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Executive summary 

 

The W8/JRA2 work package undertakes research into the performance aspects of configuring, 

deploying and running Earth System Models (ESMs). In deliverable WP8/JRA2 D8.1 

“Definition of the Evaluation Suite”, a set of ESMs and stand-alone models available in the 

IS-ENES consortium were documented. This deliverable reports on work in which selected 

models from the evaluation suite have been ported and tested on a number of HPC 

infrastructures available to the IS-ENES partners, including PRACE machines, along with 

some additional activities. A collaborative effort between application owners and computer 

specialists has led to the identification of numerous current strengths and limitations of ESMs 

in terms of both porting and performance. This report is an interim report building on results 

presented in JRA2 deliverable, D8.2 “Evaluation suite and base-case results”. A final report is 

due at the end of the project. 

The IS-ENES evaluation suite consists of five coupled models: CMCC-MED, ARPEGE-

NEMO, IPSL-ESM, HadGEM2 and EC-Earth, in addition to four stand-alone models: 

ARPEGE, NEMO, LMDZOR and ECHAM5. Detailed technical information on these models 

can be found in D8.1. Specific details of the models reported in this document are given in the 

associated technical reports in Part II.  

The report is organized in three main parts: Part I (this section) gives an overview and 

introduces the report, presents its purpose and summarises the activities undertaken; Part II is 

a compendium of reports presenting interim results obtained since the first performance 

report, D8.2, and consists of a set of technical reports on each activity undertaken, and Part III 

draws conclusions and discusses future work that aims to improve the performance of the 

models on current and future computing resources. 
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Introduction  

The performance analysis of current Earth System Models (ESMs) on state-of-the-art 

computing systems is undertaken in work package WP8/JRA2. The increase in computational 

resources associated with the ongoing work done in PRACE projects stresses the need to 

improve the current performance of ESMs on HPC systems. Climate science has made major 

steps in modelling the evolution of the climate through complex coupled models. However, 

current coupled models appear not to be suited to exploit fully the HPC resources that are 

planned to be deployed in next few years. For example, Moore’s law suggests that the first 

exascale computer will be available in 2018 and this is likely to consist of ‘billions’ of cores. 

In the IS-ENES project, Task 8.2, “Portability, performance analysis and improvement”, seeks 

to understand and improve the performance of ESM models for current and future HPC 

systems. This task focuses on the performance aspects of both individual component models 

and ESMs constructed from them with the purpose of ensuring the ESMs can execute 

efficiently on existing large-scale computing facilities and also that the plans to prepare the 

models for execution on future facilities are developed. Particular attention is given to 

ensuring models are, and will continue to be, able to take advantage of the PRACE initiative. 

Purpose 

The purpose of the present report is to summarize recent work undertaken to understand the 

performance of the ESMs of the IS-ENES evaluation suite on current HPC infrastructures. 

The evaluation suite is defined in report “D8.1: Definition of the Evaluation Suite” of work 

package WP8/JRA2. This report is a follow-on report to “D8.2 Report on the Description of 

the Evaluation Suite and Base-case Results” and builds on lessons learnt in the work 

described in D8.2. Several activities have been undertaken to port, test and evaluate, using 

profiling and trace analysis, for example, ESM model performance on current state-of-the-art 

computing systems. The works aims to document: 

 the current performance of the models on existing parallel architectures, 

 critical aspects that climate models stress in current HPC architectures, 

 bottlenecks, and strengths and weaknesses of each of the models in order to guide the 

design and development of future optimized ESMs for the upcoming peta- and exascale 

architectures, 

 attempts to improve both the portability of models, by documenting experiences of 

porting, where appropriate, and the performance of models on specific architectures. 

 

Glossary of Acronyms 

Acronym Definition 

ESM Earth System Model 

DEISA Distributed European Infrastructure for Supercomputing Applications 

PRACE Partnership for Advanced Computing in Europe 

HPC High Performance Computing 

Table 1: Glossary of Acronyms 
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List of activities 

The activities undertaken in JRA2 during the first part of the project IS-ENES have had as 

main objective to evaluate the current status of performance of several Earth System Models. 

The following list summarises the reports describing the work done to characterize such 

performance in current HPC infrastructures: 

 

 IPSL, Performance Analysis and Portability of IPSL ESM model. A.Caubel. 

 CERFACS: ARPEGE-NEMIX: a simplified high resolution CGCM for validation 

purpose on PRACE tier-0/tier-1 machines. E. Maisonnave, P.-A. Bretonnière, C. 

Cassou. 

 CERFACS: ARPEGE-NEMIX porting, optimization and performance tests on PRACE 

tier0-tier1 machines. E. Maisonnave, S. Valcke, T. Craig, P.-A. Bretonnière. 

 BSC: EC-Earth modelling system on MareNostrum Supercomputer: porting and 

performance experience. 

 LIU/SMHI: High resolution EC Earth porting, benchmarking on CURIE. C. Basu. 

Including a section on ec-conf from SHMI. 

 CMCC: NEMO Porting, benchmarking and optimization on Marenostrum. I.Epicoco, 

S.Mocavero, G.Aloisio. 

 FMI: Porting and performance analysis of Cosmos-Millennium on Cray-XT5 at FMI. 

J. Silen. 

 Porting and performance analysis of Echam6 on Cray XT4 at CSS (subcontractor to 

FMI). J. Lento. 

 METOFFICE: UM Scaling on HeCToR. O. R. Darbyshire plus a report on technical 

issues with the UPSCALE PRACE project by S. Mullerworth. 

 METOFFICE: Reducing the Sensitivity of the Met Office Unified Model to Rounding 

Errors. O. R. Darbyshire, A. M. Clayton. 

 

The second part of the present document compiles the documents that report the work done 

and the main conclusions of each initiative. Results of the work will help to define the future 

work to undertake to improve the model performance in future HPC environments, and 

especially for the developing relationship with PRACE and use of PRACE tier-0 and tier-1 

machines. 
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 Performance Analysis and Portability of IPSL ESM model 

 

Contributors: A.Caubel, Y.Meurdesoif, O.Marti
1
 

1
 Institut Pierre Simon Laplace, France (IPSL) 

Introduction 

As presented in the IS-ENES D8.2 - Report on the Description of the Evaluation Suite and 

Base-case Results, the IPSL climate model was ported on the super computer Jade at CINES 

and tested at high resolution: atmosphere at 768x767x39 resolution, ocean at 1442x1021x75 

resolution, using 2191 cores. An important effort to optimize the code and to reduce its 

memory footprint was undertaken at this time. 

Through the PRACE preparatory access project “COUAC”, this prototype version of the IPSL 

climate model was also ported on Curie (a PRACE machine) which allowed us to compare the 

performances on Jade and Curie.  

In addition, some work on the environment of IPSL ESM standard version (CMIP5 version) 

was done in order to run production simulations of the model on new machines.  

 

Performances of IPSL ESM model on Curie (PRACE machine) and Jade (CINES 

centre) 

 

Three different configurations of IPSL model were tested: 

IPSL standard low resolution coupled model (CMIP5 version) on Curie “Fat nodes” 

- LMDZ Atmospheric model at 96x95x39 resolution (MPI parallelized version) 

- NEMO Oceanic model 2° resolution i.e. 182x149x31 (MPI parallelized) 

- Oasis3 sequential version: 1 coupling per day between Atmospheric model and Oceanic 

model. 

Performance obtained on 32 CPUs (1 Oasis+ 5 NEMO +26 LMDZ MPI) are: Real time: 

1380s/month 

IPSL atmospheric high resolution model on Curie “Fat nodes” (and comparison with 

Jade) 

In a typical climate model experiment, the CPU time used by LMDZ is 5 to 20 times larger 

than the CPU time used by other components. The number of cores used for each component 

is adequately chosen to allow a proper load-balancing. For this reason, we spent most of our 

time on LMDZ alone, to port the model on Curie, test the performance, and make some 

improvements. 

We made the adaptation of LMDZ for the new Curie computer and run high-resolution test 

cases. For this, we used the same resolution 768x767x39 that has been run for “CINES grand 

challenge” on Jade computer (Intel Nehalem EP, 2.93 GHz) in 2010, so we can compare 

performance and scalability.  

The test case was a global run on 768x767 latitude-longitude points with 39 vertical layers. 

We run 960 time step iterations by test-case, so about 4.8 hours of simulated times. We ran up 

to 256 MPI processes with 4 or 8 threads by process, so up to 2048 cores. 
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Results for 8 threads by process on Curie computer: 

 

Core numbers Elapsed Speed-up 

128 670 128 

256 328 261 

512 186 461 

1024 129 665 

2048 98 875 

 

Figure 1: Speed-up for 8 threads by process on Curie. Red : code speed-up. Blue dotted : 

ideal speed-up. 
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Figure 2: Elapsed time for 8 threads by process on Curie. Red : code speed-up. Blue dotted : 

ideal speed-up. 

Results for 4 threads by process on Curie computer: 

Core numbers Elapsed Speed-up 

128 632 128 

256 303 266 

512 174 465 

1024 117 691 

 

 

Figure 3: Speed-up for 4 threads by process on Curie. Red : code speed-up. Blue dotted : 
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ideal speed-up. 

 

Figure 4 : elapsed time for 4 threads by process on Curie. Red : code speed-up. Blue dotted : 

ideal speed-up. 

For comparison, results obtained on Jade (CINES) 

 

Core numbers Elapsed Speed-up 

64 924 64 

128 440 134,4 

256 220 267,36 

512 122 484,7 

1024 72 822 

2048 49 1207 
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Figure 5 : Speed-up for 8 threads by process on Jade. Red : code speed-up. Blue dotted : 

ideal speed-up. 

 

Figure 6 : Elapsed time for 8 threads by process on Jade. Red : code speed-up. Blue dotted : 

ideal speed-up. 

It seems Jade results outperformed Curie results, in core-by-core comparison, for CPU time 

and for scalability. We can explain the difference on CPU time (~50% more on Curie) by the 

clock frequency difference (2.93 vs.  2.23, ~30%) and for a lesser memory bandwidth by core 

on Curie. For scalability, the network bandwidth by core is lesser on a Curie node than on a 

Jade node, so it may explain the difference. Other possibility is it may due to the quality of the 

network interconnect and/or quality of the MPI implementation. It is only supposition and we 

don’t investigate anymore.The model will be soon ported on Curie “thin nodes”, where we 

expect better performance. As we don’t need large memory by core neither by node, and don’t 
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need large node, Curie “large nodes” doesn’t seem to be the optimal machine for our case. 

But it has to be confirmed on Curie “thin nodes”. 

IPSL high resolution coupled model on Curie “Fat Nodes” 

 LMDZ Atmospheric model 0.3°x0.3°(39 vertical levels) i.e. 768x768x39 (hybrid 

MPI-OpenMP parallelized) 

 Oceanic model 0.25°x0.25°(75 vertical levels) i.e 1441x1021x75 on 120 MPI process 

 Oasis3 parallel version "field per field" on 23 MPI process (each MPI process treats 

one field) 1 coupling per 2h between Atmospheric model and Oceanic model. 

Performances obtained are : 

 23 OASIS + 120 NEMO + LMDZ 256MPIx4OMP = 1167 CPUs : Real time : 

7,6h/month 

 23 OASIS + 120 NEMO + LMDZ 256MPIx8OMP = 2191 CPUs : Real time : 7h 

/month 

Note the relatively small performance improvement in Real time when using 8 OpenMP 

threads rather than 4 (from 7,6h/month to 7h/month). Only preliminary tests were run to 

validate technical aspects of high resolution configuration, this means that an optimization 

phase is needed to improve performances, especially concerning heterogeneous configuration 

aspects in MPMD mode with the ocean model MPI parallelized and the atmosphere model 

mixed MPI-OpenMP parallelized. 

Compilation and running environment of IPSL ESM  model (production environment) 

Work was done on the IPSL environment (compilation and execution) in order to increase the 

number of machines used to run our production simulations. 

 

 Because of the end of vector machines as production machines, we have worked (and 

are still working) on running all of our production runs on IBM Power 6 (vargas - 

IDRIS centre) and Bull (titane - CCRT centre). This work consists both in : 

 quality checks : reproducibility, parallelization. 

 performance developments  : 

o use of hybrid parallelization MPI-OpenMP in production version of  IPSL 

ESM model. The use of hybrid parallelization MPI-OpenMP on an 

heterogeneous configuration (MPMD model) needs both to modify our 

usual way to launch the model and to interact strongly with computing 

centres.  

o analyze of load balancing between different component of IPSL ESM model 

(standard version=ATM_LMDZ_96_95_39xOCE_NEMO_ORCA2).  

Results obtained : 

 titane : IPSLCM5A (1day =coupling period) : lmdz :35s, nemo : 

39s  

  vargas : IPSLCM5A (1day =coupling period ) : lmdz :32s, nemo : 

32s 

 

 The IPSL compilation environment was installed on Curie. The installation of  IPSL 

model running environment in order to run production simulations is planned. 
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Conclusions 

The porting of IPSL -ESM model on new and different machines  is very instructive both in 

terms of performances and usability.  Besides, we have tested several configurations of the 

model at different resolutions: that helped highlight the work done in recent years both in 

terms of optimization and parallelization of the components (see the results in Section 0 

obtained for high resolution IPSL model on Curie and Jade) and in terms of portability of 

production environment (compilation, execution) of the model (see the work reported in 

Section 0 to run the IPSL ESM standard version in production simulations on new machines 

Vargas, Titane and Curie). In order to use hybrid parallelization (MPI-OpenMP) on an 

heterogeneous configuration (MPMD model) we need to interact strongly with computing 

centres. In the future, the ideal situation would be that the computing centres actually 

communicate with each other. 
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ARPEGE-NEMIX: a simplified high resolution CGCM for validation purpose on 

PRACE tier-0/tier-1 machines 

Contributors: E. Maisonnave
1
, P.-A. Bretonnière

1
, S. Valcke

1
, T. Craig

1
, C. Cassou

1 

1
 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France 

(CERFACS) 

Introduction 

An atmosphere-ocean coupled model is a complex, highly non-linear system, for which 

results are non reproducible from one machine to another. This forbids any bit-to-bit cross-

computer validation comparing simulations with identical experimental conditions.  

A conventional strategy to address this problem consists in comparing statistical results of 

simulation ensembles. Nevertheless, this solution requires a large amount of computing time 

(particularly at high resolution, which is mandatory on Petascale architectures) to reach the 

equilibrium state, the point at which simulations performed on different machine can be 

compared. In order to balance fluxes and reach (an) equilibrium with a complete atmosphere-

ocean coupled model hundreds of simulated years may be required, with no guarantee of 

producing results which are similar to those produced by another model. 

In fact, to recover the initial model behaviour on porting to a new machine, it is quite possible 

that additional parameterization work would be required, for example addressing the top of 

the atmosphere balance but also to achieve the desired mean states and variabilities of certain 

quantities (the actual quantities to be addressed with vary for different geographical regions, 

depending on the topic being studied with the use of the model). The question then is how to 

validate a port involving simulations containing different parameterizations? This is sue is 

further discussed in Section 0 in the context of techniques to reduce the sensitivity of the Met 

Office’s Unified Model to rounding errors. 

 

To avoid such problems and limit CPU consumption during the validation phase, the standard 

ARPEGE-NEMO coupled model is used in a slightly different configuration. In order to 

stabilize the system and enable an equilibrium stage that could be comparable on several 

machines to be reached rapidly, a degree of freedom is removed from the ocean model.  

 

This configuration, called NEMIX
1
, has already been used with different ocean models for 

geophysical studies
2,3

. It consists of a configuration reached by disabling salt and heat 

transports (1D model) and replacing them by a flux correction. A daily difference between an 

observed climatology on temperature (salinity) and the corresponding variable calculated on 

the ocean model is used to deduce heat (water) flux correction necessary to fit observational 

data. During this first simulation (called “forced”), a daily climatology of flux corrections is 

performed. At a second stage (called “coupled”), the flux corrections are added to ocean 

model to reproduce the missing salt and heat transports. 

 

NEMIX Fortran coding details 

To be able to easily switch from a conventional ocean-atmosphere coupled model to a 

configuration using a mixed layer ocean, we  modify the NEMO code, but keep the rest of the 

existing coupled configuration (here ARPEGE-NEMO). The only modification done on 

atmosphere model ARPEGE is that it is always forced to calculate its own surface albedo and 

its own ice temperature (namelist values LMCC02 = .T. and LALBEDO=.F.) instead of 

receiving it from coupling fields: it is a consequence of the LIM ice model disabling on our 

NEMIX ocean configuration. 
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Parts of the code like the NEMO advection scheme are bypassed and some instructions are 

added using a new namelist parameter (nn_cmxl) set to: 

* 0 in conventional fully advective mode,  

* 1 during the correction calculation (“forced mode”) and  

* 2 to use the mixed layer configuration, applying the flux correction (“coupled 

mode”)  

 

Within the code, to switch from standard ocean to our configuration, we test the value of the 

nn_cmxl variable within Fortran “IF” conditions. This strategy (instead of pre-processor 

operation) should allow us, in the future, to separately activate this configuration on AGRIF 

zoom areas. 

 

No horizontal exchange should be represented: NEMO avoid to calculate and integrate slope 

of lateral mixing (ldf_slp), advection and diffusion at the bottom layer (tra_bbl), horizontal 

and vertical advection (tra_adv, dyn_adv), lateral mixing (tra_ldf, dyn_ldf), horizontal 

gradient of hydrostatic pressure (dyn_hpg) and surface pressure gradient (dyn_spg). The 

momentum trend is updated with the planetary vorticity trend only (dynvor). 

 

A damping is necessary to avoid systematic drifts: temperature and salinity are damped on the 

whole globe (nn_hdmp=-1) but only under the mixed layer (nn_zdmp=2). The restoring 

coefficient varies like an exponent of minus depth. Bottom and surface restoring time scales 

are set to 30 days, with a transition depth of 800 meters. This damping is activated during 

both correction calculation and application stages. Damping is disabled at the surface 

(sbcmod). 

During the “coupled” experiment, two new coupling fields of flux correction (heat and water) 

are received (sbccpl) from a toy model via OASIS. Calculated as described below, the daily 

climatological value of the heat (water) flux correction is added to non solar heat flux (total E-

P balance). 

 

During the “forced” experiment, at the beginning of the time step loop (and not at the end, as 

usual in a coupled model), the Levitus (or any climatological) temperature (even under ice) 

and observed corresponding sea ice fraction are sent to the atmosphere (sbccpl). LIM model is 

disabled and ice cover is forced to observed quantities (sbcice_if). Ice fraction initialization 

has to be done before coupling (restart reading or calculation regarding Levitus). Fluxes are 

received after one coupling step from the atmosphere model (sequential coupling). Those 

fluxes have been calculating according to the climatological SST and Ice Cover values 

previously sent to the atmosphere model at the beginning of the coupling time step (one day, 

in our case). 

 

At the end of active tracer update routines, but before density (eos) and tendencies (tranxt) 

calculations, at each end of a simulated day, tb,tn and sb,sn variable values are re-initialized 

(in the mixed layer only) with daily Levitus temperature and salinity interpolated at the day 

following the current day (dtasal, dtatem). Those variables are re-initialized again after 

tendencies calculations. 

 

At the same stage, the flux corrections are calculated, estimating the difference between total 

amount of energy (water) brought by the atmosphere during the coupling time step and the 

necessary energy (water) to drive the model to the Levitus state of the next day. The 
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difference of temperature (salinity) between integrated variable tn (sn) and the Levitus value 

of the next day is multiplied by rau0.rcp (rau0) and accumulated on the total depth of the 

mixed layer (determined following the rho criteria). 

 

An offline and highly parallel tool has been developed to process on the parallel 

supercomputer itself a 365/366 days climatology of the flux corrections, filtering harmonics 

lower than seasonal. It allows us to follow, during the “forced” simulation, the evolution of 

the quantities that we will add to the ocean model during the “coupled” one. 

 

An example of porting validation 

These flux corrections encompassed three different contributions: (i) the simulation of ocean 

salt and heat transferts, (ii) the correction of the atmosphere biases and (iii) the correction of 

the coupling biases. 

Consequently, flux corrections are supposed to be suitable to detect a possible anomaly of 

ocean, atmosphere and coupler behaviour, induced by the change of compiler and running 

environment. 

A good example of anomaly detection is described at paragraph “ARPEGE-NEMIX porting, 

optimization and performance tests on PRACE tier0-tier1 machines”. 

 

On a first stage, a 30 year long simulation is performed to calculated these corrections. The 

experiment is long enough to be able to distinguish the effect of a possible error on porting 

from the interannual-to-decadal atmospheric variability. 

 

 

 

The result shown on figure 1 has been produced comparing 2 identical simulations performed 

on vector Météo-France NEC SX8R and scalar CINES SGI Altix supercomputers. A regional 

zoom is done on North Atlantic Ocean, one of the regions where atmosphere strongly 

influences the mixed layer ocean model variability at interannual time scales. Variations of 

mixed layer depth is observed in the model, which also implies strong variations of heat flux 

anomalies. 

Differences of heat flux computed on scalar and vector machines (left figure) appear to be 

comparable to differences between the decadal mean (from top to bottom, years 1-10, 11-20 

Figure 1: Heat flux correction (W/m2), 30 years mean 
difference SGI Altix - NEC SX8R (left) and first 3 
decadal anomalies (SGI Altix), same range values 
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and 21-30) and the 30 year mean on a single machine (decadal variability). On other regions, 

differences are one order of magnitude less important, as water flux correction variations. It 

proves that machine dependant differences do not exceed natural variability. 

 

On a second stage, coupled experiments (using flux correction calculated on the previously 

described stage) will be performed for further geophysical analyses purpose. Comparing 

atmosphere and ocean variability on both machines will definitely allow us to reach a 

conclusion about the portability of the high-resolution coupled ARPEGE-NEMIX climate 

model on targeted architectures. 

 

Conclusion 

Scientifically speaking, NEMIX mixed layer model, if efficient to quickly validate a porting 

and to lead to interesting mechanism analysis, is not able to address most of the climate 

modeling community problems. Implementation of the fully advective NEMO model will 

then be necessary. 

 

For this purpose, NEMO ORCA025-75 vertical levels developed at LEGI laboratory will 

replace our NEMIX model. Considering similarity of the codes (same NEMO 3.2 version, 

NEMIX configuration only differs with from NEMO on a few routines), this switch should 

not be, technically speaking, too problematic but could significantly delay the scientific 

validation, much difficult to reach because of the higher complexity of the represented 

coupled phenomena, inducing regional coupled biases, wrong heat balance, etc. 

At this stage, the priority is not to enhance the performance of our model (though improved 

scalability will be required for use of the model on future machines). Due to the increasing 

complexity of the model, more computer time is required to find parameters that best fit 

machine characteristics. 

 

ARPEGE-NEMIX porting, optimization and performance tests on PRACE tier0-tier1 

machines 

Overview 

A PRACE “Preparatory Access” project gives us the opportunity to reach several technical 

objectives on porting, set up on thousands of cores and optimizing the 2-component CGCM 

ARPEGE-NEMO coupled by OASIS, at high resolution (720 x 360 x 31 for atmosphere, 

1442 x 1021 x 46 for ocean) on the CEA TGCC Bullx Curie platform.  

Curie Bullx is a scalar parallel supercomputer with a peak performance of 1.5 Pflops, when 

the full configuration (including thin nodes and accelerators) will be installed at beginning of 

2012. The Curie Fat nodes (phase 1) part of machine (that we accessed during our Preparatory 

access) is composed of 1440 eight-core processors, Intel Nehalem-EX X7560 @ 2.26 GHz 

total of 11 520 cores. 

 

Performance 

The ARPEGE-NEMO climate model, jointly developed by Météo-France, NEMO and 

CERFACS based on components developed at ECMWF and in the NEMO consortium, has 

been compiled and run on more than 1000 cores on the PRACE tier-0 “CURIE” Bullx 

supercomputer. 

Our test configuration requires high resolution components (50km-atmosphere, ¼ degree-
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ocean), to study regional scale / large scale interactions. The ocean model is used on a 1D 

mode, as a mixed layer model (as described in chapter “ARPEGE-NEMIX: a simplified high 

resolution CGCM for validation purpose on PRACE tier-0/tier-1 machines”), to simplify and 

better understand coupled processes and validate porting more easily (comparing results with 

those of previously validated simulations on reference supercomputers). 

 

 

As expected, performances of the coupled system reach 5 days per simulated decades (see 

figure 2), which corresponds to the best results observed on present supercomputers. Except 

data management problems, this speed allows to comfortably perform decadal (and even 

centennial) simulations. 

A total of 8179 cores has been used without problems (atmosphere:4082, ocean:4096, 

coupler:1). A higher parallelism could be tested on ocean model, but atmosphere model 

efficiency seems surprisingly limited to 256/512 cores. 

Moreover, the use of a pseudo-parallelized version of our coupler (OASIS3) was still a 

bottleneck for the coupled system, as 20% of the elapsed time was spend to perform 

interpolations and ensure communications between coupled components. 

 

Coupling enhancement 

To try to overcome this problem, it was necessary to modify ARPEGE and NEMO coupling 

interfaces to plug the newly developed OASIS3-MCT coupler (see WP4 report on OASIS 

coupler enhancements). Allowing parallel interpolation of the coupling fields (as a parallel 

matrix-vector product) and their parallel redistribution directly from the source processes to 

the target processes , OASIS3-MCT offers an elegant solution to the previous OASIS3 

bottleneck.  

Figure 2: Performances of atmosphere 
(ARPEGE), ocean (NEMO, mixed layer 
configuration NEMIX), coupler (OASIS3, always 
on 12 PE) and whole coupled model (ARPEGE-
NEMIX) + comparison with previous ARPEGE-
NEMIX performances on SGI Altix 
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Interface modifications (from a previously implemented OASIS3 coupling) are very few: 

 only « USE mod_prism » instructions differ 

 prism_put/get argument arrays size has now to fit exactly prism_define declaration 

 namcouple is simplified but has to be modified. 

 

So, generally speaking, it can be considered that a previously developed OASIS3 interface is 

backward compatible with the new OASIS3-MCT version. 

A beta-version of the new coupler has been used on Curie supercomputer and time spent on 

coupling has been compared, using OASIS3 and OASIS3-MCT couplers. As shown on figure 

3, slowing down due to coupler process communications bottleneck is basically eliminated, 

time spent on coupling being reduced to a few tenth of percent. Efficient coupling of high 

resolution component models with OASIS can now be considered as a solved problem thanks 

to this new OASIS3-MCT. 

 

 

 

Porting issues 

Coupled model porting has been affected by various problems, mainly concerned with the 

atmosphere part. As a consequence of the many porting realized for several years on scalar 

platforms (ECMWF machines, PC, Grids, GENCI supercomputers), our models are now well 

adapted to Intel compilers. This experience quickens compilation phase.  

Nevertheless, problems can still occur when ARPEGE-Climate parallelism increases. High 

resolution configurations are used in a small number of scientific studies and some features, 

Figure 3: Percent of OASIS coupling elapsed time 
(communications and interpolations) among total 
atmosphere-ocean-coupler elapsed time 
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such as 2 dimensional partitioning, only necessary on MPP machines, not intensively tested. 

Some debugging has been done in the code to overcome problems detected during first steps 

of execution. In particular, a problem in the parallelization of the mass correction routine 

cormass2.F90 drove a robust bias on surface pressure field over region covered by master 

processor. 

This bias has been detected checking heat flux correction calculated during an ARPEGE-

NEMIX forced experiment. Figure 4 clearly exhibits unrealistic surface pressure anomaly on 

a geographical area corresponding to master processor related sub-domain. 

 

 

 

After correction, a six months long simulation was performed on the machine. Comparing it 

with similar test experience done on reference NEC SX8R and SGI Altix supercomputers, no 

important bias could be detected in the results (mean surface pressure and temperature, 

water/heat flux correction). The mean heat flux correction (mean on 6 months only) is similar 

to reference. 

 

We consider that our ARPEGE-NEMIX-OASIS3 model is ready to be use at high resolution 

for a first scientific validation, following the strategy described on chapter “ARPEGE-

NEMIX: a simplified high resolution CGCM for validation purpose on PRACE tier-0/tier-1 

machines”. 

Moreover, further developments will lead us: 

1. to fully optimize the various components: different compilation options have to be tested 

and best performance parameters of the models have to be found (like vectorization length 

NPROMA for ARPEGE or ideal partitioning for NEMO) 

2. to better balance coupling parameters: load balancing between components, mapping (if 

possible) of different executables on allocated nodes (and node cores) 

3. to reduce output data amount, organize data post-processing and migration to local storage 

disk. This work is crucial for Climate Modeling, considering size of produced data (4Gb/h 

in our test, much more on production phase) 
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EC-Earth modelling system on MareNostrum Supercomputer: porting and performance 

experience 

Contributors: O. Jorba, K. Serradell, L. Telloli 

Objectives 

Several versions of the EC-Earth model have been ported on MareNostrum supercomputer. 

The purpose of the present document is to describe and summarise the main issues related to 

the portability and performance of the EC-Earth model on the MareNostrum supercomputer. 

From the experience of this effort, some recommendations are presented to simplify the task 

of porting a complex Earth System Model like EC-Earth to complex High Performance 

Computing environments. This report complements the work presented in D8.2 – “Report on 

the Description of the Evaluation Suite and Base-case Results”, chapter 5, “Porting and 

performance analysis of EC-Earth system on MareNostrum Supercomputer”.  

A brief description of the MareNostrum supercomputer and the EC-Earth model is presented 

in Section 2 and 3, respectively. Section 4 describes the porting issues encountered during the 

implementation of several versions of the EC-Earth model on the MareNostrum 

supercomputer. A trace analysis of an EC-Earth execution is presented in Section 5, focused 

on the identification of those parts of the code that show some possible performance 

improvements in the future. 

 

HPC environment: the MareNostrum supercomputer 

The MareNostrum supercomputer is a high performance computing facility hosted by the 

Barcelona Supercomputing Center (BSC). It was built in March 2004 and has been upgraded 

in one occasion. The next upgrade is planned for 2012. The supercomputer is a node of 

DEISA2 and it is included in PRACE initiative as a Tier-1 machine. With the next upgrade, it 

will be included in Tier-0 infrastructures. 

The main technical characteristics of the system are described in detail in the following link: 

http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture/. A brief 

description of the infrastructure is presented here. 

The MareNostrum supercomputer is based on processors PowerPC, architecture BladeCenter, 

Linux operating system and Myrinet interconnection. MareNostrum has a total of 10240 IBM 

Power PC 970MP processors. The Peak Performance of the system is 94.21 Teraflops. Each 

Blade Center has 14 server blades type JS21. Each of these nodes has 2 PowerPC 970MP 

processors (each processor has two cores and note that cores are referred to as CPUs in this 

section) running at 2.3 GHz and 8 Gb of shared memory. MareNostrum has 20 storage servers 

arranged in 7 racks that work with Global Parallel File System (GPFS), which offers a global 

vision of the file system and also allows a parallel access. Default compilers in Marenostrum 

are IBM XL C/C++, and IBM XL FORTRAN. In addition, the GNU C and FORTRAN 

compilers are available.  

Several numerical libraries and several application packages are installed in MareNostrum 

(http://www.bsc.es/marenostrum-support-services/available-software). 

 

The EC-Earth model 

The EC-Earth model, European Community Earth system model, is one of the Earth System 

Models contributing to the Coupled Model Intercomparison Project (CMIP-5). It is developed 

by several European National Weather Services and research groups. It is based on the 

seasonal prediction system of European Centre for Medium-Range Weather Forecasts 

http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture/
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(ECMWF) [Hazelenger et al, BAMS]. 

The modelling system consists of two main components and a coupler: an atmosphere, 

chemistry, land and vegetation model and an ocean and sea-ice model. Each of these two main 

components contains various sub-components, which represent physical processes, and 

climate-related biological and geochemical processes. These models communicate with each 

other through a coupler. The used programming languages are FORTRAN and C [Brandt, 

2010]. 

The atmospheric component is based on the Integrated Forecasting System (IFS) of ECMWF. 

The basic configuration contains 62 levels in the vertical, and an horizontal grid of 1.125 

degrees spacing (125 km). The chemistry of the model is based on the TM5 module, which is 

included online in the IFS model. The land-vegetation model is the Tiled ECMWF Surface 

Scheme for Exchange processes over Land (HTESSEL) and it is part of the atmosphere 

model. 

The ocean and sea-ice model used within EC-Earth is NEMO (Nucleus for European 

Modelling of the Ocean). The approximate resolution of the ocean model is 1 degree with a 

refinement in the southern pole. It uses 31 vertical layers. The sea-ice model is the Louvain-

la-Neuve sea-Ice Model (LIM). 

The EC-Earth has been ported over different high performance computing platforms (e.g., 

IBM P6 AIX, CRAY XT-5, Intel-based Linux Clusters, SGI Altix, MareNostrum) at different 

sites in Europe (e.g., KNMI, ICHEC, ECMWF). The development of the different model 

versions was as follows: 

 Version 0: Uncoupled model IFS CY31R1 

 Version 1: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2) 

 Version 2.0: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2), with 

local ECMWF modifications and EC-Earth developments. 

 Version 2.2: CMIP5-ready coupled model (IFS CY31R1– OASIS3 v2.5 – 

NEMO2/LIM2) 

 Version 2.3: updated version 2.2 

 Version 3.0: Coupled model (IFS CY33 – OASIS3 v2.5 –NEMO3/LIM3) – beta 

subversions 

 

Porting experience of EC-Earth on MareNostrum 

Several versions of EC-Earth have been ported (compiled and run) in MareNostrum: version 

2.0, 2.1, 2.2 and 2.3. Detailed instructions for compiling and running the model in its version 

2.0 are found in Stefanescu, 2008. However, significant extra effort was required to compile 

the model on MareNostrum. In this section, we present the main efforts undertaken to port the 

model to MareNostrum system, focusing on: machine access, compilation and build, setting 

up and model run, debugging and testing, input and output file management. 

The EC-Earth model is programmed in Fortran and C languages and uses some external 

libraries for mathematical, I/O and parallelisation issues. Prior to any porting effort, several 

packages are required in the targeted HPC system (ksh, perl, mpi1, fortran90-95 compilers, 

openMP and netCDF). All the required packages are widely used and did not represent an 

issue to finding or porting them on MareNostrum. 

MareNostrum is an IBM machine that runs with Linux operating system. This may cause 

some problems when porting codes developed on other architectures. In this sense, some 



    

 

 Status: Final  

This document is produced under the EC contract 228203. 
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General 

Assembly 

27 

specific settings for the MareNostrum architecture are needed, and a search task has to be 

done prior any successful compilation of the code.  

The porting of the EC-Earth model was complex and took a large amount of time for versions 

1, 2, subversions 2, but importantly improved in version 3. Here we describe the main issues 

related with version 2.3, and how most of them improved in version 3. From all the 

components of the model, the main porting issues were related with the IFS atmospheric 

component. The OASIS and NEMO portings were straightforward (specification of 

MareNostrum compiler environment and options are included in the main configuration file). 

Thus, the following description mainly focuses on the IFS porting. 

 

Machine access: 

The access to MareNostrum system is done through SSH connections. It is a standard on 

DEISA and PRACE systems, and it is not considered a specific problem. The limitation may 

be found in the band-with connection to the system. The MareNostrum uses a gigabit network 

connection for the Input/Output of information to the system. This allows a high transfer rate, 

but the user connection network becomes the limitation. It is usual that user experience some 

problems downloading the datasets from MareNostrum. The large amount of data generated 

in the system is not easy to handle, and specific strategies for the movement of datasets should 

be designed prior any execution effort. 

 

Compilation and build: 

Some minor modification in the source code of IFS were needed to compile versions 2 and 

subversions. The code include some #ifdef statements specific for AIX, Cray and other 

architectures. Due to the particularities of MareNostrum (hybrid IBM and Linux environment) 

a specific case was included in the code. 

The recommended compilers in MareNostrum are IBM XL compilers. This type of compilers 

do not include by default the underscoring in the Fortran routines, which it was required by 

the C code that calls Fortran routines in the original EC-Earth code. Thus, several routines 

need a specific forcing of the underscore by the compiler. This is done through the compiler 

flag –qextname. Several routines need this procedure: 

qextname=utdec,utopen,utinv,utfree,utmake,utdiv,etime,dtime,utmult,utscal,utenc,utcut,flush,u

tcvt,utexp,utorigin,uttime,utcaltime,utcpy,flush,abor1,follow,addrdiff,broadcint,broadcreal,c_d

rhook_init_signals,c_drhook_print,dr_hook_util,dr_hook_util_multi,ec_getenv,ec_mpi_atexit,

ecmwf_transfer,ec_numenv,ec_putenv,ecqsort,ec_raise,ec_strenv,fft992,getcurheap,getmaxstk,

get_opt,getpag,getrss,getstk,gstats,gstats,follow,gstats_label,gstats_label,follow,gstats_print,g

stats_psut,gstats_setup,hostnm,ifssig,ifssigb,isrcheq,isrcheq,follow,isrchfge,isrchflt,minv,minv,f

ollow,mxmaop,mxmaop,follow,profile_heap_get,rdot,rg,rsort32_func,rsort64,rsum,set99,sgtsl,

sigmaster,user_clock,bubox,bucrkey,bufren,bufrex,bunexs,bunpck,bunpks,bupkey,buprq,buprs

0,buprs1,buprs2,buprs3,buprt,buprtbox,bus012,busel,busrq,buukey,fmmh,pbbufr,setlalo,c_drh

ook_start,c_drhook_end,abor1fl,cdrhookinit,cdrhooksetlhook,drhookprocinfo,drhookprt,c_dr

hook_set_lhook,c_drhook_init,dr_hook_procinfo,dr_hook_procinfo,irtc_rate,dr_hook_prt,dr_

hook_prt 

 In addition to the changes described above, a particular compilation for IFS was needed for 

versions 2.1, 2.2 and 2.3 as a result of an incompatibility of the IFS software and the compiler 

XLF version 12.1. After extensive testing, a two step compilation approach was used to 

compile IFS within EC-Earth using XLF version 10.1 and 12.1 compilers. Compiling all IFS 

with XLF v10.1 was not feasible as other modules within EC-Earth were only available for 

the new XLF v12.1 compiler.  

The structure of compilation files included in IFS is rather complex and this is therefore also 
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the case for EC-Earth. There exists a general compilation file for EC-Earth where the 

environment variables and some compilation flags are defined. However, several modules of 

IFS also contain a specific configuration file that needs some adjustment. This results with an 

arduous task of identifying the configure file that needs modifications. Some of the modules 

need some specific compilation flags that should be defined properly to succeed with the 

porting. 

Once a successful porting of the model is obtained, the porting of a next version is more 

straightforward, but there are always some routines or parts of the code that require specific 

attention. 

 

Setting up and model run: 

MareNostrum uses a batch processing support, so all jobs must be run through it. The batch 

system used in MareNostrum is a combination of two softwares: 1) SLURM, developed at 

Lawrence Livermore National Laboratory and designed for large clusters, which works as a 

resource manager and 2) MOAB, developed at Cluster Resources company, which works as a 

job scheduler. The user then needs to specify the number of CPUs (i.e. cores) allocated for 

each task. This is useful for hybrid MPI+OpenMP applications, in which each process spawns 

a number of threads. The number of CPUs per task must be between 1 and 4, since each node 

has two dual core processors resulting in a total of 4 CPUs (or cores) one for each thread. It is 

important to note that OpenMP settings are globally defined for a whole run. It is also 

possible to define the number of tasks allocated in each node. When an application uses more 

than 1.7GB of memory per process, it is not possible to have 4 processes in the same node 

because of an 8GB memory limit. Due to this special configuration, the submitting batch 

script to send an EC-Earth run to the MareNostrum queues is different to that required on 

other platforms. 

 

Debugging and testing: 

The domain decomposition for IFS and NEMO is defined in the compilation files. A specific 

executable is then associated to a specific domain decomposition and number of processors. If 

the user is performing some test or scalability studies, the code must be recompiled. This may 

be overcome if the domain decomposition is included through a namelist file or similar, 

instead of defining it in the compilation file. 

Totalview, Paraver, Dimemas software tools have been used to debug and test the EC-Earth 

model in MareNostrum. Some specific tasks related with the analysis tools were undertaken, 

but did not interfere with the EC-Earth porting. 

 

Input and output file management: 

No problems were encountered in the management of Input/Output of the EC-Earth model. 

The GPFS file system of MareNostrum performed well with the EC-Earth I/O design. For 

future applications, a more advanced I/O approach should be implemented within EC-Earth in 

order to take advantage of parallel I/O. 

 

Most of the problems encountered with version 2.0, 2.1, 2.2 and 2.3 were overcome in beta 

versions 3.0. A specific parser has been developed in versions 3.0 of the EC-Earth model. 

Now, there exists a general configuration file, an XML file, where all the compilation options 

for all the modules and submodules are specified. This strongly simplifies the porting task of 

the model in MareNostrum. There are still some files with #ifdef statements that should be 

checked carefully and adapted to the MareNostrum architecture characteristics. 

With the experience acquired in the porting of EC-Earth, it can be said that there aren’t major 
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problems in the programmability of the system or the coupling structure. Some old and 

inherited complex structure of the coupled system hampers the porting exercise, but this has 

been circumvented in version 3.  

 

Performance of the model on MareNostrum: trace analysis 

The Paraver software is used to analyse the performance of the EC-Earth model in 

MareNostrum. Paraver is an open source performance visualization and analysis tool 

developed in BSC. Figure 1 shows an example of one of the Paraver visualization modes: 

colors indicate the CPU states (e.g., running, waiting for communication, synchronization, 

group communication, communication send, I/O), the xaxis represents time, and the yaxis 

represents the different CPUs (e.g., 1 for OASIS, 100 for IFS and 32 for NEMO in our 

example). Paraver provides several time statistics for analyses. 

 

 
Figure 1: Example of a Paraver graphical view. OASIS, IFS and NEMO are run with 1, 100 

and 32 CPUs, respectively. The X-axis represents time and the Y-axis represents the different 

CPUs (1 for OASIS, 100 for IFS and 32 for NEMO in this example). 

 

In this Section, a raw-trace analysis of an EC-Earth run is discussed. The model run is 

configured with 1 CPU for OASIS coupler, 100 CPUs for IFS atmospheric model and 32 

CPUs for NEMO ocean model. The discussion focuses on the communication pattern of the 

atmosphere and the ocean models and some parts of the code are selected to exemplify load 

balance problems between processors and serialization patterns that may be optimized by 

analysing the code in detail. No optimizations are presented in this report.  

 

 
Figure 2: Visualization of 3-hour run. The red square indicates the zoom in the IFS execution 

shown in Figure 4, the blue square the zoom in the NEMO execution shown in Figure 5 and 
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the green square the zoom shown in Figure 6. 

 

Figure 2 shows a visualization zoom of a 3-hour run. The first row of the image presents the 

activity of the coupler. The white colour represents a MPI_receive state, meaning that the 

coupler is waiting the end of an execution of the atmosphere and ocean (communications 

every 3 h). Once the atmosphere is ready to send information to the coupler, the white colour 

changes to blue, indicating that the coupler starts its computation work. The central part of the 

image, rows 2-101 represent the atmospheric model execution. The light blue represents 

computation while the other colours are MPI states. The distribution of execution shows that 

IFS uses several MPI_Bcast to structure the execution of the code. On the other hand, rows 

102-134 shows the CPU state for the ocean execution, where no MPI_Bcast calls are 

identified. For parallel applications the latter approach is preferred if the application is well 

load balanced. In the analysed configuration, the wall-clock time of an IFS and NEMO 

execution and coupling are not balanced, thus the CPUs of NEMO are waiting IFS end 

execution. It is important to note from this trace, that IFS is spending a long time in a 

broadcast (MPI_Bcast). Such behaviour can be attributed to a poor performance of the 

interconnection network of MareNostrum, that under some conditions of overloading 

performance is lost. 

The communication pattern between CPUs will provide useful information on the 

performance of the model. In highly parallelised codes, a key issue is the limitation of 

communication between nodes. Figure 3 shows the communication pattern of the EC-Earth 

model. 

 

 
Figure 3: Communication pattern of EC-Earth run (Green: low amount of bytes sent between 

processes; dark-green: medium amount; blue: large amount). Black square limits IFS 

processes, and red square limits NEMO processes. 

 

In this visualisation, the total bytes sent between processes are displayed (light green: low 

amount of communication; dark green: medium amount of communication; blue: large 
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amount of communication) in an array structure, where x-axis and y-axis are the processes. 

The diagonal represents the communication of process n with process n, and thus, there is no 

transfer, outside the diagonal the communication of process n with process m is displayed in 

colours. The structure of the model is well identified in the image. The coupler communicates 

homogeneously with all processes of the atmosphere and the ocean. The communication 

pattern for IFS (black square) is more complex than for NEMO (red square).  

In IFS, a rather complex pattern of communication is identified between processes. During an 

iteration, a process communicates with a group of 20 neighbour processors, and with 6 

processors away from it. More communication is detected in the poles, where a group of 10 

processes interchange larger amount of data than in the centre of the domain. Additionally, 

communication with the 10
th

 neighbour processor is larger than with the prior 9.  

Regarding NEMO communications, each process communicates with its 4 neighbours. There 

are specific processors that exchange a large amount of bytes (blue colour), creating a group 

of communications every 4 processors. Such structure is characteristic of finite difference 

partial differential equation models, where the domain discretization is done in the x-y plane. 

It is also important to note that there is no master process communicating with all the CPUs of 

NEMO. This implementation benefits the reduction of communication among processors.  

Overall, Table 1 summarizes the average time spend by processes in computation and 

different communication states (specific MPI call). The statistics are obtained from all the 

trace presented in Figure 1. Results show how the MPI_Recv state is dominant in the coupler 

and ocean modules, while the atmosphere spends most part of the time in an MPI Broadcast. 

We believe that such performance is attributed to a low performance of the interconnection 

network of the supercomputer. The coupler spends most of the time waiting for the model 

results of the ocean and atmosphere. The ocean spends 34.26% of the time computing and 

62.91 receiving information from the coupler. The statistics of the atmosphere are strongly 

affected by the weight of the Broadcast, however it is important to note that 2.34% of the time 

the processes are in an MPI_Barrier. The computation time of IFS represents 15.16% of the 

total time of the trace. Note that the trace includes initialization time. 

 
Table 1: Average time (%) spend by processes in computation and MPI states. 

 

With the aim of showing some examples of load balancing and serialization issues within IFS 

and NEMO, we present a visualization zoom of some parts of the IFS execution and then 

some parts of the NEMO code. Note that Paraver allows the instrumentation of both user code 

routines as well as MPI routines. Figure 4 shows a zoom within the IFS execution where the 3 

hour run cycle can be clearly identified with a repetition pattern. From this zoom, we 

identified two examples of load imbalance in subroutines slcomm2a and trtgtol (light green, 
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green). The processes spend a significant time in both routines. From Figure 4 the load 

balance problem of trtgtol routine is clearly appreciated, but not in slcomm2a. Figure 5 shows 

a zoom cantered in the zone where the processes are executing the slcomm2a routine. 

 

 
Figure 4: Visualization zoom of the IFS execution subroutines. Three hour run cycles are 

identified. Figure 2 displays the location of the zoom. Subroutines slcomm2a and trtgtol 

colours are displayed in the bottom of the figure. 

The visualization of Figure 5 is configured to show the MPI states of the execution of the 

routine slcomm2a. The pattern of the trace clearly shows important load balancing problem 

among processors. On the average, the processors are computing 39.08% of the time, 

receiving information 34.05% and waiting in an MPI_Barrier 26.87% of the time. However, 

the maximum time in computation is a 70.50% of the total time and the minimum time 

represents 28.63%. This means, that there are processes that only spend 30% of the time 

computing, while others spend 70%. This indicates a low parallel performance, with a ratio 

parallelization of 0.55 in the computation time, 0.61 in the receiving time and 0.58 in the 

barrier (the ideal ratio of parallelization is 1 for perfect parallel codes). These statistics clearly 

indicate that within the slcomm2a subroutine exists large imbalances that may be improved by 

examining the code in the communication layer. 

 

 

  

Outside 

MPI MPI_Recv MPI_Barrier 

Average 39.08% 34.05% 26.87% 

Maximum 70.50% 56.27% 46.35% 

Minimum 28.63% 20.62% 0.06% 

Avg/Max 0.55 0.61 0.58 

Figure 5: Zoom of the code execution of the slcomm2a subroutine of IFS. Colour legend at the 

right hand side of the figure. Outside MPI means computing time. 
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A second example of load balance problems is identified in trgtol subroutine (Figure 2 green 

square, Figure 4 green colour and Figure 6). Figure 6 visualizes the MPI states within the 

trgtol routine. Again, we can clearly identify processes that spend a long time in the 

MPI_Recv state, others with larger computation cost, and a large number of processors 

spending near half of the total time in an MPI_Barrier. The parallelization ratio remains below 

0.6 for computation, MPI_Recv, and MPI_Barrier. This indicates that the processes are not 

well balanced. Such behaviour can be inherent to the problem that the routine is solving, or in 

some cases is an indication of some program deficiencies. Further work would be oriented in 

analysing the routine and identifying the reasons why some processes spend such large time 

in receiving information or waiting in the barrier. In parallel codes, it is recommended not to 

use a large number of barrier calls. A well-balanced code may not need the use of any barrier. 

 

 

 

Outside 

MPI MPI_Recv MPI_Barrier 

Average 38.25% 32.85% 28.90% 

Maximum 93.42% 93.54% 51.86% 

Minimum 2.10% 2.33% 0.04% 

Avg/Max 0.41 0.35 0.56 

Figure 6: Zoom of the code execution of the trgtol subroutine of IFS. Colour legend at the 

right hand side of the figure. Outside MPI means computing time. 

 

Finally, we present an example of serialization encountered in the NEMO ocean execution of 

EC-Earth. Figure 7 presents a visualization centred over the 32 NEMO processors. The upper 

panel shows the MPI callers from where we can identify what part of the code is in execution 

by each processor. A clear serialization pattern appears in this view. Such serialization will 

produce a delay in the code, more relevant when we increase the number of processors 

executing NEMO. In this sense, this is a clear candidate to improve for future applications of 
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the model with a large number of processors. The routine involved in this part of the code is 

the mpp_lnk_3d. It appears at first glance that the processors communicate in groups of 4. To 

corroborate that, the middle panel of Figure 7 displays the MPI states and the communications 

between processors. A zoom of the first 8 processors is presented in the bottom panel of 

Figure 7. From such views, one can identify the communication pattern. There is a master 

processor that sends information to next three processors and after some computation time 

sends and receives information from the other processors. After that, the masters 

communicate with the next group of 4 cpus, sending some information. This structure is 

repeated among all the processors. After analysing the routine involved in such 

communication pattern it could be possible to provide an optimization approach where the 

communication patter could be simplified and the staircase structure could be strongly 

converted to a more parallel pattern. 

 

 

 
Figure 7: Visualization of an execution part of the NEMO model. Upper panel: visualization 

of routine executions (violet colour: mpp_lnk_3d routine); middle panel: same zoom showing 

MPI states and communications between processors; bottom panel: zoom of middle panel 

view of 9 processors). 
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The trace analysis is a powerful tool that help identifying some parts of the code that have a 

poor parallelization degree. From a starting point where we do not have any information about 

the code and how it performs in a highly parallelized environment, the Paraver software easily 

contribute in identifying those parts of the code where serialization or load balance problems 

occurs. After a first inspection of the trace, we identify those parts of the code that are 

repeated in the time cycle and with several visualization layers and zooms one can search for 

communication patterns or structures that are candidates to be improved for a better efficiency 

of the code. It is important to note that the same code will behave different under different 

architectures. In our results, the communication network of MareNostrum strongly impacts in 

the code performance with delays in some communication levels. Overall, we have shown a 

couple of routines where some improvements could strongly impact on the degree of 

parallelization of the code. 

Summary and conclusions 

Porting an ESM on a new architecture is a complex task. The experience of porting the EC-

Earth model on MareNostrum supercomputer has provided some insights on how could this 

process be simplified. An ESM is a metamodel with several modules and dependent libraries. 

Some standard libraries are usually installed in the target architecture. In the MareNostrum 

case, the NetCDF, openMP, MPI were already implemented. Most of the problems 

encountered during the compilation of EC-Earth were related with the IFS model. It is 

important to note that nor the NEMO model neither the OASIS coupler were difficult to 

compile in MareNostrum. Thus, the layer of configuration and compilation of an application 

is of critical relevance in a porting exercise. The main difference between IFS and NEMO or 

OASIS is that in versions v2 of EC-Earth, the configuration files of IFS were not centralized, 

and several files located in different directories required special attention prior the 

compilation. Furthermore, not all parts of the IFS demand the same compilation options. This 

makes the compilation process difficult. In recent versions of the model, EC-Earth v3, the 

code incorporates a build environment that strongly simplifies the porting process. Now, only 

a unified configuration file contains all the required information for the compilation. 

Thus, a recommendation would be directed to porting ESM models or toy-versions of the 

models in most supercomputer platforms at European level. The experience acquired in a 

porting exercise of a model should be maintained within the model structure. In this sense, the 

experience of widely spread community codes like WRF or CMAQ indicate the way to follow 

within the climate community. An extensive exercise of porting the codes on several 

architectures would provide the details required to strongly simplify the installation of such 

complex codes in new architectures, where several configuration options would provide the 

best starting point for porting the model. Moreover, if several libraries and applications are 

already implemented in HPC centres (NetCDF, Blas, Lapack, oasis, nemo), a porting exercise 

would be much affordable that it is nowadays. 

Several versions of the EC-Earth model were successfully ported to the BSC MareNostrum 

supercomputer, a system based on IBM PowerPC 970MP processors and run under a Linux 

Suse distribution.  

The EC-Earth performance was analysed with respect to trace analysis with the Paraver 

software. Examples of load imbalance and serialisation within IFS and NEMO models have 

been presented and discussed. Several options appear for performance improvement of the 

codes. However, the current numerical approaches of the model, spectral transform regular 

lat-lon grid in the case of the IFS strongly limits its scalability, and a new numerical solutions 

are required to improve the system. In this sense, finite-volume, spectral elements, new 
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decomposition grids appear as new options from where current models should evolve. 

Acknowledgments: 

We wish to thank Xavier Abellán from the BSC Operations team for their help porting and 

running EC-Earth in Marenostrum, and Judit Giménez of Computer Sciences Department of 

BSC for her help on the analysis of Paraver traces. 

References: 

Hazeleger, W. et al., 2009. EC-Earth: A Seamless Earth System Prediction Approach in 

Action, accepted, Bull. Amer. Meteor. Soc. 

Martijn Brandt, EC-EARTH- the European Community Earth system model, March 2010 

[http://ecearth.knmi.nl/EC-Earth_model_documentation.pdf] 

Stefanescu S., Standalone environment for compiling and running the EC-EARTH system, 

Technical Note, April 2008 [http://ecearth.knmi.nl/ecearth2.pdf]. 

 



    

 

 Status: Final  

This document is produced under the EC contract 228203. 
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General 

Assembly 

37 

High Resolution EC Earth Porting, Benchmarking on CURIE 
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1
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Introduction 

The EC-EARTH
1
 is an earth system modeling application. The three main components of EC-

EARTH are IFS (for atmosphere), NEMO (for ocean) and OASIS (for coupling). We have 

benchmarked a high resolution version of the EC-EARTH configuration for scaling. The 

ocean component used for this configuration is ORCA025 which is a 1/4° global 

configuration. The atmosphere component uses T799 resolution. The source code of NEMO is 

v-3.2, the IFS version is Cycle 36r1 and the coupler is OASIS3. For our benchmarking and 

porting exercises the source code of EC-EARTH, with necessary modifications, input files 

and run scripts is obtained from SMHI
2
. The system used for our scaling studies is Curie

3
 

which is a petaflop machine in Europe.  The work is also part of a PRACE project on the 

petascaling of EC-EARTH (work packages 7.2 & 7.5) in which we are involved. The 

performance of any MPI program may depend on various components, e.g., compilers, MPI 

libraries, network, file system, processor technologies etc. As EC-EARTH is a large and 

complex program its porting on a new machine is a considerable challenge. After porting to a 

new machine, the performance and scaling of the code needs to be evaluated. The goal is to 

figure out the bottlenecks and to look at suitable strategies to improve the scaling. To do our 

porting and scaling tests on Curie we follow a work flow which makes our porting work 

systematic. The same work flow can be followed in other systems for a better porting 

experience.   

 

 

 

 

 

 

 

 

 

 

 

 

Test system : The hardware and the software of Curie system used by us is given in Table 1.  

 

 

Table 1       

System Curie  

Processor Intel(R) Xeon(R) CPU X7560  @ 2.27GHz  

                                            

1 http://ecearth.knmi.nl/ 

2 Swedish Meteorological and Hydrological Institute 

3 http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm 

http://ecearth.knmi.nl/
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Interconnect InfiniBand QDR Full Fat Tree network  

Node 32 cpu cores   

MPI processes / node 32  

global filesystem Lustre  

Compiler  Intel compiler  v-12.1.1.256  

MPI bullxmpi v-1.1.8.1  

 

Work flow for Porting 

 

In modern supercomputers often environments are different from one system to another. So 

porting a complex code on a new system is always a formidable challenge. Often large codes 

try to tackle this problem in terms of different per-processor flags to choose compiler, parallel 

/ serial compilation etc. While this approach addresses the problem to some extent, still each 

system poses its own unique issues. In our porting work we have tried to create an identical 

environment across different systems for more convenient porting experience. We will 

describe our work-flow here. 

  

 Basic work flow : We have created a simple configuration script where we define all 

the environment and the repeatable steps using command aliases and scripts. Also in 

this configuration script one has to enter some information, e.g., work directory, run 

directory etc. These settings are then written to an environment file by the 

configuration script. When screen session is launched by the configuration script these 

settings are read and loaded in the shell. For each task / activity the configuration 

script will :Note examples of all script files etc. are available on request from the 

author. 

 

1.1 Start a screen session with multiple child screens. Screen is a basic linux utility.  

Using screen utility one can manage multiple windows efficiently. This is useful 

as often it is needed to have multiple windows open. Moreover screen sessions 

can be resumed even if the remote connection is snapped due to some reason.  

1.2 Define a set of useful command aliases, scripts, environments relevant to a job: 

These aliases are available on all child screens launched by the configuration file. 

1.3 Each work / activity runs under its named screen window launched by the 

configuration file. Multiple work / activity can be run simultaneously by 

launching multiple different configuration files with unique environment for 

each, e.g., one configuration can load OpenMPI while another configuration can 

load Intel's  impi  and both can be run  simultaneously without affecting each 

other.  

1.4 This is also useful if for porting or benchmarking purpose we locally install test 

software, e.g., some MPI. For such test installations normally job schedulers will 

not export all the necessary paths.  Through our configuration settings we can 

export all these paths easily to run jobs on cluster in such cases.  

 

2. Starting a sample configuration  called “test” on Curie with multiple child screens : 

 

2.1 mkdir -p ~/config. This is the root directory for storing configuration files. The 

main configuration file called “test” is located here. 

2.2 mkdir -p ~/config/scripts/test. All the other scripts related to the configuration 
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“test” are kept here 

2.3 mkdir -p ~/config/comment. Folder for keeping notes, comments. For the 

configuration “test” a file ~/config/comment/test will be created automatically. 

2.4 In the  ~/config folder create the configuration file called test.. In the ~/config/test 

file changes that may be made are in a block marked EDIT where suitable values 

may be sepcified.  

2.5 In the file ~/config/test we have defined few frequently used command sequences 

through aliases.   

2.6 Some aliases require some other scripts. These commonly used scripts are 

defined in a script called ~/config/scripts/test. 

2.7 chmod +x ~/config/test 

2.8 Create a sample .screenrc file in ~/config 

2.9 Append  the .bashrc file with the following lines : 

 

if [ -f ~/config/env ]; then 

x=`find ~/config/env -mmin -1` 

if [ -n "$x" ]; then 

source ~/config/env 

fi 

fi 

 

2.10 These lines will not affect the .bashrc behavior except for  the next step  

2.11 Run ~/config/test. This will create / resume 5 child screens named test. To jump 

to a particular window press Ctrl-a n where n is the window number. 

2.12 Once the screen session is started start working under that environment. 

Typically this starts with copying the source code related to work to the root work 

directory as defined in the ~/config/test file.  

2.13 The paths / aliases / scripts defined / pointed in test file are available to all the 

child screens. So for this example on any screen window named “test” :  

1.1.1 pressing b will change directory to root work directory.  

1.1.2 Pressing c will open a file ~/config/comment/test appending a current 

date stamp. This is convenient for keeping notes 

1.1.3 Pressing t will create a backup of root work directory named with time-

stamp. Some rules for inclusion / exclusion of files are already defined in the 

files backup.sh and exclude.txt which can be modified according to the 

requirement. 

1.1.4 Pressing s will will open a dummy job script and upon closing this job 

will submitted  to the scheduler. 

1.1.5 Pressing j will show the job statuses. 

1.1.6 intel compiler version 12.1.7.256 and bullxmpi version 1.1.8.1 will be 

available 

2.14 If the screen session is disconnected due to some reason the process running 

under screen will not die. The processes running under screen can again be 

accessed by doing step 11 above. 

 

For actual work the configuration script ~/config/test should be given a relevant name. The 

configuration script's relevant portions should be modified to suit the work requirement. All 

the directory structures will be created by the configuration script itself but other work 

specific script files, e.g., backup.sh, run.sh etc.  have to be manually copied or created. This is 
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done only once. All the frequently used command sequences can be easily defined this way. 

This comes very handy while working. One need not have to think about loading correct 

modules / libraries / binaries in each terminal window as they are opened with correct 

settings. Also different configuration files can be created for trying different things 

simultaneously. In porting work often it is needed to try different compilers. So for each 

compiler one configuration file can be created. Both the configurations can be run 

simultaneously. Moreover if this configuration is moved to another system then the relevant 

portions in the configuration file can be modified to suit that system. After launching the 

configuration file in the new system it will give similar environment as the old system. 

 

 

Compiling EC-EARTH  on Curie 

 

We describe below the steps of EC-EARTH compilation: 

 

1. The configuration file used for compiling / running the hres version of EC-Earth is called 

~/config/ecearth_hres.(Specific configuration files are available on request to the authors). 

The compiler, mkl, mpi and other libraries needed for the compilation are defined here. 

2. The important thing in the EC-EARTH compilation is to set up an appropriate xml file 

with description of system specific settings for package paths, compilers, flags, libaries 

etc. This file is  ~/config/scripts/ecearth_hres/curie.xml. In this file paths for blas, netcdf 

etc. are specified in accordance with the modules that are defined in ~/config/ecearth_hres 

3. Start the configuration by running   

$~/config/ecearth_hres 

4. Copy  IFS, NEMO and OASIS  source code and other related scripts in the root folder 

defined in the configuration file ~/config/ecearth_hres 

5. In any of the screen windows run clean command by pressing c. The clean command c is 

defined in the configuration file  ~/config/ecearth_hres. This cleans all the previous 

installations if any. 

6. Press m to start make of EC-EARTH. This first opens a compilation script 

~/config/scripts/ecearth_hres/build.sh. Here one can choose which part of the ec-earth to 

compile. Upon closing file the actual compilation will start. As the compiler, netcdf, blas 

and mpi libraries are already preloaded in the environment it is not needed to load them 

any more. 

 

 

Running high resolution EC-EARTH 

EC-EARTH compilation  produces multiple binaries, one each for NEMO, OASIS and IFS. 

The bullxmpi that is available on curie is capable of launching MPMD runs.  Moreover an 

accurate placement of binaries is important for better performance.   

 

EC-EARTH run requires a large number of input files. The input files are namelist files or 

data files. The namelist type files are input files describing different parameter values which 

control the flow of run. The data files generally contain initial / boundary / restart values 

obtained from some previous runs or from some other experiments. The data files are stored 

in a common place and accessed from there. 

 



    

 

 Status: Final  

This document is produced under the EC contract 228203. 
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General 

Assembly 

41 

The EC-EARTH run is started by a run script which is given to the scheduler. In our porting / 

scaling experiments  we need to do a large number of test runs. We try to do it in a way so that 

we can analyze the timing results in systematic way.  

 

We do all our work under the ecearth_hres configuration which is launched by the script 

~/config/ecearth_hres. Under this configuration to submit a job one needs to press s. The 

command s is defined in the configuration file ~/config/ecearth_hres. This command executes 

the following steps sequentially: 

 open a file called ~/config/scripts/ecearth_hres/wr.sh. In this file the cpu cores 

required for  OASIS, IFS & NEMO are specified. 

 Next the file  called ~/config/scripts/ecearth_hres/run.sh is opened. In this script all the 

necessary steps for preparing a run, e.g., copying data creating namelist files based on 

run parameters etc are given. 

 Based on the parameters provided in the above 2 steps a final runscript is 

automatically generated which is submitted to the scheduler.  

 

 

As EC-EARTH is a multi binary run exact specification of binary – rank – node map is 

important for optimized run.  For optimized run each component runs on sepecific group of 

nodes. Also due to the specific requirement of the EC-EARTH  OASIS should get the 0 -  

(oas_numproc -1) ranks where oas_numproc is the #of OASIS procs. For bullx MPI 

implementation this is achieved by creating an appfile and then giving the appfile to mpirun, 

e.g.: 

 

mpirun -f appfile.  

 

A typical appfile looks like : 

 

-hostfile oas_nodes -np 10 -x LD_LIBRARY_PATH -x OASIS3 -x OASIS3DEBUGLEVEL  

-x LOCAL_DEFINITION_TEMPLATES  oasis3.MPI1.x 

-hostfile ifs_nodes -np 512 -x LD_LIBRARY_PATH -x DR_HOOK_IGNORE_SIGNALS -x 

OASIS3 -x OASIS3DEBUGLEVEL  -x LOCAL_DEFINITION_TEMPLATES  ifsmaster-

eexcon -v ecmwf -e HRES 

-hostfile nem_nodes -np 320 -x LD_LIBRARY_PATH -x   opa-eexcon 

 

 

In the above appfile example OASIS runs on 10 cpu cores, IFS runs on 512 cpu cores and 

NEMO runs on 320 cpu cores. OASIS, IFS and NEMO  runs on nodes specified in files 

oas_nodes, ifs_nodes and nem_nodes respectively.  The appfile and the nodelist files   

oas_nodes, ifs_nodes and nem_nodes is generated dynamically for every run based on the 

parameters specified in the step 1 above.   

 

 

 

Scaling of High resolution EC-EARTH on Curie 

The scaling of EC-EARTH run depends on choice of input parameters especially the coupling 

frequency, i/o frequency etc. We have chosen following parameters for our runs : 
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cpl freq = 3 hrs 

run length = 48 hrs 

ifs time step = 720 s 

Frequency of history write ups = 30 ifs time steps 

Frequency of spectral diagnostics  = 5 time steps 

 

nemo time step=1200 s 

lim time step=3600 s 

nemo frequency of write in the output file = 72 nemo time step 

   

In a 48 hour run we have all the significant steps repeated a number of times. So although the 

total runtime is small it is indicative of scaling behaviour. The results of our runs are shown in 

Table 2 and Figure 1 and Figure 2. In figures 1 & 2 we have shown the normalized  run times. 

 

Table 2  

# MPI processes 
# step 

average time/step (s)  

only comp  

steps 

only io  

steps 

all  

steps Total NEMO IFS OASIS 

394 256 128 10 240 6.61 15.21 8.30 

650 256 384 10 240 2.55 5.92 3.20 

778 256 512 10 240 2.03 4.76 2.55 

906 256 640 10 240 1.72 4.05 2.15 

1034 256 768 10 240 1.53 3.54 1.90 

1162 256 896 10 240 1.40 3.24 1.74 

1290 256 1024 10 240 
1.28 

2.95 1.59 

1418 256 1152 10 240 1.17 2.68 1.44 

1546 256 1280 10 240 1.09 2.53 1.35 

1610 320 1280 10 240 1.11 2.62 1.38 

1866 320 1536 10 240 1.02 2.62 1.31 

2634 320 2304 10 240 0.83 2.86 1.20 

3402 320 3072 10 240 0.81 2.87 1.21 

3482 400 3072 10 240 0.81 2.66 1.17 
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Figure 1 : Scaling of high resolution ec-earth 

 

 

 

Figure 2 : efficiency of high resolution ec-earth scaling 

 

Discussion 

 

We have run high resolution EC-EARTH up to 3500 MPI processes. At this scale the 
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efficiency is ~50% of the most efficient run. The most efficient run is obtained at ~1034 MPI 

processes. When EC-EARTH is run with less than 1034 MPI processes the efficiency is lower. 

This is because for less than 1034 processes NEMO processes finish earlier and wait for IFS 

processes.  

 

Some time steps have only computation. Few steps additionally have i/o. These steps are 

significantly slower. We have shown in Table 2 the average time of only computational steps, 

i/o steps, and combined i/o and computational steps. This gives us an idea about which steps 

are bottleneck in the overall scaling. The i/o steps are 2 – 3 times more expensive  than 

computational steps. In our experiment every 30
th

 time step (every 6
th

 hour) is i/o step. Actual 

impact of the i/o steps will depend on the i/o frequency for a particular experiment. Also the 

i/o file-system used for our experiment is lustre parallel file-system. Other slower file-systems 

can make i/o even slower. Another aspect related to i/o is some i/o steps are much more 

slower than other i/o steps. This is probably because of load on file-system from other 

programs.  However on Curie the scaling of i/o steps are consistent with the computational 

steps. We have analyzed the file access pattern of IFS. This shows that few small files are 

repeatedly opened and read. These files are of few kilo-byte size and can be easily read once 

and kept in some variable for later accesses. This could improve the file i/o considerably. 

However as IFS is a complex code we have not tried to do the code change ourselves and 

would expect that developers of the code would implement such features in future versions of 

the IFS code. 

 

Hybrid MPI-OpenMP EC-EARTH run 

The coupled EC-EARTH code is generally run in MPI only mode. The coupled EC-EARTH 

has three components namely IFS, NEMO and OASIS respectively for atmosphere, ocean and 

coupling.  While NEMO and OASIS codes are MPI only, IFS code has built in support for 

OpenMP along with MPI. Standalone IFS can be run in hybrid OmpenMP + MPI mode. There 

can be various advantages of hybrid runs compared to MPI only runs, e.g., less memory 

consumption, better scaling etc.  This can be particularly beneficial for very wide runs. 

However it was not clear whether in coupled setting IFS can be run in hybrid mode. In the last 

part of our ISENES – JRA2 work we have tried successfully to run coupled EC-EARTH in 

hybrid OpenMP – MPI mode. 

Compilation and running 

For our tests we took the recent version of EC-EARTH, revision no. 1117. The compilation of 

the code was done following standard EC-EARTH compilation procedure. We use Intel 

compiler v-12.1.4 and Intel MPI v-4.0.3.008. We add extra compiler / linker flag “-openmp” 

for the OpenMP compilation. For OASIS and NEMO “-openmp” flag has no impact while for 

IFS it is compiled with OpenMP. 

Running of the coupled EC-EARTH with one part (IFS) in hybrid mode is bit challenging. 

For a normal MPI program is easy to set number of threads for the entire run to a desired 

value by setting the environment variable OMP_NUM_THREADS. A typical example for this 

is: 

export OMP_NUM_THRAEDS=2 

mpirun -np 2 exe1: -np 2 exe2: -np 2 exe3 

In this example of multi-binary run each of exe1, exe2 and exe3 will run on two MPI ranks 

each, with each rank spawning two threads. This will not work for EC-EARTH. So we have 

“embedded”  export OMP_NUM_THRAEDS=value inside ifs. To do this we move IFS 

binary called ifs to something called ifs.orig. Then we create an executable  shell script called 
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ifs which contains: 

if [ -n "$IFS_NUM_THREADS" ]; then  

  export OMP_NUM_THREADS="$IFS_NUM_THREADS"  

  export KMP_STACKSIZE=500m  

  eval ifs.orig "$@"  

fi  

As can be seen above the ifs script sets the  OMP_NUM_THREADS and  

KMP_STACKSIZE and then calls the original ifs binary. With this setup the EC-EARTH 

invocation looks like 

export IFS_NUM_THREADS=2 

export OMP_NUM_THREADS=1 

mpirun -n n1 oasis : -n n2 ifs -v ecmwf -e ECE3 : -n n3 nemo 

As the  IFS_NUM_THREADS is set to 2 the IFS binary, ifs.orig will spawn two threads per 

rank while nemo and oasis binaries will be single threaded. 

Results and discussions 

For our experiments we take NEMO ORCA1L46_LIM3 configuration, IFS grid  T255L91, 

Coupling frequency 3 hrs, IFS time step 2700s, NEMO time step 3600 s, LIM time step 

3600s. Total run length is 30 days. The results are shown in table 1. In column 3 of the Table 1 

we show the average IFS step time excluding the coupling and i/o steps. As we can see IFS  

step times are slightly less for threaded runs. On the other hand the memory consumption is 

nearly 40% less in the threaded run. Total run time is 15% faster for threaded run.   This 

impact may be more prominent for wider runs. In ISENES2 we would like to pursue this 

further.  

 

Table 1 

Coupled EC_EARTH run with NEMO 64 ranks, OASIS 10 ranks 

Type of run Totals IFS  

memory (GB) 

IFS time  

step (s) 

Total run time  

(mm:ss) 

128 IFS ranks,  

1 thread each 

110 1.02 22:17 

64 IFS ranks,  

2 threads each 

76 0.9 19:27 

 

EC-CONF: A New Approach for Build and Run Configuration of EC-Earth 

Contributors: Uwe Fladrich, SMHI 

Software configuration can be a cumbersome task, particularly when it comes to complex 

systems with many components, different processing stages, and numerous files to be 

considered. Whenever more than a few configuration parameters, files and syntaxes are 

involved, or as soon as the configuration is to be done frequently, the process is error prone, 

too. Consistency and reproducibility are not easily achieved and documentation of a certain 

configuration is usually not included in the process. 

The ec-conf tool is developed to aid the process of software configuration and to mitigate the 

problems just mentioned. As such, ec-conf is designed for the integration into the building and 

running cycle of a complex software system. Although ec-conf is being developed in the 

context of the coupled climate model EC-EarthÂ 3, it is not, per se, dependent on this 

software. 
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Configuration is needed, for example, when the software is built (i.e. compiled and linked) or 

when it is run in the context of a certain computing experiment. The configuration has to be 

redone whenever relevant aspects â€“ such   as the computing platform, user environment, or 

experiment settings â€“ change. 

The fundamental principle behind ec-conf is that the process of software configuration 

implies the modification of configuration files according to configuration parameters. 

Configuration files are assumed to be text files and configuration parameters comprise a name 

and a value. The configuration parameter value is to be adapted according to the situation that 

the software is to be configured for. 

That is, ec-conf creates configuration files by modifying configuration parameters according 

to their required values. This is achieved by reading the configuration parameters from an 

XML data base file and creating the configuration files with the help of templates. In order to 

control this process, ec-conf provides both a command line interface and a graphical user 

interface (GUI). Both interfaces can be used interchangeably, although they provide slightly 

different levels of control and comfort. 

The main advantage of using ec-conf lies in the â€œone place, one syntaxâ€• principle, 

which implies that configuration is confined to just one file, where all configuration 

parameters are condensed, and, consequently, to one syntax. This principle holds regardless of 

the number of components and the number of configuration files and file types that are part of 

the software system. 

Ec-conf has been implemented in Python, which should ensure widespread portability. Care 

has been taken to minimise the number of Python modules needed, although programming 

convenience has not been overly compromised. The ec-conf GUI makes use of Tkinter, 

however, the command line interface can be run even when Tkinter is not available. 

In order to utilise ec-conf, a user has to provide an XML data base file that contains all 

configuration parameters and a number of template files that are used to create the 

configuration files. These files are usually created only once upon ec-conf's first use. Later on, 

only limited modifications are needed. 

It is possible (and recommended) to introduce ec-conf gradually, which eases the transition 

from manual configuration. This is done by selecting just one configuration file as a template 

and start with few configuration parameters. Hence, only two files (one XML data base and 

one template) have to be provided for a start. In fact, any configuration file can be used as ec-

conf template file without modification. It means that ec-conf is just passing the content of the 

template file without any changes. However, this implies that ec-conf has to be complemented 

by manual configuration. 

When both the XML data base file and template file(s) are in place, the regular usage of ec-

conf consists of two steps: 

 Adapting the configuration parameter values in the XML data base file, and 

 Running ec-conf in order to create the configuration files. 

The first step is accomplished by editing the XML data base file (which is a text file) with a 

text editor of the user's choice. The second step means running either the command line or 

graphical user interface (GUI) of ec-conf. Alternatively, both steps can be performed in one 

go with the graphical user interface. The GUI can be used instead of the command line 

interface in order to use all functions of ec-conf, in fact, the GUI is preferable for a more 

interactive way of working with ec-conf. 
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NEMO Porting, benchmarking and optimization on Marenostrum 

 

Contributors: I.Epicoco, S.Mocavero, G.Aloisio
 

Euro-Mediterranean Center for Climate Change (CMCC) 

 

Introduction 

NEMO (Nucleus for European Modeling of the Ocean) is a 3-dimensional ocean model used 

for oceanography, climate modelling as well as operational ocean forecasting. It includes 

other sub-component models describing sea-ice and biogeochemistry. Many processes are 

parameterized, e.g. convection and turbulence. It is used by hundreds of institutes all over the 

world. The open-source code consists of 100k lines of code, it is developed in France and UK 

by the NEMO development team and it is fully written in Fortran 90. The MPI paradigm is 

used to parallelize the code. NEMO is based on a finite-difference model with a regular 

domain decomposition and a tripolar grid to prevent singularities. It calculates the 

incompressible Navier-Stokes equations on a rotating sphere. The prognostic variables are the 

three-dimensional velocity, temperature and salinity and the surface height. To further 

simplify the equations it uses the Boussinesq and hydrostatic approximations, which e.g. 

remove convection. It can use a linear or non- linear equation of state. The top of the ocean is 

implemented as a free surface, which requires the solution of an elliptic equation. For this 

purpose, it uses either a successive over-relaxation or a preconditioned conjugate gradient 

method. Both methods require the calculation of global variables, which incurs a lot of 

communications (both global and with its nearest neighbours) when multiple processors are 

used. The scientific literature reports several performance analyses of NEMO model, using 

different configurations and with several spatial and time resolutions. At the National 

Supercomputer Centre (NSC) the porting, optimization, tuning, scalability test and profiling 

of NEMO model on linux - X86-64 - infiniband clusters, have been performed. ORCA1 

configuration available from NOCS website has been used for scaling/benchmark studies. 

Within the PRACE project, a benchmark activity report on several applications has been 

produced. The NEMO code has been ported and evaluated on several architectures such as the 

IBM Power6 at SARA, the CRAY-XT4, the IBM BlueGene [1].  

Analysis of Scalability 

The analysis of scalability of the parallel code aims at verifying how much it is possible to 

increase the complexity of the problem, in terms of spatial and time resolution, scaling up the 

number of processes. As first step of the analysis we profiled the original NEMO code for 

highlighting possible bottlenecks slowing down the efficiency, when the number of processes 

increases. 

Model Configuration 

The NEMO configuration taken into account is based on the official release (v3.2) with some 

relevant improvements introduced by INGV (Istituto Nazionale di Geofisica e Vulcanologia - 

Italy). Moreover it is tailored on the Mediterranean Basin. The Mediterranean Sea is both too 

complex and too small to be adequately resolved in global-scale climate and ocean-only 

models. To properly address some key processes, it is necessary to adequately represent the 

general circulation of the Mediterranean basin, the fine-scale processes that control it (e.g. 

eddies and deep convection), and the highly variable atmospheric forcing. A high-resolution 

general circulation model of the Mediterranean Sea has been developed in the last 10 years to 

provide operational forecast of the ocean state [2]: the Mediterranean ocean Forecasting 
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System. The physical model is currently based on version v3.2 of NEMO and is configured on 

a regular grid over the Mediterranean basin plus a closed Atlantic Box. Horizontal resolution 

is 1/16 x 1/16 degrees with 72 vertical Z-levels. The model is forced with meteorological data 

that are either read from gridded external datasets or interpolated on line to the model grid. 

The model salinity and temperature fields along the boundary of the Atlantic box are relaxed 

at all depth to external data (open boundary conditions [3]). This is done within an area which 

has an extension of 2° at the west and south boundary and 3° at the northern boundary (in 

order to cover all the area of the Gulf of Biscay). This configuration, even more if coupled 

with biochemical models, poses several computational challenges: 

 High spatial resolution with many grid points and a small numerical time step 

 Presence of open boundaries, which implies that additional data need to be read by 

selected sub-domains 

 Computation of diagnostic output across sub-domains 

 Storage of large amount of data with various time frequencies. 

Profiling 

The research activity has been carried out at the Barcelona Supercomputing Center using the 

MareNostrum cluster. It is one of the most powerful systems within the HPC-Ecosystems in 

Europe. It has a calculation capacity of 94.21 Teraflops. One of the key issues that 

characterize MareNostrum is its orientation to be a general purpose HPC system. The 

computing racks have a total of 10240 processors. Each computing node has 2 processors 

PowerPC 970MP dual core at 2.3 GHz, 8 GB of shared memory and a local SAS disk of 36 

GB. Each node has a network card Myrinet type M3S-PCIXD-2-I for its connection to the 

high-speed interconnection and the two connections to the network Gigabit. The default 

compilers installed are IBM XL C/C++, and IBM XL FORTRAN. There are also available the 

GNU C and FORTRAN compilers. The MareNostrum uses GPFS as high-performance shared 

disk file system that can provide fast, reliable data access from all nodes of the cluster to a 

global file system. Moreover, every node has a local hard drive that can be used as a local 

scratch space to store temporary files during the execution of user’s jobs. All data stored in 

these local hard drives will not be available from the login nodes. The first evaluation was 

focused on establishing how much the computational performance are influenced using the 

GPFS file system or the local disks. The results, showed in figure 1 and analytically reported 

in table 1, highlight that the exploitation of local disks can reduce the wall clock time up to 

40% against using the GPFS file system. The performances of the GPFS are strictly related to 

the actual load of the whole cluster and hence they are very variable during the time. Since the 

local disks are not accessible from the login node, some modifications to the NEMO runscript 

file, used to launch the model, have been performed. 
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Fig. 1 - Execution time on 1day simulation: GPFS vs local disk 

Cores GPFS Local Disk Speedup 

8 2205.86 2071.45 1.065 

16 1112.19 957.17 1.162 

32 614.02 519.91 1.181 

48 474.65 402.41 1.18 

64 401.29 328.58 1.221 

80 407.67 272.55 1.496 

96 365.64 260.42 1.404 

112 331.35 227.85 1.454 

128 279.75 218.35 1.281 

Table 1 - Execution time on 1day simulation: GPFS vs local disk 

The NEMO code supports 2D domain decomposition. The size and the shape of the sub 

domain assigned to each parallel process impact on the overall performance. The second step 

of performance analysis has been focused on the impact of the domain decomposition on the 

wall clock time. The analysis of the scalability has been performed taking into account a 1D 

decomposition (both horizontal and vertical) and a 2D decomposition. The 2D decomposition 

has been chosen such that the local sub domain would have a square shape. The experimental 

results demonstrate that the best performance is achieved using a 2D decomposition as 

showed in figure 2. 
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Fig. 2 - Execution time on 1day simulation w.r.t. domain decomposition. 

The overall evaluation of the legacy code has been carried out in order to analyze the parallel 

behaviour of the application. In particular at high level we have taken into account two 

metrics: the parallel scalability and the parallel efficiency. Both metrics provide an overall 

evaluation on how much the code is well parallelized. These measures can guide further 

analysis focused on specific aspects of the code. It is worth noting here that the approach 

followed for the analysis started considering the application as a black box. The complexity of 

the code makes quite unfeasible the definition of a reliable theoretical performance model. 

The approach we followed was based on an experimental approach. The parallel efficiency 

and speed-up, respectively reported in table 2 and figure 3, have been evaluated taking as 

reference time the wall clock time of the application with 12 processes. Due to the amount (8 

GB) of main memory per node available on MareNostrum, the execution of the sequential 

version of the model is prohibitive requiring at least 20 GB with this configuration. The 

experimental results showed a limit of the scalability up to about 192 cores. 

 
Fig. 3 - Speed-up of original version. Speed up is relative to the performance of that on 12 

processes (due to memory requirements). 

Decomposition Cores 1day sim (s) Eff. (%) SYPD 1Y sim (h) 
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6x2 12 1302.54 100 0.18 132.06 

16x4 64 248.71 98.2 0.95 25.22 

20x6 120 170.37 76.46 1.39 17.27 

128x2 256 109.57 55.72 2.16 11.11 

32x9 288 124.84 43.47 1.9 12.66 

34x10 340 112.28 40.94 2.11 11.38 

128x3 384 99.87 40.76 2.37 10.13 

36x11 396 111.08 35.53 2.13 11.26 

128x4 512 110.57 27.61 2.14 11.21 

Table 2 - Original code performance. Efficiency is relative to the performance of that on 12 

processes (due to memory requirements). 

In order to perform a deeper investigation on the motivation for the poor efficiency, we have 

analyzed the scalability of each routine in the code. For identifying those routines with a 

relevant computational time we used the gprof utility and the Paraver [4] tool with dynamic 

instrumentation of the code. Figure 4 shows a paraver snapshot of a very short run (just 3 time 

steps). Different colours represent different states of the run: blue for computation, red for I/O 

operations, orange and pink respectively for global and point-to-point communications. 

opa_init initializes the parallel environment and synchronizes processes. Its execution time is 

negligible when the number of steps is high. The first and the last time steps perform some IO 

operation, respectively reading input and restart and writing output and restart. 

 
Fig 4 - Paraver trace for a NEMO run. 

The analysis has been restricted to a single time step: we chose a "general" time step, 

considering as "general" those time steps with operations occurring every time. Indeed some 

"occasional" operations like reading the open boundaries values, or storing the state variable 

values, occur only for some particular time step. We have identified about 36 routine of 

interest and we have evaluated their scalability running the application with 8, 16, 36, 72 and 

128 processes. For each routine we have taken into consideration both computing and 

communication time. The results of the analysis are reported in figure 5. 
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Fig. 5 - NEMO functions scalability: computation, communication & total time. 

The analysis immediately highlighted the obc_rad routine (in charge of calculate the radiative 

velocity on the open boundaries), the dyn_spg (in charge to solve the elliptic equation for the 

barotropic function) and the tra_adv (in charge to evaluate the advection transport of the 

fields), as those routines to be deeper investigated. 
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Optimization 

The optimization phase aimed at redesign critical part of the NEMO code taking into account 

the following main aspects: 

 Exploitation of the memory hierarchy. A relevant limitation of the performance is 

strictly related to redundant memory accesses or to a high level of cache miss ratio 

 The I/O operations are one of the critical factors that limit the performance and the 

scalability of a climate model. The I/O pattern implemented in NEMO can be 

classified as: read once and write periodically 

 The communication among parallel processes plays a crucial role on the performance 

of a parallel application. Several good practices can be followed in order to reduce the 

communication overhead, such as modifying the communication pattern in order to 

overlap communication and computation; joining several short messages sent with 

several MPI calls in a bigger one sent once. 

The analysis of the scalability showed a limit at 192 cores due to a high level of 

communication overhead. The bottleneck has been identified in the function responsible for 

the evaluation of the open boundaries conditions. After the evaluation of the open boundaries, 

the processes exchange the overlapped values over the boundaries with their neighbours. The 

function take more than 60% of its time in communication. 

OBC_RAD Routine 

As already stated before, the NEMO configuration we used for our analysis is limited to an 

oceanic region and namely the Mediterranean basin, which communicates with the rest of the 

global ocean through "open boundaries". An open boundary is a computational border where 

the aim of the calculations is to allow the perturbations generated inside the computational 

domain to leave it without deterioration of the inner model solution. However, an open 

boundary has also to let information from the outer ocean enter the model and should support 

inflow and outflow conditions. The open boundary package OBC is the first open boundary 

option developed in NEMO. It allows the user to: 

 Tell the model that a boundary is "open" and not closed by a wall, for example by 

modifying the calculation of the divergence of velocity there 

 Impose values of tracers and velocities at that boundary (values which may be taken 

from a climatology): this is the "fixed OBC" option 

 Calculate boundary values by a sophisticated algorithm combining radiation and 

relaxation ("radiative OBC" option). 

The Open Boundaries calculation is performed within the obc_rad routine. The current 

implementation of the obc_rad function swaps arrays to calculate radiative phase speeds at 

the open boundaries and calculates those phase speeds if the open boundaries are not fixed. In 

case of fixed open boundaries the procedure does nothing. In particular the following 

algorithmic steps are performed: (i) each MPI process calculates the radiative velocities on its 

subdomain starting with zonal velocity field; (ii) the data on the border of the local sub-

domain are exchanged among MPI processes with a cross communication pattern; (iii) repeat 

from step one for the following fields: tangential velocity, temperature and salinity. In the 

worst case, when the whole domain has 4 open boundaries (east, west, north and south) each 

MPI process performs 16 exchanges (4 fields exchanges multiplied by 4 open boundaries). 

For each field, an MPI process sends and receives the data to/from 4 neighbours. Even though 

the exchanged fields are 3D arrays, the current implementation of the communication routine 
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(named mppobc) calls iteratively a library routine for sending/receiving 2D arrays. Figure 6 

shows the original communication pattern among processes. 

 
Fig. 6 - Communication pattern during the open boundaries evaluation: before optimization 

all processes were involved in the communication. 

OBC_RAD Optimization 

The analysis of the scalability showed that the communication overhead within the obc_rad 

function reaches a ratio of 74% running the model with 8 cores. The main limits to the 

scalability have been then identified in a heavy use of communication among processes. With 

a deeper analysis of the obc_rad algorithm we noticed that several calls to the MPI send/MPI 

recv were redundant and hence they could have been removed. Figure 7 illustrates the 

essential communications needed for exchanging the useful data on the boundaries. 

 
Fig. 7 - Communication pattern during the open boundaries evaluation: after optimization 

only the processes on the boundaries were involved in communication and they exchange 

only the data on the boundary. 

The optimization reduced the communication time through the following actions: the 

processes on the borders are the only processes involved in the communication; the data 

exchanged between neighbours are only the data on the boundary; the data along the vertical 

levels are "packed" and sent with only one communication invocation. Figure 8 shows how 

communications (yellow lines) within the obc_rad are drastically reduced after the 
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optimization. 

The analysis of the scalability of NEMO using the optimized version of the obc_rad routine 

has been performed starting from a configuration on 12 cores with a decomposition 6x2 up to 

512 cores (128x4) on 1-day simulation. As reported in table 3, the minimum wallclock time 

happens on 396 cores with a decomposition 36x11. Efficiency increases compared with the 

original version, as well as the parallel speedup (figure 9), and the obc_rad execution time 

was reduced of about 33.81%. 

 
Fig. 8 - Communications within OBCRAD before and after the optimization. 

 
Fig 9 - Speed-up: OBCRAD optimized vs original version. 

Decomp. Cores 
Original 

exec. time (s) 

Original 

efficiency 

(%) 

OBCRAD 

optimized 

exec. time (s) 

OBCRAD 

optimized 

efficiency 

(%) 

6x2 12 1302.54 100 1281.28 100 

12x3 36 385.32 112.68 382.47 111.67 

14x4 56 274.22 101.79 244.73 112.19 

16x4 64 248.71 98.2 226.17 106.22 

16x5 80 205 95.31 171.54 112.04 

20x6 120 170.37 76.46 127.54 100.46 

24x7 168 151.45 61.43 95.98 95.35 

28x8 224 136.78 51.02 84.95 80.8 

128x2 256 109.57 55.72 88.7 67.71 

32x9 288 124.84 43.47 87.24 61.2 
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34x10 340 112.28 40.94 81.26 55.65 

36x11 396 111.08 35.53 73.53 52.8 

128x4 512 110.57 27.61 75.02 40.03 

Table 3 - OBCRAD optimized vs original version: performance analysis. 

SOL_SOR Routine 

After the obc_rad optimization, a new detailed analysis of scalability on all of the above 

mentioned 36 functions has been performed. It allowed identifying the SOR solver routine 

(called by the dyn_spg function) as the most expensive from the communication point of 

view. The function implements the Red-Black Successive-Over-Relaxation method [5], an 

iterative search algorithm used for solving the elliptical equation for the barotropic stream 

function. The algorithm iterates until convergence for a maximum number of iterations. The 

high frequency of exchanging data within this function increases the total number of 

communications.  

At each iteration, the generic process computes the black points inside the area, updates the 

black points on the local boundaries exchanging values with neighbours, computes red points 

inside and finally updates red points on the local boundaries (always exchanging with 

neighbours). Each process exchanges data with 4 (at north, south, east and west) of its 8 

neighbours: the order of data transfer guarantees data reliability. Communications are very 

frequent and the total number of exchanges is given by the number of iteration multiplied by 2 

(one for red points, and one for black) by 4 neighbours. The sol_sor function, implementing 

the SOR solver method, calls the lbc_lnk_2d e function for exchanging data among processes. 

Both the functions are characterized by two components: a running component respectively 

computing and buffering data before sending and after receiving and a communication one 

(within the sol_sor there is a group communication during the convergence test). 

SOL_SOR Optimization 

The algorithm of sol_sor suggests a possibility to improve performance, especially when the 

number of processes increases. At each iteration, communication and computation could be 

overlapped. The algorithm can be modified as follows: (i) computing of data on the local 

boundaries, (ii) communication of computed region overlapped with computation of the inner 

domain. This solution has been implemented, but it did not give expected results. The original 

version uses blocking communications during the exchange. The modified version was 

implemented by the use of non-blocking communications to allow message transfer to be 

overlapped with computation. As result, not only running, but also communication time was 

increased after the code modification. Changing communication algorithm, the computation 

within sol_sor has been split in two steps. This generated an access to non-contiguous 

memory locations with a consequent increase of L1 cache misses. More cache misses means 

more instructions and then more computing time. Moreover, the introduction of non-blocking 

communication does not guarantee the order of data exchanging among processes, so that a 

generic process needs to communicate not only with the north, south, east and west processes, 

but also with the diagonal ones, doubling the number of communications. Since 

communication and computation are overlapped, the increase of communications number 

should not increase the execution time. However, the behaviour of communications on 

MareNostrum has not been the expected one. Using the Dimemas [6] tool, we have 

theoretically evaluated the new algorithm on an ideal architecture with the nominal values 

declared for MareNostrum (figure 10). Even though from a theoretical point of view the new 
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algorithm performed better than the old one, the experimental results did not confirm the 

expectations. One of the possible could be the implementation of the non-blocking 

communication within the installed MPI library. Moreover it is worth noting here that with a 

high level of parallelism, the sol_sor function has a fine computational granularity, so that the 

execution time feels the effects of several causes not directly related to the application but 

also to the system or to the tracking tools and it is very difficult to estimate its behaviour. In 

these cases the only thing is to consider the experimental results, which on MareNostrum 

highlight better performances of the original version. 

 
Fig. 10 - Analysis by Dimemas: (a) real behavior of communications on MareNostrum, (b) 

expected behavior of communications on MareNostrum. 

Parallelization Improvement 

Many NEMO routines are characterized by operations performed on a 3D domain, along jpi, 

jpj and jpk as showed in figure 11. The MPI parallelization exploits the domain 

decomposition on 2 dimensions (along jpi and jpj). In order to reduce the computational time, 

a hybrid parallel approach could be introduced. An additional level of parallelization, using 

the OpenMP shared-memory paradigm, could work on vertical levels, which are fixed for our 

NEMO configuration to 72. 

 
Fig 11 - OpenMP parallelization applied to 3D domain decomposition. 
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Before modifying the code, an estimation of the percentage of the application, which should 

benefit from the use of OpenMP is needed. Using the gprof utility the percentage of time 

spent by functions called by the step routine (simulating a time step) and containing loops on 

levels without dependences, has been computed. It was about the 83% of the total 

computational time. OpenMP parallelization has been introduced within all of these functions. 

Fixing the number of allocated cores, we can execute the application using only MPI (in this 

case the number of MPI processes will be equal to the allocated cores) or using MPI/OpenMP 

parallelization (in this case, in order to better exploit the MareNostrum architecture, we 

created 4 OpenMP thread for each MPI process). A Paraver analysis of the duration of the 

functions called in the main loop over the time steps has been performed. Functions execution 

is more balanced among threads using the hybrid version due to the reduced number of 

communications (figure 12 shows how time spent waiting for communication, the white lines, 

has been reduced). 

 
Fig 12 - OpenMP parallelization: (a) communications and (b) routines execution time using 

256 cores for 256 MPI procs, and using 256 cores for 64 MPI procs, each one with 4 threads 

With the OpenMP parallelization, the parallel speed-up improved, as shown in figure 13. The 

benefits derived from the hybrid parallelization can be appreciated when the number of MPI 

processes exceeds 30 and consequently the total threads number exceeds 120. 

Table 4 shows performance results in terms of execution time and efficiency, on 1-day 

simulation, comparing the original code with the version after the optimization of the obc_rad 

routine and after the introducing of the second level of parallelism. The minimum wallclock 

time happens on 396 cores. Efficiency increases compared with both the original version and 

the obc_rad optimized one; execution time is reduced of about 18%. 
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Fig. 13 - Speed-up: OpenMP parallelized vs previous versions. 

MPI 

Decomp. 
Cores 

Original 

exec. 

time (s) 

Original 

efficiency 

(%) 

OBCRAD 

optimized 

exec. time 

(s) 

OBCRAD 

optimized 

efficiency 

(%) 

OpenMP 

exec. 

time (s) 

OpenMP 

efficiency 

(%) 

3x1 12 1302.54 100 1281.28 100 1767.3 100 

8x2 64 248.71 98.2 226.17 106.22 346.75 95.57 

10x3 120 170.37 76.46 127.54 100.46 156.48 112.94 

16x4 256 109.57 55.72 88.7 67.71 75.89 80.46 

18x4 288 124.84 43.47 87.24 61.2 68.57 79.15 

17x5 340 112.28 40.94 81.26 55.65 60.34 76.19 

33x3 396 111.08 35.53 73.53 52.8 60.29 65.47 

Table 4 - OpenMP parallelized vs previous versions: performance analysis. 

PELAGOS025 

As further development, a new configuration of NEMO has been analyzed. We analyzed the 

parallel scalability of the NEMO global oceanic model with a configuration of 0.25 degree, 

coupled with the BFM biogeochemical flux model (Vichi et al., 2007 - http://bfm.cmcc.it). 

The oceanic model has an horizontal resolution of 0.25 degree, that corresponds to a 

1442x1021 grid points, and 50 vertical levels; the biogeochemical model uses the same 

resolution and grid of the oceanic model and it takes in consideration 57 state variables 

(tracers). 

An analysis of scalability of the coupled model has been performed on the Calypso parallel 

cluster architecture at the CMCC (Euromediterranean Center on Climate Change, Italy) 

Supercomputing Center. Each node of the cluster is equipped with 16 Power6 CPUs dual 

core, for a total of 32 cores and 128GB of total memory per node (4GB per core). The 

architecture supports the Simultaneous Multi Threading, which allow the parallel execution of 

two threads on the same core. The NEMO model, characterized by an intensive use of the 

memory, is not able to exploit SMT, so 32 cores per node have been used. 

Due to the memory requirements, the model ORCA025-BFM has been executed on a 

minimum of 5 nodes up to the maximum available nodes (21). 
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The execution time is strictly related to the balance of the ocean points among the parallel 

processes. Fixed the number of processes, we used the mpp_opt tools (available within the 

NEMO package) to find the best domain decomposition excluding those subdomains with 

only land points. The optimal decomposition has to be defined in order to optimize the load 

balance. The table 5 reports the domain decomposition used for each parallel configuration. 

The Balance column reports the ratio between the average number of ocean points and the 

maximum number of ocean points. A perfect balance is given when the ratio is 1. 

 

MPI Decomp. 

(jpni x jpnj) 

Cores 

(jpnij) 

Number 

of nodes 

Num of Ocean Points for 

the heaviest process 
Balance  

6 x 29 160 5  413020 0.5273 

6 x 35 192 6  345022 0.5319 

50 x 5 224 7  293849 0.5361 

8 x 37 256 8  253271 0.5464 

9 x 38 288 9  226171 0.5461 

26 x 15 320 10  195034 0.5587 

57 x 7 352 11  196725 0.5168 

28 x 17 384 12  162218 0.5634 

55 x 9 416 13  154225 0.5585 

18 x 31 448 14  139499 0.5687 

54 x 11 480 15  131504 0.5687 

68 x 9 512 16  127060 0.5602 

18 x 38 544 17  115914 0.5710 

23 x 32 576 18  107242 0.5805 

48 x 16 608 19  102615 0.5764 

25 x 33 640 20  96547 0.5826 

19 x 45 672 21  95040 0.5716 

Table 5 – Domain decomposition used to analyse the scalability for the PELAGOS025 model. 

Each experiment, with a different decomposition, has been repeated 3 times with a total of 51 

run. For each run we simulated 1 day with a time discretization of 1080 seconds per time step 

(a total of 80 time steps for each run). The table 6 reports the wallclock time  

Cores Wallclock (secs) 

160 6220.90 

192 5214.50 

244 4589.58 

256 3773.03 

288 3275.46 

320 2949.56 

352 3100.42 

384 2437.08 

416 2445.70 

448 2068.01 

480 2109.46 

512 2051.22 

544 1688.38 

576 1574.47 

608 1620.28 
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640 1432.51 

672 1379.29 

Table 6 –Wall clock time for all of the configurations. 

The speedup and the wallclock time functions are reported in the figure 14.  

 
Fig. 14 – Wall clock time and speedup function. 

The results report a super-linearity for several configurations. This behaviour is due to the 

different distribution of ocean points among processes when the level of parallelism increases. 

The reference configuration (with 160 cores) has worst balancing with respect to the others 

configuration. The figure 15 shows how the number of the ocean points for the heaviest 

process changes for different configurations. The red line reports the ideal distribution 

referred to the ocean points of the 160 cores configuration. Since the computing time is 

proportional to the number of ocean points, if, for a given configuration, the real ocean points 

are less than the ideal distribution, also the computing time will be less than the ideal and this 

produces a super-linear point in the speedup graph. 

 
Fig. 15 – Number of ocean points for the heaviest process. 

Finally, we have analyzed the code profiling and the parallel scalability for the most 

computing intensive routines. In table 7 we have: the elapsed time for the most computing 

intensive routines; the ratio with respect to the execution time of the whole model; the 

speedup and the efficiency. 
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Table 7 – Routines profiling. 

The most computing intensive routines are the trc_stp that represents the entry routine for the 

BFM model and the tra_adv_muscl that implements the MUSCL schema for the tracer’s 

advection. Figure 16 shows the wall-clock time and speedup for this 7 routines. The speedup 

is super-linear due to the previously described motivation. In Figure 7, the computational 

weight of these 7 routines is reported and how it changes when the level of parallelism 

increases. 

 

 
Fig. 16 – Routine’s scalability: wall clock time and speedup. 
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Time(
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trc_stp 

2856.

15 45.34 

1681.

66 44.38 

1032.

85 42.43 

685.4

1 39.51 

531.8

1 38.17 

tra_adv_

muscl 

2244.

73 36.10 

1355.

00 35.76 

849.5

1 34.90 

585.5

2 33.75 

454.4

8 32.62 

tra_ldf_i

so 

446.8

2 7.19 

260.2

3 6.87 

165.2

8 6.79 

113.0

9 6.52 92.01 6.60 

tra_sbc 

234.2

7 3.17 

144.7

4 3.82 

108.2

1 4.45 73.30 4.23 55.73 4.00 

zps_hde 

233.5

0 3.56 97.45 2.57 49.95 2.05 38.33 2.21 37.98 2.73 

tra_zdf_

imp 

132.9

9 2.14 76.91 2.03 49.15 2.02 33.35 1.92 27.02 1.94 

tra_adv 79.82 1.28 40.35 1.06 18.89 0.78 21.36 1.23 15.36 1.10 
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Fig. 17 – Computational weight of the most computing intensive routines. 
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Porting and performance analysis of Cosmos-Millennium on Cray-XT5 

Author: J. Silen, FMI 

Introduction 

Cosmos-Millennium 

The model used is an application of the ECHAM5/MPIOM, version 1.2.0.1. The model is run 

in the complete "asob" mode on the institutes CrayFMI, Cray-XT5. It has also been run on 

CSC's similar machines and was successfully ported to SGI-Altix-4700 systems at LRZ, the 

Leibniz-Rechenzentrum in Bavaria, Germany, but no production runs were performed on 

either of them, due to a high load on their batch systems. The model consists of  

1. Coupler: The coupler software is OASIS3, which manages the distribution of data between 

two or more interacting submodels. Here we used an atmosphere model, ECHAM5, together 

with a land and vegetation module, JSBACH and a model for aerosols, HAM, which were 

coupled to an ocean model, MPI-OM, supporting biogeochemistry through HAMOCC. 

2. Atmosphere model: ECHAM5, supporting carbon cycle, JSBACH, and aerosols, HAM. 

Resolution 96x48, i.e. the T31L19 configuration. 

3. Ocean model: The ocean is the MPI-OM, biogeochemistry HAMOCC. Resolution 120x96. 

4. Atmospheric chemistry model: HAM, aerosols 

5. Land and vegetation module: JSBACH, carbon cycle. 

 

FMI Supercomputer Cray-xt5 

 

Objectives 

The main objective of this work is to identify and document the issues related with the 

portability and performance of the Cosmos-Millennium model on the FMI supercomputer. In 

order to meet the standards for future HPC architectures (e.g., within the PRACE 

infrastructure), it is important to understand the current performance of ESMs on state-of-the-

art computing systems.  

Description of execution and evaluation tests 

Porting 

The model is constructed to support the PRACE environment. Compilation and execution is 

controlled by ksh scripts which are assembled by other scripts using the m4 macro asssembler 

and a set of header files defining the compiler, the excecution and the machine environment. 

Once the definitions are done correctly the entire compile-execute cycle runs smoothly. 

Several compilers were tested on multiple platforms. On the Cray machines the PGI compiler 

was most convenient. On the SGI-Altix machines, the Intel compilers were used. 

Execution 

The compile cycle assembles scripts which set up a template for the execution process. The 

template is itself a script which is edited according to preferences and rerun to produce the 

actual jobs to be submitted to the batch processing system. Often the details of the operational 

batch systems differ and result in the need of directly editing also the submittable scripts 

accordingly. Both PBS and LSF batch systems were used. Detailes are provided only for the 

Cray-xt5 operated at the FMI. 
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Platform  

Execution platform  Cray-XT5 

Environment Module system with necessary modules available. 

pgi compiler 

hdf5, netcdf and cdo modules loaded. 

Requirements Module system with necessary modules available. 

ksh - korn shell (ksh93) 

mpi1 - required for parallel execution 

ftn - a fortran compiler that supports an auto-double (or -r8) 

capability. OASIS3 requires Cray pointers.  

netCDF - the netCDF library for I/O  

cdo - for postprocessing integrated into the run-script. 

Libraries Oasis: netcdf 

MPI-OM: netcdf 

Standard Cray environment. 

CPUs Used for each 

component 

12 cores per node 

ECHAM5: 5 nodes. 

OASIS: 1 node 

MPI-OM: 5 nodes 

Submit job 

command 

"qsub xxx.run" to transfer the run script to the machine batch system 

In the script, "aprun -n 1 oasis.x: -n ${nprocatm} echam5 : -n 

${nprococe} mpi-om " starts the parallell execution of the coupled 

code. 

Table 5.1: Summary of requirements and resources needed to run EC-Earth. 
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Optimization 

Cray-xt5 has a convenient module system. If used properly standard compiler environments 

are set up automatically and reasonably well optimized code is produced. The main bottleneck 

is to ensure that the resources allocated to the atmosphere and the ocean models are well 

balanced and do not cause unnecessary waiting. The best performance was achieved by 

allocating slightly larger resources on the ocean model. The cray architecture requires an 

allocation of a complete node (12 cores) to OASIS3 although only one core is used. 

Scalability 

The best performance in wall clock time was achieved for 132 cores or 11 nodes. More cores 

slowed down the runtime performance. Without loss of performance, multiple jobs at the 

T31L19 resolution could be run in parallel. This was used in computing 30 x 45 years of 

forced simulations. All machine resources were used and the job was completed in about 4 

days. The maximum throughput achieved was 43 simulated years/24 hours wall clock time. 

The allocation of resources to each submodel is important as it may influence the total time by 

25%. Table 1. shows an example of allocating 7 nodes (84 cores, 72 cores for models and 12 

cores for coupler) in different geometries to the models.  

Other comments 

During the porting and optimization work, it became obvious that the infrastructure available 

at different computing centers does differ significantly. In particular the job submission 

systems (PBS or LSF), use there own definition of resource allocation and does require 

manual work on the run scripts for the Cosmos-Millennium code. In the case of the 

SGI/Altix-4700 machine, the batch queue turn around complicated the optimization and 

porting work. To a lesser instant this was the case for the Cray-xt5 at CSC, where the 

development work could be made fluently on the front end machines. A challenge was to find 

out certain flags for allocating sufficient resources for the codes. The present work was very 

well supported by the installation of two Cray-xt5's at FMI. This made it possible for one 

month to use the systems during their testing period for this work and having several Cray 

Inc. enginers answering any questions. Thus two MPI related flags were included into the run 

script: 

export MPICH_PTL_UNEX_EVENTS=200000  

export MPICH_UNEX_BUFFER_SIZE=240000000 

Without them, the jobs would start correctly but crash with a complaint of "unsufficient 

resources". 

Summary 

We were successful in porting and running the Cosmos-Millennium model using the coupled 

atmospheric and ocean models. The work was made on 3 platforms, two Cray-xt5's and one 

SGI/Altix-4700. Production runs were made on the former only. The performance shows an 

absolute wall clock minimum at this model resolution around 100 cores and this minimum is 

sensitive to the allocation of resources for computing the atmosphere and the ocean. In this 

setup one extended 1200 year experiment and one 30x45 year experiment has been 

performed. 
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installation of equipment at the FMI. HPC work is magic based on years of experience. 

 

Figure 1: Demonstration of wall clock time as function of cores used on Cray-xt5 at CSC. 

 

ECHAM5 MPIOM TIME (s) 

24 48 181 

36 36 164 

48 24 219 

48 24 207 

Table 1: Allocation of compute cores to ECHAM5 and MPIOM influences wall clock time 

given in [s] for computing a 1 month simulation. FMI Cray-xt5, December 2009. 
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Porting and performance analysis of Echam6 on Cray XT4 

Contributors: Juha Lento, CSC, subcontractor to FMI (juha.lento@csc.fi) 

Introduction 

The study case is Echam6 atmosphere model and the CMIP5 - amip-LR model experiment at 

T63L47 resolution. The benchmark runs were done using CSC's Cray XT4 with AMD 

2.3GHz Opteron processors. Current top of the line Intel Xeon processors deliver roughly 50 

per cent application level speedup per processor core compared to the processors in Cray 

XT4. 

Objectives 

The objective is to study the parallel scalability of Echam6, test the I/0 server scheme 

introduced in Echam6 and to give feedback about the porting of the model. 

Parallel scalability depends strongly on the size of the problem, i.e. the size of the 

computational grid. In this study we keep the size of the computational grid (T63 resolution) 

fixed, i.e. perform a strong scalability test. 

Description of the execution and the evaluation of the tests 

Porting and porting feedback 

The model was compiled using PGI 11.2 compiler suite, with PGI "-fastsse" optimization 

level (except for sym1.f90), and with MPI and OpenMP parallelization. The stepon.f90 

subroutine was modified to output timing information for each iteration step. The compilation 

was done by providing system dependent environment variables at the configure step, and 

then with a simple ‘make’. 

The compilation of Echam6 is relatively easy, compared to the support libraries HDF5 and 

NetCDF, for example. The change that we would propose is to drop the Echam's internal C-

language support library and use Fortran equivalent routines instead, or if not practical, use 

ISO-C binding available in modern Fortran versions instead of the cfortran.h interface. 

Execution 

The set up of the input files turned out to be next to impossible. In principle they are 

available, but to be really sure how to set the model parameters to match certain experiment 

run is not clear. There are shell scripts to achieve that goal, but the only thing sure about the 

shell scripts is that they will not work in a different environment from where they were 

written. The simple solution was to copy the contents of the work directory just prior to the 

execution of the model from the developer's environment to the current test environment. The 

set up of the experiment runs would not have been possible without the expert help from MPI-

M Hamburg. 

The benchmark run is one month simulation starting from the identical initial conditions at the 

start of the CMIP5 AMIP-LR experiment. The test run was repeated with varying the number 

of MPI tasks, OpenMP threads and the number of cores dedicated as I/O servers. 

Results 

The wall clock execution times of the parallel runs as a function of the number of the used 

processor cores for different MPI and OpenMP configurations are presented in table 1. The 

corresponding parallel efficiencies are presented in Table 2. The overall result is that the 

efficiency starts to drop significantly around 100 processor cores, and that OpenMP hybrid 

parallelization has relatively small effect on the scalability for the studied T63 resolution 

experiment. The results would likely be very different for larger resolution experiments with 
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larger computational grids. 

The effect of the separate I/O server tasks (0, 1, 4 and 8 tasks) was studied, but the effect on 

the run times was found to be negligible for this particular experiment. The result is expected, 

as, in the studied experiment, the disk I/O is a minor contribution to run time. 

 

                                                            Processor cores 

Nthreads 4 8 16 32 64 128 256 

1 18173 9156 4737 2453    1304     738     500 

2 - 9947 5065 2643 1388 776 474 

4 - - 5690 2911 1550 848 514 

Table1. Execution times from "time aprun echam6" in seconds as a function of the number of 

the used processor cores for different MPI task and OpenMP thread configurations. 

 

                                                            Processor cores 

Nthreads 4 8 16 32 64 128 256 

1 100 99 96 93 87 77 57 

2 - 91 90 86 82 73 60 

4 - - 80 78 73 67 55 

Table 2. Parallel efficiency (percentage), relative to 4 MPI tasks with single OpenMP thread 

case. 
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Reducing the Sensitivity of the Met Office Unified Model to Rounding Errors 

Contributors: O.R. Darbyshire, A.M. Clayton, Met Office. 

Introduction 

Numerical Weather Prediction (NWP) and Climate Prediction models are computationally 

intensive tasks involving a great many floating-point operations. As such, the results of these 

models are influenced by the nature of floating point arithmetic in a variety of ways. The 

binary system used on the majority of computer architectures is unable to represent floating 

point numbers with complete accuracy and there is some error introduced due to rounding. 

For a 64-bit floating point number on an IEEE 754 compliant system the upper bound of this 

error, often termed machine  epsilon, is 1.11x 10
-16

. Furthermore, the semantics of finite 

precision arithmetic are dissimilar to their exact counterparts and can introduce significant 

error (Knuth, 1981). The situation is further compounded as different architectures and 

compilers may introduce different rounding errors in intrinsic functions and their internal 

representation of floating point numbers. Even the level of compiler optimization can alter the 

results of floating point arithmetic. 

The impact of these errors on the model results can manifest itself in several ways.  Goel and 

Dash, 2007 studied the results of a spectral General Circulation Model (GCM) obtained on 

three different computer architectures and found the difference between the temperature fields 

on two architectures could be as large as 4.5°C. Modifying the format of the initial data given 

to the model from a free format read to  one which gave the same level of accuracy on all 

three platforms greatly reduced the  differences observed between the architectures. Rosinski 

and Williamson, 1997 studied the growth of temperature differences in the NCAR 

Community Climate Model (CCM) version 2 and found the growth to be faster than that 

which could be attributed to turbulent flow. The error growth was attributed to the 

accumulation of rounding errors and the response of discontinuous algorithms in the physical 

parameterizations to the evolving state of the model. 

Rosinski and Williamson, 1997 also set out a framework that can be used to validate the port 

of a model to a new computer architecture. They describe three conditions that must be met: 

 “During the first few times steps differences between the original and ported code   

solutions should be within one or two orders of magnitude of machine rounding.” 

 “During the first few days the growth of a difference between the original and ported 

code solutions shout not exceed the growth of an initial perturbation introduced into 

the lowest-order bits of the original code solution.” 

 “The statistics of a long simulation must be representative of the climate of the model 

as produced by the original code.” 

 

In this work we describe the application of these porting tests to the UK Met Office Unified 

Model (MetUM). Firstly we document the growth of differences in the model due to an initial 

perturbation in the temperature field at the least significant bit. A methodology for reducing 

the sensitivity of the algorithms used in the physical parameterizations to perturbations in the 

initial temperature field is then outlined. Finally, results of the improvements made to the 

algorithmic design of the MetUM are discussed and the porting and validation of the model 

on a new architecture is described. 

Model Overview 

The MetUM is a highly flexible suite of numerical software for modelling the atmosphere that 

can be used across a wide range of length- and time-scales (Cullen, 1993). The model may be 

run in high resolution global and local area configurations for NWP and coupled to ocean and 
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sea-ice models as well as earth system components for seasonal or decadal forecasting and 

climate prediction. 

Unfortunately due to some of the algorithms used in the physical parameterizations employed 

in the model the MetUM code has been found to be particularly sensitive to small 

perturbations in initial conditions. These problems generally result from poorly conceived 

logic tests on real variables used to determine specific states in the model. 

To take a simple example where there is the following test: 

IF (SNOW_TILE(L,N).GT.0.0) THEN 

TSTAR_TILE(L,N) = MIN( T_SOIL(L,1), TM ) 

END IF 

where TM is 0°C. This ensures that the surface temperature TSTAR_TILE is at or below the 

freezing point if there is snow on the tile. 

In a pair of runs differing initially by least-significant-bit perturbations, the following values 

were found: 

Run 1: SNOW_TILE = 0.0,     T_SOIL ~ 5°C => TSTAR_TILE = ~5°C 

Run 2: SNOW_TILE ~ 1.0e-19, T_SOIL ~ 5°C => TSTAR_TILE = 0°C 

In both runs, the ground temperature is well above zero, and the intention of the coder is 

clearly that there should be no snow. However, in the second run an earlier calculation which 

should have removed all the snow from the tile has been affected by rounding error, leaving a 

snowflake or two behind. The consequence is a spurious jump of 5°C between the two runs.  

It is errors such as these that result in a very large value of the RMS temperature difference 

between the control and perturbed run, as can be seen in Fig. 1. This makes the porting tests 

described previously difficult to carry out as the spurious and rapid growth of temperature 

differences may mask an underlying error in the porting. In an effort to reduce the spurious 

growth of errors software has been developed to track down these branching events at if tests 

so that the growth can be reduced and porting validations carried out with more confidence. 

This software is described in the subsequent section. 

Methodology 

The MetUM code is automatically instrumented in order to record the number of times each 

branch of an if test is executed. Once this has been done a control run can then be carried out 

and then compared to a run where the initial conditions have been perturbed at the least 

significant bit using random numbers sampled from a Gaussian distribution. Comparing the 

time evolution of the RMS Temperature difference between the control and perturbed runs 

gives a good indication of whether differential branching has occurred and the solutions are 

diverging. 

The output from the software used to instrument the code can then be used to locate the 

routine where the branching occurred and the problem investigated further. A small N48 

resolution global test job running on four processor cores is used when searching for spurious 

code branching. 

Results 

Reduction of Sensitivity to Initial Conditions 

As mentioned earlier the over-sensitivity of the MetUM to perturbations in the initial 

conditions is a barrier to successful validation of the model when ported to new architectures. 

The branch tracking software developed has been used to track down coding errors which 

lead to differential branching in the code and hence large jumps in the temperature difference 

between the control and the perturbed runs. Figures 1 to 3 show the results of this work on 

three different systems: a Cray XE6 (HECToR), and IBM Power 6 and an Intel Xeon Linux 
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machine. These figures show an ensemble of 20 runs with the thick red line being the average. 

In all cases the over-sensitivity of the MetUM trunk can be seen, with a large jump in the 

RMS of the temperature difference between the control and the perturbed run shown clearly 

in the first few timesteps. A modified version of the code, containing numerous fixes to reduce 

the sensitivity of the code to initial condition perturbations (r7271 on HECToR and r35820 on 

both IBM and Linux) exhibits much improved performance over the first 3 hours of a model 

run. 

 

Figure 7 RMS of the temperature difference between the control and perturbed run of an N48 

model on Linux. Results of an ensemble of 20 runs are shown using the trunk of the MetUM 

code and a version containing fixes for spurious branching, r36820. 
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Figure 8 RMS of the temperature difference between the control and perturbed run of an N48 

model on the IBM Power6. Results of an ensemble of 20 runs are shown using the trunk of the 

MetUM code and a version containing fixes for spurious branching, r36820. 

 

Figure 9 RMS of the temperature difference between the control and perturbed run of an N48 



    

 

 Status: Final  

This document is produced under the EC contract 228203. 
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General 

Assembly 

74 

model on HECToR. Results of an ensemble of 20 runs are shown using the trunk of the 

MetUM code and a version containing fixes for spurious branching, r72 71 

This improvement in the model's response to initial condition perturbations will allow the 

porting tests described in the introduction to be carried out with significantly more confidence 

than previously possible. Similar tests can also be carried out to assess the impact of compiler 

optimizations and new algorithms on the performance of the model. 

Model Port Validation 

The performance of the model is now such that it is possible to complete the first porting test 

when running the MetUM code on HECToR. Figure 4 shows RMS of the temperature 

difference for the same ensemble of runs on both a Linux machine and HECToR. The blue 

lines are the RMS temperature difference between the Linux runs and Linux control and the 

green are the RMS temperature difference between the HECToR runs and Linux control. Here 

the lower growth of perturbations detailed in the previous section can still be seen and the 

differences between the runs on the two machines are minimal. The growth of perturbations is 

close to the level of machine rounding in most of the cases, however these is still some room 

for improvement in this area. Due to a lack of computational resources on HECToR the other 

tests were not attempted. 

 

Figure 10 RMS of the temperature difference between the Linux control and Linux perturbed 

run of an N48 model (blue) and Linux control and HECToR perturbed run (green). Results 

are shown using r7271 of the MetUM code. 

Optimization Error 

The same strategy used to expose errors porting the code to a new system can be used to test 

potential new additions or optimizations to the code. Figure 5 shows two ensembles of runs 

on an IBM Power6 using the N48 model employed previously. The run in blue is compiled 
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with the option -qstrict=exceptions which disables all transformations likely to affect 

exceptions or be affected by them (IBM, 2011). but enables other optimizations that might 

affect floating point semantics. The run in green is compiled with -qstrict which disables all 

semantics-changing transformations (IBM, 2011). The difference between the two runs is 

obvious and this method represents the beginnings of a system for testing and catching the 

introduction of such errors into the code. 

 

Figure 11 RMS of the temperature difference between the control and perturbed run of an 

N48 model on the IBM Power 6. Results  of an ensemble of 20 runs are shown using an 

executable compiled with -qstrict=exceptions (blue) and -qstrict (green). 

Summary and Conclusions 

A system for tracking and diagnosing spurious code branching, a source of model divergence, 

in the MetUM has been developed. The rate of growth of a small perturbation has been 

significantly reduced, allowing some of the porting tests suggested by Rosinski and 

Williamson, 1997 to be completed. The improvements should increase the ease of porting the 

model to new architectures in the future and allow other coding or optimization changes to be 

tested to see if they alter the sensitivity of the model. 
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UM Scaling on HECToR 

Contibutors: O.R. Darbyshire, Met Office. 

Introduction 

In more recent releases of the UM the amount of OpenMP parallelisation has been increased 

in order to take advantage of the decrease in execution time that can be achieved using a 

hybrid MPI-SMP approach. This approach is especially beneficial for codes whose scalability 

is limited by memory bandwidth such as the UM. 

Methodology and Results 

Four configurations of a N512 HadGEM3-A (atmosphere only) model using UM7.8 have 

been tested on HECToR in order to find the most efficient configuration in terms of 

atmosphere decomposition and number of OpenMP threads. Three of these models were 

analysed with Scalasca to obtain a more detailed picture. Both instrumented and un-

instrumented executables were run for 24 hrs of model time. 

Table 1 details the decomposition of the atmosphere and the number of OpenMP threads on 

6120 processors (i.e. using 6120 MPI processes, one per processor). The following three 

columns give the maximum time in seconds a single process spent executing model code, was 

idle waiting for OpenMP work and the output from the UM timer routine. This information is 

obtained from the Scalasca instrumented runs. The final column gives the UM timer output, 

again a maximum of all the processes, for an un-instrumented run. Values labelled approx are 

an estimate as the runs hit their wall clock limit. 

There are two main points to note: the model is fastest when using two OpenMP threads and 

there is a large overhead incurred to use Scalasca, approximately 300% of the un-

instrumented time. 

Table 2 shows the total time spent by every process executing different categories of code: 

time spent in instrumented MPI calls, time in OpenMP API calls and code generated by the 

OpenMP compiler, idle time spent by OpenMP threads. The table also shows the total amount 

of MPI data transfer. To  be clear, the table shows the sum of the time spent in each process 

for each category. The data in table 1 and table 2 are related. The sum of the times in each row 

of table 2 divided by the number of MPI processes used (6120) gives the execution time listed 

in table 1. In table 2, for all the runs the total amount of time spent executing model code 

remains quite similar (within approximately +/-5% of the 3 OMP thread figure). However, as 

the number of OpenMP threads is increased the time spent in MPI calls is reduced but the 

amount of OpenMP idle time increases. In fact the rate that the OpenMP idle time increases as 

the number of threads goes up is about 4 times the rate at which time spent in MPI calls 

reduces. 

λ pts φ pts OMP 

thds 

Execution 

(s) 

Idle OMP 

Threads 

(s) 

UM Timer 

Wallclock (s) 

UM Timer 

without 

Scalasca (s) 

102 60 1    2000 (approx) 

60 51 2 3907 2718 3851 945 

40 51 3 4428 3209 4406 1071 

30 51 4 4927 3638 4898 1400 (approx) 

Table 1: Maximum of all processes from both instrumented and un-instrumented runs. 

 

λ 

pts 

φ 

pts 

OMP 

thds 

Execution 

(s) 

MPI (s) 

 

OMP (s) 

 

Idle 

OMP (s) 

MPI data 

transfer (TB) 

60 51 2 9.9230×10
6
 5.4109×10

6
 4.2404×10

5
 8.1532×10

6
 75.92 
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40 51 3 9.4553×10
6
 4.0560×10

6
 8.2290×10

5
 1.2767×10

7
 61.58 

30 51 4 9.3650×10
6
 3.2668×10

6
 1.2376×10

5
 1.6290×10

7
 54.67 

Table 2: Total times for all processes for the Scalasca instrumented runs. 

 

These runs should be considered an approximation of the true performance for two reasons: 

first, although the runs must read the start dump they do not write any dumps to disk. Second, 

at the beginning of the run the solver hits the limit of 200 iterations for about 30 time steps 

before settling down, see Figure 1. If this peak only occurs at the start the true time required 

per day of a longer run will be significantly less than suggested by these runs. 

  
Figure 12 Iterations required to reach the convergence criterion at each time step. Hard limit 

at 200. 

UM 8.0 setup for HECToR and HERMIT 

Getting UM version 8.0 setup on HECToR was driven by the PRACE work. Originally vn8.0 

was setup using the Pathscale compiler which was the default choice for running the UM on 

HECToR at the time. The amount of OpenMP code proved a problem as the compiler was 

buggy with nested OpenMP calls and work was required to trace the routines causing 

problems and reduce the optimisation level or turn off the OpenMP. The upgrade of HECToR 

to the new AMD interlagos chips coincided with the retirement of the Pathscale compiler and 

the default compiler for the UM on HECToR became the Cray compiler. 

Working alongside the NCAS-CMS team in Reading work was carried out to move the UM 

on Hector to the Cray compiler (cce). This involved a substantial level of debugging are 

numerous routines required different levels of optimisation in order to run. This was further 

compounded by the need for the N512 model to run with more than one OpenMP thread, 

something not supported initially by NCAS-CMS. 

Small changes were also required for GCOM in order to build with the cce. The call to 

MPI_init had to be changed to MPI_init_thread and another routine to get the maximum value 

an MPI tag can tag had to be altered to call a deprecated version as the new one would not 

work properly on the phase 3 version of HECToR or on HERMIT. 

Version 8.0 of the UM is now setup and running on both HECToR and HERMIT. 

Performance of the model on HERMIT is better than expected and it scales well to 4000 
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cores. Further work is required to iron out some issues with the I/O server and STASH 

meaning. A contractor from Cray has been employed to assist and look into these issues. He 

will also look at: 

 MPI tuning 

 Scaling with different numbers of OpenMP threads. 

 Debugging tools 

 I/O server tuning 

Summary and Conclusions 

Work has been carried out on HECToR to investigate the OpenMP scalability and to port the 

model to the new Cray compiler. At UM 7.8 it was found that running with 2 OpenMP threads 

gave the best performance. The porting work at version 8.0 was successful although there is 

room for further performance improvement with careful tuning. The amount of OpenMP 

parallelised code in version 8.0 has increased significantly hence there may now be benefit 

from running with increased numbers of threads. Recent scaling work on HERMIT has shown 

four threads to give good performance. 
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Technical issues with the UPSCALE PRACE project 

Contibutors: S. Mullerworth, Met Office. 

This section is based on interviews with UPSCALE team members about some of the 

technical issues that arose during the UPSCALE project jointly run by the Met Office and 

NCAS. The motivation for writing this section is not to go into the detail of the technical 

issues, but to list the issues that are likely to arise and should therefore be considered when 

planning future similar projects. Detailed information can be found in "High resolution 

climate modelling; the UPSCALE project, a large simulation campaign" Mizielinski et. al, in 

preparation for submission to Geoscientific Model Development. 

UPSCALE ran a series of high resolution (mainly 25km, but also some 12km resolution) 

configurations of the Met Office atmospheric model on the HERMIT supercomputer within a 

PRACE project. The project used 144 million core hours of HERMIT over one year and 

generated 300 Terabytes of data.  

The core of the UPSCALE project was a series of 25 model-year runs each of which ran on 

up to 9408 Cray XE6 cores. At a 25 km resolution, the Met Office Unified Model simulated 6 

model-months per day. At its peak, the UPSCALE project was running 5 simulations 

concurrently, so using 47 thousand cores of HERMIT. 

Prior to the UPSCALE project, the Met Office and NCAS have had experience porting the 

model to other large supercomputers, such as the Earth Simulator. 

All models and systems are different, so the experiences below are summarised to give an 

indication of technical issues that are likely to arise with other similar projects, and to help 

other groups to plan for issues that may arise. 

 Project resource request: Climate models generally request access on Tier 0 PRACE 

machines because the resources available elsewhere limit the resolution at which the 

model can be run. Necessarily, this means that it is difficult to estimate the resources 

required to complete an experiment before access to the machine is enabled. 

Furthermore, the particular properties of the Tier 0 platform can work well for the 

model or can work poorly meaning that the resource request can be over or under-

estimated. 

 Initial porting: Input from Cray analysts was critical to the successful porting and 

tuning of the model. Advice from Cray analysts also helped to optimise the model 

significantly, speeding up the model by a third. Two key improvements were: 

o The IO was tuned by ensuring suitable placement of the IO servers within the 

system. For example, ensuring each IO server ran on a different node 

o The processor configuration was tuned by scanning around 100 different 

model decompositions. In addition to finding some processor counts that gave 

widely differing performance on different decompositions (the bars in the 

diagram below illustrate the range of time for differing decompositions with 

the same core count), this work also found that an example where, for 

example, the core count was increased by 7-8% from 2144 to 2304 to gave a 

30% cost reduction:  
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 Model-specific IO issue: The Met Office Unified Model has a post-processing 

“climate means” subsystem that generates seasonal and annual means on the fly. 

Unfortunately, within the PRACE configuration, this system disproportionately 

impacted the amount of IO being generated. As a result, the system could not be used 

and the outputs had to be generated in another way. While the climate means system is 

specific to the Met Office Unified Model, it is given as an example of an unexpected 

delay in porting that can arise in any project. 

 Model stability issues 1: It was found that the high resolution version of the model 

was, relative to the standard resolution version, more prone to instabilities such as 

grid-point storms, resulting in the jobs needing to be regularly repaired and restarted. 

Before during and after this project, work has continued to try and improve stability 

such that failure rates have dropped from an original rate of once per 9 months to once 

per 19 months, and the latest incarnation has not suffered any failures so far.  

 Model stability issues 2: As a time-slice run, this model was run with climates similar 

to current climatologies, and with warmer climates. Instabilities were also higher in 

the warmer climates, probably because the model configuration had not been tested 

thoroughly against that climatology. Analysing these stability problems was made 

more difficult by the lack of appropriate tools. Existing tools to plot data did not have 

the ability to deal with the very fine grids. 

 Model versus Machine stability issues: Often it was difficult to detect the difference 

between issues caused by hardware failures and model stability issues. Model stability 

issues could be identified by checking iteration counts in the solver or monitoring 

vertical velocities. Evidence of machine instabilities, however, relied on monitoring 

which nodes the models that failed were running on so as to identify faulty nodes. 

  IO performance: IO was very intensive in the model simulations. On occasions, total 

IO load on the system caused model slowdowns resulting in jobs running out of time 

in the queue. 
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 Job prioritisation: There was no ability to prioritise one job above another within the 

project on the HERMIT machine. It would have been beneficial to the project to allow 

some of the runs to have a higher priority than others. 

 Data transfers: Climate models generate large amounts of data; the amount of data 

was a big surprise to the systems teams. The UPSCALE project generated 300 

Terabytes in total. The PRACE rules require that the data is removed from the host 

machine at the end of the project. Therefore a significant subproject of UPSCALE 

related to the transfer of the model data to BADC. Initially, gridftp was not available, 

and the multiple rsync processes that were being used caused issues with HERMIT. 

Furthermore, there were issues with transferring some of the files due to their large 

size: they had to be split into smaller files and rejoined at BADC. When gridftp 

became available, further delays were caused by the need to obtain eScience 

certificates. Eventually, however, transfers at the rate of 2-6 Terabytes per day with 

built-in checking were running reliably, and all data was removed from HERMIT in 

good time. That said, monitoring the transfers and resolving issues required human 

input a few times a week over a period of some months. 

 Data Storage 1: Clearly, planning for the storage of 300 Terabytes is a significant 

undertaking. Aligning a bid for computing resources within one system that may or 

may not be successful with a bid to store a large amount of data in another system is a 

difficult issue. In this case, the UPSCALE team were extremely fortunate that the 

project coincided with the introduction of the new JASMIN storage system at BADC. 

Prior to JASMIN coming on line the data was being stored on a range of different 

servers which was making the data difficult to analyse, and not all the data was backed 

up. JASMIN provided space to securely archive all the data in one place. It has been 

said by members of the UPSCALE team that the UPSCALE project was as dependent 

on JASMIN as it was on HERMIT. 

 Additional considerations: it should be noted again that UPSCALE involved running 

an atmosphere model only. Addition of other components such as an ocean model will 

add additional issues by doubling up the effort required to port and tune models, by 

adding an extra technical issue related to coupling the two models efficiently, by 

needing to support the deployment of the a coupled model efficiently on the 

architecture and by needing to load-balance the deployment. 
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PART III: Concluding remarks 
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Summary of the results 

The deliverable reports results obtained from the following coupled models ARPEGE-

NEMIX, IPSL-ESM and EC-Earth, METOFFICE Unified Model, Cosmos-Millennium) and 

one stand-alone models (NEMO) tested on a number of PRACE HPC infrastructures within 

the IS-ENES network. The collaborative effort among application owners and computer 

specialists led to the identification of numerous strengths and limitations of these ESMs and 

models. The main findings are summarized below: 

 IPSL-ESM coupled model: 

o Under the PRACE preparatory access grant, COUAC, the IPSL model has 

been ported to CURIE and comparisons with the deployment on JADE 

(CINES machine) made. A high resolution version of the model has been 

ported and is now entering a performance tuning phase. 

o To support the porting to the new machine, the IPSL compilation and 

execution environment has been ported to CURIE and the plan is to install the 

IPSL running environment shortly to support production runs. 

o There is still an issue running MPI parallel ocean models and hybrid MPI-

OpenMP atmosphere models on the machines currently available. The 

Computing Centres must be encouraged to address this with urgency. 

 ARPEGE-NEMIX coupled model validation on PRACE machines: 

o In further work with IS-ENES ESMs on PRACE machine, the validation 

version of the ARPEGE-NEMO coupled model has been ported to PRACE 

tier-0/tier-1 machines and a successful porting validation is reported with 

comparisons to previous implementations on NEC and SGI Altix platforms. 

This work prepares the way for a port of a full version of NEMO to the 

PRACE machines. 

o Under a PRACE preparatory access project, work has been undertaken to 

enhance the performance of  the OASIS coupler on the PRACE machine 

CURIE, using the new OASIS-MCT implementation. Some science issues 

with the port were identified and corrected and work towards a high resolution 

port for production use is now in progress. 

 EC-Earth coupled mode on CURIE 

o A high resolution version (T799 and ¼ degree Ocean) of the EC-Earth ESM 

was successfully ported to and benchmarked on up to 3500 MPI processes on 

CURIE (an Intel Xeon plus Infiniband cluster) by LIU. 

o At this scale, the efficiency was approximately 50% of the most efficient run. 

An analysis of the behaviour or timesteps with and without I/O was 

investigated revealing that, though the I/O time varied timestep to timestep, the 

overall scaling of I/O timesteps is consistent with timesteps in which only 

computation occurs. 

o Work to create a standard environment which can be installed on a new 

machine to ease the porting process is also reported. 

 EC-Earth coupled model on MareNostrum 
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o The experience of porting EC-Earth and other models has identified some ‘best 

practice’ that could be followed. EC-Earth consists of a number of component 

models (IFS, NEMO), the OASIS coupler and a number of essentially standard 

libraries (MPI, OpenMP, NetCDF). Increasingly, the standard libraries are 

already available on a new machine (and they – including, possibly a number 

of commonly used versions - should be made available by the centre housing 

the machine). Porting the component models reveals that some (versions of) 

models are more easily ported than others. Porting NEMO and OASIS to 

MareNostrum was relatively simple because each has centralised, in the source 

file structure, issues that typically cause porting to be difficult. The version of 

IFS used (that used in EC-Earth V2) was difficult to port and porting issues 

were not located in a centralised place. EC-Earth, V3 is much improved in this 

respect. This centralisation is a mechanism that has been developed in a 

number of community models, such as WRF and CMAQ, and lessons learned 

from these community codes should be heeded in ESM model development. 

o Several version of EC-Earth were successfully ported to MareNostrum, 

including a version with a recent update to NEMO (PELAGOS025), and 

examples of load imbalance and serialisation within IFS and NEMO identified 

and analysed using Paraver. Several options for performance improvement 

were identified and evaluated. However, scalability is strongly limited by the 

current numerical schemes implemented. 

 NEMO stand-alone model: 

o CMCC has undertaken porting, benchmarking and optimization work with 

NEMO on Marenostrum. Profiling revealed several target routines for 

performance improvement typically to reduce communication costs (either 

changing communication patterns of overlapping communication with 

computation). Also, improvements to the handling of I/O have been made. 

Some work to demonstrate the possibility of a hybrid OpenMP-MPI solution 

also shows promise. 

 FMI Cosmos-Millennium on Cray-XT5 

o A successful porting and running exercise with the coupled atmosphere and 

ocean models of the Cosmos-Millennium model has been completed. 

o Three platforms were involved: two Cray-XT5s and one SGI/Altix 4700 with 

production runs being undertaken on the Cray machines. The minimum 

wallclock performance for the model (resolution T31L19) occurs at around 

130 cores and is sensitive to the allocation of resources to the atmosphere and 

ocean. 

o One extended 1200 year experiment has been run with this configuration and 

an ensemble of thirty 45 years runs executed (with each ensemble member 

running on the optimum number of cores for an instance of the model). 

 CSC (subcontractor to FMI) ECHAM6 atmosphere on Cray-XT4 

o A strong scaling case study of the Echam6 atmosphere model and the CMIP5 - 

amip-LR model experiment at T63L47 resolution has been performed on a 

Cray-XT4. Hybrid MPI-OpenMP parallelization was used and run-time and 

efficiency results presented. 
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o Porting difficulties were identified with the support libraries (HDF5 and 

NetCDF). The source of these problems was identified as the use of ‘old’ C 

interface language techniques. It is suggested that moving to either Fortran-

based interface routines, or using the modern Fortran standard interface 

mechanisms to C would alleviate these problems. 

o The scripts used for input file set up were found to be essentially non-portable 

to the Cray environment, and a workaround - based on copying the initial state 

from a development directory - was implemented. 

 METOFFICE Unified model (UM) 

o When porting the UM, it has been found that the code behaviour is very 

sensitive to the results of floating point operations, leading, for example, to 

spurious branching resulting from floating point comparisons. Work has been 

undertaken to restructure the code to reduce its sensitivity in this respect, thus 

improving the porting process (in terms of validation of the science computed). 

o A system for tracking and diagnosing spurious code branching, a source of 

model divergence, in the UM has been developed. The rate of growth of a 

small perturbation has  been significantly reduced allowing some standard 

porting tests (suggested by Rosinski and Williamson in 1997) to be completed. 

These improvement should increase the ease of porting the model to new 

architectures in the future. 

 METOFFICE Unified model: 

o Four configurations of an N512 HadGEM3-A model were tested on HECToR 

to investigate the most efficient configuration of MPI processes in an 

atmosphere decomposition and the number of OpenMP threads to use in a 

hybrid MPI-OpenMP implementation. This work was driven by interaction 

with PRACE. 

o Comparisons show that two threads provide the best performance improvement 

(the mapping of processes and threads to cores used in the tests is not explicitly 

stated). 

 

The following table brings together scalability results for several of the models reported in 

this document.  
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Table 1: Simulated years/day vs number of cores for several of the European ESMs reported 

in this document. Resolution between 25 and 30 km. (Note, the models do not necessarily 

compute comparable science etc.) 

All results presented in the table have been translated into the (absolute) metric of ‘simulated 

years per day’. Care should be taken when drawing conclusions from such a graph as the 

models reported differ in several crucial aspects, including science content, resolution, I/O use 

etc.  

The graph shows that most European models, at 25-30 km resolution, currently scale to 

around 1000-3000 cores. This conclusion gives impetus to the current initiatives being 

undertaken to address scalability limitations in the major European ESMs.  

One recent European initiative of note, is the recent work led by Pierre-Luije Vidale 

(University of Reading), using the HiGEM version of the Met Office’s UM on the Cray-XT6 

(HECTOR). This work shows HiGEM scaling to around 12000 cores. Work in the US also 

shows models scaling to tens of thousands of cores. This work, and other related initiatives in 

Europe and the US, are summarised in the presentation at SC12 given by Sylvie Jussaume, 

“Modelling the Earth’s climate system: data and computing challenges”, SC 2012, Salt Lake 

City. 

Scalability well beyond tens of thousands of cores (and threads) will be required for the 

Exascale computers envisaged to be in production towards the end of the current decade. 
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