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NWP: A “QUIET REVOLUTION”

• Weather forecasting has gradually increased in 
accuracy, due to:
• Vast advances in numerical representation of 

atmospheric physics and numerical methods
• Large network of data collection from satellites
• Supercomputing power

• Is it possible to stretch these improvements even 
further by applying modern machine learning 
techniques?
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The quiet revolution of numerical
weather prediction
Peter Bauer1, Alan Thorpe1 & Gilbert Brunet2

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

A t the turn of the twentieth century, Abbe1 and Bjerknes2 pro-
posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the atmo-

sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimistic interpretation
of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,
no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years
later, this paradigm translates into solving daily a system of nonlinear
differential equations at about half a billion points per time step between
the initial time andweeks tomonths ahead, and accounting for dynamic,
thermodynamic, radiative and chemical processes working on scales
from hundreds of metres to thousands of kilometres and from seconds
to weeks.
A touchstone of scientific knowledge and understanding is the ability

to predict accurately the outcome of an experiment. Inmeteorology, this
translates into the accuracy of the weather forecast. In addition, today’s
numerical weather predictions also enable the forecaster to assess quan-
titatively the degree of confidence users should have in any particular
forecast. This is a story of profound and fundamental scientific success
built upon the application of the classical laws of physics. Clearly the
success has required technological acumen as well as scientific advances
and vision.
Accurate forecasts save lives, support emergency management and

mitigation of impacts and prevent economic losses from high-impact
weather, and they create substantial financial revenue—for example, in
energy, agriculture, transport and recreational sectors. Their substantial
benefits far outweigh the costs of investing in the essential scientific
research, super-computing facilities and satellite and other obser-
vational programmes that are needed to produce such forecasts3.
These scientific and technological developments have led to increas-

ing weather forecast skill over the past 40 years. Importantly, this skill
can be objectively and quantitatively assessed, as every day we compare
the forecast with what actually occurs. For example, forecast skill in the
range from 3 to 10 days ahead has been increasing by about one day per
decade: today’s 6-day forecast is as accurate as the 5-day forecast ten
years ago, as shown in Fig. 1. Predictive skill in the Northern and
Southern hemispheres is almost equal today, thanks to the effective

use of observational information from satellite data providing global
coverage.
More visible to society, however, are extreme events. The unusual

path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1–2 weeks lead time, and tropical sea surface
temperature variability following the El Niño/Southern Oscillation phe-
nomenon can be predicted 3–4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-
tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.
This Review explains the fundamental scientific basis of numerical

weather prediction (NWP) before highlighting three areas from which
the largest benefit in predictive skill has been obtained in the past—
physical process representation, ensemble forecasting and model initi-
alization. These are also the areas that present the most challenging
science questions in the next decade, but the vision of running
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Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting
satellite data through the use of variational data100.
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EXPLOSION IN APPLICATION OF ML IN METEOROLOGY

• Post-processing NWP models (Rasp and Lerch 
2018)

• Identification and prediction of extreme weather 
events (Racah et al. 2017, Lagerquist et al. 2019, 
Herman and Schumacher 2018)

• Improving physical parameterizations in NWP 
models, and improving their computational 
efficiency (Rasp et al. 2018, Brenowitz and 
Bretherton 2018, McGibbon and Bretherton 2019)
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High-resolution truth model
Low-resolution model with ML physics
Low-resolution model
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WHAT IF MACHINES COULD PREDICT THE EVOLUTION  
OF THE ENTIRE ATMOSPHERE?

• We developed our Deep Learning Weather Prediction (DLWP) model

• Use deep convolutional neural networks (CNNs) on a cubed sphere grid

• While this is essentially replacing NWP models with deep learning, there are 
important caveats

• only a few variables: not a complete forecast

• subject to using training data dependent on state-of-the-art data assimilation
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CONVOLUTIONAL NEURAL NETWORKS

• CNNs 
• are ideally suited for “images” on a grid 
• account for local spatial correlations 
• identify patterns, edges, shapes

• However, equirectangular (latitude-longitude) 
images have heavy distortion near the poles
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CONVOLUTIONS ON THE CUBED SPHERE
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DATA

• ECMWF ERA5 input fields (6) 

• ~1.4º resolution; 6-hourly time step 

• Z500 , Z1000 

• 300–700 hPa thickness 

• 2-m temperature 

• T850 

• Total column water vapor 

• Prescribed fields (3) 

• TOA incoming solar radiation 

• land-sea mask 

• topography 

• Data sets 

• Train: 1979–2012; validate: 2013–16 

• Evaluate: twice weekly in 2017–18
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Colors: 500-hPa geopotential height, dkm 
Contours: 1000-hPa geopotential height, every 100 m, dashed=negative

ML MODEL

DLWP produces 
realistic, albeit 

smoothed, 
atmospheric 

states.
https://www.dropbox.com/s/xmi0v81fbcw4t1r/Weyn_ms02.mp4?dl=0

https://www.dropbox.com/s/xmi0v81fbcw4t1r/Weyn_ms02.mp4?dl=0


Can our DLWP model form the basis for a good-performing  

large ensemble prediction system?

• DLWP is inferior to NWP models. Why bother?
• The larger the ensemble, the better!
• DLWP has a significant computational 

advantage
• How long would it take to run a 1000-

member ensemble of 1-month forecasts at 
1.5º resolution?
• 10 minutes
• Single workstation with GPU

• In comparison, a comparable dynamical 
model would take about 16 days
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OBTAINING CORRECT ENSEMBLE SPREAD

12

DLWP ENSEMBLE

JONATHAN WEYN, MICROSOFT 
2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING 

NWP DLWP

Observation uncertainty
• Perturb initial conditions 

• Ensemble 4DVAR 
• SVD

• Perturb initial conditions 
• ERA5 ensemble  
• NOT optimal!

Model uncertainty

• Stochastically perturbed 
parameterization tendencies 
(SPPT) 

• Stochastic KE backscatter 
(SKEB)

• Random seeds in training 
• random data sampling 
• random weight 

initialization 
• “swapping” physics



DLWP VERSUS THE ECMWF ENSEMBLE
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DLWP ECMWF

Variables 6 2-D variables 9 prognostic 3-D variables,  
91 vertical levels

Resolution ~160 km ~18 km (36 km after day 15)

Other physics 3 prescribed inputs Many parameterizations

Coupled models None Ocean, wave, sea ice

Initial condition perturbations 10 (ERA5) 50 (SVD/4DVAR)

Model perturbations 32 “stochastic” CNNs stochastic physics perturbations

Ensemble size 320 (+ control) 50 (+ control)
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The DLWP ensemble only lags the state-of-the-art ECMWF ensemble by 2-3 days’ lead time.
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Can our large ensemble produce skillful sub-seasonal-to-seasonal (S2S) forecasts?
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Figure 1. (a) Qualitative estimate of forecast skill based on forecast range from short-range weather forecasts to long-range seasonal predictions,
including potential sources of predictability. Relative skill is based on differing forecast averaging periods. (b) A schematic diagram highlighting the
relationship between the subseasonal-to-seasonal (S2S) ‘extended-range’ forecast range and other prediction timescales, with examples of actionable
information that can enable decision-making across sectors. Actions are examples only and are not exclusive to a forecast range. (a) Adapted by
Elisabeth Gawthrop from an original !gure by Tony Barnston, both International Research Institute for Climate and Society; edited and reproduced
with permission. (b) Based on Meehl et al. (2001), Hurrell et al. (2009) and Goddard et al. (2014). De!nitions are based on WMO meteorological

forecasting ranges: http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html.

2014a). Initial soil moisture conditions have also been shown
to increase in particular the accuracy of both precipitation and
temperature predictions on the S2S timescale, especially for sum-
mer extreme temperatures; however, the use of sea-ice condi-
tions is a largely untapped and unknown source of potential pre-
dictability (Doblas-Reyes et al., 2013).

A number of persistent biases and errors, however, still exist in
most climate simulations, such as tropical precipitation and low

cloud cover (e.g. Randall et al., 2007). Some of these biases arise
solely from the errors in the models and some may arise from the
systematic misrepresentation of the coupled atmosphere–ocean
feedbacks, which may compound existing errors or generate new
biases (Brunet et al., 2010; Vitart, 2014a). The lack of vegetation
components and stratospheric disturbances in current forecast
models are other impediments to improving forecasts on S2S
timescales (Brunet et al., 2010; Doblas-Reyes et al., 2013).

© 2017 Royal Meteorological Society Meteorol. Appl. 24: 315–325 (2017)

White et al. (2017)



SUB-SEASONAL-TO-SEASONAL FORECASTING

• DLWP cannot be expected to compete with the 
state-of-the-art

• DLWP is lacking
• an ocean model
• land surface parameters e.g. soil moisture
• sea ice

• We also do not forecast precipitation with the 
current model iteration

• Cannot represent physics of MJO or ENSO
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2014a). Initial soil moisture conditions have also been shown
to increase in particular the accuracy of both precipitation and
temperature predictions on the S2S timescale, especially for sum-
mer extreme temperatures; however, the use of sea-ice condi-
tions is a largely untapped and unknown source of potential pre-
dictability (Doblas-Reyes et al., 2013).

A number of persistent biases and errors, however, still exist in
most climate simulations, such as tropical precipitation and low

cloud cover (e.g. Randall et al., 2007). Some of these biases arise
solely from the errors in the models and some may arise from the
systematic misrepresentation of the coupled atmosphere–ocean
feedbacks, which may compound existing errors or generate new
biases (Brunet et al., 2010; Vitart, 2014a). The lack of vegetation
components and stratospheric disturbances in current forecast
models are other impediments to improving forecasts on S2S
timescales (Brunet et al., 2010; Doblas-Reyes et al., 2013).

© 2017 Royal Meteorological Society Meteorol. Appl. 24: 315–325 (2017)



PROBABILISTIC SKILL SCORES OF S2S FORECASTS

• Ranked probability skill score (RPSS)
• Three equally-probable terciles relative to a 

1981–2010 climatology 
• below-, near-, and above-normal

• Forecast probability is the fraction of ensemble 
members

• Evaluate squared error of forecast probability 
versus observed category

• Normalize relative to random chance prediction
• Perfect score is 1, higher is better, negative 

score is no skill relative to random chance

17

DLWP FOR S2S

JONATHAN WEYN, MICROSOFT 
2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING 



PROBABILISTIC SKILL SCORES OF S2S FORECASTS
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Land points only

• Ranked probability skill score (RPSS) 
• Three equally-probable terciles relative to a 

1981–2010 climatology  
• below-, near-, and above-normal 

• Forecast probability is the fraction of ensemble 
members 

• Evaluate squared error of forecast probability 
versus observed category 

• Normalize relative to random chance prediction 
• Perfect score is 1, higher is better, negative 

score is no skill relative to random chance
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Week 3 Weeks 5-6
While most skill comes from the tropics, the DLWP ensemble 

has positive skill scores over nearly all land masses.
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Week 3 Weeks 5-6
DLWP fails to predict the onset of ENSO patterns in forecasts 

initialized in boreal autumn.



• Purely data-driven algorithms (CNNs) can produce realistic, indefinitely-
stable global weather forecasts with skill that only lags the state-of-the-art 
ECMWF model by 2-3 days of lead time.

• By leveraging initial-condition perturbations and the internal randomness 
of the CNN training process it is possible to produce a high-performing 
ensemble of data-driven weather models that requires several orders of 
magnitude less computation power than comparable dynamical models.

• For weekly-averaged forecasts in the S2S forecast range, a notable skill 
gap for dynamical models, our data-driven ensemble model has useful 
skill relative to climatology and persistence. It is not far behind the state-
of-the-art ECMWF ensemble.
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CONCLUSIONS
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