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Tenets for Use of ML/AI at Jupiter

e Balance between established and cutting-edge techniques
e Clear expectations of the potential for success

e Must maintain quality

e Efficient and deployable at scale

e Explainability and transparency
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Example Applications of
ML/AI at Jupiter
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Example Application: Urban-Scale Downscaling

Dynamic Downscaling from 100 km to 1 km Machine Learning from 1 km to 30 m

Global Climate Model Dynamic Weather Model Dynamic Weather Model Machine Learning
~1 degree (100km) 1km Downscaling 1km Downscaling 30m Downscaling

Using a set of high-resolution dynamical simulations as training data with
satellite-derived land use characteristics as predictors, a random-forest model
was used to further downscale projections of heat to the urban scale.
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Example Application: Precipitation Downscaling

Brian Groenke | Data Science Intern | 2019 | doi: 10.1145/3429309.3429318
Idea: View statistical downscaling as an image super-resolution problem

e Applied well known ML model to downscaling ERA-1 = WRF

o SR-CNN (Dong et al. 2015), a convolutional neural network for image super resolution

e Biggest challenges were mostly related to data preprocessing and engineering
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Example Application: Model Emulation and Synthetic Generation

WRF 20030715.0900 Full simulation 20030715.0900

Challenge: surge + precip

e Flooding from hurricanes comes from
multiple sources, e.g. surge and
precipitation

e Nonlinear interactions

e Howdowe incorporate them
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e $1(r,0),... are EOFs

e ¢(t),... are time-varying principal components modeled via:

32

ci(t) = pi(t) + Wi(t)

latitude
30

@
latitude
30

— pi(t) is a random forest with physiographic predictors
— W;(t) is an AR(1) process

28
T

FN

28

26
26

e Z(r,0,t) is a space-time process
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Pushing Forward with ML/AI

e Tread carefully -- reception to ML/AIl techniques can vary
o Too “black-box” and not transparent enough to be defensible
o Users have been “burned before” by the “over-promise” of ML/AI techniques
o Is the method clearly explainable?
e Wealth of established statistical and dynamical methods available -- why
commit to ML/AI?
o Beyond proof-of-concept...why have you chosen an ML/AI technique for this
particular problem?
e Transferability of models
o For geophysical problems, training data is often limited

o Climate change is global -- we want models that can be applied anywhere
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