

SUB-SEASONAL FORECASTING USING LARGE ENSEMBLES OF DATA-DRIVEN GLOBAL WEATHER PREDICTION MODELS

JONATHAN WEYN^{1*}, DALE DURRAN¹, RICH CARUANA²

¹ University of Washington, Seattle, WA
 ² Microsoft Research, Redmond, WA
 * Current affiliation: Microsoft

NWP: A "QUIET REVOLUTION"

- Weather forecasting has gradually increased in accuracy, due to:
 - Vast advances in numerical representation of atmospheric physics and numerical methods
 - Large network of data collection from satellites
 - Supercomputing power
- Is it possible to stretch these improvements even further by applying modern machine learning techniques?

Bauer et al. (2015)

EXPLOSION IN APPLICATION OF ML IN METEOROLOGY

- Post-processing NWP models (Rasp and Lerch 2018)
- Identification and prediction of extreme weather events (Racah et al. 2017, Lagerquist et al. 2019, Herman and Schumacher 2018)
- Improving physical parameterizations in NWP models, and improving their computational efficiency (Rasp et al. 2018, Brenowitz and Bretherton 2018, McGibbon and Bretherton 2019)

INTRODUCTION

WHAT IF MACHINES COULD PREDICT THE EVOLUTION **OF THE ENTIRE ATMOSPHERE?**

- We developed our Deep Learning Weather Prediction (DLWP) model
 - Use deep convolutional neural networks (CNNs) on a cubed sphere grid •
 - While this is essentially replacing NWP models with deep learning, there are important caveats
 - only a few variables: not a complete forecast
 - subject to using training data dependent on state-of-the-art data assimilation

INTRODUCTION

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

 $J = J_1 + J_2$

Trained to minimize the error over a 24-hour forecast

CONVOLUTIONAL NEURAL NETWORKS

• CNNs

- are ideally suited for "images" on a grid
- account for local spatial correlations
- identify patterns, edges, shapes
- However, equirectangular (latitude-longitude) images have heavy distortion near the poles

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

CONVOLUTIONS ON THE CUBED SPHERE

DLWP ALGORITHM

INTRODUCTION

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

INTRODUCTION

DATA

• ECMWF ERA5 input fields (6)

- ~1.4° resolution; 6-hourly time step
- Z_{500} , Z_{1000}
- 300–700 hPa thickness
- 2-m temperature
- T₈₅₀
- Total column water vapor

JONATHAN WEYN, MICROSOFT

• Prescribed fields (3)

- TOA incoming solar radiation
- land-sea mask
- topography
- **Data sets**
 - Train: 1979–2012; validate: 2013–16
 - Evaluate: twice weekly in 2017-18

JONATHAN WEYN, MICROSOFT

Can our DLWP model form the basis for a good-performing

large ensemble prediction system?

- DLWP is inferior to NWP models. Why bother?
 - The larger the ensemble, the better!
 - DLWP has a significant computational advantage
 - How long would it take to run a 1000member ensemble of 1-month forecasts at 1.5° resolution?
 - 10 minutes
 - Single workstation with GPU
 - In comparison, a comparable dynamical model would take about 16 days

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

Morris MacMatzen / Getty via Vox

11

OBTAINING CORRECT ENSEMBLE SPREAD

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

NWP	DLWP		
nitial conditions ble 4DVAR	 Perturb initial conditions ERA5 ensemble NOT optimal! 		
cally perturbed erization tendencies c KE backscatter	 Random seeds in training random data sampling random weight initialization "swapping" physics 		

DLWP VERSUS THE ECMWF ENSEMBLE

	DLWP	ECMWF		
Variables	6 2-D variables	9 prognostic 3-D variables, 91 vertical levels		
Resolution	~160 km	~18 km (36 km after day 15)		
Other physics	3 prescribed inputs	Many parameterizations		
Coupled models	None	Ocean, wave, sea ice		
Initial condition perturbations	10 (ERA5)	50 (SVD/4DVAR)		
Model perturbations	32 "stochastic" CNNs	stochastic physics perturbations		
Ensemble size	320 (+ control)	50 (+ control)		

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

Average forecast error in 500-hPa geopotential

Root-mean-squared error

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

The DLWP ensemble only lags the state-of-the-art ECMWF ensemble by 2-3 days' lead time.

14

Average forecast error in 500-hPa geopotential

Root-mean-squared error

The DLWP ensemble only lags the state-of-the-art ECMWF ensemble by 2-3 days' lead time.

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

Anomaly correlation coefficient

14

DLWP FOR S2S

Can our large ensemble produce skillful sub-seasonal-to-seasonal (S2S) forecasts?

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

predictability comes from initial atmospheric conditions, monitoring the land/sea/ice conditions, the stratosphere

SEASONAL OUTLOOKS

predictability comes primarily from sea-surface temperature conditions; accuracy is dependent on ENSO state

White et al. (2017)

Monthly or seasonal averages

30–90+ days

SUB-SEASONAL-TO-SEASONAL FORECASTING

- DLWP cannot be expected to compete with the state-of-the-art
- DLWP is lacking
 - an ocean model
 - land surface parameters e.g. soil moisture •
 - sea ice
- We also do not forecast precipitation with the current model iteration
- Cannot represent physics of MJO or ENSO

PROBABILISTIC SKILL SCORES OF S2S FORECASTS

- Ranked probability skill score (RPSS)
 - Three equally-probable terciles relative to a 1981-2010 climatology
 - below-, near-, and above-normal
 - Forecast probability is the fraction of ensemble members
 - Evaluate squared error of forecast probability versus observed category
 - Normalize relative to random chance prediction
 - Perfect score is 1, higher is better, negative score is no skill relative to random chance

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW

PROBABILISTIC SKILL SCORES OF S2S FORECASTS

- Ranked probability skill score (RPSS)
 - Three equally-probable terciles relative to a 1981-2010 climatology
 - below-, near-, and above-normal
 - Forecast probability is the fraction of ensemble members
 - Evaluate squared error of forecast probability versus observed category
 - Normalize relative to random chance prediction
 - Perfect score is 1, higher is better, negative score is no skill relative to random chance

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW

While most skill comes from the tropics, the DLWP ensemble has positive skill scores over nearly all land masses.

Week 3

DLWP, days 15-21

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

Weeks 5-6

DLWP, days 22-28

DLWP, days 29-42

0.02	0.10	0.20	0.30	0.40	0.50	0.70	1.00
RPSS							

DLWP fails to predict the onset of ENSO patterns in forecasts initialized in boreal autumn.

Week 3

DLWP grand, days 15-21

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL WORKSHOP ON NEW OPPORTUNITIES FOR ML AND AI IN WEATHER AND CLIMATE MODELING

Weeks 5-6

DLWP grand, days 22-28

2	0.02	0.10	0.20	0.30	0.40	0.50	0.70	1.00
$T_2 R$	PSS							

TAKE-AWAYS

- Purely data-driven algorithms (CNNs) can produce realistic, indefinitelystable global weather forecasts with skill that only lags the state-of-the-art ECMWF model by 2-3 days of lead time.
- By leveraging initial-condition perturbations and the internal randomness of the CNN training process it is possible to produce a high-performing ensemble of data-driven weather models that requires several orders of magnitude less computation power than comparable dynamical models.
- For weekly-averaged forecasts in the S2S forecast range, a notable skill gap for dynamical models gap for dynamical models skill relative to climatol of-the-art ECMWF ense

JONATHAN WEYN, MICROSOFT 2021 JOINT IS-ENES3/ESIWACE2 VIRTUAL

is nc

