The optimization dichotomy
Why is it so hard to improve climate/weather models
with machine learning?

Stephan Rasp



The premise -
Dynamics

* Climate models continue to have large

uncertainties II II

* Mainly caused by the parameterization of
clouds

Physics
* Cloud-resolving simulations (km-scale) -

appear to have reduced uncertainties

e But will remain computationally too
expensive for decades

* Could machine learning provide a short-
cut?




ML to the rescue?

Short-term high-resolution simulation
Dynamics
Tendencies II
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Challenge 1: Creating the training dataset

Super- Approximate coarse-
parameterization graining

Exact coarse-graining Nudging tendencies

® Raspetal 2018 e Brenowitz and Bretherton e Yuval and O’Gorman 2020 e Watt-Meyeretal. 2021
e Emulating an embedded 2018/19 e Compute difference e Nudge model towards
2D CRM e Compute residual between LR and HR reanalysis. Learn nudging
e Exact problem definition tendencies by subtracting model versions after one tendencies.
e Not the real deal coarse-grained advection time step e Learns “observations”,
e Model-agnostic e Follows physical only correction
e Sensitive, no conservation constraints ¢ No conservation
properties * Yet to test for long time properties

steps, different models

Model

I state a

Observational
analysis a,ps

time

nudging lAQ“
tendency

— Qobs

a
AQq= —

= ML target

) Coarse-graining

C




Latitude

Results in a nutshell: It works...
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..but with problems.

Time to Crash: 1.2day

(a) Near-surface Convective Moistening
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Challenge 2: Optimization dichotomy

Goal:
Better weather/climate forecasts
* In-between the two are thousands of

@
time steps with ML-physics interaction

_II _I * Traditional parameterizations can be
fendendes tate I tuned with “physical” parameters
e Can’t do that with ML models
Learning

* We optimize for time step sub-grid
tendencies

* We want good weather forecasts or
climate statistics




The ML parameterization continuum

Pure emulation

Replacing existing, slow
parameterization with fast ML
emulator

Radiation (ECMWEF-Nvidia, etc.)
Microphysics (Gettelman et al.
2020)

Gravity waves (Chantry et al.
2021)
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High-resolution target

e Coarse-graining is difficult

e Resulting simulations struggle
with biases and crashes

e High resolution better but still
JJEN:l

Observations

e Nudging a potential method

e But still not optimizing for the
actual target



Paths forward

Differentiable Physics Gradient-free approaches (EnKF)

Coupled Learning

3b. Coupled learning
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Big picture: Hybrid ML-Physics modeling

Neural networks are very capable function approximators

e (Theoretically) large potential for speeding up/improving complex simulations

e “There exists a neural network that creates better climate/weather simulations.”

Neural networks are only good at exactly what they are trained for

e Optimization dichotomy: Currently not the case

o Offline skill # Online skill

Challenge: Train a NN in an environment that is close to reality

e Training within the coupled ML-Physics model
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& PANGEO ML DATASETS

WEATHER AND CLIMATE DATASETS FOR Al
RESEARCH

PREPROCESSED DATASETS

This is a list of weather and climate datasets preprocessed for Al research. This can include benchmarks,
competitions or ML papers with published data. The list is in alphabetical order.

Al'FOR EARTH SYSTEM SCIENCE SUMMER SCHOOL
HACKATHON

s Code and Data: https://github.com/NCAR/ai4ess-hackathon-2020

« Source: NCAR, Lawrence Berkeley Lab, and NOAA

« Description: 5 challenge problems related to prediction and emulation. GOES challenge problem
focuses on predicting lightning from GOES-16 satellite imagery. GECKO-A challenge problem fo-
cuses on emulating the GECKO-A chemistry model from a large set of medel time series. Micro-
physics challenge problem focuses on emulating the TAU bin microphysics scheme. HOLODEC
challenge problem focuses on estimating rain drop distribution properties from synthetic holographic
diffraction patterns. ENSO challenge problem focuses on predicting ENSO from gridded model
output.

AMS SOLAR ENERGY PREDICTION CONTEST

« Code and data: hitps:/
« Source data: GEFS forecasts and Mesonet solar observations
= Description: Predict total daily solar irradiance from GEFS and Oklahoma Mesonet Data

v.kaggle.com/c/ams-2014-solar-energy-prediction-contest



