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Semi-implicit Dynamical core
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Background:

• Semi-implicit timestepping has become popular approach

• Part of the equations of motion performed in explicit fashion,

fast waves solved implicitly

→ Large model timestep!

• But: Expensive Implicit height/pressure solve each timestep



What does this implicit height/pressure solve look like?

𝑨𝜱 = 𝒃

• Solved for height/pressure 𝜱

• Matrix 𝑨 is square, pos. definite, non-symmetric

→ Problem has unique solution 𝜱∗

How do we solve this linear problem?

• Direct inversion of 𝐴 impossible (dimension of 𝜱 is 𝑂(109))

• Iterative linear solver is used (here, Krylov subspace method)

• Solver iteratively reduces the residual error  𝒓𝒊 ≔ 𝑨𝜱𝒊 − 𝒃

• If residual error 𝒓𝒊 ‘small enough’, set 𝜱𝒏+𝟏 = 𝜱𝒊

Semi-implicit Dynamical Core
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Motivation 
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Why focus on the Preconditioner for machine learning?

• Crucial component of a computationally efficient linear solver, 

but also computationally expensive

• Process that performs approximate inverse using incomplete

information about the problem

→uncertain by nature

• Machine learning application would be incorporated into the

strong fundamentals of the linear solver

→counters potential robustness issues coming with ML



Problem for linear solvers:

• Condition number of matrix 𝑨 determines convergence rate 

• Given by squared ratio of largest to shortest wavelength

→ Very large condition numbers in NWP

→ Standard Iterative solver might not converge at all!

Why is a preconditioner needed?
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Why is a preconditioner needed?
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Solution: Use a Preconditioner

• Find matrix ෩𝑨, such that the condition number of ෩𝑨−𝟏𝑨 is small

• Mathematically the problem becomes: ෩𝑨−𝟏𝑨𝜱 = ෩𝑨−𝟏𝒃

→ Inversion needs to be done each solver iteration 

→ Inversion needs to be cheap

Coming up with good Preconditioners is hard!

Problem for iterative solvers:

• Condition number of matrix 𝑨 determines convergence rate 

• Given by squared ratio of largest to shortest wavelength

→ Very large condition numbers in NWP ~ O(1010) 

→ Standard Iterative solvers would not converge at all!



Idea: Machine-Learned

Preconditioner?
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What is a preconditioner supposed to do?

What would happen for the ‘optimal’ choice ෩𝑨=𝑨…

෩𝑨−𝟏 𝒓𝟎 = ⋯ = 𝜱𝒏 −𝜱𝒏+𝟏 =: ∆𝜱

→ The preconditioner maps residuals 𝒓𝟎 to the increment in fluid 

thickness/pressure ∆𝜱



Idea: Machine-Learned

Preconditioner?
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How could a machine-learned preconditioner be set up?

• Idea: Train a neural network to perform the mapping ෩𝑨−𝟏.

• Inputs: Local Stencils ‘neighbouring values’ of 

• Matrix coefficients of 𝑨

• Residual values 𝒓𝟎
• Output: Grid-point value of height/pressure increment ∆𝜱

What is a preconditioner supposed to do?

Let’s see what happens for the ‘optimal’ choice ෩𝑨=𝑨…

෩𝑨−𝟏 𝒓𝟎 = ⋯ = 𝜱𝒏 −𝜱𝒏+𝟏 =: ∆𝜱

→ The preconditioner maps residuals 𝒓𝟎 to the increment in fluid 

thickness/pressure ∆𝜱



Shallow-Water Model

Discretization:

• MPDATA advection scheme for Momenta (eulerian, 2nd Order)

• Generalized Conjugated Residual Method

• Lat-Lon Grid (study behaviour near grid singularities)
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Semi-Implicit(SI) Richardson Preconditioner:

• Start with ෩𝑨 = 𝑨
• Omit all cross-derivative terms

• Split ෩𝑨 into Zonal, Helmholtz and Meridional part, ෩𝑨𝑍, ෩𝑨𝐻, ෩𝑨𝑀

• Perform Richardson iteration to obtain ∆𝜱 ≈ ෩𝑨−𝟏(𝑟):

Ι − 𝛿𝑡෩𝑨𝑍 − 𝛿𝑡෩𝑨𝐻 ∆෩𝛷𝑛+1= ∆෩𝛷𝑛 + 𝛿𝑡 ෩𝑨𝑀∆෩𝛷𝑛 − 𝑟

→Zonal part implicit because that is where the stiffness of 𝑨 resides in



Model Setup 1
Shallow-water Test-case:

• Zonal geostrophic flow around scaled-down, Real-earth orography

• 5.2° model resolution

• 120 days of integration time
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Neural Network Setups
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Training the Neural networks:

Architecture:

• Several neural network sizes: linear (L0N0), L1N5, L5N200

• ReLU activation function

Data:

• Trained on data from the first solver iteration (days 15-120)

• One neural network per Latitude

• different input stencil sizes (3x3 or 5x5)

• Input: 7 input Stencils = 6 Matrix coefficient fields define 𝑨

+ 1 residual error field 𝒓𝟎
• Output: single grid-point value of increment ∆𝜱

• →𝟏, 𝟓 ∗ 𝟏𝟎𝟔 training examples, 𝟓 ∗ 𝟏𝟎𝟓 validation examples
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• Different complexity preconditioners on first solver iteration

• Implicit Richardson powerful preconditioner for this type of SW model

• Linear regression model (L0N0) with 5x5 stencil performs best

Mean Absolute Value for
∆෩𝜱−∆𝜱

∆𝜱
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• Simulations run from perturbed initial conditions

• Robust convergence with the machine-learned Preconditioner

• Convergence rate consistently high for all solver iterations

• At no point during training was data from later iterations seen!

Convergence Results (Days 15-120) 

No Preconditioner

Linear (L0N0) with 5x5 stencil SI-Richardson Preconditioner
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Convergence Results (Days 1-14)  

SI-Richardson Preconditioner

Spin-up phase with shocks from model initialization:

• The initial 14 days of the simulation were not part of the training set

• Yet, Machine-learned Preconditioner performs robustly

In summary:

→ The machine-learned preconditioner has learned some general rule 

about predicting fluid thickness increments ∆𝜱

Linear (L0N0) with 5x5 stencil 
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• Relative Contribution of the 6 Matrix Coefficient fields negligible

• 𝒓𝒊 shows imprint of 𝑨, i.e. stencil of spatial discretization

• Only 𝒓𝒊 contribution needs to be computed each solver iteration

→ ML preconditioner is cheaper per application than SI-Richardson!

Interpretability of the ML Preconditioner

Relative Contribution of 𝒓𝒊



Model Setup 2

Increase Complexity…

• Increase model resolution to 0.7°

→ zonal grid spacing down to 400m at the Poles

• Real-Earth Orography (steeper orography gradients and smaller fluid 

thicknesses) 

→lead to more asymmetric 𝑨 and more non-linear flow

• Flow reinitialized using anomalies every 14 simulation days

→Potential energy restoring; Flow does not decay

• Introduce polar absorbers

→enables dt=200s; advective Courant Number close to numerical

limit of 1
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Reference Solver Convergence Results

SI-Richardson Preconditioner

Much harder linear problem… 

• Convergence rate for days 1-120

• For comparison:

• No preconditioener ~540 iterations

• Diagonal preconditioner ~490 iterations

• explicit Richardson ~300 iterations

• SI-Richardson Preconditioner yields enormous Speed-up=35
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Solver Convergence Results (I)  

SI-Richardson Preconditioner Hybrid Preconditioner

Hybrid Preconditioner

• 70S to 70N: Linear with 5x5 stencil

• Remaining: SI-Richardson Preconditioner

• Expected Solver Speed-up of factor 2 compared to pure SI-

Richardson Preconditioner

• Linear with 5x5 stencil unusable near singularities

• Also, no improvement found when using larger neural networks
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Solver Convergence Results (II)  

SI-Richardson Preconditioner Hybrid Preconditioner

Larger input stencils?

• Hybrid preconditioner setup:

• 70S - 70N: Linear with 5x5 stencil

• 86S-70S and 70N-86N: Linear with 60x5 stencil

• Remaining: SI-Richardson Preconditioner

• Training and Validation: 10x larger data sets; 1st-5th solver iteration

• Not perfect yet, but convergence rate for first iterations indicates

further improvements might be possible.



Conclusions
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For our test-case, performance is comparable to reference 

preconditioner:

• Hybrid preconditioner more computationally efficient

• Area near grid singularities challenging, work is ongoing

The preconditioning step in linear solvers of weather and 

climate models can be performed using machine learning.

Due to the low complexity, the preconditioner can be 

interpreted. Possibly, improve analytical preconditioners.

Next Step: Investigate machine-learned preconditioners for 

ECMWF’s IFS-FVM
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