

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

1

IS-ENES - WP8

D8.4 - Final Report on Portability and Performance in IS-ENES ESMs

Abstract

Grant Agreement Number: 228203 Proposal Number:
FP7-INFRA-2008-
1.1.2.21

Project Acronym: IS-ENES

Project Co-ordinator: Dr Sylvie JOUSSAUME

Document Title:
Final Report on Portability and
performance in IS-ENES ESMs

Deliverable: D8.4

Document Id N°: Version: 2.0 Date: 16/01/2012

Status: Final

Filename: ISENES_D8.4_ESM_Portability_and_Performance_Final_Report.doc

Project Classification: Public

Authors

O. Jorba, K. Serradell, L. Telloli BSC (16)

O. R. Darbyshire, A.M Clayton METOFFICE (10)

G. D. Riley - UNIMAN (6)

C. Basu LIU (15)

A.Caubel, Y.Meurdesoif, O.Marti CNRS-IPSL (1)

E. Maisonnave, P-A, Bretonniere. C. Cassou, S.
Valcke, T. Craig

CERFACS (3)

J. Silen FMI (5)

J. Lento CSC, subcontract to FMI (5)

I. Epicoco University of Salento

S. Mocavero CMCC (9)

G. Aloisio CMCC (9)- University of Salento

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

2

REVISION TABLE

Version Date Comments Authors, contributors, reviewers

0.1 16/1/2012 First draft: outline and inclusion of contributions
G.D. Riley and Contributors listed
above

0.2 14/2/2012 Including reviewer responses G.D. Riley and Contributors

1.0 30/3/2012 Including final reponses to reviewer comments G.D. Riley, Contributors and S.
Valcke, G. Aloisio.

1.1 21/1/2013 Addition of CMCC and FMI/CSC contributions G.D. Riley

2.0 27/2/2013 Addition of contributions from LIU, SMHI,
METOFFICE and responses to reviewer
comments

G.D. Riley and contributors.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

3

Table of Contents

PART I: Overview

REVISION TABLE ... 2

EXECUTIVE SUMMARY .. 6
INTRODUCTION ... 7
Purpose... 7
Glossary of Acronyms ... 7
LIST OF ACTIVITIES.. 8

PERFORMANCE ANALYSIS AND PORTABILITY OF IPSL ESM MODEL 10
Introduction ... 10
Performances of IPSL ESM model on Curie (PRACE machine) and Jade (CINES centre) 10

IPSL standard low resolution coupled model (CMIP5 version) on Curie “Fat nodes” 10
IPSL atmospheric high resolution model on Curie “Fat nodes” (and comparison with Jade) 10

Results for 8 threads by process on Curie computer: .. 11
For comparison, results obtained on Jade (CINES) ... 13

IPSL high resolution coupled model on Curie “Fat Nodes” ... 15
Compilation and running environment of IPSL ESM model (production environment) 15
Conclusions .. 16
ARPEGE-NEMIX: A SIMPLIFIED HIGH RESOLUTION CGCM FOR

VALIDATION PURPOSE ON PRACE TIER-0/TIER-1 MACHINES 17
Introduction ... 17
NEMIX Fortran coding details .. 17
An example of porting validation .. 19
Conclusion ... 20
ARPEGE-NEMIX porting, optimization and performance tests on PRACE tier0-tier1 machines 20

Overview .. 20
Performance .. 20
Coupling enhancement ... 21
Porting issues .. 22

References .. 23
EC-EARTH MODELLING SYSTEM ON MARENOSTRUM SUPERCOMPUTER:

PORTING AND PERFORMANCE EXPERIENCE ... 25
Objectives ... 25
HPC environment: the MareNostrum supercomputer .. 25
The EC-Earth model ... 25
Porting experience of EC-Earth on MareNostrum .. 26
Performance of the model on MareNostrum: trace analysis ... 29
Summary and conclusions .. 35
HIGH RESOLUTION EC EARTH PORTING, BENCHMARKING ON CURIE 37
Introduction ... 37
Work flow for Porting .. 38
Compiling EC-EARTH on Curie .. 40
Running high resolution EC-EARTH ... 40
Scaling of High resolution EC-EARTH on Curie ... 41
Discussion ... 43
Hybrid MPI-OpenMP EC-EARTH run.. 44

Compilation and running .. 44
Results and discussions ... 45

EC-CONF: A New Approach for Build and Run Configuration of EC-Earth .. 45
NEMO PORTING, BENCHMARKING AND OPTIMIZATION ON MARENOSTRUM

 ... 47
Introduction ... 47
Analysis of Scalability ... 47

Model Configuration .. 47
Profiling .. 48

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

4

Optimization .. 53
OBC_RAD Routine .. 53
OBC_RAD Optimization .. 54
SOL_SOR Routine ... 56
SOL_SOR Optimization ... 56

Parallelization Improvement .. 57
PELAGOS025.. 59
Bibliography .. 63
PORTING AND PERFORMANCE ANALYSIS OF COSMOS-MILLENNIUM ON

CRAY-XT5 ... 64
Introduction ... 64

Cosmos-Millennium ... 64
Objectives ... 64
Description of execution and evaluation tests ... 64

Porting .. 64
Execution .. 64
Optimization ... 66
Scalability ... 66
Other comments .. 66
Summary ... 66
Acknowledgments .. 66

PORTING AND PERFORMANCE ANALYSIS OF ECHAM6 ON CRAY XT4 68
Introduction ... 68
Objectives ... 68
Description of the execution and the evaluation of the tests .. 68

Porting and porting feedback .. 68
Execution .. 68
Results .. 68

REDUCING THE SENSITIVITY OF THE MET OFFICE UNIFIED MODEL TO

ROUNDING ERRORS .. 70
Introduction ... 70
Methodology .. 71
Results .. 71

Reduction of Sensitivity to Initial Conditions... 71
Model Port Validation .. 74
Optimization Error .. 74

Summary and Conclusions ... 75
References .. 75
UM SCALING ON HECTOR .. 77
Introduction ... 77
Methodology and Results ... 77
UM 8.0 setup for HECToR and HERMIT .. 78
Summary and Conclusions ... 79
TECHNICAL ISSUES WITH THE UPSCALE PRACE PROJECT 80

SUMMARY OF THE RESULTS ... 84

REFERENCES ... 87

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

5

PART I: Overview

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

6

Executive summary

The W8/JRA2 work package undertakes research into the performance aspects of configuring,

deploying and running Earth System Models (ESMs). In deliverable WP8/JRA2 D8.1

“Definition of the Evaluation Suite”, a set of ESMs and stand-alone models available in the

IS-ENES consortium were documented. This deliverable reports on work in which selected

models from the evaluation suite have been ported and tested on a number of HPC

infrastructures available to the IS-ENES partners, including PRACE machines, along with

some additional activities. A collaborative effort between application owners and computer

specialists has led to the identification of numerous current strengths and limitations of ESMs

in terms of both porting and performance. This report is an interim report building on results

presented in JRA2 deliverable, D8.2 “Evaluation suite and base-case results”. A final report is

due at the end of the project.

The IS-ENES evaluation suite consists of five coupled models: CMCC-MED, ARPEGE-

NEMO, IPSL-ESM, HadGEM2 and EC-Earth, in addition to four stand-alone models:

ARPEGE, NEMO, LMDZOR and ECHAM5. Detailed technical information on these models

can be found in D8.1. Specific details of the models reported in this document are given in the

associated technical reports in Part II.

The report is organized in three main parts: Part I (this section) gives an overview and

introduces the report, presents its purpose and summarises the activities undertaken; Part II is

a compendium of reports presenting interim results obtained since the first performance

report, D8.2, and consists of a set of technical reports on each activity undertaken, and Part III

draws conclusions and discusses future work that aims to improve the performance of the

models on current and future computing resources.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

7

Introduction

The performance analysis of current Earth System Models (ESMs) on state-of-the-art

computing systems is undertaken in work package WP8/JRA2. The increase in computational

resources associated with the ongoing work done in PRACE projects stresses the need to

improve the current performance of ESMs on HPC systems. Climate science has made major

steps in modelling the evolution of the climate through complex coupled models. However,

current coupled models appear not to be suited to exploit fully the HPC resources that are

planned to be deployed in next few years. For example, Moore’s law suggests that the first

exascale computer will be available in 2018 and this is likely to consist of ‘billions’ of cores.

In the IS-ENES project, Task 8.2, “Portability, performance analysis and improvement”, seeks

to understand and improve the performance of ESM models for current and future HPC

systems. This task focuses on the performance aspects of both individual component models

and ESMs constructed from them with the purpose of ensuring the ESMs can execute

efficiently on existing large-scale computing facilities and also that the plans to prepare the

models for execution on future facilities are developed. Particular attention is given to

ensuring models are, and will continue to be, able to take advantage of the PRACE initiative.

Purpose

The purpose of the present report is to summarize recent work undertaken to understand the

performance of the ESMs of the IS-ENES evaluation suite on current HPC infrastructures.

The evaluation suite is defined in report “D8.1: Definition of the Evaluation Suite” of work

package WP8/JRA2. This report is a follow-on report to “D8.2 Report on the Description of

the Evaluation Suite and Base-case Results” and builds on lessons learnt in the work

described in D8.2. Several activities have been undertaken to port, test and evaluate, using

profiling and trace analysis, for example, ESM model performance on current state-of-the-art

computing systems. The works aims to document:

 the current performance of the models on existing parallel architectures,

 critical aspects that climate models stress in current HPC architectures,

 bottlenecks, and strengths and weaknesses of each of the models in order to guide the

design and development of future optimized ESMs for the upcoming peta- and exascale

architectures,

 attempts to improve both the portability of models, by documenting experiences of

porting, where appropriate, and the performance of models on specific architectures.

Glossary of Acronyms

Acronym Definition

ESM Earth System Model

DEISA Distributed European Infrastructure for Supercomputing Applications

PRACE Partnership for Advanced Computing in Europe

HPC High Performance Computing

Table 1: Glossary of Acronyms

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

8

List of activities

The activities undertaken in JRA2 during the first part of the project IS-ENES have had as

main objective to evaluate the current status of performance of several Earth System Models.

The following list summarises the reports describing the work done to characterize such

performance in current HPC infrastructures:

 IPSL, Performance Analysis and Portability of IPSL ESM model. A.Caubel.

 CERFACS: ARPEGE-NEMIX: a simplified high resolution CGCM for validation

purpose on PRACE tier-0/tier-1 machines. E. Maisonnave, P.-A. Bretonnière, C.

Cassou.

 CERFACS: ARPEGE-NEMIX porting, optimization and performance tests on PRACE

tier0-tier1 machines. E. Maisonnave, S. Valcke, T. Craig, P.-A. Bretonnière.

 BSC: EC-Earth modelling system on MareNostrum Supercomputer: porting and

performance experience.

 LIU/SMHI: High resolution EC Earth porting, benchmarking on CURIE. C. Basu.

Including a section on ec-conf from SHMI.

 CMCC: NEMO Porting, benchmarking and optimization on Marenostrum. I.Epicoco,

S.Mocavero, G.Aloisio.

 FMI: Porting and performance analysis of Cosmos-Millennium on Cray-XT5 at FMI.

J. Silen.

 Porting and performance analysis of Echam6 on Cray XT4 at CSS (subcontractor to

FMI). J. Lento.

 METOFFICE: UM Scaling on HeCToR. O. R. Darbyshire plus a report on technical

issues with the UPSCALE PRACE project by S. Mullerworth.

 METOFFICE: Reducing the Sensitivity of the Met Office Unified Model to Rounding

Errors. O. R. Darbyshire, A. M. Clayton.

The second part of the present document compiles the documents that report the work done

and the main conclusions of each initiative. Results of the work will help to define the future

work to undertake to improve the model performance in future HPC environments, and

especially for the developing relationship with PRACE and use of PRACE tier-0 and tier-1

machines.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

9

PART II: Porting and Performance reports

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

10

 Performance Analysis and Portability of IPSL ESM model

Contributors: A.Caubel, Y.Meurdesoif, O.Marti
1

1
 Institut Pierre Simon Laplace, France (IPSL)

Introduction

As presented in the IS-ENES D8.2 - Report on the Description of the Evaluation Suite and

Base-case Results, the IPSL climate model was ported on the super computer Jade at CINES

and tested at high resolution: atmosphere at 768x767x39 resolution, ocean at 1442x1021x75

resolution, using 2191 cores. An important effort to optimize the code and to reduce its

memory footprint was undertaken at this time.

Through the PRACE preparatory access project “COUAC”, this prototype version of the IPSL

climate model was also ported on Curie (a PRACE machine) which allowed us to compare the

performances on Jade and Curie.

In addition, some work on the environment of IPSL ESM standard version (CMIP5 version)

was done in order to run production simulations of the model on new machines.

Performances of IPSL ESM model on Curie (PRACE machine) and Jade (CINES

centre)

Three different configurations of IPSL model were tested:

IPSL standard low resolution coupled model (CMIP5 version) on Curie “Fat nodes”

- LMDZ Atmospheric model at 96x95x39 resolution (MPI parallelized version)

- NEMO Oceanic model 2° resolution i.e. 182x149x31 (MPI parallelized)

- Oasis3 sequential version: 1 coupling per day between Atmospheric model and Oceanic

model.

Performance obtained on 32 CPUs (1 Oasis+ 5 NEMO +26 LMDZ MPI) are: Real time:

1380s/month

IPSL atmospheric high resolution model on Curie “Fat nodes” (and comparison with

Jade)

In a typical climate model experiment, the CPU time used by LMDZ is 5 to 20 times larger

than the CPU time used by other components. The number of cores used for each component

is adequately chosen to allow a proper load-balancing. For this reason, we spent most of our

time on LMDZ alone, to port the model on Curie, test the performance, and make some

improvements.

We made the adaptation of LMDZ for the new Curie computer and run high-resolution test

cases. For this, we used the same resolution 768x767x39 that has been run for “CINES grand

challenge” on Jade computer (Intel Nehalem EP, 2.93 GHz) in 2010, so we can compare

performance and scalability.

The test case was a global run on 768x767 latitude-longitude points with 39 vertical layers.

We run 960 time step iterations by test-case, so about 4.8 hours of simulated times. We ran up

to 256 MPI processes with 4 or 8 threads by process, so up to 2048 cores.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

11

Results for 8 threads by process on Curie computer:

Core numbers Elapsed Speed-up

128 670 128

256 328 261

512 186 461

1024 129 665

2048 98 875

Figure 1: Speed-up for 8 threads by process on Curie. Red : code speed-up. Blue dotted :

ideal speed-up.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

12

Figure 2: Elapsed time for 8 threads by process on Curie. Red : code speed-up. Blue dotted :

ideal speed-up.

Results for 4 threads by process on Curie computer:

Core numbers Elapsed Speed-up

128 632 128

256 303 266

512 174 465

1024 117 691

Figure 3: Speed-up for 4 threads by process on Curie. Red : code speed-up. Blue dotted :

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

13

ideal speed-up.

Figure 4 : elapsed time for 4 threads by process on Curie. Red : code speed-up. Blue dotted :

ideal speed-up.

For comparison, results obtained on Jade (CINES)

Core numbers Elapsed Speed-up

64 924 64

128 440 134,4

256 220 267,36

512 122 484,7

1024 72 822

2048 49 1207

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

14

Figure 5 : Speed-up for 8 threads by process on Jade. Red : code speed-up. Blue dotted :

ideal speed-up.

Figure 6 : Elapsed time for 8 threads by process on Jade. Red : code speed-up. Blue dotted :

ideal speed-up.

It seems Jade results outperformed Curie results, in core-by-core comparison, for CPU time

and for scalability. We can explain the difference on CPU time (~50% more on Curie) by the

clock frequency difference (2.93 vs. 2.23, ~30%) and for a lesser memory bandwidth by core

on Curie. For scalability, the network bandwidth by core is lesser on a Curie node than on a

Jade node, so it may explain the difference. Other possibility is it may due to the quality of the

network interconnect and/or quality of the MPI implementation. It is only supposition and we

don’t investigate anymore.The model will be soon ported on Curie “thin nodes”, where we

expect better performance. As we don’t need large memory by core neither by node, and don’t

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

15

need large node, Curie “large nodes” doesn’t seem to be the optimal machine for our case.

But it has to be confirmed on Curie “thin nodes”.

IPSL high resolution coupled model on Curie “Fat Nodes”

 LMDZ Atmospheric model 0.3°x0.3°(39 vertical levels) i.e. 768x768x39 (hybrid

MPI-OpenMP parallelized)

 Oceanic model 0.25°x0.25°(75 vertical levels) i.e 1441x1021x75 on 120 MPI process

 Oasis3 parallel version "field per field" on 23 MPI process (each MPI process treats

one field) 1 coupling per 2h between Atmospheric model and Oceanic model.

Performances obtained are :

 23 OASIS + 120 NEMO + LMDZ 256MPIx4OMP = 1167 CPUs : Real time :

7,6h/month

 23 OASIS + 120 NEMO + LMDZ 256MPIx8OMP = 2191 CPUs : Real time : 7h

/month

Note the relatively small performance improvement in Real time when using 8 OpenMP

threads rather than 4 (from 7,6h/month to 7h/month). Only preliminary tests were run to

validate technical aspects of high resolution configuration, this means that an optimization

phase is needed to improve performances, especially concerning heterogeneous configuration

aspects in MPMD mode with the ocean model MPI parallelized and the atmosphere model

mixed MPI-OpenMP parallelized.

Compilation and running environment of IPSL ESM model (production environment)

Work was done on the IPSL environment (compilation and execution) in order to increase the

number of machines used to run our production simulations.

 Because of the end of vector machines as production machines, we have worked (and

are still working) on running all of our production runs on IBM Power 6 (vargas -

IDRIS centre) and Bull (titane - CCRT centre). This work consists both in :

 quality checks : reproducibility, parallelization.

 performance developments :

o use of hybrid parallelization MPI-OpenMP in production version of IPSL

ESM model. The use of hybrid parallelization MPI-OpenMP on an

heterogeneous configuration (MPMD model) needs both to modify our

usual way to launch the model and to interact strongly with computing

centres.

o analyze of load balancing between different component of IPSL ESM model

(standard version=ATM_LMDZ_96_95_39xOCE_NEMO_ORCA2).

Results obtained :

 titane : IPSLCM5A (1day =coupling period) : lmdz :35s, nemo :

39s

 vargas : IPSLCM5A (1day =coupling period) : lmdz :32s, nemo :

32s

 The IPSL compilation environment was installed on Curie. The installation of IPSL

model running environment in order to run production simulations is planned.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

16

Conclusions

The porting of IPSL -ESM model on new and different machines is very instructive both in

terms of performances and usability. Besides, we have tested several configurations of the

model at different resolutions: that helped highlight the work done in recent years both in

terms of optimization and parallelization of the components (see the results in Section 0

obtained for high resolution IPSL model on Curie and Jade) and in terms of portability of

production environment (compilation, execution) of the model (see the work reported in

Section 0 to run the IPSL ESM standard version in production simulations on new machines

Vargas, Titane and Curie). In order to use hybrid parallelization (MPI-OpenMP) on an

heterogeneous configuration (MPMD model) we need to interact strongly with computing

centres. In the future, the ideal situation would be that the computing centres actually

communicate with each other.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

17

ARPEGE-NEMIX: a simplified high resolution CGCM for validation purpose on

PRACE tier-0/tier-1 machines

Contributors: E. Maisonnave
1
, P.-A. Bretonnière

1
, S. Valcke

1
, T. Craig

1
, C. Cassou

1

1
 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France

(CERFACS)

Introduction

An atmosphere-ocean coupled model is a complex, highly non-linear system, for which

results are non reproducible from one machine to another. This forbids any bit-to-bit cross-

computer validation comparing simulations with identical experimental conditions.

A conventional strategy to address this problem consists in comparing statistical results of

simulation ensembles. Nevertheless, this solution requires a large amount of computing time

(particularly at high resolution, which is mandatory on Petascale architectures) to reach the

equilibrium state, the point at which simulations performed on different machine can be

compared. In order to balance fluxes and reach (an) equilibrium with a complete atmosphere-

ocean coupled model hundreds of simulated years may be required, with no guarantee of

producing results which are similar to those produced by another model.

In fact, to recover the initial model behaviour on porting to a new machine, it is quite possible

that additional parameterization work would be required, for example addressing the top of

the atmosphere balance but also to achieve the desired mean states and variabilities of certain

quantities (the actual quantities to be addressed with vary for different geographical regions,

depending on the topic being studied with the use of the model). The question then is how to

validate a port involving simulations containing different parameterizations? This is sue is

further discussed in Section 0 in the context of techniques to reduce the sensitivity of the Met

Office’s Unified Model to rounding errors.

To avoid such problems and limit CPU consumption during the validation phase, the standard

ARPEGE-NEMO coupled model is used in a slightly different configuration. In order to

stabilize the system and enable an equilibrium stage that could be comparable on several

machines to be reached rapidly, a degree of freedom is removed from the ocean model.

This configuration, called NEMIX
1
, has already been used with different ocean models for

geophysical studies
2,3

. It consists of a configuration reached by disabling salt and heat

transports (1D model) and replacing them by a flux correction. A daily difference between an

observed climatology on temperature (salinity) and the corresponding variable calculated on

the ocean model is used to deduce heat (water) flux correction necessary to fit observational

data. During this first simulation (called “forced”), a daily climatology of flux corrections is

performed. At a second stage (called “coupled”), the flux corrections are added to ocean

model to reproduce the missing salt and heat transports.

NEMIX Fortran coding details

To be able to easily switch from a conventional ocean-atmosphere coupled model to a

configuration using a mixed layer ocean, we modify the NEMO code, but keep the rest of the

existing coupled configuration (here ARPEGE-NEMO). The only modification done on

atmosphere model ARPEGE is that it is always forced to calculate its own surface albedo and

its own ice temperature (namelist values LMCC02 = .T. and LALBEDO=.F.) instead of

receiving it from coupling fields: it is a consequence of the LIM ice model disabling on our

NEMIX ocean configuration.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

18

Parts of the code like the NEMO advection scheme are bypassed and some instructions are

added using a new namelist parameter (nn_cmxl) set to:

* 0 in conventional fully advective mode,

* 1 during the correction calculation (“forced mode”) and

* 2 to use the mixed layer configuration, applying the flux correction (“coupled

mode”)

Within the code, to switch from standard ocean to our configuration, we test the value of the

nn_cmxl variable within Fortran “IF” conditions. This strategy (instead of pre-processor

operation) should allow us, in the future, to separately activate this configuration on AGRIF

zoom areas.

No horizontal exchange should be represented: NEMO avoid to calculate and integrate slope

of lateral mixing (ldf_slp), advection and diffusion at the bottom layer (tra_bbl), horizontal

and vertical advection (tra_adv, dyn_adv), lateral mixing (tra_ldf, dyn_ldf), horizontal

gradient of hydrostatic pressure (dyn_hpg) and surface pressure gradient (dyn_spg). The

momentum trend is updated with the planetary vorticity trend only (dynvor).

A damping is necessary to avoid systematic drifts: temperature and salinity are damped on the

whole globe (nn_hdmp=-1) but only under the mixed layer (nn_zdmp=2). The restoring

coefficient varies like an exponent of minus depth. Bottom and surface restoring time scales

are set to 30 days, with a transition depth of 800 meters. This damping is activated during

both correction calculation and application stages. Damping is disabled at the surface

(sbcmod).

During the “coupled” experiment, two new coupling fields of flux correction (heat and water)

are received (sbccpl) from a toy model via OASIS. Calculated as described below, the daily

climatological value of the heat (water) flux correction is added to non solar heat flux (total E-

P balance).

During the “forced” experiment, at the beginning of the time step loop (and not at the end, as

usual in a coupled model), the Levitus (or any climatological) temperature (even under ice)

and observed corresponding sea ice fraction are sent to the atmosphere (sbccpl). LIM model is

disabled and ice cover is forced to observed quantities (sbcice_if). Ice fraction initialization

has to be done before coupling (restart reading or calculation regarding Levitus). Fluxes are

received after one coupling step from the atmosphere model (sequential coupling). Those

fluxes have been calculating according to the climatological SST and Ice Cover values

previously sent to the atmosphere model at the beginning of the coupling time step (one day,

in our case).

At the end of active tracer update routines, but before density (eos) and tendencies (tranxt)

calculations, at each end of a simulated day, tb,tn and sb,sn variable values are re-initialized

(in the mixed layer only) with daily Levitus temperature and salinity interpolated at the day

following the current day (dtasal, dtatem). Those variables are re-initialized again after

tendencies calculations.

At the same stage, the flux corrections are calculated, estimating the difference between total

amount of energy (water) brought by the atmosphere during the coupling time step and the

necessary energy (water) to drive the model to the Levitus state of the next day. The

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

19

difference of temperature (salinity) between integrated variable tn (sn) and the Levitus value

of the next day is multiplied by rau0.rcp (rau0) and accumulated on the total depth of the

mixed layer (determined following the rho criteria).

An offline and highly parallel tool has been developed to process on the parallel

supercomputer itself a 365/366 days climatology of the flux corrections, filtering harmonics

lower than seasonal. It allows us to follow, during the “forced” simulation, the evolution of

the quantities that we will add to the ocean model during the “coupled” one.

An example of porting validation

These flux corrections encompassed three different contributions: (i) the simulation of ocean

salt and heat transferts, (ii) the correction of the atmosphere biases and (iii) the correction of

the coupling biases.

Consequently, flux corrections are supposed to be suitable to detect a possible anomaly of

ocean, atmosphere and coupler behaviour, induced by the change of compiler and running

environment.

A good example of anomaly detection is described at paragraph “ARPEGE-NEMIX porting,

optimization and performance tests on PRACE tier0-tier1 machines”.

On a first stage, a 30 year long simulation is performed to calculated these corrections. The

experiment is long enough to be able to distinguish the effect of a possible error on porting

from the interannual-to-decadal atmospheric variability.

The result shown on figure 1 has been produced comparing 2 identical simulations performed

on vector Météo-France NEC SX8R and scalar CINES SGI Altix supercomputers. A regional

zoom is done on North Atlantic Ocean, one of the regions where atmosphere strongly

influences the mixed layer ocean model variability at interannual time scales. Variations of

mixed layer depth is observed in the model, which also implies strong variations of heat flux

anomalies.

Differences of heat flux computed on scalar and vector machines (left figure) appear to be

comparable to differences between the decadal mean (from top to bottom, years 1-10, 11-20

Figure 1: Heat flux correction (W/m2), 30 years mean
difference SGI Altix - NEC SX8R (left) and first 3
decadal anomalies (SGI Altix), same range values

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

20

and 21-30) and the 30 year mean on a single machine (decadal variability). On other regions,

differences are one order of magnitude less important, as water flux correction variations. It

proves that machine dependant differences do not exceed natural variability.

On a second stage, coupled experiments (using flux correction calculated on the previously

described stage) will be performed for further geophysical analyses purpose. Comparing

atmosphere and ocean variability on both machines will definitely allow us to reach a

conclusion about the portability of the high-resolution coupled ARPEGE-NEMIX climate

model on targeted architectures.

Conclusion

Scientifically speaking, NEMIX mixed layer model, if efficient to quickly validate a porting

and to lead to interesting mechanism analysis, is not able to address most of the climate

modeling community problems. Implementation of the fully advective NEMO model will

then be necessary.

For this purpose, NEMO ORCA025-75 vertical levels developed at LEGI laboratory will

replace our NEMIX model. Considering similarity of the codes (same NEMO 3.2 version,

NEMIX configuration only differs with from NEMO on a few routines), this switch should

not be, technically speaking, too problematic but could significantly delay the scientific

validation, much difficult to reach because of the higher complexity of the represented

coupled phenomena, inducing regional coupled biases, wrong heat balance, etc.

At this stage, the priority is not to enhance the performance of our model (though improved

scalability will be required for use of the model on future machines). Due to the increasing

complexity of the model, more computer time is required to find parameters that best fit

machine characteristics.

ARPEGE-NEMIX porting, optimization and performance tests on PRACE tier0-tier1

machines

Overview

A PRACE “Preparatory Access” project gives us the opportunity to reach several technical

objectives on porting, set up on thousands of cores and optimizing the 2-component CGCM

ARPEGE-NEMO coupled by OASIS, at high resolution (720 x 360 x 31 for atmosphere,

1442 x 1021 x 46 for ocean) on the CEA TGCC Bullx Curie platform.

Curie Bullx is a scalar parallel supercomputer with a peak performance of 1.5 Pflops, when

the full configuration (including thin nodes and accelerators) will be installed at beginning of

2012. The Curie Fat nodes (phase 1) part of machine (that we accessed during our Preparatory

access) is composed of 1440 eight-core processors, Intel Nehalem-EX X7560 @ 2.26 GHz

total of 11 520 cores.

Performance

The ARPEGE-NEMO climate model, jointly developed by Météo-France, NEMO and

CERFACS based on components developed at ECMWF and in the NEMO consortium, has

been compiled and run on more than 1000 cores on the PRACE tier-0 “CURIE” Bullx

supercomputer.

Our test configuration requires high resolution components (50km-atmosphere, ¼ degree-

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

21

ocean), to study regional scale / large scale interactions. The ocean model is used on a 1D

mode, as a mixed layer model (as described in chapter “ARPEGE-NEMIX: a simplified high

resolution CGCM for validation purpose on PRACE tier-0/tier-1 machines”), to simplify and

better understand coupled processes and validate porting more easily (comparing results with

those of previously validated simulations on reference supercomputers).

As expected, performances of the coupled system reach 5 days per simulated decades (see

figure 2), which corresponds to the best results observed on present supercomputers. Except

data management problems, this speed allows to comfortably perform decadal (and even

centennial) simulations.

A total of 8179 cores has been used without problems (atmosphere:4082, ocean:4096,

coupler:1). A higher parallelism could be tested on ocean model, but atmosphere model

efficiency seems surprisingly limited to 256/512 cores.

Moreover, the use of a pseudo-parallelized version of our coupler (OASIS3) was still a

bottleneck for the coupled system, as 20% of the elapsed time was spend to perform

interpolations and ensure communications between coupled components.

Coupling enhancement

To try to overcome this problem, it was necessary to modify ARPEGE and NEMO coupling

interfaces to plug the newly developed OASIS3-MCT coupler (see WP4 report on OASIS

coupler enhancements). Allowing parallel interpolation of the coupling fields (as a parallel

matrix-vector product) and their parallel redistribution directly from the source processes to

the target processes , OASIS3-MCT offers an elegant solution to the previous OASIS3

bottleneck.

Figure 2: Performances of atmosphere
(ARPEGE), ocean (NEMO, mixed layer
configuration NEMIX), coupler (OASIS3, always
on 12 PE) and whole coupled model (ARPEGE-
NEMIX) + comparison with previous ARPEGE-
NEMIX performances on SGI Altix

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

22

Interface modifications (from a previously implemented OASIS3 coupling) are very few:

 only « USE mod_prism » instructions differ

 prism_put/get argument arrays size has now to fit exactly prism_define declaration

 namcouple is simplified but has to be modified.

So, generally speaking, it can be considered that a previously developed OASIS3 interface is

backward compatible with the new OASIS3-MCT version.

A beta-version of the new coupler has been used on Curie supercomputer and time spent on

coupling has been compared, using OASIS3 and OASIS3-MCT couplers. As shown on figure

3, slowing down due to coupler process communications bottleneck is basically eliminated,

time spent on coupling being reduced to a few tenth of percent. Efficient coupling of high

resolution component models with OASIS can now be considered as a solved problem thanks

to this new OASIS3-MCT.

Porting issues

Coupled model porting has been affected by various problems, mainly concerned with the

atmosphere part. As a consequence of the many porting realized for several years on scalar

platforms (ECMWF machines, PC, Grids, GENCI supercomputers), our models are now well

adapted to Intel compilers. This experience quickens compilation phase.

Nevertheless, problems can still occur when ARPEGE-Climate parallelism increases. High

resolution configurations are used in a small number of scientific studies and some features,

Figure 3: Percent of OASIS coupling elapsed time
(communications and interpolations) among total
atmosphere-ocean-coupler elapsed time

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

23

such as 2 dimensional partitioning, only necessary on MPP machines, not intensively tested.

Some debugging has been done in the code to overcome problems detected during first steps

of execution. In particular, a problem in the parallelization of the mass correction routine

cormass2.F90 drove a robust bias on surface pressure field over region covered by master

processor.

This bias has been detected checking heat flux correction calculated during an ARPEGE-

NEMIX forced experiment. Figure 4 clearly exhibits unrealistic surface pressure anomaly on

a geographical area corresponding to master processor related sub-domain.

After correction, a six months long simulation was performed on the machine. Comparing it

with similar test experience done on reference NEC SX8R and SGI Altix supercomputers, no

important bias could be detected in the results (mean surface pressure and temperature,

water/heat flux correction). The mean heat flux correction (mean on 6 months only) is similar

to reference.

We consider that our ARPEGE-NEMIX-OASIS3 model is ready to be use at high resolution

for a first scientific validation, following the strategy described on chapter “ARPEGE-

NEMIX: a simplified high resolution CGCM for validation purpose on PRACE tier-0/tier-1

machines”.

Moreover, further developments will lead us:

1. to fully optimize the various components: different compilation options have to be tested

and best performance parameters of the models have to be found (like vectorization length

NPROMA for ARPEGE or ideal partitioning for NEMO)

2. to better balance coupling parameters: load balancing between components, mapping (if

possible) of different executables on allocated nodes (and node cores)

3. to reduce output data amount, organize data post-processing and migration to local storage

disk. This work is crucial for Climate Modeling, considering size of produced data (4Gb/h

in our test, much more on production phase)

References

[1] E. Maisonnave, S. Bielli, and C. Cassou. A climate model with a mixed layer based on

Figure 4: Surface pressure anomaly, hPa, first
6h mean, PRACE tier_0 / NEC SX8R
comparison

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

24

nemo v3.2, Technical Report TR/CMGC/10/54, SUC au CERFACS, 2010

[2] C. Cassou, S. Bielli, H. Douville and E. Maisonnave : Limitations of the AMIP protocol to

investigate extratropical climate events at seasonal timescale : the 2003 European heatwave as

a case study, personal communication

[3] Y.-O. Kwon, C. Deser, and C. Cassou. Coupled atmosphere-mixed layer ocean response to

ocean heat flux convergence along the kuroshio current extension. Climate Dynamics,

36:2295,2312, 2011, 10.1007/s00382-010-0764-8

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

25

EC-Earth modelling system on MareNostrum Supercomputer: porting and performance

experience

Contributors: O. Jorba, K. Serradell, L. Telloli

Objectives

Several versions of the EC-Earth model have been ported on MareNostrum supercomputer.

The purpose of the present document is to describe and summarise the main issues related to

the portability and performance of the EC-Earth model on the MareNostrum supercomputer.

From the experience of this effort, some recommendations are presented to simplify the task

of porting a complex Earth System Model like EC-Earth to complex High Performance

Computing environments. This report complements the work presented in D8.2 – “Report on

the Description of the Evaluation Suite and Base-case Results”, chapter 5, “Porting and

performance analysis of EC-Earth system on MareNostrum Supercomputer”.

A brief description of the MareNostrum supercomputer and the EC-Earth model is presented

in Section 2 and 3, respectively. Section 4 describes the porting issues encountered during the

implementation of several versions of the EC-Earth model on the MareNostrum

supercomputer. A trace analysis of an EC-Earth execution is presented in Section 5, focused

on the identification of those parts of the code that show some possible performance

improvements in the future.

HPC environment: the MareNostrum supercomputer

The MareNostrum supercomputer is a high performance computing facility hosted by the

Barcelona Supercomputing Center (BSC). It was built in March 2004 and has been upgraded

in one occasion. The next upgrade is planned for 2012. The supercomputer is a node of

DEISA2 and it is included in PRACE initiative as a Tier-1 machine. With the next upgrade, it

will be included in Tier-0 infrastructures.

The main technical characteristics of the system are described in detail in the following link:

http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture/. A brief

description of the infrastructure is presented here.

The MareNostrum supercomputer is based on processors PowerPC, architecture BladeCenter,

Linux operating system and Myrinet interconnection. MareNostrum has a total of 10240 IBM

Power PC 970MP processors. The Peak Performance of the system is 94.21 Teraflops. Each

Blade Center has 14 server blades type JS21. Each of these nodes has 2 PowerPC 970MP

processors (each processor has two cores and note that cores are referred to as CPUs in this

section) running at 2.3 GHz and 8 Gb of shared memory. MareNostrum has 20 storage servers

arranged in 7 racks that work with Global Parallel File System (GPFS), which offers a global

vision of the file system and also allows a parallel access. Default compilers in Marenostrum

are IBM XL C/C++, and IBM XL FORTRAN. In addition, the GNU C and FORTRAN

compilers are available.

Several numerical libraries and several application packages are installed in MareNostrum

(http://www.bsc.es/marenostrum-support-services/available-software).

The EC-Earth model

The EC-Earth model, European Community Earth system model, is one of the Earth System

Models contributing to the Coupled Model Intercomparison Project (CMIP-5). It is developed

by several European National Weather Services and research groups. It is based on the

seasonal prediction system of European Centre for Medium-Range Weather Forecasts

http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture/

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

26

(ECMWF) [Hazelenger et al, BAMS].

The modelling system consists of two main components and a coupler: an atmosphere,

chemistry, land and vegetation model and an ocean and sea-ice model. Each of these two main

components contains various sub-components, which represent physical processes, and

climate-related biological and geochemical processes. These models communicate with each

other through a coupler. The used programming languages are FORTRAN and C [Brandt,

2010].

The atmospheric component is based on the Integrated Forecasting System (IFS) of ECMWF.

The basic configuration contains 62 levels in the vertical, and an horizontal grid of 1.125

degrees spacing (125 km). The chemistry of the model is based on the TM5 module, which is

included online in the IFS model. The land-vegetation model is the Tiled ECMWF Surface

Scheme for Exchange processes over Land (HTESSEL) and it is part of the atmosphere

model.

The ocean and sea-ice model used within EC-Earth is NEMO (Nucleus for European

Modelling of the Ocean). The approximate resolution of the ocean model is 1 degree with a

refinement in the southern pole. It uses 31 vertical layers. The sea-ice model is the Louvain-

la-Neuve sea-Ice Model (LIM).

The EC-Earth has been ported over different high performance computing platforms (e.g.,

IBM P6 AIX, CRAY XT-5, Intel-based Linux Clusters, SGI Altix, MareNostrum) at different

sites in Europe (e.g., KNMI, ICHEC, ECMWF). The development of the different model

versions was as follows:

 Version 0: Uncoupled model IFS CY31R1

 Version 1: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2)

 Version 2.0: Coupled model (IFS CY31R1– OASIS3 v2.5 – NEMO2/LIM2), with

local ECMWF modifications and EC-Earth developments.

 Version 2.2: CMIP5-ready coupled model (IFS CY31R1– OASIS3 v2.5 –

NEMO2/LIM2)

 Version 2.3: updated version 2.2

 Version 3.0: Coupled model (IFS CY33 – OASIS3 v2.5 –NEMO3/LIM3) – beta

subversions

Porting experience of EC-Earth on MareNostrum

Several versions of EC-Earth have been ported (compiled and run) in MareNostrum: version

2.0, 2.1, 2.2 and 2.3. Detailed instructions for compiling and running the model in its version

2.0 are found in Stefanescu, 2008. However, significant extra effort was required to compile

the model on MareNostrum. In this section, we present the main efforts undertaken to port the

model to MareNostrum system, focusing on: machine access, compilation and build, setting

up and model run, debugging and testing, input and output file management.

The EC-Earth model is programmed in Fortran and C languages and uses some external

libraries for mathematical, I/O and parallelisation issues. Prior to any porting effort, several

packages are required in the targeted HPC system (ksh, perl, mpi1, fortran90-95 compilers,

openMP and netCDF). All the required packages are widely used and did not represent an

issue to finding or porting them on MareNostrum.

MareNostrum is an IBM machine that runs with Linux operating system. This may cause

some problems when porting codes developed on other architectures. In this sense, some

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

27

specific settings for the MareNostrum architecture are needed, and a search task has to be

done prior any successful compilation of the code.

The porting of the EC-Earth model was complex and took a large amount of time for versions

1, 2, subversions 2, but importantly improved in version 3. Here we describe the main issues

related with version 2.3, and how most of them improved in version 3. From all the

components of the model, the main porting issues were related with the IFS atmospheric

component. The OASIS and NEMO portings were straightforward (specification of

MareNostrum compiler environment and options are included in the main configuration file).

Thus, the following description mainly focuses on the IFS porting.

Machine access:

The access to MareNostrum system is done through SSH connections. It is a standard on

DEISA and PRACE systems, and it is not considered a specific problem. The limitation may

be found in the band-with connection to the system. The MareNostrum uses a gigabit network

connection for the Input/Output of information to the system. This allows a high transfer rate,

but the user connection network becomes the limitation. It is usual that user experience some

problems downloading the datasets from MareNostrum. The large amount of data generated

in the system is not easy to handle, and specific strategies for the movement of datasets should

be designed prior any execution effort.

Compilation and build:

Some minor modification in the source code of IFS were needed to compile versions 2 and

subversions. The code include some #ifdef statements specific for AIX, Cray and other

architectures. Due to the particularities of MareNostrum (hybrid IBM and Linux environment)

a specific case was included in the code.

The recommended compilers in MareNostrum are IBM XL compilers. This type of compilers

do not include by default the underscoring in the Fortran routines, which it was required by

the C code that calls Fortran routines in the original EC-Earth code. Thus, several routines

need a specific forcing of the underscore by the compiler. This is done through the compiler

flag –qextname. Several routines need this procedure:

qextname=utdec,utopen,utinv,utfree,utmake,utdiv,etime,dtime,utmult,utscal,utenc,utcut,flush,u

tcvt,utexp,utorigin,uttime,utcaltime,utcpy,flush,abor1,follow,addrdiff,broadcint,broadcreal,c_d

rhook_init_signals,c_drhook_print,dr_hook_util,dr_hook_util_multi,ec_getenv,ec_mpi_atexit,

ecmwf_transfer,ec_numenv,ec_putenv,ecqsort,ec_raise,ec_strenv,fft992,getcurheap,getmaxstk,

get_opt,getpag,getrss,getstk,gstats,gstats,follow,gstats_label,gstats_label,follow,gstats_print,g

stats_psut,gstats_setup,hostnm,ifssig,ifssigb,isrcheq,isrcheq,follow,isrchfge,isrchflt,minv,minv,f

ollow,mxmaop,mxmaop,follow,profile_heap_get,rdot,rg,rsort32_func,rsort64,rsum,set99,sgtsl,

sigmaster,user_clock,bubox,bucrkey,bufren,bufrex,bunexs,bunpck,bunpks,bupkey,buprq,buprs

0,buprs1,buprs2,buprs3,buprt,buprtbox,bus012,busel,busrq,buukey,fmmh,pbbufr,setlalo,c_drh

ook_start,c_drhook_end,abor1fl,cdrhookinit,cdrhooksetlhook,drhookprocinfo,drhookprt,c_dr

hook_set_lhook,c_drhook_init,dr_hook_procinfo,dr_hook_procinfo,irtc_rate,dr_hook_prt,dr_

hook_prt

 In addition to the changes described above, a particular compilation for IFS was needed for

versions 2.1, 2.2 and 2.3 as a result of an incompatibility of the IFS software and the compiler

XLF version 12.1. After extensive testing, a two step compilation approach was used to

compile IFS within EC-Earth using XLF version 10.1 and 12.1 compilers. Compiling all IFS

with XLF v10.1 was not feasible as other modules within EC-Earth were only available for

the new XLF v12.1 compiler.

The structure of compilation files included in IFS is rather complex and this is therefore also

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

28

the case for EC-Earth. There exists a general compilation file for EC-Earth where the

environment variables and some compilation flags are defined. However, several modules of

IFS also contain a specific configuration file that needs some adjustment. This results with an

arduous task of identifying the configure file that needs modifications. Some of the modules

need some specific compilation flags that should be defined properly to succeed with the

porting.

Once a successful porting of the model is obtained, the porting of a next version is more

straightforward, but there are always some routines or parts of the code that require specific

attention.

Setting up and model run:

MareNostrum uses a batch processing support, so all jobs must be run through it. The batch

system used in MareNostrum is a combination of two softwares: 1) SLURM, developed at

Lawrence Livermore National Laboratory and designed for large clusters, which works as a

resource manager and 2) MOAB, developed at Cluster Resources company, which works as a

job scheduler. The user then needs to specify the number of CPUs (i.e. cores) allocated for

each task. This is useful for hybrid MPI+OpenMP applications, in which each process spawns

a number of threads. The number of CPUs per task must be between 1 and 4, since each node

has two dual core processors resulting in a total of 4 CPUs (or cores) one for each thread. It is

important to note that OpenMP settings are globally defined for a whole run. It is also

possible to define the number of tasks allocated in each node. When an application uses more

than 1.7GB of memory per process, it is not possible to have 4 processes in the same node

because of an 8GB memory limit. Due to this special configuration, the submitting batch

script to send an EC-Earth run to the MareNostrum queues is different to that required on

other platforms.

Debugging and testing:

The domain decomposition for IFS and NEMO is defined in the compilation files. A specific

executable is then associated to a specific domain decomposition and number of processors. If

the user is performing some test or scalability studies, the code must be recompiled. This may

be overcome if the domain decomposition is included through a namelist file or similar,

instead of defining it in the compilation file.

Totalview, Paraver, Dimemas software tools have been used to debug and test the EC-Earth

model in MareNostrum. Some specific tasks related with the analysis tools were undertaken,

but did not interfere with the EC-Earth porting.

Input and output file management:

No problems were encountered in the management of Input/Output of the EC-Earth model.

The GPFS file system of MareNostrum performed well with the EC-Earth I/O design. For

future applications, a more advanced I/O approach should be implemented within EC-Earth in

order to take advantage of parallel I/O.

Most of the problems encountered with version 2.0, 2.1, 2.2 and 2.3 were overcome in beta

versions 3.0. A specific parser has been developed in versions 3.0 of the EC-Earth model.

Now, there exists a general configuration file, an XML file, where all the compilation options

for all the modules and submodules are specified. This strongly simplifies the porting task of

the model in MareNostrum. There are still some files with #ifdef statements that should be

checked carefully and adapted to the MareNostrum architecture characteristics.

With the experience acquired in the porting of EC-Earth, it can be said that there aren’t major

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

29

problems in the programmability of the system or the coupling structure. Some old and

inherited complex structure of the coupled system hampers the porting exercise, but this has

been circumvented in version 3.

Performance of the model on MareNostrum: trace analysis

The Paraver software is used to analyse the performance of the EC-Earth model in

MareNostrum. Paraver is an open source performance visualization and analysis tool

developed in BSC. Figure 1 shows an example of one of the Paraver visualization modes:

colors indicate the CPU states (e.g., running, waiting for communication, synchronization,

group communication, communication send, I/O), the xaxis represents time, and the yaxis

represents the different CPUs (e.g., 1 for OASIS, 100 for IFS and 32 for NEMO in our

example). Paraver provides several time statistics for analyses.

Figure 1: Example of a Paraver graphical view. OASIS, IFS and NEMO are run with 1, 100

and 32 CPUs, respectively. The X-axis represents time and the Y-axis represents the different

CPUs (1 for OASIS, 100 for IFS and 32 for NEMO in this example).

In this Section, a raw-trace analysis of an EC-Earth run is discussed. The model run is

configured with 1 CPU for OASIS coupler, 100 CPUs for IFS atmospheric model and 32

CPUs for NEMO ocean model. The discussion focuses on the communication pattern of the

atmosphere and the ocean models and some parts of the code are selected to exemplify load

balance problems between processors and serialization patterns that may be optimized by

analysing the code in detail. No optimizations are presented in this report.

Figure 2: Visualization of 3-hour run. The red square indicates the zoom in the IFS execution

shown in Figure 4, the blue square the zoom in the NEMO execution shown in Figure 5 and

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

30

the green square the zoom shown in Figure 6.

Figure 2 shows a visualization zoom of a 3-hour run. The first row of the image presents the

activity of the coupler. The white colour represents a MPI_receive state, meaning that the

coupler is waiting the end of an execution of the atmosphere and ocean (communications

every 3 h). Once the atmosphere is ready to send information to the coupler, the white colour

changes to blue, indicating that the coupler starts its computation work. The central part of the

image, rows 2-101 represent the atmospheric model execution. The light blue represents

computation while the other colours are MPI states. The distribution of execution shows that

IFS uses several MPI_Bcast to structure the execution of the code. On the other hand, rows

102-134 shows the CPU state for the ocean execution, where no MPI_Bcast calls are

identified. For parallel applications the latter approach is preferred if the application is well

load balanced. In the analysed configuration, the wall-clock time of an IFS and NEMO

execution and coupling are not balanced, thus the CPUs of NEMO are waiting IFS end

execution. It is important to note from this trace, that IFS is spending a long time in a

broadcast (MPI_Bcast). Such behaviour can be attributed to a poor performance of the

interconnection network of MareNostrum, that under some conditions of overloading

performance is lost.

The communication pattern between CPUs will provide useful information on the

performance of the model. In highly parallelised codes, a key issue is the limitation of

communication between nodes. Figure 3 shows the communication pattern of the EC-Earth

model.

Figure 3: Communication pattern of EC-Earth run (Green: low amount of bytes sent between

processes; dark-green: medium amount; blue: large amount). Black square limits IFS

processes, and red square limits NEMO processes.

In this visualisation, the total bytes sent between processes are displayed (light green: low

amount of communication; dark green: medium amount of communication; blue: large

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

31

amount of communication) in an array structure, where x-axis and y-axis are the processes.

The diagonal represents the communication of process n with process n, and thus, there is no

transfer, outside the diagonal the communication of process n with process m is displayed in

colours. The structure of the model is well identified in the image. The coupler communicates

homogeneously with all processes of the atmosphere and the ocean. The communication

pattern for IFS (black square) is more complex than for NEMO (red square).

In IFS, a rather complex pattern of communication is identified between processes. During an

iteration, a process communicates with a group of 20 neighbour processors, and with 6

processors away from it. More communication is detected in the poles, where a group of 10

processes interchange larger amount of data than in the centre of the domain. Additionally,

communication with the 10
th

 neighbour processor is larger than with the prior 9.

Regarding NEMO communications, each process communicates with its 4 neighbours. There

are specific processors that exchange a large amount of bytes (blue colour), creating a group

of communications every 4 processors. Such structure is characteristic of finite difference

partial differential equation models, where the domain discretization is done in the x-y plane.

It is also important to note that there is no master process communicating with all the CPUs of

NEMO. This implementation benefits the reduction of communication among processors.

Overall, Table 1 summarizes the average time spend by processes in computation and

different communication states (specific MPI call). The statistics are obtained from all the

trace presented in Figure 1. Results show how the MPI_Recv state is dominant in the coupler

and ocean modules, while the atmosphere spends most part of the time in an MPI Broadcast.

We believe that such performance is attributed to a low performance of the interconnection

network of the supercomputer. The coupler spends most of the time waiting for the model

results of the ocean and atmosphere. The ocean spends 34.26% of the time computing and

62.91 receiving information from the coupler. The statistics of the atmosphere are strongly

affected by the weight of the Broadcast, however it is important to note that 2.34% of the time

the processes are in an MPI_Barrier. The computation time of IFS represents 15.16% of the

total time of the trace. Note that the trace includes initialization time.

Table 1: Average time (%) spend by processes in computation and MPI states.

With the aim of showing some examples of load balancing and serialization issues within IFS

and NEMO, we present a visualization zoom of some parts of the IFS execution and then

some parts of the NEMO code. Note that Paraver allows the instrumentation of both user code

routines as well as MPI routines. Figure 4 shows a zoom within the IFS execution where the 3

hour run cycle can be clearly identified with a repetition pattern. From this zoom, we

identified two examples of load imbalance in subroutines slcomm2a and trtgtol (light green,

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

32

green). The processes spend a significant time in both routines. From Figure 4 the load

balance problem of trtgtol routine is clearly appreciated, but not in slcomm2a. Figure 5 shows

a zoom cantered in the zone where the processes are executing the slcomm2a routine.

Figure 4: Visualization zoom of the IFS execution subroutines. Three hour run cycles are

identified. Figure 2 displays the location of the zoom. Subroutines slcomm2a and trtgtol

colours are displayed in the bottom of the figure.

The visualization of Figure 5 is configured to show the MPI states of the execution of the

routine slcomm2a. The pattern of the trace clearly shows important load balancing problem

among processors. On the average, the processors are computing 39.08% of the time,

receiving information 34.05% and waiting in an MPI_Barrier 26.87% of the time. However,

the maximum time in computation is a 70.50% of the total time and the minimum time

represents 28.63%. This means, that there are processes that only spend 30% of the time

computing, while others spend 70%. This indicates a low parallel performance, with a ratio

parallelization of 0.55 in the computation time, 0.61 in the receiving time and 0.58 in the

barrier (the ideal ratio of parallelization is 1 for perfect parallel codes). These statistics clearly

indicate that within the slcomm2a subroutine exists large imbalances that may be improved by

examining the code in the communication layer.

Outside

MPI MPI_Recv MPI_Barrier

Average 39.08% 34.05% 26.87%

Maximum 70.50% 56.27% 46.35%

Minimum 28.63% 20.62% 0.06%

Avg/Max 0.55 0.61 0.58

Figure 5: Zoom of the code execution of the slcomm2a subroutine of IFS. Colour legend at the

right hand side of the figure. Outside MPI means computing time.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

33

A second example of load balance problems is identified in trgtol subroutine (Figure 2 green

square, Figure 4 green colour and Figure 6). Figure 6 visualizes the MPI states within the

trgtol routine. Again, we can clearly identify processes that spend a long time in the

MPI_Recv state, others with larger computation cost, and a large number of processors

spending near half of the total time in an MPI_Barrier. The parallelization ratio remains below

0.6 for computation, MPI_Recv, and MPI_Barrier. This indicates that the processes are not

well balanced. Such behaviour can be inherent to the problem that the routine is solving, or in

some cases is an indication of some program deficiencies. Further work would be oriented in

analysing the routine and identifying the reasons why some processes spend such large time

in receiving information or waiting in the barrier. In parallel codes, it is recommended not to

use a large number of barrier calls. A well-balanced code may not need the use of any barrier.

Outside

MPI MPI_Recv MPI_Barrier

Average 38.25% 32.85% 28.90%

Maximum 93.42% 93.54% 51.86%

Minimum 2.10% 2.33% 0.04%

Avg/Max 0.41 0.35 0.56

Figure 6: Zoom of the code execution of the trgtol subroutine of IFS. Colour legend at the

right hand side of the figure. Outside MPI means computing time.

Finally, we present an example of serialization encountered in the NEMO ocean execution of

EC-Earth. Figure 7 presents a visualization centred over the 32 NEMO processors. The upper

panel shows the MPI callers from where we can identify what part of the code is in execution

by each processor. A clear serialization pattern appears in this view. Such serialization will

produce a delay in the code, more relevant when we increase the number of processors

executing NEMO. In this sense, this is a clear candidate to improve for future applications of

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

34

the model with a large number of processors. The routine involved in this part of the code is

the mpp_lnk_3d. It appears at first glance that the processors communicate in groups of 4. To

corroborate that, the middle panel of Figure 7 displays the MPI states and the communications

between processors. A zoom of the first 8 processors is presented in the bottom panel of

Figure 7. From such views, one can identify the communication pattern. There is a master

processor that sends information to next three processors and after some computation time

sends and receives information from the other processors. After that, the masters

communicate with the next group of 4 cpus, sending some information. This structure is

repeated among all the processors. After analysing the routine involved in such

communication pattern it could be possible to provide an optimization approach where the

communication patter could be simplified and the staircase structure could be strongly

converted to a more parallel pattern.

Figure 7: Visualization of an execution part of the NEMO model. Upper panel: visualization

of routine executions (violet colour: mpp_lnk_3d routine); middle panel: same zoom showing

MPI states and communications between processors; bottom panel: zoom of middle panel

view of 9 processors).

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

35

The trace analysis is a powerful tool that help identifying some parts of the code that have a

poor parallelization degree. From a starting point where we do not have any information about

the code and how it performs in a highly parallelized environment, the Paraver software easily

contribute in identifying those parts of the code where serialization or load balance problems

occurs. After a first inspection of the trace, we identify those parts of the code that are

repeated in the time cycle and with several visualization layers and zooms one can search for

communication patterns or structures that are candidates to be improved for a better efficiency

of the code. It is important to note that the same code will behave different under different

architectures. In our results, the communication network of MareNostrum strongly impacts in

the code performance with delays in some communication levels. Overall, we have shown a

couple of routines where some improvements could strongly impact on the degree of

parallelization of the code.

Summary and conclusions

Porting an ESM on a new architecture is a complex task. The experience of porting the EC-

Earth model on MareNostrum supercomputer has provided some insights on how could this

process be simplified. An ESM is a metamodel with several modules and dependent libraries.

Some standard libraries are usually installed in the target architecture. In the MareNostrum

case, the NetCDF, openMP, MPI were already implemented. Most of the problems

encountered during the compilation of EC-Earth were related with the IFS model. It is

important to note that nor the NEMO model neither the OASIS coupler were difficult to

compile in MareNostrum. Thus, the layer of configuration and compilation of an application

is of critical relevance in a porting exercise. The main difference between IFS and NEMO or

OASIS is that in versions v2 of EC-Earth, the configuration files of IFS were not centralized,

and several files located in different directories required special attention prior the

compilation. Furthermore, not all parts of the IFS demand the same compilation options. This

makes the compilation process difficult. In recent versions of the model, EC-Earth v3, the

code incorporates a build environment that strongly simplifies the porting process. Now, only

a unified configuration file contains all the required information for the compilation.

Thus, a recommendation would be directed to porting ESM models or toy-versions of the

models in most supercomputer platforms at European level. The experience acquired in a

porting exercise of a model should be maintained within the model structure. In this sense, the

experience of widely spread community codes like WRF or CMAQ indicate the way to follow

within the climate community. An extensive exercise of porting the codes on several

architectures would provide the details required to strongly simplify the installation of such

complex codes in new architectures, where several configuration options would provide the

best starting point for porting the model. Moreover, if several libraries and applications are

already implemented in HPC centres (NetCDF, Blas, Lapack, oasis, nemo), a porting exercise

would be much affordable that it is nowadays.

Several versions of the EC-Earth model were successfully ported to the BSC MareNostrum

supercomputer, a system based on IBM PowerPC 970MP processors and run under a Linux

Suse distribution.

The EC-Earth performance was analysed with respect to trace analysis with the Paraver

software. Examples of load imbalance and serialisation within IFS and NEMO models have

been presented and discussed. Several options appear for performance improvement of the

codes. However, the current numerical approaches of the model, spectral transform regular

lat-lon grid in the case of the IFS strongly limits its scalability, and a new numerical solutions

are required to improve the system. In this sense, finite-volume, spectral elements, new

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

36

decomposition grids appear as new options from where current models should evolve.

Acknowledgments:

We wish to thank Xavier Abellán from the BSC Operations team for their help porting and

running EC-Earth in Marenostrum, and Judit Giménez of Computer Sciences Department of

BSC for her help on the analysis of Paraver traces.

References:

Hazeleger, W. et al., 2009. EC-Earth: A Seamless Earth System Prediction Approach in

Action, accepted, Bull. Amer. Meteor. Soc.

Martijn Brandt, EC-EARTH- the European Community Earth system model, March 2010

[http://ecearth.knmi.nl/EC-Earth_model_documentation.pdf]

Stefanescu S., Standalone environment for compiling and running the EC-EARTH system,

Technical Note, April 2008 [http://ecearth.knmi.nl/ecearth2.pdf].

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

37

High Resolution EC Earth Porting, Benchmarking on CURIE

Contributors: Chandan Basu
1

1
 National Supercomputer Centre, Linköping University, Sweden (LIU)

Introduction

The EC-EARTH
1
 is an earth system modeling application. The three main components of EC-

EARTH are IFS (for atmosphere), NEMO (for ocean) and OASIS (for coupling). We have

benchmarked a high resolution version of the EC-EARTH configuration for scaling. The

ocean component used for this configuration is ORCA025 which is a 1/4° global

configuration. The atmosphere component uses T799 resolution. The source code of NEMO is

v-3.2, the IFS version is Cycle 36r1 and the coupler is OASIS3. For our benchmarking and

porting exercises the source code of EC-EARTH, with necessary modifications, input files

and run scripts is obtained from SMHI
2
. The system used for our scaling studies is Curie

3

which is a petaflop machine in Europe. The work is also part of a PRACE project on the

petascaling of EC-EARTH (work packages 7.2 & 7.5) in which we are involved. The

performance of any MPI program may depend on various components, e.g., compilers, MPI

libraries, network, file system, processor technologies etc. As EC-EARTH is a large and

complex program its porting on a new machine is a considerable challenge. After porting to a

new machine, the performance and scaling of the code needs to be evaluated. The goal is to

figure out the bottlenecks and to look at suitable strategies to improve the scaling. To do our

porting and scaling tests on Curie we follow a work flow which makes our porting work

systematic. The same work flow can be followed in other systems for a better porting

experience.

Test system : The hardware and the software of Curie system used by us is given in Table 1.

Table 1

System Curie

Processor Intel(R) Xeon(R) CPU X7560 @ 2.27GHz

1 http://ecearth.knmi.nl/

2 Swedish Meteorological and Hydrological Institute

3 http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

http://ecearth.knmi.nl/

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

38

Interconnect InfiniBand QDR Full Fat Tree network

Node 32 cpu cores

MPI processes / node 32

global filesystem Lustre

Compiler Intel compiler v-12.1.1.256

MPI bullxmpi v-1.1.8.1

Work flow for Porting

In modern supercomputers often environments are different from one system to another. So

porting a complex code on a new system is always a formidable challenge. Often large codes

try to tackle this problem in terms of different per-processor flags to choose compiler, parallel

/ serial compilation etc. While this approach addresses the problem to some extent, still each

system poses its own unique issues. In our porting work we have tried to create an identical

environment across different systems for more convenient porting experience. We will

describe our work-flow here.

 Basic work flow : We have created a simple configuration script where we define all

the environment and the repeatable steps using command aliases and scripts. Also in

this configuration script one has to enter some information, e.g., work directory, run

directory etc. These settings are then written to an environment file by the

configuration script. When screen session is launched by the configuration script these

settings are read and loaded in the shell. For each task / activity the configuration

script will :Note examples of all script files etc. are available on request from the

author.

1.1 Start a screen session with multiple child screens. Screen is a basic linux utility.

Using screen utility one can manage multiple windows efficiently. This is useful

as often it is needed to have multiple windows open. Moreover screen sessions

can be resumed even if the remote connection is snapped due to some reason.

1.2 Define a set of useful command aliases, scripts, environments relevant to a job:

These aliases are available on all child screens launched by the configuration file.

1.3 Each work / activity runs under its named screen window launched by the

configuration file. Multiple work / activity can be run simultaneously by

launching multiple different configuration files with unique environment for

each, e.g., one configuration can load OpenMPI while another configuration can

load Intel's impi and both can be run simultaneously without affecting each

other.

1.4 This is also useful if for porting or benchmarking purpose we locally install test

software, e.g., some MPI. For such test installations normally job schedulers will

not export all the necessary paths. Through our configuration settings we can

export all these paths easily to run jobs on cluster in such cases.

2. Starting a sample configuration called “test” on Curie with multiple child screens :

2.1 mkdir -p ~/config. This is the root directory for storing configuration files. The

main configuration file called “test” is located here.

2.2 mkdir -p ~/config/scripts/test. All the other scripts related to the configuration

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

39

“test” are kept here

2.3 mkdir -p ~/config/comment. Folder for keeping notes, comments. For the

configuration “test” a file ~/config/comment/test will be created automatically.

2.4 In the ~/config folder create the configuration file called test.. In the ~/config/test

file changes that may be made are in a block marked EDIT where suitable values

may be sepcified.

2.5 In the file ~/config/test we have defined few frequently used command sequences

through aliases.

2.6 Some aliases require some other scripts. These commonly used scripts are

defined in a script called ~/config/scripts/test.

2.7 chmod +x ~/config/test

2.8 Create a sample .screenrc file in ~/config

2.9 Append the .bashrc file with the following lines :

if [-f ~/config/env]; then

x=`find ~/config/env -mmin -1`

if [-n "$x"]; then

source ~/config/env

fi

fi

2.10 These lines will not affect the .bashrc behavior except for the next step

2.11 Run ~/config/test. This will create / resume 5 child screens named test. To jump

to a particular window press Ctrl-a n where n is the window number.

2.12 Once the screen session is started start working under that environment.

Typically this starts with copying the source code related to work to the root work

directory as defined in the ~/config/test file.

2.13 The paths / aliases / scripts defined / pointed in test file are available to all the

child screens. So for this example on any screen window named “test” :

1.1.1 pressing b will change directory to root work directory.

1.1.2 Pressing c will open a file ~/config/comment/test appending a current

date stamp. This is convenient for keeping notes

1.1.3 Pressing t will create a backup of root work directory named with time-

stamp. Some rules for inclusion / exclusion of files are already defined in the

files backup.sh and exclude.txt which can be modified according to the

requirement.

1.1.4 Pressing s will will open a dummy job script and upon closing this job

will submitted to the scheduler.

1.1.5 Pressing j will show the job statuses.

1.1.6 intel compiler version 12.1.7.256 and bullxmpi version 1.1.8.1 will be

available

2.14 If the screen session is disconnected due to some reason the process running

under screen will not die. The processes running under screen can again be

accessed by doing step 11 above.

For actual work the configuration script ~/config/test should be given a relevant name. The

configuration script's relevant portions should be modified to suit the work requirement. All

the directory structures will be created by the configuration script itself but other work

specific script files, e.g., backup.sh, run.sh etc. have to be manually copied or created. This is

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

40

done only once. All the frequently used command sequences can be easily defined this way.

This comes very handy while working. One need not have to think about loading correct

modules / libraries / binaries in each terminal window as they are opened with correct

settings. Also different configuration files can be created for trying different things

simultaneously. In porting work often it is needed to try different compilers. So for each

compiler one configuration file can be created. Both the configurations can be run

simultaneously. Moreover if this configuration is moved to another system then the relevant

portions in the configuration file can be modified to suit that system. After launching the

configuration file in the new system it will give similar environment as the old system.

Compiling EC-EARTH on Curie

We describe below the steps of EC-EARTH compilation:

1. The configuration file used for compiling / running the hres version of EC-Earth is called

~/config/ecearth_hres.(Specific configuration files are available on request to the authors).

The compiler, mkl, mpi and other libraries needed for the compilation are defined here.

2. The important thing in the EC-EARTH compilation is to set up an appropriate xml file

with description of system specific settings for package paths, compilers, flags, libaries

etc. This file is ~/config/scripts/ecearth_hres/curie.xml. In this file paths for blas, netcdf

etc. are specified in accordance with the modules that are defined in ~/config/ecearth_hres

3. Start the configuration by running

$~/config/ecearth_hres

4. Copy IFS, NEMO and OASIS source code and other related scripts in the root folder

defined in the configuration file ~/config/ecearth_hres

5. In any of the screen windows run clean command by pressing c. The clean command c is

defined in the configuration file ~/config/ecearth_hres. This cleans all the previous

installations if any.

6. Press m to start make of EC-EARTH. This first opens a compilation script

~/config/scripts/ecearth_hres/build.sh. Here one can choose which part of the ec-earth to

compile. Upon closing file the actual compilation will start. As the compiler, netcdf, blas

and mpi libraries are already preloaded in the environment it is not needed to load them

any more.

Running high resolution EC-EARTH

EC-EARTH compilation produces multiple binaries, one each for NEMO, OASIS and IFS.

The bullxmpi that is available on curie is capable of launching MPMD runs. Moreover an

accurate placement of binaries is important for better performance.

EC-EARTH run requires a large number of input files. The input files are namelist files or

data files. The namelist type files are input files describing different parameter values which

control the flow of run. The data files generally contain initial / boundary / restart values

obtained from some previous runs or from some other experiments. The data files are stored

in a common place and accessed from there.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

41

The EC-EARTH run is started by a run script which is given to the scheduler. In our porting /

scaling experiments we need to do a large number of test runs. We try to do it in a way so that

we can analyze the timing results in systematic way.

We do all our work under the ecearth_hres configuration which is launched by the script

~/config/ecearth_hres. Under this configuration to submit a job one needs to press s. The

command s is defined in the configuration file ~/config/ecearth_hres. This command executes

the following steps sequentially:

 open a file called ~/config/scripts/ecearth_hres/wr.sh. In this file the cpu cores

required for OASIS, IFS & NEMO are specified.

 Next the file called ~/config/scripts/ecearth_hres/run.sh is opened. In this script all the

necessary steps for preparing a run, e.g., copying data creating namelist files based on

run parameters etc are given.

 Based on the parameters provided in the above 2 steps a final runscript is

automatically generated which is submitted to the scheduler.

As EC-EARTH is a multi binary run exact specification of binary – rank – node map is

important for optimized run. For optimized run each component runs on sepecific group of

nodes. Also due to the specific requirement of the EC-EARTH OASIS should get the 0 -

(oas_numproc -1) ranks where oas_numproc is the #of OASIS procs. For bullx MPI

implementation this is achieved by creating an appfile and then giving the appfile to mpirun,

e.g.:

mpirun -f appfile.

A typical appfile looks like :

-hostfile oas_nodes -np 10 -x LD_LIBRARY_PATH -x OASIS3 -x OASIS3DEBUGLEVEL

-x LOCAL_DEFINITION_TEMPLATES oasis3.MPI1.x

-hostfile ifs_nodes -np 512 -x LD_LIBRARY_PATH -x DR_HOOK_IGNORE_SIGNALS -x

OASIS3 -x OASIS3DEBUGLEVEL -x LOCAL_DEFINITION_TEMPLATES ifsmaster-

eexcon -v ecmwf -e HRES

-hostfile nem_nodes -np 320 -x LD_LIBRARY_PATH -x opa-eexcon

In the above appfile example OASIS runs on 10 cpu cores, IFS runs on 512 cpu cores and

NEMO runs on 320 cpu cores. OASIS, IFS and NEMO runs on nodes specified in files

oas_nodes, ifs_nodes and nem_nodes respectively. The appfile and the nodelist files

oas_nodes, ifs_nodes and nem_nodes is generated dynamically for every run based on the

parameters specified in the step 1 above.

Scaling of High resolution EC-EARTH on Curie

The scaling of EC-EARTH run depends on choice of input parameters especially the coupling

frequency, i/o frequency etc. We have chosen following parameters for our runs :

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

42

cpl freq = 3 hrs

run length = 48 hrs

ifs time step = 720 s

Frequency of history write ups = 30 ifs time steps

Frequency of spectral diagnostics = 5 time steps

nemo time step=1200 s

lim time step=3600 s

nemo frequency of write in the output file = 72 nemo time step

In a 48 hour run we have all the significant steps repeated a number of times. So although the

total runtime is small it is indicative of scaling behaviour. The results of our runs are shown in

Table 2 and Figure 1 and Figure 2. In figures 1 & 2 we have shown the normalized run times.

Table 2

MPI processes
step

average time/step (s)

only comp

steps

only io

steps

all

steps Total NEMO IFS OASIS

394 256 128 10 240 6.61 15.21 8.30

650 256 384 10 240 2.55 5.92 3.20

778 256 512 10 240 2.03 4.76 2.55

906 256 640 10 240 1.72 4.05 2.15

1034 256 768 10 240 1.53 3.54 1.90

1162 256 896 10 240 1.40 3.24 1.74

1290 256 1024 10 240
1.28

2.95 1.59

1418 256 1152 10 240 1.17 2.68 1.44

1546 256 1280 10 240 1.09 2.53 1.35

1610 320 1280 10 240 1.11 2.62 1.38

1866 320 1536 10 240 1.02 2.62 1.31

2634 320 2304 10 240 0.83 2.86 1.20

3402 320 3072 10 240 0.81 2.87 1.21

3482 400 3072 10 240 0.81 2.66 1.17

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

43

Figure 1 : Scaling of high resolution ec-earth

Figure 2 : efficiency of high resolution ec-earth scaling

Discussion

We have run high resolution EC-EARTH up to 3500 MPI processes. At this scale the

0 500 1000 1500 2000 2500 3000 3500 4000

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

all step

i/o step

cmp step

nprocs

ti
m

e
/s

te
p

 (
s
)

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.2

0.4

0.6

0.8

1

1.2

efficiency

all step

i/o step

cmp step

nprocs

e
ff
ic

ie
n

c
y

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

44

efficiency is ~50% of the most efficient run. The most efficient run is obtained at ~1034 MPI

processes. When EC-EARTH is run with less than 1034 MPI processes the efficiency is lower.

This is because for less than 1034 processes NEMO processes finish earlier and wait for IFS

processes.

Some time steps have only computation. Few steps additionally have i/o. These steps are

significantly slower. We have shown in Table 2 the average time of only computational steps,

i/o steps, and combined i/o and computational steps. This gives us an idea about which steps

are bottleneck in the overall scaling. The i/o steps are 2 – 3 times more expensive than

computational steps. In our experiment every 30
th

 time step (every 6
th

 hour) is i/o step. Actual

impact of the i/o steps will depend on the i/o frequency for a particular experiment. Also the

i/o file-system used for our experiment is lustre parallel file-system. Other slower file-systems

can make i/o even slower. Another aspect related to i/o is some i/o steps are much more

slower than other i/o steps. This is probably because of load on file-system from other

programs. However on Curie the scaling of i/o steps are consistent with the computational

steps. We have analyzed the file access pattern of IFS. This shows that few small files are

repeatedly opened and read. These files are of few kilo-byte size and can be easily read once

and kept in some variable for later accesses. This could improve the file i/o considerably.

However as IFS is a complex code we have not tried to do the code change ourselves and

would expect that developers of the code would implement such features in future versions of

the IFS code.

Hybrid MPI-OpenMP EC-EARTH run

The coupled EC-EARTH code is generally run in MPI only mode. The coupled EC-EARTH

has three components namely IFS, NEMO and OASIS respectively for atmosphere, ocean and

coupling. While NEMO and OASIS codes are MPI only, IFS code has built in support for

OpenMP along with MPI. Standalone IFS can be run in hybrid OmpenMP + MPI mode. There

can be various advantages of hybrid runs compared to MPI only runs, e.g., less memory

consumption, better scaling etc. This can be particularly beneficial for very wide runs.

However it was not clear whether in coupled setting IFS can be run in hybrid mode. In the last

part of our ISENES – JRA2 work we have tried successfully to run coupled EC-EARTH in

hybrid OpenMP – MPI mode.

Compilation and running

For our tests we took the recent version of EC-EARTH, revision no. 1117. The compilation of

the code was done following standard EC-EARTH compilation procedure. We use Intel

compiler v-12.1.4 and Intel MPI v-4.0.3.008. We add extra compiler / linker flag “-openmp”

for the OpenMP compilation. For OASIS and NEMO “-openmp” flag has no impact while for

IFS it is compiled with OpenMP.

Running of the coupled EC-EARTH with one part (IFS) in hybrid mode is bit challenging.

For a normal MPI program is easy to set number of threads for the entire run to a desired

value by setting the environment variable OMP_NUM_THREADS. A typical example for this

is:

export OMP_NUM_THRAEDS=2

mpirun -np 2 exe1: -np 2 exe2: -np 2 exe3

In this example of multi-binary run each of exe1, exe2 and exe3 will run on two MPI ranks

each, with each rank spawning two threads. This will not work for EC-EARTH. So we have

“embedded” export OMP_NUM_THRAEDS=value inside ifs. To do this we move IFS

binary called ifs to something called ifs.orig. Then we create an executable shell script called

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

45

ifs which contains:

if [-n "$IFS_NUM_THREADS"]; then

 export OMP_NUM_THREADS="$IFS_NUM_THREADS"

 export KMP_STACKSIZE=500m

 eval ifs.orig "$@"

fi

As can be seen above the ifs script sets the OMP_NUM_THREADS and

KMP_STACKSIZE and then calls the original ifs binary. With this setup the EC-EARTH

invocation looks like

export IFS_NUM_THREADS=2

export OMP_NUM_THREADS=1

mpirun -n n1 oasis : -n n2 ifs -v ecmwf -e ECE3 : -n n3 nemo

As the IFS_NUM_THREADS is set to 2 the IFS binary, ifs.orig will spawn two threads per

rank while nemo and oasis binaries will be single threaded.

Results and discussions

For our experiments we take NEMO ORCA1L46_LIM3 configuration, IFS grid T255L91,

Coupling frequency 3 hrs, IFS time step 2700s, NEMO time step 3600 s, LIM time step

3600s. Total run length is 30 days. The results are shown in table 1. In column 3 of the Table 1

we show the average IFS step time excluding the coupling and i/o steps. As we can see IFS

step times are slightly less for threaded runs. On the other hand the memory consumption is

nearly 40% less in the threaded run. Total run time is 15% faster for threaded run. This

impact may be more prominent for wider runs. In ISENES2 we would like to pursue this

further.

Table 1

Coupled EC_EARTH run with NEMO 64 ranks, OASIS 10 ranks

Type of run Totals IFS

memory (GB)

IFS time

step (s)

Total run time

(mm:ss)

128 IFS ranks,

1 thread each

110 1.02 22:17

64 IFS ranks,

2 threads each

76 0.9 19:27

EC-CONF: A New Approach for Build and Run Configuration of EC-Earth

Contributors: Uwe Fladrich, SMHI

Software configuration can be a cumbersome task, particularly when it comes to complex

systems with many components, different processing stages, and numerous files to be

considered. Whenever more than a few configuration parameters, files and syntaxes are

involved, or as soon as the configuration is to be done frequently, the process is error prone,

too. Consistency and reproducibility are not easily achieved and documentation of a certain

configuration is usually not included in the process.

The ec-conf tool is developed to aid the process of software configuration and to mitigate the

problems just mentioned. As such, ec-conf is designed for the integration into the building and

running cycle of a complex software system. Although ec-conf is being developed in the

context of the coupled climate model EC-EarthÂ 3, it is not, per se, dependent on this

software.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

46

Configuration is needed, for example, when the software is built (i.e. compiled and linked) or

when it is run in the context of a certain computing experiment. The configuration has to be

redone whenever relevant aspects â€“ such as the computing platform, user environment, or

experiment settings â€“ change.

The fundamental principle behind ec-conf is that the process of software configuration

implies the modification of configuration files according to configuration parameters.

Configuration files are assumed to be text files and configuration parameters comprise a name

and a value. The configuration parameter value is to be adapted according to the situation that

the software is to be configured for.

That is, ec-conf creates configuration files by modifying configuration parameters according

to their required values. This is achieved by reading the configuration parameters from an

XML data base file and creating the configuration files with the help of templates. In order to

control this process, ec-conf provides both a command line interface and a graphical user

interface (GUI). Both interfaces can be used interchangeably, although they provide slightly

different levels of control and comfort.

The main advantage of using ec-conf lies in the â€œone place, one syntaxâ€• principle,

which implies that configuration is confined to just one file, where all configuration

parameters are condensed, and, consequently, to one syntax. This principle holds regardless of

the number of components and the number of configuration files and file types that are part of

the software system.

Ec-conf has been implemented in Python, which should ensure widespread portability. Care

has been taken to minimise the number of Python modules needed, although programming

convenience has not been overly compromised. The ec-conf GUI makes use of Tkinter,

however, the command line interface can be run even when Tkinter is not available.

In order to utilise ec-conf, a user has to provide an XML data base file that contains all

configuration parameters and a number of template files that are used to create the

configuration files. These files are usually created only once upon ec-conf's first use. Later on,

only limited modifications are needed.

It is possible (and recommended) to introduce ec-conf gradually, which eases the transition

from manual configuration. This is done by selecting just one configuration file as a template

and start with few configuration parameters. Hence, only two files (one XML data base and

one template) have to be provided for a start. In fact, any configuration file can be used as ec-

conf template file without modification. It means that ec-conf is just passing the content of the

template file without any changes. However, this implies that ec-conf has to be complemented

by manual configuration.

When both the XML data base file and template file(s) are in place, the regular usage of ec-

conf consists of two steps:

 Adapting the configuration parameter values in the XML data base file, and

 Running ec-conf in order to create the configuration files.

The first step is accomplished by editing the XML data base file (which is a text file) with a

text editor of the user's choice. The second step means running either the command line or

graphical user interface (GUI) of ec-conf. Alternatively, both steps can be performed in one

go with the graphical user interface. The GUI can be used instead of the command line

interface in order to use all functions of ec-conf, in fact, the GUI is preferable for a more

interactive way of working with ec-conf.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

47

NEMO Porting, benchmarking and optimization on Marenostrum

Contributors: I.Epicoco, S.Mocavero, G.Aloisio

Euro-Mediterranean Center for Climate Change (CMCC)

Introduction

NEMO (Nucleus for European Modeling of the Ocean) is a 3-dimensional ocean model used

for oceanography, climate modelling as well as operational ocean forecasting. It includes

other sub-component models describing sea-ice and biogeochemistry. Many processes are

parameterized, e.g. convection and turbulence. It is used by hundreds of institutes all over the

world. The open-source code consists of 100k lines of code, it is developed in France and UK

by the NEMO development team and it is fully written in Fortran 90. The MPI paradigm is

used to parallelize the code. NEMO is based on a finite-difference model with a regular

domain decomposition and a tripolar grid to prevent singularities. It calculates the

incompressible Navier-Stokes equations on a rotating sphere. The prognostic variables are the

three-dimensional velocity, temperature and salinity and the surface height. To further

simplify the equations it uses the Boussinesq and hydrostatic approximations, which e.g.

remove convection. It can use a linear or non- linear equation of state. The top of the ocean is

implemented as a free surface, which requires the solution of an elliptic equation. For this

purpose, it uses either a successive over-relaxation or a preconditioned conjugate gradient

method. Both methods require the calculation of global variables, which incurs a lot of

communications (both global and with its nearest neighbours) when multiple processors are

used. The scientific literature reports several performance analyses of NEMO model, using

different configurations and with several spatial and time resolutions. At the National

Supercomputer Centre (NSC) the porting, optimization, tuning, scalability test and profiling

of NEMO model on linux - X86-64 - infiniband clusters, have been performed. ORCA1

configuration available from NOCS website has been used for scaling/benchmark studies.

Within the PRACE project, a benchmark activity report on several applications has been

produced. The NEMO code has been ported and evaluated on several architectures such as the

IBM Power6 at SARA, the CRAY-XT4, the IBM BlueGene [1].

Analysis of Scalability

The analysis of scalability of the parallel code aims at verifying how much it is possible to

increase the complexity of the problem, in terms of spatial and time resolution, scaling up the

number of processes. As first step of the analysis we profiled the original NEMO code for

highlighting possible bottlenecks slowing down the efficiency, when the number of processes

increases.

Model Configuration

The NEMO configuration taken into account is based on the official release (v3.2) with some

relevant improvements introduced by INGV (Istituto Nazionale di Geofisica e Vulcanologia -

Italy). Moreover it is tailored on the Mediterranean Basin. The Mediterranean Sea is both too

complex and too small to be adequately resolved in global-scale climate and ocean-only

models. To properly address some key processes, it is necessary to adequately represent the

general circulation of the Mediterranean basin, the fine-scale processes that control it (e.g.

eddies and deep convection), and the highly variable atmospheric forcing. A high-resolution

general circulation model of the Mediterranean Sea has been developed in the last 10 years to

provide operational forecast of the ocean state [2]: the Mediterranean ocean Forecasting

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

48

System. The physical model is currently based on version v3.2 of NEMO and is configured on

a regular grid over the Mediterranean basin plus a closed Atlantic Box. Horizontal resolution

is 1/16 x 1/16 degrees with 72 vertical Z-levels. The model is forced with meteorological data

that are either read from gridded external datasets or interpolated on line to the model grid.

The model salinity and temperature fields along the boundary of the Atlantic box are relaxed

at all depth to external data (open boundary conditions [3]). This is done within an area which

has an extension of 2° at the west and south boundary and 3° at the northern boundary (in

order to cover all the area of the Gulf of Biscay). This configuration, even more if coupled

with biochemical models, poses several computational challenges:

 High spatial resolution with many grid points and a small numerical time step

 Presence of open boundaries, which implies that additional data need to be read by

selected sub-domains

 Computation of diagnostic output across sub-domains

 Storage of large amount of data with various time frequencies.

Profiling

The research activity has been carried out at the Barcelona Supercomputing Center using the

MareNostrum cluster. It is one of the most powerful systems within the HPC-Ecosystems in

Europe. It has a calculation capacity of 94.21 Teraflops. One of the key issues that

characterize MareNostrum is its orientation to be a general purpose HPC system. The

computing racks have a total of 10240 processors. Each computing node has 2 processors

PowerPC 970MP dual core at 2.3 GHz, 8 GB of shared memory and a local SAS disk of 36

GB. Each node has a network card Myrinet type M3S-PCIXD-2-I for its connection to the

high-speed interconnection and the two connections to the network Gigabit. The default

compilers installed are IBM XL C/C++, and IBM XL FORTRAN. There are also available the

GNU C and FORTRAN compilers. The MareNostrum uses GPFS as high-performance shared

disk file system that can provide fast, reliable data access from all nodes of the cluster to a

global file system. Moreover, every node has a local hard drive that can be used as a local

scratch space to store temporary files during the execution of user’s jobs. All data stored in

these local hard drives will not be available from the login nodes. The first evaluation was

focused on establishing how much the computational performance are influenced using the

GPFS file system or the local disks. The results, showed in figure 1 and analytically reported

in table 1, highlight that the exploitation of local disks can reduce the wall clock time up to

40% against using the GPFS file system. The performances of the GPFS are strictly related to

the actual load of the whole cluster and hence they are very variable during the time. Since the

local disks are not accessible from the login node, some modifications to the NEMO runscript

file, used to launch the model, have been performed.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

49

Fig. 1 - Execution time on 1day simulation: GPFS vs local disk

Cores GPFS Local Disk Speedup

8 2205.86 2071.45 1.065

16 1112.19 957.17 1.162

32 614.02 519.91 1.181

48 474.65 402.41 1.18

64 401.29 328.58 1.221

80 407.67 272.55 1.496

96 365.64 260.42 1.404

112 331.35 227.85 1.454

128 279.75 218.35 1.281

Table 1 - Execution time on 1day simulation: GPFS vs local disk

The NEMO code supports 2D domain decomposition. The size and the shape of the sub

domain assigned to each parallel process impact on the overall performance. The second step

of performance analysis has been focused on the impact of the domain decomposition on the

wall clock time. The analysis of the scalability has been performed taking into account a 1D

decomposition (both horizontal and vertical) and a 2D decomposition. The 2D decomposition

has been chosen such that the local sub domain would have a square shape. The experimental

results demonstrate that the best performance is achieved using a 2D decomposition as

showed in figure 2.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

50

Fig. 2 - Execution time on 1day simulation w.r.t. domain decomposition.

The overall evaluation of the legacy code has been carried out in order to analyze the parallel

behaviour of the application. In particular at high level we have taken into account two

metrics: the parallel scalability and the parallel efficiency. Both metrics provide an overall

evaluation on how much the code is well parallelized. These measures can guide further

analysis focused on specific aspects of the code. It is worth noting here that the approach

followed for the analysis started considering the application as a black box. The complexity of

the code makes quite unfeasible the definition of a reliable theoretical performance model.

The approach we followed was based on an experimental approach. The parallel efficiency

and speed-up, respectively reported in table 2 and figure 3, have been evaluated taking as

reference time the wall clock time of the application with 12 processes. Due to the amount (8

GB) of main memory per node available on MareNostrum, the execution of the sequential

version of the model is prohibitive requiring at least 20 GB with this configuration. The

experimental results showed a limit of the scalability up to about 192 cores.

Fig. 3 - Speed-up of original version. Speed up is relative to the performance of that on 12

processes (due to memory requirements).

Decomposition Cores 1day sim (s) Eff. (%) SYPD 1Y sim (h)

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

51

6x2 12 1302.54 100 0.18 132.06

16x4 64 248.71 98.2 0.95 25.22

20x6 120 170.37 76.46 1.39 17.27

128x2 256 109.57 55.72 2.16 11.11

32x9 288 124.84 43.47 1.9 12.66

34x10 340 112.28 40.94 2.11 11.38

128x3 384 99.87 40.76 2.37 10.13

36x11 396 111.08 35.53 2.13 11.26

128x4 512 110.57 27.61 2.14 11.21

Table 2 - Original code performance. Efficiency is relative to the performance of that on 12

processes (due to memory requirements).

In order to perform a deeper investigation on the motivation for the poor efficiency, we have

analyzed the scalability of each routine in the code. For identifying those routines with a

relevant computational time we used the gprof utility and the Paraver [4] tool with dynamic

instrumentation of the code. Figure 4 shows a paraver snapshot of a very short run (just 3 time

steps). Different colours represent different states of the run: blue for computation, red for I/O

operations, orange and pink respectively for global and point-to-point communications.

opa_init initializes the parallel environment and synchronizes processes. Its execution time is

negligible when the number of steps is high. The first and the last time steps perform some IO

operation, respectively reading input and restart and writing output and restart.

Fig 4 - Paraver trace for a NEMO run.

The analysis has been restricted to a single time step: we chose a "general" time step,

considering as "general" those time steps with operations occurring every time. Indeed some

"occasional" operations like reading the open boundaries values, or storing the state variable

values, occur only for some particular time step. We have identified about 36 routine of

interest and we have evaluated their scalability running the application with 8, 16, 36, 72 and

128 processes. For each routine we have taken into consideration both computing and

communication time. The results of the analysis are reported in figure 5.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

52

Fig. 5 - NEMO functions scalability: computation, communication & total time.

The analysis immediately highlighted the obc_rad routine (in charge of calculate the radiative

velocity on the open boundaries), the dyn_spg (in charge to solve the elliptic equation for the

barotropic function) and the tra_adv (in charge to evaluate the advection transport of the

fields), as those routines to be deeper investigated.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

53

Optimization

The optimization phase aimed at redesign critical part of the NEMO code taking into account

the following main aspects:

 Exploitation of the memory hierarchy. A relevant limitation of the performance is

strictly related to redundant memory accesses or to a high level of cache miss ratio

 The I/O operations are one of the critical factors that limit the performance and the

scalability of a climate model. The I/O pattern implemented in NEMO can be

classified as: read once and write periodically

 The communication among parallel processes plays a crucial role on the performance

of a parallel application. Several good practices can be followed in order to reduce the

communication overhead, such as modifying the communication pattern in order to

overlap communication and computation; joining several short messages sent with

several MPI calls in a bigger one sent once.

The analysis of the scalability showed a limit at 192 cores due to a high level of

communication overhead. The bottleneck has been identified in the function responsible for

the evaluation of the open boundaries conditions. After the evaluation of the open boundaries,

the processes exchange the overlapped values over the boundaries with their neighbours. The

function take more than 60% of its time in communication.

OBC_RAD Routine

As already stated before, the NEMO configuration we used for our analysis is limited to an

oceanic region and namely the Mediterranean basin, which communicates with the rest of the

global ocean through "open boundaries". An open boundary is a computational border where

the aim of the calculations is to allow the perturbations generated inside the computational

domain to leave it without deterioration of the inner model solution. However, an open

boundary has also to let information from the outer ocean enter the model and should support

inflow and outflow conditions. The open boundary package OBC is the first open boundary

option developed in NEMO. It allows the user to:

 Tell the model that a boundary is "open" and not closed by a wall, for example by

modifying the calculation of the divergence of velocity there

 Impose values of tracers and velocities at that boundary (values which may be taken

from a climatology): this is the "fixed OBC" option

 Calculate boundary values by a sophisticated algorithm combining radiation and

relaxation ("radiative OBC" option).

The Open Boundaries calculation is performed within the obc_rad routine. The current

implementation of the obc_rad function swaps arrays to calculate radiative phase speeds at

the open boundaries and calculates those phase speeds if the open boundaries are not fixed. In

case of fixed open boundaries the procedure does nothing. In particular the following

algorithmic steps are performed: (i) each MPI process calculates the radiative velocities on its

subdomain starting with zonal velocity field; (ii) the data on the border of the local sub-

domain are exchanged among MPI processes with a cross communication pattern; (iii) repeat

from step one for the following fields: tangential velocity, temperature and salinity. In the

worst case, when the whole domain has 4 open boundaries (east, west, north and south) each

MPI process performs 16 exchanges (4 fields exchanges multiplied by 4 open boundaries).

For each field, an MPI process sends and receives the data to/from 4 neighbours. Even though

the exchanged fields are 3D arrays, the current implementation of the communication routine

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

54

(named mppobc) calls iteratively a library routine for sending/receiving 2D arrays. Figure 6

shows the original communication pattern among processes.

Fig. 6 - Communication pattern during the open boundaries evaluation: before optimization

all processes were involved in the communication.

OBC_RAD Optimization

The analysis of the scalability showed that the communication overhead within the obc_rad

function reaches a ratio of 74% running the model with 8 cores. The main limits to the

scalability have been then identified in a heavy use of communication among processes. With

a deeper analysis of the obc_rad algorithm we noticed that several calls to the MPI send/MPI

recv were redundant and hence they could have been removed. Figure 7 illustrates the

essential communications needed for exchanging the useful data on the boundaries.

Fig. 7 - Communication pattern during the open boundaries evaluation: after optimization

only the processes on the boundaries were involved in communication and they exchange

only the data on the boundary.

The optimization reduced the communication time through the following actions: the

processes on the borders are the only processes involved in the communication; the data

exchanged between neighbours are only the data on the boundary; the data along the vertical

levels are "packed" and sent with only one communication invocation. Figure 8 shows how

communications (yellow lines) within the obc_rad are drastically reduced after the

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

55

optimization.

The analysis of the scalability of NEMO using the optimized version of the obc_rad routine

has been performed starting from a configuration on 12 cores with a decomposition 6x2 up to

512 cores (128x4) on 1-day simulation. As reported in table 3, the minimum wallclock time

happens on 396 cores with a decomposition 36x11. Efficiency increases compared with the

original version, as well as the parallel speedup (figure 9), and the obc_rad execution time

was reduced of about 33.81%.

Fig. 8 - Communications within OBCRAD before and after the optimization.

Fig 9 - Speed-up: OBCRAD optimized vs original version.

Decomp. Cores
Original

exec. time (s)

Original

efficiency

(%)

OBCRAD

optimized

exec. time (s)

OBCRAD

optimized

efficiency

(%)

6x2 12 1302.54 100 1281.28 100

12x3 36 385.32 112.68 382.47 111.67

14x4 56 274.22 101.79 244.73 112.19

16x4 64 248.71 98.2 226.17 106.22

16x5 80 205 95.31 171.54 112.04

20x6 120 170.37 76.46 127.54 100.46

24x7 168 151.45 61.43 95.98 95.35

28x8 224 136.78 51.02 84.95 80.8

128x2 256 109.57 55.72 88.7 67.71

32x9 288 124.84 43.47 87.24 61.2

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

56

34x10 340 112.28 40.94 81.26 55.65

36x11 396 111.08 35.53 73.53 52.8

128x4 512 110.57 27.61 75.02 40.03

Table 3 - OBCRAD optimized vs original version: performance analysis.

SOL_SOR Routine

After the obc_rad optimization, a new detailed analysis of scalability on all of the above

mentioned 36 functions has been performed. It allowed identifying the SOR solver routine

(called by the dyn_spg function) as the most expensive from the communication point of

view. The function implements the Red-Black Successive-Over-Relaxation method [5], an

iterative search algorithm used for solving the elliptical equation for the barotropic stream

function. The algorithm iterates until convergence for a maximum number of iterations. The

high frequency of exchanging data within this function increases the total number of

communications.

At each iteration, the generic process computes the black points inside the area, updates the

black points on the local boundaries exchanging values with neighbours, computes red points

inside and finally updates red points on the local boundaries (always exchanging with

neighbours). Each process exchanges data with 4 (at north, south, east and west) of its 8

neighbours: the order of data transfer guarantees data reliability. Communications are very

frequent and the total number of exchanges is given by the number of iteration multiplied by 2

(one for red points, and one for black) by 4 neighbours. The sol_sor function, implementing

the SOR solver method, calls the lbc_lnk_2d e function for exchanging data among processes.

Both the functions are characterized by two components: a running component respectively

computing and buffering data before sending and after receiving and a communication one

(within the sol_sor there is a group communication during the convergence test).

SOL_SOR Optimization

The algorithm of sol_sor suggests a possibility to improve performance, especially when the

number of processes increases. At each iteration, communication and computation could be

overlapped. The algorithm can be modified as follows: (i) computing of data on the local

boundaries, (ii) communication of computed region overlapped with computation of the inner

domain. This solution has been implemented, but it did not give expected results. The original

version uses blocking communications during the exchange. The modified version was

implemented by the use of non-blocking communications to allow message transfer to be

overlapped with computation. As result, not only running, but also communication time was

increased after the code modification. Changing communication algorithm, the computation

within sol_sor has been split in two steps. This generated an access to non-contiguous

memory locations with a consequent increase of L1 cache misses. More cache misses means

more instructions and then more computing time. Moreover, the introduction of non-blocking

communication does not guarantee the order of data exchanging among processes, so that a

generic process needs to communicate not only with the north, south, east and west processes,

but also with the diagonal ones, doubling the number of communications. Since

communication and computation are overlapped, the increase of communications number

should not increase the execution time. However, the behaviour of communications on

MareNostrum has not been the expected one. Using the Dimemas [6] tool, we have

theoretically evaluated the new algorithm on an ideal architecture with the nominal values

declared for MareNostrum (figure 10). Even though from a theoretical point of view the new

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

57

algorithm performed better than the old one, the experimental results did not confirm the

expectations. One of the possible could be the implementation of the non-blocking

communication within the installed MPI library. Moreover it is worth noting here that with a

high level of parallelism, the sol_sor function has a fine computational granularity, so that the

execution time feels the effects of several causes not directly related to the application but

also to the system or to the tracking tools and it is very difficult to estimate its behaviour. In

these cases the only thing is to consider the experimental results, which on MareNostrum

highlight better performances of the original version.

Fig. 10 - Analysis by Dimemas: (a) real behavior of communications on MareNostrum, (b)

expected behavior of communications on MareNostrum.

Parallelization Improvement

Many NEMO routines are characterized by operations performed on a 3D domain, along jpi,

jpj and jpk as showed in figure 11. The MPI parallelization exploits the domain

decomposition on 2 dimensions (along jpi and jpj). In order to reduce the computational time,

a hybrid parallel approach could be introduced. An additional level of parallelization, using

the OpenMP shared-memory paradigm, could work on vertical levels, which are fixed for our

NEMO configuration to 72.

Fig 11 - OpenMP parallelization applied to 3D domain decomposition.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

58

Before modifying the code, an estimation of the percentage of the application, which should

benefit from the use of OpenMP is needed. Using the gprof utility the percentage of time

spent by functions called by the step routine (simulating a time step) and containing loops on

levels without dependences, has been computed. It was about the 83% of the total

computational time. OpenMP parallelization has been introduced within all of these functions.

Fixing the number of allocated cores, we can execute the application using only MPI (in this

case the number of MPI processes will be equal to the allocated cores) or using MPI/OpenMP

parallelization (in this case, in order to better exploit the MareNostrum architecture, we

created 4 OpenMP thread for each MPI process). A Paraver analysis of the duration of the

functions called in the main loop over the time steps has been performed. Functions execution

is more balanced among threads using the hybrid version due to the reduced number of

communications (figure 12 shows how time spent waiting for communication, the white lines,

has been reduced).

Fig 12 - OpenMP parallelization: (a) communications and (b) routines execution time using

256 cores for 256 MPI procs, and using 256 cores for 64 MPI procs, each one with 4 threads

With the OpenMP parallelization, the parallel speed-up improved, as shown in figure 13. The

benefits derived from the hybrid parallelization can be appreciated when the number of MPI

processes exceeds 30 and consequently the total threads number exceeds 120.

Table 4 shows performance results in terms of execution time and efficiency, on 1-day

simulation, comparing the original code with the version after the optimization of the obc_rad

routine and after the introducing of the second level of parallelism. The minimum wallclock

time happens on 396 cores. Efficiency increases compared with both the original version and

the obc_rad optimized one; execution time is reduced of about 18%.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

59

Fig. 13 - Speed-up: OpenMP parallelized vs previous versions.

MPI

Decomp.
Cores

Original

exec.

time (s)

Original

efficiency

(%)

OBCRAD

optimized

exec. time

(s)

OBCRAD

optimized

efficiency

(%)

OpenMP

exec.

time (s)

OpenMP

efficiency

(%)

3x1 12 1302.54 100 1281.28 100 1767.3 100

8x2 64 248.71 98.2 226.17 106.22 346.75 95.57

10x3 120 170.37 76.46 127.54 100.46 156.48 112.94

16x4 256 109.57 55.72 88.7 67.71 75.89 80.46

18x4 288 124.84 43.47 87.24 61.2 68.57 79.15

17x5 340 112.28 40.94 81.26 55.65 60.34 76.19

33x3 396 111.08 35.53 73.53 52.8 60.29 65.47

Table 4 - OpenMP parallelized vs previous versions: performance analysis.

PELAGOS025

As further development, a new configuration of NEMO has been analyzed. We analyzed the

parallel scalability of the NEMO global oceanic model with a configuration of 0.25 degree,

coupled with the BFM biogeochemical flux model (Vichi et al., 2007 - http://bfm.cmcc.it).

The oceanic model has an horizontal resolution of 0.25 degree, that corresponds to a

1442x1021 grid points, and 50 vertical levels; the biogeochemical model uses the same

resolution and grid of the oceanic model and it takes in consideration 57 state variables

(tracers).

An analysis of scalability of the coupled model has been performed on the Calypso parallel

cluster architecture at the CMCC (Euromediterranean Center on Climate Change, Italy)

Supercomputing Center. Each node of the cluster is equipped with 16 Power6 CPUs dual

core, for a total of 32 cores and 128GB of total memory per node (4GB per core). The

architecture supports the Simultaneous Multi Threading, which allow the parallel execution of

two threads on the same core. The NEMO model, characterized by an intensive use of the

memory, is not able to exploit SMT, so 32 cores per node have been used.

Due to the memory requirements, the model ORCA025-BFM has been executed on a

minimum of 5 nodes up to the maximum available nodes (21).

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

60

The execution time is strictly related to the balance of the ocean points among the parallel

processes. Fixed the number of processes, we used the mpp_opt tools (available within the

NEMO package) to find the best domain decomposition excluding those subdomains with

only land points. The optimal decomposition has to be defined in order to optimize the load

balance. The table 5 reports the domain decomposition used for each parallel configuration.

The Balance column reports the ratio between the average number of ocean points and the

maximum number of ocean points. A perfect balance is given when the ratio is 1.

MPI Decomp.

(jpni x jpnj)

Cores

(jpnij)

Number

of nodes

Num of Ocean Points for

the heaviest process
Balance

6 x 29 160 5 413020 0.5273

6 x 35 192 6 345022 0.5319

50 x 5 224 7 293849 0.5361

8 x 37 256 8 253271 0.5464

9 x 38 288 9 226171 0.5461

26 x 15 320 10 195034 0.5587

57 x 7 352 11 196725 0.5168

28 x 17 384 12 162218 0.5634

55 x 9 416 13 154225 0.5585

18 x 31 448 14 139499 0.5687

54 x 11 480 15 131504 0.5687

68 x 9 512 16 127060 0.5602

18 x 38 544 17 115914 0.5710

23 x 32 576 18 107242 0.5805

48 x 16 608 19 102615 0.5764

25 x 33 640 20 96547 0.5826

19 x 45 672 21 95040 0.5716

Table 5 – Domain decomposition used to analyse the scalability for the PELAGOS025 model.

Each experiment, with a different decomposition, has been repeated 3 times with a total of 51

run. For each run we simulated 1 day with a time discretization of 1080 seconds per time step

(a total of 80 time steps for each run). The table 6 reports the wallclock time

Cores Wallclock (secs)

160 6220.90

192 5214.50

244 4589.58

256 3773.03

288 3275.46

320 2949.56

352 3100.42

384 2437.08

416 2445.70

448 2068.01

480 2109.46

512 2051.22

544 1688.38

576 1574.47

608 1620.28

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

61

640 1432.51

672 1379.29

Table 6 –Wall clock time for all of the configurations.

The speedup and the wallclock time functions are reported in the figure 14.

Fig. 14 – Wall clock time and speedup function.

The results report a super-linearity for several configurations. This behaviour is due to the

different distribution of ocean points among processes when the level of parallelism increases.

The reference configuration (with 160 cores) has worst balancing with respect to the others

configuration. The figure 15 shows how the number of the ocean points for the heaviest

process changes for different configurations. The red line reports the ideal distribution

referred to the ocean points of the 160 cores configuration. Since the computing time is

proportional to the number of ocean points, if, for a given configuration, the real ocean points

are less than the ideal distribution, also the computing time will be less than the ideal and this

produces a super-linear point in the speedup graph.

Fig. 15 – Number of ocean points for the heaviest process.

Finally, we have analyzed the code profiling and the parallel scalability for the most

computing intensive routines. In table 7 we have: the elapsed time for the most computing

intensive routines; the ratio with respect to the execution time of the whole model; the

speedup and the efficiency.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

62

Table 7 – Routines profiling.

The most computing intensive routines are the trc_stp that represents the entry routine for the

BFM model and the tra_adv_muscl that implements the MUSCL schema for the tracer’s

advection. Figure 16 shows the wall-clock time and speedup for this 7 routines. The speedup

is super-linear due to the previously described motivation. In Figure 7, the computational

weight of these 7 routines is reported and how it changes when the level of parallelism

increases.

Fig. 16 – Routine’s scalability: wall clock time and speedup.

 160 256 384 544 672

Elap.

Time(

s)

Elap.

Time(

%)

Elap.

Time(

s)

Elap.

Time(

%)

Elap.

Time(

s)

Elap.

Time(

%)

Elap.

Time

(s)

Elap.

Time(

%)

Elap.

Time(

s)

Elap.

Time(

%)

trc_stp

2856.

15 45.34

1681.

66 44.38

1032.

85 42.43

685.4

1 39.51

531.8

1 38.17

tra_adv_

muscl

2244.

73 36.10

1355.

00 35.76

849.5

1 34.90

585.5

2 33.75

454.4

8 32.62

tra_ldf_i

so

446.8

2 7.19

260.2

3 6.87

165.2

8 6.79

113.0

9 6.52 92.01 6.60

tra_sbc

234.2

7 3.17

144.7

4 3.82

108.2

1 4.45 73.30 4.23 55.73 4.00

zps_hde

233.5

0 3.56 97.45 2.57 49.95 2.05 38.33 2.21 37.98 2.73

tra_zdf_

imp

132.9

9 2.14 76.91 2.03 49.15 2.02 33.35 1.92 27.02 1.94

tra_adv 79.82 1.28 40.35 1.06 18.89 0.78 21.36 1.23 15.36 1.10

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

63

Fig. 17 – Computational weight of the most computing intensive routines.

Bibliography

[1] P. Michielse, J. Hill, G. Houzeaux, O. Lehto, and W. Lioen. Report on available perfor-

mance analysis and benchmark tools, rep- resentative benchmark. Technical Report PRACE

Project Deliverable D6.3.1.

[2] M. Tonani, N. Pinardi, S. Dobricic, I. Pujol, and C. Fratianni. A high-resolution free

surface model of the mediterranean sea. Ocean Science, Ocean Sci., 4:1–14, 2008.

[3] P.Oddo and N.Pinardi. Lateral open boundary conditions for nested limited area models: a

process selective approach. Ocean Modelling, 2007.

[4] Barcelona Supercomputing Centre. Paraver overview. BSC Performance Tools, 2010.

[5] D. M. Young. Iterative methods for solving partial difference equations of elliptic type.

Trans. Amer. Math. Soc., 76:92–111, 1954.

[6] Barcelona Supercomputing Centre. Dimemas overview. BSC Performance Tools, 2010.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

64

Porting and performance analysis of Cosmos-Millennium on Cray-XT5

Author: J. Silen, FMI

Introduction

Cosmos-Millennium

The model used is an application of the ECHAM5/MPIOM, version 1.2.0.1. The model is run

in the complete "asob" mode on the institutes CrayFMI, Cray-XT5. It has also been run on

CSC's similar machines and was successfully ported to SGI-Altix-4700 systems at LRZ, the

Leibniz-Rechenzentrum in Bavaria, Germany, but no production runs were performed on

either of them, due to a high load on their batch systems. The model consists of

1. Coupler: The coupler software is OASIS3, which manages the distribution of data between

two or more interacting submodels. Here we used an atmosphere model, ECHAM5, together

with a land and vegetation module, JSBACH and a model for aerosols, HAM, which were

coupled to an ocean model, MPI-OM, supporting biogeochemistry through HAMOCC.

2. Atmosphere model: ECHAM5, supporting carbon cycle, JSBACH, and aerosols, HAM.

Resolution 96x48, i.e. the T31L19 configuration.

3. Ocean model: The ocean is the MPI-OM, biogeochemistry HAMOCC. Resolution 120x96.

4. Atmospheric chemistry model: HAM, aerosols

5. Land and vegetation module: JSBACH, carbon cycle.

FMI Supercomputer Cray-xt5

Objectives

The main objective of this work is to identify and document the issues related with the

portability and performance of the Cosmos-Millennium model on the FMI supercomputer. In

order to meet the standards for future HPC architectures (e.g., within the PRACE

infrastructure), it is important to understand the current performance of ESMs on state-of-the-

art computing systems.

Description of execution and evaluation tests

Porting

The model is constructed to support the PRACE environment. Compilation and execution is

controlled by ksh scripts which are assembled by other scripts using the m4 macro asssembler

and a set of header files defining the compiler, the excecution and the machine environment.

Once the definitions are done correctly the entire compile-execute cycle runs smoothly.

Several compilers were tested on multiple platforms. On the Cray machines the PGI compiler

was most convenient. On the SGI-Altix machines, the Intel compilers were used.

Execution

The compile cycle assembles scripts which set up a template for the execution process. The

template is itself a script which is edited according to preferences and rerun to produce the

actual jobs to be submitted to the batch processing system. Often the details of the operational

batch systems differ and result in the need of directly editing also the submittable scripts

accordingly. Both PBS and LSF batch systems were used. Detailes are provided only for the

Cray-xt5 operated at the FMI.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

65

Platform

Execution platform Cray-XT5

Environment Module system with necessary modules available.

pgi compiler

hdf5, netcdf and cdo modules loaded.

Requirements Module system with necessary modules available.

ksh - korn shell (ksh93)

mpi1 - required for parallel execution

ftn - a fortran compiler that supports an auto-double (or -r8)

capability. OASIS3 requires Cray pointers.

netCDF - the netCDF library for I/O

cdo - for postprocessing integrated into the run-script.

Libraries Oasis: netcdf

MPI-OM: netcdf

Standard Cray environment.

CPUs Used for each

component

12 cores per node

ECHAM5: 5 nodes.

OASIS: 1 node

MPI-OM: 5 nodes

Submit job

command

"qsub xxx.run" to transfer the run script to the machine batch system

In the script, "aprun -n 1 oasis.x: -n ${nprocatm} echam5 : -n

${nprococe} mpi-om " starts the parallell execution of the coupled

code.

Table 5.1: Summary of requirements and resources needed to run EC-Earth.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

66

Optimization

Cray-xt5 has a convenient module system. If used properly standard compiler environments

are set up automatically and reasonably well optimized code is produced. The main bottleneck

is to ensure that the resources allocated to the atmosphere and the ocean models are well

balanced and do not cause unnecessary waiting. The best performance was achieved by

allocating slightly larger resources on the ocean model. The cray architecture requires an

allocation of a complete node (12 cores) to OASIS3 although only one core is used.

Scalability

The best performance in wall clock time was achieved for 132 cores or 11 nodes. More cores

slowed down the runtime performance. Without loss of performance, multiple jobs at the

T31L19 resolution could be run in parallel. This was used in computing 30 x 45 years of

forced simulations. All machine resources were used and the job was completed in about 4

days. The maximum throughput achieved was 43 simulated years/24 hours wall clock time.

The allocation of resources to each submodel is important as it may influence the total time by

25%. Table 1. shows an example of allocating 7 nodes (84 cores, 72 cores for models and 12

cores for coupler) in different geometries to the models.

Other comments

During the porting and optimization work, it became obvious that the infrastructure available

at different computing centers does differ significantly. In particular the job submission

systems (PBS or LSF), use there own definition of resource allocation and does require

manual work on the run scripts for the Cosmos-Millennium code. In the case of the

SGI/Altix-4700 machine, the batch queue turn around complicated the optimization and

porting work. To a lesser instant this was the case for the Cray-xt5 at CSC, where the

development work could be made fluently on the front end machines. A challenge was to find

out certain flags for allocating sufficient resources for the codes. The present work was very

well supported by the installation of two Cray-xt5's at FMI. This made it possible for one

month to use the systems during their testing period for this work and having several Cray

Inc. enginers answering any questions. Thus two MPI related flags were included into the run

script:

export MPICH_PTL_UNEX_EVENTS=200000

export MPICH_UNEX_BUFFER_SIZE=240000000

Without them, the jobs would start correctly but crash with a complaint of "unsufficient

resources".

Summary

We were successful in porting and running the Cosmos-Millennium model using the coupled

atmospheric and ocean models. The work was made on 3 platforms, two Cray-xt5's and one

SGI/Altix-4700. Production runs were made on the former only. The performance shows an

absolute wall clock minimum at this model resolution around 100 cores and this minimum is

sensitive to the allocation of resources for computing the atmosphere and the ocean. In this

setup one extended 1200 year experiment and one 30x45 year experiment has been

performed.

Acknowledgments

I express my gratitude to the staff at CSC, LRZ and the Cray engineers supporting the

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

67

installation of equipment at the FMI. HPC work is magic based on years of experience.

Figure 1: Demonstration of wall clock time as function of cores used on Cray-xt5 at CSC.

ECHAM5 MPIOM TIME (s)

24 48 181

36 36 164

48 24 219

48 24 207

Table 1: Allocation of compute cores to ECHAM5 and MPIOM influences wall clock time

given in [s] for computing a 1 month simulation. FMI Cray-xt5, December 2009.

0 20 40 60 80 100 120 140

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

CSC Cray-xt5, Louhi compute time

WallClock

User

CPU's

T
im

e
 [
s

]

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

68

Porting and performance analysis of Echam6 on Cray XT4

Contributors: Juha Lento, CSC, subcontractor to FMI (juha.lento@csc.fi)

Introduction

The study case is Echam6 atmosphere model and the CMIP5 - amip-LR model experiment at

T63L47 resolution. The benchmark runs were done using CSC's Cray XT4 with AMD

2.3GHz Opteron processors. Current top of the line Intel Xeon processors deliver roughly 50

per cent application level speedup per processor core compared to the processors in Cray

XT4.

Objectives

The objective is to study the parallel scalability of Echam6, test the I/0 server scheme

introduced in Echam6 and to give feedback about the porting of the model.

Parallel scalability depends strongly on the size of the problem, i.e. the size of the

computational grid. In this study we keep the size of the computational grid (T63 resolution)

fixed, i.e. perform a strong scalability test.

Description of the execution and the evaluation of the tests

Porting and porting feedback

The model was compiled using PGI 11.2 compiler suite, with PGI "-fastsse" optimization

level (except for sym1.f90), and with MPI and OpenMP parallelization. The stepon.f90

subroutine was modified to output timing information for each iteration step. The compilation

was done by providing system dependent environment variables at the configure step, and

then with a simple ‘make’.

The compilation of Echam6 is relatively easy, compared to the support libraries HDF5 and

NetCDF, for example. The change that we would propose is to drop the Echam's internal C-

language support library and use Fortran equivalent routines instead, or if not practical, use

ISO-C binding available in modern Fortran versions instead of the cfortran.h interface.

Execution

The set up of the input files turned out to be next to impossible. In principle they are

available, but to be really sure how to set the model parameters to match certain experiment

run is not clear. There are shell scripts to achieve that goal, but the only thing sure about the

shell scripts is that they will not work in a different environment from where they were

written. The simple solution was to copy the contents of the work directory just prior to the

execution of the model from the developer's environment to the current test environment. The

set up of the experiment runs would not have been possible without the expert help from MPI-

M Hamburg.

The benchmark run is one month simulation starting from the identical initial conditions at the

start of the CMIP5 AMIP-LR experiment. The test run was repeated with varying the number

of MPI tasks, OpenMP threads and the number of cores dedicated as I/O servers.

Results

The wall clock execution times of the parallel runs as a function of the number of the used

processor cores for different MPI and OpenMP configurations are presented in table 1. The

corresponding parallel efficiencies are presented in Table 2. The overall result is that the

efficiency starts to drop significantly around 100 processor cores, and that OpenMP hybrid

parallelization has relatively small effect on the scalability for the studied T63 resolution

experiment. The results would likely be very different for larger resolution experiments with

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

69

larger computational grids.

The effect of the separate I/O server tasks (0, 1, 4 and 8 tasks) was studied, but the effect on

the run times was found to be negligible for this particular experiment. The result is expected,

as, in the studied experiment, the disk I/O is a minor contribution to run time.

 Processor cores

Nthreads 4 8 16 32 64 128 256

1 18173 9156 4737 2453 1304 738 500

2 - 9947 5065 2643 1388 776 474

4 - - 5690 2911 1550 848 514

Table1. Execution times from "time aprun echam6" in seconds as a function of the number of

the used processor cores for different MPI task and OpenMP thread configurations.

 Processor cores

Nthreads 4 8 16 32 64 128 256

1 100 99 96 93 87 77 57

2 - 91 90 86 82 73 60

4 - - 80 78 73 67 55

Table 2. Parallel efficiency (percentage), relative to 4 MPI tasks with single OpenMP thread

case.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

70

Reducing the Sensitivity of the Met Office Unified Model to Rounding Errors

Contributors: O.R. Darbyshire, A.M. Clayton, Met Office.

Introduction

Numerical Weather Prediction (NWP) and Climate Prediction models are computationally

intensive tasks involving a great many floating-point operations. As such, the results of these

models are influenced by the nature of floating point arithmetic in a variety of ways. The

binary system used on the majority of computer architectures is unable to represent floating

point numbers with complete accuracy and there is some error introduced due to rounding.

For a 64-bit floating point number on an IEEE 754 compliant system the upper bound of this

error, often termed machine epsilon, is 1.11x 10
-16

. Furthermore, the semantics of finite

precision arithmetic are dissimilar to their exact counterparts and can introduce significant

error (Knuth, 1981). The situation is further compounded as different architectures and

compilers may introduce different rounding errors in intrinsic functions and their internal

representation of floating point numbers. Even the level of compiler optimization can alter the

results of floating point arithmetic.

The impact of these errors on the model results can manifest itself in several ways. Goel and

Dash, 2007 studied the results of a spectral General Circulation Model (GCM) obtained on

three different computer architectures and found the difference between the temperature fields

on two architectures could be as large as 4.5°C. Modifying the format of the initial data given

to the model from a free format read to one which gave the same level of accuracy on all

three platforms greatly reduced the differences observed between the architectures. Rosinski

and Williamson, 1997 studied the growth of temperature differences in the NCAR

Community Climate Model (CCM) version 2 and found the growth to be faster than that

which could be attributed to turbulent flow. The error growth was attributed to the

accumulation of rounding errors and the response of discontinuous algorithms in the physical

parameterizations to the evolving state of the model.

Rosinski and Williamson, 1997 also set out a framework that can be used to validate the port

of a model to a new computer architecture. They describe three conditions that must be met:

 “During the first few times steps differences between the original and ported code

solutions should be within one or two orders of magnitude of machine rounding.”

 “During the first few days the growth of a difference between the original and ported

code solutions shout not exceed the growth of an initial perturbation introduced into

the lowest-order bits of the original code solution.”

 “The statistics of a long simulation must be representative of the climate of the model

as produced by the original code.”

In this work we describe the application of these porting tests to the UK Met Office Unified

Model (MetUM). Firstly we document the growth of differences in the model due to an initial

perturbation in the temperature field at the least significant bit. A methodology for reducing

the sensitivity of the algorithms used in the physical parameterizations to perturbations in the

initial temperature field is then outlined. Finally, results of the improvements made to the

algorithmic design of the MetUM are discussed and the porting and validation of the model

on a new architecture is described.

Model Overview

The MetUM is a highly flexible suite of numerical software for modelling the atmosphere that

can be used across a wide range of length- and time-scales (Cullen, 1993). The model may be

run in high resolution global and local area configurations for NWP and coupled to ocean and

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

71

sea-ice models as well as earth system components for seasonal or decadal forecasting and

climate prediction.

Unfortunately due to some of the algorithms used in the physical parameterizations employed

in the model the MetUM code has been found to be particularly sensitive to small

perturbations in initial conditions. These problems generally result from poorly conceived

logic tests on real variables used to determine specific states in the model.

To take a simple example where there is the following test:

IF (SNOW_TILE(L,N).GT.0.0) THEN

TSTAR_TILE(L,N) = MIN(T_SOIL(L,1), TM)

END IF

where TM is 0°C. This ensures that the surface temperature TSTAR_TILE is at or below the

freezing point if there is snow on the tile.

In a pair of runs differing initially by least-significant-bit perturbations, the following values

were found:

Run 1: SNOW_TILE = 0.0, T_SOIL ~ 5°C => TSTAR_TILE = ~5°C

Run 2: SNOW_TILE ~ 1.0e-19, T_SOIL ~ 5°C => TSTAR_TILE = 0°C

In both runs, the ground temperature is well above zero, and the intention of the coder is

clearly that there should be no snow. However, in the second run an earlier calculation which

should have removed all the snow from the tile has been affected by rounding error, leaving a

snowflake or two behind. The consequence is a spurious jump of 5°C between the two runs.

It is errors such as these that result in a very large value of the RMS temperature difference

between the control and perturbed run, as can be seen in Fig. 1. This makes the porting tests

described previously difficult to carry out as the spurious and rapid growth of temperature

differences may mask an underlying error in the porting. In an effort to reduce the spurious

growth of errors software has been developed to track down these branching events at if tests

so that the growth can be reduced and porting validations carried out with more confidence.

This software is described in the subsequent section.

Methodology

The MetUM code is automatically instrumented in order to record the number of times each

branch of an if test is executed. Once this has been done a control run can then be carried out

and then compared to a run where the initial conditions have been perturbed at the least

significant bit using random numbers sampled from a Gaussian distribution. Comparing the

time evolution of the RMS Temperature difference between the control and perturbed runs

gives a good indication of whether differential branching has occurred and the solutions are

diverging.

The output from the software used to instrument the code can then be used to locate the

routine where the branching occurred and the problem investigated further. A small N48

resolution global test job running on four processor cores is used when searching for spurious

code branching.

Results

Reduction of Sensitivity to Initial Conditions

As mentioned earlier the over-sensitivity of the MetUM to perturbations in the initial

conditions is a barrier to successful validation of the model when ported to new architectures.

The branch tracking software developed has been used to track down coding errors which

lead to differential branching in the code and hence large jumps in the temperature difference

between the control and the perturbed runs. Figures 1 to 3 show the results of this work on

three different systems: a Cray XE6 (HECToR), and IBM Power 6 and an Intel Xeon Linux

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

72

machine. These figures show an ensemble of 20 runs with the thick red line being the average.

In all cases the over-sensitivity of the MetUM trunk can be seen, with a large jump in the

RMS of the temperature difference between the control and the perturbed run shown clearly

in the first few timesteps. A modified version of the code, containing numerous fixes to reduce

the sensitivity of the code to initial condition perturbations (r7271 on HECToR and r35820 on

both IBM and Linux) exhibits much improved performance over the first 3 hours of a model

run.

Figure 7 RMS of the temperature difference between the control and perturbed run of an N48

model on Linux. Results of an ensemble of 20 runs are shown using the trunk of the MetUM

code and a version containing fixes for spurious branching, r36820.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

73

Figure 8 RMS of the temperature difference between the control and perturbed run of an N48

model on the IBM Power6. Results of an ensemble of 20 runs are shown using the trunk of the

MetUM code and a version containing fixes for spurious branching, r36820.

Figure 9 RMS of the temperature difference between the control and perturbed run of an N48

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

74

model on HECToR. Results of an ensemble of 20 runs are shown using the trunk of the

MetUM code and a version containing fixes for spurious branching, r72 71

This improvement in the model's response to initial condition perturbations will allow the

porting tests described in the introduction to be carried out with significantly more confidence

than previously possible. Similar tests can also be carried out to assess the impact of compiler

optimizations and new algorithms on the performance of the model.

Model Port Validation

The performance of the model is now such that it is possible to complete the first porting test

when running the MetUM code on HECToR. Figure 4 shows RMS of the temperature

difference for the same ensemble of runs on both a Linux machine and HECToR. The blue

lines are the RMS temperature difference between the Linux runs and Linux control and the

green are the RMS temperature difference between the HECToR runs and Linux control. Here

the lower growth of perturbations detailed in the previous section can still be seen and the

differences between the runs on the two machines are minimal. The growth of perturbations is

close to the level of machine rounding in most of the cases, however these is still some room

for improvement in this area. Due to a lack of computational resources on HECToR the other

tests were not attempted.

Figure 10 RMS of the temperature difference between the Linux control and Linux perturbed

run of an N48 model (blue) and Linux control and HECToR perturbed run (green). Results

are shown using r7271 of the MetUM code.

Optimization Error

The same strategy used to expose errors porting the code to a new system can be used to test

potential new additions or optimizations to the code. Figure 5 shows two ensembles of runs

on an IBM Power6 using the N48 model employed previously. The run in blue is compiled

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

75

with the option -qstrict=exceptions which disables all transformations likely to affect

exceptions or be affected by them (IBM, 2011). but enables other optimizations that might

affect floating point semantics. The run in green is compiled with -qstrict which disables all

semantics-changing transformations (IBM, 2011). The difference between the two runs is

obvious and this method represents the beginnings of a system for testing and catching the

introduction of such errors into the code.

Figure 11 RMS of the temperature difference between the control and perturbed run of an

N48 model on the IBM Power 6. Results of an ensemble of 20 runs are shown using an

executable compiled with -qstrict=exceptions (blue) and -qstrict (green).

Summary and Conclusions

A system for tracking and diagnosing spurious code branching, a source of model divergence,

in the MetUM has been developed. The rate of growth of a small perturbation has been

significantly reduced, allowing some of the porting tests suggested by Rosinski and

Williamson, 1997 to be completed. The improvements should increase the ease of porting the

model to new architectures in the future and allow other coding or optimization changes to be

tested to see if they alter the sensitivity of the model.

References

M. J. P. Cullen. The unified forecast/climate model. Meteorological Magazine, 122(1449):81–

94, 1993.

S. Goel and S. K. Dash. Response of model simulated weather parameters to round-off-errors

on different systems. Environmental Modelling & Software, 22(8):1164–1174, 2007.

IBM. XL Fortran for AIX v12.1. IBM, 2011.

D. E. Knuth. The Art of Computer Programming (Volume 2). Addison–Wesley, 1981.

J. M. Rosinski and D. L. Williamson. The accumulation of rounding errors and port validation

for global atmospheric models. SIAM Journal on Scientific Computing, 18:552, 1997.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

76

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

77

UM Scaling on HECToR

Contibutors: O.R. Darbyshire, Met Office.

Introduction

In more recent releases of the UM the amount of OpenMP parallelisation has been increased

in order to take advantage of the decrease in execution time that can be achieved using a

hybrid MPI-SMP approach. This approach is especially beneficial for codes whose scalability

is limited by memory bandwidth such as the UM.

Methodology and Results

Four configurations of a N512 HadGEM3-A (atmosphere only) model using UM7.8 have

been tested on HECToR in order to find the most efficient configuration in terms of

atmosphere decomposition and number of OpenMP threads. Three of these models were

analysed with Scalasca to obtain a more detailed picture. Both instrumented and un-

instrumented executables were run for 24 hrs of model time.

Table 1 details the decomposition of the atmosphere and the number of OpenMP threads on

6120 processors (i.e. using 6120 MPI processes, one per processor). The following three

columns give the maximum time in seconds a single process spent executing model code, was

idle waiting for OpenMP work and the output from the UM timer routine. This information is

obtained from the Scalasca instrumented runs. The final column gives the UM timer output,

again a maximum of all the processes, for an un-instrumented run. Values labelled approx are

an estimate as the runs hit their wall clock limit.

There are two main points to note: the model is fastest when using two OpenMP threads and

there is a large overhead incurred to use Scalasca, approximately 300% of the un-

instrumented time.

Table 2 shows the total time spent by every process executing different categories of code:

time spent in instrumented MPI calls, time in OpenMP API calls and code generated by the

OpenMP compiler, idle time spent by OpenMP threads. The table also shows the total amount

of MPI data transfer. To be clear, the table shows the sum of the time spent in each process

for each category. The data in table 1 and table 2 are related. The sum of the times in each row

of table 2 divided by the number of MPI processes used (6120) gives the execution time listed

in table 1. In table 2, for all the runs the total amount of time spent executing model code

remains quite similar (within approximately +/-5% of the 3 OMP thread figure). However, as

the number of OpenMP threads is increased the time spent in MPI calls is reduced but the

amount of OpenMP idle time increases. In fact the rate that the OpenMP idle time increases as

the number of threads goes up is about 4 times the rate at which time spent in MPI calls

reduces.

λ pts φ pts OMP

thds

Execution

(s)

Idle OMP

Threads

(s)

UM Timer

Wallclock (s)

UM Timer

without

Scalasca (s)

102 60 1 2000 (approx)

60 51 2 3907 2718 3851 945

40 51 3 4428 3209 4406 1071

30 51 4 4927 3638 4898 1400 (approx)

Table 1: Maximum of all processes from both instrumented and un-instrumented runs.

λ

pts

φ

pts

OMP

thds

Execution

(s)

MPI (s)

OMP (s)

Idle

OMP (s)

MPI data

transfer (TB)

60 51 2 9.9230×10
6
 5.4109×10

6
 4.2404×10

5
 8.1532×10

6
 75.92

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

78

40 51 3 9.4553×10
6
 4.0560×10

6
 8.2290×10

5
 1.2767×10

7
 61.58

30 51 4 9.3650×10
6
 3.2668×10

6
 1.2376×10

5
 1.6290×10

7
 54.67

Table 2: Total times for all processes for the Scalasca instrumented runs.

These runs should be considered an approximation of the true performance for two reasons:

first, although the runs must read the start dump they do not write any dumps to disk. Second,

at the beginning of the run the solver hits the limit of 200 iterations for about 30 time steps

before settling down, see Figure 1. If this peak only occurs at the start the true time required

per day of a longer run will be significantly less than suggested by these runs.

Figure 12 Iterations required to reach the convergence criterion at each time step. Hard limit

at 200.

UM 8.0 setup for HECToR and HERMIT

Getting UM version 8.0 setup on HECToR was driven by the PRACE work. Originally vn8.0

was setup using the Pathscale compiler which was the default choice for running the UM on

HECToR at the time. The amount of OpenMP code proved a problem as the compiler was

buggy with nested OpenMP calls and work was required to trace the routines causing

problems and reduce the optimisation level or turn off the OpenMP. The upgrade of HECToR

to the new AMD interlagos chips coincided with the retirement of the Pathscale compiler and

the default compiler for the UM on HECToR became the Cray compiler.

Working alongside the NCAS-CMS team in Reading work was carried out to move the UM

on Hector to the Cray compiler (cce). This involved a substantial level of debugging are

numerous routines required different levels of optimisation in order to run. This was further

compounded by the need for the N512 model to run with more than one OpenMP thread,

something not supported initially by NCAS-CMS.

Small changes were also required for GCOM in order to build with the cce. The call to

MPI_init had to be changed to MPI_init_thread and another routine to get the maximum value

an MPI tag can tag had to be altered to call a deprecated version as the new one would not

work properly on the phase 3 version of HECToR or on HERMIT.

Version 8.0 of the UM is now setup and running on both HECToR and HERMIT.

Performance of the model on HERMIT is better than expected and it scales well to 4000

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

79

cores. Further work is required to iron out some issues with the I/O server and STASH

meaning. A contractor from Cray has been employed to assist and look into these issues. He

will also look at:

 MPI tuning

 Scaling with different numbers of OpenMP threads.

 Debugging tools

 I/O server tuning

Summary and Conclusions

Work has been carried out on HECToR to investigate the OpenMP scalability and to port the

model to the new Cray compiler. At UM 7.8 it was found that running with 2 OpenMP threads

gave the best performance. The porting work at version 8.0 was successful although there is

room for further performance improvement with careful tuning. The amount of OpenMP

parallelised code in version 8.0 has increased significantly hence there may now be benefit

from running with increased numbers of threads. Recent scaling work on HERMIT has shown

four threads to give good performance.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

80

Technical issues with the UPSCALE PRACE project

Contibutors: S. Mullerworth, Met Office.

This section is based on interviews with UPSCALE team members about some of the

technical issues that arose during the UPSCALE project jointly run by the Met Office and

NCAS. The motivation for writing this section is not to go into the detail of the technical

issues, but to list the issues that are likely to arise and should therefore be considered when

planning future similar projects. Detailed information can be found in "High resolution

climate modelling; the UPSCALE project, a large simulation campaign" Mizielinski et. al, in

preparation for submission to Geoscientific Model Development.

UPSCALE ran a series of high resolution (mainly 25km, but also some 12km resolution)

configurations of the Met Office atmospheric model on the HERMIT supercomputer within a

PRACE project. The project used 144 million core hours of HERMIT over one year and

generated 300 Terabytes of data.

The core of the UPSCALE project was a series of 25 model-year runs each of which ran on

up to 9408 Cray XE6 cores. At a 25 km resolution, the Met Office Unified Model simulated 6

model-months per day. At its peak, the UPSCALE project was running 5 simulations

concurrently, so using 47 thousand cores of HERMIT.

Prior to the UPSCALE project, the Met Office and NCAS have had experience porting the

model to other large supercomputers, such as the Earth Simulator.

All models and systems are different, so the experiences below are summarised to give an

indication of technical issues that are likely to arise with other similar projects, and to help

other groups to plan for issues that may arise.

 Project resource request: Climate models generally request access on Tier 0 PRACE

machines because the resources available elsewhere limit the resolution at which the

model can be run. Necessarily, this means that it is difficult to estimate the resources

required to complete an experiment before access to the machine is enabled.

Furthermore, the particular properties of the Tier 0 platform can work well for the

model or can work poorly meaning that the resource request can be over or under-

estimated.

 Initial porting: Input from Cray analysts was critical to the successful porting and

tuning of the model. Advice from Cray analysts also helped to optimise the model

significantly, speeding up the model by a third. Two key improvements were:

o The IO was tuned by ensuring suitable placement of the IO servers within the

system. For example, ensuring each IO server ran on a different node

o The processor configuration was tuned by scanning around 100 different

model decompositions. In addition to finding some processor counts that gave

widely differing performance on different decompositions (the bars in the

diagram below illustrate the range of time for differing decompositions with

the same core count), this work also found that an example where, for

example, the core count was increased by 7-8% from 2144 to 2304 to gave a

30% cost reduction:

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

81

 Model-specific IO issue: The Met Office Unified Model has a post-processing

“climate means” subsystem that generates seasonal and annual means on the fly.

Unfortunately, within the PRACE configuration, this system disproportionately

impacted the amount of IO being generated. As a result, the system could not be used

and the outputs had to be generated in another way. While the climate means system is

specific to the Met Office Unified Model, it is given as an example of an unexpected

delay in porting that can arise in any project.

 Model stability issues 1: It was found that the high resolution version of the model

was, relative to the standard resolution version, more prone to instabilities such as

grid-point storms, resulting in the jobs needing to be regularly repaired and restarted.

Before during and after this project, work has continued to try and improve stability

such that failure rates have dropped from an original rate of once per 9 months to once

per 19 months, and the latest incarnation has not suffered any failures so far.

 Model stability issues 2: As a time-slice run, this model was run with climates similar

to current climatologies, and with warmer climates. Instabilities were also higher in

the warmer climates, probably because the model configuration had not been tested

thoroughly against that climatology. Analysing these stability problems was made

more difficult by the lack of appropriate tools. Existing tools to plot data did not have

the ability to deal with the very fine grids.

 Model versus Machine stability issues: Often it was difficult to detect the difference

between issues caused by hardware failures and model stability issues. Model stability

issues could be identified by checking iteration counts in the solver or monitoring

vertical velocities. Evidence of machine instabilities, however, relied on monitoring

which nodes the models that failed were running on so as to identify faulty nodes.

 IO performance: IO was very intensive in the model simulations. On occasions, total

IO load on the system caused model slowdowns resulting in jobs running out of time

in the queue.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

82

 Job prioritisation: There was no ability to prioritise one job above another within the

project on the HERMIT machine. It would have been beneficial to the project to allow

some of the runs to have a higher priority than others.

 Data transfers: Climate models generate large amounts of data; the amount of data

was a big surprise to the systems teams. The UPSCALE project generated 300

Terabytes in total. The PRACE rules require that the data is removed from the host

machine at the end of the project. Therefore a significant subproject of UPSCALE

related to the transfer of the model data to BADC. Initially, gridftp was not available,

and the multiple rsync processes that were being used caused issues with HERMIT.

Furthermore, there were issues with transferring some of the files due to their large

size: they had to be split into smaller files and rejoined at BADC. When gridftp

became available, further delays were caused by the need to obtain eScience

certificates. Eventually, however, transfers at the rate of 2-6 Terabytes per day with

built-in checking were running reliably, and all data was removed from HERMIT in

good time. That said, monitoring the transfers and resolving issues required human

input a few times a week over a period of some months.

 Data Storage 1: Clearly, planning for the storage of 300 Terabytes is a significant

undertaking. Aligning a bid for computing resources within one system that may or

may not be successful with a bid to store a large amount of data in another system is a

difficult issue. In this case, the UPSCALE team were extremely fortunate that the

project coincided with the introduction of the new JASMIN storage system at BADC.

Prior to JASMIN coming on line the data was being stored on a range of different

servers which was making the data difficult to analyse, and not all the data was backed

up. JASMIN provided space to securely archive all the data in one place. It has been

said by members of the UPSCALE team that the UPSCALE project was as dependent

on JASMIN as it was on HERMIT.

 Additional considerations: it should be noted again that UPSCALE involved running

an atmosphere model only. Addition of other components such as an ocean model will

add additional issues by doubling up the effort required to port and tune models, by

adding an extra technical issue related to coupling the two models efficiently, by

needing to support the deployment of the a coupled model efficiently on the

architecture and by needing to load-balance the deployment.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

83

PART III: Concluding remarks

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

84

Summary of the results

The deliverable reports results obtained from the following coupled models ARPEGE-

NEMIX, IPSL-ESM and EC-Earth, METOFFICE Unified Model, Cosmos-Millennium) and

one stand-alone models (NEMO) tested on a number of PRACE HPC infrastructures within

the IS-ENES network. The collaborative effort among application owners and computer

specialists led to the identification of numerous strengths and limitations of these ESMs and

models. The main findings are summarized below:

 IPSL-ESM coupled model:

o Under the PRACE preparatory access grant, COUAC, the IPSL model has

been ported to CURIE and comparisons with the deployment on JADE

(CINES machine) made. A high resolution version of the model has been

ported and is now entering a performance tuning phase.

o To support the porting to the new machine, the IPSL compilation and

execution environment has been ported to CURIE and the plan is to install the

IPSL running environment shortly to support production runs.

o There is still an issue running MPI parallel ocean models and hybrid MPI-

OpenMP atmosphere models on the machines currently available. The

Computing Centres must be encouraged to address this with urgency.

 ARPEGE-NEMIX coupled model validation on PRACE machines:

o In further work with IS-ENES ESMs on PRACE machine, the validation

version of the ARPEGE-NEMO coupled model has been ported to PRACE

tier-0/tier-1 machines and a successful porting validation is reported with

comparisons to previous implementations on NEC and SGI Altix platforms.

This work prepares the way for a port of a full version of NEMO to the

PRACE machines.

o Under a PRACE preparatory access project, work has been undertaken to

enhance the performance of the OASIS coupler on the PRACE machine

CURIE, using the new OASIS-MCT implementation. Some science issues

with the port were identified and corrected and work towards a high resolution

port for production use is now in progress.

 EC-Earth coupled mode on CURIE

o A high resolution version (T799 and ¼ degree Ocean) of the EC-Earth ESM

was successfully ported to and benchmarked on up to 3500 MPI processes on

CURIE (an Intel Xeon plus Infiniband cluster) by LIU.

o At this scale, the efficiency was approximately 50% of the most efficient run.

An analysis of the behaviour or timesteps with and without I/O was

investigated revealing that, though the I/O time varied timestep to timestep, the

overall scaling of I/O timesteps is consistent with timesteps in which only

computation occurs.

o Work to create a standard environment which can be installed on a new

machine to ease the porting process is also reported.

 EC-Earth coupled model on MareNostrum

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

85

o The experience of porting EC-Earth and other models has identified some ‘best

practice’ that could be followed. EC-Earth consists of a number of component

models (IFS, NEMO), the OASIS coupler and a number of essentially standard

libraries (MPI, OpenMP, NetCDF). Increasingly, the standard libraries are

already available on a new machine (and they – including, possibly a number

of commonly used versions - should be made available by the centre housing

the machine). Porting the component models reveals that some (versions of)

models are more easily ported than others. Porting NEMO and OASIS to

MareNostrum was relatively simple because each has centralised, in the source

file structure, issues that typically cause porting to be difficult. The version of

IFS used (that used in EC-Earth V2) was difficult to port and porting issues

were not located in a centralised place. EC-Earth, V3 is much improved in this

respect. This centralisation is a mechanism that has been developed in a

number of community models, such as WRF and CMAQ, and lessons learned

from these community codes should be heeded in ESM model development.

o Several version of EC-Earth were successfully ported to MareNostrum,

including a version with a recent update to NEMO (PELAGOS025), and

examples of load imbalance and serialisation within IFS and NEMO identified

and analysed using Paraver. Several options for performance improvement

were identified and evaluated. However, scalability is strongly limited by the

current numerical schemes implemented.

 NEMO stand-alone model:

o CMCC has undertaken porting, benchmarking and optimization work with

NEMO on Marenostrum. Profiling revealed several target routines for

performance improvement typically to reduce communication costs (either

changing communication patterns of overlapping communication with

computation). Also, improvements to the handling of I/O have been made.

Some work to demonstrate the possibility of a hybrid OpenMP-MPI solution

also shows promise.

 FMI Cosmos-Millennium on Cray-XT5

o A successful porting and running exercise with the coupled atmosphere and

ocean models of the Cosmos-Millennium model has been completed.

o Three platforms were involved: two Cray-XT5s and one SGI/Altix 4700 with

production runs being undertaken on the Cray machines. The minimum

wallclock performance for the model (resolution T31L19) occurs at around

130 cores and is sensitive to the allocation of resources to the atmosphere and

ocean.

o One extended 1200 year experiment has been run with this configuration and

an ensemble of thirty 45 years runs executed (with each ensemble member

running on the optimum number of cores for an instance of the model).

 CSC (subcontractor to FMI) ECHAM6 atmosphere on Cray-XT4

o A strong scaling case study of the Echam6 atmosphere model and the CMIP5 -

amip-LR model experiment at T63L47 resolution has been performed on a

Cray-XT4. Hybrid MPI-OpenMP parallelization was used and run-time and

efficiency results presented.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

86

o Porting difficulties were identified with the support libraries (HDF5 and

NetCDF). The source of these problems was identified as the use of ‘old’ C

interface language techniques. It is suggested that moving to either Fortran-

based interface routines, or using the modern Fortran standard interface

mechanisms to C would alleviate these problems.

o The scripts used for input file set up were found to be essentially non-portable

to the Cray environment, and a workaround - based on copying the initial state

from a development directory - was implemented.

 METOFFICE Unified model (UM)

o When porting the UM, it has been found that the code behaviour is very

sensitive to the results of floating point operations, leading, for example, to

spurious branching resulting from floating point comparisons. Work has been

undertaken to restructure the code to reduce its sensitivity in this respect, thus

improving the porting process (in terms of validation of the science computed).

o A system for tracking and diagnosing spurious code branching, a source of

model divergence, in the UM has been developed. The rate of growth of a

small perturbation has been significantly reduced allowing some standard

porting tests (suggested by Rosinski and Williamson in 1997) to be completed.

These improvement should increase the ease of porting the model to new

architectures in the future.

 METOFFICE Unified model:

o Four configurations of an N512 HadGEM3-A model were tested on HECToR

to investigate the most efficient configuration of MPI processes in an

atmosphere decomposition and the number of OpenMP threads to use in a

hybrid MPI-OpenMP implementation. This work was driven by interaction

with PRACE.

o Comparisons show that two threads provide the best performance improvement

(the mapping of processes and threads to cores used in the tests is not explicitly

stated).

The following table brings together scalability results for several of the models reported in

this document.

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

87

Table 1: Simulated years/day vs number of cores for several of the European ESMs reported

in this document. Resolution between 25 and 30 km. (Note, the models do not necessarily

compute comparable science etc.)

All results presented in the table have been translated into the (absolute) metric of ‘simulated

years per day’. Care should be taken when drawing conclusions from such a graph as the

models reported differ in several crucial aspects, including science content, resolution, I/O use

etc.

The graph shows that most European models, at 25-30 km resolution, currently scale to

around 1000-3000 cores. This conclusion gives impetus to the current initiatives being

undertaken to address scalability limitations in the major European ESMs.

One recent European initiative of note, is the recent work led by Pierre-Luije Vidale

(University of Reading), using the HiGEM version of the Met Office’s UM on the Cray-XT6

(HECTOR). This work shows HiGEM scaling to around 12000 cores. Work in the US also

shows models scaling to tens of thousands of cores. This work, and other related initiatives in

Europe and the US, are summarised in the presentation at SC12 given by Sylvie Jussaume,

“Modelling the Earth’s climate system: data and computing challenges”, SC 2012, Salt Lake

City.

Scalability well beyond tens of thousands of cores (and threads) will be required for the

Exascale computers envisaged to be in production towards the end of the current decade.

References

Hazeleger, W. et al., 2009. EC-Earth: A Seamless Earth System Prediction Approach in

Action, accepted, Bull. Amer. Meteor. Soc.

Martijn Brandt, EC-EARTH- the European Community Earth system model, March 2010

[http://ecearth.knmi.nl/EC-Earth_model_documentation.pdf]

 Status: Final

This document is produced under the EC contract 228203.
It is the property of the IS-ENES project consortium and shall not be distributed or reproduced without the formal approval of the IS-ENES General

Assembly

88

Stefanescu S., Standalone environment for compiling and running the EC-EARTH system,

Technical Note, April 2008 [http://ecearth.knmi.nl/ecearth2.pdf].

