resolution of 1 degree and the southern pole grid is refined to resolve the 
circumpolar currents. The vertical grid has 31 levels (the 31st level is below the ocean 
bottom) with variable layer depth and a constant 10 m step in the top 150m. The 
Louvain-la-Neuve sea-Ice Model (LIM) is a thermodynamic-dynamic sea-ice model 
directly coupled with OPA. 

4. Atmospheric chemistry model: The global chemistry model of EC-Earth, is called 
TM5. It describes the atmospheric chemistry and transport of reactive or inert tracers 
It can be run on a global spatial resolution of 6x4 or 3x2 degrees, with the option to 
increase the resolution to 1x1 degrees over specific regions, e.g. over Europe, the 
United States or Asia. It has been included as an online module that evaluates the 
transport and concentrations of reactive gases and various aerosol types for the 
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meteorological conditions simulated by IFS. The concentrations of the simulated 
greenhouse gases and the concentrations and relevant optical properties of the 
aerosols can be fed back to calculate the associated direct and indirect radiative 
forcings in IFS. Exchange between TM5 and IFS currently takes place on a 3- or 6-
hourly basis. 

5. Land and vegetation module: The land-vegetation model is the hydrological 
extension of the Tiled ECMWF Surface Scheme for Exchange processes over Land 
(HTESSEL) and it is part of the atmosphere model. 

The EC-Earth ESM has been ported successfully over different high performance computing 
platforms (e.g., IBM P6 AIX, CRAY XT-5, Intel-based Linux Clusters, SGI Altix, 
MareNostrum) at different sites in Europe (e.g., KNMI, ICHEC, ECMWF). The current version 
of EC-Earth consists of three models: IFS, OASIS and NEMO. The development of the 
different model versions was as follows: 

• Version 0: Uncoupled model IFS CY31R1 

• Version 1: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2) 

• Version 2: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2), with local 
ECMWF modifications and EC-Earth developments for CMIP5 

• Version 3: Coupled model (IFS CY33 – OASIS3 v2.5 –NEMO3/LIM3)  

 

The MareNostrum HPC is located at the Barcelona Supercomputing Center (BSC). A more 
detailed description on the BSC MareNostrum HPC can be found in section 2.2.1.  

 

5.2 Objectives 
The main objective of this work is to identify and document the issues related with the 
portability and performance of the EC-Earth model on the MareNostrum supercomputer. In 
order to meet the standards for future HPC architectures (e.g., within the PRACE 
infrastructure), it is important to understand the current performance of ESMs on state-of-the-
art computing systems. In this sense, we focus on the porting and performance analysis of 
EC-Earth model on the MareNostrum supercomputer, a DEISA2 node. 

In this report, we describe the efforts done to port the coupled EC-Earth model on 
MareNostrum and the preliminary optimization tasks undertaken to improve the default 
performance of the modeling system. A description of the execution characteristics of the 
system is presented and results from a scalability study are discussed. Finally, we present 
initial analysis of raw performance traces using the Paraver analysis software tool developed 
at BSC (http://www.bsc.es/plantillaA.php?cat_id=485) and conclusions for future work. 

 

5.3 Description of execution and evaluation tests 
5.3.1 Porting 
Three versions of EC-Earth have been compiled and run in MareNostrum: version 2.0, 2.1 
and 2.2. Detailed instructions for compiling and running the model in its version 2.0 are found 
in Stefanescu, 2008. 

To compile EC-Earth (versions 2.0, 2.1 and 2.2) at MareNostrum some modifications on the 
code were need. First, we included the flag -qextname for the multiple configuration files and 
routines that required extra underscoring. The most optimized compiler in MareNostrum is 
IBM XL compilers since MareNostrum is an IBM machine with PPC970 processors. This type 
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of compilers does not include by default the underscoring in the Fortran routines, which it 
was required by the C code that calls to Fortran routines in the original EC-Earth code. 
Second, changes in the source code were required to adapt the program to our architecture, 
so the IBM AIX structure was selected as base. This approach required some tuning to 
match the architecture IBM PPC LINUX running at BSC. 

In addition to the changes described above, a particular compilation for IFS was needed for 
versions 2.1 and 2.2 as a result of an incompatibility of the IFS software and the compiler 
XLF version 12.1. After extensive testing, a two step compilation approach was used to 
compile IFS within EC-Earth using XLF version 10.1 and 12.1 compilers. Compiling all IFS 
with XLF v10.1 was not feasible as other modules within EC-Earth were only available for the 
new XLF v12.1 compiler.  

A platform intercomparison using EC-Earth version 2.1 and a simplified 10-year simulation 
run showed that EC-Earth ports and performs well in different architectures of European 
supercomputing centers including MareNostrum. 

 

5.3.2 Execution 
EC-Earth is executed in parallel using MPI and the default setting of 16 CPUs for NEMO and 
1 CPU for OASIS. For NEMO, a default number of 16 CPUs was established by the EC-
Earth community. For OASIS, one CPU is used as EC-Earth does not use a parallelized 
version of this coupler. Table 5.1 summarizes the requirements and resources needed to 
execute EC-Earth in our platform. 

MareNostrum uses a batch processing support, so all jobs must be run through it. The batch 
system used in MareNostrum is a combination of two softwares: 1) SLURM, developed at 
Lawrence Livermore National Laboratory and designed for large clusters, which works as a 
resource manager and 2) MOAB, developed at Cluster Resources company, which works as 
a job scheduler. The user then needs to specify the number of CPUs allocated for each task. 
This is useful for hybrid MPI+OpenMP applications, in which each process spawns a number 
of threads. The number of CPUs per task must be between 1 and 4, since each node has 4 
CPUs (one for each thread). It is important to note that OpenMP settings are globally defined 
for a whole run. It is also possible to define the number of tasks allocated in each node. 
When an application uses more than 1.7GB of memory per process, it is not possible to have 
4 processes in the same node because of an 8GB memory limit. Due to this special 
configuration, the submitting batch script to send an EC-Earth run to the MareNostrum 
queues is different to other platforms (see Table 5.1 for details). 

 

Platform  

Execution platform  MareNostrum 

Requirements ksh - korn shell (ksh93) 
perl - used extensively with generic Makefile to build source libraries 
mpi1 - required for parallel execution 
Fortran 95 - a fortran 95 compiler that supports an auto-double (or -r8) 
capability. OASIS3 requires Cray pointers.  
OpenMP - if OpenMP is used then the MPI implementation is required to 
be thread-safe 
netCDF - the netCDF library for I/O of all NEMO and OASIS3 

 Libraries Oasis: netcdf 
Nemo: netcdf 
IFS:  
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 blas - a standard (“off the web”) blas library 
 dummy - stubs for routines that are never called 
 ec- a small number of ecmwf utility routines 
 emos - library of data manipulation routines, like bufrdc/ bufr 
 (observation l e routines), gribex/ grib (spectral/grid point 
 fields) and pbio/ simple C based I/O routines 
 IFS - contains the main IFS source library, has many 

subdirectories 
 IFSaux - contains IFS utility routines (in particular MPL * interface 

to MPI) 
 lapack - public domain source of LAPACK routines (see also blas) 
 prepdata - data preparation routines 
 surf - surface package 
 trans - IFS transform routines/data distribution 

CPUs Used for each 
component 

IFS: 64 (NPRTRW =32 and NPRTRV =2) 
NPROC: Total number of CPUs (NPRTV x NPRTRW) 
NPRTRW: Number of CPUs used during transform phase in wave space 
(max 47) 
NPRTRV: Number of CPUs used during transform phase in vertical 
direction (max 62) 
OASIS: 1  
NEMO: 16 (NEMOPROCX=4 and NEMOPROCY=4) 

Submit job command NEMO_nproc=$((NEMO_nprocX*NEMO_nprocY)) 
minNEMO_nproc=$((IFS_nproc+1)) 
maxNEMO_nproc=$((IFS_nproc+NEMO_nproc)) 
total_nproc=$((maxNEMO_nproc+1)) 
echo "0 ${OASIS3_exe}" > silly.conf 
echo "1-$IFS_nproc ${IFS_exe} -v ecmwf -e $EXPVER" >> silly.conf 
echo "$minNEMO_nproc-$maxNEMO_nproc ${NEMO_exe}" >> silly.conf 
srun -n$total_nproc -l --multi-prog silly.conf 

Table 5.1: Summary of requirements and resources needed to run EC-Earth. 

 

5.3.3 Optimization 
The optimization process mainly focused on adapting the compilation flags in order to 
improve the efficiency of the code (e.g., inlining of specific functions, test different levels of 
optimizations and libraries, etc). In addition, we checked the performance of the I/O in the 
two filesystems available in MareNostrum: 1) /scratch/, which is the local filesystem only 
accessible from each node and with 36 GB, and 2) /gpfs/, which is globally available from 
any node and with more than 100 TB of storage space. We chose to run EC-Earth within 
gpfs/ because the use of the local filesystem did not improve the I/O behaviour, and scratch/ 
was limited in space and output files were more difficult to recover. 

 

5.3.4 Scalability 
To understand the performance of EC-Earth in MareNostrum, we did a scalability test using 
EC-Earth version 2.2. The experiment consisted of running 1-month simulations for different 
numbers of CPUs for IFS (i.e., 4, 8, 16, 32, 36, 64, 96, 128 and 256). In this study, we kept 
constant setting of 16 CPUs for NEMO and 1 CPU for OASIS. We considered the number of 
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IFS CPUs as multiple of four because MareNostrum has four CPUs per node and to avoid 
performance issues due to share memory resources with other applications. A constant 
number of 16 CPUs was considered for NEMO since that was the default setting established 
by the EC-Earth community for the Coupled Model Intercomparison Project (CMIP-5). 

 

Figure 5.1 shows the speedup and the scalability efficiency of EC-Earth for different number 
of IFS CPUs, and Table 5.2 summarizes the execution times. Only results from 4 to 128 IFS 
CPUs are shown because running EC-Earth with 256 IFS CPUs was not feasible due to MPI 
communication problems (only 2 out of 10 tests were successful). The relative speedup for 
each number of CPUs is calculated as the ratio of execution time of the base number of 
CPUs (in this case, 4 IFS CPUs, i.e., a total of 24 CPUs) and the execution time with X 
CPUs; efficiency is the relative speedup multiply by the ratio of the CPUs (i.e., 24 over X). It 
is important to note that the standard metric speedup is the ratio over the run with only one 
CPU. We used the metric speedup ratio in this analysis as our objective was to determine 
the optimum number of IFS CPUs to efficiently run EC-Earth. These results show that the 
efficiency of EC-Earth in MareNostrum decreases when a large number (> 64) of IFS CPUs 
are used, and that the optimum number of IFS CPUs to run EC-Earth in MareNostrum is 64. 
It is important to note that the efficiency values are above one, which indicates an issue on 
the EC-Earth performance when using a low number of IFS CPUs (<16). In addition, we 
tested the EC-Earth performance for different balances between NPRTRW and NPRTRV 
and found no significant performance variation. 

 

 

 

 
Figure 5.1: Speedup and scalability efficiency of EC-Earth runs from 24 to 148 CPUs. 

Numbers reported are the average of 10 runs (excluding the lower and the upper outlier to 
avoid MareNostrum instability performances).  
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Number of CPUs  Execution Time 
24 (1 + 16 + 4) 13:53:58 
28 (1 + 16 + 8) 07:13:39 

36 (1 + 16 + 16) 03:48:08 
52 (1 + 16 + 32) 02:05:11 
56 (1 + 16 + 36) 01:57:49 
84 (1 + 16 + 64) 01:13:35 
116 (1 + 16 + 96) 00:56:35 

148 (1 + 16 + 128) 00:49:00 

Table 5.2: Execution time for each EC-Earth run. Numbers reported are the average of 10 
runs (excluding the lower and the upper outlier to avoid MareNostrum instability 
performances). Total number of CPUs is rounded to the closest multiple of four. 

 

Table 5.3 shows a summary of computation times within EC-Earth considering coupling and 
no-coupling times. The computation time is the addition of the time from the log for all time 
step, the time without coupling is estimated as the product of number of time steps by the 
mean time of the time steps without coupling stage and the coupling percentage is the 
fraction of time that the code uses for coupling, based on the coupling and non-coupling 
times. We find that the coupling percentage increases with the number of CPUs due to a 
decrease in computation time. From the log files (not shown), we find that there is a 
significant larger time for processing every 3 hours, likely as a result of this coupling. 

 

Number of CPUs Computation time Coupling percentage Time without 
coupling 

24 (1 + 16 + 4) 13:53:23 13,27% 12:02:50 
28 (1 + 16 + 8) 07:11:45 13,73% 06:12:27 

36 (1 + 16 + 16) 03:46:52 14,56% 03:13:51 
52 (1 + 16 + 32) 02:03:46 22,01% 01:36:25 
56 (1 + 16 + 36) 01:57:24 25,16% 01:27:51 
84 (1 + 16 + 64) 01:11:50 29,14% 00:50:54 
116 (1 + 16 + 96) 00:55:41 34,21% 00:36:38 

148 (1 + 16 + 128) 00:47:22 39,20% 00:28:48 

Table 5.3: Example of distribution of computing and coupling time extracted from a single 
EC-Earth run. The total number of CPUs is rounded to the closest multiple of four. 

 

5.3.5 Traces 
We used Paraver to further test the performance of EC-Earth in MareNostrum. Paraver is an 
open source performance visualization and analysis tool developed in BSC. Figure 5.2 
shows an example of one of the Paraver visualization modes: colors indicate the CPU states 
(e.g., running, waiting for communication, synchronization, group communication, 
communication send, I/O), the xaxis represents time, and the yaxis represents the different 
CPUs (e.g., 1 for OASIS, 4 for IFS and 16 for NEMO in our example).  
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Figure 5.2: Example of a Paraver graphical view. OASIS, IFS and NEMO are run with 1, 8 
and 16 CPUs, respectively. . 

 

In addition from visualizing the CPU behaviour, performance statistics can be extracted from 
Paraver. We analyzed some of these parameters: the “load balance” is the average 
percentage of time each thread is executing over the maximum of that percentage (one for 
an ideal perfect balanced code and one/CPUs# for a totally unbalanced code); the 
“communication factor” is the maximum of the percentages of time any thread is executing, 
the “code replication” reflects the increased work the model will have to do, due to non-
parallelized code repeated over several CPUs and the cost of the computations needed to 
perform the communications, i.e., the total number of instructions of that executions over the 
number of instructions executed for the 24 CPUs run; the “average instruction per cycle 
(IPC)” describes the internal behaviour of the code; the “speedup” is the execution time of 
the base number of CPUs (in this case, 24), over the execution time with X CPUs; the 
“efficiency” is the ratio of speedup over the ratio of the CPUs.  

For a reference, the range obtained from load balance, communication factor, code 
replication and average IPC parameters gives an idea of the parallelization performance of 
the code in a specific aspect (> 0.9 well, 0.8-0.9 fairly well and <0.8 can be improved). It is 
important to note that values below 0.8 do not mean that there is a problem within the code, 
as this regular performance might be inherent to the model. 

As a preliminary test, we created traces for 1-day simulation runs. Figure 5.3 shows results 
for the tests performed with 16, 32 and 64 IFS CPUs. This test shows the existence of a load 
imbalance between IFS and NEMO (see red areas in NEMO compared to IFS, i.e., NEMO is 
waiting for communication while IFS is still processing). However, this load imbalance 
improves as the number of IFS CPUs increases. In addition, we find that somehow there is a 
serial processing at the startup and some other periods (see highlighted regions in green), 
and that there is a significant larger time for processing every 3 hours due to the coupling 
(not shown). 
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Figure 5.3: Trace visualization of a 24 hour EC-Earth simulation for 16 (top), 32 (middle) and 
64 (bottom) IFS CPUs. NEMO and OASIS were run with 16 and 1 CPUs, respectively. 
Colors indicate running (blue), waiting for communication (light red), synchronization (dark 
red), group communication (orange), communication send (pink) and I/O (green). Green 
vertical lines indicate the initialization part of the trace that does not scale. 

 

Figure 5.4 shows a comparison of a 3-hour run, including one coupling step, for EC-Earth 
using 16, 64 and 128 IFS CPUs (please, note the time axis scale is different in each plot). 
This Paraver analysis shows clearly that OASIS acts as a bottleneck and is always an 
important limiting factor independently of the number of IFS CPUs used because during 
coupling both IFS and NEMO are waiting for communication. Based on the Paraver analysis, 
we find that the coupling time takes about 2 seconds, confirming that the coupling time 
calculated in Table 5.2 corresponds in fact to the coupling stage. 

In addition, we observed the existence of an extreme load imbalance between IFS and 
NEMO on the 16 IFS CPUS and a large imbalance for 64 IFS CPUs, indicating that IFS acts 
as a bottleneck and another important limiting factor in EC-Earth. The load imbalance 
improves with 128 IFS CPUs and IFS and NEMO can both act as limiting factor depending 
on the time step.  

Overall, this analysis shows that IFS spends most of the time running, whereas NEMO 
spends an important fraction of time doing data transfer. This implies that, at MareNostrum, 
NEMO may not scale well beyond 16 CPUs. Previous studies showed the significant 
scalability of NEMO using MPI-OpenMP and recommend running NEMO using this parallel 
technique. However, we use only MPI parallelization for NEMO at MareNostrum because IFS 
is run with MPI. MareNostrum is a distributed memory system and does not support a hybrid 
parallel execution, i.e., one software running with MPI parallelization and another with 
OpenMP+MPI within the same submit job.  
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Figure 5.4: Example of a 3-hr trace visualization EC-Earth, showing a close-up view of the 
coupler communication for 16 (top), 64 (middle) and 128 (bottom) IFS CPUs. NEMO and 
OASIS were run with 16 and 1 CPUs, respectively. Colors indicate running (blue), waiting for 
communication (light red), synchronization (dark red), group communication (orange), 
communication send (pink) and I/O (green). 

 

Table 5.3 summarizes the statistical parameters calculated from the Paraver analysis. This 
table shows that load balance tends to improve as the number of IFS CPUs increases. 
Communication performance decreases with the number of IFS CPUs, as a result of a 
reduction on the percentage of time that is used for calculations while the amount of 
communication remains the same. Similar behaviour is observed for code replication due to 
an increase in the calculations needed to distribute the workload and to non-parallelization of 
parts of the code. Not surprisingly, the average IPC improves as the number of IFS CPUs 
increases. Based on a further analysis of the average IPC from Paraver (not shown), we find 
that IFS has a significant larger IPC than NEMO and OASIS. Similarly to results found in 
section 1.3.4, the Paraver analysis confirms that the efficiency of EC-Earth in MareNostrum 
decreases when a large number (> 64) of IFS CPUs is used, and that the optimum number of 
IFS CPUs to run EC-Earth in MareNostrum is 64. 

 

# of CPUs 24 28 36 52 56 84 116 148 
Load balance 0,21 0,36 0,54 0,71 0,73 0,84 0,84 0,64 
Communications 0,97 0,95 0,91 0,84 0,84 0,76 0,72 0,62 
Code replication 1 0,82 0,92 0,69 0,61 0,57 0,55 0,43 
Avg. IPC 0,31 0,37 0,38 0,5 0,59 0,63 0,64 0,66 
Speedup 1 1,92 3,63 6,65 7,39 11,63 15,22 12,61 
Efficiency 1 1,65 2,42 3,07 3,17 3,32 3,15 1,22 

Table 5.3: Statistic metrics obtained with Paraver excluding the initialization stage (i.e., 21-
hour run). Total number of CPUs is reported to the closest multiple of four. 
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5.4 Summary and Conclusions 
The EC-Earth ESM was successfully ported to the BSC MareNostrum supercomputer, a 
system based on IBM PowerPC 970MP processors and run under a Linux Suse distribution. 
We detected a compilation incompatibility of IFS in EC-Earth v 2.1 and 2.2 to the compiler 
XLF version 12.1. This incompatibility was solved by a two step compilation approach using 
the XLF version 10.1 and 12.1 compilers. 

The EC-Earth performance was analyzed with respect to scalability and trace analysis with 
the Paraver software. The performance analysis was done using the standard configuration 
of EC-Earth version 2.2, which uses 1 CPU for OASIS3 and 16 CPUs for NEMO, and 
modifying the number of CPUs allocated for the IFS model. 

Our analysis showed that EC-Earth performs fairly well in MareNostrum, and that the efficient 
number of IFS CPUs is 64. Running EC-Earth with a larger number of IFS CPUs (>128) is 
not feasible at the moment since some issues exists with the IFS-NEMO balance and MPI 
communications. We detected a negligible load imbalance within IFS, which is typical in 
models with complex physical calculations, and an important performance loss of EC-Earth 
in the coupling stage, as OASIS acts as a bottleneck since the serial version of OASIS is 
used. 
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6.1  CMCC-MED model description 
The CMCC-MED model, developed under the framework of the EU CIRCE Project (Climate 
Change and Impact Research: the Mediterranean Environment), provides the possibility to 
accurately assess the role and feedbacks of the Mediterranean Sea in the global climate 
system. CMCC-MED is a global coupled ocean-atmosphere general circulation model 
(AOGCM) coupled with a high-resolution model of the Mediterranean Sea. The atmospheric 
model component (ECHAM5) has a horizontal resolution of about 80 Km with 31 vertical 
levels, the global ocean model (OPA8.2) has horizontal resolution of about 2° with an 
equatorial refinement (0.5°) and with 31 vertical levels, the Mediterranean Sea model (NEMO 
in the MFS implementation) has horizontal resolution of 1/16° (∼7 Km) and 72 vertical levels. 
The communication between the atmospheric model and the ocean models is performed 
through the CMCC parallel version of OASIS3 coupler, and the exchange of SST, surface 
momentum, heat, and water fluxes occurs every 2h40m. The total number of fields 
exchanged through OASIS3 is 35. The global ocean-Mediterranean connection occurs 
through the exchange of dynamical and tracer fields via simple input/output operations. In 
particular, horizontal velocities, tracers and sea level are transferred from the global ocean to 
the Mediterranean model through the open boundaries in the Atlantic box. Similarly, vertical 
profiles of temperature, salinity and horizontal velocities at Gibraltar Strait are transferred 
from the regional Mediterranean model to the global ocean. The ocean-to-ocean exchange 
occurs with a daily frequency, with the exchanged variables being averaged over the daily 
time-window.   

 

6.1.1 Configuration  
In Table 6.2 the compilation keys for each component model are reported. 

Model Name Compilation keys 

NEMO - Mediterranean Sea key_dynspg_flt key_ldfslp key_zdfric key_dtasal key_dtatem 
key_vectopt_loop key_vectopt_memory key_oasis3 
key_coupled key_flx_circe key_obc key_qb5 key_mfs 
key_cpl_discharge_echam5 key_cpl_ocevel key_mpp_mpi 
key_cpl_rootexchg key_useexchg 

ECHAM5 - Atmospheric __cpl_opa_lim __prism __CLIM_Box __grids_writing 
__cpl_maskvalue __cpl_wind_stress 
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Model Name Compilation keys 

OPA8.2 - Ocean Global key_coupled key_coupled_prism key_coupled_echam5 
key_coupled_echam5_intB key_orca_r2 key_ice_lln 
key_lim_fdd key_freesurf_cstvol key_zdftke key_flxqsr 
key_trahdfiso key_trahdfcoef2d key_dynhdfcoef3d 
key_trahdfeiv key_convevd key_temdta key_saldta 
key_coupled_surf_current key_saldta_monthly key_diaznl 
key_diahth key_monotasking 

Table 6.2: Compilation keys for models 

  

Each component model is used with the spatial and temporal resolutions shown in Table 6.3, 
while the coupler OASIS3 has been configured as in Table 6.4. 

 OPA8.2 ECHAM5 NEMO 

time step 4800s 240s 600s 

grid points 182x149 480x240 871x253 

vertical levels 31 31 72 

Table 6.3: Spatial and temporal resolution of the component models   

 

OASIS3 configuration 

Coupling period 9600s 

Total number of fields 
to be transformed 35 

 Number of fields 
exported to 

Number of fields 
imported from LAG 

OPA8.2 17 6 4800s 

ECHAM5 9 26 240s 

NEMO 9 3 600s 

Table 6.4: OASIS3 configuration   

 

A detailed view of the transformations performed by OASIS3 on the exchanged fields is 
given in Table 6.5. 
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Table 6.5: OASIS3 transformations 

 

6.1.2 Computing environment 
All of the experiments have been made on two different architectures available at the CMCC 
Supercomputing Centre: a scalar cluster based on IBM Power6 processors and a vector 
cluster based on NEC-SX9 processors. 

The IBM cluster, named Calypso, has 30 IBM p575 nodes, each of them equipped with 16 
Power6 dual-core CPUs at 4.7GHz (8MB L2/DCM, 32MB L3/DCM). With Simultaneous Multi 
Threading (SMT) support enabled, each node hosts 64 virtual cores. The whole cluster 
provides a computational power of 18 TFLOPS. Each node has 128GB of shared memory 
(4GB per core), two local SAS disks of 146,8GB at 10k RPM and two Infiniband network 
cards each one with four 4X IB galaxy-2 and four Gigabit network adapters. Some nodes are 
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used as GPFS and TSM servers and have also two fibre channel adapters at 4Gb/s FC and 
two fibre channel adapters at 8Gb/s for interconnecting to the storage system. Calypso has 2 
storage racks, each one equipped with 280 disks of 750GB, providing a total capacity of 
210TB of raw storage. These disks are working with GPFS. Calypso interconnects also a 
tape library with 1280 cartridges LTO4 at 800GB (1PB total capacity) and Tivoli TSM for 
handling Hierarchical Storage Management. The default compilers are IBM XL C/C++, and 
IBM XL FORTRAN. The default resource scheduler manager is LSF. 

The NEC cluster, named Ulysses, has 7 nodes based on SX9 processors. Each node has 16 
CPUs at 3.2GHz, 512GB of shared memory, a local SAS D3-10 disk of 3.4TB and uses IXS 
Super-Switch interconnection with a bandwidth of 32GB/s per node (16GB/s for each 
direction) to the high-speed interconnection and four 4Gb/s FC adapters to storage system. 
The whole cluster provides a computational power of 11.2 TFLOPS. Ulysses has 3 storage 
racks with three SAS D3-10 disks at 9.2TB and three SAS D3-10 disks at 6.9TB for a total 
capacity of 48.3TB of raw storage. The GFS is used for handling the storage system. The 
default compilers are SX C/C++ and SX FORTRAN. The default resource scheduler 
manager is NQSII. 

 

6.2 Portability on IBM Power6 architecture 
The porting activity on the IBM cluster consists of the following three steps: 

A1: compilation, configuration and execution of the component models as they are executed 
on the vector cluster, without any code optimization. 

A2: analysis of bottlenecks and definition of component models to be improved in order to 
optimize the coupled model performance. 

A3: optimization of coupled model as result of the previous activity, taking into consideration 
the target architecture and the availability of native libraries performing better w.r.t. those 
actually used. 

The version of ECHAM5 included within the CMCC-MED coupled model is optimized for the 
NEC-SX9 cluster and it is characterized by several physical improvements introduced by 
CMCC-INGV. Moreover, a stand-alone version of the atmospheric model provided by IBM 
and optimized for scalar architecture Power6, is available. In order to maintain the 
optimizations of the stand-alone version, an integration of the physical changes within it has 
been started. To date, the ECHAM5 stand-alone version has been coupled in the CMCC-
MED model and we are working on the integration of the physical improvements. The 
Mediterranean component NEMO at 1/16° has been also developed by CMCC (IOIPSL 
provides a version of NEMO from 1° to 1/12°). 

The porting activity of the CMCC-MED model on IBM Power6 is currently at stage A2. During 
stage A1, we used only the compiler optimization flags for tuning the model on the scalar 
architecture. Moreover, to compile CMCC-MED at IBM Power6 cluster, some modifications 
on the code were needed. 

From a preliminary profiling analysis of ECHAM5 and NEMO component models we deduce 
that NEMO performances are limited by the communication overhead when open boundaries 
are activated and ECHAM5 does not scale well since we are using a version deeply 
optimized for vector clusters. 

 

6.3 Performance analysis 
In the High-Performance Computing context, the performance evaluation of a parallel 
algorithm is made mainly considering the elapsed time running the parallel application with 
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different number of cores and different problem sizes (for scaled speed-up). Typically, 
parallel applications embed mechanisms for efficiently using the allocated resources, 
guarantying for example a good load balancing and reducing the parallel overhead. 
Unfortunately, this assumption is not true for coupled models. These models were born from 
the coupling of stand-alone climate models. The component models are developed 
independently from each other and they follow different development roadmaps. Moreover, 
they are characterized by different levels of parallelization, by different requirements in terms 
of workload and they have their own scalability curve. Considering a coupled model as a 
single parallel application, we can note the lacking of the implementation of a policy for 
balancing the computational load on the available resources. 

During the scalability analysis of the CMCC-MED coupled model, we established a 
methodology for studying the scalability of parallel applications composed by independent 
parallel applications interacting each other with different communication mechanisms. 

Coupled models are executed typically using a MPMD approach; established the total 
number of cores allocated for the whole coupled model, how we have to distribute them for 
each of the component models?   

We have addressed this issue according to the following methodology: 

1. Within the coupled model we analyzed the scalability curve of each component model and 
coupler. 

2. We defined an analytic performance model at coarse grain level for the whole coupled 
model. 

3. Using the experimental data given during the stage 1, and evaluating the model defined in 
stage 2, the best configurations have been extracted for different numbers of available cores. 

4. We experimentally evaluated the behaviour of the coupled model considering only the best 
configuration for a given number of allocated cores. 

In the next paragraphs, we will show the result from each stage of the proposed methodology 
on the two different architectures available at the CMCC. 

 

6.3.1 Stage 1: scalability evaluation of the component models 
The test aims at both studying the speed-up of each component model and finding the 
optimal run configuration in order to efficiently exploit the computing resources. 

Several experiments have been performed to evaluate the scalability of each single 
component model. For each of these, we report the elapsed time for executing one-day 
simulation (it does not include the I/O time for writing the restart files). 

Each model has been separately evaluated but within the coupled model. We used the 
PRISM libraries for instrumenting the code and for extracting the elapsed time of the single 
component models. We have considered the time elapsing between a prism_get and a 
prism_put as the time spent by the model for simulating all the time steps included in a 
coupling period. The coupling time has been evaluated considering the elapsed time 
between a clim_Import and a clim_export.  

The components we have taken into account are ECHAM5, NEMO and the OASIS3 coupler 
that are the most computational intensive components. The OPA8.2 model is run in 
configuration ORCA2 using the sequential version. It is not been analyzed since it did not 
represent a bottleneck for any of the configurations taken into consideration. 

All of the experiments have been performed using only MPI1 approach. Even if NEMO and 
ECHAM5 models support a hybrid parallelization based on OpenMP/MPI, in our experiments 
the number of threads for process has been set to 1.  
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In the following, we describe the analysis of scalability for each component model. 

 Compilation flags Linked libraries 

NEC-SX9 -pi exp=cuentr,cuadjtq,cubasmc 
expin=cuentr.f90,cuadjtq.f90,cubasmc.f90 
-Wf,-init heap=zero stack=zero -Popenmp 
-Chopt -sx9 

libsupport.a libblas.a liblapack.a 
libpsmile.MPI1.a libmpp_io.a 
libnetcdf.a 

IBM Power6 -qsmp=omp -q64 -O5 -qstrict -qarch=pwr6 
-qtune=pwr6 -qcache=auto -qfixed -
qsuppress=1518-061:1518-128 -
qMAXMEM=-1 -Q -qsuffix=cpp=f90 -
qzerosize -qessl -qnosave -qalias=nostd 

libsupport.a libessl.a libmassv.a 
liblapack3264.a libxlf90_r.a 
libpsmile.a libmpp_io.a 
libnetcdf.a 

Table 6.6: Compilation flags for ECHAM5 

 

6.3.1.1 ECHAM5 component 

The ECHAM5 component has been compiled on NEC-SX9 and IBM Power6 using the 
compilation flags in Table 6.6. 

On NEC-SX9, ECHAM5 scales up to 28 processors (Figure 6.1a). On IBM Power6 some 
problems occurred when using block domain decomposition. Using only 1D decomposition, 
with a resolution of T159 (corresponding to 240x480 grid points), the maximum number of 
processes is 60. Hence, the scalability of ECHAM5 on IBM Power6 has been evaluated up to 
60 cores (Figure 6.1b).  

 (a) 



 

 Page 52 of 65 

 (b) 

Figure 6.1: Scalability of ECHAM5 component model on NEC-SX9 (a) and on IBM Power6 
(b) for one-day simulation  

 

6.3.1.2 NEMO component 

The NEMO component model has been compiled on NEC-SX9 and IBM Power6 using the 
compilation flags in Table 6.7. 

 Compilation flags Linked libraries 

NEC-SX9 -size_t64 -dw -Wf\"-A dbl4\" -sx9 -pi auto -P 
stack -C vopt -Wf"-init stack=nan" -Wl"-f 
nan" -Wf"-P nh" -Wf,-pvctl noassume 
loopcnt=10000 

liboasis3.MPI1.a 
libpsmile.MPI1.a libmpp_io.a 
libclim.MPI1.a libnetcdf.a 

IBM Power6 -q64 -c -qfixed -qrealsize=8 -qstrict -
qarch=pwr6 -qtune=pwr6 -qcache=auto -O5 

liboasis3.MPI1.a 
libpsmile.MPI1.a libmpp_io.a 
libclim.MPI1.a libnetcdf.a 

Table 6.7: Compilation flags for NEMO 

 

On the vector cluster, NEMO model presents a not regular trend in the scalability (Figure 
6.2a). The scalability is limited to 24 vector processors. On IBM Power6, the model scales 
better up to 64 scalar cores (Figure 6.2b). It is worth noting here that the elapsed time on 
both machines differs of one order of magnitude. 
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 (a) 

 (b) 

Figure 6.2: Scalability of NEMO component model on NEC-SX9 (a) and on IBM Power6 (b) 
for one-day simulation 

 

6.3.1.3 OASIS3 coupler 

The OASIS3 coupler has been compiled using the compilation flags in Table 6.8. 

 Compilation flags Linked libraries 

NEC-SX9 -Pstack -pi auto nest=3 line=10000 
exp=iminim,rmaxim,rminim,grid_search_bilin 
expin=src/,libsrc/scrip -Ep -sx9 -Wf,"-P nh" -
Wf,"-pvctl noassume loopcnt=5000000 
vworksz=100M" -Wf,"-A idbl4" -Wf,"-msg o" -
Wf,"-pvctl fullmsg" -Wf,"-L fmtlist transform 
map summary noinclist" -Chopt -Wf,"-ptr 
byte" 

libpsmile.a libanaisg.a 
libanaism.a libfscint.a 
libscrip.a libclim.MPI1.a 
libmpp_io.a 
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 Compilation flags Linked libraries 

IBM Power6 -qrealsize=8 -q64 -qalias=nostd -O0 -
qsuffix=cpp=F90 

libpsmile.a libanaisg.a 
libanaism.a libfscint.a 
libscrip.a libclim.MPI1.a 
libmpp_io.a 

Table 6.8: Compilation flags for OASIS3 

 

The parallel approach used in the CMCC version of OASIS3 follows an embarrassing parallel 
algorithm. The scalability on both architectures shows that the communication overhead is 
negligible. The not linear trend of the scalability, corresponding to some number of 
processes, is due to the not balanced workload on different fields (Figure 6.3). The parallel 
algorithm limits the scalability to the number of exchanged fields (in our case it is equal to 
35). 

 (a) 

 (b) 

Figure 6.3: Scalability of OASIS3 coupler on NEC-SX9 (a) and on IBM Power6 (b) for one-
day simulation 
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6.3.2 Stage 2: definition of the performance model 
For the definition of the analytic performance model, we can consider that all the model 
components are executed in parallel between two coupling steps. At each coupling step, 
each model sends their fields to the coupler and waits for receiving from the coupler the 
fields coming from the other models. The coupler, only after receiving all of the fields to be 
exchanged, performs their transformations, sends the changed fields to the models and waits 
for receiving fields at the next coupling step. During the coupling period all the models are 
synchronized and waits for coupler ending transformations (coupler transformations and 
models elaboration could be overlapped using the OASIS3 utility named SEQ. During the 
analysis of the CMCC-MED performance, this utility has not been used). The analytic model 
defines the execution time for a single coupling step as the maximum computing time spent 
by the component models plus the coupling time (the last time step of NEMO, performed 
between a coupling step and the next one, is overlapped with the coupling activity for 
modellers chosen): 

T =max tN (pN )* (nsN
−1),tE (pE )* nsE{ }+max tO (pO ),tN (pN ){ }

  (1) 

where 

tN is the computing time for executing a time step of NEMO component model 

tE is the computing time for executing a time step of ECHAM5 component model 

nSN is the number of time step of NEMO component model 

nSE is the number of time step of ECHAM5 component model 

tO is the computing time for one coupling step 

pN is the number of processes allocated for NEMO component model 

pE is the number of processes allocated for ECHAM5 component model 

pO is the number of processes allocated for OASIS3 coupler 

 

In order to find the best configuration we have to find the pE, pN and pO values minimizing the 
execution time T. The constraint imposes that the total number of processors must be equal 
to the allocated processors (K).  

 pE + pN + pO +1=K   (2) 

 

6.3.3 Stage 3: definition of the best configurations 
During this stage we used the experimental results obtained in the stage 1 for evaluating the 
performance model of the whole coupled model. The charts have been produced setting K to 
the total number of CPUs/cores to be used and evaluating the performance model for all of 
the permutations of pE, pN, and pO satisfying equation 2. 

Taking into account the time step intervals and the coupling period (reported on Table 6.3 
and Table 6.4) we have nSN = 16 and nSE = 40 
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6.3.3.1 Best configurations on NEC-SX9 

 (a) 

 (b) 

 (c) 
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 (d) 

Figure 6.4: Estimated execution time of the CMCC-MED on NEC-SX9 for K=16 (a), K=32 (b), 
K=48 (c) and K=64 (d)  

 

The best configurations are represented in the Table 6.9. 

K pE pN pO 
16 10 4 1 
32 20 8 3 
48 22 12 13 
64 26 24 13 

Table 6.9: Best configurations on NEC-SX9 

 

6.3.3.2 Best configurations on IBM Power6 

 (a) 
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 (b) 

 (c) 

Figure 6.5: Estimated execution time of the CMCC-MED on IBM Power6 for H=64 (a), 
K=104 (b) and for K=192 (c)  

 

K pE pN pO 
64 20 40 3 

104 24 64 15 
192 60 100 31 

Table 6.10: Best configurations on IBM Power6 

 

6.3.4 Stage 4: scalability trend of CMCC-MED model 
Considering the trend of the performance model, evaluated on the NEC-SX9 (Figure 6.6), we 
can make the following considerations: 

1. The execution time could decrease with a greater number of processors. The actually 
availability of processors on NEC-SX9 limited the analysis of scalability to 4 nodes. 

2. Established the number of nodes to be used, the best performance have been 
obtained when the allocated nodes are fully used.  
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Figure 6.6: Scalability of CMCC-MED on NEC-SX9  

 

On IBM Power6 cluster (Figure 6.7) we can make the following considerations: 

1. The limit of the scalability has been reached at 104 cores. Even if the cluster provides 
a greater number of nodes, our analysis stopped at 3 nodes since we have reached 
the minimum elapsed time. 

2. Established the number of nodes to be used, the best performance have been 
obtained not always when the allocated nodes are fully used, i.e. with 3 nodes it is not 
necessary to use all 192 cores, being 104 enough (the elapsed time on 104 and 192 
is the same).  

 

 
Figure 6.7: Scalability of CMCC-MED on IBM Power6  

The scalability of the coupled model has been experimentally evaluated varying the number 
of nodes and using the best configurations suggested by the performance model. The 
experiments take into account a 5 days simulation and include the I/O time for writing the 
restart files. The results confirmed the likelihood of the performance model with the real 
computational behaviour of the coupled model, as shown on Figure 6.6 and Figure 6.7.   
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PART III: Concluding remarks 
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1. Summary of the base-case results 
The deliverable reports results obtained from four couple models (CMCC-MED, ARPEGE-
NEMO, IPSL-ESM and EC-Earth) and four stand-alone models (NEMO, ARPEGE, LMDZOR 
and ECHAM5) tested on a number of HPC infrastructures within the IS-ENES network (e.g., 
Ekman, Kappa, MareNostrum, CINES, IDRIS, Calypso, Ulysses). The collaborative effort 
among application owners and computer specialists led to the identification of numerous 
strengths and limitations of these ESMs and models. The main findings are summarized 
below: 

 

• NEMO stand-alone model: 

o The ORCA1 benchmark scales well to around 16 nodes (128 cores) on 
Ekman (Quad-Core AMD Opteron 2374 HE @ 2.19 GHz; 8 MPI processes / 
node) and Kappa (Quad core Intel(R) Xeon(R) CPU           E5520 @ 2.27GHz, 
code named Nehalem; 8 MPI processes / node) systems. The scaling is 
gradually lost due to the large amount of the time is spent in MPI calls. 

o The choice of the MPI library has some impact on run time of NEMO code. 
Open MPI runs are consistently better than Scali MPI. The different behaviour 
may be due to some MPI internal algorithm differences. 

• LMDZOR atmosphere stand alone model: 

o The stand alone atmospheric model was tested on MareNostrum (PowerPC 
2,3 GHz, 4 CPU / node, 8 Gb / node), Vargas Power6 (4,7 GHz, 32 CPU / 
node, 128-256 Gb / node) and Mercure SX8R (vector processors, 8 CPU / 
node, 64 Gb / node). The speedup is lower for PowerPC than for Power6. 
Similar behaviour can be obtained on Power6 compared with vector 
processors by increasing the number of cpus used. 

• ARPEGE-NEMO coupled model and OASIS3: 

o Several configurations of ARPEGE-NEMO have been set up in order to check 
OASIS3 capability at high end resolutions. Tests were performed on Météo-
France supercomputer (6+7 vector nodes of 16 SX9 processors each and 1 
Tb memory per node). 

o An internal counter allows to finely determine the number of processors which 
minimizes the difference between oceanic and atmospheric coupling step 
durations. 

o Two optimizations on OASIS configuration (sequential mode + pseudo 
parallelism) speed up the coupled standard runs between 15 and 25%. A 
higher resolution is tested to analyse OASIS3 performance. Both 
optimizations contribute to reduce the total simulation time from 8 to 4 hours. 
Those experiments prove the OASIS3 capability to drive high end resolution 
coupled simulation on vector machines. 

• ARPEGE-NEMO coupled model: 

o The coupled model was ported on SGI Altix ICE (CINES), IBM Blue Gene 
(IDRIS) and Marenostrum IBM JS21 (BSC) to analyse if the model can 
intensively be used on scalar machines. Major problems were encountered on 
Blue Gene architecture. OASIS3 cannot be used without major changes on 
such architecture. No relevant problems were detected on the other platforms. 

• IPSL-ESM coupled model: 
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o The porting of IPSL-ESM to MareNostrum (IBM Power PC 970MP @ 2.3 
GHz; 4 MPI processes / node; 8 Gb / node) supercomputer highlights some 
limits of the model performance in such type of architectures: low memory 
available per node, scalar processors with low frequency calculation, 
moderate MPI scalability, no hybrid MPI-OpenMP runs allowed. 

o A higher resolution configuration was ported on CINES-Jade (2 Intel Quad-
Core E5472 processors; 30 Gb / node). The hybrid parallelisation MPI-
OpenMP allows running the coupled model on around 2200 cores. 

• EC-Earth coupled model: 

o The EC-Earth ESM was successfully ported to Marenostrum (PowerPC 2,3 
GHz, 4 CPU / node, 8 Gb / node) supercomputer. The atmospheric 
component of the system scales well to around 64 cpus. The current 
configuration of the system did not allow to run NEMO code with more than 16 
cpus. 

o The heterogeneous parallelisation MPI and MPI+OpenMP is not currently 
allowed on the Marenostrum system. This is an important limitation on this 
architecture as it prevents taking advantage of the speedup of NEMO when 
run using MPI+OpenMP. 

• CMCC-MED coupled model: 

o The coupled model was ported and tested on Calypso (IBM Power6 dual-core 
@ 4,7 GHz) scalar machine and Ulysses (NEC SX9 processors, 16 cpu / 
node @ 3.2 GHz, 512 Gb of shared memory) vector machine. 

o The coupled model scales well to around 32 cpus on Ulysses machine and 
104 cpus on Calypso. On cluster machines, the best performance is not 
always obtained when the allocated nodes are fully utilised (maximum 
performance may be on fewer cores than are allocated on a node-basis).  
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2. Recommendations for future work 
Several strategies are planned in LIU, IPSL, BSC, CERFACS and CMCC for future work.  

At LIU, they plan continuing to profile NEMO, including MPI calls along with other functions 
and subroutines using different profiling tools. In addition, they will put some light weight 
timers in the code to analyze its behaviour and learn in detail about potential load imbalances 
and other bottlenecks. They plan to analyze scaling of main time consuming routines and 
figure out which routines are loosing scaling as the number of ranks increases. Finally, they 
will investigate whether it will be possible to reduce the MPI_Recv time.  

In the next months, IPSL will continue working on “Grand challenge” project at CINES centre, 
in order to run 20 years simulation at high resolution (see part 1.2 of IPSL report). They plan 
to continue to test their model on SMP and MPP architectures to evaluate the work to be 
done to obtain good performances on such a machines, especially concerning following 
points: 

• Hybrid MPI-OpenMP parallelisation on MPMD code4: it is not easy to specify a 
number of OpenMP threads and MPI process on most of architectures. For example, 
they would like to launch easily the following configuration (especially because the 
parallelization hybrid MPI-OpenMP seems to be the best way to use up the resources 
available on MareNostrum-like architecture, see IPSL report).  

o Atmospheric model on 2048 cores by using hybrid MPI-OpenMP 
parallelization : 256 MPI process x 8 OpenMP threads 

o Oceanic model  on 120 MPI process 

o Oasis3 parallel version “field per field” on 24 MPI process (each MPI process 
treats one field). 

• I/O problems: the introduction of different levels of parallelization into models has 
resulted in a significant decrease in computing time. As a consequence, time spent 
on I/O becomes very significant proportion of total computing time (15-20%). 
Simulation performance is highly impacted by time spent in the writing model output. 
They have planned to work on this problem both at IPSL and through IS-ENES 
project WP7/JRA1. 

At BSC, they plan to continue the trace analysis of the coupled EC-Earth run with Paraver. 
They will focus on the improvement of the execution of NEMO code in MareNostrum and, if 
possible, test the use of a hybrid parallelization MPI-OpenMP to reduce the communication 
time detected within NEMO. Defining a higher resolution configuration within EC-Earth 
community will allow them to analyze the performance of the model beyond thousands of 
CPUs. For that, the implementation of a parallel version of the OASIS coupler will be critical. 

With the experience with EC-Earth model and an optimized implementation of NEMO and 
OASIS on MareNostrum, BSC will collaborate with other modelling groups (e.g., IPSL, 
CERFACS) to test their models on higher resolutions. 

In CERFACS, one of the major challenges for the upcoming months is the set up of an 
OASIS4 configuration to test scalability of their different model components on a coupled 
configuration.  The aim of this task is to estimate OASIS4 performances in an actual MPP 
configuration (with high resolution components) and validate, with a scientific study, the good 
operability of a high resolution coupled model (global CGCM) on a scalar platform. 

The work began with the implementation of ECHAM-NEMO coupled system on both IDRIS-
CNRS and DKRZ IBM Power6 (WP4, OASIS user support) and will follow on with the new 
implementation of ARPEGE / NEMO-Mixed-Layer CGCM (also called ARPEGE-PanOPAe) 
on CINES SGI Altix ICE (see IPSL prospective) and IDRIS IBM Power6. 
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A similar work is planned with EC-Earth system (high resolution) during WP4 user support 
effort at SMHI. Strong interactions on this topic are expected with both LIU and BSC 
partners. 

At CMCC, they plan improving scalability of CMCC-MED coupled model on IBM Power6. 
Performance decreases for both ECHAM5 and NEMO-Mediterranean component models 
when the number of processes increases; this influences the behaviour of the coupled 
model. In particular, ECHAM5 shows some problems when block domain decomposition is 
used: using only 1D decomposition, with a resolution of T159, the maximum number of 
processes is 60. Hence, they plan to solve decomposition problem and to evaluate scalability 
of ECHAM5 on IBM Power6 beyond 60 processes. The NEMO-Mediterranean component 
scales better up to 64 scalar processes due to load imbalance and communication increasing 
for a higher number of processes. They plan to investigate bottlenecks to performance 
improving and to perform a full scalability analysis running NEMO on more then 60 
processes.   
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