

Stochastic downscaling using Gaussian random fields

Rachel Prudden Senior Scientist, Met Office Informatics Lab PhD student, University of Exeter

Downscaling to convective scales

Figure 1: Original wet bulb potential temperature field together with synthetic synoptic scale field (right) formed by block averaging with block size 8×8 .

Downscaling to convective scales

The goal: approximate this distribution

Gaussian random fields

Gaussian random fields

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
$$X = \mu + \sigma R \qquad R \sim \mathcal{N}(0, 1)$$

Gaussian distributions

Gaussian random fields

Samples

Gaussian field

Example covariance

Conditioning

$$\mu_{t|o} = \mu_t + C_{t,o}^T \cdot C_o^{-1} \cdot (\text{obs} - \mu_o)$$
$$C_{t|o} = C_t - (C_{t,o}^T \cdot C_o^{-1} \cdot C_{t,o})$$

Likelihood and inference

Log likelihood:
$$\log p(\mathbf{x}|\theta) = -\frac{1}{2} \left(n \log(2\pi) + n \log|K| + \sum_{i=1}^{n} \mathbf{x}_{i}^{T} K^{-1} \mathbf{x}_{i} \right)$$

Fit parameters (e.g. kernel length scale) via maximum likelihood estimation or similar.

Simple 1D optimisation, gradients easy to compute.

Sampling

$$\mathbf{X} = \boldsymbol{\mu} + C^{\frac{1}{2}} \mathbf{R} \qquad \mathbf{R} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

In practice, use the Cholesky decomposition instead of the true square root.

How to apply this to downscaling?

Conditioning on spatial averages

Given an observed low resolution field, what is our new distribution?

Covariance is linear:

$$cov\left(\sum_{i} \mathbf{X}_{i}, \mathbf{Y}\right) = \sum_{i} cov(\mathbf{X}_{i}, \mathbf{Y}))$$

Use to find covariances:

$$C_{high} \rightarrow C_{low}, C_{high, low}$$

Condition on low resolution fields:

$$\mathbf{C}_{h|l} = \mathbf{C}_h - (\mathbf{C}_{h,l}^T \cdot \mathbf{C}_l^{-1} \cdot \mathbf{C}_{h,l})$$

$$\boldsymbol{\mu}_{h|l} = \mathbf{C}_{h,l}^T \cdot \mathbf{C}_l^{-1} \cdot \mathbf{obs}_l$$

Spatial conditioning

Spatial conditioning

Spatial conditioning

Spatial conditioning

Joint distribution of high res and low res fields:

$$\mathbb{E}\begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_t \\ \boldsymbol{\mu}_o \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_t \\ A\boldsymbol{\mu}_t \end{pmatrix} \qquad \operatorname{Cov}\begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} = \begin{pmatrix} C_t & C_{o,t} \\ C_{t,o} & C_o \end{pmatrix} = \begin{pmatrix} C_t & C_t A^T \\ AC_t & AC_t A^T \end{pmatrix}$$

Conditional distribution of high res conditioned on low res:

$$p(\mathbf{x}|A\mathbf{x} = \overline{\mathbf{x}}) \qquad \boldsymbol{\mu}_{t|o} = \boldsymbol{\mu}_t - C_t A^T (A C_t A^T)^{-1} (\overline{\mathbf{x}} - A \boldsymbol{\mu}_t)$$

$$C_{t|o} = C_t - C_t A^T (A C_t A^T)^{-1} A C_t.$$

Experiment on model data

Synthetic coarse-graining

Figure 1: Original wet bulb potential temperature field together with synthetic synoptic scale field (right) formed by block averaging with block size 8×8 .

mesoscale (4x4 pixels, ~10km) synoptic (8x8 pixels, ~20km)

Results

convolution	model	MSE	PSD Wass	Nd Wass (4)
8×8	lres	0.034	1.65	0.048
	bicub	0.025	2.56	0.047
	GRF-E mean	0.036	1.69	0.042
	GRF-E samples	0.036	1.69	0.042
	GRF-S mean	0.023	2.82	0.038
	GRF-S samples	0.039	1.65	0.039
	GRF-T mean	0.023	2.85	0.038
	GRF-T samples	0.037	1.50	0.036

Results

convolution	model	MSE	PSD Wass	Nd Wass (4)
4×4	lres	0.015	0.76	0.030
	bicub	0.010	1.64	0.036
	GRF-E mean	0.014	0.77	0.032
	GRF-E samples	0.014	0.77	0.032
	GRF-S mean	0.008	1.57	0.027
	GRF-S samples	0.015	0.70	0.030
	GRF-T mean	0.008	1.59	0.027
	GRF-T samples	0.015	0.60	0.029

Results

convolution	model	MSE	PSD Wass	Nd Wass (4)
8×8	lres	0.034	1.65	0.048
	bicub	0.025	2.56	0.047
	GRF-E mean	0.036	1.69	0.042
	GRF-E samples	0.036	1.69	0.042
	GRF-S mean	0.023	2.82	0.038
	GRF-S samples	0.039	1.65	0.039
	GRF-T mean	0.023	2.85	0.038
	GRF-T samples	0.037	1.50	0.036

Take-aways

- stochastic / generative model
- using GRFs in a non-standard way
- (essentially) no training

Ongoing work

- anisotropy (straightforward)
- spatial non-stationarity
- non-Gaussian variables
- speed

¹ Stochastic Downscamig to Chaotic Weather Regimes using Spa	S		Stochastic Downsca	ling to Chao	tic Weather	Regimes	using Spati	ally
---	---	--	--------------------	--------------	-------------	---------	-------------	------

2	Conditioned	Gaussian	Random	Fields w	vith Ada	ptive (Covariance
---	-------------	----------	--------	----------	----------	---------	------------

3	Rachel Prudden*
4	Met Office Informatics Lab, Exeter, and University of Exeter, Exeter
5	Niall Robinson
6	Met Office Informatics Lab, Exeter, and University of Exeter, Exeter
7	Peter Challenor
8	University of Exeter, Exeter
9	Richard Everson
10	University of Exeter, Exeter