

Stochastic downscaling using Gaussian random fields

Rachel Prudden Senior Scientist, Met Office Informatics Lab PhD student, University of Exeter

Downscaling to convective scales

Figure 1: Original wet bulb potential temperature field together with synthetic synoptic scale field (right) formed by block averaging with block size 8×8 .

Downscaling to convective scales

The goal: approximate this distribution

Gaussian random fields

Gaussian random fields

$$
X \sim \mathcal{N}(\mu, \sigma^2)
$$

$$
X = \mu + \sigma R \qquad R \sim \mathcal{N}(0, 1)
$$

Gaussian distributions

Gaussian random fields

Gaussian field

Samples **Example covariance**

Conditioning

$$
\mu_{t|o} = \mu_t + C_{t,o}^T \cdot C_o^{-1} \cdot (\text{obs} - \mu_o)
$$

$$
C_{t|o} = C_t - (C_{t,o}^T \cdot C_o^{-1} \cdot C_{t,o})
$$

Likelihood and inference

$$
\text{Log likelihood:} \qquad \log p(\mathbf{x}|\theta) = -\frac{1}{2} \left(n \, \log(2\pi) + n \, \log|K| + \sum_{i=1}^{n} \mathbf{x}_i^T K^{-1} \mathbf{x}_i \right)
$$

Fit parameters (e.g. kernel length scale) via maximum likelihood estimation or similar.

Simple 1D optimisation, gradients easy to compute.

Sampling

$$
\mathbf{X} = \boldsymbol{\mu} + \mathbf{C}^{\frac{1}{2}} \mathbf{R} \qquad \mathbf{R} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

In practice, use the Cholesky decomposition instead of the true square root.

How to apply this to downscaling?

Conditioning on spatial averages

Given an observed low resolution field, what is our new distribution?

Covariance is linear:

$$
cov\bigg(\sum_i \mathbf{X}_i, \mathbf{Y}\bigg) = \sum_i cov(\mathbf{X}_i, \mathbf{Y}))
$$

Use to find covariances:

$$
C_{high} \rightarrow C_{low}, C_{high,low}
$$

Condition on low resolution fields:

$$
\mathbf{C}_{h|l} = \mathbf{C}_h - (\mathbf{C}_{h,l}^T \cdot \mathbf{C}_l^{-1} \cdot \mathbf{C}_{h,l})
$$

$$
\boldsymbol{\mu}_{h|l} = \mathrm{C}_{h,l}^T \cdot \mathrm{C}_l^{-1} \cdot \mathbf{obs}_l
$$

Spatial conditioning

Spatial conditioning

Spatial conditioning

Spatial conditioning

Joint distribution of high res and low res fields:
\n
$$
\mathbb{E}\begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} = \begin{pmatrix} \mu_t \\ \mu_o \end{pmatrix} = \begin{pmatrix} \mu_t \\ A\mu_t \end{pmatrix} \qquad \text{Cov}\begin{pmatrix} \mathbf{x} \\ A\mathbf{x} \end{pmatrix} = \begin{pmatrix} C_t & C_{o,t} \\ C_{t,o} & C_o \end{pmatrix} = \begin{pmatrix} C_t & C_t A^T \\ AC_t & AC_t A^T \end{pmatrix}
$$

Conditional distribution of high res conditioned on low res:

$$
p(\mathbf{x}|A\mathbf{x} = \overline{\mathbf{x}}) \qquad \qquad \boldsymbol{\mu}_{t|o} = \boldsymbol{\mu}_t - C_t A^T (A C_t A^T)^{-1} (\overline{\mathbf{x}} - A \boldsymbol{\mu}_t)
$$

$$
C_{t|o} = C_t - C_t A^T (AC_t A^T)^{-1} AC_t.
$$

Experiment on model data

Synthetic coarse-graining

Figure 1: Original wet bulb potential temperature field together with synthetic synoptic scale field (right) formed by block averaging with block size 8×8 .

mesoscale (4x4 pixels, ~10km) synoptic (8x8 pixels, ~20km)

Results

Results

Results

- stochastic / generative model
- using GRFs in a non-standard way
- (essentially) no training

Take-aways **Ongoing work**

- anisotropy (straightforward)
- spatial non-stationarity
- non-Gaussian variables
- speed

