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• Strong biases remain in GCM simulated cloud radiative effects. 

• Low cloud feedback is strongly correlated with climate sensitivity.

Low clouds dominate uncertainties in climate predictions
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[Zelinka et al. 2020][Golaz et al. 2019]



• While GCMs cannot simulate them, LES can provide high fidelity 
simulations of clouds in limited area, which can be used to improve 
GCM parameterizations.  

• We can run many LES driven by large-scale forcing in a GCM at 
different locations to generate data that span a wide range of cloud 
regimes. [Shen et al. 2020]

LES can be used to train GCM parameterizations
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Sampling the East Pacific with LES simulations

• PyCLES [Pressel et al. 2015] 

• 5-year averaged monthly mean forcing 
from HadGEM2-A amip experiments 

• Prescribed SST, RRTM, one-moment 
microphysics based on Kessler 

• Domain size: 6km x 6km x 4km, 
resolution: 75m x 75m x 20m 

• Simulation time: 6 days
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Sampling the East Pacific with LES simulations
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GCM-LES differences suggest biases in parameterizations

site17 (stratocumulus)

site23 (shallow cumulus)
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Eddy diffusivity mass flux (EDMF) scheme

• A unified parameterization of 
turbulence and convection 

• Decompose the domain into 
convective plumes and chaotic 
environment 

• Closures are needed for mass and 
momentum exchange between the 
plumes and the environment, and 
turbulent mixing in the environment 

• [Cohen et al. 2020, Lopez-Gomez et 
al., 2020, He et al. submitted]



Calibrate EDMF parameters (example)
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Time averaged vertical profiles in the LES

Temporal covariance in the LES

EDMF free parameters

Lognormal prior to enforce positivity of parameters

Minimize
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Calibrate: Ensemble Kalman Inversion
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Error minimization Consensus



Calibration results
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Liquid potential temperature (K)

Specific humidity (kg kg-1) Specific humidity (kg kg-1)

Stratocumulus Shallow cumulus

Liquid potential temperature (K)



Uncertainty quantification: Calibrate, Emulate, Sample

• Ensemble Kalman Inversion does not provide good uncertainty 
quantification of parameters. 

• A framework to recover the uncertainty information:
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[Cleary et al. 2021]

Train an emulator on 
calibration data

Produce (cheap) samples 
from the emulator and 
recover the posterior

Find parameters and generate 
(expensive) samples



Sample the posterior using the emulator and MCMC
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• Use Gaussian Process to train the 
emulator and sample with MCMC 

• ~106 evaluations in minutes 

• Recover information about 
correlations in the parameters 

• Smoother posterior in general

Posterior distribution in log-transformed space



• We design and prototype a framework that generates a library of LES 
that spans a wide range of cloud regimes. 

• We show that parameters in convection parameterizations can be 
learned from the LES data. 

• We aim to run O(1000) LES to expand the training dataset and 
demonstrate online learning of GCM parameterizations.

Summary and future work
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