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Introduction Turbulence

Turbulence
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Introduction Turbulence enrichment

Turbulence Enrichment

Given a low-resolution turbulent flow field (LES), recover the high-resolution field (DNS) in a
pointwise sense
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Introduction Turbulence enrichment

Generative Adversarial Networks
• A class of generative models introduced by Goodfellow et. al.1

• Mainly used for generating photorealistic images
• Also used previously for scientific datasets23

1Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing systems. 2014, pp. 2672–2680.
2Mustafa Mustafa et al. “Creating Virtual Universes Using Generative Adversarial Networks”. In: arXiv preprint arXiv:1706.02390 (2017).
3Shing Chan and Ahmed H Elsheikh. “Parametrization and Generation of Geological Models with Generative Adversarial Networks”. In: arXiv preprint

arXiv:1708.01810 (2017).
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Introduction Data description

Data

• 4 3D fields: 3 components of velocity and pressure
• Each field is on a 64× 64× 64 grid
• Low resolution data: filtered and downsampled to 16× 16× 16
• Homogeneous Isotropic Turbulence (HIT) that is stationary in time
• A fairly low Reynolds number case to keep computational costs low

Akshay Subramaniam Physics informed GANs March 17, 2021 5 / 20



Model architecture Model architecture

SRGAN

• SRGAN: super-resolution for images4

• Residual network with convolutional layers
• Two upsampling layers
• Model architecture used in this work is inspired by SRGAN
4Christian Ledig et al. “Photo-realistic single image super-resolution using a generative adversarial network”. In: arXiv preprint (2016).
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Model architecture Generator architecture

Generator architecture
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Model architecture Discriminator architecture

Discriminator architecture
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Model architecture Physics informed learning

Physics informed learning

• The generated results need to be physical
• Respect conservation laws governing the system

∇ · u = 0,
−∇2p = ∇u : ∇uT

• Can do so by penalizing the generator using the residual of the equations above

Lcontinuity =
∫

Ω
(∇ · u)2 dΩ,

Lpressure =
∫

Ω

(
∇2p+∇u : ∇uT

)2
dΩ
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Model architecture Physics informed learning

Physics loss

• Add a physics loss to the generator training
Lphysics = (1− λC)Lpressure + λCLcontinuity

• Enforces better compatibility with physics
• Acts as a regularizer for the model

Manifold of physically
realizable models

Space of all models

Regular model

Lphysics
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Model architecture Physics informed learning

Loss function

• The loss function LGAN is given by

LGAN = (1− λA)Lresnet + λALadversarial

Lresnet = (1− λP)Lcontent + λPLphysics

Lcontent = (1− λE)LMSE + λELenstrophy

Lphysics = (1− λC)Lpressure + λCLcontinuity

• MSE and enstrophy sensitize the model to large and small scale features respectively
• Four hyperparameters to tune: λA, λP, λE and λC
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Results Error metrics

Impact of physics loss on training

• Increasing λP improves the physics loss by an order of magnitude but compromises content loss
• Higher λP creates a strong local minimum at the trivial solution
• Choose λP = 0.125 as a compromise
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Results Error metrics

Akshay Subramaniam Physics informed GANs March 17, 2021 13 / 20



Results Error metrics

Evaluation

Lcontent Lphysics
Dev Test Dev Test

TEResNet 0.049 0.050 0.078 0.085
TEGAN 0.047 0.047 0.070 0.072

% Difference 4.1 6.0 10.3 15.2

• TEGAN has consistently lower content and physics losses
• TEGAN also generalizes to the dev set better
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Results Statistical evaluation

Energy spectra

• Energy spectra of the velocity field is a fundamental statistical quantity in turbulence
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• The low resolution data is very coarse
• TEGAN is able to recover the spectrum very well in the intermediate wavenumbers
• Not as effective at capturing the finest dissipative scales
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Results Statistical evaluation

Second order two-point correlations
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• R11(r = 0) and R22(r = 0) are the variances of the longitudinal and transverse velocity
components respectively

• TEGAN captures both the longitudinal and transverse correlations virtually perfectly
Akshay Subramaniam Physics informed GANs March 17, 2021 16 / 20



Results Statistical evaluation

Third order two-point correlations
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• TEGAN captures the qualitative structure of third order correlations
• ≈ 15% overprediction of the longitudinal correlations
• Third order correlations are harder for models to capture
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Results Statistical evaluation

QR diagram

• The velocity gradient tensor gives a picture of the local flow structure
• Represent using the second and third invariants of the tensor: Q and R
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Results Statistical evaluation

QR diagram
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Physics-Informed Neural Networks (PINNs)    
http://developer.nvidia.com/simnet
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Neural network approximates solution 
to partial differential equation.

Minimize loss from boundary 
conditions and equations.

SOLVING PDEs WITH PINNs
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     NEURAL NETWORK SOLVER METHODOLOGY
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     NEURAL NETWORK SOLVER METHODOLOGY
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     NEURAL NETWORK SOLVER METHODOLOGY
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Architectures
Physics Informed Neural Network

  
• Fully Connected (FC)

• Fourier Features (FN) – Axis, Partial, Full or Random Spectrum
• Sinusoidal Representation (SiReNs)
• Modified Fourier Features (mFN)
• Deep Galerkin Method (DGM)
• Modified Highway Networks
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     INVERSE PROBLEM
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     INVERSE PROBLEM
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     SOLVING PARAMETERIZED PDES
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     SOLVING PARAMETERIZED PDES
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U velocity difference = 0.2% 
V velocity difference = 0.4%

SimNet versus OpenFOAM
LID DRIVEN CAVITY
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INVERSE PROBLEM APPLICATION 
Finding Unknown Coefficients of a PDE: Heat Sink

Fluid Heat Convection:

Solid Heat Conduction:

Interface Conditions:

Results:
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TRANSIENT: MEDICAL IMAGING OF AN ICA
A Data Assimilation Problem

https://www.youtube.com/watch?v=QjY_8xFjsgE 

https://www.youtube.com/watch?v=QjY_8xFjsgE
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ICA — COMPARISON BETWEEN SIMNET & CFD SOLVERS

OpenFOAM vs. 
Neural Networks

Nektar++ vs. 
Neural Networks

  Nektar++ is a higher fidelity solver 
(implicit, h- & p- method based 
finite element CFD code) and 

provides higher quality results with 
less diffusion

   

Inverse Solution
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Multi-Physics Application: Fluids + Heat Transfer
NVIDIA  DGX-A100 NVSWITCH HEAT SINK

Turbulent Flow (Re=20,687)

Temperature Pressure 
Drop

SimNet - Fourier Network 43.1°C 3.56

Commercial Solver 43.5 °C 3.6

OpenFOAM  41.6 °C 4.58
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Multi-Physics Application: Fluids + Heat Transfer
PARAMETERIZED DGX-A100 NVSWITCH HEAT SINK

Computational Times 
(10 parameters, 3 values per parameter)

SimNet 
 

1000 V100 GPU hrs.

Traditional Solver (OpenFOAM)
59,049 separate runs 
(26 wall hours on 12 CPU cores)

 
18.4 Million CPU hrs.
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