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1. Executive Summary 
This  work  package  undertakes  research  into  the  performance  aspects  of  configuring, 
deploying and running Earth System Models (ESMs).The work package covers a number of 
key areas relating to model performance including: research portability and performance of 
key models on a range of platforms, including emerging petascale PrACE machines; work to 
develop tools to ease the composition of new ESMs from existing model components and 
coupler technologies which will help to lower the technical hurdle for small climate research 
organisations.

Within these objectives,  task 3,  Flexible  Construction of  ESMs,  undertakes research into 
future coupling technologies seeking to provide flexibility in the construction and deployment 
of future, community-based, ESMs using appropriate underlying coupling systems, such as 
OASIS and ESMF.

This  document  is  organized as  follows;  Section  2 provides  a general  introduction  to the 
Bespoke Framework Generator version 2 (BFG2) Generative Programming system; Section 
3 presents a new Scientific API which supports both of the prevalent coupling styles in use 
by the community today (termed aggregation and composition in this document); Section 4 
discusses progress towards supporting framework interoperability (i.e. being able to couple 
models  that  are  already  written  to  conform  to  a  specific  framework);  Section  5 briefly 
discusses  language  support  that  is  being  added  to  BFG2  to  help  integrate  with  other 
domains, for example, Integrated Assessment; Section 6 presents the prototype BFG portal, 
where  one  can  run  BFG  and  browse  model,  transformation  and  coupling  descriptions; 
Section  7 describes  progress  towards  the  support  for  consistency  between  Metadata 
descriptions of model code and the code itself; Section 8 explains how and why the internals 
of BFG2 are being re-written to use templating, implemented in PYTHON, (replacing the use 
of  the  previous  techonolgy,  XSLT);  in  Section  9 two  examples  of  the  use of  BFG2 are 
provided, the first showing interoperability with ESMF and OASIS, and the second in the 
domain of Integrated Assessment Modelling. A third example examines the issues involved 
in  making  a  complex  code  compliant  to  a  component-style  interface;  finally,  Section  10 
provides a general summary of the previous sections.

Further  information and references to papers related to BFG can be found on the BFG 
website: http://  www.cs.man.ac.uk/cnc/projects/  bfg  .

A BFG2 wiki page can be found at: https://source.ggy.bris.ac.uk/wiki/GENIE_BFG.

A useful reference to BFG2 is:

C.W. Armstrong,  R.  W. Ford  and G.  D.  Riley.  Coupling  integrated Earth System Model  
components with BFG2,  Concurrency and Computation: Practice and Experience, Vol. 21 
No. 6, pp. 767--791, 2009, DOI: 10.1002/cpe.1348. 
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2. BFG2 Approach
2.1 Motivation
Developers  and  users  of  Earth  System Modelling  software  employ  (scientific)  models  in 
many  different  scenarios.  For  example,  a  model  may  initially  be  developed  as  a  single 
column  model  on  a  laptop  or  workstation.  Once  debugged,  the  same  model  may  be 
incorporated into a coupled model which is developed and debugged on a workstation or on 
a local cluster before, eventually, being deployed in production mode on one or more high 
performance  computers.  Typically,  a  model  continues  to  be  developed  over  time  with 
potential consequences for the coupled models, and other scenarios, in which the model is 
used. A model developer may also be required to provide the model to a user in such a way 
that  it  conforms to the user's  chosen coupling  infrastructure,  for  example,  as an ESMF-
compliant model, or an OASIS-compliant model. At some point in its life, this model may be 
used  in  another  scientific  application  domain,  for  example,  in  Integrated  Assessment 
Modelling. Finally,  a community coupled model, such as those in the CIAS system, which 
includes the original  model,  may be run in a distributed manner, in a cloud or as a web 
service  (or  even as  a  set  of  web  services),  possibly  as  part  of  a  more general,  formal 
scientific workflow process.

The software infrastructure used in these different scenarios will be very different. There is a 
good reason for this, the requirements of developers and users will be very different in  each 
scenario, and software that is tailored to a user's requirements is typically better,  both in 
terms of ease-of-use and performance, than more generic software. As a crude illustration, 
one  would  not  expect  to  communicate  coupling  data  using  the  web  service  transport 
language  SOAP  on  a  Supercomputer.  However,  although  the  software  infrastructure  is 
expected to be different  depending on the deployment  scenario,  crucially,  the underlying 
science code that is run, should remain the same in all cases. The effort to port the scientific  
model code to each of the software infrastructures, and support it as further developments 
take place,  would be expected to be significant  over the lifetime of the the model.  Such 
porting is error prone and costly. The cost of reusing scientific model software will become a 
major problem in the future as more, and more diverse coupled modelling communities who 
wish to share and exchange their scientific models emerge.

This document describes an approach that provides a general, flexible, solution to the above 
problem. The proposal is that developers of Earth System Modelling scientific software adopt 
a  standard,  relatively  low level  interface  for  specifying  the  details  of  couplings  etc.  that 
separates science code from the specific  details  of  and particular  software infrastructure 
used to implement a couple model in code. This approach frees the model from being limited 
to using a particular software infrastructure and also isolates the model from future changes 
in infrastructure code.

There are currently two dominant styles of coupling in use in Earth System Modelling:  in 
OASIS, models are written as programs which use in-place calls to provide for the exchange 
coupling data; in ESMF, models are written in a component-style with data sharing used to 
specify coupling data1. Current practice in the community is  that a developer of a coupled 
model must choose between the two styles. However, there is agreement in the coupling 
community that supporting both styles within a single coupling system would be beneficial. 

One of the conclusions from the IS-ENES-sponsored workshop on Coupling Technologies 
for ESM2 in 2011, at which there were representatives of all the main ESM coupling systems, 
was the following:

1In the OAISIS infrastructure, the in-place calls map in a reasonably direct way to calls to 
MPI. With ESMF, the actual mechanism used to exchange coupling data depends on how 
the models are deployed and may involve shared data or message passing.
2http://pantar.cerfacs.fr/globc/publication/  proceed/2011/Proceedings_of_the_workshop_final.pdf  
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In the IS-ENES project, BFG has been extended to allow models to be made compliant to 
either of the above two styles and, using BFG's code generation facility, models written in 
either style can be coupled together in any combination, and the coupled model can use the 
appropriate, user-specified coupling infrastructure.

In  addition  to  writing  BFG-compliant  software,  a  developer  must  provide  metadata 
describing:  each model in a coupled model; how the models are to be coupled together (in 
terms of  the coupling  data  to be exchanged);  how the models  are to be deployed  onto 
appropriate computing resources. Deployment metadata also includes details of any specific 
coupling infrastructure, such as OASIS or ESMF, to be used to exchange coupling data. 

BFG is a generative programming tool which takes in the metadata describing a coupled 
model  and  produces  the  appropriate  'wrapper'  code  required  to  build  and  execute  the 
coupled model using the software infrastructure most suited to their particular requirements.

2.2 Science Interface
The Bespoke Framework Generator version 2 (BFG2) defines an interface, including some 
minimal coding rules, to which (scientific) model code must adhere if a model is to be used 
with the system. The aim of this  interface is to provide a formal separation of the science 
code from the software infrastructure, including specific coupling software. This separation 
promotes the ease of re-use of the science code, in other modelling contexts, and insulates 
the code developer from changes in the APIs of software infrastructure. As such it is aimed 
at a level below current coupling API's such as OASIS and ESMF, for example, and can be 
used in conjunction with these, if required. BFG provides two APIs: the component API and 
the program API. These are described next.

The component API is intended to be used with highly modularised code and is designed to 
be as close to the way in which modular code would be naturally written as possible. In 
Fortran90,  for  example,  a  model  may  be  written  as  a  module  with  one  or  more  public  
subroutines. Coupling data from other models (in a coupled model) can be passed to and 
from the subroutines using argument passing. In fact, this structure is already what some of 
the existing, more modular,  coupling systems implement in an informal way,  such as, for 
example, the models at GFDL3.

Coupling  data may also be passed to and from the subroutines of  a model  through the 
addition of in-place put and get calls in the code. The put and get calls require the user to 
provide a reference to the data that they wish to input or output (often the name of an array),  
and also to provide a tag, that is unique4, for the data. The tag is used to link the data in a 
call to metadata descriptions that the model developer must also provide (BFG metadata is 
described  in  Section  2.4).  The  developer  is  able  to  choose  whether  they  prefer  to  use 

3In a private communication with Balaji
4Uniqueness is only required within the model and also within a put or a get.

Page 6 of 46

“For maximum coupling flexibility and efficiency, all climate component models should be 
refactored into init, run and finalize units. Where the norm is a multiple executable approach, 
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“ideal” coupling technology should therefore offer both approaches in order allow an easy 
assembling of legacy code but also provide more efficient and flexible coupling when 
interface agreements can be reached. Current research in Generative Programming 
explores approaches that may enable such an “ideal” coupling technology to be built.”
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arguments or put/get calls on a field-by-field basis.

A  natural  question  would  be  why  one  would  want  to  provide  a  put/get  interface  if  an 
argument passing one exists. One answer to this question is that some data that is output by 
a model might only be short lived when the code executes: the data could be local to a 
deeply-nested subroutine,  for example;  forcing a developer to make this data global  and 
pass it  out via a long chain of argument lists would increase the memory footprint  of the 
program and require the developer to change their code. It would also mean that the data 
was output at the end of the code, rather than from where it was created. A practical example 
of this is diagnostic data.

In addition to the component API, a program API has recently been added to BFG as many 
modelling groups, especially those new to coupled modelling, have existing scientific models 
that are implemented as programs. The program API allows whole programs to be made 
compliant for use within a BFG-managed coupled model without the need for modularising 
them first, as would be required if only the  component API existed. In this case, one must 
specify the data to be input and output by the program through the use of explicit put and get 
calls. The program must also have some additional routines added to mark important phases 
of the program execution. The additional routines include calls to mark the start and end of 
the program and to mark the end of an iteration (in time-stepping or convergence loops, for 
example). The use of the program interface reduces the cost of integrating existing codes 
into BFG2. The downside of using the program interface, however, is a loss of flexibility over 
models that  conform to the component interface.  Models written to conform to either the 
component  interface  or  the  program  interface  can  be  coupled  together  flexibly  in  any 
combination (which make scientific sense) using BFG2.

For more details on the component and program interfaces see Section  3. Currently,  the 
BFG interfaces are most  fully  supported in  FORTRAN90;  however,  equivalent  API's  are 
being  developed  for  other  languages,  including  Fortran77,  C  and  Python.  Compliant 
programs written in any of  these languages can be coupled together.  See Section  5 for 
progress on support for other languages.

2.3 Modularisation
The component API of BFG2 supports the idea of much finer grain code modularisation than 
is typically currently implemented in Earth System Modelling5, although the trend is towards 
higher levels of modularisation in the future (for example, there are efforts to create standard 
routines for components such as radiation). 

BFG2 is able to take two component-compliant models and couple them together so that, 
following the BFG code generation phase, when deployed they run 'in-sequence' (i.e. one 
after the other) within a single executable (i.e. running in a single operating system process), 
using argument passing to exchange coupling data. This deployment will execute with the 
same efficiency as equivalent hand-written code. With a minor change in the deployment 
metadata (see Section 2.4), the models can be deployed so as to execute concurrently, each 
model in its own process, using, for example, MPI or OASIS to exchange coupling data. With 
this flexible and efficient support for controlling how models are configured for execution, 
modellers are potentially able to modularise their code to a much finer level than is currently 
implemented. For example, the individual physics routines in an atmosphere model could 
(and probably should) be considered as (component) models in their own right.

Whilst the modularisation of code is considered to be a benefit (for code development, 
maintenance and, potentially, performance) it is not a requirement in BFG2. Users are able 
to choose the level of modularisation that is natural for their application and scientific goals.

When adopting BFG2, it is suggested that model developers input and output their data in its 

5Codes  are  typically  modularised  to  the  level  of  atmosphere  and  ocean  but  no  further, 
although ESMF is beginning to demonstrate the use of finer grain modularisation.
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raw form, that is, in the format that the model itself stores the data. This is in contrast to the 
definition of standard interfaces, where models are required to input and output standard 
fields. Any mismatch between the formats of data exchanged by models is supported via 
transformations. BFG2 treats transformations in the same way as it treats science 
(component) models and this provides for the same flexibility in their deployment as 
discussed above. The potential performance advantage of this approach is discussed further 
in Section 2.4. Again, this approach is a recommendation in BFG2 not a requirement and 
users can add (hard-coded) internal transformations to their code and/or define standard 
interfaces if they so wish.

2.4 Metadata Descriptions
BFG2 generates 'wrapper' code from metadata descriptions (captured in XML) of the coupled 
model that have been specified by a user. BFG2 does not require any access to the source 
code of models themselves, although model source (or model binary) is subsequently 
required in order to compile and link.

The XML metadata descriptions are organised as three main categories, each dealing with a 
separate aspect of the coupled model, and each having its own XML document:

1. Definition of a model's coupling interface. This describes the input and output data 
that the model requires and provides from and to other models. This information only 
needs to change if the model interface changes. It is invariant over all couplings. This 
information  is  expected  to  'live'  with  the  code  itself  (for  example,  in  the  same 
directory). There is one definition metadata document for each model in a coupled 
model.

2. Composition of models into a coupled model. This describes how the models are 
connected together to exchange coupling data and how the coupled model is to be 
initialised (i.e. how the coupling exchanges are to be started).  Once a composition is 
defined,  the  science  to  be computed by the coupled  model  is  fully  defined.  This 
information is invariant over any deployment of the coupled model. There is a single 
composition document for a coupled model.

3. Deployment of  models  in  a  coupled  model  onto  the  underlying  resources.  This 
describes how the model codes are to be mapped onto the underlying hardware and 
software, including defining the specific (external) coupling framework to be used to 
implement  the  exchange  of  coupling  data  etc.  Deployment  metadata  essentially 
describes how many processes will be required (at run-time) and how the models and 
transformations  described  in  the  composition  will  be  mapped  to  the  processes. 
Program code is then generated by BFG2 that conforms to the mapping specified. 
BFG2 may generate separate programs which invoke a set of models (calling each 
sequentially, 'in sequence') or BFG2 may generate an SPMD-style program that calls 
certain models depending on the run-time id of the process concerned. The process 
id will be the MPI rank in an MPI-based deployement. 

In addition, BFG2 requires the definition of a  schedule which describes the control 
structure within which the models execute (at a relatively high, loop-based, level). The 
schedule provides a global view of the control loop structure of the coupled model 
and specifies an order in which models are to be executed if they are deployed such 
that  they  run  in  the  same  process.  Concurrent  execution  of  models  can  be 
implemented in an SPMD fashion, based on the schedule. Essentially, each SPMD 
program  executes  the  whole  schedule  but,  depending  on  the  unique  id  of  the 
program, only certain models are invoked during execution. BFG2 will add the logical 
conditions to ensure the correct models are invoked for each process generated.

One example of the flexibility in deployment provided to the coupled model developer 
by BFG2 is  that  the developer  can change from using one framework  to another 
without changing  the model code, the model descriptions,  or the definition of the 
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science  of  the  coupled  model.  Changing  the  coupling  framework  requires  only  a 
minor  change  in  the  deployment  metadata,  typically  involving  a  single  element6, 
followed by a re-run of the BFG code generation phase and a rebuild of the coupled 
model, as necessary. There may be several deployment documents for a coupled 
model, each deploying the model onto difference resources.

The above separation of information is called DCD (Define, Compose, Deploy). For 
simplicity, BFG2 also uses a coupled XML document which contains references to each of 
the XML files associated with a particular deployment. Examples of coupled model metadata 
files are available online in the BFG2 portal (see Section 6 for details of the portal).

In order for BFG2  to generate the code to implement an exchange of coupling data correctly, 
it must be able to identify the metadata describing the data to be exchanged between two 
models (data required by one model and provided by another). That is, BFG2 must be able 
to relate information about coupling fields in the model Description metadata (and therefore 
to the actual data in the code), to statements about the fields made in the Composition 
metadata describing the required coupling.

In particular, BFG2 needs to be able to distinguish data provided (i.e. output) by a model and 
data required (i.e. input) by a model. The mechanism used to relate metadata to the code is 
as follows: BFG2 can determine which model provided, or requested data (whether via 
put/get calls or through the use of argument passing) as it knows which BFG model the 
request came from and it knows which models are currently 'active' – since BFG 'owns' the 
control code invoking models. Further, BFG2 can determine the specific data that is being 
input (or output) to (or from) a model from the data's position in the argument list - for an 
argument passing implementation -  or from the 'tag' associated with the data – when put and 
get calls are being used. The tag and the position in the argument list are the link between 
the data in the model code and the description of the data in the metadata definition 
document.

In BFG2 the aim is to minimise the embedding of model metadata implicitly in code and 
instead to keep it as a separate description. The issue of maintaining consistency between 
code and metadata is discussed in Section 7 . This approach is consistent with the aim of 
separating infrastructure code from science code, providing the benefit of allowing the 
infrastructure to change independently of the science code and also providing flexibility in the 
choices of mapping to the underlying computational resources.

One example of BFG's flexibility is that if a coupling between two models requires a 
transformation on the data exchanged between them, the coupled model developer is free to 
choose where the transformation should be placed in the deployment, with potential 
performance implications. For example, if the models concerned are deployed in such a way 
as they run in separate processes, the transformation could be deployed so that it runs within 
the same process as either model (executing 'in-sequence'). Alternatively, the transformation 
might be deployed so that it runs in its own, separate, process. Further, if a model and a 
transformation use argument passing to exchange coupling data, and the deployment 
specifies they should share the same process, BFG2 is able to link the two codes together in 
exactly the same way, and with the same performance, as would have resulted if the model 
developer had hand-embedded the transformation into the science model directly. The 
deployment choice that gives the best performance will often depend on the underlying 
hardware and the flexibility in deployment provided by BFG2 can help in the porting of a 
coupled model to new machines. 

6Other elements in the deployment may need to change depending on the target framework. 
Some frameworks have limitations on the mapping to executables/run-time processes. For 
example, OASIS3 requires one executable per model and ESMF requires one executable for 
all models in a coupled model.
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2.5 BFG2 tools
The  BFG2  code  generation  engine  takes  a  coupled  xml  document  (which  contains 
references to all the metadata files describing a coupled model) as input and generates the 
required wrapper code and scripts for the coupled model.  The way in which BFG2 code 
generation is implemented is discussed in Section  8. BFG2 can also be run online in the 
BFG2 portal, described in Section 6.

Having a description of a coupled model in XML also allows for other tools to be relatively 
easily written. BFG2 currently provides the following:

1. Stub generation. Model stubs can be generated from the model descriptions. Stubs 
are the coding of a models coupling interface without any (scientific) content. Actually, 
for testing purposes, this tool does addionally generate some code to provide values 
for output data so that this stub code can be compiled, linked and run with the BFG2 
generated coupling code. This tool currently only works for Fortran codes.

2. Makefile generation. BFG2 does not keep any compiler specific information or any 
information about  the  structure  of  the  codes (and how to make them).  However, 
despite this limitation, most of the required Makefile can be generated. 

3. Visualisation of the coupled model. The connectivity of a model can be translated into 
graphml (a well supported standard XML format for graphs7), and a tool is currently 
being developed to visualise the coupled model schedule defined in the metadata.

4. BFG1 to BFG2 translation. Models written to the old BFG1 structure can be used in 
BFG2  without  any  code  changes.  All  that  is  required  is  for  the  previous  BFG1 
metadata description to be updated to the new BFG2 format.  This tool  does this 
automatically.

The combination of stub generation, Makefile generation and BFG2 wrapper code generation 
is used in some of the BFG2 unit tests. The combination of these tools allows the creation of 
model stub code, the creation of wrapper code, and the creation of a makefile to compile the 
codes. A hand written top level Makefile runs these generation tools, compiles the generated 
code using the generated Makefile  and runs the resulting executable(s),  each in its own 
process. This combination of tools allows rigorous development testing of BFG2 functionality, 
requiring only the  definition of the appropriate metadata and a simple top level Makefile.

7http://graphml.graphdrawing.org
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3. Supporting Aggregation and Composition
3.1 Current ESM Coupling Technology
The coupling  technologies  currently  employed  in  Earth  System Modelling  (ESM)  can be 
naturally  split  into two main categories8.  In this document  we term these two categories 
aggregation and composition.

In the first  category the coupled model is an  aggregation of  pre-existing program-based 
model codes which (necessarily) run as separate concurrent executables (i.e. in separate 
run-time processes). In this case these model codes pre-exist and can (and typically will) 
also be run separately in their own right.

The main advantage of the aggregation approach is that it requires minimal intrusion into, or 
restructuring  of,  existing  “legacy”  codes  and  the  underlying  processes  associated  with 
running them. This benefit is significant in ESM as the major centres have very large “legacy” 
codes which typically require a significant investment in effort to modify. These centres will  
therefore prefer to take the path of least resistance, particularly as infrastructure changes do 
not immediately improve the science of the underlying codes, and science results are the 
main priority of modelling centres. As a result,  the coupling system synonymous with the 
aggregation approach, OASIS39, has enjoyed  widespread uptake, particularly amongst the 
European modelling centres.

The main disadvantage of the aggregation approach is the potential performance overhead 
when compared with hand-crafted (or composition-based, see below) solutions. The principal 
reason for this is that the mapping of the model codes in a coupled model to the underlying 
software and hardware resources on which the coupled model will execute is constrained, 
and this can lead to less efficient implementations. For example, where two model codes 
must  run  one  after  another  (in  a  timestep),  due  to  the  requirements  of  the  numerical  
algorithm implemented, the running of these on separate (sets of) processors - which is the 
natural way to schedule two (MPI-based) programs on a parallel computer - will result in a 
waste of resources. Further, in cases such as this, message passing is the most efficient way 
to pass data but this is much less efficient  than passing data by reference, which is not 
possible in an aggregated solution consisting of several separate programs.

In the second category, the coupled model is a  composition of component model codes 
which are not implemented as separate programs. Component model codes consist  of a 
collection  of  program  units  -  subroutines,  procedures  or  methods,  depending  on  the 
language in which they are written. These component codes cannot run in a stand-alone 
fashion without  a  main  program code  being  provided  –  the main  program code can be 
thought of as 'wrapper' code. The wrapper code is, therefore, to be considered part of the 
coupling software,  and it  is  responsible  for  calling  the underlying component  codes.  The 
calling of user code by external software is termed inversion of control and is one of the 
defining features of a  framework,  as opposed to a library, for example. Thus component 
codes that require composition need a coupling framework, whereas component codes that 
are aggregated require a coupling library.

The main advantage of the composition approach is flexibility in deployment, that is the way 
in which component models are organised into separate run-time processes. Flexibility in 
deployment allows for more efficient implementations since component models may be run 
sequentially  ('in-sequence,  one  after  the  other(  in  the  same  process,  concurrently,  in 
separate processes,  or in some combination of the two.  Further,  when some component 

8http://pantar.cerfacs.fr/globc/publication/  proceed/2011/Proceedings_of_the_workshop_final.pdf  
9The successor  to OASIS3 (OASIS4) is similar  to OASIS3 in its approach but  has been 
designed to be more scalable. However, a combination of inertia at the modelling centres, 
issues with the OASIS4 interpolation functions and the ability to use multiple instances of 
OASIS3 to improve scalability, has hindered its uptake.
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models are run sequentially in the same process, data may be passed between them by 
reference,  thereby  avoiding  the  overheads  of  data  copying  and  increased  memory  use 
incurred  in  an  aggregated  solution.  Additionally,  components  may  be  composed  in  a 
hierarchy (with one component model calling other component models), which supports the 
natural component hierarchy found in ESM. The best known proponent of this approach in 
ESM  is  the  Earth  System  Modelling  Framework  (ESMF)  which  is  being  adopted  as  a 
standard in the U.S.A.

The main disadvantage of the composition approach is that the component codes must be 
written as a collection of subroutines, procedures or methods. The required restructuring of 
existing legacy codes may be significant,  particularly if  a legacy code is already a hand-
crafted  composition  of  components  which  need  to  be  separated.  However,  for  the 
development of new  models, a component-based approach is recommended.

3.2 BFG2 Proposed Solution
Historically, in the development of coupling systems, such as OASIS and ESMF, there has 
been an assumption that one must choose between the use of aggregation and composition. 
However, as mentioned in Section  2.1, there is agreement in the coupling community that 
supporting  both  approaches  within  a  single  coupling  system  would  be  beneficial.  Within 
ISENES, the prototype BFG2 has now been extended to demonstrate the support of both 
aggregation and composition (previously BFG2 only supported composition). 

3.2.1 Component API and composition
The following is a generic example of what a component model, written to confirm to the 
Component API discussed in Section  2.2, might  look like.  This example is written in the 
Fortran90-style interface. Support for other languages is discussed in Section  5. A model 
written using the Component API is said to be component-compliant. Note that the model 
consists of the declaration of a number of entry points, each defining a (sub)routine, and 
each entry point providing coupling data (to the framework, i.e. out of the model) and receive 
coupling data (from the framework,  i.e. into the model) as both arguments and through the 
use of in-place put and get calls (as both argument passing and in-place calls are supported 
in BFG2 component compliant models).

The above code is  not  dissimilar  to  that  which would  be produced had the model  been 
written to conform to the ESMF interface. Data can be provided to and from the coupling 
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 1 module atmos
 2   use bfg, only : put,get
 3   implicit none
 4   private
 5   public :: init,iteration,finalise
 6 contains
 7   subroutine init(arg1,arg2,...)
 8     call get(data1,tag1)
 9     call put(data2,tag2)
10   end subroutine init
11   subroutine iteration(arg1,arg2,...)
12     call get(data3,tag3)
13     call put(data4,tag4)
14   end subroutine iteration
15   subroutine finalise(arg1,arg2,...)
16     call get(data5,tag5)
17     call put(data6,tag6)
18   end subroutine finalise
19 end module atmos
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framework via arguments (although ESMF requires that  data also be registered with  the 
framework and then ESMF passes references to the data via arguments). Also, the model 
can be split into multiple subroutines through the definition of entry points. Note, that, as with 
ESMF, an arbitrary number of entry points are allowed.

It should be relatively easy to imagine having an ESMF wrapper layer above this interface 
which includes all of the ESMF specific code. Section 9.1 contains an example of generating 
an ESMF-compliant model using BFG2.

One particular difference to the ESMF interface is that BFG2 also supports the passing of 
data to and from the framework via “in-place”  put and get calls. In-place calls allow data 
that is scoped and computed locally,  perhaps in a deeply nested subroutine called from a 
top-level  entry  point,  to  be  input  and  output.  Support  for  this  can  make  it  easier  for 
developers to integrate their code into the framework since less code restructuring may be 
required – the data does not have to be passed through the argument lists of the routines in 
the calling hierarchy, for example. 

Another  motivation  for  the  use  of  in-place  calls  is  the  need  to  support  diagnostics. 
Diagnostics may be computed at some low level in the code and the code developer might 
want to output this information immediately without having to wait until the end of the routine, 
potentially reducing performance, or allocate memory for the data which would exist for the 
duration of the routine and therefore increase the amount of memory required by the model.

3.2.2 Program API and aggregation
Existing support in BFG2 for in-place calls is used in the case of aggregation. The code 
below  is an example of a program written using the program API, again using the Fortran90-
style interface.  A model written in this style is said to be program-compliant.

The above code is similar in style to that seen in OASIS3 and OASIS4, in that the code 
consists of  a main program, has in-place calls  to input  and output  data from and to the 
coupling  system  and  has  some  additional  calls  to  initialise  and  shutdown  the  coupling 
system.

One difference with OASIS3 and OASIS4 is that in BFG2 models to not have to timestamp 
the data input and output. To support this different approach an end-of-step signalling routine 
is provided by BFG2 (bfg_eos). This routine needs to be invoked to inform the framework 
that the next step is about to start (so the coupling system can arrange for the 'clock' to be 
incremented, for example). 
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 1 program atmos
 2   use bfg, only : put,get, bfg_init, bfg_eos, bfg_finalise
 3   implicit none
 4   call bfg_init()
 5   call get(data1,tag1)
 6   call put(data2,tag2)
 7   do i=1,nts
 8     call get(data3,tag3)
 9     call work(...)
10     call put(data4,tag4)
11     call bfg_eos()
12   end do
13   call get(data5,tag5)
14   call put(data6,tag6)
15   call bfg_finalise()
16 end program atmos
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Again it should be relatively easy to imagine implementing a separate OASIS3 or OASIS4 
layer underneath the above interface. Section 9.1 provides an example of targetting OASIS3 
from BFG2.

3.3 Summary
BFG2 now supports both the aggregation and composition of models. Models written in a 
component- or program-compliant manner can be coupled together in any combination that 
respects the requirements of the target coupling system (for example, a program-compliant 
model  cannot  be directly  coupled  into  a  coupled  model  targeting  ESMF). Examples  are 
discussed in Section 9.1. The extension of BFG2 to include aggregation  demonstrates that a 
generative  approach  is  a  viable  way  to  allow  future  coupling  systems  to  support  both 
aggregation  and  composition  and  this,  in  turn,  will  allow  users  to  choose  the  most 
appropriate (coding) style and target coupling system for their needs. 
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4. Framework Interoperability

As previously described in Section  2, BFG2 promotes the isolation of science code from 
coupling framework code (including the mechanism used to communicate coupling data). 
BFG2 allows the user to specify which communication or coupling framework they would like 
to use (this choice is termed the target). BFG2 then generates the appropriate wrapper code 
required  to  implement  the  coupled  model  using  the  target  and  this  code  can  then  be 
compiled with the science code and subsequently run as a coupled model. Thus, the user is 
able  to choose between different  coupling  frameworks  with  no change to the underlying 
science code. This can be considered to be a step towards framework interoperability.

What BFG2 currently does not support is the inclusion of a model that has been written 
natively in one of the supported communication or coupling targets (and by extension BFG2 
also  does  not  support  a  model  written  in  an  unsupported  communication  or  coupling 
framework). To put it another way, to achieve framework interoperability for a set of models, 
all of these models must conform to the BFG2 API.

There are a number of reasonably mature coupling systems in use at the present time in 
Earth  System Modelling  (ESM)  and  this  is  expected  to  continue  to  be the case for  the 
foreseeable future. In fact, as ESM integrates more closely with other domains, the number 
of coupling approaches may well increase – the hydrology community currently use OpenMI, 
for example. This is not unexpected, since different solutions have their own merits and it is 
unlikely that a one-size-fits-all  solution will  emerge due to the increasingly  wide range of 
scenarios in which a particular piece of science code (representing a particular model) is 
utilised.

The current standard solution to this issue is for model developers to write and support a 
separate API for each framework with which they need their model to run. In practice, model  
developers typically only actively support one coupling approach (the one they are currently 
using) and therefore their models can only be coupled with models written to use the same 
framework. If one were able to couple models together that were written natively to conform 
to different frameworks, many more models could be coupled together. This would, in turn, 
reduce the burden on the model developer to support multiple API's. 

As mentioned in Section  2, the BFG2 approach is to propose that model developers write 
code to conform to a scientific  API  and therefore separate  their  science code from any 
specific framework code. This approach would, at least, make it easier to manually create 
and support new framework API's. In fact, this is what some of the more modular systems 
already  implement  in  an informal  way,  a  good  example  being  the models  developed  at 
GFDL10.

BFG proposes to go a step further and automates the generation of the appropriate wrapper 
and coupling code, thus relieving the burden on model developers to do so. In IS-ENES we 
are in the process of modifying the BFG2 code generation system so that it is also able to 
wrap  individual  models,  or  collections  of  models,  and  export them for  use directly  in  a 
selected supported framework. This is in contrast to the original use of BFG  in which the 
creation of wrapper code for a complete coupled model is the aim.

There are two main benefits to this approach:

First, a model developer is now able to couple a BFG2-compliant model with models written 
natively to use other frameworks. However, there is a restriction in that the whole coupled 
model must use the same (native) framework. Further, the coupling of the exported model to 
the native model(s)  has to be done manually within the framework.  For example,  with a 
BFG2-compliant atmosphere model and two ocean models, one written natively to conform 

10In a private communication with Balaji.
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to ESMF and the other to conform to OASIS3, then the BFG2-compliant  model could be 
exported to ESMF and then manually coupled with the ESMF-compliant ocean model. The 
BFG2-compliant model could also be exported to OASIS3 and manually coupled with the 
OASIS3-compliant ocean model. In these couplings, the exported model is simply equivalent 
to a model natively using the target coupling system.

Secondly, a powerful feature of BFG2 is that it supports communication between models, 
written to be compliant to the component API, via argument passing and  can couple models 
together using argument passing producing code that executes with the same efficiency as 
the equivalent, hand-written code.

Combining the use of argument passing with the facility to export models is powerful. For 
example, a collection of (BFG-compliant) models could be exported, wrapped as a single 
model, and then coupled to other, native, models using the relevant target coupling system. 
The component models in the exported model would be able to perform internal coupling 
communication efficiently using argument passing. This option would allow much finer grain 
modularisation than is currently used in coupling systems that support only aggregation, such 
as OASIS3. In effect, this allows the combination of model composition at a fine-grain level 
(with  coupling  data communicated using argument passing)  with  model  aggregation at  a 
more coarse-grain level.

The current status of BFG2 is that there is a working export option targeting OASIS4 models. 
This export  allows  either  a single model  to  be exported or a collection  of  models to be 
exported  with  their  internal  communication  being  implemented  by  argument  passing,  as 
described above. There is also a partially working export option for ESMF which is currently 
limited to the export of a single model.  In the future, the export  option for ESMF will  be 
completed and support added to target OASIS3. 

Conversely,  there is an aim to investigate the possibility of being able to  import a model 
written to conform natively to external coupling API into BFG. There are already examples 
where this process has been implemented manually. For example, the DIVA model is written 
in Java and communicates using TDT11. A manual “adaptor” code, which conforms to the 
BFG API, has been written and this adaptor mediates communication between BFG and 
DIVA. That is, the adaptor 'talks' TDT at one side and 'talks' BFG at the other side. Support 
for the exporting and importing of models are steps towards a solution to the problem of 
framework interoperability.

11TDT was supported as a target for BFG1 but has not yet been implemented as a target for 
BFG2.
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5. Language Support

Originally, BFG2 was developed supporting only the coupling of models written in Fortran. 
BFG2 offers two Fortran interfaces. There is a  SUBROUTINE interface for use with models 
written  to  the Fortran77  standard,  and there is  a  MODULE interface for  use with  models 
written  conforming  to  the Fortran90  standard.  The reason  for  initially  limiting  support  to 
Fortran  was  that  most  models  in  Earth  System  Modelling  (ESM)  are  written  in  Fortran. 
However, as ESM models begin to be used in other scenarios, for example as part of an 
Integrated Assessment system, other languages come into play as other domains frequently 
develop models in languages other than Fortran.

In IS-ENES, in addition to support for Fortran, we are adding to BFG2 support for models 
written in the C programming language and for models written in Python so that models 
written in these languages can be coupled together in any combination.

To implement this support in a flexible and extensible way we have added the concept of a 
base language in the BFG2 metadata.  The base language is the language in which the 
'wrapper'  communications  and control  code,  generated by BFG2,  will  be written.  A base 
language can be specified for each BFG2 deployment unit (a deployment unit is a group of 
models that will be run together from within the same main program – i.e. within the same 
process  at  run-time).  This  allows  more  than  one  base  language  to  be  specified  for  a 
particular coupled model if the coupled model is implemented as more than one deployment 
unit.

To support multi-language coupling, the BFG2 code generation software has been extended 
to  include  a  model  interface  generation  phase.  For  each  deployment  unit  the  BFG2 
generation software compares the (metadata-) specified base language and the specified 
language in which the model has been written, and it generates appropriate adaptor code to 
mediate exchanges between the two, if required.

The current status is that the base language must be specified as Fortran and models written 
in Fortran, C and Python can be coupled together by the generation of appropriate adaptor 
code (for the cases of models being written in C or Python - no adaptor code is required for 
Fortran models, as that is also the base language).

Clearly, if most, or all, models were written in Python, for example, it would make more sense 
for the base language also to be Python. Work in a separate EU project, called ERMITAGE 
(http://ermitage.cs.man.ac.uk/), is in progress to support Python as a base language. At this 
point  in  time,  there  is  no  plan  to  support  C  as  the  base  language  (since  there  is  no 
user/developer domain requiring this).

There are clearly more languages being used to write model code than just Fortran, C and 
Python. For example, Java and R, are used to write model code in some domains, and BFG2 
can be expected to extend its support to other languages in the future, as demand dictates. 
However, the fact that a particular language is not currently supported, does not mean that a 
model written in that language cannot be used with BFG2. Most languages have a defined 
interface to either Python or C, so users would be able to write their own adaptors to enable 
their models to be used as BFG models.

This approach is the same as that described above for the DIVA mode. It is possible for a 
user to write an adaptor to intercept communication to and from external models to make the 
user's model work as a BFG2 model. The DIVA model is written in Java and communicates 
using TDT. In another project, the authors developed a hand written Fortran adaptor model 
(called DIVINE) which communicates to the DIVA model using TDT and which is itself  a 
BFG-compliant model. Thus, DIVA can be used with this adaptor as a BFG-compliant model.
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6.BFG2 Online Access

A portal is being developed to allow online access to the BFG generation tools, input XML 
metadata files and (where appropriate) model source code. The portal can be accessed at 
http://bfg.cs.man.ac.u  k  .   When the portal  is  more mature it  will  be linked-to from the ENES 
portal. Some advantages of providing a portal are that it allows easy access to the tools, with 
no need to download the BFG distribution and install  any dependant  libraries etc.  and it 
provides  access  to  pre-existing  BFG2  examples  for  potential  users  and  developers  to 
browse.

The current version of the portal supports the following:

1. The upload of  BFG coupling  files (i.e. the XML files that  describe a BFG coupled 
model),

2. pre-existing BFG coupling example files,

3. the validation of BFG coupling files,

4. the viewing of uploaded BFG coupling files,

5. the running of BFG to generate code from valid BFG coupling files,

6. the generation of model code stubs from BFG model description files,

7. the viewing of generated code,

8. the download of generated code,

9. separate sessions to allow for concurrent access to the tools by multiple users,

10. an examples repository which provides access to BFG coupling descriptions, BFG 
composition  descriptions,  BFG  deployment  descriptions  and  BFG  model  and 
transformation descriptions.

Work is ongoing with the portal and the following functionality is in development:

1. the editing of uploaded BFG files. This will allow users to change properties (such as 
target platform) and fix any errors in the XML, reported, for example, by the verifier tool, 
etc.,

2. the running of the BFG Makefile generator tool,

3. the running of the BFG1 to BFG2 translation tool,

4. graphical views of the BFG coupling descriptions (using existing BFG translation tools 
which convert BFG descriptions into visual representations).

Eventually, it is anticipated that the portal will enable users and developers, should they wish, 
to provide links to their BFG model code and transformation codes, where possible. The plan 
is to allow users to upload examples to the repository to promote community sharing.

In future, if there is demand from users, the BFG tools will also be made available as web 
services. This will provide a suite of web-based tools which could be used as part of a larger, 
more formal workflow. Finally, in the longer term, the aim is to use the CIM developed initially 
in the METAFOR project, to describe coupling configurations, but at the moment not all the 
required properties are present in the CIM, so further development of the CIM is required.
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7. Code Parsing-Code and Metadata Consistency
One of  the issues of  having metadata describe model  code and model  couplings  (as is 
championed  in  BFG)  is  that  the  metadata  and  the  code  that  it  describes  can  become 
inconsistent.  One  potential  solution  to  this  consistency  problem  would  be  to  keep  the 
metadata with  the code itself.  At  least  then,  code developers would  be more inclined to 
update the metadata when they updated their code. This solution is similar to requiring a 
developer  to  comment  the  code  'properly',  and  the  problems  of  consistency  between 
comments and code are well  know. Thus, a tool which checked for consistency between 
metadata and code would be useful if not mandatory.

A key element in such a tool would be a robust code parser. A parser would be required 
either to support the extraction of metadata from code, or to compare the metadata with the 
code. A promising open source parser is the Open Fortran Parser (OFP) and in the recent 
EU-funded METAFOR project, to demonstrate the use of parser to help produce metadata 
from code,  this parser was modified so that it  output an XML representation of  an input 
(Fortran)  code.  An XSLT translation  phase was  developed  in  order  to  create  an outline 
METAFOR CIM document for the code based on the XML output by the parser.

In  IS-ENES,  the  OFP solution  has been  extended  and  the OFP parser  itself  has  been 
modified so that it correctly parses Fortran comments (previously it simply ignored them) and 
these are now also output as part of the XML output. This is a necessary step if metadata, 
perhaps embeded in Fortran code by developers as structured comments, is to be extracted.

Further, during the IS-ENES project, it has been agreed with the authors of OFP that the 
code developed at Manchester will be added to a branch of the OFP repository. As a result, 
the prototype Fortran-to-XML translator is now available as part of the OFP project.
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8. Using Templates for BFG2 Code Generation
BFG1 and BFG2 were  originally  written  using the well  known XML translation  language 
XSLT to generate code, scripts and (input data) files, as appropriate, from the BFG XML 
metadata  files  describing  models  and  couplings.  Two  main  issues  emerged  related  to 
limitations of the XSLT-based approach:

1. maintainability and extensibility of the resulting code generation engine,

2. performance  of  the  engine  as  the  complexity  of  the  coupled  model  described 
increases.

These issues are discussed in the following two sections and the proposed new template-
based  solution  designed  to  overcome  these  limitations  is  presented  in  the  subsequent 
section.

8.1 Maintainability and Extensibility
XSLT  is  very  good  for  describing  simple  transformations,  however  when  more  complex 
transformations are needed it can become complex, both to read and maintain. This is, in 
large part, due to its single assignment, functional implementation.

In order to simplify the XSLT code development, the code generation process in BFG2 was 
split  into stages or phases12. A small number of XML templates were defined which were 
gradually filled out over a series of stages, thereby reducing the complexity of the overall 
process.

Whilst this approach is a good idea in theory, in practice most of the stages were relatively  
simple (for example adding the program name to an intermediate XML code) but one or two 
stages were very complex and it was not clear how to decompose these further sensibly.

A additional feature of the development approach taken was to keep all code description in 

12BFG1 was simple enough to have a single phase
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an implementation language-neutral XML syntax until  a final code generation phase. The 
potential advantage of this approach is that it should be simple to change code generation 
from one target language to another. This would be achieved by simply changing the final 
code generation phase. The disadvantage is that a new, intermediate, language needed to 
be developed, supported and understood.

Again, this was a good idea in theory but the fact that most codes in the ESM domain are 
written  in  Fortran  meant  that  the  added  complexity  was  not  actually  required13.  Further, 
generated code in different languages potentially needs to be written in very different ways, 
so it is unclear whether a simple change in the code generation phase would be sufficient.

8.2 Performance
For simple couplings BFG code generation using XSLT is very fast. However, for complex 
couplings,  particularly  when  argument  passing is  used to exchange  coupling  data,  code 
generation times could take as long as 15 minutes. In early versions, generation times were 
even  longer  than  this  but  the  engine  code  was  optimised  to  pre-compute  as  much  as 
possible in  a single  step,  and then re-use this information in  subsequent  steps.  This re-
design  made the  BFG XSLT  translation  code  harder  to  understand  and  therefore  more 
difficult to develop and maintain.

8.3 Solution
The proposed solution to the above issues is a template-based approach. In a template, one 
writes the generic code and adds markup where any specific code is required. For example, 
the template in Figure 1 uses the “%” symbol as a delimiter for the attribute progname. This 
template would be stored in a file, in this example a filename programtemplate.txt, is 
assumed. 

The template  engine  then  provides  a  simple  way  to  replace  the  markup  with  text.  The 
pseudocode  in  Figure  2 demonstrates  the  approach.  Figure  2 contains  two  template 
commands which would be executed by the template engine. The first command tells the 
template engine which template is to be processed. The second command is an example 
that contains an attribute specifying the 'value' that is to be used when applying the render 
command to the template.

Finally,  Figure  3 presents the output  resulting from running the template engine with the 
template commands in Figure 2.

13 Although, the requirement for framework interoperability, discussed in Section 5.may mean 
this decision may need to be reconsidered at some point.
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template=Template('programtemplate.txt')

template.render(progname='atmos')

Figure 2: 

program %progname%

end program %progname%

Figure 1: 
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An advantage of the template approach is that it is possible to view and edit the static part of 
the template code simply, with no change to the template engine. There is also no need for a 
language-neutral  format;  instead  different  templates  are  written  for  different  languages. 
There are, therefore, potentially a large number of templates but each template is simpler to 
understand and manage than the previous XSLT-based, phased approach.

There is also no longer any need for XSLT. Instead, all  of the code is written in Python. 
Python was chosen because it has all the functionality required and is easy to program. The 
role  of  the  Python  code  is  to   read  in  the  BFG2 XML documents  and  translate  it  into 
appropriate  template  commands  and  attributes  and  then  apply  the  commands  to  the 
pertinent templates containing generic code.

To  improve  performance,  the  translation  from  BFG2  XML  to  template  commands  and 
attributes  is  performed on-demand so that  translation  is  only  performed where  required. 
Further, the results of any translation are stored so that any future need for a particular set of 
commands and attributes does not need any further translation. This is one of the reasons 
why the template implementation is expected to be much more efficient than the previous 
XSLT-based approach.

In the first instance, the templating engine that has emerged was designed to directly support 
the  requirements  of  the  BFG  metadata  translation  problem  as  they  emerged  during 
development.  However,  there  are  a  number  of  well  supported  Python-based  template 
languages already in use which may have the functionality required. Some examples are: 
StringTemplate14, Jinja215 and Genshi16. In future, development may migrate to one of these 
languages.

8.4 Status
The XSLT version of the BFG code generation is split into 3 main sections

1.control code generation: this section creates the required main program(s) code, calls 
the scientific and transformation models respecting the specified schedule, performs any 
required  initialisation  and  shutdown  functions,  declares  and  initialises  all  argument 
passing  data  and  ensures  that  any  coupling  that  involves  argument  passing  data  is 
performed correctly.   This code is written in a target neutral  manner using a generic 
interface so does not need to change if the underlying communication target changes (for 
example changing from OASIS3 to OASIS4). 

2.inplace code generation: this section creates the library that satisfies the in-place (put 
get) communication requirements. It determines what data is being provided and routes 
that data to the appropriate place. For performance reasons it does call the underlying 
communication mechanism (for example, MPI send, or prism_put) directly so much be 
regenerated if the communication target changes.

3.target-specific code generation: this section creates the target specific communication 
interface.  It  implements  the  generic  interface  used  by  the  generated  control  code. 
Different  implementations  are  created  for  different  targets.  For  example,  for  MPI  it 

14http://www.stringtemplate.org
15http://jinja.pocoo.org
16http://genshi.edgewall.org
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implements the framework_init() function by calling MPI_INIT (amongst other things) and 
for OASIS4 it implements the framework_init() function by calling prism_init() (amongst 
other things).

In the template version of the BFG code generation the control code generation and in-place 
code generation sections of BFG have been replaced with template versions. The authors 
are  currently  working  on  the  control  code  generation  version  to  add  in  full  support  for 
argument passing.  The target specific code generation has been left  using the old XSLT 
approach for the moment.

One of the motivations for moving from XSLT to templates was for easier extensibility of the 
framework. At the same time as re-writing BFG to use templates, support for models written 
in C and Python are also being added. Please see Section 5 for details. Further, the template 
version supports the new program compliance option, see Section 3 for details.

Another motivation for moving from XSLT to templates was to get high enough performance 
to make BFG available as an online tool. This work is ongoing, please see Section  6 for 
details.

When the template code implementation has been completed the code will be made open 
source and added as a SourceForge or GoogleCode project.
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9. Examples

9.1 OASIS and ESMF as BFG2 targets
In this example we present the coupling of four toy models which are designed to represent 
some of the basic constituents of an Earth System Model. Both the individual models and a 
composition  of  the  models  are  described.  The  composition  includes  a  number  of 
transformations performed on coupling data exchanged between models and these are used 
to  illustrate  how  transformations  can  be  handled  in  BFG2.  A  number  of  examples  of 
deployment of the coupled model are given which demonstrate the power of BFG2 – simple 
changes are made to the deployment metadata describing the model and the BFG2 code-
generation produces the 'wrapper' code required to implement the model. The example is 
used  to  show how alternative  coupling  technologies,  such  as  OASIS  or  ESMF,  can  be 
selected to implement the exchange of coupling data between models deployed to run in 
separate processes. The example also shows how models deployed in a single run-time 
process can communicate using efficient argument passing. Further, the ability of user to 
map models to run-time processes in a flexible way,  and thus exploit  concurrency in the 
deployment of a coupled model, is demonstrated. Finally, the ability to 'export' a model (or 
set of component-compliant models) from a composition so that it can be used as a stand-
alone model, using a specific coupling technology, is illustrated.

The functionality described in the Section is in the process of being added to BFG2. The 
summary section (Section 9.1.5) describes what is currently supported.

This  code  for  the  toy  models  and  transformation  used  in  the  example  and  the  BFG2 
metadata associated with the example is is expected to be available by the end of April 2012 
on the BFG web portal described in Section 6.

The toy models used to illustrate BFG2 represent an ocean model, a dynamics model, a 
convection model and a radiation model. The dynamics, convection and radiation models 
would  typically  currently  all  be  found embedded within  an  atmosphere  model.  They are 
defined separately in this example to illustrate the potential benefits of a finer grain approach 
to modularisation in ESMs. The codes are all written in Fortran90. The dynamics, convection 
and radiation  models  are  component-compliant  and,  hence,  are  written  to  pass  all  their 
coupling  data  by  argument  passing.  The  ocean  model  is  program-compliant  and 
(necessarily) is, therefore, written to pass its coupling data using only in-place put and get  
calls.

9.1.1 Model metadata
The basic details of the dynamics model are given in the table below. It has a timestep of one 
hour  and  consists  of  two  subroutines  (or  entrypoints):  an  initialisation  subroutine  and  a 
timestepping  subroutine.  All  input  and  output  data  associated  with  these  subroutines  is 
available through the argument lists because the model is component-compliant. The data id 
in the final column of the table indicates the position of the data in the argument list (this id is 
used  by  BFG2 to  link  metadata  to  data  uniquely,  as  described  in  Section  2.4).  Similar 
descriptions exist for the other models.

Model 
name

Language Timestep Entrypoint 
name

Data form Data 
direction

Data id

dynamics f90 init argpass out 1
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Module argpass out 2

argpass out 3

argpass out 4

1 Hour dynamics argpass inout 1

argpass inout 2

argpass inout 3

argpass inout 4

The following table presents a summary of the main metadata information for each of the 4 
models. One point to note is that in this coupled model, the radiation model, as it typical in  
ESMs, runs less frequently - with a longer timestep - than the other components.

Model name Entry points compliance timestep

dynamicsModule 2 component 1 hour

convectionModule 1 component 1 hour

radiationModule 1 component 4 hours

oceanModule 1 program 2 hours

9.1.2 Composition metadata
Figure 1, summarises how the models are composed into an example coupled model. This 
diagram  is  generated  from  the  BFG  composition  metadata  by  a  BFG  utility  routine 
(bfg2graphmlgen.py).  The  utility  routines  currently  available  with  BFG2  are  described  in 
Section  2.5. This is an example of the benefits of having metadata descriptions of models 
and compositions;  several  tools  exist  which can manipulate  and display the metadata in 
various useful ways. Other examples are given below.

In Figure 1, the scientific models are represented by the (light blue) rectangular boxes and 
the (orange) circles represent transformation models (or transformers) that have been added 
to manage the exchange of coupling data between models running with different timesteps. 
The number on each line connecting models (and transformers) in the figure represent the 
number of data fields being passed between them.
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Different  types  of  transformation  have  been  purposely  included  in  this  example  as  an 
illustration of the type of processing of coupling data frequently required in coupled models. 
For  example,  the  dynamics  model  passes  data  to  the  radiation  module.  However,  the 
radiation module runs at a slower rate than the dynamics module (the radiation model has a 
longer timestep), so, in this example, the data from the dynamics model is summed by an 
appropriate transformation and the sum is passed to the radiation model when it does run.

A more complex transformation example is shown in the case where a model, running on a 
particular timestep, can receive data from one of two models, depending on which one is 
running  on  the  same  timestep.  For  example,  the  radiation  model  passes  data  to  the 
convection model on the timesteps when it (the radiation model) is running but the dynamics 
model  passes data to the convection model  when the radiation  model  is  not  running.  A 
(priority)  choice  transformation is  used to  implement  this  behaviour.  The transformations 
used in this example were written specifically for this coupled model. However, a library of 
standard transformations will  be added to the BFG2 repository so that  users are able to 
make use of them in compositions.

After the composition metadata is completed, the science to be computed by the coupled 
model is defined. The next section describes how the coupled model may be deployed onto 
a set of computational resources (software and hardware) in a flexible manner.
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9.1.3 Deployment metadata
An introduction to the BFG2 deployment metadata is presented in Section 2.4. This metadata 
includes the definition of which specific coupling technology is to be used to exchange data 
between models which are deployed to run in separate (operating system-level) processes. 
Models may execute in different processes either because they are deployed in separate 
programs or because they are deployed in an SPMD-style in a single program. Program-
compliant  models  are already separate programs, and this  reduces their  flexibility  in  the 
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deployment phase. However, for component-compliant models, there is flexibility. 

Deployment metadata also specifies how many processes BFG2 is to deploy models to, and 
which component-compliant models will be deployed within each process. Models deployed 
within the same process can use argument passing to exchange coupling data efficiently 
through shared memory.  Models  deployed in  separate processes must  use the selected 
coupling technology (for example, OASIS or ESMF) to exchange coupling data. BFG2 takes 
appropriate  action,  based  on  the  metadata,  to  generate  wrapper  code  that  ensures  the 
coupling between models deployed as described in the deployment metadata is implemented 
correctly.

As described in  Section  2.4,  the deployment  metadata also  contains  a schedule  for  the 
coupled model. Figure  2 presents the coupled model schedule for this example using the 
Business  Process Modelling  Notation  (BPMN).  This  diagram is  generated from the BFG 
deployment metadata by another BFG utility routine (bfg2bpmngen.py) – see Section 2.5 for 
a description of other utilities available.

In Figure  2,  the entrypoints  of  the scientific  models are represented by the larger  (blue-
edged) rectangular boxes and transformation entry points by the smaller (blue-edged) boxes. 
The names in the boxes are the concatenation of the model name and entrypoint name for 
the particular  entrypoint.  The light (green-edged) circle indicates the start point for model 
execution and the bold (red-edged) circle indicates the termination point. The control flow 
specified for the model is shown by the directional arrows and the diamond shaped (yellow) 
boxes represent the start and end of loops in the schedule.

In this schedule the first action is to call the dynamics model initialisation routine. The main 
timestepping loop is then entered with a timestep of one day. An internal timestepping loop 
(consisting  of  24 steps,  each of  one hour)  calls  the  dynamics,  radiation  and convection 
entrypoints and each of the associated transformations (at the appropriate rate). A separate 
internal timestepping loop (this one consisting of 12 steps, each of two hours) calls the ocean 
entrypoint and the associated transformations. There are two transformations that span the 
two  internal  loops.  These support  the coupling  between  the ocean model  and the other 
models and this coupling happens once each day.

9.1.4 Examples of flexibility in deployment
In this section, examples of flexibility in the choice of target coupling infrastructure and in the 
mapping of (component-compliant) models to run-time processes is discussed.  Finally, the 
ability to export a composite model from BFG2 so that it can be used with other models built 
to use a specific coupling infrastructure is discussed. For example, the radiation, convection 
and dynamics  model  (along with  the appropriate  transformations)  can be deployed  as a 
composite (atmosphere) model using any target coupling infrastructure – OASIS or ESMF, 
for example.  The resulting composite model is equivalent to an atmosphere model hand-
coded as  an OASIS or  ESMF model  and can be coupled  to an Ocean model  explicitly 
developed to use one of those coupling systems.

Flexibility in choice of coupling technology and in the number of processes to use
By changing the target coupling infrastructure specified in the deployment metadata, and by 
changing the mapping of models to processes, which is also specified in the deployment 
metadata, the coupled model code can be deployed in a number of ways. The flexibility in 
deployment is obviously limited by the compliance levels of the models concerned. Program-
compliant models are less flexible than component-compliant models.

The ocean model is program-compliant and, therefore, already consists of a main program 
and must be run as a separate program in its own process. Note that in this discussion we 
are ignoring the fact that any of the models may exploit  'internal'  parallelism and so use 
several processes, or threads, in their execution, depending on how the internal parallelism 
is  implemented –  using MPI  or  OpenMP,  for  example.  It  is  assumed in  this  discussion, 
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without loss of generality, that the models are sequential models. 

The  dynamics,  radiation  and  convection  models,  and  all  of  the  transformations,  are 
component-compliant. This provides for a range of possible deployments for these models. 
For example, by defining appropriate metadata these models may be run in-sequence, one 
after the other, from within the same process. Alternatively, each model may be made to run 
in its own process . Any mapping of component-compliant models and transformations to 
processes can be defined, the choice often being made on performance reasons – it may be 
better to deploy certain transformations so that they are applied in the same process in which 
a model runs; for example, an interpolation routine might best be run on a fine-grain grid so 
that the interpolated data on a coarser grid is communicated to another model.

BFG2 will  generate  code  and  data  declarations  such  that  models  that  run  in  the  same 
process will  pass coupling data efficiently  using argument passing and if  they are run in 
different processes they will pass data using the target coupling technology specified in the 
metadata.

As a more concrete example, if OASIS3 were chosen as the target infrastructure and two 
main programs (i.e. two main programs each executing on a single process) were requested 
in the deployment metadata, one for the ocean model (which must run as its own program) 
and  one  for  the  remaining  models  and  transformations,  then  BFG  would  generate  the 
required wrapper  code for  the two main programs and the communications code.  In this 
case,  argument  passing  would  be  used  for  all  communication  between  the  dynamics, 
radiation and convection models (and the transformations involved) and OASIS3 would be 
used for all communication between any of these models (and the relevant transformations) 
and the Ocean model. 

If the coupled model developer changes the target coupling technology in the deployment 
metadata, say to OASIS4 or simply to MPI, then BFG2 would generate code to communicate 
with the Ocean model using that coupling technology. The change of coupling technology 
requires no change to any of the model and transformation code, nor to any of the metadata, 
other than the simple change to the deployment metadata. 

At the moment it is not possible to generate a coupled model using ESMF for this example 
as we have a program compliant model which has to run in its own program, and ESMF does 
not support multiple executables.

BFG2 deployment terminology
The mapping of models to programs and processes is defined in the deployment metadata in 
terms of deployment units (DU) and sequence units (SU). Essentially, models placed in the 
same sequence unit will run in the same process at run-time. Models in different sequence 
units will run in different processes. A deployment unit basically maps to a program, so if a 
single  sequence  unit  is  associated  with  a  deployment  unit,  there  will  be  a  single  main 
program generated by BFG2. This will result in a single process at run-time and this process 
will  execute  the  models.  Models  in  the  sequence  unit  will  use  argument  passing  to 
communicate  with  each  other  and  they  will  run  in  the  order  specified  in  the  schedule 
specified in the deployment metadata. 

Alternatively, two deployment units could be specified in the metadata and the models in the 
original  sequence  unit  split  between  two  new  sequence  units,  with  one  sequence  unit 
associated with each deployment unit. In this case, the models within a sequence unit would 
communicate  using  argument  passing  and  all  communication  between  models  in  the 
different sequence units would be through the specified coupling technology. Models in each 
sequence unit would again run in the order specified in the schedule. BFG2 would generate 
two main codes and the appropriate communication code.

As a final example, the two sequence units in the last example could be associated with a 
single deployment unit. In this case, BFG2 would generate a single, SPMD-style main code 
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(similar  to  an MPI  SPMD program).  Two processes would  be required  at  run-time,  one 
process invoking the models in one sequence unit and the other process invoking the models 
of  the second sequence unit.  Again,  models within  a sequence unit  would  communicate 
using argument  passing and models in  different  sequence units  would  use the specified 
coupling technology. 

The  mapping  of  models  and  transformations  to  sequence  units  and  the  association  of 
sequence units to deployment units is a very flexible and powerful technology for controlling 
the deployment of coupled models onto software resources (process mappings and coupling 
technology) and hardware resources (processors). Different deployments of the toy coupled 
model are shown in the deployment metadata available on the BFG2 portal for this example.

BFG  can  be  run  using  the  command  line  runbfg2.py  <coupled_model.xml>.  Given  the 
flexibility in deployment described above, a model developer can very simply change from 
using OASIS4 or OASIS3 or even to MPI, as the selected coupling technology. This flexibility 
would allow a developer to develop the coupled model on local resources before using a full-
blown coupling system, without  having to perform any re-coding of their scientific  models 
and without having to make changes to model description metadata or to the composition 
metadata.

Exporting (composite) models ready to use a specific coupling technology
Program-compliant  models  or  combinations  of  the  component-compliant  models  in  this 
example  can also be exported as OASIS3, OASIS4 models or,  in  the case of  individual 
component-compliant models, as ESMF models. For example the dynamics, radiation and 
convection models could be exported as a single, composite OASIS3 model, The exported 
model would be equivalent to an OASIS3 atmosphere model. This is achieved by running the 
bfg2export  command  which  takes  as  arguments  the  target  coupling  technology  and  a 
specification of which models in the composition are to be exported as the composite. The 
result is a single program (containing the composite model) which looks and behaves just 
like a hand-crafted model using the same coupling technology.

This ability to create and export composite models allows much finer modularisation of codes 
than is required for, for example, an OASIS3 coupling. BFG2 automatically combines the 
fine-grain model in the composite in an efficient way, using argument passing to exchange 
coupling  data between  the models  in  the composite,  and allows  the resulting composite 
model to be run as a single OASIS3 model.

Currently,  it  is  only  possible  to  export  individual  component-compliant  models  as  ESMF 
models. This is not too much of a restriction though, as ESMF is designed to couple together 
more modular codes in a similar manner to BFG (but using data references rather than direct 
argument passing).

9.1.5 Summary
In this example, a set of toy models have been described which can be used to explore the 
flexibility in coupled model composition and deployment. The toy models illustrate the use of 
both  component-compliant  and  program-compliant  models.  Flexibility  in  deployment  of 
models to run-time processes and in the choice of a specific coupling technology has been 
discussed and the ability to export models in a BFG2 composition as a composite model, 
ready to be coupled to other framework-specific  models, has been explored.  The source 
code and example metadata for the toy models, compositions and deployments discussed 
are available from the BFG2 portal described in Section 6.

The current status of BFG2's support for OASIS and ESMF is the following:

OASIS4: there is a working implementation which can be used to couple models which are 
component compliant and/or program compliant. The OASIS4 implementation also supports 
the export  option allowing either a single model to be exported or a collection of models to 
be exported with their internal communication being implemented by argument passing.
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OASIS3: there is a mostly working implementation of coupling which can be used to couple 
models which are component compliant and/or program compliant.  The export option is also 
mostly working and this supports the same functionality as OASIS4.  A few bugs need to be 
ironed out and a namcouple generation routines needs to be added.

ESMF: there is an early prototype ESMF option. This generates working coupling and export 
code but does not generate any required communications code at this stage.

9.2 Experiences with JULES, a land surface model
Introduction
Component compliance (supported by BFG and mandated by ESMF) gives more flexibility in 
deployment than program compliance (supported by BFG and mandated by OASIS3 and 
OASIS4) and offers the potential for higher performance through the use of  data sharing 
rather than message passing in certain configurations, for example. It has been suggested 
that  for  a  new  model  it  makes  sense  to  use  component  compliance.  However  the  re-
engineering cost of making existing models component-compliant can be considered to be 
prohibitive.  The  work  in  this  section  looks  at  the  costs  of  making an  existing  model 
component-compliant in order to give an indication of the required re-engineering effort and 
the issues that must be faced.

This section outlines the issues faced when extracting two component-compliant versions of 
a Land Surface model from a larger code base. The first was extracted from the Met Office 
Unified Model (UM) at version 7.1 and the second from a stand-alone Land Surface model 
code called JULES at version 1.

Both models share the same heritage and have a similar structure. The JULES model itself 
was  extracted  from  the  UM  at  an  earlier  version  and  both  versions  have  since  been 
separately  developed.  JULES  is  primarily  used  and  developed  by  the  U.K.'s  research 
community and is supported by the U.K.'s Natural Environment Research Council (NERC). 
The Land Surface model in the UM (the ancestor of JULES) has continued to be developed 
internally by the Met Office.

The underlying motivations for this work were:

1. To help create a single Land Surface model  that could be used in the UM, as a 
standalone model and coupled to other models where appropriate.

2. To put inplace a structure that would help enable further development of the Land-
Surface model; in particular, to allow the addition of the existing ED, ECOSSE and 
SPITFIRE models.

Two additional requirements that were specified by the JULES developers were: first, that 
the replacement JULES code should be as efficient as the existing UM Land Surface model 
when configured with the UM, i.e. modularisation should produce no performance overhead, 
and, second, that FCM (the Met Office's Configuration Management tool) would be used to 
share source, as this is what is currently used in the UM.

Determining the initial JULES interface
The  first  step  was  to  determine  the  appropriate  separation  between  the  Land  Surface 
science code and the control layer in the standalone JULES code and in the Land Surface 
code in the UM.

Figure 3 presents the analysis of the JULES code. The top level structure of the code was 
examined and the routines that were called were compared with those that were already in 
the UM code. The logic behind this approach was the knowledge that the code bases were 
similar at a high level. Figure 4 presents a similar analysis of the UM code. Note, the whole 
UM call structure is not presented in this figure, merely the appropriate subroutines.
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JULES

    INIT

        ALLOCATE_ARRAYS

        INIT_OUTPUT

        INIT_VARS_TMP

        INIT_PARMS 

            TILEPTS <== UM ROUTINE (VEGETATION)

            SPARM <== UM ROUTINE (VEGETATION)

            FREEZE_SOIL <== UM ROUTINE (INIT)

            CALC_BASEFLOW <== UM ROUTINE (SOIL) Only called by HYDRO in UM

            CALC_FSAT <== UM ROUTINE (SOIL) Only called by HYDRO in UM

    CONTROL

        ZENITH <== NOT A UM ROUTINE

        FTSA <== UM ROUTINE (RADIATION)

        TILE_ALBEDO <== UM ROUTINE (RADIATION)

        SF_EXPL <== UM ROUTINE (BOUNDARY_LAYER)

        SF_IMPL <== UM ROUTINE (BOUNDARY_LAYER)

        HYDROL <== UM ROUTINE (SOIL)

        VEG2 <== UM ROUTINE (VEGETATION)

        VEG1 <== UM ROUTINE (VEGETATION)

    OUTPUT

    DEALLOCATE_ARRAYS

Figure 3: JULES Scientific interface
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From the analysis summarised in the two illustrations the following subroutines routines were 
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initial

    initveg

        INIT_MIN <== NOT A JULES ROUTINE

        TILEPTS <== JULES ROUTINE

        SPARM <== JULES ROUTINE

        INIT_ACC <== NOT A JULES ROUTINE

    

Atmos_Physics1

    NI_rad_ctl 

        tilepts <== JULES ROUTINE

        ftsa <== JULES ROUTINE

        tile_albedo <== JULES ROUTINE

Atmos_Physics2

    NI_bl_ctl

        BL_INTCT

            BDY_LAYR

                SF_EXPL <== JULES ROUTINE

    NI_imp_ctl

        IMPS_INTCT

            IMP_SOLVER

                SF_IMPL <== JULES ROUTINE

    HYD_INTCTL

        HYDROL <== JULES ROUTINE

    VEG_CTL

        VEG_IC

            VEG <== JULES ROUTINE (called VEG1 or VEG2)

u_model

    UP_ANCIL

        UPDATE_VEG

            TILEPTS <== JULES ROUTINE

            SPARM <== JULES ROUTINE

Figure 4: UM Land Surface Model Scientific Interface
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identified as making up the JULES interface. This interface is termed the “science interface” 
as it provides an interface to the JULES code that implements the science. This interface 
was subsequently agreed with the JULES developers.

Storing Building and Running
To support the development of the JULES model a repository was set up on NERC's PUMA 
machine. PUMA also hosts the external mirror of the UM repository and is the gateway to 
running the UM on the U.K. Research Council's supercomputers. This repository is based on 
SVN and includes support for TRAC and a WIKI.

The JULES code was separated into two directories (src and wrapper), the first containing 
the  science  code  and  the  second  containing  the  control  code  to  maintain  a  separation 
between the two and to allow the science code to be used with different wrappers.

The code was subsequently modified so that it could be used with FCM, the UM's version 
control and build system. The only code changes that were required were to do with the 
requirement  to  have  one  subroutine  per  file,  and  needing  to  add  FCM  dependence 
comments to codes that call other routines in the traditional Fortran77 style (i.e. not using 
modules).

At this point the JULES code could simply be checked-out and built on local resources using 
FCM from the central repository. The final structure of the repository is given below:

The UM land surface model was also extracted from the UM and placed as a different project 
in the same JULES repository, with a similar structure. Header files that were used only by 
the land surface model  were also extracted.  At  the same time a branch of  the UM was 
created which had the land surface code removed. An example UM job was created which 
used  this  branch  of  the  UM  and  the  land  surface  code  from  the  repository.  The  only 
difference between a standard UM job and a job using the separate UM land surface model 
was the addition of two additional FCM lines in the job specification.
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Modularisation
From now on the term JULES is used to mean either the JULES model or the UM Land 
Surface model since the modularisation work typically applies to both.

a) Modules
The subroutines in the scientific interface were placed in a single Fortran module named 
JulesModel for both the models discussed in this work (even though the code extracted from 
the UM is not strictly JULES). This approach was taken as modules provide a simple way of 
controlling access to subroutines: they provide some compile-time checks on arguments and, 
most importantly they support the encapsulation of data. Table 1 provides an overview of the 
way in which JulesModel was incorporated back into the UM.

UM file 
name

UM 
subroutine 

name

JULES UM interface

initveg1.f INITVEG USE JULESMODEL, ONLY :: TILEPTS,SPARM

rad_ctl2.f NI_RAD_CTL USE JULESMODEL, ONLY :: TILEPTS,FTSA,TILE_ALBEDO

bdylyr8a.f BDY_LAYR USE JULESMODEL, ONLY :: SF_EXPL

impslv8a.f IMP_SOLVER USE JULESMODEL, ONLY :: SF_IMPL

hyd_ic7a.f HYD_INTCTL USE JULESMODEL, ONLY :: HYDROL

veg_ctl1.f VEG_CTL USE JULESMODEL, ONLY :: VEG

update_veg.
f

UPDATE_VEG USE JULESMODEL, ONLY :: TILEPTS,SPARM

Table 1: Including the Land Surface Model back into the UM
When introducing the JULESMODEL module, one problem that had to be addressed was 
that the declaration of variables was not always consistent between the UM calling routine 
and  the  UM  Land  Surface  model.  For  historical  reasons,  some  integers  were  actually 
declared in the UM as reals. Further, the UM keeps all of its data in a large one dimensional 
array called D1. D1 was used to pass the space for multi-dimensional arrays in the UM Land 
Surface model, and the module compile time checks did not allow this. Therefore, the arrays 
were changed so that they were declared appropriately in the parent UM routine and passed 
into the parent UM routine in the old style.

There is another issue when using modules. Module names must be unique within a single 
main program. Therefore, one needs to avoid the possibility of name clashes with modules 
from other libraries. As a result, it has been proposed that all modules internal to JULES 
should add “_JULESMODEL” to the end of their name (or something similar)  to effect a 
private namespace, although this has not yet been implemented.
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b) No Communication via COMMON or MODULE's
For a model to be component-compliant it should not expect data input from other models, or 
provide data output to other models, using Fortran COMMON or Fortran MODULEs. The 
reason for this is that the use of COMMON or MODULEs for data sharing between models 
limits  their  composition  to  a  single  executable,  necessarily  with  both  models  running  in-
sequence. It also potentially ties one model to another, breaking modularity.

To achieve component-compliance, any data that is input to JULES or output from JULES 
should be passed by argument (or through in-place put/get calls, if required). Ensuring that 
this is the case is not trivial as the JULES code is rather large. As a test, a dummy main 
program was created which called each of the subroutines, but which only declared data that 
was  passed  by  argument.  Thus  any  COMMON  or  MODULEs  showed  up  as  being 
unresolved.  All  cases  found  in  this  way  were  modified  so  that  all  data  was  passed  by 
argument.

Note,  it  would  be possible  to  support  data  sharing  via  MODULE's  and/or  COMMON by 
directly supporting it in the component-compliance API but this was considered to be one 
step too far for a coupling system, so coupling data support was limited to arguments and in 
place puts and gets. 

One special situation where data can safely be passed via MODULEs is for constants, and it 
is expected that an additional module called JulesModelConstants will  be added, at some 
point, which allows external access to the internal constants used in JULES.

c) Internalising JULES Configuration
The JULES models are really composite models. There were external switches in the UM 
and JULES wrapper code which selected certain science options, as well  as allowing the 
selection of the rates at which certain parts of model would run. Further, in the UM, different 
science options were chosen at compile-time using pre-processing. For example, different 
types of vegetation could be chosen: the triffid scheme could be switched on or off and the 
rate at which the triffid scheme was called could be controlled.

It was decided to take an internal, run-time approach in the new, modularised code. All of the 
switches and rates were removed from the UM and the JULES wrapper and kept in the 
JULES code itself.  This has the effect of reducing the knowledge that the UM has about 
JULES internals, thereby increasing modularity.  Choices were also made at run-time rather 
than compile time. The advantages of this approach is that the whole code is compiled each 
time and this reduces the chances of bugs in the code, and the code does not need to be 
recompiled when any configurations are changed. The disadvantage of this approach is that 
the executable will be larger.

To support  internal  run time switches  and rates,  a new JULES initialisation  routine  was 
written which read the values of these switches from a JULES input file. The two types of 
vegetation routine in the interface were also rationalised to one routine and, internally to 
JULES, the appropriate one was chosen. In addition, a set of run-time checks were added to 
ensure that valid sets of switches were selected (this was missing in the original code).

JULES uses tiles to represent the proportions of vegetation types at each grid point. JULES 
supports different numbers of vegetation types and it is the UM that sets and manages (the 
arrays for) this. The setting of vegetation types was moved to the JULES initialisation routine 
where it was read from a file. This value was then passed back out to the control code (which 
may be the UM) which is then able to allocate the required data appropriately. Eventually, it  
is hoped that the UM and any other control code for the modularised JULES will become fully 
ignorant of the internal tiling decisions made by JULES.
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d) Modifying the Argument Lists
The JULES internal subroutines each have a large number of arguments. These can be 
typically split into constants, container data, stash (D1) data and coupling data. The only data 
that really needs to be passed by argument is the coupling data. Constants can be read in by 
the initialisation  routine,  either by argument or  from a file.  Container  data is  data that  is 
declared  outside  of  JULES  but  is  only  used  internally  by  JULES.  This  data  should  be 
managed internally. Stash data is data that is going to the UM diagnostics system (which is 
called Stash). This can be passed by argument but is perhaps better  passed using in-place 
'put' calls.

Modifying all  the argument  lists appropriately is  quite a big  task and work  has only  just  
started on this. As things stand, most of the constant data has either been made internal to 
JULES or is passed in by argument in the JULES initialisation routine, in addition some of the 
container data has been internalised.

e) Initialisation and Restart
The timestepping data that is internalised in JULES will need to be able to be written out to 
file (i.e. a JULES 'dump' needs to be supported) and JULES will need to be able to perform a 
restart from a named JULES dump file. Initialisation and restart routines have been written 
using NETCDF as the underlying format to read in any JULES dump data. Similarly a JULES 
output dump routine has been written to support the writing of JULES dumps in NETCDF.

The UM provides two (legacy) initialisation routines which are dedicated to initialising JULES. 
These were added to the JULES interface but are not used by the stand alone wrapper. 
Similarly  the standalone  wrapper  has its  own initialisation  routines which  were added to 
JULES but are not used by the UM. One reason for adding these to JULES is that they make 
use of a lot of internal JULES data

f) Initialisation Issues
As mentioned in the previous section, the UM has its own initialisation routines. The stand-
alone JULES wrapper also has its own initialisation routines and both have been added to 
the JULES interface. The new JULES initialisation routine mentioned earlier, which reads in 
the JULES input data, is also required. Further, this initialisation routine needs to be split into 
two (called init1 and init2) as the wrapper needs to allocate any required data before JULES 
reads in the data, and the wrapper can not do this until is knows what the data sizes are, and 
the data sizes are received from JULES. For JULES in the UM this results in the following 
initialisation routines being called

The  situation  gets  worse  with  the  addition  of  new  science  and,  for  example,  another 
initialisation routine (init3) needed to be added to support ED17 within JULES. There are a 
number of ordering dependencies in the above routines which make life difficult and required 
some code modification.

What is required, but has not yet been implemented, is a rationalisation of the init routines 
into two: one which reads any initial configuration information and a second which reads any 
required input data, however this rationalisation will require some modifications to the UM, 

17 Ecosystem Demography (ED) is a dynamic vegetation model.
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and is left as future work.

g) Integrating JULES and the UM Land Surface Scheme
A separate Met Office project has integrated the science of the JULES model and the UM 
Land Surface model into a new version of JULES. It is expected that the modularisation effort 
described here will be migrated to this integrated JULES model (in a future project). 

Summary
Despite the complexity of JULES, component-compliance was not difficult to implement as 
the interface of JULES is already a set of subroutines with most of it's data being passed by 
argument. The only real issue was the removal of data sharing using COMMON or Modules. 
However, the restructuring of such a large code to make it more modular and more easy to 
work with is a much larger job, which also requires restructuring of the host model (the UM) 
and this work is ongoing.

9.3 Climate and Integrated Assessment Modelling
Introduction
Coupling Systems that target the Earth System Modelling (ESM) domain provide support for 
the particular characteristics that this domain requires, such as scalability to large numbers of 
cores and regridding transformations, for example. It would be beneficial to users if the same 
coupling system were also able to support the requirements of related domains, particularly 
in the situation where model codes may be shared between the domains. One particular 
example domain of increasing importance to ESM is that of Integrated Assessment Modelling 
(IAM); this domain was recognised as such in the recent ISENES Strategy document.

IAM links ESM models (often Climate models, or even emulators of Climate models), land-
use models and economics models together into integrated (i.e. coupled) models in order to 
help inform policy makers about the choices they need to make to implement certain policy 
scenarios  -  such  as  achieving  a  maximum  2  degree  warming  by  'managing  carbon 
emissions, for example. Such models  can also be used to play 'what-if' games so that policy 
makers can investigate what effects their policies might have.

In this Section some of the differences in requirements between IAM and ESM are outlined 
and the question of how these requirements relate to the functionality required in a coupling 
system is discussed 18. Finally, an example of how BFG is being used in the IAM domain is 
presented. This example is fully supported in the current version of BFG2. The example 
highlights the extensions to BFG that have made this possible. (This example has benefited 
from the work undertaken in IS-ENES on program- and component-compliance. Specific 
extensions for the support of multiple languages and the development of the example itself 
has been funded under the EU ERMITAGE project).

Differences between IAM and ESM
To date,  the individual  models  that  are used in  IAMs have typically  been developed  as 
standalone  codes  with  little  consideration  given  to  their  potential  for  coupling  with  other 
codes. This observation implies that the aggregation approach to coupled modelling in IAM is 
most appropriate. The models are also typically much smaller (in terms of lines of code) than 
typical ESM models and they are not usually internally parallel.

18 Some further discussion of this topic can be found in Chapters 8 and 9, (on the CIAS IAM 
and the Summary, respectively), in the book “Earth System Modelling – Volume 5, Tools for 
Configuring, Building and Running Models”,  Eds: Rupert Ford, Graham Riley,  series eds: 
Reinhard Budich, Rene Redler. Springer Briefs in Earth Sciences, 2012.
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In IAM, uncertainty analysis is routinely performed and this typically involves a large number 
of runs of a particular coupled IAM model. This means that individual coupled models are 
typically expected to run in a matter of hours, or less (although this is not always the case).  
Emulation is one solution that is sometimes used to ensure that models run in acceptable 
time.

Whilst the performance of a coupled model is always an issue, it is of less importance in IAM 
than  ESM,  and  distributed  coupled  implementations,  possibly  across  firewalls,  may  be 
considered. One reason to allow a distributed coupled solution is that licensing issues can be 
respected;  in IAM many model codes have licenses which restrict  access to source and 
binary code.

Unlike  ESM,  where  Fortran  is  dominant,  models  in  IAM can  be  written  in  a  number  of 
languages. Economics models are typically written in GAMS, emulators are typically written 
in R, and more ESM-like models are typically written in Fortran, C or Java.

Finally,  whilst  ESM  models  are  almost  exclusively  time-stepping  models,  in  IAM  some 
interactions between models may be convergence-based.  For example,  two models may 
continue exchanging data until they iterate to convergence on a particular solution. Coupling 
scenarios may involve a combination of time-stepping and convergence-based iteration.

Coupling System Requirements
The different requirements that IAM has compared with ESM leads to a number of different 
and additional  requirements for  an underlying coupling  system designed to support  ESM 
only. These are described next.

IAM coupled models may require more geographically distributed solutions. Distributed MPI 
can, to some extent, provide the required functionality, but there may be cases when a more 
distributed  solution,  such  as  one  based  on  Web  Services,  would  be  beneficial.  Whilst 
distributed solutions  are  not  usually  expected  in  ESM,  it  has  been recognised  that  web 
services might also be beneficial  in the future, particularly for community access to ESM 
models, and to provide the ability to include coupled models into more general Workflows. In 
particular, ESMF have recognised the need for this and ESMF provides basic support for the 
wrapping  of  models  as  web  services.  BFG is  designed  to  be able  to  add  new  'target' 
communications  technologies  as  needed  and  a  prototype  web  services  solution  was 
provided in BFG1. BFG2 could be extended to support coupling via Web Services directly, or 
to export a particular model (or set of models in a composite) as a Web Service. A Masters  
student is currently working to develop this solution.

IAM models are written in a number of different languages. These include Fortran, C, Java, 
GAMS,   and  R.  ESM  coupling  systems  universally  support  Fortran,  many  also  support 
models that are written in C and some are developing, or have developed Python APIs (for 
example,  this  is  the  case  for  ESMF  and  MCT,  the  US  coupling  systems).  Language 
interfaces to other languages are only viable if a language supports them in a suitable way. 
This is not the case for models written in GAMS. The solution taken by BFG (in the EU-
funded ERMITAGE IAM project) is to support Fortran, C and Python interfaces in the first 
instance (and possibly to add support for R and Java in the future). The Python interface 
allows  users  to  write  python  wrappers  around  their  GAMS  and  R  code.  This  wrapper 
provides all  input coupling data, runs the code and extracts the required output coupling 
data. The input and output is typically done via files, and the model is “exec”ed19 by the 
Python code. Python was chosen as the language to do this as it  provides the required 
functionality in a simple way and, was, in fact, already being used in this way to manually 
couple some IAM models together.

IAM  coupled  models  are  amenable  to  (geographically)  distributed  solutions.  Further, 
individual models in IAM are typically written independently and, in the case of GAMS, there 

19 “Exec”ing is to launch an executable from another.
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is  no obvious language interface API  that  can be used.  Therefore,  the typical  approach 
adopted when coupling is for minimal intervention in the code. To put it another way, there is 
little benefit in modularising model code if a tightly coupled solution is not required. BFG2 
supports minimal intervention in code through the use of its program compliance model or by 
the wrapping of existing executables in a supported language (and, typically, the wrapping 
language is expected to be Python since it provides good support for modifying the file-based 
data which is used in coupling exchanges). OASIS3 supports a similar API to BFG's program 
compliance for the input and output of coupling data.

IAM couplings are not necessarily timestep based. One reason for this is that Economics 
models often provide solution data at intervals over a period of time (i.e. they provide a time 
series as output) and, therefore, time series information has to be passed between these 
models and others. One way in which to obtain consistency between two models, where at  
least one of them provides or expects  time series information is to iterate to convergence. In 
contrast, some models (typically land-use and climate models) can couple between (or even 
during) timesteps. In BFG2 the solution to the requirement for convergence-based behaviour 
was to extend the schedule, defined in the BFG metadata, to support convergence-based 
iteration as well as timestep-based iteration. The stopping criterea for a convergence loop is 
provided by a coupling between a model (or transformation) and the convergence control 
loop.  Thus,  in  BFG2 the,  very  restricted,  logical  concept  of  a  control  “model”  has  been 
introduced.  A  control  model  has  an  input  for  each  convergence  loop  specified  in  the 
schedule. Models (or transformations) may pass logical information to these convergence 
loops to indicate whether the loop should continue or terminate. The authors are not aware of 
convergence solutions in other coupling systems in ESM apart from PALM20, which supports 
more general communication between a defined schedule and a model.

Coupled GEMINI-E3/GENIE-EM Example
The example provided below is one that has been developed in the EU ERMITAGE project. 
The ERMITAGE project is attempting to link together Climate, Land-use and Economics 
models in news ways from both a scientific and technical (using BFG2)  perspective.

The project is working towards fully coupled IAM's by first looking at the links between pairs 
of models. The example provided here demonstrates one aspect of a IAM - the link between 
the Economics and the Climate.

The Economics model is called GEMINI-E3 and is written in GAMS. A BFG component-
compliant python wrapper has been written for this model so that it can couple with other 
models.

The Climate model  GENIE-em is an emulation of  the GENIE paleoclimate model  and is 
written in R. Again, a BFG component-compliant python wrapper has been written for this 
model so that is can couple to other models.

The  diagram  below  summarises  the  models  (represented  as  (blue)  rectangles)  and 
transformations (represented as (yellow) circles) used in the coupled model as well as the 
connectivity  between  the  models  (represented  as  arrows  between  models  and/or 
transformations - the number of types of data exchanged is represented by the number on 
the arrow). This diagram was generated directly from the BFG2 composition metadata, which 
describes the connectivity of the coupled model, using a BFG2 utiltity program.

20 See http://www.cerfacs.fr/globc/PALM_WEB/index.html
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The  coupled  model  begins  with  a  “business  as  usual”  execution  of  the  GEMINI-E3 
economics model (gemini_e3_bau). This produces a baseline emissions timeseries (for CO2, 
NO2 and CH4) for  the years 2005 to 2050 which are provided to the Emissions Control 
(emissions_control)  transformation.  The coupled  model  then  iterates,  calling,  in  turn,  the 
GENIE emulator (genie_em_model), the Emissions Control transformation and an Emissions 
to Concentrations model (em2conc) until a profile is produced which is consistent with the 
climatology in the GENIE emulator. Lastly, this consistent profile is passed to the “climate” 
flavour of GEMINI-E3 which computes the final profiles.

The Convergence transformation (convergence_test in the diagram) implements the stopping 
criteria for the loop. It returns a boolean value to indicate whether the loop should continue or 
not. This value is provided to the BFG2 control loop which is not represented in the above 
diagram since the control  loop is considered to be a virtual model.

The following Figure presents the coupled model schedule that has been defined using the 
Business Process Modelling Notation (BPMN). This diagram is generated from the BFG2 
deployment metadata using a BFG2 utility program. In this case, the different entrypoints for 
each of the models are shown. Entrypoints of the scientific models are shown as larger (blue-
edged) rectangular boxes and transformations as smaller (blue-edged) rectangular boxes. 
The names in the boxes are the concatenation of the model name and the entrypoint name 
for the particular entrypoint. The light (green edged) circle indicates the start point for model 
execution and the bold (red-edged) circle indicates the termination point. The control flow is 
shown by the directional arrows and the diamond shaped (yellow) boxes represent the start 
and end of (iteration or convergence) loops in the schedule.
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In this schedule the majority of the model constructors are called first (these are treated as a 
special  type  of  entrypoint  in  BFG2).  The  GEMINI-E3  “business-as-usual”  model  is  then 
called. The output of this model is actually passed to the constructor of the the Emissions 
Control  transformation,  hence  the  constructor  for  this  transformation  is  called  after  the 
GEMINI-E3 model has run. An initial convergence test entrypoint is then called before the 
model enters the convergence loop, just in case the convergence criteria has already been 
met. If the criteria has not been met (the normal case), the convergence loop proper is then 
entered and this loop continues until the second convergence test reports False (so strictly, 
this test is a continuation test, rather than a convergence test). Once the loop has completed, 
the  final  emission  values  are  provided  to  the  GEMINI-E3  Climate  model  by  the 
getFinalValues  entrypoint  of  the  emissions  control  transformation  and  the  program 
subsequently terminates.

In  the  above  case,  all  of  the  models  are  run  in  a  single  executable,  passing  data  via 
argument passing. However, a simple change to the deployment metadata can be made to 
request the use of MPI, OASIS3, OASIS4 or ESMF to manage the exchange of coupling 
data. In the future, a Web Services 'target' infrastructure will be made available. Using other 
facilities  in  BFG2,  these models could  also  be exported as OASIS3,  OASIS4 or  ESMF-
compliant models as discussed in the first example in this section.
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10. Conclusion and future work
The aim of the research and development of BFG2 in IS-ENES is to demonstrate that a 
coupling  technology  that  would  support  both  program-based  coupling  of  model  codes 
(through the use of in-place put and get-style operations) and component-style composition 
is a viable option. The generative programming techniques that can underpin the approach 
have been prototyped and demonstrated in simple example coupled models. The key to the 
approach is to support the separation of science code from that of the coupling infrastructure. 
Enabling  both  coupling  approaches  within  a  single  framework  gives  users  the  ability  to 
choose the approach appropriate to their needs. Further, supporting the isolation of model 
science  code  from  the  coupling  technology  has  been  demonstrated  to  promote  the 
engagement of external communities in coupled model development and in the sharing of 
models across and between communities. This is exemplified in the case of the Integrated 
Assessment community in the EU Ermitage project and in the Tyndall Centre's CIAS tool.

Re-factoring the BFG code based on the templates approach has made it much easier to 
maintain  and  extend  and  plans  to  release  BFG  under  an  open-source  licence  are  well 
advanced. Other work in IS-ENES has seen BFG extended to support languages other than 
Fortran (including C and Python). BFG tools can also now be accessed on-line via the BFG 
portal and examples of coupling metadata are available for browsing.

Future work on BFG includes plans to improve and extend the current  basic support  for 
OASIS3 and ESMF as target coupling technologies and also to increase support for parallel 
models (and support the definition of parallel partitions). As a larger-scale example, the plan 
is  to  develop  a  program-compliant  BFG2  version  of  the  UM  atmosphere  model  and 
demonstrate exporting it to OASIS3, OASIS-MCT and also to ESMF (and possibly OpenMI) 
in order to illustrate how the BFG2 approach can be used to couple a model using a variety 
of existing coupling technologies and where the developer need only make minimal changes 
to metadata (and re-run the BFG code-generation phase) but with no impact on the scienfic 
code in a model.
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